TPYADI

UWHCTUTYTA CACTEMHOI'O
nPOrPAMMUPOBAHUA PAH

PROCEEDINGS OF THE INSTITUTE
FOR SYSTEM PROGRAMMING OF THE RAS

ISSN Print 2079-8156 MHCTUTYT CUCTEMHOIO
Tom 35 Bbinyck 3 nporpamMmMmpoBaHus

mm. B.IN. UBaHHUKoBa PAH
ISSN Online 2220-6426
Volume 35 Issue 3 Mockea, 2023

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)

Tpyabl UHCTUTYTA cuctemHoro nporpammupoBaHua PAH
Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH - 510 u3ganmne ¢

JIBOMHOM aHOHUMHOM CUCTEMOM

PEICH3UPOBaHYSI, ITyOIHKYIOIIee HAYIHbIC

CTaThH, OTHOCSIIHECS KO BCeM 00JIacTsIX

CHCTEMHOTO TIPOTpaMMHUPOBAHHUS,

TEXHOJIOTUH MPOTPaMMUPOBAHUS U

BBIUHMCIUTEIIbHON TeXHUKH. Llennro

W3JIaHUS SIBIIIETCST (POPMUPOBAHIE HAYIHO-

WH(POPMAITUOHHOM CPEJIbI B ITUX 00JIACTSIX

MyTeM MyOJIMKAIUY BRICOKOKAYECTBEHHBIX

CTaTei B OTKPHITOM JIOCTYTIE.

W3nanue npeaHasHayeHo s

HCCIe0BaTeNeH, CTYACHTOB U

ACIMPAHTOB, a TaK)Ke MPakTUKOB. OHO

OXBAaTHIBACT IIMPOKUI CIIEKTP TEM,

BKJIFOYAsi, B YACTHOCTH, CICAYIOIIHUE:

® OICPAIMOHHBIC CHCTEMBI;

e KOMIIJIATOPHBIC TEXHOJIOTHH;

e (0a3bl JaHHBIX U HHHOPMALTUOHHBIE
CHCTEMBEI,

e MapajuieJbHBIC U PacTIpeCIICHHbIC
CHCTEMBEI,

® aBTOMAaTH3WpOBaHHAas pazpadoTka
Iporpamm;

e BepudwuKanys, BaIUIANNS U
TECTUPOBAHUE;

e CTaTWMYCCKUU M JTUHAMHYCCKHUI aHAIIN3;

e 3ammra 1 odecreucHue 0e301MacHOCTH
I10;

® KOMIBIOTEPHBIC AITOPUTMEI,

® HCKYCCTBEHHBIN MHTEIIJICKT.

JKypnan uznaercs mo oJHOMY TOMY B TO],

MIECTh BBIITYCKOB B KAKIIOM TOME.

TlonnepxuBaercs OTKPBITHIN TOCTYII K

COJICPKaHUIO M3IaHUs, O0ecTIeunBast

JIOCTYITHOCTH Pe3yIbTAaTOB MCCICIOBAHMI

JUTSL OOIIIECTBEHHOCTH U TIOJJICPIKUBAS

r1a00abHBIN OOMEH 3HAHUSIMHU.

Tpyast UCII PAH pedepupyroTes u/umu

WHIEKCUPYIOTCS B!

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by publishing
high quality articles on open access.

The journal is intended for researchers,
students, and practitioners. It covers a wide
variety of topics including (but not limited
to):

Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design Tools.
Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

;Sle @ ULRICHS\WEE

s seonce N Horldcat

OpenDOAR
EVBER[ENINKA DO/ b
eI.IBRARY.R BQAR

éos e‘

VJIK004.45

Peakosnerus

I'naBHbIil pepakTop - Aperucsy ApyToH
Mnixanosud, akagemuk PAH, nokrop ¢usuko-

MaTeMaTH4ecKux Hayk, npogeccop, UCII PAH
(Mockaa, Poccuiickas ®enepanms)

fgffffffﬂh LIABHOLO nguaﬁiopa -
Kysnenos Cepreit JIMUTDUEBUY LT H., Ipodeccop,

HUCII PAH (Mocksa, Poccuiickas ®enepariis)

YireHbl peaKoJIerun

BoponkoB Anjipeii AnatosibeBu4, T0KTOp HU3HUKO-
MaTeMaTHIeCKHX HayK, Ipodeccop, Y HUBEpCHTET
Mamnuecrepa (Mandecrep, BenmnkoOpuranust)
Buponukaiite Upuna boHaBeHTYpOBHA,
npodeccop, TOKTOp PU3UKO-MaTEMAaTHIECKHUX HAYK,
HucTuTyT cHcTeM HH)OPMATHKY HM. aKaJeMHUKa
A.I1. EpmoBa CO PAH (HoBocubupck, Poccust)
Konnos Urops BiaajuMupoBuy, KaHIUIAT
(U3UKO-MaTEeMaTHUECKUX HAayK, TeXHUIeCKUui
yauBepcuteT Bensl (Bena, ABctpus)
JlacToBenkuii AJsiexceii Jleonn10BuY, T0KTOp
(bHM3HKO-MaTeMaTHUECKUX HayK, Tpodeccop,
VYuusepcuter dy6muna (Jyomun, Vpranmus)
Jloma3zoBa MpuHa AjeKcaHAPOBHA, JOKTOP
(U3UKO-MaTEeMaTHUECKHIX HayK, Ipodeccop,
HanmonanbHbIHM HccnenoBaTenbCKUil yHUBEPCUTET
«BpIcmias mkoia 3KOHOMHKH» (MockBa,
Poccuiickas deneparust)

Hoguxor Bopiuc AceHOBIY, TOKTOP (PH3HKO-
MaTeMaTH4YeCKHX Hayk, npogeccop, CaHKT-
IMetepOyprekuii rocyiapCTBEHHBIN YHUBEPCUTET
(Canxr-IlerepOypr, Poccust)

IleTpenko Anexcanap ®e10poBut, TOKTOpP HAYK,
HccnenoBarenbekuit ”HCTUTYT MoHpeas
(Mownpeans, Kanana)

Yepubix Anjpeii, TOKTOp GU3UKO-MaTEMaTHIECKHAX
Hayk, podeccop, HayuaHo-nccnenoBarenbckuit
uentp CICESE (Ducenana, baxa Kanudopuns,
Mekcuka)

Illycrep Accad, TokTOp HU3MKO-MAaTEMaTHIECKUX
HayK, nmpoteccop, Texarnon — M3panbckuii
TexHonormdeckuit nHCTUTYT Technion (Xaiida,
Wzpannb)

Anpec: 109004, r. Mockga, yi. A. ComKeHHUIIbIHA,
oM 25.

Tenedon: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caiit: http://www.ispras.ru/proceedings/

Editorial Board

Editor-in-Chief - Arutyun I. Avetisyan,
Academician of RAS, Dr. Sci. (Phys.—Math.),
Professor, Ivannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Deputy Editor-in-Chief -{Sergey D. Kuznetsovl
Dr. Sci. (Eng.), Professor, Ivannikov Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Editorial Members

Igor Konnov, PhD (Phys.—Math.), Vienna
University of Technology (Vienna, Austria)
Alexey Lastovetsky, Dr. Sci. (Phys.—Math.),
Professor, UCD School of Computer Science and
Informatics (Dublin, Ireland)

Irina A. Lomazova, Dr. Sci. (Phys.—Math.),
Professor, National Research University Higher
School of Economics (Moscow, Russian Federation)
Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor,
St. Petersburg University (St. Petersburg, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research
Institute of Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel
Institute of Technology (Haifa, Israel)

Andrei Tchernykh, Dr. Sci., Professor, CICESE
Research Centre (Ensenada, Baja California,
Mexico).

Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The
A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the RAS (Novosibirsk, Russian
Federation)

Andrey Voronkov, Dr. Sci. (Phys.—Math.),
Professor, University of Manchester (Manchester,
United Kingdom)

Address: 25, Alexander Solzhenitsyn st., Moscow,
109004, Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings

© Unctutyt Cucremuoro IporpammupoBanus um. B.I1. Banaukosa PAH, 2023

http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://usuario.cicese.mx/~chernykh/
http://assaf.net.technion.ac.il/
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://usuario.cicese.mx/~chernykh/
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/

Tpyasl Hucturyra CucrtemMHoro IlporpaMMuUpoBaHUuA

Coxep:xaHnmue

CuHTe3 MOJIeNel POIECcCOB T10 KypHaJlaM COOBITHI MyJIbTHAT€HTHBIX CHCTEM C
MIOMOIIBIO OTHOLIEHUH MEXy COOBITHAMH.
Llepcmiozuna A.A., HECMEPOG P.A.............cccocivoiiiiiiiiiiiicit et 11

I'enepatop aepesa PSI ¢ BO3MOXXHOCTBIO 3alMCH TSI MYJIBTUSA3BIKOBOM Tu1aTdopmsel IDE.
booicniok A.C., 3axapos A.A., Tponun H.B., BOIKO8 M.B.c.ccccovviiiviiiiiiieiiniin e 33

K Bompocy ncnonbs3oBaHus B 00pa3oBaTeI-HOM MIPOIEcce pa3paboTaHHOTO
MPOrPaMMHOT0 00ECTICUCHUS ISl HCCIICIOBAHUS aKYCTHUYSCKUX TPAKTOB
MarHUTOCTPUKIIMOHHBIX TTpeoOpa3oBaTee mepeMeICHHM.

Uszanos A.A., Boporyos A.A., Cnecapes FO.H.ccccccuevciiiiiiiiiiiiiiii s 47
Pazpabotka u peanuzanus MeToa upoBoi creraHorpaduu Ha OCHOBE BCTPaUBAHHUS
nceBIonH(OpMaIny.

T8030esa U.T., I pomos A.C., 18030€80 O.M.ccoccvviiiiiiiiiiiiiiniine e 63

IToxxo/pl K pa3BepTHIBAHMIO B paclpeIeIeHHONH 00pa00TKe CIOKHBIX COOBITHH.
30put A.A., HePHEUKASL HLE.cccooiiiiiiiii ettt 71

MaremaTtideckoe MOICINPOBaHIE M MPOrpaMMHOE oOecTieueHre Uil pacyeTa peKHMOB
OYHCTKH T'aJJbBAaHMYECKUX CTOKOB OT TSDKEIIBIX M [IBETHBIX METAJUIOB B aImaparax ¢
MPOTOYHBIMU TPEXMEPHBIMH JIIEKTPOAAMH.

Kysuna B.B., Bapenyos B.K., Koueg A.H., Kynpuauko I'M.cccccccovinviiiiiiinnnnnn. 83

CuMKpeTHast MOJICNTb TIAMSTH C JICHUBON MHUIHATH3AIUCH U 00hEKTAMH CHMBOJILHOTO
pasMepa B CUMBOJIbHOM BUpTyanbHOM MamnHe KLEE.

Mopo3zos U.A., Muconusichuk A.B., Mopoeunos /[.A., Ko3zuog JI.B.,

YT oY L SRR 91

REDoS Detection in “Domino” Regular Expressions by Ambiguity Analysis.
Heneiieooa A.H., benurxosa FO.A., lllesuenxo K.K., Teproxa M.P.,
Kuszuxun .11, [lenvman A /1., TepeHmpe8a A.C...........cocoeiiiiiiiiiiiiniie e 109

AHan3 1 HCUYHNCICHHE aJlInaCoB, OCHOBAHHOC Ha CeFMeHTHpOBaHHOﬁ MOZACIIH aapecalnn
maMsTH.

TIAPPEHOB T A. ...t e 125
[TpoekTHpOBaHKE APXUTEKTYPhI CHCTEMbl MOHUTOPHHTA HA OCHOBE MATTEPHOB
MPOEKTUPOBAHUS.

Tacvinkosa A. A., BUKEHIMBEBA O. J...........uvuvuvuriiiiiiiiiiiiiririiiiiisieisisssiesessressrs. 137

TTorck HOBBIX OLIHOOK METOAOM BepI/I(i)I/IKaI_II/II/I MO,Z[CJ'IGﬁ C IIOMOIIBIO IMOAXO0Ja ACIbTa

OTIIA/IKH.
TIEMP OB O.M ...ttt 151

OpeliMBOPK U151 aHAJIM3a UCTIOJIb30BAHNSI MAITMHHBIX HHCTPYKLIUH.
Heuenes JI.E., Kupunenxo A.A., AQOHUHA O.A.c..coovviiiiiiiiiiiieie e 163

[TpuMeHeHne METOI0B MHTEIUICKTYaIbHOTO aHAJIM3a MPOIECCOB B XO¢ pa3padoTKu
ceMeicTBa MOOMITBHBIX TTPUIIOKEHUIM.
Pesynux JI. A., Ilepesosnuxosa A. U., Epemuna /]. B., Muyiox A. A.....c..cocovvvveviinannnnn, 171

VYTOYHEeHHE NPEIUKATHON a0CTPaKIMHU MPH Pa3AeIbHOM aHAIM3€ OTOKOB.
Pyoenyur B.I1., AHOPUAHOG T1.C............ocovieeiiiiiiii et 187

Otnaguuk st neknapatuBHoro DSL st pa3paOoTKu TeJIeKOMMYHUKAIIMOHHBIX CHCTEM.
Craorceruk T.M, KO3HOB [I.B.ccoccviueiiie i et ete sttt e sttt et nane s 205

AHanu3 akTyanbHBIX OIIMOOK B siape Linux myTeM KiacTepu3aluu cooOmmeHui 00
WCTIPaBJICHUSIX B git-PEO3UTOPHH.
Cmaponemos C.M., Cmaposoiimos H.A., [0106HE8 H.A.ccccvvviviiiiiniiniiiinannnnn 215

Proceedings of the Institute for System Programming of the RAS

Tableof Contents

Discovering Process Models from Event Logs of Multi-Agent Systems Using Event
Relations.

Sherstyugina A.A., NESTEIOV R.A. ..o 11
Writable PSI Generator for a Multi-Language IDE Platform.
Bozhnyuk A.S., Zakharov A.A., Tropin N.V., VOIKOV MLV. ... 33

On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process.
Ivzanov A.A., Vorontsov A.A., SIESAIEY YU.IN. ...eeciiiiieeiioeiie ittt e e e s serreeessneeee e 47

Development and implementation of the digital steganography method based on the
embedding of pseudoinformation.

Gvozdeva |.G., Gromov A.S., GVOZAEBVA O.M.......oceeeeeeeie et 63
Deployment approaches in distributed complex event.
Z0orin ALA., ChernetsKaya LE.ccovoeiiiiee e 71

Mathematical modeling and software for calculating regimes of galvanic wastewater
purification from heavy and nonferrous metals in devices with flow-through three-
dimensional electrodes.

Kuzina V.V., Varentsov V.K., Koshev A.N., Kupriyanko G.ccccccoevvivervniviiinnnsiennnnnns 83

“Symcrete” memory model with lazy initialization and objects of symbolic sizes in
KLEE.

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V.,

IVANOV D.A. . 91

REDoS Detection in “Domino” Regular Expressions by Ambiguity Analysis.
Nepeivoda A.N., Belikova Yu.A., Shevchenko K.K., Teriukha M.R., Knyazihin D.P.,

Delman A.D., TEFENIYEVA A.S. ...coi ettt et be e e ers 109
Alias Analysis and Calculus based on Segmentation Address Memory Model.
PArfENOV LA ..ot te e be e s be e sae e st e s be e te e sreesraesrae s 125

Application of design patterns in the development of the architecture of monitoring
systems.

Pasynkova A.A., VIKENTYEVA O.L.ccoiiiiiiiieicieee s 137
Finding More Bugs with Software Model Checking using Delta Debugging.

PetrOv O.P. ...t 151
Framework for machine instruction usage analysis.

Pechenev D.E., Kirilenko LLA., AfONINA O.A.......ocuiie ettt 163
Using Process Mining to Leverage the Development of a Family of Mobile Applications.
Rezunik L. A., Perevoznikova A. 1., Eremina D. V., Mitsyuk A, A.ccoeeiiviiieeveenieninns 171

Predicate Abstraction Refinement in Thread-Modular Analysis.
Rudenchik V.P., ANArianoVv P.S.oooiiie ittt et 187

Debugger for Declarative DSL for Telecommunication.
SKAzZheniK T.M., KOZNOV DLVcoooiioeeeeeee ettt ettt e e e e e e ettt e e e e e e e e reeneeeees 205

Analyzing hot bugs in the Linux kernel by clustering fixing commit messages.
Staroletov S.M., Starovoytov N.A., GOIOVNeY N.A. ..o 215

Cepreun mutpueBnd KysHeLoB
(08.04.1949 — 28.07.2023)

28 mtonsg 2023 1. Ha 75-M roay yIIEN U3 KU3HU BBIJAIOIIMICS yUEHBIN, O€CCMEHHBIH
3aMECTUTENIb TJIABHOTO pefakTopa >kypHaina «Tpyasl MHcTHTyTa CcHCTEMHOTO
nporpammupoBanus PAH» npodeccop, nokrop texundeckux Hayk Cepreit JIMutpueBud
Ky3Hnernos.

Cepreit Imutpueuu Ky3nenos poauics § anpens 1949 rona 8 Mockse. B 1971 roay
OH OKOHYMJI MeXaHHKO-MaTeMaTudeckuil ¢pakyiapTeT MI'Y mm. M. B. JlomoHOCOBa 1O
CIICIIMATLHOCTH «MaTeMaThk». [locie okonuanus MI'Y pabortan B MHCTHTYTE TOYHOM
MEXaHHUKH U BEIYUCIUTENbHOM Texuuku uM. C. A. JIebeaesa (MTM u BT), Obu1 00HUM 13
OCHOBHBIX pa3pabOTYMKOB OIEPAMOHHONW CHCTEMBI IEHTPaJIbHOTO TpoIeccopa
MHOTOMAIIIUHHOTO BBIYHMCIHTENbHOTO Komiuiekca AC-6. HMudopmarnmonHo-
BhIUMCIUTENbHAs cuctemMa AC-6 aKTHUBHO HCIONB30Balach B CHCTEMaX pealbHOTO
BPEMCHU B IICHTPAx YIPaBICHUs MOJETAMH KOCMHUYCCKHMX ammapaTroB, ydacTBOBala B
MeXITyHapoIHOH TTporpamme «Coro3-ATOITOH.

B 1980-x rogax C. . Kysueuos, pabortas B HUM «/lenptay Munucrepcta
anekTporHol npombinuieHHocTH CCCP u B MHCcTHTYTE TpoOiieM kubepuernku AH CCCP,
3aHUMAJICSl CO3JMaHHEM W BHEAPCHHEM IIPOrpaMMHOro obecrmedeHus cynep>BM
«Anexrpornka CC BUC-1», a Takke pa3pabOTKO# KJIaCTEPHOM OMEepaIlMOHHON CHCTEMBI
(KJIOC) u Cuctemsl yripaBieHus pensunoHHol 6a3bl ganHbIX Ha 6aze KJIOC.

[Tocne obpazoBanust MHcTHTYTA cucTeMHoro nporpammupoBanus PAH B 1994 rony
C. J. KysmemoB ObUI ero mepBBIM YUEHBIM CEKpeTapeM, OCYIICCTBILUI HAyIHOE
PYKOBOJICTBO OTJICIIOM YIIPABJICHUS TAHHBIMH M Pa3paboTKi HHPOPMAIIOHHBIX CUCTEM, B
3a7]auyd KOTOPOro BXOJWJIa pa3padOTKa CHUCTEMHOTO MPOTrPaMMHOrO OOecTeYeHHUs Uist
00pabOTKM W aHaNMW3a JaHHBIX, CHCTEMBI YIpaBICHUS 0a3aMU MAHHBIX, TEXHOJOTHH
pacrpeiesIeHHON 00paOOTKM OONBINNX JTaHHBIX, TEXHOJOTHH OOJAYHBIX BBIYUCIICHHM.
Kpome Toro, mox ero HayunsiM pykoBojictBoM B MCII PAH nHaumnanach paspaboTka
ITOPUTMOB CTAaTUCTUYECKOTO aHaIHW3a JAaHHBIX M MAIIMHHOTO OOYy4YeHHs, a TaKkKe
MIPOrPaMMHOTO O0ECIIeYeHHUsT JUIA PElICHUs MPHUKIAJAHBIX 3a/1ad, B TOM YHCJE IS
WHTEIUIEKTYaIbHOTO aHalM3a TEeKCTOB, aHajh3a COIMAJbHBIX CeTel, 3amad
ononHpopMaTHKK U 00PaOOTKN MYJIbTUMEIUIHBIX TAaHHBIX.

B 1979 roay C. 1. Ky3HenoB 3aiuTiil KaHAUAATCKYIO JUCCEPTAIUIO 110 OpraHu3auu
MYJIBTUIIPOTPAMMHUPOBAHUS B OTNIEPAIIMOHHON CHCTEME LeHTpalibHOTo Tmporeccopa AC-6,
B 1994 roxy 3amuThiI JOKTOPCKYIO TUCCEPTAIIHIO 110 CO3aHMI0 OTKphITOro SQL-ceprepa.
ITox ero pyKoBOACTBOM BIEpBBIE B Hamiel crpane Obita co3nana XML-CYB/] Sedna.

C 1989 101995 rox C. 1. Ky3HenoB Ben OOIBIIYI0 OOIIECTBEHHO-HAYYHYIO padoTy,
Bynyun ogHUM U3 MEPBBIX CHEIUAIKICTOB B CTPAHE, KOTOPHIC HAYAIN aKTUBHO M3yYaTh U
MCIIONB30BaTh OINEpaloHHyI0 cucteMy Unix, OH cTan mepBbIM mpencenatenem Coera
CoBerckoii, a morom Poccutickoii acconmanmu nosib3opareneid OC Unix (SUUG), wieHoM
EBpomeiickoii accormarnuun EurOpen, acconmanumii Usenix u Uniforum, anienom ACM u
ACM SIGMOD, unenom IEEE Computer Society, npeacraButesniem IEEE Computer
Society B MockBe, 3amecTuTelieM npeaceaareiss MockoBekoin cekimu ACM SIGMOD,
YJIECHOM TPOTPaMMHBIX KOMHTETOB MeXIyHapoaHbix koH(pepennuii DEXA, SOFSEM,
ADBIS, ISD, BulticDB, SYRCoDIS, DAMDID.

C. 1. Ky3HeroB ObLI IEPBBIM TNIABHBIM PEIAKTOPOM KypHaia «OTKPBIThIE CUCTEMED,
Hay4dHBIM penaktopoM xypHana «CYBJl». Jlo mociemHero BpeMeHH OBUT PEIaKTOPOM
TeMaTHYECKON pyOpuKH xypHana « OTKPBITHIE CHCTEMBI», WICHOM PEIKOJUICTHH KypHAaIa
«BrraucIuTeIbHBIC METOIBI M TIPOTPAMMUPOBAHHUEY.

C. 1. Ky3HeroB MHOTO CHJI ¥ DHEPTHH OTAaBall BOCITUTAHUIO ¥ O0YUYCHHUEO MOJIOJIBIX
crieruaiarucToB Ha kapeapax MI'Y, MOTHU u BIID. Ero obuiuii HaydHO-IIe1arornyeCKuii
ctaxx mpesbicua 50 jer. Ilog ero pykoBOIACTBOM TOITOTOBJICH OOJBIION KOJUICKTHB
BBICOKOKBAJTU(DUITUPOBAHHBIX YYEHBIX W Pa3pabOTYMKOB MPOTPAMMHOI0 O0eCIeUeHUs
BerunciutenbHbIx cucteM. C. /1. Ky3nenos aBrop 6omee 200 Hay4HBIX paOOT U YETHIPEX
yuaeoHnKoB o CYB/I.

Bricokmit ypoBeHb myoOmukarmuii B okypHaTe «Tpyasl MHCTHTYTA CHCTEMHOTO
nporpammupoBanusi PAH», moaTBep:kaaeMblii TOCTOSSHHBIM POCTOM PEHUTHHIA HAIIEro
YKypHaJa, BO MHOTOM SBIISIETCS pe3yabTaTtoM MHOToneTHHX yemnuit C. /1. Ky3nerosa u ero
IpYKeT00HOH MaHephl OOIIEHNS C aBTOPaMH, PEIEH3eHTaMU U YICHAMH PeIaKIOHHON
KOJUIETHUH.

Vxon C. JI. Ky3HemoBa — 3TO HEBOCIIOJIHMMAsl yTpaTa, MHOTHM M3 HAac OH OBLI
WCIIBITAHHBIM ~JIPYTOM, MHOTHM YyYuTelleM | HacTaBHHKOM. Ilamare o Cepree
Hmutpueruue Ky3HemoBe OyneT *uTh B Cepillax €ro YYCHHKOB, KOJUIET, aBTOPOB U
PELeH3eHTOB Halllero >kypHaia 1 Bcex coTpynnukoB MCIT PAH.

Peoakxyuonnas xonneaus scyprana
«Tpyowr Uncmumyma cucmemnozo npoepammuposanus PAH»

Tpyowr UCIT PAH, mom 35, éein.3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol.351, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-1 M

Discovering Process Models from Event Logs of
Multi-Agent Systems Using Event Relations

A.A. Sherstyugina, ORCID: 0009-0009-2878-3565 <aasherstyugina@edu.hse.ru>
R.A. Nesterov, ORCID: 0000-0002-4162-9070 <rnesterov@hse.ru>

HSE University,
11 Pokrovsky boulevard, Moscow, 101000, Russia

Abstract. The structure of a process model directly discovered from an event log of a multi-agent system often
does not reflect the behavior of individual agents and their interactions. We suggest analyzing the relations
between events in an event log to localize actions executed by different agents and involved in their
asynchronous interaction. Then, a process model of a multi-agent system is composed from individual agent
models between which we add channels to model the asynchronous message exchange. We consider agent
interaction within the acyclic and cyclic behavior of different agents. We develop an algorithm that supports
the analysis of event relations between different interacting agents and study its correctness. Experimental
results demonstrate the overall improvement in the quality of process models discovered by the proposed
approach in comparison to monolithic models discovered directly from event logs of multiagent systems.

Keywords: Multi-agent systems; event logs; process discovery; Petri nets; event relations; asynchronous
interaction.

For citation: Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent
Systems Using Event Relations. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. DOLI:
10.15514/ISPRAS-2023-35(3)-1

Acknowledgments: This work is supported by the Basic Research Program at the HSE University, Russia.

CuHTe3 Moaernen npoLeccoB Mo XypHarnam coobITun
MyNnbTUareHTHbIX CUCTEM C NMOMOLLbIO
OTHOLUEHUU MeXAay COObITUAMMU

AA. lllepcmiozuna, ORCID: 0009-0009-2878-3565 <aasherstyugina@edu.hse.ru>
P.A. Hecmepog, ORCID: 0000-0002-4162-9070 <rnesterov@hse.ru>

Hayuonanvuwii uccnedosamenvcxuil yrugepcumem « Bvlcuwias wikona s5KoHOMUKu ,
Poccus, 101000, Mockea, Ilokposckuii 6ynveap, 11

Abstract. Crpykrypa Mojenu Tpoliecca, CHHTE3HPOBAHHOW HAMpPSAMYK 110 OKypHAlTy COOBITHIA
MyﬂbTHaFeHTHOI‘r’I CHUCTEMBI 4aCTO HE aacT Hpe}lCTaBJ’leHI/IH O MNOBCIACHUU OTACJIBbHBIX AarcHTOB, a TaKXE O
croco0e ux B3auMoaAercTBUsL. [1Jis JoKanu3auu JeCTBUH, KOTOPBIC BHIMOJIHSAIOTCS PA3JIMYHBIMK areHTaMH 1
KOTOpre BOBJICYCHBI B UX aCHHXpOHHOG BSaHMO)lCFICTBHC MBI BBIJACIISIEM U aHannsnpyeM OTHOIIICHUSA Me)K)ly
COOBITHSIMH B XXypHaie. B pe3ynbTaTe MOAeNb MyJIbTHATCHTHOW CHCTEMBI NIPEACTABISET CO00H KOMIO3UIIUIO
MOJIeTIel MOBEJCHUSI OTACIBHBIX areHTOB, MEXKIY KOTOPBIMU HOOaBIAIOTCS KaHAJIbl aCHHXPOHHOTO OOMeHa
cooOmeHusIMA. B cTaThe paccMaTpHuBaeTcs Kak allMKINIECKOe, TaK M UKINYECKOE B3aHMMOICHCTBIE areHTOB.
Hawmu mpeutoxxer 1 060CHOBaH alTOPUTM BBIIEIICHHS U aHATH3a OTHOIICHUH MEXITy COOBITHSIMU B KypHaJIe
COOBITHI MYIBTHATCHTHOH CHCTEMBI. Pe3ynbTaThl 3KCIIEPUMEHTAILHON OIEHKH pa3pabOTaHHOTO alTrOpUTMa

11

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

MOATBEPIKAAOT 06u1ee YIAYy4II€HHUE Ka4€CTBCHHBLIX OILCHOK MOJIeNeH IpoueccoB, CHHTE3MPOBAHHBIX I10
JKypHajlaM cOOBITHI MYJIbTUAr€HTHBIX CUCTEM C IMTOMOLIBIO OTHOIIECHUH MEKAY COOBITHSMHU B CpaBHEHUU C
MOHOJIUTHBIMU MOEJIIMU, KOTOPBIC CUHTE3UPYIOTCA HAIPAMYIO.

KirwoueBbie ciioBa: MyJ'IBTI/IaFeHTHLIe CHCTCMBI; XYpHaJbl CO6I;ITPII>1; CUHTC3 Moz[eneﬁ IPOLECCOB; CCTU
HeTpI/I; OTHOILICHUSA MEXKAY C06BITI/I${MI/I; ACUHXPOHHOC BSaHMOZ[eﬁCTBHe.

Jist uutupoBanus: lepctiornna A.A., Hectepos P.A. CuHTe3 Mojeneil mporeccoB 1Mo)KypHaaM COOBITHI
MYJbTHATCHTHBIX CHCTEM C IMOMOIIBI0 OTHOIEHHI Mexay coobrtusimu. Tpyaet UCIT PAH, Tom 35, Bbim. 3,
2023 r., ctp. 11-32 (na anrnmiickom s3eike). DOI: 10.15514/ISPRAS-2023-35(3)-1

Buaaronapuoctu: Pabora momnepikana I[Iporpammoii ¢yHIameHTanpHBIX HccienoBaHuid HammonamsHOTO
HCCIIeI0BAaTENBCKOTO YHUBEpcUTeTa «Bricimas mkoia skonomMukn» (HUY BILD), Poccus.

1. Introduction

The behavior of an information system is frequently recorded in event logs. They can register, for
instance, user activities, transaction executions, or message exchanges. An event log consists of
finite sequences (traces) of events ordered by the occurrence time. Process mining uses event logs
to discover models reflecting the actual state of processes in an information system. Process models
discovered from event logs capture considerable changes that can be introduced to an information
system during its operation, while models manually created at the initial life-cycle stages do not take
these changes into account [1].

A record in a trace of an event log usually includes not only the identifier of an action, but also other
attributes, which can specify the resources necessary for executing the recorded action. These
attributes can also designate who executes an action. For example, Table 1 shows a trace of an event
log, where an action record has the «Agenty attribute, and actions are executed by two agents: Peter
or Alex. We say that an event log where actions are attributed with the information on agents records
the behavior of a multi-agent system.

Process models can be discovered in a variety of notations, including different classes of Petri nets,
transition systems, and BPMN (Business Process Model and Notation). In our paper, we focus on
modeling the control-flow of processes, i.e., the causal dependencies among events in a log. Thus,
we will apply Petri nets [2] — the formalism extensively used to model and analyze the properties
of process behavior.

Table 1. A trace in an event log of a multi-agent system

Timestamp Action Agent
30-12-2022:14.45 prepare msg Peter
05-01-2023:09.34 send msg Peter
07-01-2023:12.12 receive msg Alex
12-01-2023:13.25 send ack Alex
12-01-2023:14.55 receive ack Peter
12-01-2023:14.55 local check Alex

Petri nets are also a convenient tool to model the interaction between different components in a
multi-agent system. Fig. 1 shows two Petri nets N; and N, representing two agents with the
sequential behavior. They exchange messages through two distinguished channel nodes a and b.
Recent papers in the field of process mining also demonstrate the shift in a focus to a discovery of
process models with an understandable structure reflecting the complex synchronizations between
objects [3], the hierarchy of activities [4, 5], or the interaction-oriented viewpoints of the architecture
of a multi-agent system [6].

12

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

—_— L] .
|prepare rnsg| *| receive msg
) ;

\\ K h
» a |]

send msg send ack
A e __.‘J II

.-+-

5,
Y

) N N,
Fig. 1. A multi-agent system with two asynchronously interacting agents

The paper [6] proposed a compositional approach to discovering an architecture-aware process
model from an event log of a multi-agent system. The structure of an architecture-aware process
model explicitly reflects agent behavior and their interactions similar to Fig. 1, where two agents
exchange message through channels a and b. A model is constructed by a composition of individual
agent models controlled by a manually selected interface pattern model. An interface pattern
provides a high-level specification of agent interactions. However, in the case of the poor selection
of an interface model, one has to reconfigure it and perform an additional check of a reconfigured
model.

Here, we propose to ease this restriction on making the preliminary choice of an interface pattern.
We suggest to identify asynchronous agent interactions using causal relations between events
extracted directly from an event log of a multi-agent system. For instance, in an event log obtained
by simulating a process model shown in Fig. 1 the occurrence of “send msg” action will always be
recorded before the occurrence of “receive msg” action. Extracting such causality relations will help
us to localize events in a log corresponding to the occurrence of actions executed by different agents
and involved in their asynchronous communication. Correspondingly, we will determine transitions
in individual agent models to be connected via an asynchronous channel.

Note that the automated discovery of process models from event logs is supported by a wide range
of algorithms [7]. They usually deal with typical problem of event data representation, including,
for instance, noise (missing or duplicated records) and incompleteness, i.e., a finite event cannot
cover all possible process executions. The paper [6] also stressed that an event log of a multi-agent
system requires the additional inspection of agent behavior, since the direct discovery from a multi-
agent system event log produces process models the structure of which does not explicitly reflect
agent behavior as sub-models and agent interactions as distinguished nodes. This happens because
the concurrent execution of relatively independent agents leads to a wide range of possible traces
recorded in an event log of a multi-agent system.

The quality of discovered process models is the main subject in conformance checking [8], which
proposes a collection of different dimensions to evaluate the correspondence between an event log
and a process model. Fitness and precision are two widely-used quality metrics that can characterize
a discovered process model. Fitness is an estimation of the ratio of the traces executable by the
model to the total number of traces in an event log. A model with the perfect fitness can execute
every trace in an event log. For example, the model shown in Fig. 1 can execute the trace in Table 1,
if we consider N; as the behavior of Peter, and N, as the behavior of Alex. Precision evaluates the
ratio of the behavior recorded in an event log and the behavior allowed by a process model. A process
model with the perfect precision can only execute traces in an initial event log. The perfect precision

13

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

limits the use of a discovered process model, since any event log of an information system represents
only a finite “snapshot” of all possible process executions.
An architecture-aware process model discovered from an event log of a multi-agent system using
the compositional approach of [6] is guaranteed to possess the perfect fitness. The approach to the
analysis of agent interactions using causal event relations in a log, proposed in our study, will also
ensure the perfect fitness of the process model of a multi-agent system obtained by connecting
individual agent models via asynchronous channels. The main results presented in this paper are:
1) Anapproach to the analysis of causality relations between events in an event log of a multi-
agent system for the identification of specific events involved in the asynchronous
communication between different agents.
2) Demonstration of the approach correctness and its experimental evaluation.

The remainder of this paper is organized as follows. In the next section, we collect the formal
background of our approach to the analysis of event relations in an event log, including generalized
workflow nets (GWF-nets) — a class of Petri nets used to model the behavior of agents and multi-
agent systems. Section 3 considers the localization of events in an event log corresponding the
asynchronous agent interactions within the acyclic agent behavior. Section 4 explores the case of
localizing asynchronous interactions among agents with cycles. Section 5 reports the outcomes from
the experimental evaluation. In Section 6, we review the related research, and Section 7 concludes
the paper.

2. Background

In this section, we aim to provide the basic definitions concerning several general notions, event
logs, and generalized workflow nets. We refer to these definitions when describing our approach to
the analysis of causal event relations involving different agents.

S* denotes the set of all finite non-empty sequences over a finite set S, and $* = S* U {¢}, where ¢
is the empty sequence. Let o € S* and S’ be a subset of S. Then |, denotes the projection of o on
S'. In other words, o | is the subsequence of ¢ obtained by removing elements not belonging to S'.
For example, let S = {a, b, c,d}, 0 = abadabcdcb € S*, and S’ = {b, c}. Projecting o on S’ gives
olsr = bbeb. If s € S occurs in a sequence o € S™, then we write s € o.

N denotes the set of non-negative integers. A function m: S — N defines a multiset m over a non-
empty set S. We write s € m iff m(s) > 0. The set of all finite multisets over S is denoted by B(S).
Let m;,m, € B(S). Then m; € m, iff my(s) < my(s); m' =m; Um, if m'(s) =m,(s) +
my(s); m'" =my \ my iff m""(s) = max(m,(s) —m,(s),0) forall s € S.

2.1 Event Logs

An event log is the main input to a process discovery algorithm. It contains a multiset of traces —
ordered event sequences.

Definition 1 (Event log). Let A denote the set of actions. A trace o is a finite non-empty sequence
over A, i.e., a € AT. Anevent log L is a multiset of traces over A, i.e., L € B(A).

When we consider an event log of a multi-agent system with two asynchronously interacting agents,
the set A can be partitioned into two disjoint subsets, i.e., A = A; U Ay, S.t. Ay N A, = @, where
A, (A,) is the set of actions executed only by the first (second) agent.

To discover an individual model of a multi-agent system, we need to project all traces in L onto the
set of actions executed by the corresponding agent. The projection of an event log over A = A; U
A, on A, is denoted by L 4, . Constructing L., requires projecting every trace ¢ € Lon L4, i.e.,
taking o|4,. We take into account only non-empty projections o| 4, and pay additional attention to
coinciding projections.

14

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

For example, a trace shown in Table 1 can be projected onto the set of action executed only by Peter
or by Alex.
Let us consider basic causality relations between events recorded in a log L over A, which are
determined by the order of corresponding records in the traces of L. Thus, two events a;,a, € A
are:
1) in the precedence relation (a, precedes a,), denoted a; < a,, iff Vo € L: if a;,a, € o,
then o = d'a 0" a,a"’, where o', 0", 6" € (A \ {a,,a,})*;
2) in the following relation (a, follows a,), denoted a, > a,, iff Vo € L: if a;, a, € o, then
o=o0'a,0"a,0", where ¢’,0"”,0"" € (A \ {a;,a,})*;
3) inthe parallel relation (a, is in parallel with a,), denoted a, >< a,, if there exists a trace
oc€L, st og=0d'a,0"a,d'"’, and a tracew € L, st. w=w'a,w"a,w"’, where
o,a", ", w,w’, w' e (A\{a,a})".

It follows that the precedence and the following relations are transitive. For example, a; < a, and
a, < as together leads to traces of the form ¢ =...q, ...a, ...as .., which implies a; < a;. If
required by the context, we can also use the <; relation sign to explicitly show to which event log
this relation corresponds.

2.2 Generalized Workflow Nets

Workflow nets (WF-nets) [9] are among basic process models discovered from event logs. A WF-
net is a special class of a Petri net with the distinguished initial and final places. The execution of a
trace in an event log directly corresponds to the execution of a WF-net from its initial to its final
place. We will use generalized workflow nets (GWF-nets), as in [6], to model the behavior of agents
and multi-agent systems. Here, we define GWF-nets and their behavior.

Definition 2 (Net). A netis atriple N = (P, T, F), where P and T are two disjoint sets of places and
transitions, and F < (P x T) U (T X P) is the flow relation. For any node x e PU T:

1) ex={y€ePUT]|(y,x) € F}isthe preset of x.

2) xe={y€ePUT|(y x) € F}isthe postset of x.

3) exe=-exUux eisthe neighborhood of x.

In our study, we consider nets without self-loops, i.e., Vx EPUT:exNx = @ and isolated
transitions, i.e., Vt € T: e t| = 1 and |t | = 1.

The e-notation is also extended to subsets of nodes. Let N = (P,T,F) beanet,andY € PUT.
TheneY = Uyeyey, Y e=UyeyyeandeY e = oY UY o N(Y) denotes the subnet of N generated
byY,ie,N(Y)=(PNnY,TnY,Fn (Y xXY)).

Let N = (P,T,F) be anet, and t,,t, € T. Transitions t,, t, are in conflict iff et; Net, #@. N is
conflict-free if no transitions are in conflict.

A marking (state) minanet N = (P, T, F) is a multiset over P, i.e., m: P — N. Marking is safe iff
Vp € P:m(p) < 1, i.e., a safe marking is a set of places. Marking m of place p € P is depicted by
putting m(p) black dots inside p.

Definition 3 (Net system). A net system is a quadruple N = (P, T, F,m,), where (P, T, F) is a net,
and my: P — N is the initial marking.

A marking m in a net N = (P, T, F) enables transition t € T, denoted m|t), iff e t € m. Enabled
transitions may fire. Firing t at m evolves N to a new marking m' = (m\e t) U t , denoted m[t)m'.
A sequence w € T* is a firing sequence in a net system N = (P, T,F,m,) if w = t;t, ...t,, and
mg[t)my[ty) ... My [t)m,. Then we write my[w)m,. The set of all firing sequences in N is
denoted by FS(N).

15

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

A marking m in N = (P, T, F,mg) is reachable if 3w € FS(N): my[w)m. Any marking can be
reached from itself by firing the empty sequence m,[e)m. The set of all markings reachable from
m is denoted by [m). N is safe iff all reachable markings in N are safe.

A state machine is a connected net (P,T,F), whereVt € T:|et| = |te| = 1. A subnet of N =
(P,T,F) generated by Y S P and e Y e, i.e., N(Y U # Y o), is a sequential component of N if itis a
state machine and has a single token in the initial marking. N is covered by sequential components
if every place belongs to at least one sequential component. In this case, N is state machine
decomposable (SMD).

State machine decomposability is a basic feature bridging structural and behavioral properties of
nets, also considered in [9] as an important feature of workflow nets. It is easy to see that SMD net
systems are safe since their initial markings are safe. We further work with SMD net systems, unless
otherwise stated explicitly. Thus, we omit SMD in their descriptions.

In a GWF-net, we impose additional restrictions on its initial marking (no arcs incoming to
corresponding places) and distinguish its final marking (places without outgoing arcs). Compared
to a classical WF-net, initial and final marking in a GWF-net can be sets of places rather than
singletons.

Definition 4 (GWF-net). A generalized workflow net is a net system N = (P, T, F,m,) equipped
with the final marking m, € P such that:
1) emy=0.
2) mpe=0.
3) Vx€PUT3s €myf €my:(s,x),(x,f) € FFT, where FR” is the reflexive transitive
closure of F.

According to the third requirement in Definition 4, any node in a GWF-net lies on a path from a
place in its initial marking to a place in its final marking. For instance, the Petri net shown earlier in
Fig. 1 is a GWF-net, while the behavior of agents N, and N, can be considered as classical WF-nets
with the single initial and final places.

3. Localizing Acyclic Agent Interactions

Here we discuss our approach to finding pairs of actions in an event log representing sending and
receiving operations executed by different agents. Given an event log of a multi-agent system, we
construct a matrix representation of event relations. Then we show how to identify the candidate
pairs of events that may represent the asynchronous communication of different agents and connect
corresponding transitions in the individual agent models.

3.1 Matrix Representation of Event Relations

Matrix representation of relations among events recorded in an event log facilitate the pair-wise
analysis of events. For what follows, we consider the basic case of a multi-agent system with the
sequential agent behavior, s.t., actions executed by a specific agent are recorded in an event log only
in the precedence or in the following relation. We also show how our reasoning can be extended to
agents with parallel and alternative behavioral constructs.

Let L be an event log over A = A; U A, S.t. A N A, = @. Correspondingly, A, and A, are two
disjoint sets of actions executed by two asynchronously interacting agents. Assume |A,| = m and
|Az| = n.

We construct matrix RL of size m x n, which stores relations between the pairs of events
representing the occurrence of actions executed by different agents. Given a} € A, and aj2 EA,
withi =1,2,...,mandj = 1,2,...,n, every element r; ; in R" is defined by the following cases:

1) ny; ="<"iffa] <, af;

16

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

2) ry; =">"iffaj >, af;

3) ny; ="><"iffal ><, a}.
Thus, event relations extracted from an event log L fully determines the values of the elements in
the corresponding matrix RE.

Figure 2 shows the example of a matrix representation for event relations constructed from an event
log a multi-agent system with asynchronously interacting agents, where the first agents executes
actions from the set A, = {a,y, a;,a,}, and the second agent executes actions from the set A, =
{by, by, b, b3}. For the convenience of the representation, we use names of actions instead of the
indices of rows and columns. This matrix says that, for example, in all traces of the initial event log
L, actions b; and a, are executed concurrently (independently), while action a, always precedes
action b,.

In addition, recall that agent behavior is considered to be conflict-free and sequential. Then we can
easily order actions executed by the same agent according to the event relations, i.e., using the
precedence relation. For instance, in Fig. 2, we have that a, < a; < a, and by < b; < b, < bs.
This ordering of actions is done before constructing a matrix of event relations. It will help us
simplify the further processing and identification of events representing the occurrence of sending-
receiving operations between two agents.

by b, b, bs
a, >< < < <
a, >< < < <
a, > >< >< ><

Fig. 2. A matrix of event relations between two asynchronously interacting agents

The intuition behind the asynchronous message exchange is rather straightforward. After putting a
message to a channel, an agent can freely continue its job, while the other agent expecting to receive
a message cannot continue to operate until the message is delivered.

This reasoning can also be shifted to our matrix representation of event relations. In a matrix of
event relations constructed out of an event log of a multi-agent system with two sequential
asynchronously interacting agents, we will be able to locate a “rectangle” formed by the adjacent
rows and columns filled by the same event relation " < " or " > ". This is justified by the fact that
in all traces of an initial event log several events corresponding to the actions executed by the agent
receiving a message are recorded strictly after several events corresponding to the actions executed
by the agent who sends a message. Rectangular sections in an event relation matrix filled by the
same precedence or following relation are called regions.

Definition 5. Let L be an event log over A = A; U A,, st. Ay NA, =0, | Ay | =m, |A,| =n.
Let R be an event relation matrix constructed as described above. A rectangular section in Rt
formed by k adjacent rows i,i + 1,...,i + k — 1 and by ¢ adjacent columns j,j +1,...,j +£—1
isa p-region (f-region) of Rt ifand only ifforall i’ = i,i + 1,...,i + k—1andj =j,j+1,...,j +
¢—1wehavethatry » ="<"(ry;=">").

The region in an event relation matrix R’ starting from row a, column ¢ and finishing at row b and
at column d is briefly denoted by R:(a — b, ¢ — d).

Note that we do not consider a region which is included in another one. We are looking for maximal
regions in an event relation matrix. For instance, in the event relation matrix shown in Fig. 2, region
R (a, — ay, by — by), since it cannot be extended with other adjacent rows and columns, while
RY(a, — a4, b; — b,) is not maximal, since it is a part of the bigger region R:(a, — a,, b; — b3) that
is indeed maximal.

17

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

Further, while analyzing regions in an event relation matrix, we always consider maximal regions
that cannot be extended with more adjacent rows and columns.

Let us take a closer look at the p-region R:(a, — a;, b; — b3) in the event relation matrix shown in
Fig. 2. The occurrences of actions a, and a, were recorded before the occurrences of actions b, b,
and b in an event log L. Taking into account the sequential agent behavior, i.e., a, < a; < a, and
by, < b; < b, < bs, we can easily simplify three event relations a, < by, ay < b, and ay < b; t0
the single relation a, < b,, which automatically ensures the remaining two relations. By analogy,
three relations a; < by, a; < b, and a; < b; are simplified to a; < b,. Finally, two relations a, <
b, and a; < b; with ay < a, give us the single event relation a; < b;.

Thus, the p-region RY(a, — a,, by — b3) in the event relation matrix from Fig. 2 can be fully
described by the single event relation al < bl — the lower left corner of the corresponding
rectangular area in the event relation matrix.

Event relation that fully describes a region in an event relation matrix is called the minimum of a
region, i.e., other event relations within this region coincides with the minimum. It is easy to see
that, if the minimum of a p-region is its lower left corner, then the minimum of an f-region is its
upper right corner, as illustrated in Fig. 3, where the minimum is highlighted in red.

The minimum event relation in a region is the pair of events which can represent the occurrence of
actions agents use for the asynchronous communication.

b] s b]+€_1
a; < <
< <
Aitk-1 < <
b] e b]+€_1
a; > >
> >
Aitk-1 > >

Fig. 3. Localizing minimum in a region of an event relation matrix

For example, the event relation matrix R shown in Fig. 2 has the p-region R:(a, — ay, by — bs)
with the minimum relation a; < b; and the f-region R:(a, — a,, by — by) with the minimum
relation a, > b,. The sequential behavior of corresponding agents can be easily represented via a
Petri net with consequent transitions (see N, and N, in Fig. 4).

According to the minimal event relation of region in the event relation matrix R: from Fig.2, we
introduce two channel places between transitions a,, b, (green place) and transitions b,, a, (red
place). Arcs connecting these places with transitions in Fig. 4 follow the direction of the
corresponding minimum event relation.

In the following paragraph, we propose an algorithm, which identifies regions in the event relation
matrix and finds their corresponding minimal event relations. We prove the algorithm correctness
from the point of view of preserving the perfect fitness. We also show that there can be redundant
minimum event relations representing different overlapping regions.

18

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

@)
X T
\.) o]
. (1
ag | 7 " ..\\.
y L\
:/ \'I 1 v 1
LS _|__/ : = _, || b,
=9 =/ A
; L [o
(’ \.: R
)]
a |« I,/"i“_]
| k_ /
. 55
4 \ v
_/ bs
|
Ny = .
WA

Fig. 4. Introducing channel places according to the matrix from Fig. 2

3.2 Algorithm for Finding Minimal Event Relations in Regions of an Event
Relation Matrix

We start with an event log L over A = A, U A, of a multi-agent system with two asynchronously
interacting agents. Let |A,| = m and |A,| = n. To simplify the processing of traces in L, we will
construct a square event relation matrix R of size (m + n) X (m + n) storing event relations
between all possible pairs of events in A. The indices of an element ri‘?j in RE will directly
correspond the indices of actions a; and a; in A. Afterwards, choosing necessary rows and columns
in a square RE representing the behavior of different agents, we will be able to easily form a required
event relation matrix R™, as described in the previous paragraph.

Here, instead of directly using relation signs, we will assigh numbers: —1 for < (precedence), 1 for
> (following), and 0 for >< (parallel). Initially, R} is filled by the ordering of indices, where i,j =
1,2,...,m + n:@)ifi < j,thenr’, = —1; (b) ifi > j, thenr?; = 1. We do not care about the
values in R} at its main diagonal (for ri‘?i), since we do not consider the reflexive event relations.

Subsequently, we update R according to the actual relations between event pairs in .. Algorithm 1
shows how we process traces in L to extract corresponding event relations. Given a trace ¢ in an
event log L, we consider every pair of two events preceding each other in ¢ and update rif’j to 0 only
if it was 1 before, taking into account that actions executed by different agents are also sorted by the
preceding relation. This intuitively means that we have the pair of events recorded in both following
and precedence relation in a log representing the sequentialization of parallel execution.

19

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

Algorithm 1: Populating an event relation matrix

Input: L — an event log over A = {ay, a2,amyin}, RE -
an initial square even relation matrix
Output: Rf. where !, = —1if a; <1 a;;
rf"_l =01if ai ><p a;; r",’.J =1 ifa: > a;

foreach o € L. do

foreach a,.a;, € A, s.1. 0 = rr’u,n”u_,a”' do
if ;= —1orr]; =0 then
| continue
end
if 7}, =1 then
| ;=0
end
end

end

For instance, Fig. 5 shows the square event relation matrix R5, built according to Algorithm 1,
corresponding to the earlier discussed R (see Fig. 2). The main diagonal in this R} is filled with
asterisk signs, since we ignore reflexive relations.

We filled two areas in this square matrix with different colors to demonstrate two possible ways of
choosing rows and columns for further analysis of event relations corresponding to the occurrence
of actions executed by different agents. It is also easy to refine the notion of a region w.r.t. the
numerical representation of event relations.

ap | a; | ay | by | by | by | by
ag | * |-1|-110|-1|-1]-1
a | 1| = =10 [—-1|-1]|-1
a, | 1 1 * 1] 0 0 0
by | 0O | 0O [—-1]| * |—-1|-1]|-1
by | 1 | 1 0 |1]| *« |—-1]|-1
b, | 1 | 1 0 | 1] 1 * | —1
b; | 1 | 1 0 | 1] 1 1 *

Fig. 5. A square matrix of event relations constructed by Algorithm 1

The p-region is the rectangular area of the numerical event relation matrix filled completely with
—1, while the f-region should be filled only with 1. Here, we also consider maximal regionsr only,
which fully correspond to the representation discussed in the previous paragraph.

Let us consider another example of an event relation matrix R%, shown in Fig. 6, constructed from
anevent log L over A = A, U A,, Wwhere A, = {xg, %1, %5, x3}and A, = {¥o,V1,V2}-

In this event matrix, there are two p-regions RE (x, — x;,y9 — ¥,) With the minimum event relation
x; < v, and RE(x, — x3,y, — y1) With the minimum event relation x; < y,. However, since
Xo < x; < x, < x3,thereis enoughto keep x; < y,, which will automatically satisfy x; < y,
because x; occurs after x;. This agrees with the transitivity of the precedence relation. The
redundancy of these event relations can be easily shown in the corresponding agent models (see
Fig. 7). We do not need to add a place between transitions x, and y, having a place between
transitions x, and y,.

20

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

Transition x5 will fire only after transition x,. Thus, adding the direct channel place between
transitions x; and y; will not introduce new event relations different from those already present in
the matrix from Fig. 6, unless this channel is not necessary according to the practical requirements.

Yo | V1 | Y2
xo | =1 —-1] -1
X | —-1|(-1|-1
xz _1 _1 0
x3 | —=1]-1| 0

Fig. 6. An event relation matrix with two overlapping p-regions

The same transitivity principle can also be applied to the case of two overlapping f-regions. The
example of an event relation matrix with two overlapping f-regions is shown in Fig. 8. The minimum
event relation x, > y; will cover all event relations in both f-regions.

.l'/’ \"
-_\T/,.' I %
71 gl k ! e 'l‘\
N .' o
- ' I
B - -
d l\
X | ()
N
P = |
() U L=
\‘--.-/ x..I_./
l I J,f,Fl\\\
1 O
./-’-- %\\
|\\H— _/i

Fig. 7. Redundant channel according to the event matrix shown in Fig. 6

Note that the localization of the minimum in a region of an event relation matrix R™ actually boils
down to finding the cell r; ;, s.t..
o ifr,; =—1,wherer;,,; # —landr;;_; # —1, then r; ; is the minimum of a p-region in
R* with the corresponding event relation a; < a;;
e ifr;; = 1,wherer,_;; # landr;;,; # 1, then r; ; is the minimum of an f-region in RL
with the corresponding event relation a; > a;.
Thus, the main scheme for the compositional discovery of a process model from an event log L over

A = A; U A, of a multi-agent system using minimal event relations in the event relation matrix
R* includes the following steps:

21

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

1) population of the square event relation matrix R} (Algorithm 1) and selection of columns
and rows (for RL) with the actions corresponding to different agents;

2) identification of minimum event relations in p-regions and f-regions in R’;

3) discovery of individual agent process models N; and N, from projected event logs L, and
L, , respectively;

4) introduction of channel places between transitions in N; and N, corresponding to the events
associated by the minimal event relations constructed at step 2.

Yo | Y1 | V2 | V3
Xy | O 0 1 1
x| O 0 1 1
x, | 1 1 1 1
x; | 1 1 1 1

Fig. 8. An event relation matrix with two overlapping f-regions

Individual agent models can be discovered from projected event logs using any existing process
discovery algorithm. We recommend to use Inductive miner [10], since it can guarantee the perfect
fitness of a discovered model. The soundness of the compositional discovery procedure presented
above is formalized in the following Theorem 1, where we prove that a process model of a multi-
agent system inherits the perfect fitness of agent models discovered from projected event logs. In
other words, a process model obtained by adding channel places between transitions in the individual
agent models with respect to the minimal event relations can execute all traces in the event log L of
a multi-agent system.

Theorem 1. Let L be an event log of a multi-agent system over A = A; UA,. Let E © (A; X
Ay) U (A, X A,) be the set of event pairs, which correspond to the minimum event relations
extracted from the event relation matrix RE. If N; is a GWF-net discovered from the projection L Ap
such that it perfectly fits L 4, with i = 1,2, then N obtained from N, and N, by introducing channel
places between transition pairs corresponding to event pairs in E perfectly fits L as well.

