Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Probabilistic analysis of a new strip packing algorithm

Abstract

In 1993 Coffman and Shor proposed on-line strip packing algorithm with expected unpacked area (waste area) of order O(n^{2/3}) in a standard probabilistic model, where n is the number of rectangles. In the standard probabilistic model the width and height of each rectangle are independent random variables with uniform distribution in [0,1]. It is well-known that optimal packing  has expected waste of order O(n^{1/2}) and there exists off-line polynomial algorithm that provides this bound. During more than 10 years the question concerning the possibility to obtain similar upper bound in the class of on-line packing algorithms was open. It was also known that in the class of popular so-called shelf algorithms the bound O(n^{2/3}) cannot be improved. In this paper we give positive answer to this question. We analyze new packing algorithm proposed recently by the author and prove new upper bound of unpacked area of order O(n^{1/2} (log n)^{3/2}) which is almost optimal up to logarithmic factor.  The only restriction is the following: we must know the number n of rectangles in advance (exactly as in algorithm of Coffman and Shor). In a popular terminology concerning on-line algorithms this means that our algorithm is closed-end on-line algorithm.

About the Author

M. A. Trushnikov
Microsoft Corporation
United States


References

1. Baker B. S., Coffman E. J., Rivest R. L. Orthogonal packings in two dimensions. SIAM J. Computing. 1980. V. 9. 4. P. 846-855.

2. Baker B. S., Schwartz J. S. Shelf algorithms for two dimensional packing problems. SIAM J. Computing. 1983. V. 6. 2. P. 508-525.

3. Shor P. W. The average-case analysis of some on-line algorithms for bin packing. Combinatorica. 1986. V. 6. 2. P. 179-200.

4. Coffman E. G., Jr, Shor P. W. Packing in two dimensions: Asymptotic average-case analysis of algorithms. Algorithmica. 1993. V. 9. 3. P. 253-277.

5. Кузюрин Н. Н., Поспелов А. И. Вероятностный анализ нового класса алгоритмов упаковки прямоугольников в полосу. ЖВМиМФ. 2011. Т. 51, N 10, с. 1931-1936.

6. Кузюрин Н. Н., Поспелов А. И. Вероятностный анализ шельфовых алгоритмов упаковки прямоугольников в полосу. Дискретная математика. 2006. Т. 18. 1. С. 76-90.

7. Csirik J., Woegenger G.J. Shelf algorithm for on-line strip packing, Inf. Process. Letters, 1997, v. 63, N 4, P. 171-175.

8. Трушников М.А., Об одной задаче Коффмана-Шора, связанной с упаковкой прямоугольников в полосу, Труды ИСП РАН, 2012 г., т. 22, с. 456-462.


Review

For citations:


Trushnikov M.A. Probabilistic analysis of a new strip packing algorithm. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2013;24. (In Russ.)



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)