Preview

Труды Института системного программирования РАН

Расширенный поиск

Обнаружение периодических наборов событий во временных базах данных

https://doi.org/10.15514/ISPRAS-2012-23-18

Аннотация

Повторяемость во временных данных это важное свойство, которое может быть использовано во многих приложениях. Такая регулярность исследуется в области интеллектуального анализа периодических шаблонов. В данной работе мы поднимаем проблему обнаружения периодических наборов и предлагаем способ для ее решения. Существующие алгоритмы обнаружения периодических событий и новый подход подробно рассматриваются в статье. Сравнительный анализ алгоритмов и их производительность демонстрируются через серию экспериментов.

Об авторе

Е. A. Иванникова.
Санкт-Петербургский государственный университет
Россия


Список литературы

1. RakeshAgrawal and RamakrishnanSrikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487-499, 1994.

2. Juan M. Ale and Gustavo Rossi. Discovering association rules in temporal databases. In Encyclopedia of Database Technologies and Applications, pages 195-200. 2005.

3. Huiping Cao, David W. Cheung, and Nikos Mamoulis. Discovering partial periodic patterns in discrete data sequences. In PAKDD, pages 653-658, 2004.

4. Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid. Periodicity detection in time series databases. IEEE Trans. Knowl. Data Eng., 17(7):875-887, 2005.

5. FlorisGeerts, Bart Goethals, and Jan Van den Bussche. A tight upper bound on the number of candidate patterns. In ICDM, pages 155-162, 2001.

6. GöstaGrahne and Jianfei Zhu. E ciently using prex-trees in mining frequent itemsets. In FIMI, 2003.

7. Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov.,15(1):55-86, 2007.

8. Jiawei Han, Guozhu Dong, and Yiwen Yin. E cient mining of partial periodic patterns in time series database. In ICDE, pages 106-115, 1999.

9. Jiawei Han and MichelineKamber. Data Mining: Concepts and Techniques, second edition. Morgan Kaufmann, 2000.

10. Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation. In SIGMOD Conference, pages 1-12, 2000.

11. Wan-Jui Lee, Jung-Yi Jiang, and Shie-Jue Lee. Mining fuzzy periodic association rules. Data Knowl. Eng., 65(3):442_462, 2008.

12. Yingjiu Li, PengNing, Xiaoyang Sean Wang, and SushilJajodia. Discovering calendar-based temporal association rules. In TIME, pages 111-118, 2001.

13. BanuÖzden, Sridhar Ramaswamy, and Abraham Silberschatz. Cyclic association rules. In ICDE, pages 412-421, 1998.

14. Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash-based algorithm for mining association rules. In Proceedings of the 1995 ACMSIGMOD international conference on Management of data, SIGMOD '95, pages 175-186, New York, NY, USA, 1995. ACM.

15. Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An effcient algorithm for mining association rules in large databases. In VLDB, pages 432-444, 1995.

16. Chang Sheng, Wynne Hsu, and Mong-Li Lee. Mining dense periodic patterns in time series data. In ICDE, page 115, 2006.

17. Keshri Verma and Om Prakash Vyas. E cient calendar based temporal association rule. SIGMOD Record, 34(3):63-70, 2005.

18. Mohammed Javeed Zaki. Scalable algorithms for association mining. IEEETrans. Knowl. DataEng., 12(3):372-390, 2000.


Рецензия

Для цитирования:


Иванникова. Е.A. Обнаружение периодических наборов событий во временных базах данных. Труды Института системного программирования РАН. 2012;23. https://doi.org/10.15514/ISPRAS-2012-23-18

For citation:


Ivannikova E. Periodic event sets detection in temporal databases. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2012;23. (In Russ.) https://doi.org/10.15514/ISPRAS-2012-23-18



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)