Proof. The proof is done by contradiction. Assume N = (P, T, F,m,, m,) does not perfectly fits
L. Consider a pair (a; ,a;) € E, which corresponds to the minimal event relation a; < a;. Leto €
L be atrace of the event log L, which contains a; and a; that N cannot execute. Since a; < a;, 0 =
o'a;0"a;o"". Transitions t; , t; € T corresponding to events a; and a; are connected in N, such that
there is a place ¢ € P, where (t;,c), (c,t;) € F. If N cannot execute o, then transition t; should be
able to fire before t;, which will result in ¢ = o'a;0"a;0"". This contradicts the correct
configuration of the trace ¢ = ¢'a;0"'a;¢"". Thus, the initial assumption that N' does not perfectly
L is wrong. Hence, N obtained by adding corresponding channels between transitions in N_1 and
N, perfectly fits L.

Here, we considered the analysis of acyclic interactions between agents with sequential and conflict-
free behavior. However, we can also generalize our approach to agents with conflicting (alternative)
and parallel branches.

It is necessary to extend the proposed collection of event relations with the conflicting relation. Two
actions a, and a, are in conflict (denoted by a, #a, and 2 for the square matrix R5) if for every trace
in an event log a, and a, never occur together. Conflicting and parallel actions can be involved in
the asynchronous interaction among agents.

Application of our approach requires separate investigation of sequential parts in agent behavior
recorded in a log for the proper construction of regions in the corresponding matrix with ordered

22

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

actions. This is by analogy with the identification of sequential components in GWF-nets (recall the
state machine decomposability discussed in Section 2).

For example, Fig. 9 shows the acyclic interaction between N; and N,, where N; has the conflict
between transitions x5 and xs. In an event log, actions x5 and x5 will never occur in the same trace.
Using RE we can identify maximal sequential parts in the behavior of N, i.e., x, < x5 and x, < xs,
and construct two inter-agent matrices to localize minimal event relations in corresponding regions.
Two minimal event relations y, < x5 and y, < x5 with the common event y, are ensured with a
single channel place a connecting transitions w.r.t. the relation direction.

(

02
55

Fig. 9. Acyclic interaction with choice in the agent behavior

Using a similar reasoning, we can analyze asynchronous interactions involving different parallel
branches in the behavior of agents. In this case, the minimal relations with the common events are
modeled by individual channel places, since, for parallel actions, the occurrence of one does not
exclude the occurrence of the others.

In the following section, we consider asynchronous interactions among agents, s.t. actions used for
the message exchange are involved in a cycle. The direct analysis of causality relation is not enough
for cyclic behavior, since events within a cycle can be recorded in an event log in any order.

4. Localizing Cyclic Agent Interactions

In this section, we consider the problem of identifying the pairs of events in an event log of a multi-
agent system involved intro the cyclic interaction between different agents. Cyclic interaction
implies that the actions corresponding to the asynchronous message exchange are executed within a
cycle in the agent behavior. We cannot directly use the minimal causality relations proposed in the
previous section, since actions within cycles in different agents will be recorded in an event log in
any order.

4.1 Bounded Asynchronous Channels

The cyclic interaction is directly connected with the problem of the boundedness in Petri net theory.
Consider an example of cyclic interaction shown in Fig. 10. The cycle in N; sends messages to the
cycle in N, via the single channel a.

23

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

(ON /*C
O 2RO O
il | / | I"\ J|
() \@} o}

N

Fig. 10. An unbounded asynchronous channel

The problem with this channel place a is that N; can put messages to place a infinitely many times,
which will lead to the possibility of the unbounded number of messages in a. As a result, the
complete system will have infinitely many different reachable states.

To avoid the problem of the unboundedness, we can introduce an additional place into the model of
a multi-agent system with two interacting agents. This place will act as a “limiter” of the number of
messages an asynchronous channel can store.

For example, if we add place b, as shown in Fig. 11, the maximum number of messages that can be
put to place a by N, will not exceed 1. Such places are called complement in Petri nets, since they
mirror the direction of arcs connected with the channel place.

- 1 l\ /_ T —
(}\, N s
|

O moesh O

T4
] 1 -_T —
$ | P _1/ I\

—

f.1 ——

9)

| B / 6 /_\ i fjl
km{)«: t\g/@

Fig. 11. An asynchronous channel with the bound

In fact, the number of tokens in the complement place we add to bound an asynchronous channel
correspond to the maximum number of messages this asynchronous channel can store. In the
following paragraph, we show our approach to the analysis of cyclic interactions between agents in
a multi-agent system with respect to the maximum number of messages a candidate asynchronous
channel place can store.

4.2. Algorithm for Localizing Cyclic Asynchronous Interactions and Channel
Bounds

In the case of the cyclic asynchronous interactions, we cannot directly refer to the minimum event
relations, since all involved actions can potentially be recorded in any order in an event log. For
example, by simulating the net from Fig. 11, we can obtain t, < t, as well as t, < t,. Instead, we
are going to consider the number of occurrences of events in an event log to devise the maximum
number of messages an asynchronous channel can handle.

For what follows, let L be an event log of a multi-agent system with two asynchronously interacting
agents over A = A, U A,. We isolate only the cyclic behavior of agents in these sets A4, and A,
since the acyclic part can be analyzed before using the algorithm described in Section 3. To avoid

24

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

the ambiguity, we assume additionally that actions A, represent the behavior of an agent sending
messages, while the actions A, — the behavior of an agent receiving messages.

The main idea of our approach is to analyze pairs of actions in A, X A, to count the maximum
number of messages. If in a trace of L the occurrence of an event a, € A, is recorded, then the
bound in the number of messages decreases by 1. If in a trace of L the occurrence of an event a, €
A, is recorded, then the bound in the number of messages increases by 1.

We assume that an asynchronous channels stores k = 0 messages initially. Algorithm 2 shows how
to analyze the pairs of events in A, X A, according to their behavior with respect to increasing and
decreasing k. This algorithm produces the range, i.e., the minimum and maximum number of
messages an asynchronous channel between a concrete pair of events can process.

Consider the example of using Algorithm 2 for the event log of a multi-agent system L (see Table
2) over A = A, U A,, Where A, = {t,, ts, tc}and A, = {t,,t,, t3}.

Table 2. An event log of a multi-agent system with four traces

Trace 1 | tytstetatstytstotatstotatstytstotstatatstotatatstetolotatytytststytststatatats
titelalstelslslolstatstslety

Trace 2 tatgtitytat totstytitstytetstyt tstelytotststtetoty

Trace 3 | tytstitatatytytatytatytototatstototatstototatstototatststotatstste

Trace 4 | totitstetststototatatytotstitatststotatytotat

The result of computing the minimum and maximum number of messages for different event pairs
in Trace 1 in this event log is presented in Table 3.

For instance, we consider the pair of events (t,, t;) of transitions between which we aim to add a
bounded asynchronous channel place. We check the minimum and maximum number of messages
for all traces in the event log from Table 2, as shown in Table 4.

Table 3. Applying Algorithm 2 to Trace 1 in the log from Table 2

Event pair Minimum Maximum
(t1,t4) k-3 k+ 2
(t1,ts5) k—4 k+1
(t1,t6) k—4 k+2
(t5,ts) k—2 k+3
(tz, ts) k-3 k+3
(t, te) k-2 k+3
(t3,t4) k-3 k+ 2
(ts, ts) k-3 k+2
(ts, te) k-3 k+2

To cover the complete event log from Table 2, we need to construct the range for the channel
between events t, and t; uniting the individual ranges for all traces. Thus, according to Table 4, the
range of the number of messages that can be handled by the asynchronous channel between
transitions t, and t, is [k — 3; k + 3]. The length of this range is k + 3 — (k — 3) = 6.
Therefore, the maximum number of messages that can be stored in the channel between t, and t; is
bounded by 6.

Note also that, since the left border of this range k — 3, initially the channel place between t, and
t, should have 3 tokens in it, because the number of tokens in places of a Petri net cannot go below
0. This is also caused by the fact that in Trace 2 of the event log from Table 2 the agent receiving
messages operates before the one who sends messages.

25

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

Algorithm 2: Analyzing cyclic interactions in a trace

Input: o € L — a trace in an event log over A = A; U A,
where A; U A = @
QOutput: Minimum min(p) and maximum maz(p) number
of messages for every p = (a1,a2) € A X Az a
channel between a; and a> may process

foreach a; € A, do
foreach a: € A; do
maxK < k, minK < k, current < k
foreach ¢; € 0 = e162...€,, do
if e, = a1 then
| current +— k — 1
end
if ¢, = a2 then
| current + k + 1
end
maxK <— MAX(current, maxK)
minK - MIN(current, minK)

end
end
min(ay,as) < minK, maxz(a, as) + maxK

end

We have everything to construct the model of a multi-agent system with two agents exchanging
messages through actions t4 and t1 within cyclic sequential behavior regarding the event log from
Table 2. Fig. 12 shows the corresponding process model for this multi-agent system, where N; is
the agent sending messages with transitions ¢t,, ts, ts, and N, — receiving messages with transitions
t1, ty, ts.

Table 4. The number of messages in the channel connecting t, and t;

Minimum Maximum
Trace 1 k-3 k+2
Trace 2 k k+2
Trace 3 k-2 k+3
Trace 4 k—2 k+3

We note that the similar analysis can be done for any pair of transitions representing the behavior of
sending and receiving agents, s.t. one can add an asynchronous channel between them in different
ways, unless there is an additional information on actions provided. For instance, one can choose
those transitions with the channel the capacity of which does not exceed 1 (for safe Petri nets). In
addition, as in the case of the acyclic interaction, it is possible to analyze the cyclic behavior of
agents with parallel and alternative behavioral constructs inside cycles by checking interactions
between separate sequential components.

Moreover, the same property on preserving the perfect fitness of the individual agent models (see
Theorem 1) will also hold for the cyclic interaction, since we add channel places between transitions
in the strict accordance with an initial event log.

26

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

Fig. 12. A multi-agent system with two interacting agents with cyclic behavior

5. Experimental Evaluation

This section reports the key outcomes obtained from the series of experiments conducted to evaluate
the proposed approach to the identification of the pairs of events involved into the acyclic and cyclic
interactions among different agents in a multi-agent system.

5.1 Layout of Experiments

We compared process models discovered by our approach and directly from an event log of a multi-
agent system. We also considered a specific case of a process model with “disconnected” agents,
i.e., we do not add asynchronous channels between them.

Within the experimental evaluation, we used the synthetic event logs of multi-agent systems
recording different ways of agent asynchronous interactions provided in [11]. They were also used
to test the compositional approach to discovering architecture-aware process model of multi-agent
systems [6]. This dataset was constructed with respect to various widespread service interaction
patterns described in [12].

Thus, process models of multi-agent systems obtained by our approach to introducing channels were
compared with the following other models:

1) reference models, also provided in [11], which represent the ideal model of a multi-agent
system with the minimum number of asynchronous channels;

2) disconnected agent models, where individual agent models discovered from projected
event logs are put together without adding any asynchronous channels;

3) monolithic models discovered from directly event logs.
We characterized these models according to the following two quality dimensions:

1) precision evaluating the extra amount of behavior allowed by a process models regarding
the behavior recorded in an event log (see the gray area in Fig. 13);

2) the number of asynchronous channels connecting transitions in the models of different
agents.

Process model N i

/ - L\
N\t

Fig. 13. The behavior of a process model and traces in an event log

27

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

The perfect fitness of discovered process models is guaranteed by our approach and by the paper
[6]. A model with the disconnected agent behavior also ensures the perfect fitness, since the
concurrent execution of fully independent agents can also cover all possible ways of their
asynchronous interactions. Therefore, we did not need to measure the fitness of considered process
models. As for the precision, we used the approach from [13] as the one, which provides the balanced
estimation of this quality dimension. The experimental evaluation was supported by the ProM
software [14].

5.2 Experiment Results and Discussion

Table 5 reports the results on comparing the quality of process models discovered from an event log
of a multi-agent system using our approach with the quality of directly discovered models
(monolithic) and models with the disconnected agent behavior. The dataset [11] used in our
experiments contains seven different event logs of multi-agent system corresponding to different
ways of acyclic (IP-1, ..., IP-6) and cyclic (IP-7) patterns of asynchronous interactions. We also did
not evaluate the number of channels in monolithic process models of multi-agent systems, since in
the structure of such a model one cannot unambiguously identify the behavior of individual agents
and asynchronous channel places.

Table 5. Experimental results: the number of asynchronous channels and precision evaluation

Interaction Reference Disconnected Monolithic Our approach
Channels | Precision Precision Precision Channels | Precision

IP-1 1 0.7156 0.6949 0.5825 14 0.8109

IP-2 2 0.4014 0.3719 0.3880 33 0.5337

. IP-3 2 0.7545 0.7097 0.8984 26 0.8861
Acyclic

IP-4 2 0.7589 0.6752 0.6684 10 0.8420

IP-5 4 0.3902 0.3503 0.1342 39 0.5724

IP-6 4 0.5636 0.5256 0.6849 34 0.7034

Cyclic IP-7 3 0.8165 0.5945 0.1327 5 0.6782

According to the experimental results provided in Table 5, we may conclude the following. Firstly,
our approach detects considerably more “points” of the asynchronous interactions between different
agents compared to the ideal reference model. A finite sequential record of the concurrent execution
of relatively independent agents cannot cover all possible scenarios. Thus, there are more candidate
relations among event pairs that can be considered for adding asynchronous channel places between
the corresponding transitions. We can further analyze all found minimum event relations from the
point of view on their frequencies w.r.t. an initial event log to exclude some of them. Secondly,
process models obtained by our approach exhibits the increase in the precision estimations, since
introduction of other asynchronous channels decreases the amount of extra behavior allowed by a
model and not recorded in a log. Thirdly, we generally outperform the quality of the monolithic
process model the structure of do not correspond to the architecture of a multi-agent system
regarding the individual agent behavior and their interactions.

We believe that increasing the number of traces in an event log will bring the quality of process
models obtained by adding channels using our approach closer to the evaluations of reference
models, since an event log will exhibit more different execution scenarios. As one of the possible
directions of future research, we will consider the analysis of connections between the precision of
agent models and of system models obtained by our approach based on event relation.

6. Related Work

As we mentioned in Introduction, different algorithms were proposed for the computer-aided
discovery of process models from event logs. The most popular ones include Inductive miner [10],

28

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

Fuzzy miner [15], Region Theory-based miner [16], and Genetic miner [17]. These algorithms can
guarantee that discovered process models will exhibit certain properties. For example, Inductive
miner can guarantee perfect fitness and soundness of discovered workflow nets. In the recent study
[7], the authors gave an extensive review and comparison of process discovery algorithms. Note that
these algorithms are aimed to tackle different internal limitations of event data representation rather
than to analyze interactions among different information system components.

The quality of discovered process models takes an important part in choosing an algorithm for
discovering process models from event logs. Conformance checking [7] provides several
dimensions that allow one to evaluate the correspondence between a model and an event log (fitness,
precision, generalization), and the structure of a discovered model (simplicity). Researchers stress
that there is a lack of universally applicable properties and requirements that can constitute the
formal basis for computing conformance checking dimensions [7, 18]. Thus, our study also
considers the formal analysis of preserving the perfect fitness of agent models discovered from
filtered logs in a multi-agent system models with introduced asynchronous channels recovered using
event relations.

The problem of discovering process models with a clear structure is studied from different
perspectives. Inductive miner produces well-structured process models that are recursively
constructed from “building blocks” representing standard behavioral constructs: sequential, cyclic,
parallel, and alternative execution of actions. A series of papers [19, 20, 21] proposed different
approaches to improving the structure of discovered models by the additional localization of the
environment of events in a log and by composing fragments of regular and frequent behavior with
the rare “exceptional” scenarios. Discovery of hierarchical process models, where a high-level event
represents a sub-process, was studied in [4]. The identification of low-level and high-level events in
an event log is a natural way to improve the structural representation of a process model. The paper
[3] proposed a novel approach to discover object-centric Petri nets from event logs. Interactions of
objects is represented through complex synchronizations which allow one to model consumption
and production of objects of different types. Compositional discovery of behaviorally correct and
“architecture-aware” process models from event logs of multi-agent systems was studied in [6].
Using interface patterns and structural property-preserving mapping helped to achieve the clear
structure of a model reflecting independent behavior of agents and their communication.

Our study continues [6] in a way that we are trying to analyze and identify “points” of asynchronous
interactions — actions involved in the asynchronous message passing between agents — directly
from event logs. Based on the causality relations among events in a log, we can find, for example,
pairs of actions that are always executed in a fixed order. Such actions are then considered to be the
candidates to represent send-receive operations within the asynchronous interaction. Then we may
relax the requirement on the manual selection of interface patterns, as originally proposed.

Patterns are typically used in the software development as the collection of best practices and
recurring development scenarios [22]. Frequently used control-flow constructs in business process
modeling — workflow patterns — were systematically studied in [23]. In [12, 24], the authors
generalized workflow patterns for modeling widespread correct service interactions in complex and
large-scale systems. Within the context of process discovery, several papers also proposed different
approaches for the analysis of behavioral patterns in event logs, including, among the others, [25,
26], but these patterns were not considered from the point of view of interactions among different
information system components.

7. Conclusion

In this paper, we considered the problem of discovering a process model in terms of a generalized
workflow net from an event log of a multi-agent system with the understandable structure reflecting
the architecture of a system. A model of a multi-agent system is obtained from a composition of
individual agent models through the introduction of asynchronous channels. To identify transitions
in agent models to be connected via a channel place, we analyze causal relations between events

29

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

recorded in an event log. Within the asynchronous agent interactions, several actions of one agents
are executed before certain actions of the other. This idea helped us to localize the so-called
minimum event relations corresponding to the occurrence of actions executed by different agents.
The pairs of events representing these minimum relations can be seen as “points” of the
asynchronous communication between agents. Transitions corresponding to these events can be
connected with an asynchronous channel place. We also showed that certain minimum event
relations can cover other minimum relations between events in a log.

The pair-wise analysis of relations between events recorded in an event log was based on matrices
with rows and columns representing events. Matrix representation of event logs was used in process
mining in different contexts (cf. the footprint matrix in the basic a-algorithm [27] and the analysis
of unchanged sections in BPMN models [28]).

We separately considered the cases of the acyclic and cyclic asynchronous interactions, since, within
the latter one, events can be recorded in any possible order. To localize events in the cyclic
communication, we analyzed the number of event occurrences regarding the maximum number of
messages that a potential asynchronous channel can handle. This allows us to achieve the
boundedness, i.e., the finite number of reachable states, in a complete process model of a multi-
agent system.

The correctness of the proposed approach to adding asynchronous channels between behavioral
models of individual agents is justified by the fact that we preserve the perfect fitness, i.e., the ability
to execute all traces in the event log of a multi-agent system, of agent model in a complete system
model. We conducted a series of experiments to evaluate our approach. The experimental results
demonstrate the overall improvement in process models discovered by adding asynchronous
channels in comparison to models directly discovered from event logs of multi-agent systems.

As for the future research, we plan to continue it in the following directions. Firstly, we would like
to consider more complex ways of the asynchronous communications, including, for instance,
message broadcasting. Secondly, we also intend to make a deeper analysis of the preservation of
behavioral properties, including deadlock-freeness, in a process model of a multi-agent system
obtained from individual agent models connected by asynchronous channel places. For example, we
need to avoid the introduction of channels leading to the “circular wait”, as shown in Fig. 14, where
N; waits for N,, while N, waits for N; at the same time. Finally, we plan to conduct more
experiments using real-life event logs.

ey P
(®) (®)
T

Mo Yo
N
k/’

o
o

(/
. T e
N/

&
1

b,

z

x

1@ @

Fig. 14. Asynchronous interaction may result in a deadlock

30

Llepcriornna A.A., Hecrepos P.A. CunTe3 Mojeneii mpoueccoB Mo XKypHanaM COOBITHIT MylTbTHATCHTHBIX CHCTEM C TOMOIBIO OTHOIICHUH
Mexay coobrtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, ¢. 11-32.

References

(1]
[2]
(3]
(4]

(5]

(6]

[7]

(8]
(9]

(10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

W. van der Aalst. Process Mining: Data Science in Action. Springer, Heidelberg, 2016. DOI:
10.1007/978-3-662-49851-4.

W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies. Springer,
Heidelberg, 2013. DOI: 10.1007/978-3-642-33278-4.

W. van der Aalst and A. Berti. Discovering Object-Centric Petri Nets. Fundamenta Informaticae, vol.
175, pp. 1-40, 2020. DOI: 10.3233/FI-2020-1946.

A. Begicheva and I. Lomazova. Discovering High-Level Process Models from Event Logs. Modeling
and Analysis of Information Systems, vol. 24, no. 2, pp. 125-140, 2017. DOI: 10.18255/1818-1015-2017-
2-125-140.

C. Li, S. van Zelst, and W. van der Aalst. An Activity Instance Based Hierarchical Framework for Event
Abstraction. In 2021 3rd International Conference on Process Mining (ICPM), 2021, pp. 160-167. DOI:
10.1109/ICPM53251.2021.9576868.

R. Nesterov, L. Bernardinello, I. Lomazova, and L. Pomello. Discovering architecture-aware and sound
process models of multi-agent systems: a compositional approach. Software & Systems Modeling, vol.
22, pp. 351-375, 2023. DOI: 10.1007/s10270-022-01008-x.

A. Augusto, R. Conforti, M. Dumas, M. Rosa, F. Maggi, A. Marrella, M. Mecella, and A. Soo. Automated
Discovery of Process Models from Event Logs: Review and Benchmark. IEEE Transactions on
Knowledge and Data Engineering, vol. 31, no. 4, pp. 686-705 2019. DOI:
10.1109/TKDE.2018.2841877.

J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance Checking: Relating Processes and
Models. Springer, Cham, 2018. DOI: 10.1007/978-3-319-99414-7.

W. van der Aalst. Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based
Techniques. In Business Process Management: Models, Techniques, and Empirical Studies. Lecture
Notes in Computer Science, vol. 1806. Springer, Heidelberg, 2000, pp. 161-183. DOI: 10.1007/3-540-
45594-9 11.

S. Leemans, D. Fahland, and W. van der Aalst. Discovering Block-Structured Process Models from Event
Logs — A Constructive Approach. In Application and Theory of Petri Nets and Concurrency (PETRI
NETS 2013). Lecture Notes in Computer Science, vol. 7927. Springer, Heidelberg, 2013, pp. 311-329.
DOI: 10.1007/978-3-642-38697-8_17.

R. Nesterov, “Compositional discovery of architecture-aware and sound process models of multi-agent
systems: experimental: data experimental data. (version 1) [data set].” [Online]. Available:
https://doi.org/10.5281/zen0do0.5830863.

A. Barros, M. Dumas, and A. ter Hofstede. Service Interaction Patterns. In Business Process Management
(BPM 2005). Lecture Notes in Computer Science, vol. 3649. Springer, Heidelberg, 2005, pp. 302-318.
DOI: 10.1007/11538394_20.

J. Munoz-Gama and J. Carmona. A Fresh Look at Precision in Process Conformance. In Business Process
Management (BPM 2010). Lecture Notes in Computer Science, vol. 6336. Springer Heidelberg, 2010,
pp. 211-226. DOI: 10.1007/978-3-642-15618-2_16.

“ProM Tools,” [Online]. Available: https://www.promtools.org/doku.php.

C. Gunther and W. van der Aalst. Fuzzy Mining — Adaptive Process Simplification Based on Multi-
Perspective Metrics. In Business Process Management (BPM 2007). Lecture Notes in Computer Science,
vol. 4714. Springer, Heidelberg, 2007, pp. 328-343. DOI: 10.1007/978-3-540-75183-0_24.

R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions of Languages. In
Business Process Management (BPM 2007). Lecture Notes in Computer Science, vol. 4714. Springer,
Heidelberg, 2007, pp. 375-383. DOI: 10.1007/978-3-540-75183-0_27.

W. van der Aalst, A. de Medeiros, and A. Weijters. Genetic Process Mining. In Applications and Theory
of Petri Nets (ICATPN 2005). Lecture Notes in Computer Science, vol. 3536. Springer, Heidelberg, 2005,
pp. 48-69. DOI: 10.1007/11494744 5.

W. van der Aalst. Relating Process Models and Event Logs — 21 Conformance Propositions. In
Proceedings of the International Workshop ATAED-2018. CEUR Workshop Proceedings, vol. 2115.
CEURWS.org, 2018, pp. 56-74.

A. Kalenkova, |. Lomazova, and W. van der Aalst. Process model discovery: A method based on
transition system decomposition. In Application and Theory of Petri Nets and Concurrency (PETRI

31

https://doi.org/10.1109/ICPM53251.2021.9576868
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.5281/zenodo.5830863
https://www.promtools.org/doku.php

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

NETS 2014). Lecture Notes in Computer Science, vol. 8489. Springer, Cham, 2014, pp. 71-90. DOI:
10.1007/978-3-319-07734-5_5.

[20] A. Kalenkova and I. Lomazova. Discovery Of Cancellation Regions Within Process Mining Techniques.
Fundamenta Informaticae, vol. 133, pp. 197-209, 2014. DOI: 10.3233/FI-2014-1071.

[21] W. van der Aalst, A. Kalenkova, V. Rubin, and E. Verbeek. Process Discovery Using Localized Events.
In Application and Theory of Petri Nets and Concurrency. Lecture Notes in Computer Science, vol. 9115.
Springer, Cham, 2015, pp. 287-308. DOI: 10.1007/978-3-319-19488-2_15.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1994.

[23] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Patterns. Distributed and
Parallel Databases, vol. 14, pp. 5-51, 2003. DOI: 10.1023/A:1022883727209.

[24] D. Campagna, C. Kavka, and L. Onesti. BPMN 2.0 And The Service Interaction Patterns: Can We
Support Them All? In Software Technologies (ICSOFT 2014). Communications in Computer and
Information Science, vol. 555. Springer, Cham, 2015, pp. 3-20. DOI: 10.1007/978-3-319-25579-8_1.

[25] S. Suriadi, R. Andrews, A. ter Hofstede, and M. Wynn. Event logs imperfection patterns for process
mining: towards a systematic approach to cleaning event logs. Information Systems, vol. 34, pp. 132—
150, 2017. DOI: 10.1016/j.i5.2016.07.011.

[26] M. Acheli, D. Grigori, and M. Weidlich. Discovering and Analyzing Contextual Behavioral Patterns from
Event Logs. IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5708-5721,
2022. DOI: 10.1109/TKDE.2021.3077653.

[27] W.vander Aalst, T. Weijters, and L. Maruster. Workflow mining: discovering process models from event
logs. IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128-1142, 2004. DOI:
10.1109/TKDE.2004.47.

[28] K. Artamonov and I. Lomazova. What Has Remained Unchanged in Your Business Process Model? In
2019 IEEE 21st Conference on Business Informatics (CBI), 2019, pp. 551-558. DOI:
10.1109/CBI.2019.00070.

Ungpopmayusi 06 aemopax / Information about authors

Amnacracus AagpeesHa IIIEPCTIOTMMHA — ctynenTka OakanaBpuara (pakyiabTeTa KOMIBIOTEPHBIX
Hayk HUY Beicrmas Illkona 3OxoHomukum (BIID), craxep-ucciemoBarenb HayIHO-yUEOHOM
mabopaTOpUK TPOILECCHO-OPHEHTHUPOBAHHBIX HH(popManuoHHEIX cuctem ([IOMC) HUY BIID.
OO6nacTh Hay4YHBIX MHTEPECOB: MOJEIMPOBaHNE W (OPMAIbHBIN aHAIN3 TOBEJICHUS IPOIECCOB B
nH(OpPMALMOHHBIX CHCTEMax ¢ Iomolnbsto ceredd Iletpu m apyrux ¢Gopmain3MoB, 0OBEKTHO-
OpPHEHTHPOBAHHOE IPOrPaMMHUPOBAHNE M apXUTEKTypa HH()OPMAMOHHBIX CUCTEM.

Anastasiya SHERSTYUGINA is a bachelor student at the faculty of computer science in HSE
University and a research assistant at the Laboratory for Process-Aware Information Systems (PAIS
Lab), HSE University. Her research interests mainly include modeling and analysis of process
behavior in information systems using Petri nets and other related formalisms, object-oriented
programming and architecture of information systems.

Poman Anexcargposima HECTEPOB — crapmmii mpemogaBatens GpakyinbTeTa KOMITBIOTEPHBIX HAYK
HUY BIID, mnammuii HaydHbIH COTPYIHUK HaydyHO-Y4eOHOM saboparopun [IOMC HUY BIID.
Nmeer creneHb KaHIWIaTa KOMIBIOTEPHBIX HayK ((u3nKo-mMaTeMarnieckue Haykn) HUY BIID
(2022 r.). OGnacTe Hay4YHBIX MHTEPECOB: TEOPUs Mapajuiesn3ma, ceT [leTpu, Teopus KaTeropuy,
(dopManbHble METOABl MOJAENUPOBAHUS W BEepU(UKAIMM CIOXKHO OPraHW30BaHHBIX
nH(OPMALMOHHBIX CUCTEM.

Roman NESTEROV is a senior lecturer at the faculty of computer science in HSE University and a
junior researcher at the PAIS Lab, HSE University. He holds a PhD degree in Computer Science
awarded by HSE University in 2022. His research interests include concurrency and category theory,
Petri nets, formal methods for modeling and verifying complex information systems.

32

https://doi.org/10.1016/j.is.2016.07.011
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/CBI.2019.00070

Tpyowr UCIT PAH, mom 35, évin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-2 tocld

Writable PSI Generator for a Multi-Language IDE
Platform

L A.S. Bozhnyuk, ORCID: 0009-0003-4826-6609 <bozhnyuks@mail.ru>
2 A.A. Zakharov, ORCID: 0009-0005-0087-0633 <lynxsm@gmail.com>
LH.V. Tropin, ORCID: 0009-0006-2910-3961 <niktrop@yandex.ru>
IM.V. Volkov, ORCID: 0000-0001-8672-7750 <mvvolkov@mail.ru>

1St. Petershurg State University,
7/9, University Embankment, Saint Petersburg, 199034, Russia.
2Tula State University,
92, Lenin’s avenue, Tula, 300012, Russia

Abstract. Any state-of-the-art integrated development environment (IDE) should provide software developers
with services for quick and correct code transformation. Such services can be used both for program refactoring
to improve its quality and for quick fixing of syntax errors in source code. This paper presents the method of
constructing a subsystem that makes it possible to create the services described above and also has the property
of fast extensibility to support different programming languages. The method of transformation of Program
Structure Interface (PSI) - a special data structure, which provides API for development of IDE-services, is
proposed. Besides, a method of generating types for PSI in accordance with the syntax of the supported
programming language is proposed. The approach is developed for a multi-language platform of a large
telecommunications company. Refactoring and Quick Fix features are implemented using on the proposed
generator for two IDEs: a Python IDE and a Java IDE.

Keywords: Integrated Development Environment (IDE); Development Services; Program Structure Interface
(PSI); Application Program Interface (API); Refactoring, Quick Fix.

For citation: Bozhnyuk A.S., Zakharov A.A., Tropin N.V., Volkov M.V. Writable PSI Generator for a Multi-
Language IDE Platform. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 33-46. DOI:
10.15514/ISPRAS-2023-35(3)-2

leHepaTop AepeBa PSI ¢ BO3MOXHOCTbLIO 3anucu ans
MyInbTUA3bIKkoBon nnatdopmbl IDE

L 4.C. Boacnrox, ORCID: 0009-0003-4826-6609 <bozhnyuks@mail.ru>
2 A.A. 3axapos, ORCID: 0009-0005-0087-0633 <lynxsm@gmail.com>
Y H.B. Tponun, ORCID: 0009-0006-2910-3961 <niktrop@yandex.ru>
L M.B. Boaxos, ORCID: 0000-0001-8672-7750 <mvvolkov@mail.ru>

1 Canxm-Temepbypackuii 20cyoapcmeennviii ynusepcument,
199034, Poccus, Cankm-Ilemepbype, Ynueepcumemckas nab., o. 7-9.
2 Tynockuii 20cy0apcmeentbvlil yHueepcumen,

300012, Poccus, Tyna, np. Jlenuna, 92

AunHoTaums. Jlo0as coBpeMeHHas MHTerpHpoBaHHas cpena pazpabotku (IDE) nmomkHa HpemnocTaBisTh
pa3paboTINKaM MPOrpaMMHOTO OOECTICUSHUs] CEpPBHCHI Ul TpaHc(hopManuy koja. Takwe CepBHUCHI MOTYT
HCIIONB30BAThCS KAk AT pehakTOpHHTa IMPOrpaMMBI C IEJIBI0 YITyUIIeHUs e€ KauecTBa, TaK U JUIs OBICTPOTO

33

Bozhnyuk A.S., Zakharov A.A., Tropin N.V., Volkov M.V. Writable PSI Generator for a Multi-Language IDE Platform. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 33-46.

HCTIPABJICHUSI CHHTAKCHYECKHX OMMOOK B HMCXOAHOM Koje. JlaHHas pabora Ipeayiaraer TEXHOJIOTHIO
pa3pabOTKH HOACHCTEMBI, KOTOpasi MO3BOJISIET CO3JaBaTh TaKWE CEPBHUCHI I pasnuuHbIX |IDES u s3p1K0B
nporpammupoBanus. [Ipemnoxen crmocod TtpaHnchopmanmu nepesa Program Structure Interface (PSI) —
CHeUabHON CTPYKTYpHI AaHHBIX, npegocTtasisiromeir APl ns paspabotku IDE-cepBucos. ITomumo 3toro,
MpeUIoKeH crmocod reHepauund TUNOB it PSl cooOpa3HO CHHTaKCHUCYy MOJACPKUBAEMOTO sI3bIKA
nporpamMmupoBanus. [logxon paspaboTtaH 1 MyIbTUSA3BIKOBON IUIATGOPMEL, CO3aBaeMOH B paMKaX KPYIHOM
TEXHOJIOTHIeCKoi koMmanuu. Ha ero ocHoBe ObIIH pa3paboTaHBI CEPBHCHI IO MOIH(DUKALNH MCXOJHOTO KO
ULt ABYX cpejt paspabotku — Java IDE u Python IDE.

KnroueBbie cioBa: Huterpuposannas cpena paspadorku; IDE; cpenctBa paspaborku; PSI; mporpamMmHsIit
uHTepdeiic; pehakTOPHHT; HCIPaBIeHHE KOJa.

s nuruposanusi: boxuiok A.C., 3axapos A.A., Tpormun H.B., BonkoB M.B. I'enepatop nepesa PSI c
BO3MOJKHOCTBIO 3alKCH U1l MyIbTUsI3bIk0BOM iatdopmsbl IDE. Tpynst UCIT PAH, Tom 35, Boim. 3, 2023 .,
crp. 33-46 (Ha anrmuiickoM si3bike). DOI: 10.15514/ISPRAS-2023-35(3)-2

1. Introduction

An Integrated Development Environment (IDE) is an essential tool for any programmer. Some of
the most well-known and widely used IDEs are JetBrains IntelliJ IDEA and Microsoft Visual Studio,
which offer a large number of features to develop high-quality software.

One of the most important tasks of the IDE is to provide developers the ability to quickly and
correctly modify the source code. To achieve this, IDEs offer such features as refactoring and quick
fixes. Refactoring makes it possible to restructure code while preserving its semantics, for example,
to rename a class, method, and attribute, extract selected code into a method, and so on. Quick fixes,
at the request of the developer, eliminate a drawback of a code fragment. An example of a quick fix
is if statement simplification.

These features work with the structure of the program by analyzing and reorganizing it. The
conventional way of representing a program internally is an Abstract Syntax Tree (AST) that is
generated via parsing [1]. However, IDEs often need to work with additional semantic information
(for example, to determine the declaration of a method or attribute by its occurrence), which would
also be convenient to store in the tree. Therefore, the IDE builds another tree on top of the AST,
which gives external clients (IDE features) access to such information about the program. In IntelliJ
IDEA, such a tree is called Program Structure Interface (PSI) [2], and this name is used in this paper.
Thus, PSI stores additional information and provides clients with a rich API, and AST is an
implementation detail.

For convenience, in PSI each of its nodes has its own type according to the syntax structure of the
language that this node represents, within the syntax construct type system of the programming
language in which this tree is created. For example, in the context of the Java language, each node
is defined by its own class (PsiFunction, PsiClass, etc.). At the same time, different IDEs implement
various approaches to building such a data structure and methods of interacting with it [3, 4].

IDE features, after manipulating PSI, transfer the changes to the source code so that they become
visible to the developer. To do this, text changes are generated based on the changes in the tree,
which are then applied to the code.

As mentioned above, PSI is typed. This is convenient, but the types in such a tree must be accessed
somehow in the source code. If the IDE, for example, is developed in Java, then one will need to
create a large number of interfaces and classes for that purpose. This process is very time-consuming
due to the large number of types, and therefore highly error-prone. For this reason, it is desirable to
use generation, which is based on a pre-created specification of syntax construct types of the
programming language.

A large telecommunications company is developing a multi-language platform for effectively
creating IDEs for different programming languages. Two IDEs (for Java and Python) are being
created at the moment.

34

Boxniok A.C., 3axapos A.A., Tponua H.B., Bonkos M.B. I'eneparop nepesa PSI ¢ BO3MOXKHOCTBIO 3aUCH ISl MyIbTHSI3BIKOBOH
mnatdopmst IDE. Tpyowr UCIT PAH, 2023, Tom 35 Beim. 3, c. 33-46.

The platform requires a unified system for managing the source code structure. Each specific IDE
requires its own PSI tree and tools for manipulating it, as well as a system for displaying changes in
the code. However, the principles of generating PSI access interfaces based on programming
language construct types are universal and can be implemented within the platform and used in
various IDEs.

The main contributions of the paper are as follows.

» Design of the Writable PSI Generator architecture: a mechanism for generating classes and
interfaces for accessing the PSI tree, as well as a single mechanism for distributing text
changes.

« Implementation of the Writable PSI Generator including a component for generation of the
necessary Java interfaces and classes for the PSI tree modification system based on JSON
specification, and a component for modifying the tree consisting of a persistent tree and a
Rewriter, and a mechanism for obtaining text changes (the GumTree algorithm) [5].

» The Writable PSI Generator was successfully tested in the Java and Python IDEs in the
implementation of a number of refactoring services and quick fixes.

The remainder of this paper is organized as follows: in Section 2, we present functional requirements
and the architecture of the Writable PSI Generator. Section 3 presents system implementation
details. Further, we discuss the convenience of the Writable PSI Generator and show the success of
reuse in Section 4. Finally, Section 5 presents related work.

2. Architecture

The functional requirements of the Writable PSI Generator are the following.
» The system should allow for generating Java interfaces and classes for working with PSI

(the main language within the multi-language platform used for developing various IDEs
is Java).

» The system should allow for modifying the tree for the needs of refactorings and quick
fixes.

« It should be possible to get text changes for the source code document.

« Itis necessary to ensure that the system can be reused for various IDEs developed within a
multi-language platform.

The Writable PSI Generator consists of two subsystems: the subsystem for transforming the PSI and
obtaining text changes, and the subsystem for generating interfaces and classes access to the PSI
tree.

Fig. 1 shows an UML component diagram describing the subsystem for transforming the PSI and
obtaining text changes in the Writable PSI Generator.

O <<gubsystam=> gl

Node Factory
“camponart>s E <<companants> H]
PSI i Program Text Modification

Modification Mathods | Tree Differ

Tree

Fig. 1. Subsystem for transforming the PSI and obtaining text changes

The PSI Modification component provides external clients with different ways to modify and build
new PSI nodes:

35

Bozhnyuk A.S., Zakharov A.A., Tropin N.V., Volkov M.V. Writable PSI Generator for a Multi-Language IDE Platform. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 33-46.

* Node Factory is a factory that provides methods for both constructing PSI nodes from other
nodes and creating them from a string. This factory is generated, but at the same time it is

possible for it to "manually" add additional methods.

+ Modification Methods are generated methods that each interface and class contain for
modifying the attributes of the syntax construct. These methods allow the client to create a

new version of the node, replacing existing children.

» Tree Rewriter is an entity that allows the client to create a new copy of PSI by replacing or

removing some nodes. Implements the Builder design pattern.

The Program Text Modification component provides external services with the ability to receive
text changes to a document after PSI transformations. The client is provided with a Tree Differ,
which, after receiving two trees, finds differences between them and creates the sequence of text

changes that the client can apply to the source code document.

Fig. 2 shows a UML sequence diagram which describes the main scenario of using the subsystem

for transforming the PSI and obtaining text changes.

‘ Modrication Me‘ncds” ‘ Node Factory

‘ Trae Rewnier

‘ Tree Differ ‘

IDE Service (RefactomngOuic Fix)

I
I
1
loop :

1: Madify P81 node

1.1: Return: new PSI nods

3 Inibialize with P31 rool node
|

4::Rspia ce/Remove
T

|
4.1: Retum: Tree Rewriter
F O A L o R R A e

5: Rewrite

R FIEEIRSOY 08 ML S TRUSRE TR Casty PR

5.1 Return: now PS1 roet node
fe = — A= —— e e
| |
I I
| |

6 IC{:l'nmana two PS! trees ar:d get text changes
|

|
.1z Retum; List of Text Changes

--------- M

——bmm ==

Fig. 2. The main scenario of using the subsystem for transforming the PSI and obtaining text changes

It includes the following steps:

* Modification of tree nodes (1) or construction of new nodes using the factory (2). As a

result, new tree nodes are available for the external service.

» Modification of the entire PSI is performed using the Tree Rewriter interface, as a result of
which a new, modified copy of the PSI is created. Firstly, the feature initializes this
interface with the root of the new PSI (3). Secondly, then through the replace/remove
methods it indicates which transformations need to be performed (4). Finally, using the
Rewrite method (5), the modification process is activated, and as a result, the feature

receives a new PSI.

» Obtaining a sequence of text changes using the Tree Differ interface, which takes the roots
of the old and new PSI as input, compares them and creates a specification of text changes

(6).
36

Boxniok A.C., 3axapos A.A., Tponua H.B., Bonkos M.B. I'eneparop nepesa PSI ¢ BO3MOXKHOCTBIO 3aUCH ISl MyIbTHSI3BIKOBOH
mnatdopmst IDE. Tpyowr UCIT PAH, 2023, Tom 35 Beim. 3, c. 33-46.

Fig. 3 describes the subsystem for generating interfaces and classes for PSI tree access. It consists
of the following components:

« Specification Processor is responsible for processing and validating the pre-written
developer specification of the syntax construct types of the programming language for
which the PSI is being built.

» Scheme Manager stores knowledge about the schemes for generating Java interfaces and
classes created based on type information from Specification Processor: which interfaces
are implemented, the order of children during generation, and so on. Scheme Manager
implements the Singleton design pattern.

« Types Manager stores knowledge about the semantic of syntax construct types: types of
children, properties, etc. Similarly to Scheme Manager, it implements the Singleton design
pattern.

« Generation is the main component that contains everything related to PSI generation. It
provides the Generator interface, which is responsible for generating a specific file.

=glbsyatenms> gl

<cisa> <<companents» S:[e
Scheme Manager i

'
s=pomponent=> g =ELOMPONEnt== Ej
Specification Processor Generation

PSI Specification A i i
'
5 <<camponent>> o
T TR PRI Types Managar CME e

S Eeymas

Fig. 3. The subsystem for generating interfaces and classes for PSI tree access

As a result of using the Writable PSI Generator, a user who wants to generate PSI for their IDE only
needs to write a specification of types of syntax constructs for the corresponding programming
language and run the generator. If necessary, Writable PSI Generator can be extended to take into
account the specifics of a particular language.

3. Implementation Details

This section discusses the features and implementation details of the components described in
Section 2.

3.1 PSI Modification Component

As mentioned in Section 2, the PSI Modification component is responsible for modifying and
creating new PSI nodes. It also provides the functionality to completely rewrite the entire file tree.
PSl is a Lossless Syntax Tree (LST) [3], i.e., it stores information about whitespaces and comments
in special nodes called Trivia and every PSI node stores its source text position and length.
Fig. 4 shows an example of a Lossless Syntax Tree for a simple Java return statement.
We chose Persistent Tree as the main approach for building the PSI and its modification system.
Here, persistence means that when a data structure is modified, a new version of this data structure
is returned. In addition, the unchanged parts of the data structure are reused. This approach provides
the following benefits.
» Thread-safety via PSI immutability, as it eliminates the need for synchronization. In the
IntelliJ Platform, for example, it is necessary to use Read and Write Action to interact with
the PSI because of tree mutability [6].
» Fixed offsets and lengths of nodes in the tree. Immutability makes it possible not to be
concerned about updating node offset in the text, as it will be correct after recreating the
node.

37

Bozhnyuk A.S., Zakharov A.A., Tropin N.V., Volkov M.V. Writable PSI Generator for a Multi-Language IDE Platform. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 33-46.

» Secure manipulation of semantic information via separating the stages of tree modification.
The user clearly knows when the semantic information is relevant.

return.ab . * . bed ;
s: 0
return stmt | :17

l

v s: 7
‘bmary-i:8
57 Csi12
id| |2 mi‘]‘.3
! . ‘
return| .| ab ‘ bcd 2
5:0 6 =7 59 510 s:11 s:12 s:15 s:16
16 k1 1:2 k1 k1l I:3 5 S 1

Fig. 4. Lossless Syntax Tree example

In constructing this data structure, we opted for the Red-Green-Trees method from Microsoft Roslyn
[4]. This approach results in PSI constructed as a combination of two trees. The Green tree is an
immutable untyped tree built during parsing. Its nodes (green) store information about node length
in text, type, etc. They also store references to their children, but not to their parents. This tree is an
implementation detail, and it is kept hidden from clients. The Red tree is an immutable typed tree,
which is built lazily on demand from top to bottom. This is the PSI that the client works with. The
nodes of this tree (red) reference the corresponding green nodes. Each red node stores an offset in
the text document and a reference to its parent.

This approach to PSI construction resulted in a correctly working persistent data structure. The two
trees are needed to provide the ability to iterate over the parents and children of PSI nodes.

Fig. 5 shows a simple example of this approach.

childo m gNode

A
parent |

child0 child1
gNode

Fig. 5. An example of the Red Nodes and Green Nodes approach

In order to reduce the number of errors when working with the developed subsystem, we proposed
an identifier system where each green node is assigned an identifier. This identifier is transferred to
the new version when modifying and creating a new node. Modification methods and factory
methods take these identifiers into account, which made it possible to build a more convenient API
and support more PSI Modification Component usage scenarios.

38

Boxniok A.C., 3axapos A.A., Tponua H.B., Bonkos M.B. I'eneparop nepesa PSI ¢ BO3MOXKHOCTBIO 3aUCH ISl MyIbTHSI3BIKOBOH
mnatdopmst IDE. Tpyowr UCIT PAH, 2023, Tom 35 Beim. 3, c. 33-46.

As mentioned earlier, PSI stores Trivia nodes with whitespaces and comments. Microsoft Roslyn
maintains the invariant that a node is Trivia if and only if it is a child of a token. This invariant is
convenient for compiler system development, because it eliminates the problem of space and
comment placement, leaving it as the responsibility of the client.

This approach was not applicable in the context of our IDE platform due to complicated APl and
difficulties in developing external services, and therefore Trivia nodes were placed in a more
classical way — at the token level. The PSI Modification Component is responsible for whitespace
normalization itself during node modification. Fig. 6 (left) illustrates Trivia node placement in
Microsoft Roslyn, while Fig. 6 (right) shows the same for the Writable PSI Generator.

id | |
E N F‘ ! T| " ‘b‘

i T | |
I P I |
| b=

—

|
|
iy 5

|
leading trailing

Fig. 6. Trivia nodes in Microsoft Roslyn and Writable PSI Generator

Modification Methods and Node Factory, which were mentioned in Section 2, are based on a
common system for green node manipulation. Every Node Factory method makes it possible to build
a new green node from other existing green nodes. A new red node is created based on the new green
node. Every modification method uses the Node Factory method to build a new node based on the
existing children. These methods are uniform and easy to generate. Furthermore, they are built based
on the information about the syntax constructs of the language described in the specification, and
thus produce only syntax-correct nodes.

The considered component also provides Tree Rewriter, an object that allows to replace or delete
nodes in the PSI of the whole file. The replace and rewrite methods let Rewriter accumulate
information about what changes should be applied to the tree. This is done by filling in the replace
map and remove list, which store the data about the accumulated changes. The rewrite method
activates PSI traversal, during which Rewriter replaces or removes nodes. This traversal is a Preorder
Traversal, where the node itself is processed first, followed by its children from left to right. Rewriter
takes into account the node offsets in source text, and therefore it does not have to traverse the whole
tree. Instead, it only traverses the parts which have something to transform.

The result of the traversal is a new PSI. Rewriter takes into account the syntax structure of language
constructions described in the specification, and does not produce a PSI with syntax errors.

As a result, the PSI Modification component meets the functional requirements described in Section
2, and achieves the following.

» Thread-safety.

» Syntax correctness after PSI transformation.

+ Generatable API for modifying PSI nodes and producing new ones.
» Possibility to safely transform the PSI of an entire file.

39

Bozhnyuk A.S., Zakharov A.A., Tropin N.V., Volkov M.V. Writable PSI Generator for a Multi-Language IDE Platform. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 33-46.

3.2. Program Text Modification Component

As mentioned in Section 2, the Program Text Modification component is responsible for creating
the shortest sequence of text changes that can be applied to the source document.

Three types of text changes are implemented: text insertion, text deletion, text replacement.

Each text change consists of the beginning and the end of the change, and the text that the document
fragment needs to be replaced with. In the case of insertion, the beginning of the change is equal to
the end. In the case of deletion, the string of text is empty.

This structure of text changes is due to the specifics of the IDE platform, for which the Writable PSI
Generator was implemented.

In implementing the component, we decided to follow the GumTree approach [5], which produces
text changes in two stages. First, it establishes the mappings between the nodes of the initial and
final trees. Then, it analyzes these mappings and constructs a sequence of text changes based on the
analysis.

GumTree made it possible to implement Program Text Modification, which generates the text
sequence accurately and quickly. However, this approach required adaptation to the specifics of the
developed IDE. Thus, GumTree allows to generate changes to move subtrees, which are not
supported by the IDE. Therefore, these changes have been replaced by appropriate deletions and
insertions. Also, text changes in the IDE platform are not applied sequentially — they are applied
simultaneously. The approach has been adapted so that the created text changes meet the
requirements of the platform. For example, multiple additions in a sequence in the same area are
merged into a single change.

Such corrections allowed not only to adapt the approach to the requirements of the developed
platform, but also to make them more convenient and less confusing, which was important when
debugging the developed external services.

The implemented component is designed so that it can be applied to PSls of different languages.
The component itself has no knowledge of which programming language's trees it is analyzing.

3.3 Generation Subsystem

As it was mentioned in Section 2, the Generation Subsystem provides the ability to generate
interfaces and classes to work with the PSI Modification component.

This subsystem is based on a given specification. The JSON format was chosen since it is widespread
and has convenient processing and generation tools.

The specification contains the information necessary both for the operation of the generator and for
the correct functioning of the entire modification subsystem. First of all, it contains definition of PSI
node types according to programming language syntax. It describes what kind of children the PSI
node can have according to the grammar of the language. Modification methods and factory methods
are generated based on this information. On the second turn, it contains additional information for
the generator. For example, it can specify if the class generated for a given type should be abstract,
or if a factory method should be generated for a particular PSI node type, among others.

The specification is processed inseveral steps.
e Parsing and validation of the specification file
e Initialization of the Types Manager component based on the result of the first step
e Initialization of Scheme Manager component based on the result of the first step

During these steps, the specification file is validated to prevent unexpected system behavior. Checks
for JSON object's mandatory and optional attributes, their types and values are performed.

The initialized Types Manager and Scheme Manager are objects that implement the Singleton
pattern. They are available to both the generator and the PSI Modification component.

40

Boxniok A.C., 3axapos A.A., Tponua H.B., Bonkos M.B. I'eneparop nepesa PSI ¢ BO3MOXKHOCTBIO 3aUCH ISl MyIbTHSI3BIKOBOH
mnatdopmst IDE. Tpyowr UCIT PAH, 2023, Tom 35 Beim. 3, c. 33-46.

The generator is based on a Java StringBuilder, which builds a string that is the content of the
generated file based on information from Types Manager and Scheme Manager. This string contains
the package name, imports, fields, constructors, methods, etc., and it is written to the desired file.
Such generation approach appeared to be the most suitable in the context of the IDE platform due
to its simplicity and sufficient flexibility.

The described generation approach addressed another problem as well. Typically, generators
produce files that prohibit manual code additions, because repeated generation of additional text is
overwritten. However, the generator that we developed can create areas where code is not
overwritten and it is possible to add new logic. This is done as follows. The generator checks if the
file exists on disk. If the file does not exist, it is generated. The code is partitioned, leading to the
division of the file into areas. Within one group of these areas, the code cannot be re-generated (e.g.,
the zone of generated methods, the zone of generated fields, etc.). The user can write code in these
areas, and they are not re-generated. If the file exists, the generator recognizes via special area
markers where the re-generation should be performed. The re-generated areas are replaced by new
ones, the rest remain unchanged. The updated file is obtained by concatenating the contents of the
generated and non-generated areas. Thus, developers are able to implement additional logic in the
generated interfaces and classes. Fig. 7 illustrates how a Java interface is derived from the type
specification of syntactic constructs. This figure also showcases the division of code into areas where
generation does or does not take place.

Fig. 7. Example of interface generation based on a JSON specification

4. Use Cases

This section shows how versatile and convenient the Writable PSI Generator is. The Java IDE and
Python IDE are a software product line developed on the basis of a multi-language platform and its
reusable assets [7]. The Writable PSI Generator presented in the paper is one of the reusable assets
of the platform.

During the usage of the system by different products of the product line, it was improved: errors
were corrected and new features were added. In terms of paper [8], this process is called
improvement of reusable assets.

Specifications of syntax construct types for Python and Java languages were created, and based on
these specifications, interfaces and classes for Python/Java PSI and other auxiliary code were
generated. As a result, 21/7 improvements and bug fixes were made to the Writable PSI Generator
in response to requests from the Python/Java teams.

It can be seen that the number of requests for such improvements when using the Writable PSI
Generator decreased from product to product, indicating successful reuse of the asset.

41

Bozhnyuk A.S., Zakharov A.A., Tropin N.V., Volkov M.V. Writable PSI Generator for a Multi-Language IDE Platform. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 33-46.

4.1 Using the system within the Python IDE

Based on Writable PSI Generator for Python, the following features were implemented for the
Python IDE.

e Rearrange Code is a refactoring that rearranges program constructs in source code. For
example, this feature enables the developer to quickly move selected functions and classes
through the source code, and reorder function arguments. It can also move functions out of
classes into the external scope if the function is either at the very top or the very bottom of
the class.

e Introduce Variable is a refactoring which lets the developer define a new variable for a
selected expression, to which it will be assigned.

¢ MinMax If is a quick fix that allows the developer to turn a construct of the form if a<b:
return a else return b into return min (a,b). There is no such feature in PyCharm at the
moment.

¢ Annotated Assignment is a quick fix that allows the user to remove type annotation in case
of chain assignment. (For example, a: int=b =d =3 turns into a=b = d = 3). Python does
not allow for type annotations in case of chain assignment: this is a syntax error. However,
at the time of development of the Writable PSI Generator, even though PyCharm indicated
an error in this case, it did not offer a quick fix.

4.2 Using the system within the Java IDE

Using the Writable PSI Generator for Java, the following features were implemented in the Java
IDE.

e Rename Method is a refactoring that allows the developer to rename a class method and all
its uses within the project.

e Remove Useless Statement is a quick fix that removes a useless construct in the source code
(for example, an empty if statement).

o Simplify Trivial If is a quick fix that replaces an if statement with a return of true or false
depending on a condition with a return with a check of this condition.

5. Related Work

PSI was first introduced in [2] for describing the syntax and semantic information of the developed
program in IDE. However, the authors presented only general ideas regarding operation with PSI,
without considering major non-trivial tasks associated with the PSI, such as tree modification and
program text changing.

5.1 PSI Modification

Study [9] outlines the problem of refactoring service development and describes approaches to
building a tree that is more convenient for IDEs. It highlights that in the IDE context the tree should
store spaces and comments, and it should also be able to store positions and lengths of nodes in the
text. Consequently, such a tree should be a Lossless Syntax Tree (LST), i.e. a tree which can be fully
mapped to the original source code. However, this paper presents only a general view of the problem.
Paper [3] reviews different approaches to PSI design suitable for code refactoring services. It
discusses two main approaches: Mutable Tree and Immutable Tree.

Mutable Tree is an approach in which tree nodes can be easily deleted, added or changed. It is quite
appealing due to its simple implementation and convenient API, and therefore it is used in tools like
IntelliJ Platform [6], Smalltalk Refactoring Browser [10], and CRefactory [11]. However, this
approach has many disadvantages, such as problems with updating node offsets and lengths, and the
need for synchronization in multi-threaded code.

42

Boxniok A.C., 3axapos A.A., Tponua H.B., Bonkos M.B. I'eneparop nepesa PSI ¢ BO3MOXKHOCTBIO 3aUCH ISl MyIbTHSI3BIKOBOH
mnatdopmst IDE. Tpyowr UCIT PAH, 2023, Tom 35 Beim. 3, c. 33-46.

Immutable Tree is an approach in which the tree cannot be altered once it is created. Paper [3]
highlighted two approaches to designing a modification process on such a data structure: Rewriter
and Persistent Tree. Rewriter is an approach in which all transformations over the tree are delegated
to a separate object called Rewriter. The tree itself is not writable. This approach is employed in
Eclipse Java Development Tools (JDT) and C/C++ Development Tools (CDT), addressing many of
Mutable Tree problems, such as the lack of thread-safety. However, it does not provide an ability to
interact with intermediate and final versions of trees during the modification process. Persistent Tree
is an approach which allows clients to execute transformation actions on the tree. However, with
every such operation, they receive an updated version of the tree, reflecting the applied
transformations. This approach is used in the Microsoft Roslyn compiler written in C#. Its creators
describe [4] its implementation via Red-Green Trees, as described above. This method of PSI
construction offers an API through the red tree and hides implementation details in the inner green
tree. This approach has all the benefits of an immutable tree, but also provides a more convenient
way of interacting with the tree to transform it. A notable disadvantage of this approach is the
difficulty of creating a convenient API for clients, which is due to the non-trivial organization of the
data structure of Persistent Tree.

5.2 Program Text Changing

After performing transformations on PSI, it is necessary to transfer the changes to the source
document (the program’s source code) in order to make them visible to the IDE user (developer). In
this case, a large number of fine-grained program changes can lead to performance issues. This
problem is known as the problem of obtaining the shortest sequence of text changes that can be
applied to the source document. It reduces to the Tree Differencing problem, which has proven itself
to be a long-term research topic.

A set of approaches for Tree Differencing with retrieving text changes for adding, deleting and
updating nodes in PSI is described in [12]. The RTED algorithm [13] stands out from this set, but
its asymptotic performance is insufficient to meet the requirements of our IDE.

Further work tries not only to improve the asymptotic performance, but also determine the moves
of subtrees. This is important because many refactoring services are often reduced to this type of
tree operations (e.g., the Rearrange Code refactoring). Paper [14] proposes an algorithm for tree
differencing of LaTeX trees. It is better compared to previous approaches, and has good asymptotic
behavior, but it also has a significant limitation: the algorithm operates on trees that have a large
amount of text in the leaves, which is not true for IDEs.

ChangeDistiller [15] improves on the ideas proposed earlier and makes the approach from [14] more
suitable for Abstract Syntax Trees (ASTs). While it improves the asymptotic behavior, it still does
not address the aforementioned limitation.

However, this limitation is solved by the GumTree algorithm described in [5]. It has suitable
asymptotic performance for the needs of our IDE and is the most suitable for PSI differencing.
Moreover, it generates a reasonably accurate sequence of textual changes, which also includes
operations for moving subtrees. The disadvantage of this approach is that it can generate confusing
textual changes, as discussed in [16]. This can be important when debugging an external service.
Paper [17] attempts to fix this problem by providing improvements for GumTree, which increases
the accuracy of textual changes. However, this approach shows the best results only with Java code,
and, consequently, is not well suited for a multilanguage platform.

6. Conclusion

The use of the Writable PSI Generator in IDE development projects for Python and Java has
significantly improved the efficiency of PSI development by generating a significant amount of code
and reducing the number of errors. Positive feedback has been received from the developers.

43

Bozhnyuk A.S., Zakharov A.A., Tropin N.V., Volkov M.V. Writable PSI Generator for a Multi-Language IDE Platform. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 33-46.

It should also be noted that the first product that used the Writable PSI Generator was the Python
IDE, and the number of change requests within this implementation is larger than that for the next
one. This suggests that improvement of reusable assets took place, which corresponds to the
statements made in [7].

As a further direction of our work, we can specify the replacement of JSON for describing the types
of programming language syntax constructs with a grammar-like language, for example, EBNF [18].

References

[1]. Alfred V. Aho, Ravi. Sethi, Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. —
1986. — P. 69-70.

[2]. Z. Kurbatova, Y. Golubev, V. Kovalenko and T. Bryksin. The IntelliJ Platform: A Framework for
Building Plugins and Mining Software Data. 2021 36th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW), Melbourne, Australia, 2021. — P. 14-17.

[3]. Jeffrey L. Overbey. 2013. Immutable source-mapped abstract syntax tree: a design pattern for
refactoring engine APIs. In Proceedings of the 20th Conference on Pattern Languages of Programs
(PLoP '13). The Hillside Group, USA, Article 7. — P. 1-8.

[4]. Lippert E. Fabulous adventures in coding. Blog. https://ericlippert.com/2012/06/08/red-green-trees/

[5]. Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014,
Fine-grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE '14). Association for Computing
Machinery, New York, NY, USA. — P. 313-324.

[6]. IntelliJ Platform SDK — Modifying the PSI. — URL:
https://plugins.jetbrains.com/docs/intellij/modifying-psi.html.

[7]. A Framework for Software Product Line Practice, version 5.0, Software Engineering Institute, 2012,
https://resources.sei.cmu.edu/

[8]. TTomosa T.H., Kosuos [.B., TunoBa A.A., Pomanosckuii K.JO. "DBomorus o0LMX aKTHBOB B
CEMCUCTBE CPEICTB PCHHKHUHUPUHrA MporpaMMmHoro obecmeueHus" // CucremHoe
nporpammupoBanue, 1 (2005), 184-198.

[9]. Peter Sommerlad, Guido Zgraggen, Thomas Corbat, Lukas Felber. Retaining comments when
refactoring code — 2008. — 01. — P. 653-662.

[10].Roberts Don, Brant John, Johnson Ralph. A Refactoring Tool for Smalltalk // TAPOS. — 1997. —
01.— Vol. 3. —P. 253-263.

[11].Garrido Alejandra. Program Refactoring in the Presence of Preprocessor Directives: Ph. D. thesis /
Alejandra Garrido. — USA: University of Illinois at Urbana-Champaign, 2005. — AAI3199001.

[12].Bille Philip. A survey on tree edit distance and related problems //

Theoretical Computer Science. — 2005. — Vol. 337, no. 1. — P. 217—
239.

[13].Pawlik Mateusz, Augsten Nikolaus. RTED: A Robust ~ Algorithm for
the Tree Edit Distance. — 2011. — 1201.0230.

[14].Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, Jennifer Widom. Change
Detection in Hierarchically Structured Information. Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data. — SIGMOD ’96. — New York, NY, USA:
Association for Computing Machinery, 1996. — P. 493-504.

[15].Beat Fluri, Michael Wursch, Martin PInzger,

Harald Gall. Change Distilling: Tree Differencing for Fine-Grained Source Code
Change Extraction / // IEEE Transactions on Software Engineering. — 2007. — Vol. 33, no. 11. —
P. 725-743.

[16].Guillermo de la Torre, Romain Robbes, and Alexandre Bergel. 2018. Imprecisions diagnostic in
source code deltas. In Proceedings of the 15th International Conference on Mining Software
Repositories (MSR '18). Association for Computing Machinery, New York, NY, USA, 492-502.

[17].J. Matsumoto, Y. Higo and S. Kusumoto. Beyond GumTree: A Hybrid Approach to Generate Edit
Scripts. 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),
Montreal, QC, Canada, 2019. — P. 550-554.

[18].Pattis, Richard E. EBNF: A Notation to Describe Syntax. ICS.UCl.edu. University of California,
Irvine.

44

https://ericlippert.com/2012/06/08/red-green-trees/

Boxniok A.C., 3axapos A.A., Tponua H.B., Bonkos M.B. I'eneparop nepesa PSI ¢ BO3MOXKHOCTBIO 3aUCH ISl MyIbTHSI3BIKOBOH
mnatdopmst IDE. Tpyowr UCIT PAH, 2023, Tom 35 Beim. 3, c. 33-46.

Information about authors

Anexcannp Cepreesuu BOXHIOK — mnmagmmit umxenep xommanuu MIIDT Alitu ComromHs.
3akoHunn MatemaTuko-Mexanndeckuii Qakynprer CIIOIY mo HampaBneHuto «[IporpammHast
umKeHepus». B cdepy HayyHBIX M NpoQecCHOHAJIBbHBIX WHTEPECOB BXOIWT pa3padoTka
MHCTPYMEHTOB CTaTHYECKOrO aHaim3a M pedakTOpPUHIOB KO/, TEOPHUs KOMIWISIHUH, TEOpPHS
BUPTYaIbHBIX MAIIWHEI, SHEpromotpetienne Android-yctpoicTs.

Alexander Sergeevich BOZHNYUK is and junior engineer of MPG IT Solutions. Graduated from
the Faculty of Mathematics and Mechanics, St. Petersburg State University. His research and
professional interests include development of static analysis and code refactoring tools, compilation
theory, virtual machine theory, power consumption of Android devices.

Anexcarnp Anexcarnposud 3AXAPOB - umxernep kimoueBbIx npoektoB komnaanu MIITT AiTu
Comorras, 3akoHYIIT TyITBCKHE TOCYAapcTBeHHBINH yHHBepcuTeT B 2005 Toxy MO HAmpaBICHUIO
"CHCTEeMHBIH aHamu3 W ymnpasieHue", MpoQecCHOHaNbHbIe W HAay4YHbIE HHTEPECHI CBS3aHBI C
SI3BIKAMU POrPaMMHUPOBAHUS, TEOPUEH U MPAKTUKON HHCTPYMEHTOB JUIS CTATUYECKOTO aHaIu3a U
pedakTopuHra Ko/1a, TCOPHUCH THIIOB M PEKOHCTPYKIIUCH THUIIOB.

Alexander Alexandrovich ZAKHAROV is an engineer of key projects of MPG IT Solutions,
graduated from Tula State University in 2005 with a degree in "System Analysis and Management",
professional and scientific interests are related to programming languages, theory and practice of
tools for static analysis and code refactoring, type theory and type reconstruction.

Hukonait Bnagumuposuu TPOIIMH - Begymmii umxenep komanasl IDE B kpynHo#
TEJIEKOMMYHHUKAIIHOHHON KOMIaHWH, 3aKoHYMI MaTeMmaTiko-Mexanndeckuit gaxymnprer CIIOLY.
Paboraer B o0macTu co3maHus HHCTPYMEHTOB pa3padboTku ¢ 2013 rona.

Nikolay Vladimirovich TROPIN is the leading engineer of the IDE team in a large
telecommunications company, graduated from the Mathematics and Mechanics Faculty of St.
Petersburg State University. He has been working in the field of development tools since 2013.

Muxaun Banepuesnu BOJIKOB, k.¢.-M.H., 3akoHumn ¢usuyeckuit dakynprer CIIOTY wu
acrupanTypy CTOKIOJBMCKOTO Y HUBEPCUTETA. 3aHUMAJICS UCCIIEA0BAHUSIMU B 00JIACTH KBAHTOBOM
MEXaHUKH. B maHHBIH MOMEHT mpodecCHOHAIbHBIC W HAYYHBIC HMHTEPECHI JIeKAT B 00JIACTH
paspabotku IDE, ko10BBIX MO/IeNIeli ¥ BBIBO/IA THUIIOB IS JMHAMUYECKN THITM3UPOBAHHBIX SI3BIKOB.

Mikhail Valeryevich VOLKOQOV, PhD in Physics, graduated from the Physics Department of St.
Petersburg State University and completed his postgraduate studies at Stockholm University. He
was engaged in research in the field of quantum mechanics. At the moment his professional and
scientific interests are in the field of IDE development, code model and type inference for
dynamically typed languages.

45

Bozhnyuk A.S., Zakharov A.A., Tropin N.V., Volkov M.V. Writable PSI Generator for a Multi-Language IDE Platform. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 33-46.

46

TpyoetAICIIPAH, mom 35, évin. 3, 20232. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-3 tocl%

K Bonpocy ucnonb3oBaHnsa B o6pa3oBaTesibHOM
npouecce pa3paboTaHHOro NPorpaMmmMHoOro
obecneyeHns gna uccrnegoBaHUA aKyCTUYECKUX
TPAKTOB MarHUTOCTPUKLMUOHHbBIX
npeoGpa3oBaTenen nepemMeLleHun

A.A. Hezanos, ORCID: 0009-0009-9664-4137 <devilkbmod@gmail.com>
A.A. Boponyos, ORCID: 0000-0002-3451-8815 <aleksander.vorontsov@gmail.com>
IO.H. Crecapes, ORCID: 0000-0003-1508-3235 <slesarevun@gmail.com>

Tlenzenckuii 20cyoapcmeentblil MexHON0SULeCKUll YHUGepcumen,
Poccus, 440039, e. Ilensa, npoeso baiioykosa/yn. Iacapuna, 1a/ll.

Annortamusi. CTaThsi TMOCBAIICHA WCCICIOBAHUAM IPOIECCOB, BO3HHKAOIMX MpU (OPMUPOBAHUH,
TPAHCIAIMHA U CYUTHIBAHUH WH(POPMAIIMOHHBIX CUTHAJIOB B aKyCTHYECKUX TPAKTaX MArHUTOCTPUKIIMOHHBIX
npeoOpa3oBaTeNiaX JIMHCHHBIX M YIIOBBIX mepeMmenicHuil. [IpuBOmATCS MaTeMaTHYeCKHe MOJCIH,
MO3BOJISIIOIIAE OCYIIECTBHTH pPAcyeT MArHUTHBIX [OJEH KOJBLEBBIX MOCTOSHHBIX MArHUTOB U
cOpPMHUPOBAHHBIX TOKOBBIMH HMITYJIbCAMH IPU TPOTEKaHHH HMH B cpeie BonHOBoma. s pacuera
HaMarHUYEeHHOCTH BOJHOBO/A ObLT pa3paboTaH YHUCICHHBIH METO, O3BOJISIOINI yIeCTh HAMATHUIEHHOCTD
MarepHana BOJIHOBOJAA B TPEIBIAYIINII MOMEHT BpeMeHH. Takke MPHBEICHbI MaTeMaTHYeCKHEe MOJEIH,
MO3BOJIAIONIME PAcCYMTaTh MMapaMeTpbl MArHUTHOTO TOTOKAa COJICHOWZA W BBIXOJHOTO CHUTHAJA.
MaremaTiuuecKie MOJCIN pacyeTa MarHUTHBIX TOJIEH MOCTOSHHOTO MarHWTa, pa3pabOTaHHBINA YHCIICHHBIH
METOJ ¥ MaTeMaTHYeCKhe MOJEIH (OPMUPOBAHUS MATHUTHOTO IMOTOKA W BBIXOJHOTO CHUTHANA OBLIH
peanr30BaHbl B pa3pab0TaHHOM MPOrPAMMHOM O0ECIICUEHHH, HCTIONBb3YEeMOM B 00pa30BaTeIbHOM MpoIiecce.
PesysbraTsl HCCIIeNOBaHMUil, a TAK)Ke YTOYHEHHBbIE W Ppa3pabOTaHHBIC METO/BI pacyeTa MarHUTHBIX MOJEH U
YHCIIEHHBII METO/I MOTYT HCTIOIB30BATHCS ISl KCCIIEe0BAHUI MArHUTOCTPUKIHOHHBIX TPHOOPOB KaK Ha dTare
UX MPOEKTHPOBAHUS, TAK M UX JKCIUIyaTalllH, YTO CHIDKAET UX KOHEYHYI0 CTOMMOCTh. Takke He0OXOAuMo
OTMETHTB, YTO B CTAaThe HE PACCMOTPEHBI BOMPOCHI, CBSI3aHHBIE C 0OPaOOTKOW BBIXOJHOTO CHTHAIA, YTO
MPEAOCTABIISICT BO3MOXXHOCTH JUTS JaJbHEHINIX UCCIIEAOBAHNH U AanbHEieH Moau(UKAIIMH TIPOTPaMMHOTO
00eCITeueHHMs.

KunroueBsbie ciioBa: akyCTHYECKHH TPAKT; MArHUTOCTPUKIINS; MArHUTOCTPUKIIMOHHBINH MPUOOP; IPOrpaMMHOE
obecrieueHne; 00pa3oBaTeNbHbIH MPOIIECC.

Jns uutupoBanusi: VBzaHoB A.A., BoponmoB A.A., Cnecape IO.H. K Bompocy wucnonp3oBaHus B
00pa3oBaTesIbHOM Hpoliecce pa3paboTaHHOTO MPOTPAMMHOTO 0OECIeYeHHUs I HCCIIEA0BaHHUs aKyCTHYECKUX
TPaKTOB MarHUTOCTPHKIIMOHHBIX IpeoOpa3oBarenei mepememnennii. Tpynsr UCITI PAH, Tom 35, Beim. 3, 2023
r., c1p. 47-62. DOI: 10.15514/ISPRAS-2023-35(3)-3

47

lvzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 35, 2023. pp. 47-62.

On the Issue of Using the Developed Software in the Educational
Process for the Study of Acoustic Paths of Magnetostrictive
Displacement Transducers

A.A. lvzanov, ORCID: 0009-0009-9664-4137 <devilkbmod@gmail.com>
A.A. Vorontsov, ORCID: 0000-0002-3451-8815 <aleksander.vorontsov@gmail.com>
Yu.N. Slesarev, ORCID: 0000-0003-1508-3235 <slesarevun@gmail.com>

Penza State Technological University,
1a/11, Baydukova passage/st. Gagarina, Penza, 440039, Russia.

Abstract. The article is devoted to the research of the processes arising during the formation, translation and
reading of information signals in the acoustic paths of magnetostrictive linear and angular displacement
transducers. Mathematical models are given that make it possible to calculate the magnetic fields of annular
permanent magnets and those formed by current pulses when they flow in a waveguide medium. To calculate
the magnetization of the waveguide, a numerical method was developed that allows taking into account the
magnetization of the waveguide material at a previous time. Mathematical models are also given to calculate
the parameters of the magnetic flux of the solenoid and the output signal. Mathematical models for calculating
permanent magnet magnetic fields, the developed numerical method and mathematical models for the
formation of magnetic flux and output signal were implemented in the developed software used in the
educational process. The research results, as well as refined and developed methods for calculating magnetic
fields and the numerical method can be used to study magnetostrictive devices both at the stage of their design
and operation, which reduces their final cost. It should also be noted that the article does not address issues
related to the processing of the output signal, which provides opportunities for further research and further
modification of the software.

Keywords: acoustic tract; magnetostriction; magnetostrictive device; software; educational process.

For citation: Ivzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for
the study of acoustic paths of magnetostrictive displacement transducers in the educational process. Trudy ISP
RAN/Proc.ISP RAS, vol. 35, issue 3, 2023. pp. 47-62 (in Russian). DOI: 10.15514/ISPRAS-2023-35(3)-3

1 BeedeHue

JluHaMMKa WCCIICIOBAaHUH M OTKPHITHH B cepe Hay4YHBIX H3BICKAaHWH W HWH(POPMAIMOHHBIX
TEXHOJIOTHH 3a TOCJEJHHE OBl MO3BOJIMIA CYHNIECTBEHHO PACIIMPUTh BO3MOXKHOCTH OIS WX
nanpHeimero u3ydeHus [1-12]. Dto crano Bo3MOXKHO Oiarofapst YCIHEHIHOW paboTe He TOJBKO
YUYEHBIX U HayYHBIX IIKOJI, HO M MCCIIEA0BAHUAM CTYAEHTOB U npemnoaasareneii [13-20].
[MoaroroBka KBaIM(UIIMPOBAHHBIX CIIECIHAINCTOB B 00pa30BaTeIbHOM Hpoliecce ManodppeKTHBHA
0e3 HarIAHBIX METOMOB OOyUYEHHs, MO3BOJIIOINX OOBSCHUTH M TPOJEMOHCTPHPOBATH 0a30BbIE
OCHOBBI, IIPHUHIHITBI PA0OTHI U KOHCTPYKTHBHBIE OCOOEHHOCTH MPOLIECCOB U SIBICHUI.

Tak, U1 U3y4eHus sIBJICHNS] MarHUTOCTPHUKIINY, a TaKkKe IpoleccoB (GOpMUPOBaHHMS, TPAHCIISIINN
U CUUTHIBAHUS CHTHaJAa B aKyCTHYECKMX TPaKTax MarHUTOCTPHKIMOHHBIX MNpeoOpasoBaTenel
MepeMenIeHuii MOKHO HCIONb30BaTh pa3paboTaHHOE aBTOpaMu MyOJUKAllMU MPOrPaMMHOE
obecrieueHne, MO3BOJSIONICE HE TOJBKO TMOHITh NPUHLIMI pPabOThl 3THX YCTPOWCTB, HO H
pa3pabarbIBaTh A HHX HOBBIE OJJIEMEHTHI W KOHCTPYKIMH. OgHOH ©3 0COOEHHOCTEH
MPOTrpaMMHOTO OOeCIieUeH s SIBISETCS peanu3alis pa3padoTaHHOTO YMCIEHHOTO MeETO/a II0
pacdeTy HaMarHMYEHHOCTH MaTepuana BOJHOBOJA. Pa3paboTaHHble M yTOYHEHHBIC
MaTeMaTHYeCKHe MOJENH TO3BOJSIOT PACCUUTAaTh 3HAYCHUS HANPSDKEHHOCTEH MAarHUTHBIX IOJIEH
MIOCTOSTHHOTO MarHUTa M CO3[aHHBIM TOKOBBIMHM MMITYJIbCAMH, MAarHUTHOT'O TIOTOKAa U BBIXOJHOTO
cUrHaiga, CcQOPMHPOBAHHOIO COJEHOMIOM C TIpadMuecKuM OTOOpaKeHMEM MOCIEIHETO.
TeopeTHyeckuM OCHOBaM MPOLECCOB, BO3HUKAIOIINX IIPU TPAHCISALMKM CUTHAJIA B aKyCTHYECKHX
TpaKTaXx MarHHTOCTPUKIMOHHBIX HPeoOpa3oBaTeNsx MEpeMENIeHHH, a TaKk)Ke BBIYHCIUTEIbHBIM

48

mailto:slesarevun@gmail.com

He3anoB A.A., Bopouuos A.A., Crecapes 10.H. K Bonpocy ucnonb3oBaHus B 00pa3oBaTeIbHOM HpoIecce pa3paboTaHHOTO IPOrPaMMHOTO
obecriedeH s Tl UCCIICI0BAHHS aKyCTHYECKUX TPAKTOB MarHUTOCTPHKIIMOHHBIX Ipeobpa3oBatelieil nepemerenuii. Tpyowr AUCIT PAH,
2023, Tom 35 Bim. 3, c. 47-62.

IKCIIEPUMEHTaM C HCIOJIb30BaHHEM pa3pabOTaHHOTO MPOTrPaMMHOTO O0ecHedYeHus u
IKCIEPUMEHTAIILHOM MPOBEPKE MOTYUYSHHBIX PE3YJILTATOB U MOCBSAIIEHA CTATHS.

2 Teopemuyeckulii aHanus

IIpuHOMD paboOTBl MAarHUTOCTPUKIMOHHBIX NPUOOPOB OCHOBBIBaeTCI Ha IBYX J(QeKTax,
3aKIIFOYAOIIUXCA B HM3MEHEHHHM pPa3MEpPOB MaTepHaja BOJHOBoAa ((peppoMarHeTHk) II0x
BO3/ICHCTBIEM M3MEHEHUS €T0 HAMAarHMYCHHOCTH, YTO NMPHUBOJHUT K U3MEHEHHIO €T0 Pa3MEpoB Ha
JIOKAaJHHOM YYacTKe W (pOpMHPOBAaHUIO YIBTPa3BYKOBHIX BONH (3¢ dextr Bunemana) u obpatHOMY
a¢dexry, HaspiBaeMoMy 3¢ ¢dexktoM Bwuiapm — H3MEHEHMM HAaMarHWYEHHOCTH Marepuaia
BOJIHOBOZA TIO/ BO3JCHCTBHEM MEXaHUIECKUX KoaeOaHuil (YIbTpa3ByKOBBIX BOJH).
KoHcTpyknnst aKyCTH9eCKOro TpakTa MarHUTOCTPUKIIHOHHOTO IIPeoOpa3oBaTems NMEpeMENICHUH
npencraeneHa Ha Puc. 1. B Heit TOKOBbIC UMITYJIbCHI | MOCTYIMAs B Cpeny BOJHOBOIA (mo3uius 1)
(hopMHPYIOT MarHUTHOE TIOJIE, HAMIPSKEHHOCTh KOTOPOTO Ha €r0 MOBEPXHOCTU MOYKHO OTIPEEIIUTh
coryacHo BeIpaxkeHHIo (1).

Hi:i/(Z'ﬂZ‘RWG) (1)
rae Rwe — paanyc BoTHOBOA.
MarHuTHOE T0JIe, CO3JAaHHOE TOKOBBIMH HMITYJIBCAMH, B3aWMOAEHCTBYET C MarHUTHBIM IIOJIEM
MIOCTOSIHHOTO MarfuTa (MO3MIHs 3), 4TO NPUBOAMT K M3MEHEHHIO HAMAarHMYCHHOCTH MaTepHana
BOJHOBOAA M (OPMHUPOBAHHMI0 MEXaHMUYECKHX KOJIECOAHMH, HA3bIBAEMbIX YIbTPAa3BYKOBBIMU
BOJTHAMH. Hpouecc pacuy€ta U3MCHCHUSA HaAaMAarHM4CHHOCTU CIIOKHBIA M 3aBHCHT OT MHOKECTBa
¢dakTopoB U mapamerpoB. boiee TOYHO OSTO W3MEHEHHE IpEAJaraeTcsi BBIYUCIUTH C
UCIIOJIb30BaHUEM pa3pabOTaHHOT'O YUCICHHOTO METO/a.

a) 0)

Puc. 1. [oacusowuil pucyHox 015 oanvHetiuux ucciedosanutl. Mzobpasxcenue 6onnosoda (nozuyus 1)
a) 00HOCI01IHO20 coneHouda (nosuyus 2) u b) korvyesozo nocmosHHo2o macHuma (nosuyus 3)
Fig. 1. An explanatory drawing for further research. Image of a waveguide (position 1)

a) a single-layer solenoid (position 2), and b) an annular permanent magnet (position 3)

VYibTpa3ByKOBbIE BOJHBI (aKYCTHUECKHI CUT'HAI) PACHIPOCTPAHSSCH B CPEJie BOTHOBOA JIOCTUTAIOT
coyieHon1a (MO3UIHUA 2), TO €CTh IEMEHTa, (OPMHUPYIOIIETO BBIXOJHON CHT'HAJ U CUHUTHIBAIOTCS,
MOCJIe Yero BPEeMEHHOW MHTEpPBall MX PacIpOCTPaHEHHUs Mpeodpa3yercsi B 3MepsieMoe 3HaueHUsI
TepeMelIeHHSI.

J1s BocTipon3BeI€HNS BOJTHBI KPYYEHUS MOKET OBITh MPUMEHEH MpUHIMI B3anMHocTH. Ha Puc. 1
MOKa3aHa KaTyIIKa BOCIIPOM3BEACHNS (COJICHOMT), BOCIIPHHIMAIOIIAast HH)OPMATHBHBIH IMapaMeTp
— MPOJIOJIbHYIO COCTABJISIOIIYI0 MarHUTHOTO MOJISL YJbTPa3ByKOBOW BOJIHBI KpydeHus. Ha stom
PHCYHKE MPUHATHI CIIeMyIole 06o3HaueHus: Rs — paanyc mpoBoma conenouna; 2l1=L — mmuna
COJIEHOM]IA; Z — TEeKyIas KoopauHaTa, u3mepsiemast BIoiab ocu 0Z; Rsy 1 Rsp; — COOTBETCTBEHHO
BHYTPEHHUH U BHEIIHUN pajuychl coleHonaa, Rsy= Rsi+Rs; Rmi 1 Rm2 — BHyTpeHHUH 1 BHEIIHUN
paIrychl KOJIBLIEBOTO MOCTOSIHHOI'O MarHUTa COOTBETCTBEHHO.

49

lvzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 35, 2023. pp. 47-62.

3Has pacmpeneneHue mois coieHomma Hcz(z), MOKHO paccuWTaTh 3HAYCHHE TMPOCKIHH €rO0
MarHUTHOTO TOTOKa Ha ock 0Z @z depe3 MPOU3BOJIBHOE IIOIEPEYHOE CEUCHHWE BOJHOBOIA,
BBI3BAHHBIM TOKOM | depe3 OOMOTKY BOCIPOHM3BEIEHHS, TaK KaK B COOTBETCTBHH C TEOPEMOit
B3aMMHOCTH TOT K€ TOK I, 0OTeKas MOMepeyHOe CeUCHHUE TOBEPXHOCTH BOJHOBOMA, BO30YXIaeT
UICHTHYHBIN MOTOK @ yepe3 0OMOTKY cosieHoua [1].
[lpu nBWXKEHWH BOJHBI KPY4EHHS IOCICIOBATENBHOCTh HaMarHW4eHHocTell Mz mBikeTcs
oTHocuTeNnbHO —coseHonma. CnenoarenmbHo, Mz=M(z-20), thme z=vt, © — CKOpOCTH
pacripocTpaHeHHs yAbTPa3BYKOBOW BOJHBI KpyueHus. [lepemenHast (Z-2o) ycTaHABIMBACT CPEIHIOK
JIMHUIO LIEHTPA HETIOJIBIKHOTO COJICHOMA KaK Havyajlo cucTeMbl otcueTa st Mz. 3Hauenue t (vnu
Z), paBHOE HYJIO, COOTBETCTBYET OMpPEACICHHON (OpMEe HAMAarHHYCHHOCTH, PACIOJIOKCHHOI
HEMOCPENCTBEHHO MO LIEHTPOM costeHoua. Ilose paccestHus coneronna Heol(z), hukcupyerces mo
OTHOIICHHIO K OCH Z.
[TycTh Benu4MHa MOJIS paccesHUs CoJieHOHUAa OyAeT NpHBeJeHa K eJMHUYHON MarHUTOABIKYILEH
cune (1. e. H ompenensercs mis N1 = 1,0, rne N — uynciio BUTKOB OOMOTKH COJICHOWZA
BocripousBezienust). [lone paccesHust colieHOMJAa BOCIIPOU3BENCHHUS, CBSI3aHHOE C HOCHTEJIEM,
COCTOHT U3 JIBYX COCTABISIOIIMX MarHUTHOTO Noutst He; n Hey. Takum 0Opa3om, 0JMH aMIiep-BUTOK
OOMOTKH BOCIIPOM3BEACHUS OymeT BO30YXJaTh OCCKOHEYHO MAaNbIii IMOTOK dYepe3 JIIEMEHT
BOJHOBOZIA paguyca I ¥ TONIMHOW Oy B JAeKkapToBOW cHcTeMe KoopauHaT wiu dr B
MUWIHHAPUYCCKON CUCTEME KOOPIMHAT OMPECIUTCs coriacHo dopmyrte (2).

d®z=uoHcz 2-m-r-dr 2
rae po=4-m-107 'n/M — MarHuTHAas IOCTOSHHAS.
CornacHo TeopeMe B3aHMHOCTH, CMHUYHBIA TOK (TOK Yepe3 OJMH BUTOK BOKPYT syeMeHTa rdr),
OyZIeT HaBOAWUTH aHAJIOTUIHEIH MOTOK B OOMOTKE COJICHOMIa BOCIIPON3BEACHUS.
[TockonbKy B BOJIHOBOJIE YJIBTPAa3BYKOBOW BOJIHBI KPYUEHHS PACIpPOCTPAHSIIOTCS CO CKOPOCTBIO U
U TOPU30HTABHOM COCTABISIIONICH HAMArHUIeHHOCTH M;(Z-vt) TO MarHUTHBI MOMEHT JJIEMEHTa
JUIMHO# 0Z ¥ momepedHoro ceyeHusi I dr SKBHBAJCHTEH TOKY, TEKYIIEMY BOKPYT 3yiemeHTa rdr.
Benuunna Toka paBHa M(z-vt)dz. DTOT SKBUBANEHTHBIM TOK MPEIACTABIAET COOON MacITaOHbIMH
K03(D(DULKMEHT, KOTOPBI JOJKEH OBITh HMCHOJNB30BaH B ypaBHeHHMH (3) Al MONy4eHHs U3
MOCTIETHETO JEHCTBUTEFHOTO YPOBHS HAMArHUYEHHOCTH BOJTHOBOJIC.
[TonHbBII MOTOK, TmepeceKaromuii OOMOTKY COJIEHOMJIa BOCTIPOUM3BEICHHS, BBI3BAHHBIN
HaMarHMYeHHOCThI0 M MoJydaercsi B 9TOM Cilydae MOCPEACTBOM HMHTErPUPOBaHUSI OECKOHEUHO
MaJlbIX [TI0OTOKOB, BO3HHKAIOIINX W3 MOCJIE0BATEIbHOCTH HAMarHM4eHHOCTEH B/IOJIb BOJIHOBOAA,
OTIpENIEIIACTCS COTIACHO BEIpAKEHUIO (3).

dwe
o 2
@D,(z9)=k- [Jug-M;(z-29.1r)-H,.(z,r)-27r-dr-dz (3)
-0 0
rae dwe — aumamerp BosHOBOHA, Zo= vt, K — 0000meHHbIH KO3 UIMEHT, BKIIOYAIOIIN

MarHUTOCTPUKIIMOHHBIE KO QUIIMEHTHI.
CurHan BOCIpOHU3BEICHHUI ONPEICIsieTCs IPOM3BOIHOM 0T Pz(Z) (BhIpaxkeHue (4)).
u(zo) = ddz (zo)/dt 4)

Hamaramuensocts M, ompenenseTcs BO3ACHCTBHEM HAa MaTepHal BOJIHOBOAA TIONS PaBHOTO
TE€OMETPHUUECKOW CyMMe KpyroBoro nois Hj BOTHOBOMA M TOPU3OHTAIIEHON COCTABIISIONICH MO
nocrossHHOro Maraura Hz(r,z).
JImg KOTBIIEBOTO MOCTOSTHHOTO MAarHUTa ¢ HAMAarHWYEHHOCTHI0O M M ¢ BHEIIHHUM U BHYTPEHHUM
paarycaMH COOTBETCTBEHHO RMy u RmMi 3HaueHwe HampspkeHHOCTH MarHuTHOro mons Hz(r,z)
ompezenurcs 1o popmyie (5).

H,(r,2) =Hzo(r,2) —Hu(r,2) ®)
rae:
50

He3anoB A.A., Bopouuos A.A., Crecapes 10.H. K Bonpocy ucnonb3oBaHus B 00pa3oBaTeIbHOM HpoIecce pa3paboTaHHOTO IPOrPaMMHOTO
obecriedeH s Tl UCCIICI0BAHHS aKyCTHYECKUX TPAKTOB MarHUTOCTPHKIIMOHHBIX Ipeobpa3oBatelieil nepemerenuii. Tpyowr AUCIT PAH,
2023, Tom 35 Bim. 3, c. 47-62.

1 Rm2 M- p-z-E2(k2)
Hpo(rz)==- | dp
R TR Ny e ©
Rm2 a7 _n).
Hzl(r,Z)zi. [M- p-(z—h)-E2(kD) dp -

© o pP o e-nPHie P P

B coorBercTBHMM ¢ omHOM M3 Mmozeneli, moje Hcz Ha ocu coneHomza B TOYKE, OTCTOSAIIEH Ha
PACCTOSHHH Z OT €T0 IEHTPa, onpeaesieTcs mo Gopmyie (8).

. 2 2 2 2
ni (- 2)in Rep +1R& +(1-2) Y Ry +R& + (1 +2) @)

He-(2)= 4(Rs2 - Rs)) 2 2 " 2 2
Rsl+\/Rsl+(|_Z) Rsl+\/Rsl+(I+Z)
rme N=N/L — 49mciio BWTKOB Ha EIWHHILy JJIMHBI COJEHOMIA, RS1 u RS; — COOTBETCTBEHHO
BHYTPEHHHMI1 U BHEIHHUI pagnychl coneHonaa, 21=L — mmHa conenonna, | — 3Ha9eHUE TOKOBOTO

UMITYJIbCa, S — IUIOMIA (b MOMEPEYHOr0 CEYCHHS BOITHOBO/IC.

Hcnonb3yst BeipakeHHE (5) MOXHO MOJYYHTh PAaCHpeACiCHUE MPOJOIbHON HaMarHUYEHHOCTH
Mz(z) B BosHOBOME, KOTOPOE ONMpeeseTcs (PYHKIHOHATBHOM 3aBUCUMOCTRIO 0T Hz(r,Z) To ecth
COTJIaCHO BBIpakeHHIO (9).

Mz(z) = f (Hz(r,2)) (9)

Jl1g MozienmMpoBaHUsl HAMAarHUYEHHOCTH BOJIHOBOA TAKJKe JKeJIaTeIbHO aHATMTUYIECKU ONPEIeTTUTh
3aBHCHUMOCTb, KaK 3TO IPEACTaBICHO B BIpakeHUH (10).

Mi=M (H (x,t), M (H (xi,t-At)), (10)

rae H(Xi,t) — cymmapHoe mone, eiicTByoIIee Ha MarHUTHBIH 3JIEMEHT B MOMEHT BPEMEHH t;
M(H(xi,t-4¢)) — HaMarHUYEeHHOCTH dJIEMEHTa, ONpe/eIisieMast B IPEAIIECTBYOIIIA MOMEHT BPEMEHH
t-4t.
Bun 310 pYHKIIHOHAIBHOW 3aBUCHMOCTH OIPEICIIACTCS BHIOPAHHONW MOJEIbI0 HaMarHUYHBAHUS
BOJIHOBOJIE, MOJICJISIMH TIETJIN TUCTEpe3uca 1 MHOTUMH APYTHMH MTapaMeTpaMH.
I[Tetns ructepesnca — OJTHO U3 CBOWCTB ()eppOMarHeTHKOB (MaTepual BoiHOBoAa). OHO MO3BOJISET
OIIPE/IeINTh €r0 HAMarHWYEHHOCTh M0 3HAUYEHHIO HANPSHKEHHOCTH MAarHUTHOTO IOJIsI K HA000POT.
CymiecTByeT MHOXECTBO MOJIeNIeil TOCTPOSHHS M METO/IOB alllIPOKCUMAIUH TeTelb I ncrepesuca,
OJTHUM W3 KOTOPBIX, HCIIOJIB3YEMBIM B Pa3pabOTaHHOM IPOTPAMMHOM OOECHEYEHUH SIBISETCS
HOJIMHOMUAJBHBIA MeTol annpokcumanuu [2] (BepaxkeHue 11) Mojenu MeTIH TUCTepe3uca I10
Hummmoro [3].

M(H,oq) =Mg(T)-signog + Mg -4 - T (H -sign) (12)

rae Ti — Temneparypa nepekirouaeMoro sjaementa, f(H) — ¢dyHkims, onuceiBaroiias npeaeabHyo
METIII0 TUCTEPE3NCA U MMEIOIIast BUJI, TIpUBEAeHHbIH B popmyie (12) [3].

f(H)= (12)

l—(l-:_'—CJlsp npu H >Hc

B nanHoM onmcanuu nemin rucrepesuca Sp=Mr/Ms, Ks — koahdunument, MeHbimii 1.
51

lvzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 35, 2023. pp. 47-62.

I'paduku, moctpoerusie mo hopmyiam (11), (12), npuseaenst Ha Puc. 2.

24x10°
1.6x10
= 810
d:n
Z
=
—Bx10
- 1.6x10
—24x10°
- 240 - 160 - &0 0 20 160 240
H, &
Puc. 2. Mooeno nemau aucmepesuca no Huwwmomo [3]: Hc=150/r A/m, Ms=33-10%(4-x) A/m, sp=0,6,
Mr=sp-Ms

Fig. 2. Nishimoto hysteresis loop model [3]: Hc=150/z A/m, Ms=33-10°/(4-x) Alm, sp=0,6, M= $p-Ms

Hcnone3oBanue 3aBUCUMOCTH (9) IPOM3BOIMIOCE ITyTEM MOASIHPOBAHUS NPEICTbHBIX H YaCTHBIX
[IUKJIOB meTiu ructepesuca [2,3] mo dpopmynam (10) u (11).

WHaekc meTnu oy onpenesieTcs M3 YCIOBHH paBEHCTBA BEJMYMH HAMAarHMYCHHOCTEH B TOYKE
Bo3Bpata [2] cornmacHo Beipaxenuto (13).

(k+1) _ (k) M (H (k) al(k))+ My -sign | ((k))
(H) - (k))+ M; -sign (al(k))

rae K — mopsakoBblidi HOMep MUKIIa H3MEHEHHsT HAMArHHYSHHOCTH TI0 MeTIIe THCTEePe3Hca.

Jus Berumcnenuss mo Qopmynam (11) m (12) Mozmenb NO3BOJSET HCIONB30BATHCS TaKKe
temmeparypubie 3aBucumoctd He (X)) = Hc (Ti (%)) 1 M(X:) = Ms (Ti (Xi)), momydaembie myTem
MHTEPIOISANNH SKCIIEPUMEHTAIIBHBIX TaHHBIX.

(13)

OOuMM HEeTOCTaTKOM METOAOB pacdyeTa HaMarHMYEHHOCTH BOJHOBOJIOB II0 CTATUYECKUM IETIISIM
THCTepe3nca SIBISETCS HEBO3MOXKHOCTh Y4eTa B HUX BIMAHHUS caMOpa3MarHUUMBAIOMKX mmosneit. 1x
y4eT BO3MOJKEH IPH HCIIOJIB30BAHUH Pa3pabOTaHHOTO YHCIEHHOTO METO/a.

MeTox €aMOCOTIIaCOBAaHHOTO AUHAMH4YecKoro wmomenupoBanus (MCIM) momydusi HIIHMpOKoe
pacnupocTpaHeHHe JUIs MOJETUPOBAHMA 3alMCH HH(pOpMAlMKU Ha (EeppOMATHUTHBIX HOCHUTEINAX
MIOCPEICTBOM IPUIIOKEHHUS JOKATBHOTO MAarHUTHOTO TOJIS, CO3/IaBa€MOr0 HalpHMep MarHUTHOM
roJoBKoii [4,5].

Hexkotopsie o01mye mosiosxeHus: JaHHOM METOANKH MOTYT OBITh IPUMEHEHBI U JUISI MOICINPOBAHUSA
HAaMarHWYMBaHUSl BOJIHOBOJIOB MAarHUTOCTPUKLIMOHHBIX IPHUOOPOB Ha YJIBTPa3BYKOBBIX BOJIHAX
Kpy4YeHHsI C y4eTOM OCOOCHHOCTeH (M3MKM TNEepeMarHWYMBAHUS KPYTOBBIM IOJIEM, METOAUK
OTIpe/IeTICHUs] MarHUTHBIX TOJIEH U MOJieIeil epeMarHnunBaHus MaTepHaia BOJHOBO/IA.

MCJM mnpencTaBisioT co00H MOAETH B METO.IbI IPUOIMKEHHOTO PEIICHNs HEeMHEIHOM 3a1a4m,
KOTOpBle [uIig ciydas (OPMHPOBAHHS HAMarHWYeHHOCTH B BOJHOBOJAE HMEIOT BHJ,
npecTaBIeHHBIN B hopmyne (14).

M (F,t) = ¢ (Hs (7, t), historyHy)
ﬁz (7, 1) = Hexternal (T, 1) + Hdemagnetiz ing (F,1),

rae M (r,t) — BekTOp HAMarHMYEHHOCTH B TOYKE C PaJHyCOM—BEKTOPOM I B MOMEHT BpeMEHH t;

(14)

Hy (7,t) — BekTOp HaMPsHKEHHOCTH MOJHOTO MATHUTHOTO MOJIs, BKIFOYAMIINI CYMMY BHEIIHETO

52

He3anoB A.A., Bopouuos A.A., Crecapes 10.H. K Bonpocy ucnonb3oBaHus B 00pa3oBaTeIbHOM HpoIecce pa3paboTaHHOTO IPOrPaMMHOTO
obecriedeH s Tl UCCIICI0BAHHS aKyCTHYECKUX TPAKTOB MarHUTOCTPHKIIMOHHBIX Ipeobpa3oBatelieil nepemerenuii. Tpyowr AUCIT PAH,
2023, Tom 35 Bim. 3, c. 47-62.

nonst Heygerna (F,) , €O31aBa€EMOro COBMECTHBIM JE€MCTBUEM IOCTOSIHHOTO MAarHMTa H

UPKYISIPHOTO MAarHUTHOTO TIOJISI B OTCYTCTBHE MAarHMTHOTO BOJTHOBOJA, M BHYTPEHHETO IIOJIS
Hdemagnetiz ing (F,t), cymectByiomero B MAarHHTHOM MaTepHae; My — MoIenupyromast

(yHKOMA, CBS3BIBAIONIAsl OCTATOYHYI0 HAMAarHWYCHHOCTH BOJHOBOJA C HANPSHKCHHOCTHIO
MarHuTHOI'O IT10JIS; ﬁdemagneﬁzing (f,t) — pa3MarHUYMBaIOLIee IIOJI€, OMpEneNsieTcs U3

MarHMTOCTATHYECKUX ypaBHEHMI MaKcBeIa COriacHo BhpaxkeHuto (15).
diVHdemagnetiz ing (r,t)y=—4-7-divM (T, 1);

H demagnetizing (F —) — 0. -

Pazmmuneie MJICM oTnmuarotes BhiGopoM Mogenupyromeit dyukimn my (H, historyH) u

MaTeMAaTHYCCKUMH METOJaMHU MPUOJIIKEHHOTO penieHus ypapaenuit (14), (15).
Cnemyer OTMETHTb, YTO B TPAAWIMOHHBIX MOAEISIX (OPMHUPOBAHMS HAMATHUYEHHOCTH I
omMcaHusA TIporecca (OPMHUPOBAHUS pPACIPENCIICHUs] HAMAarHMYCHHOCTH HCIOJIB30BAINCh |
pa3M9IHbIE MOJENH 00pa30BaHUA JOMEHOB, TI€ OCHOBON PacCMOTPEHHS SBISICTCS MIHUMHU3AIIHS
TEPMOANHAMHUYECKOT0 TIOTEHIIHAIA.
Mesxay TeM H3BECTHO, YTO B OOJNBIIMHCTBE MAarHUTHBIX MaTePHAaJOB, B TOM YHCJIC H B BOJHOBOJIE,
coOCTBeHHasl OMEHHas CTPYKTypa MOXET HMMETh pa3Mepbl Iopas3io MEHbIINE, 4eM O0JacTH,
NepeMarHuunuBaeMble MOJ] ASHCTBHEM MarHuTHOro mois. Eciu 3To Tak, To 3TH 06JacTH MOXKHO
omucaTh TIpM I[OMOIIM [apaMeTpoOB, XapaKTepHBIX U1 MakpooOjacTedl, B YacTHOCTH,
KOIPLUUTHUBHON CHIIOH, KOA((GHUINEHTOM MPSIMOYTOJIbHOCTH TETIH TMCTEPE3HCca, KOTOPhIE MOTYT
OBITH JIETKO M3MEPEHbl U OTPaXaloT CTPYKTYPHOE COCTOSIHHE PpEaJbHOI0 MaTepHaia.
Vcnionp30BaHue 3TUX MapaMEeTPOB MO3BOJISET NIPUMEHUTH K PACCMOTPEHUIO SIBICHUN B BOJHOBOJIE
HEKOTOPBIC TIOAXO/IBI, PA3BUTHIC JJISI MOJICTHPOBAHUS MaTHUTHOW 3aIIICH MarHUTHOM TOJOBKOA.
3amaua pacueTa M3MEHEHMsS HAMAarHWMYEHHOCTH BOJHOBOJA IPU M3MEHEHHH MAarHUTHOIO TOJA
pemiaercs cienyonmm odpasom: (Puc. 3).

B == C R e L LT >

ﬂi&f.r \ Mot

R S B e B e B S B > -

0 i
Puc. 3. Mooenv ghopmuposanusn HamacHuuerHoCmu 8 801HO800e, 20e 1— 60110600, 2 — obracmu pazdouenus
601H06800a, 3 — pacnpedenenue NPOOOIbHOU COCABIAIOUEll Pe3VIbMUPYIOUe20 MACHUMHO20 NoJs, 4 —
UmMnyibC moka 6 BONIHOBOOE 6 3A6UCUMOCIU O epemeru
Fig. 3. Model of magnetization formation in a waveguide, where 1 is a waveguide, 2 is a waveguide partition
region, 3 is the distribution of the longitudinal component of the resulting magnetic field, 4 is a current pulse
in the waveguide depending on time

Jlnst ompeneneHrss HAMarHWIEHHOCTH M MarHWTHBIX TOJIEH TMpU NepeMarHMYMBaHWK BOJIHOBOJIA
paccMmarpuBaeMasi 00JIacTh BOJIHOBOJA Pa30MBaeTCs HA N DJIEMEHTOB JUIMHOM N, orpaHUdYeHHBIX
53

lvzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 35, 2023. pp. 47-62.

Y3JIOBBIMH TOYKaMH Zj. B KaX1plii MOMEHT BpeMEHH MOKHO 3a71aTh IoJie TeMieparyp Ti=T(Z;). [Ipu
pa3paboTKe MOJIENN TPUHUMAIOTCS CJIEIYIOLINE JIOMYIICHHS:

1 Cuautaercs, 9T0 B KaXXIOM JJIEMEHTE pa3OMEHHs HAMarHUYCHHOCTHb SIBIIACTCS IOCTOSHHOM
BEJIMYNHOM.

2 CoOOTBETCTBEHHO Ka)X[IbIi JIEMEHT pa30HeHNs OYAeT MPEeACTaBIATh MIIHHIPUIECCKYIO 00JIacTh
pamuycom dwe /2.

[IpakTHyeckn pacnpejeneHHe HAMAarHWYEHHOCTH YHCJICHHO BBIYHCIISETCS C MOMOLIBIO METOAA
ureparmi. OOoOIIeHHas TpoleAypa HWTEPaTHBHOTO pacyera npuBeaeHa Ha Puc. 4.
JleTanM3upoBaHHEIN alropuT™M pa3paboTaHHOrO YHMCICHHOI'O METO/Ia IpUBeeH Ha Puc. 5.

Jliist onMcaHus HAMAarHWYEHHOCTH B IPEIIIECTBYIONINH MOMEHT BPEMEHU MEXKAY y31aMu Zj U Zi+1
MIPUMEHSETCS JIMHEIHAST HHTEePIIOJISLIHS.

Cymmaproe maruuthoe none Hx(Zi,t) onpenensiercst B cootBeTcTBUM ¢ Bhipaxennem(16).
Hs (Zi, t) = HexternatZ Ai,j'Mj (t), (16)

rae Aij — »sneMeHT MaTtpunbl (opM-(pakToOpoB, TIOMYYaeMOH C YYeTOM HWHTCPHOISLIH
HAMarHMYeHHOCTH B JJIEMEHTAapHOM MarHWTe IyTeM HMHTETPaJbHOTO PEIICHHS
MarHUTOCTATHYECKUX ypaBHEHHH MakcBeiia B (JOpMe CKaIPHOTO MOTCHIHANA; | — TIOJ0XCHUE
Toukn HaOmoneHus (Puc. 3); | — MONOXKEHHE TPaHMIBI KOHEYHOTO JJIEMEHTa ¢ MAarHHTHBIM
MaTepHaIOM.

Jnst pacyetoB cymmapHoro MarHuTHoro mnoms Hs(Zit), ommceiBaemoro BbeipaxkeHueM (16),
BO3MOXXHO HCIIOJNB30BAaHME METOMOB WTEpalyy, HauOojee aJanTHPOBAHHBIM IIOX
paccMaTpuBacMyl0 MOJIENIb U3 KOTOPBIX SIBIISIETCSI METOJ| pelakcanuu. JJaHHBIH METOX peuIeHus
cUCTeM anreOpanvyecKux ypaBHEHHi o0anaet 00IbIIO CKOPOCTBIO CXOAUMOCTH Oaronapst ToMmy,
YTO B HEM II0CIIE BRIYUCIICHHS OYepeiHoit i—oit kommoHeHTs! (K+1)-ro npubmmkenus mo Gpopmyie
MeToza 3eiens MPOU3BOASIT JOMOIHUTEIBHOE CMEIICHHE 3TOI KOMIIOHEHTHI.

1 1
Hexternat =M = H gemagnetiz ing j

\J

1 2
(Hexternar + H demagnetizing i) - M;j

\

2 2
Bi" = Hgemagnetiz ing ;

\

2 3
(Hexternal + H demagnetiz ing) > M
\}

Puc. 4. Obobwennas npoyedypa umepamusHo2o paciema HAMASHUYEHHOCMU 8 80THO800€
Fig. 4. Generalized procedure for iterative calculation of magnetization in a waveguide

Br160p naHHOTO MeTO1a GBUT TAKXKE OCYIIECTBIICH U3-32 BO3MOYKHOCTH AOTIOJIHUTEILHOTO BBEICHUS
B pacyeThl PeNaKCaIii Mo WHIYKIIHH, YTO TOBBIIIAET YCTONYHBOCTD.

CornacHo 3TOMY METOJy 3HA4YCHHE HANpsHKEHHOCTH MarHuTHoro mnosisi H ompememutcs B
COOTBETCTBHH C BhIpakeHueM (17).

H(k):H(k'1)+x1(H(k‘1)+A(B(k‘1) _ H(k-l))), (17)

rge A1 — HEKOTOpPOEe YHCIO, Ha3blBaeMoe KOI(G(PUIMEHTOM YCKOPEHUS CXOOUMOCTH IIO
HaTpPSHKEHHOCTH MAarHUTHOTO TIOJS, ONpeNeNsioniee MeTol pemenns BeipakeHus (15). Tak, mpu
A1<l, dpopmyma (17) siBserca hopmyioit MeToa HIDKHEH penakcary, 41=1 — ¢popmymnoi 3eiinens,

54

He3anoB A.A., Bopouuos A.A., Crecapes 10.H. K Bonpocy ucnonb3oBaHus B 00pa3oBaTeIbHOM HpoIecce pa3paboTaHHOTO IPOrPaMMHOTO
obecriedeH s Tl UCCIICI0BAHHS aKyCTHYECKUX TPAKTOB MarHUTOCTPHKIIMOHHBIX Ipeobpa3oBatelieil nepemerenuii. Tpyowr AUCIT PAH,
2023, Tom 35 Bim. 3, c. 47-62.

11>1 — popmyroii BepxHeit penakcamum. B& — sHaueHne MArHUTHOM MHIYKIMH, BEIYHCICHHOM JUIA
(k-1)-ro mrara ureparmu.

Hauvano
Begin

Bbramncnenne matpuupl A

Calculation of matrix A (B’-B)<0.001B’

B3apaHue pacnpegenexus nons
MarHuta
Setting the magnetic field distribution

1
3apaHne Ha4yanbHOro BpemMeHu

HabnopeHns
Setting the initial observationtime
. Yes
C |
BbIGVCNEHWE NONst OT UMMyJIbCa TOKa B

BeiBog pesynbTaThbl

MOMEHT BpeMeHu HabnogeHus tk Output of result

Calculation of field from current pulse at

B the time of observation tk I
ONPEAGIIGHNE THEAPMSOBaRHON
BeNUYMHbl Hi’ no 3HaveHuio Bi END

Determination of linearized value Hi’ by
previously known value Bi
1

YBenuyeHve BpeMeHu HabnogeHns
k=k+1
Increment of observation time k=k+1

OnpegeneHne 3Ha4yeHna B no netne
rmcrepesnca
Determination of a new value B’ by
hysteresis loop

Puc. 5. Ancopumm pabomul pazpabomanH020 4UCIEHHO20 MeMOOa
Fig. 5. Algorithm of the developed numerical method

Kak yxe oTMeuanoch, ISl TIOBBINIEHHs YCTOWYMBOCTH, B M3BECTHBIM MeTon pacueta MSDM
JIOTIOJTHATENBHO BBOJMTCS pellaKCalis 10 WHIYKIMH, 3HAYEHHEe KOTOPO# Ha K-oM Iare ureparun
MOYHO OY/IET ONPEIEUTh COTIIACHO BhipaskeHuo (18).

B® = @-11)-B& D+ 2. B(H®Y), (18)
Where ﬁ(k) — 3HAYCHHUC HAIPSAKCHHOCTU MArHUTHOI'O TIIOJIA Ha k-OM mare wuTepaluu,
ompenensieMoe coriacHo Beipaxkenuto (17), A1° — Ko3(QOHIUEHT YCKOPEHHS CXOIUMOCTH TI0

MarHUTHOH MHIYKIIUH.
BBeneHne — JOMONHUTENLHOW — pellakcalMd 10 WHAYKIMH [OBBIMIACT YCTOWYMBOCTH
paccMaTpUBAaEMOro METOAa M SIBISICTCS OTJIMYHMEM MPEIIOKCHHOTO YHCICHHOTO METO[a OT
CYIIECTBYIOIINX.
Bun marpumbl popM-(hakTOpOB 3aBHCAT OT OPHEHTAI[MM HAMArHHYEHHOCTH OTHOCHTEJIBHO
MMOBEPXHOCTH BOJHOBO/IA, CITOCO0a MHTEPIONISAINN HAMATHUYCHHOCTH MEXKAY Y3JaMH 3JIEMEHTOB
pa3OueHuUs.
DneMeHThl MaTpHIbl GopM-PaKTOPOB OMPEACTAIOTCS BKIAJOM MAarHUTHOTO IOJISI OT OoOJyacTeit
BOJIHOBOJIA, JIXKAIIUX BHE €0 YY4aCTKOB, OTPAHUYCHHBIX TOYKaMU pa3OueHust Zi u Zn+1, a TaKKe
aeMeHTaMu pa3ouenus hj.

55

lvzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 35, 2023. pp. 47-62.

st onpenesieHusi BEIMYMHBI Pa3MarHMYMBAIOIIETO IMOJISl MCIOJIB3YETCs CIIEAYIOIee H3BECTHOE
BbIpaXkeHue [6].

3 3

H demagnetizing () = [(=VM) (r-p)/[r=p| [dV + M -nl (r=p)|r-p| (ds (19)

rae I — paguyc—BeKTOp TOYKH HAOMIOACHHS; O — PaIUyCc—BEKTOp, IPOBEACHHBIN K MarHUTHOMY
MaTepuany; N — eAWHWUYHAs HOpMalb K OOKOBOI TOBEpXHOCTH 3JeMeHTa paszomenus; V,S —
COOTBETCTBEHHO O0BEM M IIOBEPXHOCTH MarHetuka; VM — omepaTop AWBEpreHIHA
HaMarHW4eHHOCTH.

NurerpupoBanue (19) mo3Bomsier ompeneiuTh MOJE OT IEPBOrO 3JEMEHTa pa30OWCHUsS B
COOTBETCTBUH ¢ BeIpaskeHHeM (20).

My -(z—h)-E(ky)p-dp y

dwe/2| [(r=p)2+(z-h)] dual2 N -
Hl(r,2)=%- (I)) 1 _%. (f) M;-z-E(kp)p-dp —(20)
= [(r - p)2 +221-[(r + p)? + 2212

[(r+p)% +(z-h)?]2

T
2

rre E(ky)=[{(@- k22 (sin (p)z)dq) — TIONHBIA JIUIMOTHYECKHH WMHTErpall BTOPOTO poja,
0

k? = (4.r-,o)/[(r+p)2 +(z—h)2];. k3 = (4.|r-,o)/[(r+p)2 +(z)2J; r — pamiyc TOUKH
HaO0JIIO/IEHUs, OTCUMTHIBAEMBIN OT BEIOPAaHHOTO Havajia KOOPAUHAT, Z — KOOPAUHATA, apaljiesibHas
HapaBJICHUO HAMAaronieHHOCTHU BOJITHOBOA.

AHANOTUYHO HWHTETPHpPOBaHUE BBIpakeHUS (20) MO3BOISET TAaKXKE OMPEACIHTH COOTBETCTBCHHO
I10JIE€ OT BTOPOTO, TPETHETO U T.II. JIEMEHTOB.

[My-(z-2:-h)-E(k)p-dp Myp-(z-h)
1 dwei2| [=p)?+(z=2-h)] L dwei2| [0=p)? +(z=n)]
Ha(r2)=—- (J) 1 : - (I) . E(kg)p-dp :
[(r+p)? +(z-2-h]2 [(r+p)? +(z-h)’12
[M3-(z-3-h)-E()p-dp Mg (e-hP
1 dugiz (TP +(E-30)] 1 dwel2| [(r=p)% +(z-2-h)]
1 1
I [(r+p)2+(z—3-h)212 | [r+p)2+(z-2-h?]2 |
n-(z=n-h)-Ek)p-dp Mp-(z-(0-1)-h)
1 dwal2 [(r—p) +(z-n-h)*] 1 dwel2| [(r=p)? +(z2=(n-1)-h)]
Hn(r,z)=;. (j)) 1 : - (J) § E(ky)p-dp :
i [(r+ p)? +(z—n-h)?]2 [(r+,o)2+(z—(n—l)-h)2]E

rae kP :(4-r-p)/[(r+p)2 +(z—n-h)2J u k2 :(4-r-p)/[(r+p)2 +(z—(n—1)~h)2J.

56

He3anoB A.A., Bopouuos A.A., Crecapes 10.H. K Bonpocy ucnonb3oBaHus B 00pa3oBaTeIbHOM HpoIecce pa3paboTaHHOTO IPOrPaMMHOTO
obecriedeH s Tl UCCIICI0BAHHS aKyCTHYECKUX TPAKTOB MarHUTOCTPHKIIMOHHBIX Ipeobpa3oBatelieil nepemerenuii. Tpyowr AUCIT PAH,
2023, Tom 35 Bim. 3, c. 47-62.

Ipu r=dwc/2 u z=zi=h-i MoxHO ompemenuTh KOIPPUIMEHTH MATPHUIBI HopM-pakTopoB Ajj 1O
¢dopmyne (21).

1 fwe2 (i-h—j-hEky)p-dp
Ai,j :;. (J; 1 _
(WS =)2 +fi-h- IS+ p)2 (0 012
21)

1 usl? (i-h-(i-1)-hE(kp)p-dp

7 1

TS 2 - (-0 NP) 0 (1) 2

e k2 = (2-dws - p)/|(dwe 12+ p)2 +(i-h—j)] "

3 = (2 dwe - o)/|dwe 1 2+ o) +(i-n—(j -1)-h)? |

OmnucaHHas METOJMKA IO3BOJSET C YYETOM BIUSHHS Pa3sMarHUYMBAIONIMX IOJEH OMNpeNeIuTh
HaMarHUYCHHOCTH BOJTHOBO/IA KAK Ha JIOKAJHHOM yJacTKe, TaK U BJOJIb BCEH JUTMHBI BOJIHOBO/A.
Pa3paboTaHHBII YUCIEHHBIN METO/ IO3BOJIAET PACCUMTATh 3HAUEHNE HAMATHUUSHHOCTH MaTepuaa
BOJIHOBO/IA, 3HAYEHHE KOTOPOro MNpHU IMOACTaHOBKE B BhIpaxeHus (3) u (4) mo3BosiseT Haitu
3Ha4YeHHs MPOEKIMU Ha och 0Z MarHUTHOTO MOTOKa M BBIXOJHOTO CHTHANa, COPMUPOBAHHOTO
coneounoM. IlpencraBieHHbIe B JaHHOM pasfiele MaTeMaTH4eCKHe MOAENU U pa3paboTaHHBIH
YHCIEHHBIM METOX OBbUIM pealn30BaHbl B HCIOIB3YEMOM B 00pa30BAaTENFHOM IpoOIEcce
MPOTPaMMHOM 00€CII€YeHHH, O KOTOpoM Oojee MOApoOHO OyneT M3JI0KEHO B pasfele,
MOCBAIICHHOM BBIUHCINUTEIBHBIM 3KCIIEPUMEHTaM.

3 BbluucnurenbHbIN 3KCNEPUMEHT

HCHOJ’ILSyH YTOUYHCHHBIC U pa3pa6OTaHHLIG MOACIN U YHCIICHHBIN MCTOJ, MNPCACTABJIICHHBIC B
TeOpeTH‘IeCKOﬁ 4qacTu, OBLIO pa3pa60TaH0 nporpaMMHOC 06GCH6‘I€HI/I€, HCIIOJIB3yEMOC B
06paSOBaT6J’ILHOM nponecce, Mo3BOJEIIIICEe NMPOU3BECTU UCCICAOBAHNA B AKYCTUYCCKUX TpaKTax
MAarouTOCTPUKITMOHHBIX npeo6pa3OBaTenei/'I HCpCMeH.[eHPIﬁ.

% Softwers for the study of acoustic paths of ictive di =3 =R

S
@ Calculation of the acoustic

path of a magnetostrictive

displacement transducer

Input data
About the authors
Exit

Puc. 6. Ocnosnas ¢hopma paspabomanno2o npocpammHozo obecneueHus,
Fig. 6. The main form of the developed software

57

lvzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 35, 2023. pp. 47-62.

OHO COCTOHT U3 5 MOJYJICH, B TOM YHCJIE€ OCHOBHOTO, COIEPIKAILIEr0 MEHIO U MPECTABICHHOTO Ha
Puc. 6. Ipu Haxxatnu Ha KHOTIKY “About the authors” mosiisiercst okHo, mokasanHoe Ha Puc. 7.

% About the authors

Slesarev Yuriy Vorontsov Aleksandr
Nikolaevich Anatolievich

Puc. 7. Dopma, cooepacawasn unghopmayuio 06 aemopax

Fig. 7. A form containing information about the authors
®dopma “Input data” (Puc. 8) mosiBIsieTcsl NpU HAKATUH B OCHOBHOW (DOpME COOTBETCTBYIOIICH
KHOITKU ¥ ITO3BOJISICT COXPAHNUTh B TEKCTOBBIH (pailyl, M3BJICUb U3 HEr0 M paboTaTh ¢ nHpOpManuen
O OCHOBHBIX IIapaMeTpax M CBOICTBaX »3JEMEHTOB KOHCTPYKIHMH aKyCTHYECKOTO TpaKTa
MarHUTOCTPUKIIMOHHOTO Ipeo0Opa3oBarelnsl JUHEHHBIX nepeMerieHuid. B atoil dopme mmeercs
BO3MOXKHOCTb BBIOpATh (POPMY, MapKy U CBOWMCTBA IIOCTOSIHHOT'O MarHuTa ¥ BBECTH €ro IapaMeTphl,
BBECTH 3HaU€HHE AuaMeTpa M CBOWCTB MaTepHaa BOJIHOBOJA, aMIIIUTYXy TOKOBBIX UMITYJIECOB U
UX LMKIMYECKYI0 4acTOTy KoJjieOaHMH, HapaMeTpbl U pa3Mephl COJICHOUAA, KOJIMUECTBO BUTKOB U
Ko3(h(UIMEHT 3amojHeHHs ero oOMoTku. [locnme 3amomHEeHWs 5TOH (OPMBI IMOSBISETCS
BO3MOXKHOCTB pacyera BBIXOJHBIX JAaHHBIX JHOO ¢ Mcnosb3oBanueM kHomku “Calculate” mmbo
Ha)KaTHeM BEpXHEH KHONKH OCHOBHOH (opmbl. DdopMa pacuera BBIXOJHBIX AAHHBIX, dKpaHHAsS
¢dopma KoTOpoOi mpezcraBieHa Ha Puc. 9 TMO3BOJSET IMOIYYNUTh BBIYMCICHHBIE IMPOTPAMMHBIM
obecrieueHHeM JaHHbIE O CBOWCTBAaX IOCTOSIHHOIO MarHWTa M BOJHOBOZA, @ TaKKe CPaBHHUTh
MOJy4EHHOE 3HAUE€HUE PE3YNbTUPYIOIIEH HANPSKEHHOCTH MATHUTHOTO TIOJIS C €6 MUHUMAIIbHBIM U
MaKCHMaJIbHBIM BO3MOXXHBIMH 3Hau€HHUSIMH (IIPOBEPUTb, HAXOJMTCS JIM ATO 3HA4YeHHE B padoueii
o0yacTw).

& It e |

Inpu data

ShagoPM A - Extenal damets PM [Ds).mm 110

Irevee ckameder M (dw), mm 31 1)
WihBrand 4aNHTU . The amptude of he reecedng 00

Heghl PM (het). mm 5 curterl puise fm, mA

PMBrand BBI230 * Deametar WG (WG, mm 1

Humber of s & e scenod, N 25 Filing facior of ha solsncid winding P 02s

Intormiad Fadius of the sokanaid Fis 1, mm o 2 Residual ngrelzation of a peimanont 5000
magnat Mr, |Afm|

Extema radius of the Fs2 soenod, mm 05 Feelativa magnabe posmeabiity af tha 1000
waveguids malesal

Tha radius of the solnold wia Hs, mm o 1 Speciic conducily of the WG matena, [Sm], 10000000

Langlh of e soknod L, mm 5 Cyuhc fragquoncy of e curent 1, MH2 1

Savo Dals. Calcuiate: Cloge

Puc. 8. Dopma peoaxmuposanus 6x00HbIX OAHHBIX
Fig. 8. Input Data Editing Form

58

HB3anoB A.A., Boponuos A.A., Cnecapes 10.H. K Bonmpocy ucronb3oBanus B 06pa30BaTeIbBHOM MPOLIECCE Pa3pabOTaHHOTO IPOTPAMMHOTO

obecriedeH s Tl UCCIICI0BAHHS aKyCTHYECKUX TPAKTOB MarHUTOCTPHKIIMOHHBIX Ipeobpa3oBatelieil nepemerenuii. Tpyowr AUCIT PAH,
2023, Tom 35 Bim. 3, c. 47-62.

Taroke mporpaMMHOE oOecredeHre MOXKET IONydUTh Ipadudeckoe MPeNCTaBICHHE BBIXOIHOTO
HATPSDKEHNUSI, CHOPMHUPOBAHHOTO COJICHOWIOM WJIM TIepefiaTh MmosydeHHsle 3HaueHns B MathCad
JUTS IOCTPOCHUS TaHHBIX B ATOH CHCTEME.

& Calculstion results Tl

Calculation results

Coercive silamatarial WG Ns.
Am 40 (T Y DA 00435084 7406 Weight PM. 0 357 qasaa14507

Saturation intensity of tha material -
WG Ns, Afm 404, 008701694811 Hk Aim 15 975454091895 Volume PM, mm3 15707 96326704

Meeting the requirements: "+" - yes ™" - no

H==Hzrmin + He<=Hzrmax +

Simulation of the output signal Integrate data into sancd fis | Close

Puc. 9. @opma pacuema 6b1x00HBIX OAHHBIX
Fig. 9. Output data calculation form

‘@ Simulztion of the output signal

ufz0), my

200

/N

M ,

~ N

~
fa
P

i

Puc. 10. @opma epagpuueckoeo nocmpoenust 8bIX00HO20 CUSHANA
Fig. 10.The form of graphical construction of the output signal

Pe3ynbpTaThl OIHOTO U3 BBIUUCIUTEIbHBIX 3KCIIEPUMEHTOB 110 UCCIIEJOBAHUIO BBIXOIHOTO CUTHAJIA,
c(OPMHUPOBAHHOTO COJEHOWIOM OT BPEMEHHM C HCIIOJIb30BaHUEM Pa3padOTaHHOTO MPOTrPaMMHOTO
obecnieuennst npuseneH Ha Puc. 10. s mpoBepKy a/leKBaTHOCTH €r0 0TOOpakKeHHsT BO3MOXKHO
IIPOBEJICHUE IKCIIEPUMEHTAIILHOM IPOBEPKH, OCYIIECTBIISIEMOM B 9KCIIEPUMEHTAILHON YacTH.

59

lvzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 35, 2023. pp. 47-62.

4 3KcnepumeHTaanaﬂ 4YacTb

Jnst TpoBepKH ageKBaTHOCTH BBIYHCIHMTENBHBIX OKCIICPUMEHTOB ObUla IPOBEleHa
9KCIIEPUMEHTAIbHAS TIPOBEPKA, C MCIIOIb30BaHMeM Jaboparopuoro creuaa (Puc. 11), cobpaHHOTO
aBTOpaMH CTaThH, COIEPIXKALIEro TeHepaTop HMIIYJIbCa TPEYrodbHOH (OPMEI, COJCHOUA
BOCIIPOM3BEACHHUS, NPEOOPasyOMIHil MepeMeIlaoyocsi KPYyTHIBHYIO BOJHY B DJIEKTPUYCCKUH
CHT'HAJI, YCWINTENb CHTHANA BochpousBeneHus. OcmwuiorpaMMa CHIHaJAa BO30OYXKIEHHS H
W3MEPUTENBFHOIO CHTHalla pUBeaeHa Ha Puc. 12. Pe3ynpTaThl SKCIIEPHUMEHTAIBHOM POBEPKH IS
3HAYEHMH, UCTIOJIH30BAHHBIX B BEIYHCINTEIBHBIX IKCIIEPUMEHTAX [T0Ka3aJM COBIIaZEHUE HE TOJIBKO
(OpPMBI BBIXOJJHOT'O CUTHAJIA, HO ¥ €T0 JUTUTEILHOCTU. AMIUIUTYIHOE 3HAUCHHE BBIXOIHOTO CHI'HAJIa
orinyanock He Oonee 10%, 4TO OOYCIIOBIEHO MOTPEHIHOCTSIMH B CBOMCTBAaX W IapaMeTpax
KOJIBIIEBOTO TIOCTOSIHHOT'O MarHuTa, BOJJTHOBO/IA M COJICHOM/IA, @ TAK)KE HECOBEPILIEHCTBOM HAMOTKH
1 KOMMYTAaIMH COJICHOU 1A,

Puc. 11. Dxcnepumenmanvhas ycmanoska
Fig. 11. Experimental installation.=

a) 0)

Puc. 12. Dxcnepumenmanvuas npogepka no onpeoeneHuio 8bIX00H020 CULHANA

a) Tonyuennviii 6bIxOOHOU cucHal u 6) e20 MAcWmadUpPOBAHHAS HACMb, COOEPIUCAUYAS BLIXOOHOU CUSHAI,
C‘qupMLlpO@aHHbllZ MOKOBbIM UMNYIbCOM 3anUcu
Fig. 12. Experimental verification to determine the output signal. a) The received output signal and b) its
scaled part containing the output signal generated by the recording current pulse

60

He3anoB A.A., Bopouuos A.A., Crecapes 10.H. K Bonpocy ucnonb3oBaHus B 00pa3oBaTeIbHOM HpoIecce pa3paboTaHHOTO IPOrPaMMHOTO
obecriedeH s Tl UCCIICI0BAHHS aKyCTHYECKUX TPAKTOB MarHUTOCTPHKIIMOHHBIX Ipeobpa3oBatelieil nepemerenuii. Tpyowr AUCIT PAH,
2023, Tom 35 Bim. 3, c. 47-62.

5 3akntoyeHune

Takxum 00pa3om, B paboTe OBUTH YTOUHEHBI U pa3paboTaHbl MATEMaTHICCKIE MOZIEIH 1 YHCIICHHBIH
METOJ, O3BOJIIOIIIA TPOBOJUTH UCCISIOBAHMUS B aKyCTHYECKUX TPaKTaX MarHUTOCTPHUKIMOHHBIX
npeoOpazoBaresix nepemenieHnii. McrnonpzoBanue pa3paboTaHHOTO HPOrPaAMMHOTO 00ECIICUSHUS
B 00pa3oBaTeIbHOM IpOLEecce IO3BOJIHUT HE TOJBKO M3ydaTh OCHOBHBIE SBJICHHS M IPOLECCHI,
HPOUCXOIAIINE B aKyCTHICCKHX TPAKTaX MarHUTOCTPHKIMOHHBIX IPUOOPOB, HO M POEKTUPOBATH
HOBbIC KOHCTPYKIUH U ITOJOUpaTh HEOOXOIMMBIE ra0apyuThl H CBOMCTBA 3JIEMEHTOB KOHCTPYKIINH,
YTO MpPEACTAaBISIET TEPCHEeKTHBBI Il pa3pabOTKM HOBBIX KJIACCOB W KOHCTPYKIMH
MarHUTOCTPUKIIMOHHBIX NPUOOPOB. Pe3ynbTaThl BHIYNCIUTENBHBIX IKCIIEPUMEHTOB, MOJIYYEHHBIX
pa3paboTaHHBIM HPOrPAaMMHBIM OOECIIEUCHHEM COBNAIN C DKCIICPUMEHTAJIbHOW MPOBEPKOH C
UCIIOJIb30BAaHUEM HKCIIEPUMEHTAILHOM YCTaHOBKM, 4YTO MOJTBEPXKJAeT aJeKBAaTHOCTh
IpeCTaBICHHBIX MOJAENCH 1 pa3pabOTaHHOTO YHUCICHHOTO METOa.

Cnucok nutepatypbl / References

[1]. Xornenn A. Hudposas marnutHas 3anuck. M.: Coserckoe paauo, 1967. 280 c. / Hoagland A. Digital
Magnetic Recording. M.: Soviet radio, 1967. 280 P.

[2]. Not Just Another Self- Consistent Magnetic Recording Model/ G.G. Hughes, D.S. Bloomberg, V. Castelli,
R. Hoffman// IEEE Trans. Magn.- 1981.- MAG-17, Ne 2.- P. 1192-1199.

[3]. Computer simulation of high- density multiple transition in magnetic disk recording/ K. Nichimoto, Y.
Nagao, Y. Suganuma, H. Tonaka// IEEE Trans. Magn.- 1974.- MAG.10.- Ne3.- P. 769-775.

[4]. George D.J., King S. F., Carr A.R. A self-Consistent Calculation of the Magnetic Transition Recording on
a Thin Film Disc.- IEEE Transaction on Magnetics, June, 1971, p.240-243.

[5]. NBacaku C. Munamuueckas Mozelb npouecca MaruutHoi 3anucu/ C. WBacaku, T. Cyn3yku // TIpoGiembt
MaruuTHOH 3anucy: Ilep. ¢ anri. /TTox pea. B.I'. Koponbkos.- M.: DHeprus, 1975.- C. 25-34. / lwasaki S.
Dynamic model of the magnetic recording process/ S. lwasaki, T. Suzuki // Problems of magnetic
recording: Translated from English /Edited by V.G. Korolkov.- M.: Energiya, 1975.- pp. 25-34.

[6]. Muxaiinos B.W. 3anoMuHaOIIKE YCTPOMCTBA HA ONTHYECKHX auckax / B.W. Muxaiinos, I.1. Kusses,
TLII. Makapeiues. -Mocksa: Paguo u cBsse, 1991.-224 ¢. / Mikhailov V.I. Storage devices on optical
disks/V.1. Mikhailov, G.1. Knyazev, P.P. Makarychev. -Moscow: Radio and Communications, 1991.-224
P.

[7]. Pacuer snmekTpuyeckux Lereil W SIEKTPOMArHUTHBIX Toned Ha DBM/ Anexcannposa M.I'., BensHun
A.H., Bpyknep u ap.: [Tox pex. JI. B. lanunos u E. C. ®ununmos. — Mocksa: Pagno u cBsizp, 1983. — 344
c. / Calculation of electrical circuits and electromagnetic fields on a computer/ M. G. Alexandrova, A. N.
Belyanin, Bruckner et al.: Ed. L. V. Danilov and E. S. Filippov. — Moscow: Radio and communication,
1983. - 344 p.

[8]. Cnecapes FO. H. VccnenoBanue akcHaabHON COCTABJISAIONIEH MATHUTHOTO TOJIS KOJBIEBOTO Maruura /
10. H. Crnecapes, A.A. Boponnos//XX1 Bek: Utorn nmpouutoro u npo6iemsl Hactosmiero. 2018 Ne4(44)
Tom 7, c. 92-96. / Slesarev Yu. N. Investigation of the axial component of the magnetic field of the ring
magnet / Yu. N. Slesarev, AA Vorontsov //XX1 century: the results of the past and the problems of the
present 2018 Ned(44) Vol. 7, p. 92-96. /

[9]. Jen S. Magnetic and magneto-mechanical vibration properties of non-oriented electrical steel. / S. Jen, Y.
Lin, C. Hsu, K. Lin // 2015 IEEE International Magnetics Conference (INTERMAG). — 2015. PP. 1 — 1.

[10]. N. Mohan, M. Sachdev, "A Static Power Reduction Technique for Ternary Content Addressable
Memories," Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), 2004.

[11]. Martyshkin A 1. Basic operation principles of associate coprocessor module for specialized computer
systems based on programmable logical integral schemes. Journal of Fundamental and Applied Sciences,
2018, no. 10(6S), pp. 1449-1463.

[12]. Mathematical Modeling of Magnetic Fields of the Permanent Magnets and Solenoids, and Comparing the
Results Obtained. Slesarev U.N., Mikhajlov P.G. and Vorontsov A.A. International Journal of Applied
Engineering Research (IJAER) Volume 11, Number 20 (2016) pp. 10338-10342.

[13]. Vorontsov A.A., Slesarev Yu.N. Mathematical Modeling and Experimental Check of Output Signals of
Magnetostrictive Converters of Movement. 2019 International Russian Automation Conference
(RusAutoCon). — 2019. DOI 10.1109/RUSAUTOCON.2019.8867715.

61

lvzanov A.A., Vorontsov A.A., Slesarev Yu.N. On the issue of using the developed software for the study of acoustic paths of
magnetostrictive displacement transducers in the educational process. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 35, 2023. pp. 47-62.

[14]. Kymunr X., CripaBounuk no ¢usuke: Ilep. ¢ vem./ ITox pen. E. M. Jleiikuna. — M.: Mup, 1983. — 520 c./
Kuhling H., Handbook of physics: TRANS. with it./ Under the editorship of E. M. Leykin. — M.: Mir,
1983. - 520 P.

[15]. BecconoB JI. A. TeopeTH4eckie OCHOBBI HJICKTPOTEXHUKH. DICKTPOMArHUTHOE moje. YueOHUK. — 9-¢
u3., nepepab. u pom.. — M: Tapmapuxu, 2001. — 528 c. / Bessonov L. A. Theoretical bases of electrical
engineering. Electromagnetic field: Textbook. — 9th ed., — M: Gardariki, 2001. — 528 P.

[16]. Jia Yu. Fatigue Characteristics of Magnetostrictive Thin-Film Coated Surface Acoustic Wave Devices for
Sensing Magnetic Field. / Y.Jia, W.Wang, Yu.Sun, M.Liu, X.Xue, Yu.Liang, Z.Du, J.Luo. // IEEE Access.
- 2020. - Vol. 8. - P. 38347 - 38354. DOI 10.1109/ACCESS.2020.2976052.

[17]. Li Yu. High-Frequency Output Characteristics of Giant Magnetostrictive Transducer. / Yu.Li, W.Huang,
B.Wang, L.Weng // IEEE Transactions on Magnetics. — 2019. - Vol. 55 (Issue 6). DOI
10.1109/TMAG.2019.2910854.

[18]. Kymansu C. 1. TeopeTnueckie OCHOBBI AIEKTPOTEXHUKH. YacTh 3. DJIeKTpoMarHuTHoe mose. M3nanue
3-e, ucmpapieHHoe U JonoiHeHHoe. — M.: DHeprus, 1970. — 248 c./ Kupalyan S. D. Theoretical bases of
electrical engineering. Part 3. Electromagnetic field. 3rd edition, revised and expanded. — M.: Energy,
1970. — 248 P.

[19]. Cozzolino J. Magnet engineering and test results of the high field magnet R&D program at BNL. / J.
Cozzolino, M. Anerella, J. Escallier, G. Ganetis, A. Ghosh, R. Gupta, M. Harrison, A. Jain, A. Marone, J.
Muratore, B. Parker, W. Sampson, R. Soika, P. Wanderer // IEEE Transactions on Applied
Superconductivity. — 2003. - Vol.13, Issue 2, PP. 1347 — 1350.

[20]. Pradhan S. First Engineering Validation Results of SST-1 TF Magnets System. /S. Pradhan, K. Doshi, A.
Sharma, U. Prasad, Y. Khristi, V. Tanna, Z. Khan, A. Varadharajalu, D. Sharma, M. Vora, A. Singh, B.
Parghi, M. Banaudha, J. Dhongde, P. Varmora, D. Patel // IEEE Transactions on Applied
Superconductivity. — 2014. - Vol. 24, Issue 3, Art. Seq. Num. 4301904.

Ungpopmayusi 06 aemopax/ Information about authors

Aptem Anekceesuu UB3AHOB — cryaenr 4 kypca no cneuuansHoctu 09.03.04 «IIporpammHas
nmkeHepus». Cdepa HAyUIHBIX HMHTEPECOB: MAarHUTOCTPHKIIMOHHBIE TPUOOPHI, HEHpOCeTH,
I/ICKyCCTBeHHLIﬁ HUHTCIIJIICKT.

Artem Alekseevich IVZANOV - 4th—year student with a degree in Software Engineering on
09.03.04. Research interests: magnetostrictive devices, neural networks, artificial intelligence.

Anexcarnp AnaronmseBud BOPOHIIOB — xanmuaaT TeXHHYECKUX HAayK, TOLEHT, AOICHT Kadeapsl
“IIporpammupoBanmne” ¢ 2012 roma. Cdepa HayIHBIX HMHTEPECOB: MarHUTOCTPHUKIIMOHHEIC
npudopsl, nudposas oOpadOTKa CHTHAJIOB, MPOLIECCHl W SIBICHWS B MarHUTOCTPHUKIMOHHBIX
mpudopax.

Aleksander Anatolievich VORONTSOV - Candidate of Technical Sciences, Associate Professor,
Associate Professor of the Department of Programming since 2012. Research interests:
magnetostrictive devices, digital signal processing, processes and phenomena in magnetostrictive
devices.

Opuit Hukonaesuy CJIECAPEB — nokTrop TeXHHMYECKMX HayK, IOLEHT, npodeccop Kaderpsl
«ABromMarm3anms W ynpasineHue» ¢ 2012 roma. Cdepa HaydHBIX ~ MHTEPECOB:
MarHUTOCTPUKIIMOHHBIE TPHOOPEI, IudpoBas 00pabOTKa CHUIHANOB, MPOLECCH W SIBICHUS B
MarHUTOCTPUKIIMOHHBIX IpHOOpax, u(poBas MarHUTHas 3alMCh, PHEPreTHKA, ajJbTepPHATHBHAS
JHEpreTHKa.

Yuriy Nikolaevich SLESAREV — Doctor of Technical Sciences, Associate Professor, Professor of
the Department of Automation and Control since 2012. Research interests: magnetostrictive devices,
digital signal processing, processes and phenomena in magnetostrictive devices, digital magnetic
recording, energy, alternative energy.

62

Tpyowr UCIT PAH, mom 35, évin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-4 M

Development and Implementation of the Digital
Steganography Method Based on the Embedding of
Pseudoinformation

1.G. Gvozdeva ORCID: 0009-0009-1058-2618 <gvozdeva-irina@bk.ru>
A.S. Gromov ORCID: 0009-0000-7130-6785 <gromov.bo@yandex.ru>
0O.M. Gvozdeva ORCID: 0009-0000-1947-9638 <olgagvozdevaaa@yandex.ru>

Penza State University of Architecture and Construction,
28, Herman Titov st., Penza, 440028, Russia.

Abstract. The article provides an overview of the main methods of steganography, on the basis of which a new
method was developed, consisting in embedding additional text (pseudo-information) in parallel with the
transmitted message. An algorithm of this method has been developed. In this case, the frequency of the bit
sequence was obtained in accordance with the generated pseudo-random numbers. In accordance with the
algorithm, an application has been developed that allows the sender to encrypt and place the message in a
container that is an image, and the recipient to determine the presence of the message and, if there is one, extract
it. A computational experiment was also conducted, which showed that an image with a fairly large embedded
text does not visually differ from the original image.

Keywords: steganography; cryptography; stegosystem; steganalysis.

For citation: Gvozdeva 1.G., Gromov A.S., Gvozdeva O.M. Development and implementation of the digital
steganography method based on the embedding of pseudoinformation. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 63-70. DOI: 10.15514/ISPRAS-2023-35(3)-4

Pa3paboTtka u peanmsauua metoaa umdpoBomn cteraHorpacpum Ha
OCHOBe BCTpaMBaHUA NceBAOUHGOopMaLMm

U.T". I'so30esa, ORCID: 0009-0009-1058-2618 <gvozdeva-irina@bk.ru>
A.C. I'pomos, ORCID: 0009-0000-7130-6785 <gromov.bo@yandex.ru>
O.M. I'so30esa, ORCID: 0009-0000-1947-9638 <olgagvozdevaaa@yandex.ru>

Tenzenckuti 20cy0apcmeennbill yHUGePCUMem apXumeKkmypsl U CMpoUmensCcmed,
440028, Poccus, 2. Ilensa, yn. 'epmana. Tumosa, 0. 28.

AnHoTanusi. B craThe mpuBeneH 0030p OCHOBHBIX METOAOB CTeraHorpaduu, Ha OCHOBAaHHH KOTOPOTO ObLT
pa3paboTaH HOBBIN METO/I, 3aKITIOYAIONIUICS B BCTPAMBAaHUH AOTOJHUTEIFHOTO TEKCTA (TICeBAOMH(BOPMALIIH)
MapamiensHo ¢ TepeaBaeMbIM coobuieHneM. Paspaboran anmroputm storo meroxa. Ilpu stoMm uactoTy
MOCIIEJOBATEIFHOCTH OMTOB TIOJTy9ald B COOTBETCTBHHU C CT€HEPHPOBAHHBIMH IICEBIOCITYIaHHBIMH THCIIAMH.
B coorBercTBUE ¢ anropuTMOM pa3pabOTaHO HPHIIOKEHHE, MO3BOJSIIONICE OTIPABUTENIO 3amM(poBaTh U
MOMECTHTH COOOIIeHHe B KOHTEIfHEep, MpeacTaBILIomuil coboi m300pakeHne, a MOTyJaTeqio ONpPeeIUTh
HaJIW49ue COOOIIEHWs H, €CIM OHO HMeeTcs, W3BIedb ero. Taike OBUI IPOBEAEH BBIYMCIHTEIBHBII
JKCIIEPUMEHT, KOTOPbIN MOKa3aJ, YTO U300paKeHHe C JTOBOJIHHO OONBIINM BCTPOSHHBIM TEKCTOM BH3YyalbHO
HE OTJIMYAeTCs OT UCXOAHOTO H300paskeHUS.

KiroueBbie cjioBa: CTeraHorpa(bm; KpI/IHTOFpa(I)I/IH; CTErOCUCTEMBbI, CTCrOaHaJIn3.

63

mailto:gromov.bo@yandex.ru
mailto:olgagvozdevaaa@yandex.ru
mailto:gromov.bo@yandex.ru
mailto:olgagvozdevaaa@yandex.ru

Gvozdeva I.G., Gromov A.S., Gvozdeva O.M. Development and implementation of the digital steganography method based on the
embedding of pseudoinformation . Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 63-70.

Jasa untupoBanus: ['BozgeBa U.I'., I'pomoB A.C., 'BozneBa O.M. Pa3paboTka W peanm3zanusi MeTOJa
udpoBoii creraHorpaduy Ha ocHOBe BerTpauBaHus nceBronHdopmarmu. Tpynst CIT PAH, Tom 35, Beim. 3,
2023 r., ctp. 6370 (Ha anrnumiickom sizsike). DOI: 10.15514/ISPRAS-2023-35(3)-4

1. Introduction

The problem of delivering a confidential message has stood at all times. This problem has given rise
to such sciences as cryptography and steganography.

The essence of steganography is that the message is placed in a container in such a way that an
uninitiated circle of people sees only the object, not realizing that it may be filled with something.
Here are some well-known examples: in ancient Greece, wooden writing boards covered with wax,
under which there was a message, the heads of slaves with the message printed hidden under the
hair, later, the so-called sympathetic ink, invisible under normal conditions, was widely used [1].
In the modern world, with the development of computer technology, digital data, as a rule, files of
multimedia objects (images, video, audio, textures of 3D objects) serve as containers for hiding
information. This is due to the fact that digitized objects, which initially have an analog nature,
always have quantization noise, and when reproducing these objects, additional analog noise appears
[2]. All this contributes to greater invisibility of hidden information.

The advantage of steganography over cryptography is that not only the contents of the transmitted
message are hidden, but the very fact of the existence of this message is hidden.

In the science of steganography, such a direction as steganalysis is distinguished. The task of
steganalysis is to identify the fact of transmission of hidden information in the analyzed message [3,
4]. Consequently, with the development of steganalysis, new methods are required to make hidden
information inaccessible to the uninitiated [5]. In this article, the authors propose a way to embed
information in a container that increases the reliability of its protection against unauthorized access.

2. Relevance
Digital steganography as a science was born literally in recent years. It includes the following areas:

e embedding information for the purpose of its hidden transmission;
e embedding of digital watermarks (CVZ) (watermarking);

e embedding identification numbers (fingerprinting);

e embedding titles (captioning).

This work touches on the first direction. Many methods and algorithms of steganography are known
today. Here are some of them.

e LSB-steganography (the message is hidden in the lower bits (it is possible to use one or
more lower bits) of the container [6, 7].

e The method based on hiding data in the coefficients of the discrete cosine transformation
(hereinafter DCP) is a variation of the previous method, which is actively used, for
example, when embedding a message in a JPEG format container.

e The method of hiding information using the lower bits of the palette — this method is
essentially a variation of the general LSB method, but the information is embedded not in
the least significant bits of the container, but in the least significant bits of the palette. As
a result, the container capacity is low.

e The method of hiding information in the service fields of the format is a method in which
the embedded message is placed in the service fields of the container header. Obvious
disadvantages are the low capacity of the container and the ability to detect embedded
data using conventional image viewing programs (which sometimes allow you to see the
contents of service fields).

64

T'Bozuesa WL.T., I'pomos A.C. PaszpaGotka u peanusauus Metoja uudpoBoii creraHorpaduu Ha OCHOBE BCTPAUBAHUSI TICEBIOUHMOPMALIHH.
Tpyowt UCII PAH, 2023, tom 35, Beim. 3, ¢. 63-70.

As early as 1883, Kergoff wrote that the information security system should provide its functions
even with full awareness of the enemy about its structure and algorithms of functioning.

This means that the message embedding model should be sufficiently complex so that the enemy, if
he guesses about the presence of a hidden message, even with the presence of powerful computing
equipment, would not be able to extract it [8].

In connection with the above, the authors propose a method of concealing information, which aims
to increase confidence that the message intercepted by the enemy will not be opened.

This method is based on the fact that false, so-called pseudo-information is embedded in parallel
with useful information. When selecting a model for extracting text from a container file, the
opponent relies on the result obtained, which represents any characters. And it is not possible to
distinguish the symbols belonging to useful information from false information.

3. Algorithm for embedding information in a container and extracting it

Our proposed method is based on the LSB method, the message will be hidden in the lower bits of
the image. A broadband method was used to select the sequence of bits. Such transmission methods
are used in communication technology to ensure high noise immunity and complicate the
interception process. The purpose of broadband methods is similar to the tasks that a stegosystem
solves: to try to “dissolve” a secret message in a container and make it impossible to detect it. Since
signals distributed over the entire spectrum band are difficult to detect, steganographic methods
based on broadband methods are resistant to accidental and intentional distortion. In this work, the
method of jumping frequencies was used, when the frequency of bits intended for embedding
information changes according to some pseudo-random law. The frequency of using a byte of color
is also randomly selected.

Similarly, frequencies are generated for embedding pseudo-information that do not intersect with
the received numbers to accommodate the basic information. The generated frequencies are stored
and must be transmitted to the receiving party and are a cryptographic key.

A bmp graphic file with an RGB palette model with a coding depth of 24 bits (8 bits per color) was
taken as a container file.

The contents of the container file and the file to be hidden are placed in byte arrays.

For embedding, two random of the four lower bits of one of the three components of the color are
used. Since 3 bytes form one color, one byte of text will have 12 bytes of graphics. Before starting
the implementation of the algorithm, you should check whether the text file fits into the graphic.
The following is the embedding algorithm.

e The last two bits in the specified color component are "released". To do this, the
corresponding byte of color is multiplied by a byte mask, with zeros in the specified bits
using bitwise multiplication. As a result, these two bits will be reset to zero.

o Take the first two bits from the byte-"text". To do this, multiply the byte "text" by the byte
mask equal to 192 (11000000).

o In the resulting byte, we will shift to the right. As a result, the first two bits will be in the
specified two places.

e Add the received byte to the edited byte obtained in the first paragraph using bitwise
addition. As a result, the first two bits of the text are "hidden".

o Further actions will be repeated.
o After reading the next byte of text, and the actions starting from point 1 are repeated.

e The size of the text is recorded in one of the free bytes of the header part of the graphic file.

65

Gvozdeva I.G., Gromov A.S., Gvozdeva O.M. Development and implementation of the digital steganography method based on the
embedding of pseudoinformation . Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 63-70.

Similar actions are performed for embedding pseudo-information. When extracting a message from
an image, the reverse action is performed in accordance with the available encryption key.

To test the algorithm's operability, an application was developed that allows the sender to hide the
message and the recipient to extract it.

4. Requirements for an application that implements the part of the
stegosystem in which information is embedded and extracted

We proceed to the formulation of the requirements for the application. The user should be able to
perform the following functions:

e selecting a file with a message to embed;

o selecting a text file for embedding pseudo-information;

o selecting an image file for the shorthand algorithm;

o selecting the name of the resulting image file that will contain encrypted data;
o selecting an image file containing encrypted data;

o selecting the name of the resulting file that will contain the extracted data.

Let's show the user's interaction with the application on the use case diagram (Fig. 1).

Select an image
_ file _
‘\\H-‘-‘—n—._‘___‘___._._,_.—-—"'/
Select a file with
pseudu-information

~_ T ™ %

Select an
image file
containing

the message

Select a file to o~ Recipient

encript

Extract the
message

T from the
Encode and image and
w decoder

Fig. 1. User interaction with the application

In the implemented system, the text to be embedded is pre-encoded by the byte permutation method,
and then by the bit permutation method in accordance with the pseudo-random sequence. Let's
describe the logic of the system behavior using the diagram shown in the Fig. 2.

66

T'BozneBa WL.T'., I'pomoB A.C. PaspaboTka u peanusanus Metoza uudpoBoii creraHorpadui Ha OCHOBE BCTPAUBAHUS NICEBIOMHMOPMALIHH.

Tpyowt UCII PAH, 2023, tom 35, Beim. 3, ¢. 63-70.

Opening the Text
selection dialog box

v

cancel

file selected L

Reading from a file to
an array of bytes

]
[Opening a dialog box J

to select a graphic file

cancel

file selected\l,

Reading from a file to
an array of bytes

Byte perm utation
encryptlon

encryptlcm

Steganography

LU N L R S S—

[
[
[Bit permutatlon
[
{

ertlng to afile]

encryptf&
patis

[
S O)

"aggrypt
\

to select an encrypted
file

v
cancel <>

tlle selecled

Checking the presence
of text in a graphic file

(Opening a dialog box}

does not contain
J contains

Reading from a file to
an array of hytes

¥
{ Extracting bytes

corresponding to the
text

¥

Decryption by the bit
permutation method

permutation

| S L N N

¥
[Decryption by byte

(Writing to a file }

Fig. 2. State diagram

5. Description of the program and test results
In accordance with the designed diagrams, an application was developed.

When the application is launched, the main window appears, providing the user with two functions:

encrypt information or decrypt (Fig. 3).

Hoguposarmne
Bislicg TamCTOROND dheine
Buwficp oo rewcrn
bty rpmdrn i

BamomAposaT W ChpTET

Compaente

HAexonnposanue

Bufiop rpegi-ackora bakng

Heropmpoaate

Coagimate,

Fig. 3. Main application window

When you click the Select Text File button, a file selection window appears (Fig. 4).

67

Gvozdeva I.G., Gromov A.S., Gvozdeva O.M. Development and implementation of the digital steganography method based on the
embedding of pseudoinformation . Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 63-70.

uy Dikpeitiee e
| & T # Wb » Code Decode v lonck &: Code_Decode E
KoanpoBsatue
¥RopRAoHHTE ¥ Hoean nanka =« 1 @
| B i» Wz [arta wameserng Twun AR
O L T poh i ve ar
B 3 * Apaxou.bmp Tain "0
b * ppaxow|.bmp 23 ep
. ¢ Iuma.bmp ef

* manexsknibmp

] | Manara NOE.oct 0d.12.2000 21:33
myssipubmp

1
1
1
* 3mmal.bmp 23.11.2019 8:09 ®aiin "Borolanep
1
1
1
1

* nyseipnl.bmp

Wwun dafina: |Manara N25.txt

Fig. 4. Selecting a text file

After that, the Select Image File button becomes available. When you click on it, a similar window
will open. If the selected image file is too small to contain text information, the file will not open
and a message will be displayed about it (Fig. 5).

Koguposauwe [exonuposaHie
Eatiop TexcTon0rn Sading Bwiop rpasvuscxare sadna

Beifiop nowrors TencTa

Beafiop rpaqarmeceono eaina

CAMMIKGM MATENBKSR ESRTHANES 317 3TOTD TEKTTS

Fig. 5. Insufficient file size

If everything was successful, the Encode and Hide button will be available. When you click on it,
the byte and bit permutation methods are applied sequentially, then the steganography method works
and the Save button becomes available.

When you select the Select Image File button, it checks whether the file contains hidden text. If not,
the file does not open and a message about it is displayed (Fig. 6)

KonuposaHue [lexoavpoBaHue

Buop TexcTo80r0 Bakna [Botfiop rpagumecxors daing

BuSop powrors Texcra

Bufiop rpagweeckoro Gana b \

QIR HE COAEPIMAT TexcT

=1 |

_

Fig. 6. Opening a file that does not contain text
68

T'Bozuesa WL.T., I'pomos A.C. PaszpaGotka u peanusauus Metoja uudpoBoii creraHorpaduu Ha OCHOBE BCTPAUBAHUSI TICEBIOUHMOPMALIHH.
Tpyowt UCII PAH, 2023, tom 35, Beim. 3, ¢. 63-70.

Further actions are similar to those described above.

Testing was carried out using graphic files "bubbles.omp" size 2344 KB, "small.bmp" with a size of
1 KB and a text file "Chamber No.6.txt " size 103 KB. The result of the hidden file was recorded in
the file "bubbles 1.bmp".

Fig. 7 shows the original graphic file and the file with hidden text.

Fig. 7. Image files: with and without embedded text

As can be seen, the replacement of two bits in one color component did not produce any visible
changes, which allows using this method along with existing stegosystems.

Conclusion

Thus, as a result of the review of existing methods of steganography, a new method of hiding
messages was proposed and implemented, in which the use of embedding pseudo-information is
proposed. The results of the development are presented for digital images of the BMP format,
however, they can be adapted to other formats.

References

[1]. Gribunin V.G., Okov. I. N. and Turintsev I. V., “Digital steganography” [Text],. Moscow : SOLON-Press,
263 p., 2003./ I'pubynun B. I'., OxoB U. H., Typunues U. B.. Ludposas creranorpadus [Texct] —
Mocksa: COJIOH-IIpecc, 2003. — 263 c.

[2]. Razinkov E. V., Latypov R. H. “Stability of steganographic systems”, Scientific notes of Kazan.state
University, Kazan, Vol. 151, No 2, 2009./ PasumxoB E.B., JlaremoB P.X. Croiikoctsh
creranorpaduueckux cucteM // Yuensle 3anucku Kazanckoro rocymapcrBenHoro yausepcutera. Cep.:
Ouzuko-maremarnyeckue Hayku. 2009. T. 151, kn. 2. C.126-132.

[3]. Golubev E. A., Varnovsky N. P. and Logachev O. A., Conference "Mathematics and Security of
Information Technologies"”, Moscow State University, Moscow, Russia, October 2004, 28-29./ TonyGes
E. A, Bapuoeckuit H. II. u Jloraues O. A., Kondepenmmus "Marematnka u 0€30MacHOCTh
WHQOPMAIIMOHHBIX TEXHOJIOTHI", MOCKOBCKHMI TOCyIapCTBEHHBIH yHUBepcuTeT, Mockpa, Poccus,
okTs0pb 2004, 28-29.

[4]. Fridrich J., Du R., Long M. “Steganalysis of LSB encoding in color images”, ICME, 2000.

[5]. Replacement of the least significant bit [Electronic resource]. — Access mode:
http://www.nestego.ru/2012/07/Ish.html .

[6]. Provos N., Honeyman P. “Detecting Steganographic Content on the Internet” // Proceeding of the 10
USENIX Security Symposium,. pp. 323-335, 2001.

[7]. Westfeld A. “Attacks on Steganographic Systems: Breaking the Steganographic Utilities EzStego, Jsteg,
Steganos and S-Tools-and Some Lessons Learned “/ A. Westfeld, A. Pfitzmann // 3rd International
Workshop on Information Hiding (2000)

[8]. zakalkin P. V., Ivanov S. A., Vershennik E. V. and Kiryanov A. V., “Method of masking transmitted
information”, Proceedings of ISP RAS, 32:6 (2020), pp 111-126./

69

Gvozdeva I.G., Gromov A.S., Gvozdeva O.M. Development and implementation of the digital steganography method based on the
embedding of pseudoinformation . Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 63-70.

3akankuH [1.B., iBanos C.A., Bepiennuk E.B., KupesroB A.B. Criocod MackupoBaHus nepeaaBaeMoin
napopmarmu. Tpynst ICIT PAH, Tom 32, Bem. 6, 2020 1., ctp. 111-126.

Ungpopmayusi 06 aemopax / Information about authors

Hpuna TennampeBHa ['BO3/IEBA — kaHaujgaT TEXHUYECKAX HAyK, CICIHUATUCT Kadeaps
HubopManmoOHHO-BBIUUCIUTEILHBIX TEXHOIOTHH [IeH3eHCKOro TOCYIapCTBEHHOIO YHUBEPCHUTETA
apXUTEKTyphl H cTpourteibcTBa. Cdepa HaydyHBIX MHTEPECOB: OO0JIACTH MAaTEMaTUYECKOTO
MOJEIUPOBAHUS U ONTUMAJIBHOTO YNPaBJICHUS TEXHOJOTHYECKUMU IIPOLECCAMH B CTPOUTENIBCTBE,
3JIEKTPOXHUMUU, 3KOJIOTUH.

Irina Gennadievna GVOZDEVA — Candidate of Technical Sciences, specialist of the Department
of Information and Computing Technologies of the Penza State University of Architecture and
Construction. Research interests: mathematical modeling and optimal control of technological
processes in construction, electrochemistry, ecology.

Aptem Cepreesnu 'POMOB — crynent, oOy4aromuiicst o crienpanbHocTH «VHpOpMannoHHble
cUCTEMBl U TexHojoruu» B IIeH36HCKOM TIOCyIapCTBEHHOM YHUBEPCUTETE ApXUTEKTYphl H
cTpouTtenbeTBa. OONACTh HAYYHBIX HHTEPECOB: 3aIlnTa HH(GOpManuH.

Artem Sergeyevich GROMOV is a student studying in the specialty "Information Systems and
Technologies" at the Penza State University of Architecture and Construction. Research interests:
information protection.

Ompra Muxaitmopra [I'BO3JIEBA — crymeHT, oOy4aromuiics TO CICIHATBHOCTH
«H(DOpMAIIIOHHBIE CHCTEMBI U TEXHOJOTHN» B IICH3€HCKOM TOCYIapCTBEHHOM YHHBEpPCHUTETE
ApPXUTEKTYPHI U CTPOUTENbCTBA. OOIaCTh HAYIHBIX HHTEPECOB: YIIPABICHUC JaHHBIMH.

Olga Mikhailovna GVOZDEVA is a student studying in the specialty “Information Systems and
Technologies” at the Penza State University of Architecture and Construction. Research interests:
data management.

70

Tpyowr UCIT PAH, mom 35, éwin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

[OMO

Deployment Approaches in Distributed Complex
Event Processing

DOI: 10.15514/ISPRAS-2023-35(3)-5

A.A. Zorin, ORCID: 0009-0000-2689-2543 <zorinarsenij@mail.ru>
I.E. Chernetskaya, ORCID: 0009-0009-8254-9606 <white731@yandex.ru>

Southwest State University,
94, ul. 50 Let Oktyabrya, Kursk, Russia, 305040.

Abstract. Big Data technologies have traditionally focused on processing human-generated data, while
neglecting the vast amounts of data generated by Machine-to-Machine (M2M) interactions and Internet-of-
Things (1oT) platforms. These interactions generate real-time data streams that are highly structured, often in
the form of a series of event occurrences. In this paper, we aim to provide a comprehensive overview of the
main research issues in Complex Event Processing (CEP) techniques, with a special focus on optimizing the
distribution of event handlers between working nodes. We introduce and compare different deployment
strategies for CEP event handlers. These strategies define how the event handlers are distributed over different
working nodes. In this paper we consider the distributed approach, because it ensures, that the event handlers
are scalable, fault-tolerant, and can handle large volumes of data.

Keywords: complex event processing; distributed processing; event based systems.

For citation: Zorin A.A., Chernetskaya |.E. Deployment approaches in distributed complex event
processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 71-82. DOI:
10.15514/ISPRAS-2023-35(3)-5

MopxoAabl K pa3BepTbiBaHUIO B pacnpeaeneHHon obpaboTke
CNOXHbIX COObITUN

A.A. 3opun, ORCID: 0009-0000-2689-2543 <zorinarsenij@mail.ru>
U.E. Yepneyras, ORCID: 0009-0009-8254-9606 <white731@yandex.ru>

IOz0-3anaonviii 2ocyoapcmeennwiii yHugepcument,
50 nem Oxmsabps ya., 94, Kypcx, Kypckas o6a., 305040.

AnHoTanusi. TexHomoruu OONBIIMX JaHHBIX TPAJUIHMOHHO (OKYCHPOBAINCH Ha 0OpabOTKE NaHHBIX,
reHepUpyeMbIX YelIOBEKOM, MNpeHeOperas IMpU STOM OrPOMHBIMH OOBEMaMH aHHBIX, T€HEPUPYEMBIX
MEXMAaIIMHHBIMU B3aUMOICHCTBISIMU U Tatdopmamu MHTepHeTa Beleid. DTH B3aUMOACHCTBHS TeHEPUPYIOT
MOTOKH IAHHBIX B PEaTbHOM BPEMEHH, KOTOPHIE SIBIIOTCS BEICOKOCTPYKTYPHUPOBAHHBIMH, JaCTO B BUJIE CEPUHI
COOBITHI. B 3TOIf cTaThe MBI CTPEMHUMCS TIPEIOCTaBUTh BCECTOPOHHUH 0030p OCHOBHBIX HCCIIEOBATEIBCKHX
npobieM B 00macTH MeTOM0B KoMIUTeKCHOH oOpabortku coObituit (CEP), ymemsist ocoboe BHHMaHHE
ONITHMH3AINN pacIpezeneHuss 00paboTINKOB COOBITHH MEXTy paboYMMH y3namMu. MBI NMPEACTaBIsIeM H
CpaBHHBAaEM pa3jWYHbIC CTPATErHH pa3BepThiBaHUS 0OpaboTunkoB coObituit CEP. Dtu crpareruu
OTIPEIICIISIOT, KaKk 00pabOTUYNKH COOBITHI PACTIPEACIISIOTCS TI0 Pa3IHUHBIM paboynM y3iaM. B 3Toit craThe Mbl
paccMaTpuBaeM pacIpeiesiCHHBIH IMOJX0MA, IOCKOJIbKY OH TapaHTUPYeT, 4TO OO0pabOTYMKU COOBITHIA
MacIITaOUpPyeMbl, OTKa30yCTOWYMBBI U MOTYT 00padaThIBaTh OOJbILINE 00HEMBI JAHHBIX.

71

mailto:white731@yandex.ru

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

KuaroueBbie coBa: 06paboTKa CIOXKHBIX COOBITH; pacrpeseneHHas 00paboTKa; CHCTEMbI, OCHOBAHHbIE Ha
COOBITHSIX.

s uurupoBanusi: 3opul A.A., Ueprerkas U.E. ITonxompl K pa3BepThIBAHUIO B pacHpeeneHHoi 00paboTke
crnoxubix cobsitii. Tpyast UCIT PAH, tom 35, Beim. 3, 2023 r., ctp. 71-82 (na anrmuiickom sizeike). DOI:
10.15514/ISPRAS-2023-35(3)-5

1. Introduction

Several complex systems operate by observing a set of primitive events that happen in the external
environment, interpreting and combining them to identify higher level composite events, and finally
sending notifications about these events to the components in charge of reacting to them, thus
determining the overall system’s behavior. This means that the systems are able to perform complex
tasks by breaking them down into simpler, more manageable events. In order to achieve this, the
systems use a general architecture that includes sources and sinks at the peripherals of the system.
These sources observe primitive events and report them, while the sinks receive composite event
notifications and react to them.

At the center of the system is the complex event processing (CEP) subsystem, which is responsible
for processing and routing events from sources to interested sinks. It operates by interpreting a set
of event definition rules, which describe how composite events are defined from primitive ones [1,
2]. The CEP subsystem is crucial to the operation of the system, as it is responsible for ensuring that
the right events get to the right places.

Event-based applications usually involve a large number of sources and sinks, possibly dispersed
over a wide number of working nodes [3, 4, 5]. This means that the CEP subsystem can be internally
built around several, distributed working nodes, connected together to form an overlay network, and
cooperating to provide the processing and routing service [6]. This allows the system to process and
route events more efficiently, as it can distribute the workload across multiple working nodes.

This paper introduces and compares different deployment approaches for CEP, which are designed
to optimize the performance of the system. A deployment approach defines how the event handlers
are distributed over working nodes. The first aspect is often called operator placement, and it
involves finding the best mapping of the event handlers defined in rules on available working nodes
[7]. Operator placement may pursue different goals, such as reducing the latency required to deliver
notifications to interested parties, or minimizing the usage of network resources. In the last few
years, different solutions have been proposed for operator placement. However, the problem is
known to be extremely complex to solve, even for small instances with a reduced number of workers
and rules. Accordingly, existing approaches are often based on approximated optimization
algorithms or heuristics, and they usually rely on a centralized decider, which collects all the relevant
information about the network status and locally computes a solution to the problem.

The novelty of this work is the study of the applied use of scaling approaches in systems for
processing complex events in real time.The solutions presented in this paper are explicitly tailored
to large scale distributed scenarios. They try to take into account the topology of the processing
network as well as the location of event sources and their generation rates [8].

2. Approaches

2.1. Uniform distribution of handlers between working nodes

This approach for distributing handlers is based on an even distribution of handlers among all the
working nodes. The implementation of this approach is simple and requires a few steps. Firstly, the
handler distribution storage must be expanded to include information about the number of running
handlers on each of the working nodes. The data schema in DBML format might look like this:

72

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

Table handlers {
id integer [primary key]
w_node_id integer
other_data data

}

Table working_nodes {
id integer [primary key]
other_data data

}

Ref: working_nodes.id > handlers.w_node_id

The volume of the information storage depends on the number of working nodes and handlers, but
does not depend on the number of events occurring in the system. Therefore, the memory cost for
storing the information can be estimated in O(W+H), where W is the number of working nodes, and
H is the number of handlers.

Working node 1
Handier
management i T
service o} : Hy
Ry byl ‘ R) ‘
Handler distribution
service
l R ‘ T ‘
Handler
distribution S Working node 2
storage Handler
management e
service Ha]
Rz iy ‘ R4y \ ‘
B ‘ Ro)y ‘

Fig. 1. Uniform distribution of handlers between working nodes

Once this information is available, the handler distribution service can be used to control the even
launch of handlers across all working nodes. Fig. 1 illustrates this approach with the uniform
distribution of four handlers between two working nodes. The handler distribution storage is used
to store information about the handlers that are running on specific working nodes and their numbers.
If there is a change in the number of handlers, the handler distribution service will redistribute them.
When a new handler is added, the handler distribution service identifies the working node with the
fewest running handlers and deploys the new handler to that node. Conversely, when a handler is
removed, the handler distribution service removes information about the handler from the handler
distribution storage and sends a handler shutdown command to the handler management service.
However, removing handlers may cause an imbalance in the number of handlers on each working
node.

73

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

To solve this issue, the handler distribution service periodically balances the number of handlers on
each working node. The service first determines the maximum number of handlers allowed on each
working node using the following formula:
v= s
lw

In (1) H is the number of event handlers and W — the number of working nodes. It then sequentially
traverses the sorted list of working nodes, and if the number of running handlers on the working
node is more than the maximum number allowed, the service searches for working nodes with a
number of handlers less than the maximum allowed. The excess handlers from the current working
node are transferred to the new working nodes. The handlers redistribution algorithm will look like
this:

Algorithm 1 Function RedistributeHandlers(W,H)
1 Wepart 0

2 Weng + len(W) —1

3 n « len(H)/len(W)

4: for warart < Weng do

5. if W{wstart] number_of_handlers < n then

6: for wart < Wepng do

7 if Wwepna]-number_of_handlers > n then
8: Redistribute(W [wstart], W [wend])

9: if W(wgtare] number_of_handlers > n then
10: break

11: end if

12: end if

13: Wend 4 Wend — 1

14: end for

15: end if

16: Wstart ¢ Wstart + 1

17: end for

The asymptotic complexity of the algorithm in such an implementation is equal to O(max(W,H)).
Although this approach is easy to implement and allows for horizontal scaling of handlers, it has
some inherent disadvantages. For instance, it does not take into account the internal complexity of
each handler or possible differences in the number of resources on the working node. Each handler
may contain a different number of rules, and the frequency of rule triggering may vary. Additionally,
working nodes may have differing amounts of resources, which can lead to low efficiency in the
distribution of handlers across working nodes.

2.2. Distribution of handlers based on the number of rules

This approach shares similarities with the previous one, but there is a key difference in how the
handlers are distributed. Instead of relying on a simple criterion, such as the number of active
handlers, this approach takes into account the number of handlers running on each working node.
To accomplish this, the handler distribution storage is expanded to include information about the
number of rules in each handler. The extended data schema in DBML format for that approach might
look like this:
Table handlers {

id integer [primary key]

number_of rules integer

w_node_id integer

74

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

other_data data

}

Table working_nodes {
id integer [primary key]
other_data data

}

Ref: working_nodes.id > handlers.w_node _id

This allows for a more nuanced approach to balancing the workload between working nodes, which
is illustrated on fig. 2.

Working node 1
Handier
management = :
service ? L E Hy
Ry ol A4y =
Handler distribution
service
l Riz Ly Ry o
Handier
distribution
Working node 2
staraga Handler G
management
magme B - Ha
Rz foy
Ra o [Rar o
Ras ol

Fig. 2. Distribution of handlers based on the number of rules

The volume of the information storage depends on the number of working nodes and handlers as for
the previous approach. Therefore, the memory cost for storing the information can be estimated in
O(W+H). The redistribution algorithm requires an analysis of the number of rules executed on the
working node, instead of calculating the number of handlers. The complexity of the algorithm
corresponds to the complexity of the previous algorithm and is equal to O(max(W,H)).

One of the main advantages of this approach is that the handler distribution service can monitor the
total number of handler rules running on each working node. Like the previous approach, the handler
distribution service performs balancing at fixed intervals. However, the key difference is the
inclusion of additional information about the number of rules, which allows for a more complex
balancing algorithm to be used. By evenly distributing handlers, this approach minimizes the number
of rules executed on each working node, which can lead to more efficient processing. However, it's
important to note that this approach still does not take into account the frequency of rule firing or
the different amounts of available resources on working nodes, which could impact overall
performance. Therefore, it may be necessary to explore additional strategies for optimizing the
workload distribution in the future.

2.3. Distribution of handlers based on the configuration of the required
resources

This approach involves a preliminary configuration of the necessary resources for each handler. The
system administrator adds information about the resources that are needed for each handler and also

75

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

adds information about the resources available on each working node. With the help of this
information, the distribution of handlers between working nodes takes place. The distribution
process ensures that the resources of working nodes are utilized as much as possible. Before
launching a network of handlers, the configuration of the resources required by each handler and the
resources available on each working node is performed. The configurable resources can be the
number of CPU cores and the size of RAM. In addition to being able to configure resources, this
approach also allows for consideration of the frequency of execution of the rules by each handler.
This frequency data could be used to optimize the distribution of handlers.

The volume of the information storage depends on the number of working nodes and handlers as for
the previous approach. Therefore, the memory cost for storing the information can be estimated in
O(W+H). The extended data schema in DBML format for that approach might look like this:

Table handlers {
id integer [primary key]
cpu_required integer
memory_required integer
w_node_id integer
other_data data

Table working_nodes {
id integer [primary key]
cpu integer
memory integer
other_data data

}

Ref: working_nodes.id > handlers.w_node_id

The task of efficiently placing handlers in this approach is an NP challenge. Therefore, a resource
allocation approach from kubernetes can be used to provide a trade-off between speed and efficiency
[9]. In this case, the algorithm is reduced to calculating the estimate of the deployment of the handler
on each of the working nodes [10]. The algorithmic complexity of this algorithm is O(W * H).

The scheme of this approach is shown in fig. 3.

Handier
management °
h

Working node 1

—») —>

Handier distribution 3 iy
service :

l —= 2

Handler

distribution Wiorking node 2
storage Handier
management

Rz

A

Fig. 3. Distribution of handlers based on the configuration of the required resources

However, one disadvantage of this approach is the need for manual configuration of allocated
resources, which can be time-consuming. Another disadvantage is that this approach does not take

76

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

into account the dynamic nature of resource availability, which could lead to suboptimal resource
utilization. To address these limitations, future research could explore the use of machine learning
algorithms to automate the allocation of resources and dynamically adjust to changes in resource
availability.

2.4. Distribution of handlers based on statistics collected during operation

All previous diagrams are based on information obtained from starting the entire system and creating
new handlers. However, it is not always possible to determine how many resources to allocate to a
handler and on which working node it is most efficient to place them. This problem is due to the fact
that at the time the handlers are launched, there is no information about the frequency of the rule's
operation. It is important to consider the frequency of rule execution when allocating resources
because it can affect the efficiency of the handler. A handler may contain a large number of rules,
but these rules are fired quite rarely [11]. In contrast, a handler may contain only one rule, but fire
on most events. These scenarios can lead to resource waste or inefficient allocation. One way to
solve this problem is to collect analytics from handlers while the system is running. Collecting
statistics on the execution time and frequency of rules can help in balancing handlers with
infrequently executed rules on less productive working nodes and those with the longest rule
execution time and high execution frequency on high-performance working nodes. To collect
statistics, it is most efficient to run the statistics storage locally on each working node. This will
ensure the shortest time to send statistics from the handler to the statistics storage. Each handler
sends all necessary statistics to the local statistics storage on the working node. The handler
distribution service collects handler statistics from each working node through the handler
management service during balancing. After that, the service aggregates the collected statistics and,
based on the results, redistributes highly loaded processors to the most high-performance working
nodes. This ensures that the system is balanced and optimized for efficient execution. The extended
data schema in DBML format for that approach might look like this:
Table rules {

id integer [primary key]

processing_time_q95 integer

number_of activations integer

h_id integer
}

Table handlers {
id integer [primary key]
w_node_id integer
other_data data

}

Table working_nodes {
id integer [primary key]
cpu integer
memory integer
other_data data

}

Ref: working_nodes.id > handlers.w_node_id
Ref: handlers.id > rules.h_id

77

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

The volume of the information storage depends on the number of working nodes, handlers and rules.
Therefore, the memory cost for storing the information can be estimated in O(W+H+R), where W
is the number of working nodes, H is the number of handlers and R is the number of rules. Also, this
approach uses local storage for rule execution statistic. This collected statistic can be collapsed, so
the space used does not exceed O(R), since all statistics are duplicated in the handler distribution
storage.

Working nade 1
Hy He Hy

-~} managaman
— ©
/ l - Rar —>
Hanler dswbution |_— e R \ o
service
B 7Y e [Ly
Statistics L
storage

Handiar
distribution
storage. Working node 2

Fig. 4. Distribution of handlers based on statistics collected during operation

On fig. 4, we can see the distribution of handlers based on the statistics collected during the work.
The diagram shows that each working node has local statistics storage. The handler distribution
service, at the time of balancing, collects and aggregates data from local statistics storages and
creates it. So, as shown in fig. 4, the handler distribution service receives information about the 95
percentile of the rule execution time and the number of rule firings. Based on the aggregated
statistics, the handler distribution service performs balancing and places the most loaded H; handler
on a separate working node 2. This algorithm also reduces to solving the bin packing problem, like
the previous one, and has a similar complexity - O(W * H).

In conclusion, collecting analytics can help in efficient resource allocation and balancing of
handlers, leading to a more optimized system. By running the statistics storage locally on each
worker node, the system can ensure the shortest time to send statistics from the handler to the
statistics storage.

3. Comparison of approaches

Let's make a comparative analysis of the described schemes for working with events according to
the following criteria [12]:

e Support for working with working nodes with different amounts of resources;

o Level of support for accounting for the frequency of operation of handler rules;

e The need to develop additional services and repositories with information storages;
e The complexity of the algorithm for redistributing handlers between working nodes.

Consider the rating scale for each criterion. The criterion for supporting work with working nodes
with different amounts of resources can be evaluated on the following scale:

e Present-1;
e Absent-0.

The criteria for the level of support for accounting for the frequency of triggering of handler rules
can be assessed on a scale:

e Dynamic support - 1;
e Static support - 0.5;

78

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

e Absent-0.

Dynamic support implies the ability of the system to independently collect statistics on the frequency

of rule triggering and, based on the collected data, balance handlers. Static support allows

configuration of the frequency of rule triggering at the system startup stage. This approach does not

allow efficient utilization of resources in the case of a changing frequency of rule firings over time.

The criteria for the need to develop additional services and repositories can be estimated based on

the assessment of overhead costs for information storage. Thus, the criterion can be assessed on the

following scale:

e Development of additional services and repositories is not required, no overhead - 1;

e Requires the development of information storage, the volume of which does not depend on the
number of rules specified - 0.5;

e Requires the development of information storage, the volume of which depends on the number
of rules or a value of a higher order - 0.

The criteria for the complexity of the algorithm for redistributing handlers between working nodes

can be estimated using the following scale:

e Algorithm complexity not exceeding O(max(W,H)) - 1;

e Algorithm complexity not exceeding O(W * H) - 0.5;

e Algorithm has quadratic complexity and higher - 0.

Criteria 1 and 2 are the most important as they affect the efficiency of resource utilization at working

nodes [13]. Therefore, the weight of criteria 1 and 2 is 0.3, and the weight of criterion 3 and 4 is 0.2.

The weighted sum method shows (Tab. 1) that the approach of distributing handlers based on run

time statistics is more appropriate.

Table 1. Comparison by weighted sum method

Approaches
Criteria

A B C D

Ci 0 0 1 1

C. 0 0 0.5 1

Cs 0.5 0.5 0.5 0

Cs 1 1 0.5 0.5
Weighted sum 0.35 0.35 0.65 0.7

It allows working with working nodes that have different amounts of resources and provides a
redistribution of handlers between working nodes, taking into account the actual frequency of rule
firing. This approach also has disadvantages in the form of the need to create additional local storage
of statistics and implement the aggregation of the collected statistics.

4. Conclusion and future work

Having thoroughly reviewed the state-of-the-art approaches that focus on efficient event handler
distribution and can be applied in CEP systems. We have come to the conclusion that the approach

79

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

using statistics collected during the operation of the system to redistribute handlers between working
nodes is the most suitable approach for modern systems. This approach utilizes not only the static
configuration of the distribution strategy at the stage of system startup but also dynamic
redistribution based on statistics collected during the operation of the system. This can improve the
efficiency of resource utilization in the system. Therefore, we recommend that future research focus
on the study of hybrid approaches to managing the distribution of handlers between working nodes,
where both static configuration and dynamic redistribution can be used to maximize system
efficiency.

In addition to this, we suggest that it would be beneficial to select the optimal set of metrics that can
effectively redistribute event handlers. Further research in this area may lead to the identification of
the most relevant metrics.

Although we have considered centralized approaches to managing the distribution of event handlers
in this work. There are also decentralized approaches that provide a higher level of fault tolerance
and have the potential to scale efficiently [14,15]. Therefore, we suggest that future work may
explore these decentralized approaches as well. By investigating both centralized and decentralized
approaches, we can gain a better understanding of the advantages and disadvantages of each and
ultimately identify the best approach for a given system.

References

[1]. Paschke A., Kozlenkov A. Rule-Based Event Processing and Reaction Rules: Lecture Notes in Computer
Science, 2009, pp. 53-66.

[2]. Cugola G., Margara A. Deployment strategies for distributed complex event processing: Computing, 2012,
vol. 95, no. 2, pp. 129-156.

[3]. Fardbastani M., Sharifi M. Scalable complex event processing using adaptive load balancing: Journal of
Systems and Software, 2019, v. 149, pp. 305-317.

[4]. Sun A., Zhong Z., Jeong H., Yang Q. Building complex event processing capability for intelligent
environmental monitoring: Environmental Modelling and Software, 2019, v. 116, pp. 1-6.

[5]. Loreti D., Chesani F., Mello P., Roffia L., Antoniazzi F., Cinotti T., Paolini G., Masotti D., Costanzo A.
Complex reactive event processing for assisted living: The Habitat project case study: Expert Systems
with Applications, 2019, v. 126, pp. 200-217.

[6]. Brazalez E., Macia H., Diaz G., Baeza Romero M., Valero E., Valero V. FUME: An air quality decision
support system for cities based on CEP technology and fuzzy logic: Applied Soft Computing, 2022, v.
129, pp. 109536.

[7]. Paschke A., Kozlenkov A., Rule-Based Event Processing and Reaction Rules: Lecture Notes in Computer
Science, 2009, pp. 53-66.

[8]. Alakari A., Li K. F., Gebali F., A situation refinement model for complex event processing, Knowledge-
Based Systems [online] 198, 2020, 105881.

[9]. Hightower K., Burns B., and Beda J., Kubernetes: Up and Running: Dive into the Future of Infrastructure,
O'Reilly Media, 2017.

[10]. Luksa M., Kubernetes in Action, Hanser Fachbuchverlag, 2018, ISBN 9783446455108.

[11]. Wang D., Zhou M., Ali S., Zhou P., Liu Y., Wang X., A Novel Complex Event Processing Engine for
Intelligent Data Analysis in Integrated Information Systems: International Journal of Distributed Sensor
Networks, 2016, vol. 12, no. 3, pp. 6741401.

[12]. Alakari A., Li K. F., Gebali F., A situation refinement model for complex event processing, Knowledge-
Based Systems [online] 198, 2020, 105881.

[13]. Margara A., Cugola G., High-Performance Publish-Subscribe Matching Using Parallel Hardware: IEEE
Transactions on Parallel and Distributed Systems, 2014, vol. 25, no. 1, pp. 126-135.

[14]. Cugola G., Margara A., Complex event processing with T-REX: Journal of Systems and Software, 2012,
vol. 85, no. 8, pp. 1709-1728.

[15]. Jayasekara S., Kannangara S., Dahanayakage T., Ranawaka I., Perera S., Nanayakkara V., Wihidum:
Distributed complex event processing: Journal of Parallel and Distributed Computing, 2015, vol. 79-80,
pp. 42-51.

80

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

UHgpopmayusi 06 aemopax / Information about authors

Apcennit Aanpeesnd 30OPUH — acnimpanT xadeapbl BEIYUCIUTENbHON TexHUKH FOro-3amagHoro
rOCYAapCTBEHHOIO YHHBepcuTeTa. Ero HaydHble HHTEpEChl BKIIOYAIOT OOPA0OTKY CIIOMKHBIX
COOBITU B paCpeelICHHBIX CHCTEMaX, HHTEIUIEKTYalIbHbIE CHCTEMbI HA OCHOBE TIPABHIIL.

Arsenij Andreevich ZORIN is a post—graduate student of the Department of Computer Engineering
of Southwest State University. His research interests include processing complex events in
distributed systems, intelligent rule-based systems.

Wpuna Esrensena UEPHEIIKAS - 3aBemyrommii kadenpoil BRMHCIUTENbHOW TexHUKH HOro-
3amagHoOTO TOCYIapCTBEHHOTO YHUBEPCHUTETA, JOKTOP TEXHUUECKUX HayK. E€ HaydHbIC HHTEpECH
BKJTIOYA0T MAaTEeMaTHYeCKOe | alTOPUTMUYECKOE OIMCAHHE CIIOXKHBIX TEXHOJOTHIECKUX
MPOIIECCOB, Pa3paboTKa aBTOMAaTH3UPOBAHHBIX CUCTEM YIIPaBICHUS.

Irina Evgenyevha CHERNETSKAYA - Head of the Department of Computer Engineering of
Southwestern State University, Doctor of Technical Sciences. Her research interests include
mathematical and algorithmic description of complex technological processes, development of
automated control systems

81

https://scholar.google.ru/citations?view_op=search_authors&hl=ru&mauthors=label:%D1%80%D0%B0%D1%81%D0%BF%D0%BE%D0%B7%D0%BD%D0%B0%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

82

Tpyowr UCIT PAH, mom 35, évin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

o 0

Mathematical Modeling and Software for
Calculating Regimes of Galvanic Wastewater
Purification from Heavy and Nonferrous Metals in
Devices with Flow-Through Three-Dimensional
Electrodes

DOI: 10.15514/ISPRAS-2023-35(3)-6

1V.V. Kuzina, ORCID: 0000-0003-4511-7176 <kuzina@pguas.ru>
2V K. Varentsov, ORCID: 0000-0001-8622-9364 <vwvk@ngs.ru>
L AN. Koshev, ORCID: 0000-0003-3057-4980 <koshev@pguas.ru>
1 G.M. Kupriyanko, ORCID: 0009-0001-6737-554X <gtaas@mail.ru>

! Penza State University of Architecture and Construction,
28, German Titov st., Penza, 440028, Russia.
2 Institute of Solid State Chemistry and Mechanochemistry of Siberian branch of Russian Academy
of Science, 18, Kutateladze st., Novosibirsk, 630128, Russia.

Abstract. The paper briefly discusses progressive technologies of wastewater treatment from ions of heavy and
nonferrous metals of industrial and small enterprises of urban agglomerations. An analysis of the efficiency of
three-dimensional flow-through electrodes for wastewater treatment of harmful reagents is given. The
mathematical models of electrochemical processes in three-dimensional flow-through electrodes as applied to
extract metals from the solutions of galvanochemical industries are presented. The description of the set of
programs developed in the programming language Object Pascal for computational experiments according to
the obtained mathematical models is given. Numerical solution of scientific problem of practical importance

has been obtained by using the program complex. A good correspondence between the results of calculations
and experiments is shown.

Keywords: mathematical modeling; software package; Object Pascal programming language; three-
dimensional flow electrode; extraction of metals from galvanochemical solutions.

For citation: Kuzina V.V., Varentsov V.K., Koshev A.N., Kupriyanko G. Mathematical modeling and software
for calculating regimes of galvanic wastewater purification from heavy and nonferrous metals in devices with
flow-through three-dimensional electrodes. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 83-90.
DOI: 10.15514/ISPRAS-2023-35(3)-6

83

mailto:vvk@ngs.ru

Kuzina V.V., Varentsov V.K., Koshev A.N., Kupriyanko G. Mathematical modeling and software for calculating regimes of galvanic
wastewater purification from heavy and nonferrous metals in devices with flow-through three-dimensional electrodes. Trudy ISP RAN/Proc.
ISP RAS, vol. 35, issue 3, 2023. pp. 83-90.

MaTtemaTuyeckoe MogenupoBaHue U NporpaMmMmHoe obecneyeHue
ANA pacyeTa PeXUMOB OYUCTKU ranibBaHU4YeCKUX CTOKOB OT TSXKenbIX
M LUBeTHbIX MeTasnmnoB B annaparax ¢ NPOTOYHbLIMU TPEXMEPHbLIMMU
anekTpoaamu

! B.B. Kysuna, ORCID: 0000-0003-4511-7176 <kuzina@pguas.ru>
2 B.K. Bapenyos, ORCID: 0000-0001-8622-9364 <vvk@ngs.ru>
1 A.H. Kowes, ORCID: 0000-0003-3057-4980 <koshev@pguas.ru>
1I"M. Kynpusanrxo, ORCID: 0009-0001-6737-554X <gtaas@mail.ru>

! Mensenckuii 2ocyoapcmeennvlil yHusepcumen apxumexnypol u Cmpoumenbcmed,
440028, Poccus, e. Ilensa, ya. I'epmana Tumosa, 28.
2 Uucmumym xumuu meepoozo mena u mexanoxumuu CO PAH,
630128, Poccus, 2. Hogocubupck, yn. Kymamenaose, 18

AHHoTanus. B paborte kpaTko 00CyXIal0TCs MPOTrPECCUBHBIC TEXHOJIOTUH OYHCTKH CTOYHBIX BOJ OT HOHOB
TSOKENBIX ¥ I[BETHBIX METAIIOB HPOMBIIUICHHBIX M MalbIX INPENPUATHH TOPOJACKHX arjJoMeparui.
IMpuBoautcs amamu3 3¢GQPEKTHBHOCTH MPUMEHEHHS INPOTOYHBIX TPEXMEPHBIX 3NEKTPOAOB AT OYUCTKH
CTOYHBIX BOJI OT BPEIHBIX peareHToB. [IpuBOAsATCS MaTeMaTHYeCKUEe MOEIH MIEKTPOXUMUYECKHX POLECCOB
B TpPEXMEpHBIX MPOTOYHBIX OJJIEKTPOJaX IPUMEHUTENBFHO K W3BJICUCHHIO METAJUIOB W3 pPacTBOPOB
raJbBaHOXHMMHUYECKUX IIPOM3BOJACTB. [IpHBOIMTCS OmNKMCaHWME KOMIUIEKCA INPOTpaMM, pa3pabOTaHHBIX IS
NIPOBEICHUST BBIYHMCIUTENBHBIX OSKCIIEPUMEHTOB II0 IOJYYCHHBIM MaTeMaTH4YecKUM MonemsM. [lpu
UCHOJIb30BAaHUH IIPOTPAMMHOIO KOMIUIEKCAa IIOJMYYEHO YMCICHHOE PEIICHHe HAay4dHOH 3aJadu, MMeolen
mpakTrdeckoe 3HadeHue. [lokazaHo Xxopolee COOTBETCTBHE PE3yIbTaTOB PACIETOB U SKCIIEPUMEHTOB.

KnroueBble ciioBa: MaTeMaTH4eCKOe MOJEIMPOBAHUE; KOMIUIEKC IPOTPAaMM; S3BIK IPOTPAMMHUPOBAHHMS
Object Pascal; mpoTouHslii TpEXMEPHBIii HIEKTPO; H3BICIEHHE METAILIOB U3 PACTBOPOB IalIbBAHOXMMUYECKUX
MIPOU3BO/JICTB.

Jasa ouruposanus: Kysuna B.B., Bapennos B.K., Komes A.H., Kympusnko I''M. Maremaruueckoe
MOJIETMPOBaHKE M MPOrpaMMHOE OOecIeueHHe Ui pacyera PeXUMOB OYMCTKH TajJbBaHUYECKHX CTOKOB OT
TSDKEJIBIX U [IBETHBIX METAJUIOB B almaparax ¢ IpOTOYHBIMU TpexMepHbIMU lekTponamu. Tpyast UCIT PAH,
tom 35, Boit. 3, 2023 r., ctp. 83-90 (na anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2023-35(3)-6

1. Introduction

A new approach to the study of electrochemical processes in three-dimensional flowing electrodes
as applied to the extraction of metals from solutions of galvanochemical production is to conduct
computational experiments based on mathematical modeling and software package.
Galvanochemical productions, with all their advantages, have a sufficient environmental hazard,
which is mainly determined by the harmful impact of galvanochemical effluents containing
components of technological solutions on surface and ground water bodies, including in urban
agglomerations. The exceeding of the maximum permissible concentrations (MPC) of metals in
wastewater is caused by salvo discharges of electrolytes in electroplating plants. The problem of
salvo discharges is caused by so-called "technical fatigue" of solutions. Such discharges lead to high
water consumption, disruption of treatment facilities, a sharp increase in MPC in wastewater. The
causes of deterioration of electrolytes are usually associated with the accumulation of inorganic and
organic substances in them, including impurities introduced with reagents, products of electrode
reactions. Conditioning of electrolytes, extraction of valuable components of electrolytes, and their
reuse is one of the possible ways to solve the problems of creating closed technological processes.
Until recently, in the treatment of galvanic and other wastewater the dominant direction was the
treatment of the total effluent of galvanochemical production [1]. However, there are a number of
publications showing that the creation of local solution processing systems gets the greatest

84

mailto:vvk@ngs.ru

Kysuna B.B., Bapenmnos B.K., Kouies A.H., Kynpusiako .M. Maremarudeckoe MOAETHPOBAHUE U IIPOTPaMMHOE 00eCIIeUeHHE ISl pacueTa
PEKMMOB OUMCTKM I'ajlbBAHHYECKUX CTOKOB OT TSKENIBIX M IBETHBIX METAJIJIOB B alIapaTax ¢ MPOTOYHBIMH TPEXMEPHBIMH 3JICKTPOIAMH.
Tpyowt UCIT PAH, 2023, tom 35, Beim. 3, ¢. 83-90.

application, as local cycles along with the solution of environmental problems provide the return of
reagents and water, allowing the creation of low- and waste-free production [2, 3].

2. Methodology

Among the known methods of creating local treatment systems for galvanic solutions a special place
should be given to electrochemical methods of extraction of valuable components to return them
into industrial cycles. Electrochemical methods satisfy the basic requirements to the processes
developed for extraction of metals from solutions of galvanochemical productions: they do not
require the use of reagents, the metal is obtained in the purest concentrated form and can in most
cases be returned to production; the possibility of process automation is easily realized, water
consumption is reduced [4-7], etc.

One of the promising methods for solving this problem seems to be the use of apparatuses with flow-
through three-dimensional electrodes (FTE) for extracting metals from solutions with low
concentrations. The development of original technologies of electrodeposition of various metals
based on the use of FTE is necessary for the intensification of electrochemical processes, especially
in solutions with low concentrations of electroactive components, which is achieved primarily
through the use of cathode materials with a high reaction surface and the possibility of intense mass
transfer in the electrode volume [4—7]. The solution of this problem is obviously promoted by the
development of methods of mathematical modeling of processes in FTE and application of
computational experiment. The use of mathematical modeling makes it possible to calculate and
predict the results of the technological process, as well as to optimize the process by calculating the
effective values of control parameters [4-6, 8].

Let's assume that the flux of charged particles of the i-th grade N; (i = 1, ..., n) in the electrolyte
volume is determined by migration and convective components, which is realized in most
electrochemical systems [9]:

Ni=ziuiFC, VE+C; V. (D)

Here zj, Ci, u; are, respectively, the charge, concentration and mobility of the i-th electroactive
component in a pseudo-homogeneous medium; VE is the electric field potential gradient; V is the
velocity vector of the convective transfer of the solution.

The current in the electrode-electrolyte volume is expressed by the formula:

j=F Z(zN)).)
Material balance condition in the absence of a homogeneous electrochemical reaction:
oC; /ot = —VeN.;. 3)

Here VeN; is the divergence of the N; flow.

Conversion of equations (1) — (3) using known rules of differential calculus, as well as the equation
of the relationship between the change in concentration of the extractable component Cy with the
partial current density jsk [10]

OCk /0r = = S jsk/(|V|zkF) 4)
eventually leads to the following system of differential equations:
F 0Z(z«Cx)/0t = Veo[—ksiiV E /(ks + 11)] + S Z(jsk). (5)

Here S is the reaction surface; js« is the polarizing current density by k-component, ks, & —
conductivities of solid and liquid phases of the system. Together with natural boundary conditions:

[OEt)/On]oc = j (D)ps, [OET)/ON]oa=] (D)p (6)
[0Et)/an]ei = 0, [OA) /0n]oe = Co. 7)

85

Kuzina V.V., Varentsov V.K., Koshev A.N., Kupriyanko G. Mathematical modeling and software for calculating regimes of galvanic
wastewater purification from heavy and nonferrous metals in devices with flow-through three-dimensional electrodes. Trudy ISP RAN/Proc.
ISP RAS, vol. 35, issue 3, 2023. pp. 83-90.

Here n is the direction of the normal to the boundary of the reaction region, consisting of the surfaces
of the cathode, anode, insulators and the electrolyte supply zone: 6 = 6¢+ 6a Gi + Ge; ps, p1 are the
specific resistance of the solid and liquid medium, respectively.

The system (5) — (7) makes it possible to calculate the distribution of potential, current density, and
concentration of the electroactive substance in the volume of the porous electrode.

The mathematical models given in [4-7] are based on the development of earlier modeling results
obtained both by the authors of the present paper and by other authors, for example, in [11], but the
generalized dynamic models proposed by the authors of the present paper are not found in the
literature.

The study and criticism of the mathematical models of the authors of this publication and other
authors are given in detail, for example, in [12].

Mathematical aspects of the implementation of the proposed mathematical models of
electrodeposition in three-dimensional flow electrodes are discussed, for example, in [13].

To carry out computational experiments, a set of programs has been developed to simulate
electrochemical processes in PTE [14]. The software package is designed to calculate and analyze
the parameters of the electrochemical process when extracting metals from electrolyte solutions onto
the flowing carbon-fiber electrode. The main structural elements of the program complex are
modules: general.pas is the main form that allows opening the forms for entering basic process
parameters — the parametr.pas module, for selecting electrochemical constants from available files
— the vybor.pas module, for editing data — the redact.pas module, modules for calculating process
parameters, optimization, plotting dependencies, etc. Program modules can be executed in parallel
that allows increasing speed of computer calculations.

The program complex is implemented in the Object Pascal programming language [15-17]. Used
libraries are the following: Windows, Messages, SysUTtils, Variants, Classes, Graphics, Controls,
Forms, Dialogs, Menus, StdCtrls, etc. An IBM PC-compatible PC with Windows XP/Vista/7/8/10
operating systems was used for the computational experiments.

Input data for calculation are parameters of the deposited component (valence of ions, diffusion
coefficient), concentration of ions of the deposited component in solution, solution flow rate, mass
transfer coefficient, electrical conductivity of solid and liquid phases of the electrode-solution
system, overall current density, electrode parameters (porosity, fiber radius, electrode thickness),
electrolysis time.

The calculation results are: metal ion concentrations (calculation can be performed for one or two
metal ions contained in the solution), distribution over the thickness (volume) of the electrode of its
conductivity, metal mass, electrolyte flow rate, metal ion mass transfer coefficients, mass transfer
coefficient for oxygen, potential, metal current profiles, oxygen current profile, hydrogen current
profile, reduced metal current profile.

One of the most recent works on the use of the software package developed by the authors is, for
example, the article [18].

3. Results and discussion

The original approach consisting in the representation of the carbon-graphite cathode in the
electrochemical reactor with the flowing three-dimensional electrode made of fibrous carbon
materials in the form of pseudo-homogeneous medium has allowed to construct the dynamic
mathematical models of the process of metals extraction from electroplating waste water and
regeneration of spent electrolytes. Based on the models a set of programs in the Object Pascal
programming language was developed that allows conducting theoretical research of regularities of
the electrodeposition process and determining optimal parameters of the process and the electrolyzer
to solve various technological problems. One of the program complex variants is published, for
example, in [14].

86

Kysuna B.B., Bapenmnos B.K., Kouies A.H., Kynpusiako .M. Maremarudeckoe MOAETHPOBAHUE U IIPOTPaMMHOE 00eCIIeUeHHE ISl pacueTa
PEKMMOB OUMCTKM I'ajlbBAHHYECKUX CTOKOB OT TSKENIBIX M IBETHBIX METAJIJIOB B alIapaTax ¢ MPOTOYHBIMH TPEXMEPHBIMH 3JICKTPOIAMH.
Tpyowt UCIT PAH, 2023, tom 35, Beim. 3, ¢. 83-90.

To illustrate the efficiency of the methods let us calculate co-deposition of gold and silver from
thiourea sulfate solution with the following composition: Hz SO4 — 0.5 mol/l, thiourea — 50 g/l, gold
—22.4 mg/l, silver — 141 mg/I (Fig. 1).

d
0.4

d (2)]

0.3

3 4 5 6n
Fig. 1. Distribution of metal sludge over the thickness of the electrode: (a) — gold; (b) — silver; d — metal mass

to CFM mass ratio; 1 — experiment; 2 — calculation; n — layer number; T — electrode back side; electrode
thickness — 1 cm; current density — 0.2 4/m? , the solution flowrate — 0.56 cm/s.

1 2 3 4 S5 6n 1

The studies were carried out with frontal (from the side of the counterelectrode) feeding of the
solution into the electrode. In the first case, the electrode was composed of 12 layers of carbon fiber
material (CFM) and 6 layers in the second case. The characteristics of the CFM (grade VVP-66-95)
are the following: specific surface area — 255 cm?/cm?®, specific conductivity — 0.03 siemens/cm,
porosity — 0.95 [4-6]. The specific electrical conductivity of the solution — 0.1 siemens/cm,
electrolysis time — 60 minutes.

The experimental and calculated dependences presented in Fig. 1, as well as the consistency of the
results of calculations of electrochemical functions of classical electrochemical theory allow us to
conclude that the mathematical models and calculation algorithms described in this communication
and in our other works [4-6] are effective for numerical studies and optimization of the control
parameters of processes of metal ions extraction from industrial waste water to flowing
threeedimensional electrodes for the purpose of decontaminating waste water. It should be noted
that FTEs could be effectively used simultaneously for cathodic metal extraction and anodic
oxidation of toxic electrolyte compounds in one electrolyser [4-7].

4. Conclusions

The application of mathematical modeling for the study of electrochemical processes in three-
dimensional flowing electrodes in order to solve the problem of metal extraction from solutions of
galvanochemical industries allows us to calculate and predict the results of the technological process,
as well as to optimize the process by calculating the effective values of the control parameters. The
use of the developed program complex allowed to obtain a numerical solution of the scientific
problem of practical importance. A good correspondence of calculation and experimental results is
shown. The possibility of parallel execution of software modules allows increasing the speed of
computer calculations.

87

Kuzina V.V., Varentsov V.K., Koshev A.N., Kupriyanko G. Mathematical modeling and software for calculating regimes of galvanic
wastewater purification from heavy and nonferrous metals in devices with flow-through three-dimensional electrodes. Trudy ISP RAN/Proc.
ISP RAS, vol. 35, issue 3, 2023. pp. 83-90.

References

88

CaeprysoBa C.B. KommiekcHoe 00e3Bpe:kMBaHNE CTOYHBIX BOJ, YTHJIM3AIMS OCAJKOB BOJOOYHUCTKH H
BTOPHYHOE UCTIONB30BaHUE THIICO- U METAJUICOACPIKAIINX MPOMBILIUICHHBIX 0TX010B. 2008. ABTOpedepat
nokropekoit nuccepranuu, KI'TY, r. Kazans, 38 c. / Sverguzova S.V. Integrated wastewater neutralization,
utilization of water treatment sludge and recycling of gypsum and metal-containing industrial waste, 2008.
Author's abstract of doctoral dissertation, KSTU, Kazan, 38 p. (in Russian).

ApyrtionsiH JI.M., Tperyoos A.}O. Crioco0 OYHCTKH NMPOMBIBHBIX BOJ M OTPaOOTAaHHBIX JJIEKTPOIUTOB.
2017. B cbopHuKe TpynoB KoH(pepeHInH, Bonrorpaackuii rocy1apCTBEHHBIH TEXHUYECKUH YHUBEPCUTET,
Bosrorpan, crp. 81-83. Arutyunyan D.M., Tregubov A.Yu. Method for purification of wash water and
spent electrolytes. In the Proceedings of the conference, Volgograd State Technical University, Volgograd,
2017, pp. 81-83. (in Russian).

CI/IHGHLHBB AA. C0p6LH/IOHHa$I OYHCTKa CTOYHBIX BOJA OT HOHOB TsXKCJIBIX MCTAJJIOB C IIOMOIIBIO
MOIMGHUIPOBAHHOTO TPaHyIMPOBaHHOTO Ii1aykoHUTa. 2016. ABTOpedepar KaHANIATCKOH JUCCepTalnH,
Kasan. Hal. ucenes1. TexHou. yH-T., Kasanb, 22 c./ Sineltsev A.A. Sorption purification of wastewater from
heavy metal ions using modified granulated glauconite, 2016. Ph.D. thesis abstract, Kazan National
Research Technological University, Kazan, 22 p. (in Russian).

BapennoB B.K., Kome A.H., BapenmoBa B.M. CoBpemeHHBIC NpOOJIEMBI JIEKTPOIH3a W 3aJadi
ONTUMH3ALUH TPOLECCOB B PEAKTOpPaX C TPEXMEPHBIMHU yriieponHbiMu saekTpofaMu. [lensa: TII'YAC,
2015. 284 c. / Varentsov V.K., Koshev A.N., Varentsova V.l. Modern problems of electrolysis and
optimization problems of processes in reactors with three-dimensional carbon electrodes: monograph.
Penza: PSUAC, 2015, 284 p. (in Russian).

Bapennio B.K., Komes A.H., BapenuoBa B.M., Ky3una B.B. OxuciuTensHO-BOCCTaHOBHUTEIbHBIE
IIPOIIECChl Ha IIPOTOYHBIX TPEXMEPHBIX JJIEKTpoJax. MaTeMaTHueckoe MojelaupoBaHue. Teopus.
Okcnepumenr. [Mensa: IITYAC, 2020, 172 c. / Varentsov V.K., Koshev A.N., Varentsova V.l., Kuzina
V.V. Oxidation-reduction processes on flowing three-dimensional electrodes. Mathematical modeling.
Theory. Experiment: monograph. Penza: PSUAC, 2020, 172 p. (in Russian).

Kysuna B.B., Bapennos B.K.,, Komes A.H. Teopus, marematuueckoe MOIEIUPOBAHUE U
OKCHEPUMECHTAJIIBHBIC HCCICAOBAHUA OJJICKTPOXUMHUYECKUX MPOLECCOB B IMNPOTOYHBIX TPEXMEPHBIX
QJICKTpOAax MpHU IJJICKTPOOCAKIACHUN METAIJIOB U3 pPacTBOPOB TraJIbBAHUYECKUX IMPOU3BOJCTB. Ilen3a:
MI'YAC, 2022, 204 c. / Kuzina V.V., Varentsov V.K., Koshev A.N. Theory, mathematical modeling, and
experimental studies of electrochemical processes in flowing three-dimensional electrodes during
electrodeposition of metals from galvanic solutions: monograph. Penza: PSUAC, 2022, 204 p. (in Russian)
BapennoB B.K. DnexTponns ¢ TpeXMEpHBIMH 3JIEKTPOJAaMH B MPOIECCaX pPEreHepaluy METauloB H3
MIPOMBIBHBIX PAcTBOPOB TalbBAHWYECKUX MPOU3BOACTB / M3Bectnss CHOMPCKOTO OTHENeHNs AKaIeMUH
Hayk Coroza CoBerckux conuamuctunaeckux pecryomuk (CO AH CCCP). Cep. xumudeckux Hayk. 1988.
Bem. 3. Ctp. 124-138. / Varentsov V.K. Electrolysis with three-dimensional electrodes in the processes of
metal regeneration from washing solutions of galvanic production / Proceedings of the Siberian Branch of
the AS USSR. Ser. of Chemical Sciences, 1988, vol. 3, pp. 124-138. (in Russian).

Cxopoxonos B.®., Kuraesa A.C., buproko B.B., Huxurtun P.M., Aprember A.B. KommerotepHoe
MOI[GJTPIpOBaHI/Ie MpOoUECCOB OYUCTKU NPOMBIIIIEHHBIX CTOYHBIX BOJ IJId BLI60pa HUX OITHUMAJIBHBIX
mapametpoB. 2019. B cGopruke TpynoB koHpepeHimn "Teopus W MpakTHKa CHCTEMHOW TUHAMUKH'.
Konbcknit Hay4nsiii meHtp Poccuiickoit akagemun Hayk (Amaruter), ampens 2019. crp. 137-139. /
Skorokhodov V.F., Kitaeva A.S., Biryukov V.V., Nikitin R.M., Artemyev A.V. Computer modeling of
industrial wastewater treatment processes to select their optimal parameters. In Proceedings of the
conference "Theory and practice of system dynamics". Kola Scientific Center of the Russian AS (Apatity),
April, 2019, pp. 137-139. (in Russian).

Hetomen [Ix. [Newman J.] Dnekrpoxumuueckue cucrembl. M.. Mup, 1977. 463 c. / Newman J.
Electrochemical Systems. Moscow: Mir, 1977, 463 p. (in Russian).

Sioda R.E. Flow through electrodes composed of parallel screens. Electrochem Acta, 1977, vol. 22, nom.
4, pp. 439-443.

Macmuii A.U., onny6usrit H.I1., Mensenes A.JK. BiusHe CKOPOCTH U HaNpaBJICHHUS MIPOTOKA pacTBOpa
Ha OCaXXJCHHC METaJlJIa BHYTPU MOPUCTOIO 3JICKTPOJA. Koneunas macca OocCaZKa U €ro pacrnpeaciacHue.
Dnextpoxumusi, 2006. T.42, Ne2. Crp. 183-189. / Masliy A.l., Poddubny N.P., Medvedev A.J. The
influence of the speed and direction of the flow of the solution on the deposition of metal inside the porous
electrode. The final mass of the sediment and its distribution / Electrochemistry, 2006, vol. 42, nom. 2, pp.
183-189. (in Russian).

Kysuna B.B., Bapenmnos B.K., Kouies A.H., Kynpusiako .M. Maremarudeckoe MOAETHPOBAHUE U IIPOTPaMMHOE 00eCIIeUeHHE ISl pacueTa
PEKMMOB OUMCTKM I'ajlbBAHHYECKUX CTOKOB OT TSKENIBIX M IBETHBIX METAJIJIOB B alIapaTax ¢ MPOTOYHBIMH TPEXMEPHBIMH 3JICKTPOIAMH.
Tpyowt UCIT PAH, 2023, tom 35, Beim. 3, ¢. 83-90.

Komes A.H., Bapennos B.K., Hupkuna M.A. AHanu3 MaTeMaTHYECKUX MOZETIeH U Teopus pacupeaeIeHust
NoJIApu3atid NPOTOYHBIX OGL@MHO-HOpHCTLIX 3JICKTPOOB. DU3UKOXUMUS IMOBEPXHOCTHU U 3aliuTa
Mmatepuainos. 2009. T. 45. Ne 4. Crp. 441-448. / Koshev A.N., Varentsov V.K., Chirkina M.A. Analysis of
mathematical models and polarization distribution theory of flow-through porous electrodes /
Fizikokhimiya surface and protection of materials, 2009. vol. 45, nom. 4, pp. 441-448. (in Russian).
Komes A.H., Bapennos B.K., Unpkuna M.A., KamGypr B.I'. Maremarnueckoe MOJIeIMpOBaHIE H TEOPHS
pacrpeneneHus MOMIPU3AMU B JIEKTPOXUMHUYECKUX PEAKTOPax ¢ MPOTOYHBIMU OOBEMHO-TIOPUCTHIMU
karogamu/ A. H. Komies, / Marematnueckoe Mozgemuposanue. 2011. T. 23. Ne 8. Ctp. 110-126. / Koshev
AN., Varentsov V.K., Chirkina M.A., Kamburg V.G. Mathematical modeling and theory of polarization
distribution in electrochemical reactors with flow-through volume-porous cathodes / Mathematical
modeling, 2011, vol. 23, nom. 8, pp. 110-126. (in Russian).

I'BozpeBa WU.I'., Komes A.H., Bopounos A.A. IlporpamMmHBIi KOMIIIEKC Ul pacyeTa IlapaMeTpoB
SJICKTPOXUMHUHYECKOTO MMpoHecca B MIPOTOYHBIX YIJIEPOAHBIX BOJOKHUCTBIX SJIEKTPOJAax. CBHHGTCJ’ILCTBO o
perucrpauuu mporpammsl st OBM 2022616439, 08.04.2022. 3asiBka Ne 2022614434 ot 24.03.2022. /
Gvozdeva I.G., Koshev A.N., Vorontsov A.A. Software complex for calculating the parameters of the
electrochemical process in flowing carbon fiber electrodes. Registration certificate of software
2022616439, 08.04.2022. Application number 2022614434 of 24.03.2022. (in Russian).

Official website of the Free Pascal compiler. [Electronic resource] Access mode:
https://www.freepascal.org/ (Accessed 02/15/2023).

Official website of the GMP library. [Electronic resource] Access mode: https://iwww.gmplib.org/
(Accessed 20.02.2023).

XKopnsik A.T'., Mopo3osa T.A. [Ipumenenue cpenst pazpadotkn LAZARUS 1yt HaydHBIX ¥ MHKEHEPHBIX
uccnenoanuid. Yacte |. MaTemaTndeckue BBIUYMCICHHS M BU3YalH3alUs TONYyYCHHBIX PE3YNIHTaTOB.
Hayuno-texuuueckuii BecTHHK IToBomkbs. 2023. Ne 1. C. 56-59. / Zhornyak A.G., Morozova T.A.
Application of the LAZARUS development environment for scientific and engineering research. Part I.
Mathematical calculations and visualization of the results obtained. Scientific and technical bulletin of the
Volga region. 2023. No. 1. pp. 56-59.

Bapenno B.K., Komer A.H. Teoperndeckne ¥ SKCIepUMEHTAIBHBIE MccienoBaHus 3ddekra
06p8.30BaHI/I$I AHOOHBIX 30H B o0beEME KaTOAHO-TIOJIAPU30BAHHOI'O0 TPEXMEPHOT'O0 JJICKTPOJda U3
YTJIEPOIHOTO BOJIOKHHUCTOTO MaTepuaia. / TeopeTnaeckre 0CHOBBI XUMH4ecKoit TexHooruu. 2022, T. 56.
Ne 4. Crp. 464-473. / Varentsov V.K., Koshev A.N. Theoretical and experimental studies of the effect of
anodic zones formation in the cathodically polarized three-dimensional electrode made of carbon fiber
material. / Theoretical basis of chemical technology, 2022, vol. 56, nom. 4, pp. 464-473. (in Russian) DOI:
10.31857/S0040357122040078.

Ungpopmayusi 06 aemopax / Information about authors

Banentuna Baamumuposna KY3MHA — kaHIumaT TeXHUYECKUX HAYK, JAOICHT, JOUEHT Kadeaps
«H(pOpMAIIMOHHO-BBIYHCITUTEIbHBIE CHCTEMBD» [I€H3€HCKOrO TOCYIapCTBEHHOIO YHHBEPCUTETA
aApXUTEKTYpHI U cTpouTenbcTBa. Cdhepa HayIHBIX HHTEPECOB: WH(POPMAIMOHHBIC TEXHOJOTHH
CHUCTEMBI, IPOTPAMMHUPOBAHUE, MATEMATUIECKOE MOICTUPOBAHUE, YUCICHHBIE METO/IBI.

Valentina Vladimirovna KUZINA — Candidate of Technical Sciences, Associate Professor,
Associate Professor of the Department "Information and Computer Systems" at Penza State
University of Architecture and Construction. Research interests: information technologies and
systems, programming, mathematical modeling, numerical methods.

Banepuit Koncrantuaosna BAPEHIIOB — moktop TeXHWYeCcKHX HayK, mpodeccop, Bemymuid
HAYYHBIH COTPYIHHMK J1abOpaTOpHH TETEpOTreHHBIX cHcTeM VHCTHTyTa XMMHHM TBEPJAOTO Tela |
mexanoxumun CO PAH. Cdepa HaydHBIX UHTEPECOB: TEOPETHUECKHUE OCHOBBI TEXHOJIOTHIECKUX
IPOLIECCOB U INIEKTPOXMMUYECKUX PEAKTOPOB C IMPOTOYHBIMH TPEXMEPHBIMU 3IEKTPOJAMH,
pa3paboTka TEXHOJOTUH U 3JIEKTPOJIU3EPOB IS IIEKTPOOCAXKICHUS METAIOB M3 PAacTBOPOB,
WHTEHCU(PHUKAINY OKHCIUTEIbHO-BOCCTAHOBUTEIIFHBIX ITPOIECCOB.

89

Kuzina V.V., Varentsov V.K., Koshev A.N., Kupriyanko G. Mathematical modeling and software for calculating regimes of galvanic
wastewater purification from heavy and nonferrous metals in devices with flow-through three-dimensional electrodes. Trudy ISP RAN/Proc.
ISP RAS, vol. 35, issue 3, 2023. pp. 83-90.

Valery Konstantinovich VARENTSOV — Doctor of Technical Sciences, Professor, leading research
associate of the Laboratory of heterogeneous systems at the Institute of Solid State Chemistry and
Mechanochemistry SB RAS. Research interests: theoretical bases of technological processes and
electrochemical reactors with flow-through three-dimensional electrodes, development of
technologies and electrolyzers for electrodeposition of metals from solutions and intensification of
redoX processes.

Anexcanap Huxonaesmu KOIIIEB — mokTop XuMmdeckux Hayk, mpodeccop, nmpodeccop xadempol
«HpOPMaINOHHO-BBIYUCIIUTENEHbIE CUCTEMbD» [IeH3EeHCKOro rocyJapcTBEHHOTO YHHBEPCHUTETA
apXHUTEKTypsl M cTpouTenbcTBa. Cdepa HaydHBIX HWHTEPECOB: MH(OPMALMOHHBIE TEXHOJOTHH,
MaTeMaTH4ecKoe MOJICIIMPOBAHUE U ONITHMAIILHOE YIPABJICHHE TEXHOJIOTMYECKUMH MPOLIECCaMH B
CTPOMTEIBCTBE, ICKTPOXUMHUH, KOJIOTHH.

Alexander Nikolaevich KOSHEV — Doctor of Chemical Sciences, Professor, Professor of the
Department of information and computer systems at Penza State University of Architecture and
Construction. Research interests: information technologies, mathematical modeling and optimal
control of technological processes in construction, electrochemistry, ecology.

I'me6 Muxaiinosua KYIIPUAHKO — acmmpant xadenpsr «HQOpMAMOHHO-BEYUCIUTEIHHEIC
cucteMbl» [IeH3eHCKOro ToCy1apCTBEHHOTO YHHBEPCUTETa apXUTEKTYPHI U cTpouTenbcTBa. Chepa
HAaY4YHBIX UHTEPECOB. HH(POPMAIIMOHHBIE TEXHOJIOTUU U CUCTEMBI, IPOIPAaMMHPOBAHHE.

Gleb Mikhailovich KUPRIYANKO - postgraduate student of the Department "Information and
Computer Systems"” Penza State University of Architecture and Construction. Sphere of academic
interests: information technologies and systems, programming.

90

Tpyowr UCIT PAH, mom 35, éwin. 3, 20192. //Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-7 @H

“Symcrete” Memory Model with Lazy Initialization
and Objects of Symbolic Sizes in KLEE

1S.A. Morozov, ORCID: 0000-0003-1160-5614 <morozov.serg901@gmail.com>
2 A.V. Misonizhnik, ORCID: 0000-0002-5907-0324 <misonijnik@gmail.com>
$D.A. Mordvinov, ORCID: 0000-0002-6437-3020 <mordvinov.dmitry@gmail.com>
D.V. Koznov, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru=
4D.A. lvanov, ORCID: 0000-0002-0420-9077 <korifey@gmail.com>

! National Research University ‘Higher School of Economics’,
16, Soyuza Pechatnikov Street, Saint Petersburg, 190121, Russia.
21T Solutions Inc.,

41, Novoslobodskaya Street, Moscow, 127055, Russia.

3St. Petersburg State University,
7/9, Universitetskaya Embankment, Saint Petersburg, 199034, Russia.

4Huawei Technologies Co., Ltd.,

69-71, Marata Street, Saint Petersburg, 191119, Russia

Abstract. Dynamic symbolic execution is a well-known technique for testing applications. It introduces
symbolic variables — program data with no concrete value at the moment of instantiation — and uses them to
systematically explore the execution paths in a program under analysis. However, not every value can be
easily modelled as symbolic: for instance, some values may take values from restricted domains or have
complex invariants, hard enough to model using existing logic theories, despite it is not a problem for
concrete computations. In this paper, we propose an implementation of infrastructure for dealing with such
“hard-to-be-modelled” values. We take the approach known as symcrete execution and implement its robust
and scalable version in the well-known KLEE symbolic execution engine. We use this infrastructure to
support the symbolic execution of LLVM programs with complex input data structures and input buffers with
indeterminate sizes.

Keywords: symbolic execution; software analysis; lazy initialization; symcrete execution; smt-solvers.

For citation: Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete”
memory model with lazy initialization and objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS,
vol. 35, issue 3, 2023. pp. 91-108. DOI: 10.15514/ISPRAS-2023-35(3)-7

Acknowledgements. This work is supported by the grant of the Russian Science Foundation (RSF) Ne 22-21-
00697.

91

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

CumMmKpeTHasa moaenb NaMATU C IEHUBOW MHULMaNM3aumen mn
06beKkTaMu CUMBOJSILHOIO pa3Mmepa B CUMBOJSILHOW BUPTyaribHOM
mawuHe KLEE

L C.A. Moposos, ORCID: 0000-0003-1160-5614 <morozov.serg901@gmail.com>
2 A.B. Muconuxcnux, ORCID: 0000-0002-5907-0324 <misonijnik@gmail.com>
3 J1.A. Moposunos, ORCID: 0000-0002-6437-3020 <mordvinov.dmitry@gmail.com>
3 J1.B. Kosnos, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>
4 I.A. Hsanos, ORCID: 0000-0002-0420-9077 <korifey@gmail.com>

! Hayuonanonwuii uccnedosamenvckuii ynusepcumem “‘Boicuias wixona sxonomuxu”,
Poccus, 190121, Cankm-Ilemepoype, Corsa [leuamnukog yu., 0.16.
Z|T Solutions Inc.,
Poccus, 127055, Mocksa, Hoéocroboockas ya., 0.41.

8 Canxm-Ilemepbypackuii 20cydapcmeennvlil yHusepcumen,

Poccus, 199034, Canxm-Ilemepoype, Yuusepcumemckas nab., o. 7-9.
4Huawei Technologies Co., Ltd.,
Poccus, 191119, Cankm-Ilemepoype, Mapama yn., 0. 69-71.

AHHOTauus. JIMHAMHYECKOe CHMBOJBHOE BBINOJHEHHE — XOPOIIO M3BECTHBIH METOJ] TECTHPOBAHUS
npuwioxeHniH. OH BBOAUT IOHSATHE CHMBOJIBHOW IEPEMEHHOH — [aHHBIX IPOTPaMMblI, HE HMMEIOIMINX
KOHKPETHOTO 3HAYEHHSI B MOMEHT OOBSBICHHUS, — U UCTIOIB3YET UX ISl CHCTEMAaTHYECKOTO N3ydeHHs ITyTel
BBINOJHEHUS B aHamu3upyemoil mporpamme. Onnako He Cankt-IlerepOyprekmii rocyaapcTBeHHbIN
YHUBEPCHTET Ka)KI0€ 3HAUCHHE MOXKET OBITH JIETKO CMOJCIMPOBAHO KaK CHMBOJIMYECKOE: HalpHuMep,
HEKOTOpBIC 3HAYEHHS] MOTYT NPHHUMATh OTPAaHUYCHHOE YHCIIO 3HAUCHUH WIM UMETh CJI0)KHBIC HHBApPHAHTH,
KOTOpBIE JOCTaTOYHO CJIOXKHO CMOJEIHPOBATh C HCIHOJIb30BAHMEM CYIIECTBYIOIIUX JIOTHYECKHX TEOpHH
HECMOTpPSI Ha TO, YTO 3TO HE SBIACTCS MpoOIEeMOW I KOHKPETHBIX BBIYHCICHUI. B 3Toi craThe MBI
MpeyiaracM peaan3annio HHPPACTPYKTYPHI 11 pabOThl ¢ TAKUMH “‘TPYAHO MOACTHPYEMBIMU™ 3HAYCHUSIMHU.
Msbl ucmonb3yeM IMOAXOM, HM3BECTHBI KaK CHMKPETHOE HCIIONHEHME, M pPealn3yeM €ro HaJeXkHYI H
MacIITadHPYEMYIO BEPCUIO B XOPOLIO U3BECTHOM JIBM)KKE CUMBOJIBHOTO BhImoHeHHs1 KLEE. MbI necnonbzyem
9Ty MHPPACTPYKTYPY UL HOAIEPIKKH CUMBOJIBHOTO MCHONHEHUs mporpamMM Ha sizbike LLVM co croxubIME
CTPYKTYpaMH BXOJHBIX TaHHBIX M BXOJHBIMH Oydepamu HeoIpe/ieIeHHBIX pa3MepOB.

KiwueBble c¢j0oBa: CHMBOJbHOC HCIOJNHCHHE; aHANW3 MPOTPAMMHOTO oOeclieueHHs; JICHHBAs
WHUIMATTU3a1us]; CAMKPETHOE UCIIOIHEHUe; SMt-permares.

Jas uutupoBanusi: MopozoB M.A., Muconmwkauk A.B., Mopasuraos [I.A., Koznos /I.B., MBanos [I.A.
CuMKpeTHas MOJIENb MTaMSTH C JICHHBOH MHAIIMAIH3aNeH 1 00bEKTaMI CHMBOJIBHOTO pa3Mepa B CHMBOJIBHON
upryanpHoil MammHe KLEE. Tpyner UCIT PAH, tom 35, Beim. 3, 2023 r., ctp. 91-108 (Ha aHTIHiicKOM
si3bike). DOI: 10.15514/ISPRAS-2023-35(3)-7

BaaromapnocTn. PaGora noxnepxana rpantom Poccuiickoro Hayunoro donna (PH®) Ne 22-21-00697.

1. Introduction

Dynamic symbolic execution is a software testing technique that allows exploring execution paths
in a program under analysis, generates test coverage, and finding bugs in a given source code (e.g.
out of bound memory errors or signed integer overflows) [1]. This is done by marking some program
variables as symbolics, in other words, variables with no specific value. During analysis, a symbolic
engine adds logical constraints to them, which possibly restrict values in different paths. To prove
the satisfiability or unsatisfiability of a set of constraints, symbolic engines widely use SMT-solvers
[2], such as Z3 [3], CVC5 [4], bitwuzla [5] and many others.

92

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

Encoding a set of values with logical constraints for each symbolic variable is one of the crucial
ideas in symbolic execution. This approach enables keeping several program executions as a single
execution state at the current position in the exploration path. All possible solutions for these
constraints then become the values of symbolic variables in corresponding execution states. Since
solving such formulas is an NP-hard problem, the performance and completeness of the solution
heavily rely on the number and size of the logical formulas passed to the SMT-solver.

However, some values in a program can be hard to model by decidable logical constraints. The
problem arises from the fact that the values of a variable may belong to a restricted domain. Such
domains can have implicit and complex rules to encode in a logical formula. Let us provide some
examples in which the described problem appears:

o Objects with symbolic sizes. Program under analysis may dynamically allocate memory on
the heap (e.g. withmalloc (n) in C language or operator new[n] in C++). If we
treat the argument passed to that function as symbolic, we will allocate an object whose
size may have different values depending on the current execution path (object with
symbolic size). Consider an example presented in Listing 1.

int foo (int n) {

char » s = (char *) malloc (n);
if (n == 1) {
s [0] = 0;

} else if (n > 1) {
s [1] = 10;
}

return 1;

Listing 1. Dynamic allocation

If we pass a symbolic argument to that function, we will allocate an object with symbolic
size at the first line. Then the allocated object will have different sizes at the distinct
branches of if-statement. Modelling objects with symbolic size might take many
computational resources. Each allocated memory object is represented as a separate entity
and cannot intersect with other objects. Naive modelling of these restrictions may result in

SMT solvers needing to handle 0 (n?) constraints, where n is the number of memory
objects. Such modelling can significantly impact the performance of symbolic execution.

e External calls. During program exploration, the symbolic execution engine may meet calls
to undefined or external functions, i.e. functions with no sources provided. As the
engine does not have any information about the encountered function, it cannot properly
model function behaviour to continue accurate analysis: for instance, the return value of
this function may take a limited number of values. Interpreting return value as a symbolic
value may be too excessive to model function behaviour, and the symbolic engine is
doomed to lose precision in this case.

One possible behavior is plain modelling of all such behaviors described in the bullets above.
In this case, the engine over-approximates program behavior, i.e. explores more paths than there
are. Therefore, it degrades performance and accuracy.

Another behavior, taken, for instance, in KLEE symbolic execution engine [1], is to fix one
possible solution during analysis. When the engine meets specific code constructions, it picks up
the solution for all symbolic variables involved in one. Then it restricts taken variables with values

93

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

from the received concrete solution for the following exploration. For instance, the constructs
described above are modelled as follows:

e Obijects with symbolic sizes. We might avoid performance issues by choosing one exemplar
of asymbolic size fitting current constraints at the moment of the allocation. For example,
while executing the malloc (n) statement at Listing 1, KLEE would choose some
concrete value of n fitting the current path constraints, say, n = 1. But then,
branchings on n would be evaluated only within this concrete assignment, leading to
missed branches. In this case, KLEE misses covering the s[1] = 10, statement.

e External calls. Calls to external or undefined functions may be modelled as actual calls
to these functions. As such functions might take arguments, which were marked as
symbolic variables before, the symbolic execution engine needs to find a solution for them
to satisfy previously added logical constraints. Return value then will be a constant value
and cannot be treated as a symbolic value.

In these cases, the engine explores fewer paths than actually exist. On the one hand, it leads to
performance improvements, as the engine analyses a smaller number of possible program
behaviours. On the other hand, it impairs the engine’s ability to find vulnerabilities in a program
under analysis, leading to a non-exhaustive search through the program inputs space. In other
words, this approach under-approximates program behaviors.

The idea that can be applied to resolve problems discussed above is to use a well-known approach
of symcrete® [6, 7] execution. This feature allows a symbolic execution engine to mark variables
as symbolic, but additionally keep a concrete value (concretization) for it satisfying some set of
logical constraints. This concretization might be given by an algorithm different from the SMT-
solver. Therefore, if such algorithms maintain some invariants inside, then they will be
automatically satisfied for produced models.

The described idea gives several opportunities to the KLEE execution engine, but one of the most
interesting is the support of objects with indeterminate sizes. It is achieved due to the property of
allocators to allocate non-intersecting objects and the property of symcretes to keep concrete values
fitting current constraints. Hence, we can dynamically maintain memory layout with no significant
impact on performance. The feature of objects with symbolic sizes would increase the engine’s
precision for detecting buffer overflows and other memory issues in LLVM programs.
Symcretes should be fully compatible with the existing features of the symbolic virtual machine,
such as lazy initialization [8, 9]. This technique enables the exploration of program behaviors
with complex input data structures.

In summary, the main contributions of this paper are:

1) Implementation of the infrastructure of symcrete execution in KLEE.

2) Application of this infrastructure to model objects of symbolic sizes.

3) Application of this infrastructure to improve the currently existing mechanism of lazy
initialization.

2. Background

Before discussing the main ideas of this paper, let us introduce the basic concepts of symbolic
execution used throughout this paper.

crete” = i .
1 «Symcrete” = symbolic + concrete

94

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

2.1 Execution and forking

Dynamic symbolic execution executes a program with symbolic variables, i.e. values that represent
all possible concrete program inputs. During program exploration, the execution engine operates
with execution states, which can step over one instruction and fork. For these states, the symbolic
execution engine maintains the inner representation of programs memory model. Also, every
execution state maintains path constraints (PC) — a set of logical formulas describing the
explored path. When the execution engine meets a conditional operator, it queries the solver with
constraint and its negation, and forks state if solutions for both constraints exist. If only one
statement is true, it does not fork and simply proceeds the execution of a reachable path.
Take a look at the example in Listing 1: let n be a symbolic parameter of the function. In the
beginning, path constraints are empty, and the inner memory representation contains only one
record: n — A. After execution state meets the line if (n==1) { ..}, it queries solver
about the validity of PC with A =1 and PC with = (A =1). As they are both satisfiable, it
splits the current execution state into two states with the same objects in memory and path
constraints PC’/ = PCAA=1, PC”=PCA—- (A= 1) correspondingly.

2.2 Memory model

Objects in memory have addresses, which represent their location in the symbolic engine’s address
space, sizes, representing the number of allocated bytes for their content in address space,
alignment, which makes restrictions on an address (for instance in source code user can call
posix memalign and memalign functions), and contents, an array of (potentially symbolic)
bytes. To handle all that information, symbolic engines maintain memory model, which stores
required information about all currently existing objects: addresses, sizes, contents, and so on.

2.3 Constraints Representation

Every constraint in KLEE is an expression. Expression is a tree, each node of those is an
operation, and children are operands. Every leaf of these trees is either constant or read from
a symbolic array. A symbolic array is an array from the SMT theory of arrays, i.e. unbounded
storage of symbolic integers, supporting both load and store operations. Each store operation
creates a new version of an array with a value changed by a specified index, therefore arrays can
be considered immutable.

For brevity, we use the term “array” instead of “symbolic array”.

2.4 Validity Cores

A set of constraints with a statement may be valid, that is, no counterexample can be found for it,
and invalid otherwise. To check the validity of expressions, the engine queries SMT-solver with
a given set of assumptions and negation of the provided statement. If SMT-solver gives a
solution that satisfies the received query, then a counterexample is found and the initial statement
in the assumption of constraints from the set is invalid. Otherwise, it may return a validity core,
a subset of constraints “explaining” the validity.

For instance, consider the set of assumptions {A < 10,A > «} and a statement A >10. We
would like to check the validity of a statement within the assumptions, that is, the validity
of the formula

VA, a : A < 1I0A A > a=>A > 10

To show it, we might prove that the negation is unsatisfiable, i.e.

95

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

INLa:A<10AA> aA (2> 10)

SMT-solver would find a satisfying assignment, for example, {A1-1,21-0}. It means
that we have found acounterexample for the initial statement.

In contrast, if we check a statement A <11 with the same assumptions, we would query the
satisfiability of {A <10,A>a,— (A <11) } and receive from SMT solver the “unsatisfiable”
verdict. State-of-the-art SMT solvers can compute unsatisfiable cores, a subset of conflicting
statements. In this case, one unsatisfiable core is {A <10,- (A <11) }. It can be converted to
validity core: just take assumptions from the unsatisfiable core as-is, and convert the negated
statements from the unsatisfiable core to the original ones. In our example, the validity core
includes the assumption A < 10 and the statement A < 11.

2.5 Optimizing solvers

As mentioned above, solving logical formulas, which have been constructed during program
analysis, is the NP-hard problem. Hence, the complexity of the formulas in the query and the
number of such queries becomes a bottleneck of symbolic execution. To simplify the queries to the
solver, execution engines apply many optimizations for logical constraints. One way to provide such
optimizations is to use optimizing solvers — solvers that can modify, separate, construct additional
logical formulas, or even resolve received queries without calling an expensive SMT-solver. Such
a solvers can form a chain ending with the SMT-solver.

2.6 Pointer resolution

Many languages, like C or C++, allow storing addresses directly into locations and dereference
them. The resolution of concrete pointers is trivial, but symbolic execution engines might
encounter programs with symbolic pointers. Consider the example in Listing 2.

int x = 10;
int v = 20;
void bar (int * s) {

* s = 0y

Listing 2. Pointer resolution

As we do not know, at what address pointer s should be resolved, we must check every
possible memory object, including the pointer variable itself. To handle these cases, the vanilla
KLEE engine makes a pointer resolution operation: it iterates over all existing memory objects
in memory and attempts to dereference given pointer into them: query the solver if a formula
ptr+ idx>addressNptr+ idx+ type _size< address + size, with the formulas
from path constraints, where pt r is a dereferencing pointer, i dx is a relative offset (e.g. if we
access the array by some index, ptr[10] in C or C++ languages), type size is the size
of the type we are trying access through, address is the address of the memory object we are
trying to access, size is the size of that memory object. If the pointer can be dereferenced to
the chosen memory object, KLEE forks the current execution state and modifies path constraints
pc of the received state with the above constraint.

In the example in Listing 2, pointer s can be resolved to at least two existing objects: x or y. After
storing operation *s = 0; KLEE will maintain at least two execution states, in which 0 is
written to x or .

96

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

2.7 Lazy initialization

However, pointer resolution might not be enough to model all possible execution paths in a
program. Suppose, you need to test a code for a linked list presented in Listing 3.

typedef struct Node ({
int x;
Node * next;

} Node;

int baz (Node 1) {
l.next -> x = 1;
assert ((l.x + l.next -> x) % 2 ==0);

Listing 3. Linked list

In this code snippet struct Node contains a pointer to the next element in the linked list,
which will be a symbolic value if we pass a symbolic argument to function baz. Consequently,
pointer resolution at the line 1.next->x = 1 will proceed for the symbolic pointer in the
same manner as described above. As we do not have any other objects of type struct Node,
this code example will only test circular linked lists at most of length 1.

The problem here arises from the fact, that analyzing program does not contain explicitly
initialized additional linked list nodes. We will face a similar problem if we try to analyze any
recursive data structures, like Binary Search Trees, Linked Lists, and so on.

To overcome described obstacle modern symbolic engines apply a technique called lazy
initialization. This method allows initializing additional objects in memory, if so required, to
explore more program behaviors. Return to the example at Listing 3: during pointer resolution
the symbolic execution engine will allocate one more additional object of type struct Node
to model linked list with length at least 2 and fail the assertion assert ((1.x + 1l.next-
>x) % 2 == 0); (as for circular linked list we summed two equal numbers before).

3. Design principles

During infrastructure design, we agreed on a set of principles to create a maintainable and easily
extensible framework. These principles are as follows: (a) clear separation of public and private
interfaces, (b) recompute only the demanded values, and (c) concretization should always exist.
Let’s consider them in more detail.

a) Clear separation of public and private interfaces: One of the most important
requirements for symcretes architecture was to keep the symcretes public interface as simple as
possible. Thus, to prevent the developers from implementing complex logic in various spots of
symbolic engine code, the public interface of symcretes infrastructure should only provide
methods to add a symcrete value to the execution state and to receive a current concretization
for symcrete. All the internal architecture of symcretes and any processing details made by
its infrastructure should not be accessible from the symbolic engine code.

b) Recompute only demanded values: Since the symcrete variable is the symbolic variable
paired with the concrete value fitting some constraint set, then this concrete value may become
obsolete with the addition of a new statement. As it might be difficult to receive a new

97

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

model for all symcrete variables in such situations, we require recomputing concrete values
only for symcretes, which affects the validity of the query.

c) Concretization should always exist: At every moment, we should be able to receive an
actual model for the symcretes used in the current constraint set. In other words, symcretes
architecture should be similar to the “Observer” pattern, where the observable object is the
solver and it should provide a possibility to subscribe to the solver updates.

4. Implementation

We have built our implementation on top of the KLEE of version 2.3 [10].

Followed by the principles described above we have separated symcretes and internal
mechanisms to handle them, which we called concretizing solver. In our implementation
symcrete is a pair of an array and a concrete value. To make a symcrete expressions we assign
a read from created array to that expression. Concretization of symcretes is represented by the
map from such arrays to bits storages.

To distinguish different symcretes we equipped all arrays with a new characteristic — arrays
sources. These sources should reflect how the current array was received. For instance, an array
that has been made to handle the addresses of memory objects should differ from arrays that are
used to handle the content of memory objects. Also, these sources can carry useful properties for
algorithms, which are used to generate values for them. Wewill show the application of these
properties below.

The main logic for symcretes located in concretizing solver. It is one of the optimizing solvers, that
can modify and handle received queries properly. In particular, concretizing solver modifies each
query with constraints over symcretes: it adds equalities in form of (Eq (Read width 0
symcrete array), Constant), where Read width offset source is the read
expression of width width at offset offset and array source —and passes them to the
underlying solver. However, such modifications are not enough to handle symcretes.

Let us consider the following example. Suppose, we have a symcretes values x and y with
concretization x = 5, y = 10, query with the set of assumptions [x < 10, y < 20] and the
statement x < y. Concretizing solver at the preprocessing stage will make additional constraints
x =5,y =10, and consequently, the query will transform into a new query with the set of
assumptions [x<10,y<20,x=5, y=10] and statement x < y. Note, that this query is valid
according to “validity logic”, as to compute validity we negate the statement, which results in x >
y. Existing concretization cannot satisfy all assumptions with negated statement.

Therefore, existing concretization might add constraints, which force a given theorem to become
valid, despite the original query being invalid. To solve such a problem, we process a symcretes
relaxation after receiving a valid response from the solver. Symcretes relaxation is the algorithm
that aims to recompute values for symcretes to receive an invalid response if so exists.

To implement it according to our principles, we need to find all symcretes that have inappropriate
values (see principle “Recompute only required values™). Such values may be found in the validity
core, which might be received from the solver. For that purpose, we extended the interface of
KLEE’s solver with functions that may return validity cores on valid responses. Since then, we
can process a relaxation after receiving a valid response with current concretization.

The relaxation algorithm is provided in Algorithm 1. More detailed, the core part of the algorithm

is located inthe do { ... } while(...); loop. It firstly constructs a concretized query by adding
equality constraints on symcretes (line 5) and queries the solver with this query (line 6). If the
response is already invalid, the loop can be completed (lines 7-9), and all we need is to assign
appropriate values to symcretes, which have lost concretizations (lines 24-30). Otherwise, we
will look at the validity core from the valid response and collect all symcrete arrays, those

98

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

concretizations affected validity (this is done by collecting all arrays and filtering them by predicate
isSymcrete at line 11). After that, we check if we removed concretization, which was not
removed before (lines 15-17). If so, we continue the process. Otherwise, the current validity core
proves, that the initial query is valid.

In the general case, the presented process can take more than one iteration. This might happen,
as SMT-solver does not guarantee to return all unsatisfiable sets of formulas from the given query:
usually, they return any set of formulas that cannot be satisfied.

Let’s see that in the example. For instance, we have symcretes x and y with concretizations 0
and 1 correspondingly, and statement [x < y 1. The concretized query will have aform of [x <
y, x=0, y=11.Then we will query the solver with the statement x < 0. According to “validity
logic” query will transform to a set of formulas [x <y, x=0, y =1, x> 0], which cannot
be satisfied, and we can highlight at least three unsatisfiable subsets: [x= 0, x>0], [x <
y,x>0,y=1] and [x<y,x=0,y=1,x>0]. SMT-solver can return any of these. If it
returns the first subset, the algorithm will remove concretization only for x, but the query will
remain valid. Then on the second iteration, the SMT-solver return the second subset of
formulas from the presented subsets. Consequently, the algorithm will remove concretization for
y and after that find a counterexample to the initial statement, say, x=1, y = 2.

After removing all outdated concretizations for symcretes we need to assign new values to them.
To do that we query the registered algorithms (lines 24-26). After receiving new concretizations,
we check if the solution for the entire query invalidates the received statement in the assumption
of the given constraint set. If still not, we admit that the query is valid (lines 28-30). This can
happen when concrete values for symcrete variables received from registered algorithms cannot
provide values invalidating the query.

If the statement in the assumption of a set of given constraints is provably invalid, i.e. has a
counterexample, then we store concretizations of symcretes involved in that query in a
concretization manager. The concretization manager is the structure that stores concrete values
for symcretes for all encountered invalid queries. It may be accessed from the symbolic execution
engine to get the current concrete value for symcrete.

If we want to add a constraint without an explicit call to a solver, then we may lose the record
to the concretization manager. In this case, we need to update it manually from the code location
where the constraint is added.

Summing up all implementation details and principles, in KLEE to mark a variable as symcrete
we need to create a new array. For that array, we need to specify its source. For arrays with
such a source, we need to provide an algorithm which will be used to generate concrete values.
To access the concrete value of the symcrete variable we may query the concretization manager
with the constraint set and statement we are interested in.

In the next sections, we will show how we can use symcretes to support objects of symbolic sizes
and improve the existing mechanism of lazy initialization.

4.1 Properties of objects of symbolic size

Before discussing the implementation of objects with symbolic sizes we need to discuss some of
their properties. As we said before, every object has 3 main parameters: address from enclosing
address space, size, and content. The content of memory objects can be considered independently
from address and size, therefore we will not take it into account in the reasoning below.

Algorithm 1 Relaxation algorithm

1: function RELAX (query, symcretes)
2: relaxationProceeded — true;

3: removedSymcretes « [];

4: do

99

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

5: concretizedQuery — query, symcretes;

6: resp « SOLVER.CHECK (concretizedQuery) ;

7 if ReEsSP.ISINVALID() then

8: break;

9: end if

10: relaxationProceeded false;

11: validSymcretes — RESP.VALIDITYCORE () .ALLARRAYS () .FILTER (isSymcrete) ;
12: if (validSymcretes\symcretes) .ISEMPTY () then

13: break;

14: end if

15: relaxationProceeded — VALIDSYMCRETES.INTERSECT (symcretes) .ISEMPTY () ;
16: removedSymcretes « REMOVEDSYMCRETES .UNION (validSymcretes) ;
17: symcretes « symcretes \ validSymcretes;

18: while relaxationProceeded;

19:

20: if —relaxationProceeded then

21: return Valid

22 end if

23:

24: for sym € removedSymcretes do

25: sym « GETVALUEBYSOURCE (sym.source) ;

26: end for

27:

28: concretizedQuery — query, symcretes

29: resp — SOLVER.CHECK (concretizedQuery)

30: return RESP.VALIDITY ()

31: end function

Firstly, we may suppose, that addresses of objects with symbolic size may be considered as symbolic
values. The idea comes from the fact, that two allocations with different sizes at the same location
in source code will likely receive different addresses.

Secondly, we may assume that the size and address of one object are dependent values, i.e.
changing of object’s size may affect the address in the enclosing address space.

Also, we need present several requirements for our implementation:

1) it should allow to dynamically resize objects

2) if several states maintain the same objects with different actual sizes, they must appear
identically

3) it should consume as less memory, as possible

The logic behind the first requirement can be seen in the example at Listing 4.

char * s = malloc(n);
if (n > 1) {
if (n > 2) {

Listing 4. Reallocation

In the assumption of n to be a symbolic variable, at the first line, we allocate an object with
symbolic size. The most inner i f£-statement must be reachable with the object of size at least 3
addressable by pointer s.

The second requirement says, that states containing the same object with different concretized sizes
must keep its properties: ID, alignment, allocation site, address and size expressions, and so on.

100

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

This requirement arises from the fact, that all actions are done with the specified object, and its
properties cannot be violated or become outdated. Hence, after state forks, we must be able to
use old constraints with new ones to find a solution for addresses and sizes in different branches
of execution.

The last requirement states, that our implementation should use as less memory as possible. More
detailed, since SMT-solvers work with variables as with numbers without any additional
information, they might give huge models for objects with symbolic size. That may cause
performance issues. Another problem is that the test case, that the symbolic engine will generate to
report a bug, also can be huge enough. Usually, users want to receive the smallest test case to find
the issue, therefore, we need to take care of that requirement.

4.2 Implementation of objects of symbolic size

As noted above, addresses of objects with symbolic sizes may be considered symbolic. Also, in
the Section 1, we have already noticed, that we can use symcrete variables in this case.

To use them we added a new array source, which we called AddressSource and an algorithm,
that will be able to generate solutions for such arrays. We introduced an AddressGenerator
interface for that purpose. It has only one method allocate (addressArray, size). All
the classes implementing AddressGenerator should provide appropriate (e.g. non-
overlapping) addresses for specified address array addressArray from the arguments list
each time the allocate (addressArray, size) method is called.

We implement this interface in AddressManager class, which provides an additional method
allocateMemoryObject (addressArray, size).

This class is used in both concretizing solver and the execution engine. On call to allocate it
allocates the memory, and ceiling size to the nearest power of 2. Then it creates a new memory
object, that should copy all properties of the already existing memory object, that utilizes the
same array as the address array and caches created object. It is also optimized for multiple
allocations. Therefore, if the solver requests a size less than at least one of the cached memory
objects, then it will return it (that optimizes memory consumption). Note, that in the worst case,
this manager will use 21 bytes of memory, there ¥ = 2[1°% Sland S is the size of the biggest
memory object. An approach with the powers of 2 for allocated sizes has been chosen not to change
concretizations of addresses for all other states, that use the same memory object. This is because
certain states may force expressions to take concrete values (for instance, during the execution of
an external call), and changing of address value for a group of states will invalidate such states.
allocateMemoryObject (addressArray, size) method is used to receive a memory
objects created at allocate method. These memory objects are required to update an address
space of execution state after recomputation of concretization for symcretes in its path constraints.
Since now, as we can maintain objects with symbolic addresses, we may apply symcretes to handle
the model for objects with symbolic size. For that, we introduce symcretes with array source
SizeSource. Symcretes with such source will contain values, corresponding to the size of memory
objects, and therefore, their sum should be minimized (as we said in the requirements above). We
extended KLEE’s solver interface with a minimization algorithm, that solves an optimization
problem and computes minimal possible values for a expression. This is done by the binary
search on the answer for a given expression with a set of given assumptions.

One more important thing about this implementation is that address symcrete cannot become the
reason for symcretes recomputation. It means that if in the algorithm at the Listing 5 we received
an address symcrete as a symcrete with a non-appropriate value and did not receive the size symcrete
for the same object, we will not recompute the address and size. This is done for reasons that as we
are using the system’s allocator, we are not able to choose the values for addresses and ourselves.

101

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

Hence, if some concretization for some addresses violates constraints, then it is likely constraints on
addresses were added and we cannot continue analysis for that execution path (except null check,
in our implementation it is checked separately). For now, we cannot handle such situations
properly, but for real-world problems, it covers most of the use cases.

Let’s see an example presented in Listing 5. In this example, we dynamically allocate memory
objects of size n. At the moment of allocation n might take any possible value of type unsigned,
and we do not know the exact size of allocated objects. As we are applying a minimization strategy
for objects of symbolic sizes, the minimal possible value for the size of allocated objects is 0.
Hence, before first if-statement exact size of allocated memory object in address space of
enclosing execution state will be 0, and we will have two known symcretes: size and address with
concretizations 0 and $(malloc(0)) (return value of call to malloc function),
correspondingly, and PC= [n=ssize]. Condition in the first i f-statement adds constraint
on the symcrete address of allocated memory object. Since then, in the unsatisfiable core we
will have two constraints: [saddress = $(malloc(0)), saddress < 101.As it
contains only symcrete for address, we say that we are not able to do anything if the current
model is inappropriate. To execute the next if-statement we need to discuss one more
optimization.

It may turn out, that from the given constraints we can deduce, that the size of the objects is
a huge enough number. At Listing 5 size of the allocated object in the then branch of second i f-
statement might take values not less than 100001. If we try to get a model for such arrays in the
execution engine, we will receive problems with performance and memory consumption. To solve
such problems, we extended KLEE with structure SparseStorage — it is a byte buffer with the
specified default value. To fill it we query the solver only about bytes in the array that were
used for reads that were applied to receive a model within this query. Is allowed to greatly
reduce memory usage and increase performance.

unsigned n <- symbolic;

char * s = (char *) malloc(n);
if (s < 10) {
exit (1);
}
if (n > 100000) {
printf ("Huge!");
} else {
printf ("Small!");

Listing 5. Symbolic size allocation

Returning to the example, both branches of second if-statement are reachable with our
execution state. In the then branch we will have an object of size 100001, and inthe e1se branch
— an object of size 0.

The last implementation detail is related to default values of uninitialized memory objects not
marked as symbolic. In the real world almost always content of memory allocation consists of
undefined bytes. In the initial KLEE implementation, this problem did not receive attention and all
allocations were filled with 0 by default for objects with constant content. To save that semantics,
we engaged Z3-functionality of constant arrays, i.e. arrays with a default value. Therefore, we
introduced an additional array source ConstantWithSymbolicSize. This source indicates, that the
underlying objects are a constant array (not symbolic), but have symbolic size. Therefore, in

102

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

translation to the solver, it should receive a Z3’s constant array with a default value specified in that
source.

4.3 Improved lazy initialization

In Section 2 we described previously existing implementation of the lazy initialization
mechanism within our fork of KLEE. In that implementation, we were forced to add additional
constraints to restrict overlappings of lazily initialized memory object with any other objects.
Once we added symcretes functionality, we may apply that technique to lazy initialization. The
usage scheme is quite similar to the objects of symbolic size, but for now, we have explicitly defined
symbolic address. Moreover, we can also use extensions with objects of symbolic size to lazily
initialize memory objects as we do not know the exact size of the object, which we are
dereferencing at the moment of lazy initialization. Thus, it turns out, that to lazily initialize a
memory object all we need is to create a new object with symbolic size and add an equality
constraint between the symcrete address and address, which have been used for dereferencing.

5. Evaluation

5.1 Experiment

For evaluation of the described features, we have used the test sets from TestComp-2022
competition [11]. Our main goal was to test the proposed approach implemented on top of the
KLEE (KLEE-SYM) and make a comparison with the version of KLEE extended with lazy
initialization (KLEE-LI).

We have used KLEE-LI based on the KLEE of version 2.3 with Z3 of version 4.12.1 as SMT-
solver [12].

We have selected 5 different test sets with over 2000 tests per each — MemSafety-Arrays (MS-
A), MemSafety-Heap (MS-H), MemSafety-LinkedLists (MS-LL), ReachSafety-Arrays (RS-A) and
Termination-MainHeap (T-MH). Comparison has been made by the following metrics: instruction
coverage (icov), branch coverage percentage (bcov), and numbers of found vulnerabilities (errs).
Coverage has been measured with gcov [13] util.

Experiments were conducted on a workstation with CPU AMD Ryzen 7 3800X 8-Core with 16
gigabytes of RAM under the control of Linux. Execution of each test was bounded with 30 seconds
timeout. As Z3 may receive complex queries, its execution time also has been bounded with 5
seconds timeout to prevent memory and time issues.

5.2 Results

Average results for tests in each source set are presented in Table 1.

We can notice significant improvements at ReachSafety-Arrays and MemSafety-Arrays for all
parameters. These test cases used dynamic allocations of blocks with indeterminate sizes and
therefore received much better results in contrast with KLEE-LI. In addition, the amount of found
vulnerabilities also increased since it became possible to explore more paths that had been beyond
the abilities of the engine before.

Nonetheless, we did not receive full coverage of these two test sets. One of the reasons that symbolic
execution is sensible to strategies of path selection: these strategies navigate the engine through
the exponential branching space. For presented test sets, the problems may come from constructions
of a form presented in Listing 6.

Our goal is to cover the return 0 statement. But to do that KLEE-LI should get information,
that this line is reachable only if 256 is a factor of n. As it cannot infer such information, it will

103

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

brute force all possible variants on n until it will be able to reach the selected line of code. For
larger programs, it may take a while to reach such statements.

On the other hand, we might see a slight deterioration in the instruction coverage and the number
of errors detected on the Termination-MainHeap test set. This issue is connected to the imprecision
of modelling the allocated buffer’s contents: while in reality the memory of allocated buffers is
guaranteed to be initialized, KLEE models the newly allocated buffers as filled with some fixed
concrete value.

Also, we’ve collected additional statistics about verdicts for the generated tests (see Table 2). We’ve
calculated the number of generated tests for each source set (column overall), the number of
execution paths that have been halted because of the inability of the old version to maintain objects
of symbolic size correctly (halted), and the number of solver errors happened during program
exploration, e.g. timeouts, internal errors, etc. (Serrs).

Table 1. TestComp benchmarks average results

TestSet KLEE-LI KLEE-SYM
icov bcov errs icov bcov errs
MS-A 71.8% 57.2% 346 79.5% 67.5% 680
RS-A 57.4% 45.0% 393 69.3% 61.5% 532
T-MH 91.2% 78.8% 317 90.1% 80.9% 215
MS-H 45.2% 46.2% 51 45.2% 45.7% 52
MS-LL 33.0% 30.2% 55 33.0% 30.2% 55
Table 2. Tests generated for TestComp benchmarks
TestSet KLEE-LI KLEE-SYM
overall halted serrs overall halted Serrs
MS-A 801 455 0 681 0 1
RS-A 649 238 18 539 0 7
T-MH 539 222 0 216 0 1
MS-H 58 7 0 52 0 0
MS-LL 55 0 0 55 0 0

This table demonstrates that our approach has reduced the number of internal errors in KLEE and
increased the amount of non-halted branches. For the last two test sets, we did not receive any
improvements in instruction and branch coverage (Table 1). However, for the test set MemSafety-
Heap number of errors, that we classified as halted, decreased to 0. For the test set MemSafety-
LinkedList, we’ve received identical results. The low percentage of coverage for these test sets
is explained by a significant number of syntactically unreachable code in tested programs.

unsigned n <- symbolic;

char * s = (char *) malloc (n);

for (int 1 = 0; i1 < n; i++) {
s [1] = 1 % 256;

}

if (s [n - 1] == 255) {

return O;

}

return 1;
Listing 6. Allocation and cycle

104

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

6. Related works

Symbolic execution with symcrete variables is an already known approach. For instance, the
authors of “Deferred Concretization in Symbolic Execution via Fuzzing” [7] describe a similar
approach, using symcretes to better approximate external calls with fuzzer (yet another application
of symcretes). Similar to symcrete variables ideas are also used in well-known techniques of
symcretic [14] and concolic [15] execution. The idea behind these methods is to combine a
symbolic and concrete execution to improve performance and increase code coverage in
comparison with plain symbolic execution. Unlike execution with symcrete variables, these
approaches use concrete values to guide an execution, while we use symcrete variables to increase
the accuracy of symbolic execution analysis.

However, the memory model can be improved without a symcrete variables approach. For
instance, authors of “A bounded symbolic-size model for symbolic execution” [16] propose an
approach for memory modelling, where all constraints restricting memory objects overlapping
are added explicitly. To solve a problem with excessive memory consumption the authors specify
a bound on size for objects with symbolic sizes. On the one hand, such a way of modelling
objects with symbolic size does not require additional queries to the solver to minimize object sizes,
as memory consumption becomes the responsibility of the users. On the other hand, that bound may
affect the completeness of a symbolic execution engine, i.e. restrict an engine from exploring
possibly reachable paths, as in some cases user will have to guess the bound to achieve higher
coverage. Therefore, memory consumption will increase and performance degrade.

Another possible implementation of objects with the symbolic size is presented in the work
“Symbolic-size memory allocation support for Klee” [17]. It introduces a segmented memory
layout approach for KLEE symbolic execution engine. The core difference is that this work
proposes a memory model, where each memory allocation lies in its memory segment. In contrast,
our implementation of objects with symbolic sizes does not significantly change the memory model
of vanilla KLEE, and therefore still can be considered flattened. To resolve a problem with
excessive memory consumption, the authors use the same methods as described in this article:
size minimization to reduce overall memory consumption and sparse structures to keep only useful
data for symbolic arrays.

7. Conclusions

Accurate modelling of specific code constructions with logical constraints might be too complicated
(recall the problem with external calls). We can make under or overapproximations to at least
continue analysis, but with a significant loss of precision. To get things slightly better we apply the
technique of symcrete variables — symbolic variables paired with concrete values for it, fitting the
current constraint set.

We have proposed our implementation of dynamically recomputed symcrete values in KLEE
for LLVM-programs analysis. For that, we have also enhanced the execution engine with the
validity cores. Then we have shown how to engage this feature to model objects with symbolic
size. To optimize the memory consumption problem, we have implemented a size minimization
algorithm for objects with symbolic size and sparse storage to store only the affected solution
bytes. Also, we have improved the existing mechanism of lazy initialization by address
symcretization and interpretation of initialized object size as symbolic. We’ve also presented an
implementation of this approach on top of KLEE and showed its effectiveness on several tests of
Test-Comp competition.

Symcretes infrastructure is a powerful foundation for other improvements. For instance, we may
use a similar approach to approximate the behaviour of external or undefined functions with
fuzzers, as described in “Deferred Concretization in Symbolic Execution via Fuzzing” [7]. The

105

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

return value and function arguments, in this case, should be marked as symcretes, and calls to
that function generate concrete values for symcretes.

Another interesting idea is to use a symcrete infrastructure with a type system. This might be
useful if we want to test a program, which operates with polymorphic objects. Types of such
objects may be considered symbolic, and therefore we have uncertainty in calls to virtual
functions and sizes of underlying objects. This uncertainty can be resolved with symcretes, as it
seems that we can model such behaviours with objects with symbolic sizes and calls to undefined
functions.

References

Cristian Cadar and Koushik Sen. “Symbolic execution for software testing: three decades later”. In:
Communications of the ACM 56.2 (2013), pp. 82-90.

Clark Barrett and Cesare Tinelli. “Satisfiability modulo theories”. In: Handbook of model checking.
Springer, 2018, pp. 305-343.

Leonardo de Moura and Nikolaj Bjerner. “Z3: An efficient SMT solver”. In: International conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2008, pp. 337-340.

Haniel Barbosa et al. “cvcS: A versatile and industrial-strength SMT solver”. In: Tools and Algorithms for
the Construction and Analysis of Systems: 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I. Springer. 2022, pp. 415-442.

Aina Niemetz and Mathias Preiner. “Bitwuzla at the SMT-COMP 2020”. In: arXiv preprint
arXiv:2006.01621 (2020).

Corina S Pa’sareanu, Neha Rungta, and Willem Visser. “Symbolic execution with mixed concrete-
symbolic solving”. In: Proceedings of the 2011 International Symposium on Software Testing and Analysis.
2011, pp. 34-44.

Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy. “Deferred concretization in
symbolic execution via fuzzing”. In: Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 2019, pp. 228-238.

Misonijnik A. et al. “Automated testing of LLVM programs with complex input data structures”. In:
Proceedings of ISP RAS 34.4 (2022), pp. 49-62.

Sarfraz Khurshid, Corina S Pa“sareanu, and Willem Visser. “Generalized symbolic execution for model
checking and testing”. In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer. 2003, pp. 553-568.

Cristian Cadar and Daniel Dunbar. KLEE. Version 2.3. 2022. URL: https://github.com/klee/klee/tree/v2.3.
Dirk Beyer. “Advances in Automatic Software Testing: Test-Comp 2022.” In: FASE. 2022, pp. 321-335.
Leonardo de Moura and Nikolaj Bjerner. Z3 4.12.1. Version 4.12.1. 2023. URL:
https://github.com/Z3Prover/ z3/releases/tag/z3-4.12.1.

Brian Gough and Richard M Stallman. “An Introduction to GCC for the GNU Compilers gcc and g++”. In:
Network Theory Ltd 258 (2004).

Peter Dinges and Gul Agha. “Targeted test input generation using symbolic-concrete backward execution”.
In: Proceedings of the 29th ACM/IEEE international conference on Automated software engineering. 2014,
pp. 31-36.

Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A concolic unit testing engine for C”. In: ACM
SIGSOFT Software Engineering Notes 30.5 (2005), pp. 263-272.

David Trabish, Shachar Itzhaky, and Noam Rinetzky. “A bounded symbolic-size model for symbolic
execution”. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 2021, pp. 1190-1201.

Michael Sima’cek. “Symbolic-size memory allocation support for Klee”. PhD thesis. Masarykova
univerzita, Fakulta informatiky, 2018.

UHpopmayusi 06 aesmopax / Information about authors

Cepreit Antonosmd MOPO30OB — crynment 3-ro kypca HarpoHampHOTO HCCIEIOBATENBCKOTO
yHuBepcuTeTa “Bricmmas mikona skoHOMHKH . Cdepa HaydHBIX WHTEPECOB: METOIBI aHAIN3a
IporpaMM U ONTHMHU3aLUKN CUMBOJIBHOTO HCIIOTHEHUS.

106

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

Sergey Antonovich MOROZOV - Higher School of Economics, third-year student. Research
interests: methods of program analysis and symbolic execution optimization.

Anexcarnp Bramumuposna MUCOHMXHUK — crapmmii nH)XeHep-porpaMMucT KoMmaauu | T
Solutions Inc. Cdepa HaydHBIX HHTEPECOB: METOABI 3((PEKTHBHOTO TOMCKA HETOCTHKUMBIX
COCTOSIHHI B CHMBOJIBHOM aHaJIM3€ IIPOTrPaMM.

Aleksandr Vladimirovich MISONIZHNIK — IT Solutions Inc., senior software engineer. Research
interests: efficient pruning of unreachable states in symbolic program analysis.

JOvutpmii Anexcanaposuy MOPJIBUHOB — xanaunat ¢gpusnko-mMareMaTH4ecKHX HayK, JTOLECHT
kadenpel cucreMHoro mporpammupoBaHuss Cankr-IlerepOyprckoro rocynapcTBEHHOTO
yauBepcuteTa. Cdepa HaydHBIX HHTEpecOB: (hopManbHas BepuU(UKAINI, CHHTE3 MPOrpaMM H
pelleHre CUCTEM TU3BbIOHKTOB XOpHA.

Dmitry Aleksandrovich MORDVINOV - PhD in Physics and Mathematics, Associate Professor at
the Department of System Programming of St. Petersburg State University (SPbSU), Research
interests: formal verification, program synthesis, and constraint Horn clause solving.

HOmurpuit Brmagmvmuposna KO3HOB — moktop TexXHHMYECKHMX HayK, mpodeccop Kadempsl
cucteMHOro nporpammupoBanust Caskr-IleTepOyprckoro rocyaapCTBEHHOI'O yHUBEPCHTETA,
Codepa HayuHBIX HHTEPECOB: ITPOTrpaMMHasi HHXXEHEPHS, MOJIEIbHO-OPUEHTUPOBaHHAs pa3padoTKa
NpOrpPaMMHOI0 00ecreYeH s, IPOrpaMMHBIE JaHHbIe, MAlIMHHOE 00y4eHHe.

Dmitry Vladimirovich KOZNOV — D. Sc., Associate Professor, Professor St.Petersburg State
University (SPbSU). Research interests: software engineering, model-driven software development,
program data, machine learning.

HOmurpuit ApkagpeBnd UBAHOB — HavajdpHUK JemapTaMeHTa WCCIEIOBaHHNA W pa3paboTok
UHCTpyMeHTaNbHBIX cpeactB kommanuu Huawei Technologies Co., Ltd. Cdepa naydnbIX
MHTEPECOB: HHCTPYMEHTHI pa3pabOTKH, aHAIN3 KOAa, CHMBOJIFHOE UCTIOTHEHUE, HHTETPUPOBAHHbIC
cpenbl pa3paboTKH.

Dmitry Arkadevich IVANOV — Huawei Technologies Co., Ltd, Director of R&D Toolchain
department. Research interests: Developer Tools, Code Analysis, Symbolic execution, IDE.

107

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

108

Tpyowr UCIT PAH, mom 35, éwin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-8 tocl%

REDoS Detection in “Domino” Regular
Expressions by Ambiguity Analysis

1 Antonina Nepeivoda, ORCID: 0000-0003-3949-2164 <a_nevod@mail.ru>
2Yulia Belikova, ORCID: 0009-0007-7829-1249, <ju.belikova@gmail.com>
2Kirill Shevchenko, ORCID: 0009-0007-2868-153X <k.sh3vch3nko@yandex.ru=
2Mikhail Teriukha, ORCID: 0009-0005-2825-8171 <misha37a999@yandex.ru>
2 Danila Knyazihin, ORCID: 0009-0009-6343-6809 <dak151449@gmail.com>
2 Aleksandr Delman, ORCID: 0009-0009-6885-8429 <adelman2112@gmail.com>
2 Anna Terentyeva, ORCID: 0009-0006-8547-3959 <mathhyyn@gmail.com>

! Aylamazyan Program Systems Institute of the Russian Academy of Sciences,
4a, Petra | st., Veskovo, Pereslavsky District, Yaroslavl Oblast, 152024, Russia.
2Bauman Moscow State Technical University,

5, 2-nd Baumanskaya, Moscow, 105005, Russia.

Abstract: The Regular Expression Denial of Service (REDoS) problem refers to a time explosion caused by
the high computational complexity of matching a string against a regex pattern. This issue is prevalent in
popular regex engines, such as PYTHON, JAVASCRIPT, and C++. In this paper, we examine several existing open-
source tools for detecting REDoS and identify a class of regexes that can create REDoS situations in popular
regex engines but are not detected by these tools. To address this gap, we propose a new approach based on
ambiguity analysis, which combines a strong star-normal form test with an analysis of the transformation
monoids of Glushkov automata orbits. Our experiments demonstrate that our implementation outperforms the
existing tools on regexes with polynomial matching complexity and complex subexpression overlap structures.

Keywords: regular expressions; ambiguity; REDoS; Glushkov automaton; transformation monoid; strong star-
normal form.

For citation: Nepeivoda A.N., Belikova Yu.A., Shevchenko K.K., Teriukha M.R., Knyazihin D.P., Delman
A.D., Terentyeva A.S. REDoS Detection in “Domino” Regular Expressions by Ambiguity Analysis. Tpyast
HWCII PAH, Tom 35, B 3, 2023 1., ctp. 109-124. DOI: 10.15514/ISPRAS-2023-35(3)-8

Acknowledgements: The first author was partially supported by Russian Academy of Sciences, research
project No. 122012700089-0.

109

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

BbisBneHne REDOS cutyaumm B perynsipHbiX BbIpaXXeHUAX
CTPYKTYpPbl «(4OMUHO»

Y A.H. Heneiisooa, ORCID: 0000-0003-3949-2164 <a_nevod@mail.ru=>,
2J0.A. Beauxosa, ORCID: 0009-0007-7829-1249 <ju.belikova@gmail.com>
2 K.K. Illeguenxo, ORCID: 0009-0007-2868-153X <k.sh3vch3nko@yandex.ru=>
2 M_.P. Teproxa, ORCID: 0009-0005-2825-8171 <misha37a999@yandex.ru>
2 J1.IT. Kussuxun, ORCID: 0009-0009-6343-6809 <dak151449@gmail.com>
2 A 1. Jenoman, ORCID: 0009-0009-6885-8429 <adelman2112@gmail.com>
2 A.C. Tepenmvesa, ORCID: 0009-0006-8547-3959 <mathhyyn@gmail.com>

Y Unemumym npozpammmvix cucmem PAH um. A.K. Atinamassana,
Poccus, 152024, Apocrasckas o6x., c. Becvkoso, yu. Ilempa l, 0. 4a.
2 Mockoeckuii 2ocydapcmeennviii mexuudeckutl ynusepcumem umenu H.O. Baymana,
105005, Poccus, Mockea, yr. baymanckas 2-1, 0. 5/1.

AunHotaums. Cutyanusi oTkasa B oOCIHyKUBaHHs peryisipHbix Boipakenuit (REDO0S) Bo3nukaer B ciydae
BBICOKOH BBIYHCIUTENHHOH CI0KHOCTH COIIOCTABJICHUS CTPOKH C BBIPQKEHHEM M BCTPEYaeTCS BO MHOTHUX
OHOJIMOTEKaX PEryNIAPHBIX BRIpaKECHUH Takux s3b1koB, kak PY THON, JAVASCRIPT, C++. B nanHo#i ctaThe
paccMaTpHUBaeTCs KIIace PeryJsIpHBIX BRIPOKEHUH, KOTOpBIE CO31at0T yrpo3y Bo3HukHOoBeHHss REDOS, onHako
HE PACIIO3HAIOTCS KaK ysSI3BUMBIC PSIOM CYIIECTBYIOIIMX MPOrpaMMHEIX cucTeM. [IpemaraeTcst mpon3BoJuTh
OLICHKY CTEIIEeHH HEOJJHO3HAYHOCTH TAKHUX BBIPAKEHUH IIOCPEACTBOM KOMOMHHUPOBAHHMS IPOBEPKH HA CTPOTYIO
3BE3HYI0 HOpManbHYI0 (OopMy H aHauW3a TpaHC(HOPMANMOHHOTO MOHOHMIA aBToMara [Irymkosa,
MIOCTPOCHHOTO TI0 BXOJHOMY PETYIISPHOMY BBIPAXEHHIO. DKCIIEPUMEHTHI ITOKA3bIBAIOT, YTO JAHHBIH MOAXO0]
OKa3bIBaeTCs 3 (PEKTHBEH MIPU OIEHKE MOJMHOMHANBHBIX HEOAHO3HAYHOCTEH B PEryIIPHBIX BBIPAKEHHUAX CO
CJI0XHOM CTPYKTYpPOH MEPEKPHITHIA.

KnroueBble cioBa: perymsipHble BBIpaXEHHS; HeoxHo3HayHocTh; REDOS; aBromar Iirymikosa;
TpaHc(hOPMAIMOHHBIA MOHOW; CHIIbHAS 3BE3/[HAsT HOPpMasbHas popma.

Jas uurupoBanusi: HenetiBoga A.H., benukosa 10.A., lllesuenko, K.K. Teproxa M.P., Kuszuxun J1.I1.,
Henmbman A.Jl., TepentheBa A.C. BriaBnenne REDoS cutryanuii B perynspHbIX BBIPAXEHUSX CTPYKTYpBI
«momuHO». Tpymer MUCIT PAH, tom 35, Bem. 3, 2023 r., ctp. 109-124 (ma amrmmiickom s3pike). DOI:
10.15514/ISPRAS-2023-35(3)-8

Baaronapuoctu. IlepBerii aBTOp OCYIIECTBISUT Pa0OTy HaA TMPOEKTOM TIPH YAaCTHUYHOM TOIAEPIKKE
Poccwuiickoit Akagemuu Hayk, Homep HUP 122012700089-0.

1. Introduction

Popular regular expression (regex) engines typically use non-deterministic finite automata (NFA) as
their internal representation for regexes. This choice is motivated by the flexibility of the NFA
concept, which can be extended to support a wider range of regex operations with little effort. For
instance, back-references and lookaheads can be easily added to the NFA model. Although, in
theory, every string can be matched against a regex in linear time using deterministic finite automata
(DFA) conversion, popular regex engines may admit exponential matching time due to a
phenomenon called “catastrophic backtracking”.

This phenomenon occurs only for a specific class of regular expressions. For example, consider the
regex (alb)*a, which is non-deterministic due to the unavoidable non-determinism in the
transition to the last occurrence of the letter a. However, every string has a unique parsing tree with
respect to this regex. In contrast, the regex (a*b*) * has an infinite number of accepting parsing
trees for any given string, as inner Kleene stars can degenerate to the empty word, causing a
combinatorial explosion of parse paths. Intuitively, the latter regex can be considered “bad”, while
the former is considered “good”.

Matching against “bad” regexes can yield a situation called a Regular Expression Denial of Service
(REDo0S), when the matching time grows super-linearly and can cause performance issues in, for
110

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

instance, a web service that uses such a regex to parse user input. To avoid these situations, it is
essential to detect unsafe regexes and replace them with safe equivalents.

The number of research papers mentioning the REDoS problem has increased rapidly in the last
decade [1]-[7]. Several tools have been developed to detect RED0S, using both static analysis and
random search. Some of these tools aim to detect the entire class of extended regexes, while others
focus on academic ones. However, for a class of simple regexes, which are not safe in theory, the
tools considered either take too long time to process, or give an incorrect answer, falsely witnessing
their safety. These regexes usually have overlapping, but not completely coinciding, structure of the
expressions under the Kleene stars (being a simple analogue of dominoes in the Post Correspondence
Problem). An example of such a regex is (baalab)*(b|¢) (a(bala)ba*b)* (aab)*: the
ambiguity occurs both in prefixes (baa)™ and (ab)®, which can be constructed in several ways
from primitive “dominoes”.

Thus, the two natural research questions arise:

e do the “domino” regexes really contain REDoS situations w.r.t. the modern regex
engines?

o if the answer is yes, what methods can deal with such regexes in order to analyse them
without blow-up of the analysis time because of the overlaps?

The main contributions of the paper are:

e amethod for REDoS situations detection, utilizing properties of non-deterministic finite
automata and their transition monoids. This approach is novel, since previous static-
analysis-based methods use NFA intersection. For “domino” regexes our method is
shown to perform better than the open-source analogues REGEX STATIC ANALYZER [3],
RESCUE [5], and REVEALER [2].

e experimental testing of the relevance of the NFA model used and the vulnerabilities
found, by investigating real regex engines behaviour on the attack strings.

The method is implemented only for the academic regexes for now. Surprisingly, for this case, the
tested open-source tools perform significantly worse on domino tests, especially for polynomial
REDOS situations.

The paper is organized as follows. Section 2 contains preliminaries on finite automata, and
theoretical concepts that are used further. The proposed REDoS detection method is given in Section
3, preceded by lemmas used for its optimisation. Section 4 discusses relevance of the chosen model
with respect to the real regex matching engines, and provides a result of comparative testing of our
method and three other open-source REDoS detection tools. We discuss the results of the
experiments and the related works in more detail in Section 5. Section 6 concludes the paper.

2. Preliminaries

We denote automata with calligraphic _7; states are denoted with the letters gand O, or with the set
of these letters (if an automaton is a result of a closure operation). The empty word is denoted by «;
concrete elements from the input alphabet are denoted with a, b, ¢, ..., and letter parameters are
denoted with y; wand n denote word parameters. We use only the basic academic regular expression
constructing operations: concatenation (which is omitted in notation), alternation (denoted with |),
and Kleene star (denoted with *). If ris a regex, £(r) denotes its language.

Let us recall basic definitions and describe the finite automata models used in this paper.

2.1 Finite Automata
Definition 1. A non-deterministic finite automaton (NFA) is a tuple <S, X, qo, F, 6>, where:
e Sisa state set;

111

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

e X isaterminal alphabet;

e Jisa set of transitions of the form <q;, (vi| €), Mi>, where gi € S, vi € Z, M € 25;
e (o € Sis the initial state;

e F < S, isasetof final states.

Every transition in an NFA maps a pair <g;, (vi | £)> into a set of states, contrary to transitions in a
deterministic finite automaton (DFA), which map every pair (q;, vi) (where v; is essentially not equal
to ¢) to a single state. Thus, if a word is parsed by a DFA, the parse trace is always unique (i.e.,
DFAs are unambiguous); in an NFA, there can be a set of parse traces for a single word. This set
can even be infinite in case of NFA with e-transitions. The notation ¢; — ... is overloaded to denote
either NFA transition <g;, y, Mi> (written as gi —" M;) or a transition to a single state belonging to
Mi (written as gi—Y q;). Existence of a path from g; to g; marked by w in X" is also denoted by gi —®
a;-

An NFA can be transformed into an equivalent DFA using a textbook subset-constructing algorithm
Determinize, which generates states of the DFA corresponding to the sets of the states of the
initial NFA resulted in the transitions along the same input symbols.

The NFA models used in regex engines are primarily based on the classical Thompson construction,
which provides an algorithm for transforming a regex into an NFA that recognizes the same
language. While the implementation details of the transformation may vary, the experiments
presented in Section 4 provide evidence that the Thompson model remains relevant for identifying
inefficient regexes with respect to NFA-based parsing engines.

In the following descriptions, we only give details of the constructed NFAs in terms of their states
and transitions, without mentioning the alphabet construction.

Definition 2. Thompson NFA (denoted with Thompson(r)) is constructed from a regex r as
follows. At any construction step except processing concatenations, the new initial state g, and the
new final state Qr are introduced, and the transition set is updated depending on the regex operation.

e Everysingle letter y generates a primitive automaton with the only transition q, —{Q,}.

e If 4, =Thompson(ri), A2 =Thompson(rz), and gi and Q; are their initial and final
states, respectively, then Thompson(ri | r2) is constructed by merging the 4, and 4>
states sets and transitions sets, and introducing the transitions qaxr —° {01, Q2};
Q1 —¢ {Qar}; Q2—¢ {Qan}.

e Thompson(riry) is again constructed by merging Thompson(r;) states and transitions
sets, and making i the initial state, Q. the final state, with the additional transition
Q1 —{02}.

e Thompson(zy”) is constructed introducing transitions g« —¢ {g:1,Q+}, Q1 —¢{q1, Q+}.

The Thompson construction algorithm ensures that any NFA produced by the algorithm has a unique
final state and that each state has at most two outgoing and two incoming transition arcs. The
uniqueness of the final state implies that the reverse NFA for Thompson(r) is exactly
Thompson(r®), where % is the reverse of the regex r. Additionally, all subregex automata can be
treated as isolated directed acyclic graphs, which makes the construction easily extensible and
decomposable. An example of a Thompson automaton for a regex is shown in Fig. 1. The states
labels follow the corresponding regex operations given in Definition 2.

112

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

Fig. 1. Thompson automaton for (a|b) *a

One drawback of the Thompson construction is that it introduces non-deterministic transitions
corresponding to alternating operations (i.e., alternatives or Kleene stars), even in the cases when
the regex itself imposes no non-determinism (e.g. for the regex a (a | b) *, which is a reverse of the
regex shown in Fig. 1). To avoid the redundant non-determinism, the regex engine RE2 [8] processes
such strongly deterministic regexes (also known as 1-unambiguous regexes [9]) constructing another
NFA based on the regex structure, but without e-transitions. This automaton is known as the
Glushkov automaton since 1960s, and in the last two decades it attracted considerable interest,
shown to be efficient and extensible to construct deterministic parsing engines for a larger class of
regexes (such as memory finite automata for the regexes with back-references [10]). The Glushkov
automaton is shown in Fig. 2.

Figure 2b. Glushkov(a (alb)”)

The classical Glushkov construction is based on so-called follow-relation on linearised regexes. By
construction, every state in the Glushkov automaton except the initial state corresponds to an
occurrence of some y in X in the input regex r; conversely, any letter occurrence in the regex r
corresponds to exactly one state in G1ushkov(r), whose incoming arcs are all marked with y. Now
we can reformulate this property in the terms of Thompson and Glushkov automata.

Proposition 1. There is a bijection from state set in Glushkov(zr) minus the initial state to state
set Q, in Thompson(r) (wWhere Q, are final states of the primitive automata reading v).

In the paper [11], it was shown that Glushkov(r) could also be obtained from Thompson(r)
merging its e-closures.

Definition 3. Given an NFA _4 and its state g, e-closure of g is the maximal set of states reachable
from g following only e-transitions.

113

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

Closure-merging! e-free automaton (denoted with RemEps(.4)) is constructed from _4 as follows:
e itsstates are e-closures of the states of 7,

o if state g1 belongs to closure C;, state g. belongs to Cj, and there is a transition g1 — {...,
0z, ...} (y# &) in A4 then there is a transition C; —/{..., C;, ...} in RemEps(.4).

An example of closure-merging operation is given in Fig. 1 and Fig. 2, the nodes belonging to a
closure are highlighted with the same color.

2.2 Transformation Monoid of NFA

Let us consider an automaton with no useless states and e-transitions. Its transitions over the
alphabet X and the states set 29 form the function F : X x S — 25 taking a pair <y, gi>. This function,

when curried and specialized in the first argument, becomes F,: S — 25 (where y € X). We can
form a monoid over the set of such partially specialized functions (transformations) if we continue
them on strings as follows: Fe; © Fu2 = Fu2er. Then associativity is provided “for free”, given
associativity of string concatenation, and becomes the monoid unit, because F, c F-: = F,. = F, =
F:w = F: ° F,holds. The state transformations are denoted by the corresponding strings w.

The formal definition is as follows [12].

Definition 4. Given an e-free automaton _4 over the alphabet Z, its transformation monoid A/ =
TransMonoid(.A) is the monoid of transformations imposed by elements of =" on the states of 4.

The monoid construction does not depend on the choice of the final or initial states of _7 (except the
condition that all the states are useful, i.e. reachable and producing), thus, instead of classical NFAs,
the monoid is based on a labelled transition system. Since the set of functions S — 25 is finite, the
transformation monoid of an NFA always contains a finite number of equivalence classes. The pair
<M, R>, where M is a finite set of lexicographically minimal elements of the equivalence classes
and R is a set of simplification rules is considered a standard representation of the transformation
monoid. Such a representation for TransMonoid(Glushkov(a (alb) *)) is given in Fig. 3a,
Fig. 3b, and Table 1. The monoid representation uncovers some useful NFA properties. For example,
we can immediately conclude that the words aa and ab are synchronizing, since for all g;, gi —a2
g2, §i —2P (3, and no other transition is possible.

Fig. 3a. Labelled transition system of NFA

bb - b aaa — aa
aab - ab aba - aa
baa - ba bab - bb

Fig. 3b. Rewriting rules of NFA

1 This e-removal construction differs from the standard textbook e-removal algorithm, since it changes states, and not only
transitions. This strategy allows the algorithm to succeed in conversion from Thompson to Glushkov.

114

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

Table 1. Equivalence classes of NFA

Jo 01 02 Q3
a {a:} {az} {2} {q2}
b {} {as} {as} {q3}
aa {g2} {az} {2} {q2}
ab {ags} {as} {as} {qa}
ba {} {9z} {92} {q2}

2.3. Ambiguity of NFAs and REDoS

Intuitively, the worst-case scenario for backtracking-based matching of a string against a regex r
occurs when the matched string has a prefix 1 with a large set of parse paths, and a suffix 7> such
that 172 & L(r). Inthis case, in order to determine that 7172 is not recognizable by r, a regex engine
must backtrack through all the parse variants of #1. Obviously, we can choose such a suffix #s that
mns € L(r), and n1ns will still have a large number of parse trees (although the regex engine will
report a success after finding a first one).

Therefore, worst-case matching time depends on the upper bound on the parse paths in a regex.

In the domain of finite automata, the following definition is used [13], [14].

Definition 5. A degree of ambiguity of an NFA A is a worst-case bound on the number of paths
recognizing an input string (in a length of the string).

The ambiguity of NFAs is known to be either a constant, an exponential, or a polynomial [13]. If
the ambiguity degree of _4 is non-constant, it is said .4 has an infinite degree of ambiguity (IDA).
A standard acronym for exponential ambiguity degree is EDA.

A minimal EDA-generating regex example is (a|a) *. A minimal example of a regex producing
IDA but not EDA automaton is a*a*. For regexes such that (a*b*)*, Glushkov(r) is
unambiguous, despite Thompson(r) is EDA. We can notice that in Thompson((a*b*)*), a
special situation occurs: there is a loop inside an e-closure of a state (i.e., there is at least one Kleene
star in a regex iterating over an expression re s.t. ¢ € L(rg)). Further we show that such a case is
one of the few possible exceptions when Thompson(r) and Glushkov(r) have distinct ambiguity
degrees.

The following criterion estimates the degree of ambiguity in any NFA.

Theorem 1. « NFA A satisfies IDA condition iff there exist states qi, g2 in A, and a word w such
that A contains paths from g: and g, to themselves, and a path from qg: to g2 all accepting the
word o.

o NFA A satisfies EDA condition iff there exists a state q: in A, and a word w such that A
contains two distinct loops from qu fo itself both accepting the word w.

We can also say than if EDA occurs in an NFA, then 3 g, gj, qx, Where g; and gx are distinct, such
that there exist words w1 and w. such that both g« and g; are reachable from g; following a path
reading the word w1, and ¢; is reachable from both g« and g; following a path reading the word w;
(see Fig. 4).

After the work [9], we use the term “orbit of state g” for the maximal strongly connected component
containing g. We assume that orbits are non-trivial, i.e. contain at least one transition. If a state g of
A satisfies EDA criterion for some w, then all states belonging to its orbit also satisfy EDA. Thus,
to check the EDA condition, it is sufficient to check if any state of some strongly connected

115

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

component of an NFA satisfies EDA, for the IDA condition, it is sufficient to check if there are two
strongly connected components satisfying it.

Fig. 4b. The IDA situation

An approach to the IDA and EDA detection used in the REDoS analysers [3], [4] tests the above
criterion constructing single or double intersections of automaton ‘A with itself. Although the
intersection construction can be done in polynomial time on an NFA size, it may lead to large NFAs
if there are many crossing components (i.e., matching the same string sets) in the initial NFA.

The IDA criterion can be also reformulated in the terms of transformation monoids.

Proposition 2. An e-free automaton A satisfies IDA iff its transformation monoid contains an
equivalence class w such that for some states Ui, q;, 0i € Fo(Qi), ; € Fo(dj), and q; € Fo(0).

Using this criterion for an initial NFA “as is” is highly impractical: if the NFA contains non-crossing
components, the transformation monoid becomes exponentially huge. However, with some
refinements, we observed that the monoid criterion can be applied (and even be fast) in the cases
when the intersection criterion is slow. Moreover, Proposition 2 provides explicit construction of a
string with the ambiguity, allowing the analysing algorithm to reconstruct the REDoS situation
easily. First, take any NFA path from the initial state of A to g;, recognizing some prefix #1. Then
pump o to construct an infix with superlinear number of parse trees, and then take some string 7>
such that any path from g; recognizing #. does not end in a final state of “A. The string n1w™;2 will
force an NFA parsing device to do superlinear backtracking.

If the monoid criterion is applied to the orbit automaton of state g, the REDoS pump can be
constructed as well. Just choose some #1, 72 such that qo —" g, and ¥ qe € F in the condition g —"°
Qe is not satisfied.

3. Our approach

As a starting point, we prefer to use the Thompson automaton as a preliminary NFA model for a
regex since regex matching engines rely on it in their internal algorithms, and experiments in Section
4 demonstrate that the Thompson construction is suitable for analysing real REDoS. However, in
order to apply the monoid criterion, we must first eliminate e-transitions in the regex and ensure
that the removal of e-transitions does not affect the degree of ambiguity.

Definition 6. A regular expression r is said to be in a star-normal form (SNF) if for each its
subexpression (r’) e & L(r”).

116

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

Let us say that r is in the strong star-normal form (SSNF) if it is in SNF and none of its
subexpressions (r”) * contains an alternation r:| r2, where ¢ € L(r:1) & ¢ € L(r>).

The following theorem is the main theoretical result of the paper.

Theorem 2. If r is SSNF, and Thompson(r) is infinitely ambiguous, then Glushkov(r) is also
infinitely ambiguous. Moreover, the overall ambiguity degrees (exponential or polynomial) of
Thompson(r) and Glushkov(r) coincide.

In order to prove Theorem 2, we use the statement proven in [11] mentioned above:
RemEps(Thompson(r)) = Glushkov(r), where RemEps is the transformation described in
Section 2, and the following auxiliary proposition.

Proposition 3. If a; and a; are distinct letter occurrences in r, and ga1, and qa2 are final states of
the elementary Thompson automata for a; and ay, then ga1 and ga2 never belong to a single e-closure
of a state in Thompson(r).

Proof of Proposition 3:

Every final state of the elementary automaton for a single letter has a unique ingoing edge, marked
with the given letter. No other construction adds ingoing edges to the final states of the subautomata
used in the construction. Thus, the states ga: cannot be reached from ga» along e-transitions, and
vice versa.

Proposition 3 allows us to construct the bijection between final states of the elementary subautomata
of Thompson(r) and all the states except the initial one in GLlushkov(r), mentioned in Section 2.
Proof of Theorem 2:

Let r be in the strong star-normal form. All the strongly connected components of Thompson(r)
and Glushkov(r) correspond to expressions under Kleene stars.

If some strongly connected component of Thompson(z) contains an EDA, then there exists a state
g, two distinct states g1 u gz and a1, € X \{e}, words w1, w; such that <q, a1, 1>€ 6, <(, a2,
02> € 6, 01 —' g, g2 —“2q, satisfying caw1 = aw>. Let us denote the path from q to itself following
through g1 by P1, and the similar path following through gz by Pa.

If cuw1 = ¢, then there is an e-loop from g to itself, which contradicts the SSNF condition. Thus,
we can take the first letter of caw1 belonging to X, say a. Let us consider the final states q:’, g»” of
elementary Thompson automata for a in the paths P1 u Pa.

If g1 is not equal to g2’, then their e-closures are also distinct, which implies the EDA situation in
Glushkov(r).

Let g1’ and g2’ coincide. We recall that we chose the states q, g1, gz, such that the first edges in the
paths P; and P, outgoing from g (and ingoing in q: and qz), are distinct.

Let g1’=q¢1 (or g1’=¢2). The state g1 has a single ingoing edge, namely the one outgoing from q and
marked with a. But g1 ’=¢>’, and q, being a predecessor of g2 in the path P, must occur in its initial
fragment twice, thus, there is a path from q to g recognizing <. This contradicts the SSNF condition.
Let g1’ to be distinct both from g; and g3, but to coincide with g, . Let us again consider the ingoing
edge in g1” marked with a. Let this edge to outgo from some state go. Then there are the two distinct
paths from q into qo reading the empty word, again contradicting SSNF. Thus, EDA in the Thompson
automaton leads to EDA in the Glushkov automaton.

Now let Thompson(r) contain IDA, but not an EDA. Then r contains the distinct subexpressions
r1and r» under the Kleene stars, both recognizing a same word w, such that the states corresponding
to r; are not reachable from the states generated by r,. Thus, r; and r, contain the same letter a
with occurrences in the positions i and j, i<j, and the state for aj in Glushkov(r) is not reachable
from the state for a;. Then Glushkov(r) contains an IDA, which is not an EDA. This completes
the proof.

117

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

Thus, itis sufficient to test r for the strong star-normal form property and then, if necessary, continue
the ambiguity analysis operating with the Glushkov automaton, having significantly less states. If
there are loops in e-closures, the further analysis is not needed: these loops already produce EDA
situations.

Given a state g in .4 and its orbit M, an orbit automaton of q is automaton Mg including all states
and transitions from M, having q as is the initial state, and whose final states are either final states
of 4 or states with outgoing transitions outside the orbit M in 4.

If we choose one state ¢i from each strongly connected component C; of _4, then testing an IDA
criterion for TransMonoid(Myg;) is enough to reveal all EDA situations.

However, in the case of a polynomial IDA, we must test pairs of the strongly connected components
(together with the transitions from one component to another) and building a monoid for any such
pair-generated NFA is too time- consuming. Thus, we use the following simple necessary condition
for the polynomial IDA.

Proposition 4. Let Ci, C, be distinct strongly connected components of 4. If _4 contains a
polynomial IDA within the components, then there exist two states, g1 € Ci, g2 € Cy, such that
Determinize(.A4) contains a subset state including both g: and q.. Moreover, such a subset state
occurs also in Determinize(Reverse(A)).

Although the determinization algorithm is exponentially hard in the worst case, it is known to be
fast in most practical cases [16]. Thus, the subset test accelerates candidates search for the
polynomial IDA. However, it is not sufficient, which can be shown by analysing regex
(alb)*(blc) (alc)* whose Thompson automaton contains no IDA.

The pseudocode of the complete algorithm? is given in Fig. 5. There 4y includes the orbit
automata Mq1 and Mg of g; and g2, and all states reachable from Mq; and reaching Mg together with
their transitions. Its initial state coincides with initial state of Mgy, and its final states are final states
of Mg (ignoring final states of _4belonging either to Mgz or to the intermediate states). The condition
“Cci reaches Cy” ensures that the component C; is reachable from cy, and they do not coincide.
Operator c[1] takes a first state from the component ¢ (since the Ambiguity.TransMonoid and
determinization tests results do not depend on the choice of the initial state in the orbit automata®).
Function scc(.A4) returns all strongly connected components of 4.

4. Experiments

4.1 Data Set

In order to evaluate the effectiveness of our approach on the “domino” regexes, a dataset of 100
academic regexes was generated. The regexes satisfy the following properties:

o their length and alphabet are small (not more than 50 terms and not more than 5 distinct
letters);

e they have iterated elements;
e all are in SSNF.

The first condition allows significant subexpression languages overlap, without blowing up the
regex length. However, the test set contains not only complex dominoes, but also regexes with
simple ambiguity situations like b*c (ac| (aala)*d) *. The second condition is necessary for

2 The trial implementation of the method is given on https://github.com/bmstu-iu9/Chipo-Kleene/tree/ambiguity.

8 Absence of any useless states is guaranteed, because all the states are reachable from each other.

118

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

REDoS situations. The third condition mostly excludes the trivial SSNF test, returning EDA value
using our method too quickly.

if = SSNF(r) then
return EDA
A « Glushkov(r)
end if
C « 8CC(A)
for c€ C do
qo < ¢[1]
if Ambiguity(TransMonoid(A/,,)) then
return EDA
end if
end for
for c1.c2 € C do
if ¢4 reaches ¢y then
q1 < c1[1]
o < (zllJ
if SubsetPairs(Determinize(A, +4,))
M SubsetPairs(Determinize(Reverse(A,, ,,))) # @
then
if Ambiguity(TransMonoid(4,, ,,)) then
return TDA
end if
end if
end if
end for
return Safe

Fig. 5. The overall algorithm schema

We explored the dependence of the regexes matching time from the input length on the popular
engines in PYTHON, JAVASCRIPT, C++, JAVA 8, JAVA 11, Go, and RusT.

In order to detect super-linear dependencies, it is necessary to generate potentially attacking input,
for which the string pumping method is used. The attacking input must match a pattern of the three
components: a prefix that satisfies the regular expression, a pumping core whose repetition can lead
to a rapid increase in the number of parsing paths (i.e., malicious pump), and a suffix whose
mismatch leads to catastrophic backtracking.

The results obtained by applying JAVASCRIPT, PYTHON, C++ and JAVA 8 standard regex engines are
the same, according to them, the data set contains 34 exponential, 36 polynomial and 30 safe regexes.
In addition, the experiments indicated that JAVA 11 standard regex engine handles some polynomial
and exponential cases, but when the length of the input data increases significantly, it throws a stack
overflow exception, which may be due to the introduction of the local storage of indexes to the regex
module in the 11 version of JAVA.

The regexes are safe for Go and RUST engines, which are based on the deterministic structures.
Nevertheless, it was noted that there are frequent single outliers in trends when matching strings in
Go.

During testing, we observed that polynomial regexes only lead to critical matching times (more than
1 minute) with significant input string lengths (approximately more than 500 characters), while
expressions that have exponential matching complexity can reach critical time when parsing even

119

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

relatively small input strings. In the simplest case, such a time explosion can be achieved with
regexes that have large star nesting or multiple alternatives under a star quantifier. For instance, the
PYTHON, JAVASCRIPT, JAVA 8, and C++ regex engines are vulnerable to attacks in the case of the
((a*) ™) * regex, and even the optimized JAVA 11 engine, which successfully handles double star
nesting, reaches critical time processing such an expression.

However, more non-trivial cases were encountered in the proposed data set. For example, the regex
b(ab((alb(a*a)*)a’b*) *|a*aaaa”) *, when matched against the input of 32 characters that
satisfies the pattern with prefix — b, pump — abab, suffix — bbd, achieves the following timings:
PYTHON engine — over 3 minutes, JAVA 8 — over 3 minutes, JAVA 11 — 0.80 minutes, C++ — over 3
minutes, JAVASCRIPT — 1.73 minutes.

In general, the REDoS vulnerability degree coincides with the theoretical expectations, taking into
account the asymptotic growth of the ambiguity function for the corresponding Thompson automata.
Non-SSNF regexes cause critical time explosion, which is evidence that the regex engines do not
apply SSNF transformation to their input. In addition to non-SSNF regexes, critical RED0S
situations occur on polynomial ambiguities iterated under a Kleene star.

4.2 Comparing with other tools

We evaluated the effectiveness of the proposed approach by comparing it with three state-of-the-art
open-source tools for detecting vulnerabilities in regexes: RSA [3], [17], a static analysis tool,
RESCUE [5], [18], a genetic fuzzing tool, REVEALER [2], [19], an automated hybrid analysis tool that
uses static and dynamic approaches.

The qualitative results of the experiments are described in Table 2. To evaluate the effectiveness of
detection of vulnerable and safe regexes, we used Fi-score, where true positive values are all
vulnerable regular expressions that were classified as exponential or polynomial, the absence of
results due to a timeout is taken into account as a false result, also we used the error rate, where a
cumulative error on all classes of regexes — total error rate and a classification error among
vulnerable regexes — vulnerable error rate. It should be noted that RESCUE does not support the
exponential-polynomial classification, therefore, not all values were calculated for this tool.

Table 2. Evaluation results

Tool Fi-score Total error rate Vulnerable error rate
RSA 0.90 0.13 0.00
ReScue 0.39 - -
Revealer 0.55 0.45 0.04
Our method 1.00 0.00 0.00

The results of measuring the execution time for the considered tools are shown in Table 3. When
measuring time, all extended features of the tools were disabled, and their parameters were
optimized. For each class of correctly classified regexes: exponential, polynomial, safe, unsafe
(union of vulnerable regexes), the average running time (x) and the standard deviation (o) of this
value were estimated, the number of timeouts was also calculated.

Additionally, we chose 25 regexes with non-SSNF structure, which are analysed in our method by
the preliminary s-loop test. While our approach proved to be the fastest (which is not a surprise,
provided the algorithm structure), the static part of REVEALER also had 100% success rate on this
set, although, taking at average 4x more time.

It is important to note that the theoretical results obtained by using static analysis methods,
determining ambiguity degree of the Thompson automata, completely coincide with the
experimental results obtained when testing the domino regexes on the PYTHON, JAVASCRIPT,
JAVA 8, and C++ regex engines. This is a strong witness that regexes declared safe by dynamic or
combined methods are their false negatives.

120

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

Table 3. Time measurements

Exp Poly Safe Unsafe Timeouts

Tool us) o) us) o) u) o) us) ofs)
RSA 1.895 2.614 3.480 3.748 0.836 0.341 2578 3.221 13

ReScue - - - - 0.940 1.724 8.803 6.263 43
Revealer 0.410 0.035 0.402 0.021 0.320 0.065 0.409 0.033 0
Our method 0.836 1.059 1.178 1.259 0.484 0.400 1.014 1.169 0

From the test results, we can conclude that the detection efficiency of the static analyser is high, but
in non-trivial exponential or polynomial cases such as (baalab)*b(a(b|a)ba*b” (aab)’,
timeouts occur. The recognition efficiency of RESCUE and REVEALER tools on this data set is low.
However, the proposed approach has the maximum quality of vulnerability detection, the average
execution time is also superior to other implementations. This is partly explained by its narrow
domain: testing only academic regexes. But RSA also aims at the academic regexes, and still has
several timeouts; on the other hand, it seems that extension of REDoS-detection tools to non-
academic regexes made them to miss almost all polynomial REDoS with domino structure.

5. Discussion and Related Works

Initially, our finite automata transforming tool was not designed to reveal REDoS situations.
However, attempts to use open-source tools like Regex Static Analyser or RESCUE to analyze simple
academic regexes with non-trivial ambiguity structure failed. The main purpose of the work was
educational, so we designed our algorithm in such a way that it not only detects vulnerabilities, but
also demonstrates them on the automata graphs, at the cost of longer execution

time. Since the tool was initially designed for demonstrations, only core academic regexes were
considered. The algorithms used in the monoid-based approach have poor worst-case complexity,
s0 its efficiency, compared to RSA and RESCUE, was a real surprise.

What features of the analysers caused such a situation? RSA uses NFA intersection construction,
based on the well-known paper of Mohri et al [14]. To detect polynomial ambiguities, the algorithm
requires self-intersecting an NFA twice. The automata intersection problem is known to be
PSPACE-complete [20], [21], thus, every additional intersection results in a significant slowdown.
Maybe that is the main cause why the polynomial detection results in timeouts in RSA. The monoid
and determinization algorithms are known to be worst-case exponential. However, the
determinization is proven to be fast 4 in average [16], while the monoid representation depends
heavily on the automata structure and, implemented to orbit automata, generates significantly fewer
equivalence classes, compared to the case when automata are not cyclic. Another well-known
problem in static analysers is dealing with e-transitions, which can ruin the intersection construction,
as well as the monoid. Surprisingly, the tools do not use the simple and natural conversion to the
Glushkov construction preceded by the SSNF test.

Error rate of static tools is usually much lower than in tools using genetic algorithms and fuzzing,
since REDoS-provoking strings can be disguised, requiring several explicit iterations to construct,
or be combined from several alternative subexpressions under an iteration. Even using two
approaches in REVEALER cannot help to find vulnerabilities, if the malicious pump is hidden in
overlaps and crossing occurrences. For example, in paper [6], four REDoS classes are provided,
based on a regex structure, and the regex a* (ab) *a (ba) * satisfies neither of them, because the
vulnerability appears due to the crossing occurrence of the string ab on the border of the two orbits,
whereas the expressions under Kleene stars have languages with empty intersection, which makes
the regex “seemingly safe”. A similar pattern-based approach is used in [7], resulting in the same
sort of false negatives. So, regex-based heuristics showed themselves to be too weak as compared
to the model NFA analysis in the domino ambiguity cases.

121

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

If a malicious pump for a regex is found, the natural question arises: how to correct the regex? We
did not consider the whole implementation of the regex correction, but implemented a trial algorithm
constructing a 1-unambiguous regex, if it exists [9]. However, for most regexes with overlaps, even
if the equivalent 1l-unambiguous regex can be built, the algorithm given in [9] produces
exponentially longer result, as compared to the input, processing all overlap combinations
separately. A more optimistic regex correcting heuristic is the Star Normal Form transformation: it
is performed in linear time and produces regexes approximately of the same length. Moreover, the
SSNF transformation is rather local, does not require transition to NFA, and can be applied even to
extended regexes, which is useful, taking in account that non-SSNF regexes cause critical REDoS
w.r.t. PYTHON and JAVASCRIPT regex engines. In general, the question what theoretical results can
be used to fix REDoS regexes, is still a subject of research.

6. Conclusion
The research resulted in the following answers to our research questions.
e RQ1: how relevant is NFA static analysis w.r.t. to popular regex engines?

Our experiments demonstrated that the Thompson NFA model is entirely suitable for
evaluating REDoOS situations concerning the most widely used regex engines, including
PYTHON, JAVASCRIPT, JAVA, and C++. Interestingly, although the Go regex machine uses
conversion to DFA, it still produces surges on some ambiguous regexes with complex
structures. The RusT DFA engine proved to be the most stable.

e RQ2: what features of the REDoS analysers considered cause errors and time explosion
on the regexes with complex overlap structure? How they can be processed reliably with
less risk of time explosion?

We found out that considering orbit automata (instead of performing ambiguity analysis on
the entire NFA) and using the Glushkov construction, preceded by the Strong Star Normal
Form test, do not result in any loss of relevance, but significantly speed up the static
analysis.
Another interesting approach is to use monoid analysis as the primary ambiguity-detecting
algorithm instead of NFA intersection analysis. If there are multiple substring overlaps in
the orbits, this method performs significantly faster. However, if the overlaps are small, the
number of equivalence classes in the monoid increases dramatically, making the
intersection method more preferable.
We also provided experimental evidence that the genetic search REDoS detection methods
still miss complex REDoS cases, easily detected by static NFA analysis approaches.
Despite our approach proved itself to be efficient and reliable on the test set of domino regexes, it
still requires many refinements. First, the monoid construction may explode if we take large
alphabets, so the input regexes may need some alphabet factorization. E.g., if no overlaps are
contained within a long string, then this string sometimes can be considered as a single letter.
Second, it would be interesting to test the method on extended regexes approximation, and to
combine the monoid-based and intersection-based ambiguity detection algorithms.

References

[1]. Davis J. C., Coghlan C. A., Servant F., and Lee D. The impact of regular expression denial of service
(ReDoS) in practice: an empirical study at the ecosystem scale. In Proc. of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018. pp. 246-256. DOI: 10.1145/3236024.3236027.

[2]. Liu Y., Zhang M., and Meng W. Revealer: Detecting and exploiting regular expression denial-of-service
vulnerabilities. In Proc. of the 2021 IEEE Symposium on Security and Privacy (SP), 2021. pp. 1468-1484.
DOI: 10.1109/SP40001.2021.00062.

122

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

(31

[4].

(5]

[6].

[7].

[8].

[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17].
[18].
[19].

[20].

[21].

Van der Merwe B., Weideman N., and Berglund M. Turning evil regexes harmless. In Proc. of the South
African Institute of Computer Scientists and Information Technologists, 2017. pp. 1-10. DOI:
10.1145/3129416.3129440.

Weideman N., van der Merwe B., Berglund M., Watson B. W. Analyzing matching time behavior of
backtracking regular expression matchers by using ambiguity of NFA. In Proc. of the Implementation and
Application of Automata - 21st International Conference. 2016. pp. 322-334. DOI: 10.1007/978-3-319-
40946-7_27.

Shen Y., Jiang Y., Xu C., Yu P., Ma X., Lu J. ReScue: Crafting regular expression DoS attacks. In Proc.
of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 2018. pp. 225-235.
DOI: 10.1145/3238147.3238159.

LiY., SunY., XuZ, Caol., LiY., LiR., ChenH., Cheung S.-C., Liu Y., Xiao Y. RegexScalpel: Regular
expression denial of service (ReDoS) defense by Localize-and-Fix. In Proc. of the 31st USENIX Security
Symposium (USENIX Security 22), 2022. pp. 4183-4200.

Li Y., Chen Z., Cao J., Xu Z., Peng Q., Chen H., Chen L., Cheung S. ReDoSHunter: A combined static
and dynamic approach for regular expression DoS detection. In Proc. of the 30th USENIX Security
Symposium (USENIX Security 21), 2021. pp. 3847-3864.

Google. Official public repository of RE2 library. Available at: https://github.com/google/re2, accessed
01.07.2023.

Bruggemann-Klein A. and Wood D. One-unambiguous regular languages. Information and Computation,
vol. 140, no. 2, 1998. pp. 229-253. DOI: 10.1006/inc0.1997.2688.

Freydenberger D. D., Schmid M. L. Deterministic regular expressions with back-references. Journal of
Computer and System Sciences, vol. 105, 2019. pp. 1-39. DOI: 10.1016/j.jcss.2019.04.001.

Allauzen C., Mohri M. A unified construction of the Glushkov, Follow, and Antimirov automata. In Proc.
of the Mathematical Foundations of Computer Science, 2006. pp. 110-121. DOI: 10.1007/11821069_10.
Eric Pin J. Mathematical foundations of automata theory. Available at:
https://iwww.irif.fr/~jep/PDF/MPRI/MPRI.pdf, accessed 01.07.2023.

Weber A., Seidl H. On the degree of ambiguity of finite automata. Theoretical Computer Science, vol. 88,
no. 2, 1991. pp. 325-349. DOI: 10.1016/0304-3975(91)90381-B.

Allauzen C., Mohri M., Rastogi A. General algorithms for testing the ambiguity of finite automata. In
Proc. of the Developments in Language Theory, 2008. pp. 108-120. DOI: 10.1007/978-3-540-85780-8_8.
Bruggemann-Klein A. Regular expressions into finite automata. Theoretical Computer Science, vol. 120,
no. 2, 1993. pp. 197-213. DOI: 10.1016/0304-3975(93)90287-4.

Almeida M., Moreira N., Reis R. On the performance of automata minimization algorithms. In Proc. of
the 4th Conference on Computability in Europe, 2008. pp. 3-14.

Weideman N. Regex static analyzer. Available at:
https://github.com/NicolaasWeideman/RegexStaticAnalysis, accessed 01.07.2023.

Shen Y., Jiang Y., Xu C., Yu P., Ma X., Lu J. Rescue. Available at: https://github.com/2bdenny/ReScue,
accessed 01.07.2023.

Liu Y., Zhang M., Meng W. Revealer. Available at: https://github.com/cuhkseclab/Revealer, accessed
01.07.2023.

Gelade W., Neven F. Succinctness of the Complement and Intersection of Regular Expressions. In Proc.
of the 25th International Symposium on Theoretical Aspects of Computer Science, 2008. pp. 325-336.
DOI: 10.4230/LIPIcs.STACS.2008.1354.

Birget J., Margolis S. W., Meakin J. C., Weil P. Pspace-complete problems for subgroups of free groups
and inverse finite automata. Theoretical Computer Science, vol. 242, no. 1-2, 2000. pp. 247-281. DOI:
10.1016/S0304-3975(98)00225-4.

Unopmayusi 06 aemopax / Information about authors

Amntonuna Hukxonaesna HEIIEVMIBOJIA — nayunslit corpyaauk MuctutyTa [Iporpammusix Cucrem
PAH. Cdepa HaydHBIX HHTEpEcOB: TeopHs (OPMAaIBbHBIX S3BIKOB, MPOTPaMMHAs CEMAaHTHKA,
MaTeMaTH4YeCcKas JIOTHKA U (yHKIHOHAIBHOE ITPOrPaMMHPOBAHHE.

Antonina Nikolaevna NEPEIVVODA — researcher in the Program Systems Institute of RAS. Research
interests: formal language theory, program semantics, mathematical logic, and functional
programming.

123

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://github.com/2bdenny/ReScue
https://github.com/cuhkseclab/Revealer

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

IOmus Anppeesna BEJIMKOBA — cTyzeHT MOCKOBCKOrO TOCYAApCTBEHHOTO TEXHUYECKOTO
yHuBepcurera uM. H. O. baymana. Cdepa HaydyHBIX HHTEPECOB: TeOopHs (OPMaJIbHBIX S3BIKOB,
UCKYCCTBEHHBIM HHTEIUIEKT, aHAIU3 JAHHBIX.

Yulia Andreevna BELIKOVA - student of the Bauman Moscow State Technical University.
Research interests: formal language theory, artificial intelligence, data analysis.

Kupmnn KoncrantunoBna IIIEBUEHKO — cTymeHT MOCKOBCKOTO ToOCyAapCTBEHHOTO
TexHI4YecKoro yHusepcutera uM. H. O. baymana. Cdepa HaydHBIX HHTEPECOB: aHAIU3 JaHHBIX U
MaIIMHHOEe 00y4eHHe.

Kirill Konstantinovich SHEVCHENKO - student of the Bauman Moscow State Technical
University. Research interests: data science and machine learning.

Muxaun PomanoBuu TEPIOXA — ctymeHT MOCKOBCKOTO TOCYIapCTBEHHOTO TEXHHUYECKOTO
yauBepcutera uM. H. D. Baymana. Cdepa HayyHBIX HWHTEPECOB: HHTCPHET BEUICH WU
pacrnpenenéHHble BHIYUCIEHUS.

Mikhail Romanovich TERIUKHA — student of the Bauman Moscow State Technical University.
Research interests: internet of things and distributed systems.

Hanuna IlaBnosuu KHABUXUMH — cryneHT MOCKOBCKOrO TOCYyAapCTBEHHOI'O TEXHMYECKOTO
yauBepcureta uM. H. 3. baymana. Cdepa HaydHBIX HHTEpECOB: abcTpakTHAs anreopa.

Danila Pavlovich KNYAZIHIN — student of the Bauman Moscow State Technical University.
Research interests: abstract algebra.

Anexcannp Amurpuesud JEJIBMAH — ctyneHT MOCKOBCKOr0 rocy1apCTBEHHOIO TEXHUYECKOTO
yHuBepcureta uM. H. O. baymana. Cepa HaydHBIX HHTEPECOB: KOHCTPYHUPOBaHHE KOMITHIISITOPOB
1 00JIauHbIe BEIYUCIICHHUS.

Aleksandr Dmitrievich DELMAN - student of the Bauman Moscow State Technical University.
Research interests: compiler design and cloud computing.

Anna Cepreeena TEPEHTBEBA — crtymeHT MOCKOBCKOTO TOCyIapCTBEHHOTO TEXHHYECKOTO
yHuBepcutera uM. H. D. baymana. Cdepa HaydHBIX HHTEPECOB: KOHCTPYHPOBAaHHE KOMITHIISITOPOB.

Anna Sergeevna TERENTYEVA - student of the Bauman Moscow State Technical University.
Research interests: compiler design and optimisation.

124

Tpyowr UCIT PAH, mom 35, évin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-9 L-EH:

Alias Analysis and Calculus based on
Segmentation Address Memory Model

I.A. Parfenov, ORCID: 0009-0004-2889-0380 <parfenov_2001@mail.ru>
Innopolis University
1, Universitetskaya Str., Innopolis, 420500, Russia

Abstract. We present a straightforward implementation of a simplified imperative programming language
with direct memory access and address arithmetic, and a simple static analyzer for memory leaks. Our study
continues a line of research attempted (in Innopolis University in years 2016-2022) on alias calculi for
imperative programming languages with decidable pointer arithmetic but differs by memory address
model — we study segmented memory model instead linear one.

Keywords: Imperative programming; memory address model; memory safety; memory leaks; static analysis

For citation: Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model.
Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 125-136. DOI: 10.15514/ISPRAS-2023-35(3)-9.

AHanus n ucuymncrneHne annacos, OCHoOBaHHOe Ha CerMeHTUPOBaHHOM
Moaenu agpecauuu namsiTm

U .A. ITapghenos, ORCID: 0009-0004-2889-0380 <parfenov_2001@mail.ru>
Yuuseepcumem Hunononuc,
Poccus, 420500, Tamapcman Pecnybnuka, e. Kazanw, 2. Unnonoauc, yn. Yuusepcumemckas, 0. 1

AHHOTamMsl. MBI TPeACTaBIsEM MPOCTYIO PEATH3ANUI0 YINPONIIEHHOTO HMIIEPAaTUBHOTO SI3BIKA
MPOTPaMMHPOBAHHUSA C IPSIMBIM JTOCTYIIOM K ITaMSTH U apECHON apru()METHKOM, a TakKe MMPOCTOH CTaTHYECKUI
aHaNM3aTOp yTedueKk maMsATH. Hamre mccremoBaHWe NMpoaoDKaeT JIMHHIO WCCIEJOBAHUH, NMPEINPUHATHIX (B
Yuusepcurere Wunomonuc B 2016-2022 romax) MO HCYHCICHUIO alHacOB Ui MMIIEPATHBHBIX S3BIKOB
HNPOrPaAMMHPOBAHUS C PA3pPeLINMOil apu(METHKON yKazaTeneil, HO OTIMYaeTCs] MOAENBIO aJ[pecaliiy HaMsITH
— MBI U3y4aeM CErMEHTHPOBAHHYIO MOZENb MaMATH BMECTO JIMHEHHOIA.

KuroueBble ciioBa: MMIICpATUBHOE MPOrpaMMHPOBAHUEC; MOJCIb aApecaluy MaMITH, 06€30MacHOCTD naMsTH,
YTCUKHU MaMSTH, CTaTUYECKHUM aHaAJIU3.

Jdns nutupoBanus: I[lappenos N.A. AHanmu3 M MCUYHCIEHUE aTHacOB, OCHOBAaHHOE HAa CETMEHTHUPOBAHHON
Mogenu agpecanuu namsata. Tpynst UCIT PAH, tom 35, Beim. 3, 2023 1., ctp. 125-136 (Ha aHTIHHCKOM SI3BIKE).
DOI: 10.15514/ISPRAS-2023-35(3)-9.

1. Introduction

There are various different instruments for program code development. One of the areas that has to
be improved for programming languages is the safety and correctness of successfully compiled
programs. The C programming language, like some others, has pointers and direct memory access,
which is a powerful and, at the same time, uncontrollable instrument, whose safety depends only on

125

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,
2035. pp. 125-136.

the programmer. Those programming languages need some validation techniques for checking the
safety and correctness of using those features.

The alias calculus is the mathematical model which operates on an abstract, simplified programming
language with dynamic memory (accessible by explicit or implicit pointers) and some rules, using
which it can validate if the program is memory safe. This theory can be expanded to real
programming languages.

In this paper, firstly, a new variant of the alias calculus is suggested and studied up to some extent.
Then, based on this theory, we present a compiler for a simple model C-like programming language
with direct memory access (via pointers). The compiler has been implemented from scratches. For
this programming language, a set of programs has been written, and some metrics and statistics of
their executions have been collected and studied. Finally, we present a static validator for memory
leak safety for programs (with pointers) written in our model language. We hope that this instrument
can be successfully used in real programming.

2. Literature review

2.1 Anderson’s Model

Andersen’s pointer analysis model [1] is the most closest to alias calculus among commonly used
static analysis models. However, it describes a little different, more simplified, pointer-to model.
Nevertheless, definitions and properties introduced there are necessary for this scope’s analysis.
Roughly speaking, Andersen’ pointer analysis is based on theory of equality for uninterpreted
functional symbols. The algorithm traverses the program by statements and calculates for every
pointer set of other pointers, to which it can be equal. Such a set is called points-to set. During
traversing, once an assignment is met, a constraint “point-to set of sources is subset of point-to set
of destination” is created. After the constraints are collected, they are solved. The content of the
work is overcomplicated, though.

2.2 Alias Calculus

A simplified description of alias calculus and some other information out of this scope is described
in [2]. Informally, alias relation is a structure, which specifies for every variable, to which pointer
variable does it belong. The cited paper presents a set of simple operations: assignment, allocation
and deallocation, if-statements and loops, which affect the alias relation. The purpose of calculus
rules is static over approximation Q of actual alias relation after execution of a program S for a given
alias relation P before the program execution, i.e., such relation Q that Hoare triple [P]S[Q] to be
true. For example, assignment statement copies aliases to destination replaced by source and
removes aliases, which contain source; if-statements calculate relations for all branches and unite
them.

The algorithm from [2] was implemented in the Eiffel Verification Environment and can be used
through the AutoProof module. The approach used in the algorithm, presented in our paper, is,
however, different and will be explained in detail in the corresponding section. One of the main
differences is the memory model used: in [2] memory consists of abstract addresses while in our
model, for every state and for every variable, alias relation describes the meta-identifier of allocated
space and shift relative to the meta-identifier. This allows swapping allocated space for variables
without triggering the validator.

2.3 Separation Logic

Separation logic [3] and [4] is an extension of the first-order logic for specification of the programs
over dynamic memory (heap) in Hoare assertions [P]S[Q]. It operates on a heap, which is addressed,
using a “separating conjunction” operator, which checks if objects hold different parts of the heap.
There were proposed ways to handle unrestricted memory access with not only static arrays, but also

126

Tlapdenos N.A. AHann3 u UCUNCIICHHE aTHacOB, OCHOBAaHHOE Ha CETMEHTUPOBAHHOW Moenu aapecanuu mamsatu. Tpyasr UCIT PAH, 2023,
Ttom 35, BB 3, . 125-136.

dynamic arrays and recursive functions. The concept of separation logic is widely used in different
proof assistants and frameworks; hence, it can also be used for validating programs in this scope.
Separation logic semantics is based on a model comprising stores (to represent static memory) and
heaps (to represent dynamic memory), which are finite-domain maps from variables’ identifiers and,
respectively, locations (accessible via pointers or addresses which are particular numbers), to data
values (e.g. integers). There are two major heap models in use: linear or flat (where each location is
capable of storing simple data values), and segmented (where locations can store compound data
like arrays with static size).

2.4 MoRe Language

[5] presents and describes the MoRe language, which allows more flexible actions on pointers’
addresses in comparison to Andersen’s one. The cited paper describes the target theory in the clearest
and most understandable way, so this was the starting point for our research. MoRe language
presents the linear address arithmetic and has a separate stack and heap address spaces. The language
has direct memory access and address arithmetic; hence its memory model fully represents C
programming language address memory model. There are only integer and pointer data types in
MoRe. The algorithm traverses the program and calculates a set of configurations at every moment.
The configuration consists of three objects: a set of address variables, a set of address expressions
and a set of pairs of “synonyms” — variables, which point to one cell in current configuration. For
recalculation the state an operator “aft” was introduced, which for every possible state and statement
properly defines a new state after execution of the statement. The syntax grammar of this language
is given in Fig. 1. Bachelor Thesis [6] presents simple implementation and analysis of MoRe
language. Bachelor Thesis [7] implements simplified C language with MoRe language interface,
which can be compiled using LLVM. The syntax and semantics of this thesis’ implemented language
is close to MoRe’s.

P:= skip | varV=C| V:=T| V:i:=cons(Cx) |
|[[V]:=V | V:=[V]]| dispose(V)| (P;P) |
| (if then P else P) | (while do P)

Fig. 1. The syntax grammar of MoRe language: start variable is P, C is constant integer,
and C* is list of integers with ”,” character between them

3. Methodology

In this section we informally introduce and overview a simplified model language Alias. Though
the real implemented language has same syntax as presented here, it’s semantic is developed more
practically oriented and proposes new instruments.

3.1 Alias Programming Language Overview
The implemented version of the Alias language has/offers
e Two types — integer and pointer (to be tracked in analysis)
e Variable definitions, assignments, and annotations (assumptions)

e Blocks, If- and While-statements, Procedures.

Program may be split on multiple files. BNF syntax definition of language is given in Fig. 2.
However, the semantics are very restricted.

127

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,

2035. pp. 125-136.

o Type:=

int | ptr

e Program ::= Block
e Block ::= {[Statement]}
e Statement ::=

Block

def Ident Type

Ident := Expression

Ident <- Expression

free(ldent)

if (Expression) Block

if (Expression) Block else Block

while (Expression) Block

func([int Ident | ptr Ident Integer Integer] Block
call Ident([1dent])

e Expression ::=

3.2 Outlines of validation algorithm (static semantics)
Memory safety validation is done using the following method (algorithm).

Ident

Integer

$ldent

Expression + Expression
alloc(Int)

Fig. 2. The syntax grammar of implemented language

Block

Definition
Assignment
Movement
Deallocation operator
If statement

If/Else statement
While statement
Function definition
Function call

Dereference

Allocation operator

e Program (text) is parsed line by line maintaining (in form of states) a set of known relations
“pointer points to cell in heap” but ignoring any information about integer variables.

At some stages the states (known relations “pointer points to cell in heap”) can

split, as there is no information about integer variables.

If in a current line there is no pointer variable, which points to any heap cell, then

it means memory leak happened.

if there is a dereference of a pointer variable, which at some state points out of

allocated area, then access violation happened.

3.3 Configuration
Every configuration contains

I Asetof local variables/identifiers, which have pointer type.

A: Asetofallocated cells in the heap (each cell in the form “Meta-variable + Integer-phase”)
S: For every identifier in | appointed cell in A, or an exceptional value “OUT”.

3.4 Legal Types of Assighments

There are three types of assignments:
1) int := int —i.e., an integer expression is assigned to an integer variable

2) [ptr -> ptr] := ptr — i.e., a pointer expression is assigned to a pointer

128

Tlapdenos N.A. AHann3 u UCUNCIICHHE aTHacOB, OCHOBAaHHOE Ha CETMEHTUPOBAHHOW Moenu aapecanuu mamsatu. Tpyasr UCIT PAH, 2023,
Ttom 35, BB 3, . 125-136.

3) [ptr -> int] ;= int —i.e., an indirect assignment to integer variable

Only the second type effects on configuration.

Note that storage pointer variables on heap doesn’t effect on configuration. Hence validation of
multidimensional arrays of structures, for example, is not supported by our analysis.

3.5 Some optimizing assumptions
We make the following (informal) assumptions about programs (for boosting of validator).

e The number of local variables is not very big, while the number of heap cells can be very
big, but (as now) is assumed constant.

e Since the number of configurations grows exponentially, we implement ‘assume’
statement, which filters the configurations which pass given condition (but programmer is
responsible for the correctness of this assumption).

e The current number of configurations is counted, so the programmer can get humber of
configurations in real time in IDE.

3.6 Static semantics for pointers

Program traversed recursively. For the following statements corresponding actions made:
o Block affects only on visibility scopes of variables. It doesn’t change state.
o Definition affects only on visibility scopes of variables. It doesn’t change state.
e Assignment depending on types does following:

— Destination has pointer type, and source has pointer type. If assignment has form
a :=b + xand in some configuration a = a, + a, and b = by, + b, then in new state
this configuration has a = by, +(b, +x). For example, if there was configuration
with (b = _0+3) and statement a := b + (—1) was executed, the next configuration
will be with (b = _0 + 2). If after this in some configuration there is no ay, then
memory leak happened.

— Destination has pointer type, and source has integer type. For every configuration
and every allocated cell new configuration created where destination points to such
cell.

— If destination has integer type, the state is not changed.

e Assumption works as a guard, i.e., it removes configurations, where the assumption
condition is false. If assumption has form assume(a = b + x) and in some configuration a
=ay+apand b = by + by, then if a, # by or ap # by + X, then condition is false. If assumption
has form assume(a < b + x) and in some configuration a = ay +a, and b = by +by, then if
av # by or ap > by + X, then condition is false.

o If-statement is traversed in the following steps. Firstly, the first branch is validated. Then
the sizes of all lists, which were allocated during this are saved and set to 0. Finally, the
second branch is validated, and finally the sizes of lists are restored. If there is allocation
in One branch, then the list will be added to states, but it won 't appear in any configuration
in second branch, hence it is guaranteed, that an alert will be shown. (Probably it is a
solvable problem, we can force to allocate to the variable the same size at the last
assignment in both branches.)

o While-statement is traversed in the following steps. The body is validated, and if state has
been changed, the body validated again. There is a threshold (set in validator) for number
of these iterations, after exceeding which, it is assumed that the loop is infinite. The
variables declared in a loop are scoped in the loop.

129

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,
2035. pp. 125-136.

e A function actually is a procedure, its definition contains set of formal parameters (as
arguments) in its signature. Each pointer parameter has two associated integer values,
which guarantee the minimal number of sells before and after a call. The function doesn’t
return values, but can change its pointer arguments (i.e., actual arguments are passed name
to function).

e Function call contains parameters as actual arguments of function. If in some configuration
some pointer variable (passed to the function as an actual argument) doesn’t satisfy the
minimal size of allocated space, then it causes a run-time error.

4. Implementation

This section describes implemented language, which is based on model language described
previously, but mostly oriented on practical usage.

4.1 Overview
By default, the whole process of building and execution consists of the following sequential stages.
e Parsing calias parses input files and builds abstract syntax tree;
e Validation calias traverses tree and does static analysis;
e Compilation calias traverses tree and writes equivalent x86 assembly code;
e Assembly nasm builds object file;
e Linking gcc links object file and provides its malloc and free functions.

4.2 Tool-chain for the Alias Language

The compiler is implemented using language C++ for GNU G++ compiler and preferably uses
C++17 standard. The implementation can be found in corresponding GitHub repository. The output
executable is called calias.

For front-end no lexical and parser generating tools, or a framework for development of domain
specific languages were used, both lexer and syntax parser were implemented from scratches.

4.3 Validation

The validation is done as traversing the abstract syntax tree with passing and modification a context.

A context consists of the following components (though its implementation is a bit more
complicated):

e stack of variables;
o stack of functions;
e vector of sizes of packets;
o set of states.
A state is a vector, which for every declared variable contains
o either the pair consisting of a packet, in which it lays, and a phase (i.e. a shift relative to the
beginning of packet, to which the variable points);
e or aspecial value OUT.

Note, that here we use a terminology that differs from terminology in the section 3: context here is
used instead of state, and state here is used instead of configuration (since this terminology is
commonly adopted in program languages implementation community).

130

https://github.com/ParfenovIgor/alias
https://github.com/ParfenovIgor/alias

Tlapdenos N.A. AHann3 u UCUNCIICHHE aTHacOB, OCHOBAaHHOE Ha CETMEHTUPOBAHHOW Moenu aapecanuu mamsatu. Tpyasr UCIT PAH, 2023,
Ttom 35, BB 3, . 125-136.

4.4 Rules definitions

This is a formal description of working process of validator. It omits some non-important cases, for
more clear understanding.

The rule is described in two lines. Conclusions are written in the bottom line A - B — C and premises
—in the top line D - E — F. This means, that if we have to traverse node B of abstract syntax tree
and the current context is A, then we have to create new context D, do recursive call on node E,
which will return context F and then return context C. If a rule has no premises, it is an axiom (i.e.,
no further recursive calls).

Let us introduce some notation conventions. Meta-variable V S stands for variable stack, FS — for
function stack, PS — for vector of packet sizes, and SS — for set of states. If the actual value of some
of the listed meta-variables does not change in a rule, then it is presented implicitly, while any change
of actual value must be specified in the rule explicitly. For example, if there is a line C[FS] +
statement — C[FS : foo], then it means that the output context is almost the same as input, but the
value of FS (to which foo is appended to the end of the function stack).

Operation ”:” appends the value to the end of the stack; it is also used to denote, that the element
has instances in the structure. Operation ::” concatenates two stacks or vectors; it is also used to
denote, that the elements of second list are presented in the first list (neglecting the order). As usual,
(x, y) stays for a pair of two elements and x := y denotes an update assigning the value of y to variable
X

There are following additional operators:
e packet(x, S) returns the identifier of the packet, to which the variable x is bound in state S;

o phase(x, S) returns the phase with respect to the beginning of the packet, to which variable
X is bounded in state S;

o value(x, S) returns a pair consisting of packet(x, S) and phase(x, S);
o packet_size(x) returns the size of packet x (remark that it is unique in all states).

The CHECK operator works as a guard, i.e., it is used to evaluate the expression (after CHECK),
and if it is false, stops validation with corresponding error message.

4.5 List of Rules

1) Block: Remember the size of stack of variables. Traverse all statements in body, and crop stack
of variables to previous size.

CFS 1 —>Ci;...;Ch1FSp— Ca

C[V S,FS] F{Si1,...Sn} — Cy[VS, FS]

2) Definition: Append the variable name to the stack of variables.

C[VS] +def a type — C,[VS: q]

3) Assignment: Different behavior for integer and pointer types.
For integer we just need to check the right part is a valid expression.

ClVS:d Fexpr—C
Cra:=expr—C
There are three options for assignments with pointers — alloc, shift by a constant, and more
complicated expressions in the right-hand side.

Alloc expression creates an additional packet.

ClVS:a,PS, SS|+a :=alloc (x) —
C[[PS: x,VS€E SS— value(a, S) := (size(PS),0)]
131

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,
2035. pp. 125-136.

Shift (i.e., pointer + constant integer) assigns the corresponding value.

Cl[VS:|a,b],SS|Fa:=b+x—
C[VS € SS— value(a, S) := (packet(b, S), phase(b, S) + x)]
For all other cases the state into states, where the variable points to one of all possible allocated cells,
and check right part expression.
Crexpr —» C
C[VS:a,SS]|Fa:=expr—
C[vSe SS—Vpacketp, x€ [0, packet size(p)) — value(a, S) := (p, x)]

4) Movement: Check, that pointer at left size if correct, and check the right part expression.
Crexpr>CCFra <-expr — C
CHECKVS € SS phase(a, S) € [0, packet size(packet(a)))

5) Free: Check, that the pointer has phase zero, and have same packet in all states. Assign packets
of all pointers, which point to this packet, to OUT.

C[PS] +free(a) —
C[PS — packet(p) :=0, VS€ SS— Vx, packet(x, S) = p— value(x, S) := (OUT, 0)]
CHECKVS€e SS: packet(a, S)= pandphase(a,S)=0

6) Function definition: Flush all variables and append argument variables. Each pointer variable
which has nonzero pre size lays in own packet with size equal to pre size. Check body. At the end
check that all pointer variables lays in different packets with at least post size distance from end of
packet and have same packet in all states. Restore variables and append function.

[[a, b],[fool,[ing, iny],a:=(a,0),b:=(b,0)] - block—C»
C[FS] +
func foo (def a ptr in a out a, def b ptr in b out b) block) —C[FS : foo]
CHECKVuvarx, S€ SSpacket(x, S) =
xandphase(x, S) € [0, packet size(x) -
outy) andVvarx#vary packet(x, S) #packet(y, S)

7) Function call: Check, that all pre conditions are satisfied: all argument variable lay in different
packets with at least pre size distance from end of packet and have same packet in all states. Remove
all passed packets, as if they were freed, and create new packet for each argument variable.

C[FS:foo, PS, SS] - call foo(args) — C[PS:: [outq,outp],
VSe SS—value(a, S) :=(new a,0),b:= (new b,0)]
CHECKVYxE€ args S € SS phase(x, S) € [0, packet size(x) — in,) andVx#y € args
packet(x, S) # packet(y, S)

4.6 Compilation

The compilation is done into Intel x86 Assembly. The compiler using almost same structure as
validator. But its context is adapted for compilation. The compilation is done as traversing abstract
syntax tree and building assembly code, which is the assembled using nasm and linked using gcc,
which provides implementations of functions malloc and free.

132

Tlapdenos N.A. AHann3 u UCUNCIICHHE aTHacOB, OCHOBAaHHOE Ha CETMEHTUPOBAHHOW Moenu aapecanuu mamsatu. Tpyasr UCIT PAH, 2023,
Ttom 35, BB 3, . 125-136.

4.7 Assembly structure
There are rules for compilation, which are defined the same way, as for validation. Though, they are
not interested in scope of this thesis.

e There is an enter point of the program;

e There is declarations of functions malloc and free, their implementations have to be
provided;

e The System V ABI [8] is used, which makes this file compatible with programs written is
C language;

e The 32-bit assembly is used, thus the only data types have same size of four bytes;
e Only the simple general-purpose instructions are used;

e The expressions push calculated result on the top of current stack. The binary operators do
recursive call of one operand, then pushes stack and do recursive call of the other operand,;

e There are no optimizations.

4.8 The IDE

The IDE is implemented from scratches in language C++ for GNU G++ compiler and preferably
uses C++17 standard. It widely uses NCurses library for implementation text editor. The
implementation can be found in corresponding GitHub repository. The output executable is called
ideal.

5. Evaluation: examples of memory errors

5.1 Detected Errors with one Configuration

In this section will be presented examples of programs (each with a simple error) that have only one
configuration on every state.

def a ptr
a := alloc (3)
a := alloc (2)

Listing 1. Example of memory leak

After the second assignment, there is a configuration (this is the only one configuration in this state),
where there is no page, which was allocated first. The validator will show corresponding error on
the third line.

def a ptr

a := alloc (3)
a = a + 4
def b int

b := Sa

Listing 2. Example of access violation while dereference

In the fifth statement there an attempt to dereference the pointer, while there is a configuration,
where this pointer points out of page (this is the only one configuration in this state). The validator
will show corresponding error on the fifth line.

133

https://github.com/ParfenovIgor/ideal
https://github.com/ParfenovIgor/ideal

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,
2035. pp. 125-136.

def a ptr
a <-4
Listing 3. Example of access violation while movement
In the second statement there is an attempt to move value by pointer, while there is a configuration,

where this pointer out of page (this is the only one configuration in this state). The validator will
show corresponding error on the second line.

def a ptr

a := alloc (3)
a = a + 1
free (a)

Listing 4. Example of access violation while free

In the fourth statement there is an attempt to free page by pointer, while there is a configuration,
where this pointer is not at the beginning of page (this is the only one configuration in this state).
The validator will show corresponding error on the fourth line.

5.2 Detected Errors with multiple Configurations
Next let us discuss examples of programs which have multiple configurations in every state.

def a ptr
if (1) |

a := alloc (3)
}

Listing 5. Example of memory leak on branching

In the end of body of if statement there is memory leak, since there is a configuration, where there
is no allocated page (there are two configurations: with if and without). In general, the allocations
can only be places at root blocks in function bodies.

def a ptr
def b ptr
a := alloc (3)
b := alloc (4)
def c ptr
if (1) |

c :=a + 0

Listing 6. Example of unpredictable free

In the £ree statement there are two configurations, but in these configurations the variable ¢ points
to different pages. It is restricted, as there is no way to continue validation.

134

Tlapdenos N.A. AHann3 u UCUNCIICHHE aTHacOB, OCHOBAaHHOE Ha CETMEHTUPOBAHHOW Moenu aapecanuu mamsatu. Tpyasr UCIT PAH, 2023,
Ttom 35, BB 3, . 125-136.

6. Conclusion

In this work in progress paper, firstly we briefly review some approaches to memory safety analysis.
Then we proceed to a new variant of alias calculus and propose several changes, stemmed from the
C programming language memory model. Finally, we describe our implementation of a model
language, our static analysis tool, and present several experiments showing analysis’ potential (as
we believe).

Still, we need to try validator on a “large” source code file containing more than 100 lines of code.
Right now, we foresee a problem with scaling our analysis to “large” programs and on programs in
a programming language from the real world. Additionally, a crucial missing piece in the theory is
the handling of dynamic arrays and recursive functions.

References

[1]. L. O. Andersen, “Program analysis and specialization for ¢ programming language,” in DICU, [Online].
Available: http://www.cs.cornell.edu/courses/cs711/2005fa/papers/ andersen-thesis94.pdf, May 1994.

[2]. S. V. A. Kogtenkov B. Meyer, “Alias calculus, change calculus and frame inference,” in Science of
Computer Programming, [Online]. Available: http://is.ifmo.ru/articles_en/2013/meyer-calculus-2013.pdf,
Nov. 2013.

[3]. J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in Carnegic Mellon
University, [Online]. Available: https://www.cs.cmu.edu/~jcr/seplogic.pdf, Jul. 2022.

[4]. P. O’Hearn, “Communications of the ACM” in Carnegic Mellon University, [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/3211968, Feb. 2019.

[5]. A. V.N.V. Shilov A. Satekbayeva, “Alias calculus for a simple imperative language with decidable
pointer arithmetic,” in Novosibirsk Computing Center, [Online]. Available:
https://nccbulletin.ru/files/article/shilov_satekbayeva_vorontsov.pdf, 2014.

[6]. L. I. Lygin, “Alias calculus in C-like languages,” 2021.

[7]- G. Dolgov, “Implementing alias calculus for ¢ programming language using llvm,” 2022.

[8]. A. J. Michael Matz Jan Hubicka, System V application binary interface, [Online]. Available:
https://refspecs.linuxbase.org/elf/x86 64-abi-0.99.pdf, Jul. 2012.

Ungpopmayusi 06 aemopax / Information about authors

Urops Aunpeesnd [IAPOEHOB — 6akanaBp B 00:1acTé HHPOPMATHKHY U BEIYHCIUTEIBHON TEXHUKH
yauBepcurera MuHomosmmc. Cdepa HaydyHBIX WHTEPECOB. HHU3KOYPOBHEBOE M CHCTEMHOE
MPOTPaMMHUPOBaHHE.

Igor Andreevich PARFENOV - Bachelor of Informatics and Computer Engineering. Research
interests: low level and system programming.

135

http://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
http://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
http://is.ifmo.ru/articles_en/2013/meyer-calculus-2013.pdf
http://is.ifmo.ru/articles_en/2013/meyer-calculus-2013.pdf
https://www.cs.cmu.edu/~jcr/seplogic.pdf
https://www.cs.cmu.edu/~jcr/seplogic.pdf
https://dl.acm.org/doi/pdf/10.1145/3211968
https://dl.acm.org/doi/pdf/10.1145/3211968
https://nccbulletin.ru/files/article/shilov_satekbayeva_vorontsov.pdf
https://nccbulletin.ru/files/article/shilov_satekbayeva_vorontsov.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,
2035. pp. 125-136.

136

Tpyowr UCIT PAH, mom 35, éwin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-10 EOC-:H

Application of Design Patterns in the Development
of the Architecture of Monitoring Systems

A.A. Pasynkova, ORCID: 0009-0006-4842-1105 <aapasynkoval@yandex.ru>
O.L. Vikentyeva, ORCID: 0000-0002-8991-4719 <ovikenteva@hse.ru>

HSE University, 38 Studencheskaya str., Perm, 614070 Russian Federation

Abstract. This article explores the relevance of using design patterns in the development of the architecture of
monitoring systems. The increasing complexity of modern monitoring systems has made it challenging to
maintain and evolve them. The use of design patterns can address these challenges by providing reusable
solutions to common problems in monitoring system architecture. This article reviews the literature on
monitoring systems and design patterns and identifies appropriate design patterns for monitoring system
architecture. The article also analysis the requirements for monitoring systems and demonstrates how design
patterns can be used to meet these requirements. The results show that the use of design patterns can improve
the maintainability, flexibility, reliability, compatibility and scalability of monitoring systems. This article is
relevant to software architects, developers, and system administrators who are involved in the development and
maintenance of monitoring systems.

Keywords: design patterns; monitoring systems; architecture; monitoring system requirements.

For citation: Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the
architecture of monitoring systems. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150. DOI:
10.15514/ISPRAS-2023-35(3)-10

MpoekTupoBaHMe apXUTEKTYpPbl CUCTEMbl MOHUTOPUHIA HA OCHOBE
naTTepHOB NPOEKTUPOBAHUS

A.A. Iacwinkosa, ORCID: 0009-0006-4842-1105 <aapasynkoval@yandex.ru>
O.JI. Buxenmwesa, ORCID: 0000-0002-8991-4719 <ovikenteva@hse.ru>

Hayuonanvnoiii uccnedosamenvcxuti ynugepcumem BIIID,
614070, Poccus, 2. Ilepmo, yn. Cmyoenueckas, 0. 38.

AHHOTanms. B naHHOI craThe nuccnenyeTcs akTyaabHOCTb UCIOJIB30BAHUS IA0JIOHOB IIPOSKTUPOBAHUS IIPU
pa3paboTKe apXUTEKTYpbl CHUCTEM MOHHUTOpUHra. BoszpacTamomias CI0XXHOCTH COBPEMEHHBIX CHCTEM
MOHHTOPHHTA YCIOXHJIET MX OOCIy)KHBaHHE W 3BONIONMIO. Mcronb3oBaHue MAOIOHOB NPOEKTHPOBAHUS
MOJKET PEeIIHUTh 3TH IIPOOIEMBI, TPETOCTABISST MHOTOKPATHO UCIIONB3yEMbIE PEIIEHHs IS PACTIPOCTPAaHEHHBIX
npoOsieM B apXUTEKType CHCTEM MOHHTOpWHTa. B 3TO# craTthe fqaeTcss 0030p JUTEpaTypsl IO CHCTEMaM
MOHHTOPHHTA ¥ ITa0JI0HAM IPOSKTUPOBAHMS U OMPEIEISIOTCS MTOAXOAAIINE MAa0IOHBI TPOSKTUPOBAHUS IS
apXUTEKTYpPBI CHCTEM MOHUTOPHHTA. B cTaThe Taroke aHAIM3UPYIOTCS TPeOOBaHMS K CHCTEMaM MOHMTOPHHTA
M JIEMOHCTPUPYETCS, KaKk MOXKHO HCIOJB30BaTh IIAOIOHBI IPOSKTUPOBAHMS JUIS YIOBJIETBOPCHHS AITHUX
TpeboBaHuil. Pe3ynbTaThl MOKa3bIBAIOT, YTO MCIOIB30BaHHUE IIA0JOHOB MPOSKTUPOBAHUS MOXKET YIIYUIIHTh
ynoOcTBO 00CTyKHMBaHMS, T'MOKOCTb, HAIEKHOCTb, COBMECTUMOCTh M MAacCIITa0HPYEeMOCTb CHCTEM
MOHHTOpPHHTA. DTa CTaThs NPeAHa3HAUYEHA JUIS apXUTEKTOPOB MPOTPAMMHOT0 o0ecedeH s, pa3paboTINKOB 1
CHCTEMHBIX aIMHHICTPAaTOPOB, KOTOPHIE 3aHUMAIOTCS Pa3paboTKON M 00CITy)KHBaHHEM CHCTEM MOHUTOPHHTA.

137

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

KioueBble ciaoBa: 1abOHBI NPOCKTUPOBAHHUS, CHUCTECMbl MOHHUTOPHHIA; APXHUTCKTYpa, TpeﬁOBaHI/Iﬂ K
CHUCTEMC MOHUTOPHUHTIA.

Jas nurupoBanusi: IlaceinkoBa A. A., BuxentseBa O. JI. IlpoexTupoBaHHE apXUTEKTYPHl CHCTEMBI
MOHHUTOPHHTa Ha OCHOBe marTepHoB npoekTupoBanus. Tpyast UCIT PAH, Tom 35, Bem. 3, 2023 r., ctp. 137—
150 (ua anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2023-35(3)-10

1. Introduction

Monitoring systems have become an essential part of various industries, providing real-time
information about the health and performance of critical systems. These systems are complex and
require sophisticated architectures to handle the data flow, processing, and storage [1]. However, as
the systems grow and evolve, they become increasingly challenging to maintain, and changes can
have unforeseen consequences [2]. This is where the use of design patterns can be invaluable.
Design patterns are reusable solutions to commonly occurring problems in software design. By
applying design patterns, developers can address specific design issues and improve the quality of
the system [3-5]. Design patterns have proven to be effective tools in software development,
providing solutions to common problems and ensuring that software systems are scalable,
maintainable, and flexible [6-8].

The problem is that without using design patterns, the maintenance of monitoring systems can be
difficult, time-consuming and prone to errors [9-11]. As the system grows, the complexity increases,
and it becomes harder to make changes without causing unintended consequences. Therefore, it is
essential to assess the possibility of using design patterns in the development of monitoring system
architecture.

Also, the relevance of developing own architecture independently, without using ready-made open-
source solutions is justified by the fact that some enterprises cannot do this because of high secrecy
and the need to ensure security when working with a monitoring system. Therefore, the use of
foreign solutions cannot be chosen.

This article will analyze the possibility of using design patterns to develop the architecture of
monitoring systems and provide examples of design patterns that are well-suited to monitoring
systems. Bo wusbexkaHue OmUOOK mpu (OPMATHPOBAHHH TEKCTAa CTAThH HACTOSTEIBLHO
PEKOMEHIYETCSl UCTIONIb30BaTh JAaHHBIN JTIOKYMEHT B KayeCTBE MA0J0HA. DTO MO3BOJHT MOJIy4YaTh
BCE 3aJ[aHHBIC MapaMeTphl (HOpPMATHPOBAHMS TEKCTa ABTOMATHUYCCKH. B TPOTHBHOM ciiydae
H606XOZ[I/IMO CaMOCTOSITEILHO O0ECIEYUTDH BBIITOJIHEHHE BCEX Tpe60BaHPII>i JAHHOT'O IOKYMCHTA
(pa3mep CTpaHHIIBL, OIS U OTCTYIBI, MIPUQPT, PACCTOSHHUE MEXAY KOJOHKAaMH U T. 1.).

2. Motivation

The motivation for exploring the topic of the use of design patterns in the development of the
architecture of monitoring systems comes from the increasing demand for robust and scalable
monitoring systems in various industries such as finance, healthcare, and telecommunications. The
rapid growth of technology has led to the development of more complex and distributed systems,
which require advanced monitoring capabilities to ensure their proper functioning.

However, building a monitoring system that is both scalable and maintainable can be a challenging
task. It is difficult to predict all possible scenarios and requirements that the system may face in the
future, making it hard to maintain and update the system over time. This is where design patterns
come into play. By using proven design patterns, developers can build monitoring systems that are
easier to maintain, more flexible, and more scalable [12].

The main goal of this article is to assess the possibility of using design patterns in the development
of the architecture of monitoring systems, and to demonstrate their relevance and effectiveness [13-
15]. By exploring different design patterns and their applications in monitoring systems, this article
aims to provide a comprehensive overview of the benefits of using design patterns in monitoring
systems development [16].

138

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

This article will be valuable to developers and architects who are involved in the development of
monitoring systems, as well as to anyone interested in learning about the benefits of using design
patterns in software development.

3. Problem statement

Requirements analysis is an important part of the software development process. It involves
collecting and documenting the needs and constraints of stakeholders to ensure that the final product
meets their expectations. At this stage, it is necessary to analyze and document the requirements for
the monitoring system.

System requirements are the most detailed technical requirements, and they describe how the system
will be designed and implemented. System requirements are often expressed in the form of
functional and non-functional requirements, and they represent a plan that the development team
should follow. System requirements are usually collected during design sessions, technical reviews,
and other development processes.

3.1 Functional requirements

Functional requirements describe what the system should do and how it should behave. Examples

of functional requirements may include:

1) Data collection and storage: The system should be able to collect data from various sources, such
as sensors, devices, and databases, and store them in a centralized location.

2) Data analysis: The system should be able to analyze the collected data and provide information
about controlled processes in real time. This can include data aggregation, filtering, and
visualization.

3) Alerts and notifications: The system should be able to notify the relevant stakeholders when
certain conditions or thresholds are met, for example, when an anomaly or process inconsistency
is detected.

4) Reporting and dashboards: The system should provide customized reports and dashboards that
allow users to view key performance indicators (KPIs), track progress towards achieving goals
and identify areas for improvement.

3.2 Non-functional requirements

Non-functional requirements describe system qualities such as performance, reliability, and security.
Next, examples of non-functional requirements will be analyzed:

1) Scalability: The system should be able to handle a large amount of data and users and be able to
zoom in and out as needed. Vertical scaling is characterized by an increase in the bandwidth of
an individual server or resource, for example, by increasing computing power or memory, which
allows you to handle a large load. Horizontal scaling involves adding more servers or resources
to handle the increasing load by distributing the workload across multiple machines.

2) Flexibility: The system should be designed in such a way that it can easily adapt to changing
requirements without requiring significant changes in its underlying architecture. In the context
of monitoring systems, flexibility is important because monitoring requirements can change over
time. For example, it may be necessary to add new sensors or devices, as well as to reconfigure
the system considering changes in the controlled environment. Flexibility allows for greater
maintainability and extensibility.

3) Reliability: The system should be able to work 24/7 without any downtime and provide accurate
and reliable data. In the context of monitoring systems, this is important, since any failure can
lead to large financial losses, downtime and potentially dangerous situations. One of the ways to
achieve reliability is redundancy. Redundancy involves the duplication of critical components
or subsystems in the system to ensure that if one component fails, another can take its place. For

139

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

example, backup power supplies, network interfaces or data storage devices can be added to the
monitoring system to increase reliability. Another way to achieve reliability is fault tolerance,
which involves designing the system in such a way that it continues to function even when a
component fails. Fault tolerance can be achieved by adding mechanisms such as error detection
and correction or automatic failover. In general, reliability engineering involves considering all
potential points of failure in the system and developing mechanisms to prevent or mitigate the
consequences of these failures.

4) Compatibility: The system must be able to interact with other systems and devices using open
standards and protocols. In the context of monitoring systems, compatibility can be used to
achieve integration with other software components, devices, or platforms to perform their
functions effectively. For example, a monitoring system in a manufacturing facility may need
integration with sensors, programmable logic controllers (PLCs) and other industrial automation
systems to collect data and perform analysis. The monitoring system must be designed in such a
way as to be compatible with these various systems. In addition, the use of standard
communication protocols, such as MQTT, REST, can help to implement compatibility between
different systems.

5) Maintainability: Maintainability is the ability of a system to remain in good condition over time,
which covers all actions related to maintaining and improving the quality of the system, including
bug fixes, code refactoring and system updates. The serviced system is easy to understand,
modify and expand, and it is less prone to errors and defects.

4. Implementation

The architecture of the platform for intelligent environmental monitoring “Digital Ecomonitoring”
is presented using a component diagram (Fig. 1).

loT devices
User
|

| JsON _
|REST AP , HTTP
y HTTP ModbuxTCF
| XML | MQTT
, €8V
I
: ! Web Engine
¥ Y
g0 = g 1 T]
InfluxDB Web Server NGINX MQTT Broker Mosquitto ReactJS
o e . - =
= oA P) L
~ Influx@L \\HTI'P < HTTP .= T API
pht 2 =
e = ~ ES P s
= D saL =
|_ PostgreSQL |> T Java Service
- - e E I b
e s A -
_ - APl L, APl * AP AP
- [. i
Analytic Engine - leT Engine ¥
Pl i _ N S it
E] | E | =1 21
Python MQTT Service CSV/XML Service Modbus Service

Fig. 1. Component diagram for the platform for intelligent environmental monitoring “Digital Ecomonitoring”’

The “Digital Ecomonitoring” platform is designed to provide monitoring and analysis of
environmental data in real time, as well as the implementation of emission forecasting. Users also

140

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

have the ability to configure alerts based on predefined thresholds, which allows them to take
proactive measures in response to environmental changes.

The platform has a multi-level architecture with several components working together. The
InfluxDB time series database is used to store measurements read from controllers or uploaded by
the user to the platform. The PostgreSQL relational database management system is used to store
dashboard and widget settings, accounts and roles, as well as the assignment of access rights.
ReactJS is used to create user interfaces in the digital platform. Python is used as an analytical tool
for processing data collected by the monitoring system, as well as for predicting values for
emissions. NGINX web server is used to process incoming requests from clients and forward them
to the corresponding components of the digital platform.

The process of data collection and storage in the Digital Ecomonitoring platform is implemented
using the Factory pattern. The abstract Data Collector class is a base class that allows you to create
new classes responsible for new sensors without diving into the specific details of their
implementation. Data Collector is part of Java Service. In the same way, the abstract Data Storage
class is able to create new instances of data warehouses.

The process of data processing, analysis and visualization in the platform is implemented using the
Decorator pattern, which allows you to add behavior to a single object without affecting the behavior
of other objects in the system. In this case, all additional methods for analysis and forecasting are
located in the analytical component implemented by Python [18].

The visualization process in the platform is implemented with an architecture similar to the MVC
pattern. In this case, Java Service is a controller that manages communication between databases
and ReactJS, which are a Model and a View, respectively [19-20].

The notification process is not clearly expressed in this architecture and is part of the Java Service,
which does not allow it to be attributed to any pattern.

For those who want to build monitoring system architecture, there is such a solution as ThingsBoard.
ThingsBoard is an open-source solution for 10T platforms. ThingsBoard is used to manage devices,
data collection, processing and visualization of collected information. ThingsBoard allows to
conveniently organize the process of collecting data from various devices, use a large number of
widgets to build informative dashboards that can help with managerial decision-making.
Component diagram for monolithic architecture of ThingsBoard (Fig. 2).

The monolithic architecture of ThingsBoard is very popular as it makes it cheaper and faster to
develop a monitoring system, which can help to implement it faster. With the help of various
protocols, such as HTTP(S), MQTT, CoAP, data enters systems from various devices. Each
transport protocol allows to send data to the Rule Engine, which allows devices to change behavior
according to the information received, and through the ThingsBoard Core service there is an
opportunity to access databases to evaluate the correctness of the information and make appropriate
changes. It is assumed that the data collection process is implemented using the Decorator or Factory
patterns.

Rule Engine is responsible for processing incoming information according to user-defined logic. It
is possible to create a filter, configure alerts when threshold values are reached. This component is
responsible for notifying users, which is implemented using the Observer pattern.

The ThingsBoard Core component is responsible for calling the corresponding APls, managing via
WebSocket and tracking the status of connecting devices to the developed system. This component
allows to implement devices, users, management rules and connections in the system. It uses the
gRPC framework to interact with other components. Also, interaction with databases for storing the
received information is implemented through this component, and represents one of the following
patterns by architecture: Factory or Decorator.

The ThingsBoard Core component is responsible for processing, analysis and forecasting, the
implementation of which also corresponds to the Decorator or Factory patterns.

141

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

External systems can receive information from the system using the Rule Engine, which uses gRPC
to transfer data to external systems, process data and create processing reports for visualization in
ThingsBoard.

£ | £l HTTPIS)
Third-Partly Apps | ThingsBoard Web Ul l“ >
¥ 5 End User
'\ WebSackets . ResTap
E .
2 - —_—
. = ERET e
; b Database
e "
"~ THTTR(S) g NoSOL } ‘) 5]
Devices =~ o7t] ThingsBoard Core ™€~ = 7 Timescale/Cassandra (NoSQL) PostgresoL
i A €= o Pt b O A
i s - e
]
1
gRPC
I
]
1
! External Systems
|
Eml gRPC i £ £
Rule Engine [~~~ Kafka RebbitMg Email

5MS AWS 505/5NS

Fig.2. Component diagram for monolithic architecture of ThingsBoard

To organize visualization with the presented system, the MVC pattern is used, which is represented
by the following components: Controller — ThingsBoard Core, View — ThingsBoard Web Ul, Model
— Database.

Component diagram for microservices architecture of ThingsBoard (Fig. 3).

Devices
n End Users
! /
y HTTHSY HTTPIS)
o MQTT + WSIS)
\ i
N ¥
Load Balancer
- “FTTE HTTP -
HOTT w3 e
e’ . ¥ Toa
o) a1 =
ThingsBaard Trans part Microsernvices ThingsBeard Care Microsensices ThingsBoard Web Ul Microsernices
* Ed
~ Katka Katka
Quewe |
.
e i g
-~ "katka kafks - xafea
1 pi
! 5
ThingsBoard JavaScript Executor Microservices ThingsBoard Rule Engine Microservices Third-party services

Fig.3. Component diagram for microservices architecture of ThingsBoard

The microservices architecture of ThingsBoard allows to implement a monitoring system with
greater flexibility and maintainability. Data from devices is collected using HTTP(S) and MQTT
protocols through the corresponding components that are part of Load Balancer. Then the data is

142

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

sent to the corresponding services, which transmit them further to other services, process or visualize
for users in the system itself.

The applied patterns for the implementation of the monitoring system necessary for the functioning
remain the same as for the monolithic architecture, but now there is a separation between the
components implementing them into various services, which contributes to easy scalability and
increased maintainability.

After analyzing component diagrams for various monitoring systems, a universal component
diagram for monitoring systems was designed, which can help in designing your own monitoring
system architecture (Fig. 4).

User

Interfaces

¥

&] L 1| 3
SMS Service Email Service Web Server 0T Device 2 loT Device 1
L — o > A I————— = — = =) —
1
i HTTP : ;
AP y Commurication ; Communication
ARl APl WebSockets 1 protocol ‘ prokocol
¥ £]
8 i iApache Kafka | N
] T -
B ¥ ¥ -
! .
il apl E AP ||
Notification Service | * Data Processor [% 10T Service
FL AN T
- AP AP| AP
3 | | 1|
Data Visualization Data Storage Analytic Service |
| |
-« x
Fl \
¥ x
+ 501 AL
¢
RelationalDB Time series DB

Fig.4. Component diagram of the monitoring system architecture

In the diagram presented, you can see that the system is composed of microservices, which ensures
stable operation, maintainability and easy scalability of the monitoring system. The user
communicates with the system via a Web Server, so that the Data Processor component knows
exactly what the user wants to do.

The list of Data Processor functions also includes communications with Analytic Service, loT
Service, Data Visualization, Data Storage and Notification Service. Analytic Service organizes the
analysis and forecasting of the data available in the system. 10T Service communicates with different
10T devices that the monitoring system is connected. Data Visualization displays the data in user-
friendly format. Data Storage stores the data in the monitoring system. Notification Service is
responsible for informing users of the exceedance of thresholds or for regularly communicating the
status of the monitoring system and related objects.

The process of data collection and storage for the monitoring system, implemented using the Factory
pattern, it presented using the class diagram (Fig. 5).

On the class diagram, there are several abstract classes that allow to easily add new elements to the
monitoring system without making changes to its structure. So, Data Collector defines the methods
that will be used when implementing specific Collector classes. And Data Storage records what

143

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

functional features databases connected to the monitoring system, both relational and time series
databases should have.

@ Data Collector

o collectDatal()

@lOT DeviceZ Collector @ loT Devicel Collector
o loTDevice2 o loTDevicel

o collectDataf) e collectData()

\\ //
A r
N e
b 7
\I '/

©Re|atianB Storage

~ > o relationDB
e storeData()

© Data Processor

o processData()

|
¥

@Time series DB Storage .®Data Storage.
o time series DB

o storeData() (S ESERBIRERLL)

Fig.5. Class diagram of the process of data collection and storage for the monitoring system

Sequence diagram of the process of data collection and storage for the monitoring systems (Fig. 6).

4. 4
i -] < -
= = 10T T o - :
1aT Data Dewice 1 Oawvice 2 Cats Data RelationalDB Time séries DR
service Collector Coflector Collector Processor Storage starmge Storage
apt__J [need to create Data Collectar]
- L 0
 CreatleDit st obecturl)
CraateloTICallecki-t]
—_— e

CodlectDatat
>
| Collectnataly
[[opt 7 [ne=t ta crests Oats starags]
CraaraDatastoragel]
':'c:r.cﬁck:ti:lnnlnsst:ragcl}):
S :
L afli Sl AR
Crede TrmeSeriesOBSLoraged] |
L retum success messans i
Savelatal] !
e otum succese message |_|
savedatal) i
| et suecmss message i |
laT Cata loT IoT Dats Data RelationzlDE Time series CE
service Collertar Gewicn 1 Oevice 2 Processar Slorage 5

! U
torm Storage
Collertor Collector oy
< P

Fig. 6. Sequence diagram of the process of data collection and storage for the monitoring system

144

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

In the sequence diagram shown above, there is not only the process of data collection and storage,
but also the creation of instances from an abstract base class that implement the appropriate
collection method or database to save the collected data.

The process of analyzing and predicting data in the system can be implemented using the Decorator
pattern that will allow to add behavior to a separate object without affecting the behavior of other
objects in the system. Thus, it’s possible to add new methods for data processing and forecasting
without the risk of disabling existing methods.

Class diagram of the process of analyzing and forecasting data for the monitoring system (Fig. 7).

Method for Method for
process data predict data 2
o process() o predict()
@Ana!ytic Service @Data Processor
o process()
o predict() o process()
Method for Method for @Data Storage @Tlme penesDBstorage
process data predict data 1 o time series DB
: o store()
@ process() e predict() o retrieve() e store()

e retrieve()

Fig. 7. Class diagram of the process of analyzing and forecasting data for the monitoring system

Methods for data processing and forecasting are extended using the Decorator pattern using the basic
abstract class Analytic Service. Similarly, the Time Series DB Storage class is implemented, created
according to the abstract Data Storage class.

Sequence diagram of the process of analyzing and forecasting for the monitoring system (Fig. 8).

e - A A
A L

Time Seres DB Method for Method for Method for Method For

Data Processor Data Storage Storage Analytic Service process data 1 process data 2 predict data 1 predict data2
apt S Treed ve reaie Bate Sroreus] |

send ta request to retrieve dat
e be ot il ehicve dnta
| createTmescalenEstaraged |

rabLm SUCCeSE Massage

Ot SUCCESS MMSsage

retriowe data

| et retiieve. . i i [

send d=ta processng and pradict raquest wth data

| process data ‘Tl
L retum processed data | |

process data

| Tetum processed data | |
summansing processed data

le—1

pradict data

Lerotum prediceed data H " I_l

predict data

ratum predictad data | |

| summarising predicted data
— 1
e

send pracessed and predict data

save processad and predict data

Ly retm suscesa messsge i i I
Data Processor Data Storage Timme Seres DB Analybic Service Method for Method for Method Far Method Far
£ 'Jtora?e % wmcass{data 1 Dr-)(ﬁsz datal predic I;:data 1 pre ulct‘data 2

Fig. 8. Sequence diagram of the process of analyzing and forecasting data for the monitoring system

145

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

The diagram shows the process of data processing and forecasting, the process of which begins with
the creation of a data warehouse according to the abstract base class Data Storage for a time series
database. If such a database exists, the Data Processor immediately accesses the database and
extracts the necessary information. The received information is sent to the Analytic Service, when
it is processed and forecasted using previously established methods in the same way.

The visualization process can be performed using an MVC pattern. This can help to simplify
maintenance and system updates. Using this pattern can help achieve separation of the tasks.

Class diagram of the process of visualization data for the monitoring system (Fig. 9).

© Dashboard |

o widgets

o addWidget()
a ramoveWidget()
a render()

VAR

@ Dala Processor @widget

@ Data Visualization

|
|
1

i3 z E = data
o dataVisualization() =
» render{) | o getData() o render{) \
= Zr f Widget| f Wid
@Datastorage| @Type2o Wi geti @Typelo Widget
7| o options | noptions
» storeDatal) : 5 -
Lt i | o render o render
/@,_ 0 | 0 |
>

@Time Series DB Storage @-RelationaIDB Storage

o timeSeriesDB o relationalDB

o storeData() @ storeDatal)

Fig.9. Class diagram of the process of visualization data for the monitoring system

In this case, the Data Processor will be a Controller that will interact between the Model and the
View, which are represented by Data Storage and Data Visualization, respectively. The Model is a
database repository that can support both relational databases and time series databases, the View is
associated with the Dashboard class, which implements widgets defined in the dashboard system.
Sequence diagram of the process of visualization data for the monitoring system (Fig. 10).

The diagram shows the interaction of the elements of the system built according to the MV C pattern.
The process of notifying users in the monitoring system can be implemented using the Observer
pattern. This pattern allows you to update the values of related objects when the observed objects
change [17-18].

Class diagram of the process of notification users for the monitoring system (Fig. 11).

This diagram shows the process of notifying users by applying the Observer pattern, which allows
to support instantons change in the state of an object with changes in the observed objects.
Sequence diagram of the process of notification users for the monitoring system (Fig. 12).

In this sequence diagram, the process of notifying users of the monitoring system occurs when the
values received from loT devices exceed the set range of acceptable values. Data Processor, Data
Storage and the databases themselves change their state when updates are required from 10T devices.
Also, the Notification Service can change its state in those situations when it is necessary to notify
the system user of the events that are taking place.

146

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

A& A, &
!] 1] |] . ; .
b = Time Series DB RelationalDB
Data Processor Data Storage Data Visualization Storage Storage
send request for data for visualization i i i
retrieve data ' £t
| retumretrieveddata U
retrizve data i i |
| return retrieved data | |
| return retrieved data
send request for data visualization
render dashbeard |
render widgets
. return SUCCESS messe_n_g_t_:
Data Processcr Data Storage Data Visualization Time Series DB RelationalDB
P £ A Storage Storage

Fig. 10. Sequence diagram of the process of visualization data for the monitoring system

/\-Notifiration Service 2 I{C}Nutificatiﬁnsewine Cc)l\lntifi(_ation Sernvice 1|
o options r‘_| « upoatef] ™ o options
o notify() | | e sendNotification(} & notifyl)

OData Pror?ssnr

|
T | = - |
@l i0T2 Device Collector o chservers | -@Data storage @_’.erlatlonaIDB Smraqei
o loT2 = attach() = o relationalDB |
|_r.. collectDatal) | ;ﬁ:g?r;?;] ‘ » storeDatal] S larana |

. pmcessDara[l I

E HI

1
e
fc\lnTl Device Collector| (C)Time series DB Storage

o timeSeriesDB |

|
o Tl !
|

@ caollectDatal) | @ storeDatal) |

Fig. 11. Class diagram of the process of notification users for the monitoring system

5. Evaluation

The design of the monitoring system architecture depends on the non-functional requirements that
will need to be implemented. The following is a list of patterns that can implement the non-functional
requirements listed above.

1) Observer pattern: to implement reliability and maintainability by monitoring the state of the
object and notifying its dependent elements of any changes.

2) Decorator pattern: to implement vertical scaling, flexibility and maintainability in order to
dynamically add functionality to an object without affecting the behavior of other objects.

3) Factory pattern: to implement vertical scaling, flexibility and maintainability in order to create
objects without specifying the exact class of the object to be created

4) Microservices pattern: to implement horizontal scaling.

5) Model-View-Control (MVC): to achieve maintainability dividing into three main components:
the model, view and control.

147

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

< <

& = A 4 L

16T1 loT2 = 1 b w b
Device Device Data Data Time Series DB RelationalDB Netification Notification Notification

Caollector Caollector Frocessor Storage Storage Storage Service Service 1 Service ?

U send data =

send data

compare data with |hreshu|d) 1
return result |
b

_retrieve data about user

retum retreved data I | |

return result

rotify user by email

notify user by sms i
loT1 loT2 Data Data Time Series DB RelationalDB Netification Netification Notification
Device Device Frocessor $torf:]e Storage storage Service Service 1 service 2
cnliefror Callze‘cror £ p 9 g

Fig. 12. Sequence diagram of the process of notification users for the monitoring system

6. Conclusion

1) Data collection and storage. The monitoring system should collect data from various sensors
and devices, process them and store them in a database for further analysis. The Decorator or
Factory patterns can be used to create objects representing different types of data.

2) Data analysis and processing. Once the data is collected, the monitoring system needs to analyse

it to extract meaningful information. The Decorator or Factory patterns can be used to add new

analysis capabilities to the system without changing the existing structure.
3) Data visualization. The monitoring system should present the data in a clear and understandable
form for the user. The Model-View-Controller (MVC) pattern can be used to separate data from

the user interface, allowing developers to create different representations of the same data

without affecting the underlying data model.
4) Notifying users about problems. The monitoring system should notify users when certain
conditions are met, for example, when the sensor detects an abnormal value or when the device
goes offline. The Observer pattern can be used to trigger alerts when certain events occur.

Conclusion: By considering and implementing best practices and design patterns, it is possible to
ensure that the architecture of the monitoring system is scalable, flexible and easy to maintain. This
will allow the system to effectively meet the needs of the organization over time as monitoring
requirements change.

References
[1]. D. Gurdur et al., ‘Knowledge Representation of Cyber-physical Systems for Monitoring Purpose’,
Procedia CIRP, 2018, vol. 72, pp. 468-473.

[2]. Cocuun IT.U. ApXUTEKTypHOE MOJICIMPOBAHHE aBTOMATH3MPOBaHHbIX cucTeM: yueOHuk / [1.1. CocHuH.
— Cankr-IletepOypr: Jlans, 2020. — 180 c.

[3]. N. Nazar, A. Aleti, and Y. Zheng, ‘Feature-based software design pattern detection’, Journal of Systems

and Software, 2022, vol. 185, pp. 1-12.

[4]. D. Yu, P. Zhang, J. Yang, Z. Chen, C. Liu, and J. Chen, ‘Efficiently detecting structural design pattern

instances based on ordered sequences’, Journal of Systems and Software, 2018, vol. 142, pp. 35-56.

[5]. S.K.Lo, Q. Lu, L. Zhu, H.-Y. Paik, X. Xu, and C. Wang, ‘Architectural patterns for the design of federated

learning systems’, Journal of Systems and Software, 2022, vol. 191, p. 111357.

[6]. J. Arm, Z. Bradac, O. Bastan, J. Streit, and S. Misik, ‘Design pattern for the runtime model-based checking

of a real-time embedded system’, IFAC-PapersOnLine, 2019, vol. 52, no. 27, pp. 127-132.
148

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

[7]. Z. Moudam and N. Chenfour, ‘Design Pattern Support System: Help Making Decision in the Choice of
Appropriate Pattern’, Procedia Technology, 2012, vol. 4, pp. 355-359.

[8]. F. Pfister, V. Chapurlat, M. Huchard, and C. Nebut, ‘A Design Pattern meta model for Systems
Engineering’, IFAC Proceedings Volumes, 2011, vol. 44, no. 1, pp. 11967-11972.

[9]. A. Ampatzoglou, O. Michou, and 1. Stamelos, ‘Building and mining a repository of design pattern
instances: Practical and research benefits’, Entertainment Computing, 2013, vol. 4, no. 2, pp. 131-142.

[10]. J. Dong, D. S. Lad, and Y. Zhao, ‘DP-Miner: Design Pattern Discovery Using Matrix’, in 14th Annual
IEEE International Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’07), Tucson, AZ, USA: IEEE, Mar. 2007, pp. 371-380.

[11]. A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, ‘A methodology to assess the impact of design patterns
on software quality’, Information and Software Technology, 2012, vol. 54, no. 4, pp. 331-346.

[12]. [IaGnoHBl TPOEKTHPOBAHHUSI MPOrPAMMHOTO obecredeHusi KHOep(hH3UUeCKUXx cucTeM 3manuii / A.B.
Keorukun [u ap.] // Ipuxnagnas nagopmatuka. — 2020. — T. 15. — Ne 86. — C. 48-62.

[13]. C. Liu and P. Jiang, ‘A Cyber-physical System Architecture in Shop Floor for Intelligent Manufacturing’,
Procedia CIRP, 2016, vol. 56, pp. 372-377.

[14]. J. E. Correa, R. Toro, and P. M. Ferreira, ‘A new paradigm for organizing networks of computer numerical
control manufacturing resources in cloud manufacturing’, Procedia Manufacturing, 2018, vol. 26, pp.
1318-1329.

[15]. S. J. Oks, M. Jalowski, A. Fritzsche, and K. M. Moslein, ‘Cyber-physical modeling and simulation: A
reference architecture for designing demonstrators for industrial cyber-physical systems’, Procedia CIRP,
2019, vol. 84, pp. 257-264.

[16]. M. M. Hamdan, M. S. Mahmoud, and U. A. Baroudi, ‘Event-triggering control scheme for discrete time
Cyberphysical Systems in the presence of simultaneous hybrid stochastic attacks’, ISA Transactions,
2021, vol. 122, pp. 1-12.

[17]. J. Hu, W. Wu, F. Zhang, T. Chen, and C. Wang, ‘Observer-based dynamical pattern recognition via
deterministic learning’, Neural Networks, 2023, vol. 159, pp. 161-174.

[18]. K. Aljasser, ‘Implementing design patterns as parametric aspects using ParaAJ: The case of the singleton,
observer, and decorator design patterns’, Computer Languages, Systems & Structures, 2016, vol. 45, pp.
1-15.

[19]. B. V. lvanovich, B. V. Vladimirovich, N. F. Victorovich, B. V. Viktorovich, and A. L. Vitalievna, ‘Using
MVC pattern in the software development to simulate production of high cylindrical steel ingots’, Journal
of Crystal Growth, 2019, vol. 526, p. 125240.

[20]. A. Sunardi and Suharjito, ‘MVC Architecture: A Comparative Study Between Laravel Framework and
Slim Framework in Freelancer Project Monitoring System Web Based’, Procedia Computer Science,
2019, vol. 157, pp. 134-141.

UHgpopmayusi 06 aemopax / Information about authors

Anexcanapa AunekceeBHa IIACBIHKOBA - waructp HHUY BIID Ha cnenuaibHOCTH
«HpopMaIMOHHAS aHATUTHKA B YIIPABICHUN PEATIPUITACMY.

Alexandra Alekseevna PASINKOVA holds a Master's degree from the Higher School of Economics
in the specialty "Information Analytics in Enterprise Management".

Oubra Jleonnnosna BUKEHTBEBA — nouent kadeaps! nHGpOpMaIMOHHBIX TEXHOJIOTHI B OM3HECe
Ha (akylbTeTe COIHATbHO-DKOHOMHYECKHX M KOMIbIOTepHbIX Hayk B HUY BIID B Ilepmu. B
chepy HayuHbix uHTepecoB BxomaT: CASE-TexHosOTHs, AHAaIH3 W MOICIHPOBAaHHE OW3HEC-
MPOIIECCOB, OOBEKTHO-OPHEHTHUPOBAHHOE MPOTPAMMHPOBAaHUE, OOBEKTHO-OPHUEHTHPOBAHHOE
MO/JICIUPOBaHNE, IPOSKTUPOBAHHUE CHCTEM, YIIPABICHHE IPOEKTAMH, aKTHBHBIE METOIBI O0yUCHHS.

Olga Leonidovha VIKENTYEVA is a docent of the Department of Information Technology in
Business at the Faculty of Socio—Economic and Computer Sciences at the HSE in Perm. Her
research interests include: CASE technology, Analysis and modeling of business processes, object-
oriented programming, object-oriented modeling, system design, project management, active
learning methods.

149

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

150

Tpydei UCTT PAH, mom 35, ebin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-11 M

Finding More Bugs with Software Model Checking
using Delta Debugging

120.M. Petrov, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru=

! Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
2 lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. Many verification tasks in model checking (one of the formal software verification approaches) can’t be
solved within bounded time requirements due to combinatorial state space explosion. In order to find a bug in the
verified program in a given time, a simplified version of it can be analyzed. This paper presents DD** algorithms
(based on the Delta Debugging approach) to iterate over simplified versions of the given program. These algorithms
were implemented in software-verification tool CPAchecker. Our experiments showed that this technique might be
used to find new bugs in real software.

Keywords: formal software verification; software model checking; delta debugging; CPAchecker.

For citation: Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 151-162. DOI: 10.15514/ISPRAS-2023-35(3)-11

Acknowledgements. The author thanks his colleagues Anton Vasilyev and Vadim Mutilin for their useful advices
on the article topic.

NMounck HOBLIX OLIMOGOK MeToAOM Bepucukauum mogesrien ¢ NOMoOLLbIO
noaxoaa AenbTa-oTnanku

12 0.M. Ilempos, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru=

! Mockoeckuii 2ocyoapcmeenntii ynusepcumem umenu M.B. Jlomonocoea,
Poccus, 119991, Mocksa, Jlenunckue 2opwl, 0. 1.
2 Unucmumym cucmemnozo npozpammuposarnus um. B.I1. Hsannuxoea PAH,
Poccus, 109004, 2. Mockea, yn. A. Comicenuybina, 0. 25.

AHHOTaIuA. 3a9acTyl0 MHCTPYMEHT (hOpMaNbHOW BepHUHKanuy Mojenedl NporpaMM HE MOXKET IOIyYHTh
BEPAMKT 33 OTPAaHNIECHHOE BpeMsI N3-3a KOMOMHATOPHOTO B3PhIBA IPOCTPAHCTBA COCTOSTHUH. UTOOBI HANTH OIIHOKH
B BepH(UIMPYEMOi MporpaMMe 3a BEIIETIEHHOE BPeMsI, MOXKET OBITh IPOAHAIN3HPOBaHA YIIPOMEHHAs €€ BepCusl.
B at0it paboTte mpencrasnens anroputMbl DD**, ocHoBaHHBIe Ha ogxoe Delta Debugging, ¢ TOMOIIBEIO0 KOTOPBIX
HPOU3BOAUTCS MepeOop YMPOMEHHBIX BEPCHil TPOrpaMMbl. DTH alrOPUTMBI OBUTH peann30BaHbl B HHCTPYMEHTE
cratuueckoil Bepudukamuu nporpamm CPAchecker. Hami sxcriepuMeHTBI MOKa3ald, 4TO MPET0KEHHbIH METO.T
MOJKET OBITh UCTIOIB30BaH ISl HAXOXK/ICHHS OLIMOOK B MPOTPaMMHBIX CUCTEMaX, HCIIOJIb3YEMBbIX Ha MPAKTHKE.

KimioueBble ciioBa: QopmanbHas Bepudukaius mnporpamyM; Bepubukamms wMozenei; delta debugging;
CPAchecker.

151

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

Jst mutupoBanus: [lerpos O.M. ITonck HOBBIX OIIMOOK METOIOM BepH(pUKanuK MOJeNIeH ¢ ITOMOIIBIO ITOX0Aa
nenbra orinanku. Tpymst UCIT PAH, tom 35, Bem. 3, 2023 r., ctp. 151-162 (ma anrmmiickom si3eike). DOI:
10.15514/ISPRAS-2023-35(3)-11.

Buaaronapaoctu. ABrop 61arogaput cBoux kojuter A.A. Bacunbesa u B.C. MyTununa 3a COBETHI IO TeME CTAaThbH.

1. Introduction

A ssignificant portion of tasks and problems today are solved with the aid of software. With the increase
in the scale and complexity of tasks, the scale and complexity of the software systems that solve
them increase, as does the difficulty of preventing, detecting, and eliminating errors in them.
Approaches to detecting errors in programs can be divided into three types: expertise, dynamic
analysis, and static analysis. Expertise is the manual review of code (or other development artifacts)
by a human with a high enough level of expertise and is not scalable. Dynamic analysis methods
involve the analysis of a sufficiently long run of the software system or the analysis of test runs. It
can be automated, but it can only detect bugs on paths that were included in the test suite and cannot
prove program correctness.

Static analysis includes methods for analyzing the source or binary code of a program without
running the program. Lightweight static analysis techniques such as control flow analysis and data
flow analysis are thoroughly used in compilers [1] and can be used to detect probable defects in a
short time. On the other hand, formal verification methods make it possible to reliably obtain
evidence of an error (counterexample) or even prove the absence of errors (correctness of a program
with respect to a given formal specification), but this may require significant computational resources
or human aid. One of the most successful tools for automatic model checking of C programs is
CPAchecker® [2], [3]. With its help, several hundred errors were found in the code of the Linux
operating system drivers?[4], [5].

The tool is actively developed and wins medals in the software verification competitions SV-COMP
several years in a row [6]-[8].

Although at the SV-COMP 2022 competition this tool received second place in the summary category
Overall, it was unable to complete the verification of a considerable number of programs due to a 15-
minute CPU time limit. Table 1 compares the CPAchecker verification tool and the winners in the
corresponding competition categories in terms of the number of programs that were verified within
the allotted time.

The table shows that even the winners in the respective categories failed to verify a significant
portion of programs, especially in the SoftwareSystems category, which consists of complex
programs that are close to the real software systems used. The obvious solution to the lack of
resources for verification is to allocate more resources, but often this does not help to get a verdict.
In this work, we use the approach of simplifying the verified program. This approach is known, but
we have proposed an automatic approach to the systematic enumeration of simplified versions of
the program. For this, algorithms based on the Delta Debugging algorithm are proposed. The
implementation manipulates (removes) function bodies from the internal representation of the
program in CPAchecker, a control flow automation.

The proposed enumeration of simplified program versions takes a significant amount of time, and
the technique’s limitations lead to the loss of up to 38%?2 of verdicts that the baseline analysis
could find. However, this way it is possible to get an unsafe verdict for the 32% of the programs,
for which respective baseline analysis can not obtain a verdict in the same amount of time. Due to
the complexity of proving the correctness of the original program on the basis of the correctness
of simplified programs, the search for safe verdicts remains outside the scope of this work.

! https://gitlab.ispras.ru/verification/cpachecker
2 http://linuxtesting.org/ldv
3 See evaluation on Linux USB drivers in section 4.2.

152

http://linuxtesting.org/ldv

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

2. Related work

The following two subsections describe techniques that can be applied in model checking in order to
obtain results: specific to the problem of combinatorial explosion in model checking, general-purpose
techniques for reduction of the software to be verified, and reuse of partial results of verification. The
third subsection describes Delta Debugging approach that is used to enumerate simplified versions of
the program to be verified.

Table 1. Programs verified, SV-COMP 2022.

Category Prc(;gtzz?rsym C\:/F?RZESCEgr Winner in category | Verified by winner
ReachSafety 5400 3477 (64%) VeriAbs 4476 (83%)
MemSafety 3321 2992 (90%) Symbiotic 3264 (98%)

ConcurrencySafety 763 377 (49%) Deagle 559 (74%)
NoOverflows 454 369 (81%) CPAchecker ——
Termination 2293 1023 (45%) UAutomizer 1589 (69%)

SoftwareSystems 3417 1830 (54%) Symbiotic 1261 (37%)

FalsificationOverall? 13355 3726 (28%) CPAchecker ——

Overall® 15648 10195 (65%) Symbiotic 8962 (57%)

aAll previous categories except Termination.
PAII previous categories including Termination.

2.1 Model checking techniques

Model checking is a formal software verification technique, i.e. a program is checked against
specification — some formally expressed property (often in a from of a temporal logic formula [9]).
Model checker explores state space of the given program and checks seen states against the given
specification. The program state represents values of all program variables and the current control
location (the value of the instruction pointer).

When a state violates the given specification, model checker can export a counterexample — a trace to
this state — as a specification violation witness. This ability of systematic search for error paths
makes model checkers useful tools for bug-finding.

One of the well-known techniques to reduce generic software model is abstraction. Explicit model
of a program is overapproximated by an abstract model in a way that does not lose
counterexamples. Abstraction is often paired with counterexample-guided abstraction refinement
[10]. This way, model checker starts with the most abstract model; when a spurious counterexample
is present in the abstract model, but is not feasible in the verified software, it is used to make the
abstraction more precise. The abstract model is refined this way until a feasible counterexample is
found or the whole model is checked.

Other classic techniques include partial order reduction (taking into account that some asynchronous
events simulated in a different order lead to the same state [11]), and symmetry reduction (using
symmetry in systems with multiple identical components [12]), both of which are used for model
checking of concurrent systems; and symbolic model checking, i.e. using binary decision diagrams as
compact encoding of state space [13].

Another well-known technique is bounded model checking [14]. In order to avoid state-space
explosion, the length of explored traces in the model is bounded, and therefore model checker
either provides a counterexample that is shorter than the imposed limit, or proves that there are no such
counterexamples. This technique is thoroughly improved and is used in practice for bug-finding.

2.2 Partial verification and verification of parts

Another way for state space reduction is to reduce the input program that needs to be modelled. This
can be done using component-based approach or reusing previous verification results.

153

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

Usually large-scale software systems are divided into components. Software verification can benefit off
this structure via interface rule, assume-guaranty reasoning, or other techniques oriented on component-
based software verification [15]. Contrarily, decomposition of specification can also be useful [16].
Incremental verification [15] and extreme model checking [17] can be used with incremental software
system development and extreme programming, respectively. This way software verification benefits
from the fact that most part of the software system was already verified, therefore verification of the
new version of the software is approachable.

Another technique that is especially useful for regression verification is precision reuse [18]. In
similar fashion, the precision of abstract model of the software older version can be used to achieve
efficient verification of the newer version. Conditional model checking [19] proposes to export partial
results of a verification run as a predicate describing safe (explored) part of the verified software
and add such predicate as an input to a verification tool. Safe verdict is represented as true, and
unsafe verdict is represented as false. This way different tools can exchange information.

The state-of-the-art verification tools make it possible in practice to increase the efficiency of
verification by transferring information between two tools (or a tool running in different configurations).
A tool and language “for the composition of cooperative approaches” have been proposed [20]. At
the SV-COMP 2022 competition [7], such a tool could have taken second place in the ReachSafety,
MemSafety, and Termination categories and first place in the NoOverflow category, but it did not
participate in the rating because it used other participating instruments.

Another well-known approach that can be viewed as program simplification technique is program
slicing [21]: only statements that affect values of the given variables at the given instructions through
control or data flow remain in program. This technique was evaluated with CPAchecker [22], [23] with
mixed results, and was implemented [24] as a configurable program analysis inside CPAchecker
(i.e. it can be used alongside other CPA to construct and refine an abstract model of a given program

[3D-

2.3 Delta Debugging

This paper proposes the automatic enumeration of simplified versions of the program being verified.
This technique is closer to the verification of parts of the program. The most known approach to
changing input data, program version, or other startup conditions is Delta Debugging, proposed by
[25]. These algorithms iterate over subsets of a set of arbitrary homogenous atomic elements that
make up the “changeable circumstances”. The initial set is split into smaller parts, deltas, and for both
deltas and their complements the interesting property can be checked. Then deltas are split into ever
smaller parts, until they consist of one element.

In this paper, function bodies of an original analyzed program are considered elements, i.e., simplified
versions of the same program miss some function bodies. Lines of code, blocks, and operators can
also be considered as less coarse elements.

Delta Debugging distinguishes three outcomes in terms of a test run outcome. Let original full set
of input elements holds some property fail (i.e., test run produces a failure; here, a model checker
cannot verify a given program in a given time). Let empty set of input elements (baseline) holds
some property pass (i.e., test run succeeds; here, a model checker provides a safe or unsafe verdict,
which is the case for an “empty” C program of int main(){ return 0; }). These two
properties must be mutually exclusive (test cannot succeed and fail simultaneously). The case when
neither is held is considered unresolved (here, an error occurred in the verification tool). Seminal
work proposes three DD algorithms based on the same approach:

e ddmin: minimization of fail-inducing subset;
e ddmax: maximization of passing subset;
e dd: isolation of a fail-inducing difference (“cause”).

154

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

As these algorithms do not enumerate all of the subsets, the minimum (maximum) found by ddmin
(ddmax) is local. The authors call it 1-minimal (1-maximal), as no element in the found subset can
be removed so that fail holds (no element can be added so that pass holds). When dd finds a
“cause”, that means that there is some “safe” subset for which pass holds, but for the “safe” subset
together with the “cause” the fail holds.

Delta Debugging improvements: The DD algorithms can work with an unstructured set of elements,
whether they are commits, user actions, files, lines, HTML tags, tokens, characters. Ignoring the
internal structure of the input allows the algorithm to be used in a wide range of situations, but also
allows a large number of unnecessary runs due to ignoring information about internal dependencies.
A Hierarchical Delta Debugging (HDD) algorithm has been proposed that is capable of minimizing
tree-structured data faster and more effective than ddmin [26]. This algorithm uses ddmin to minimize
each level of the input tree, starting from the root, and removes nodes with their entire subtrees. Authors
applied HDD to minimize C programs in form of an abstract syntax tree.

Other improvements and applications of the DD algorithms include subtree hoisting [27] and binary
reduction of dependency graphs (e.g. applicable for Java classes) [28].

3. General design

We simplify the verified program (by removing its parts) in order to find an unsafe that is also
feasible in the original program. Accounting for both of these problems, we need to mutate
original program until an unsafe occurs; then the resulting counterexample is checked against the
restored control flow automaton. If the unsafe is confirmed, the algorithm terminates, otherwise the
enumeration process continues.

As a result, the following cycle was implemented inside the CPAchecker tool.
1) CPAchecker parses the program and builds its control flow automaton (CFA).

2) CPAchecker starts verification of the program with the time limit specified for one
verification round.

3) If a verdict is produced, CPAchecker returns it; otherwise timeout has occured (fail outcome
in terms of Delta Debugging)*.

4) If there is no way to mutate the CFA of the program or the time allotted for the whole process
has run out, exit with the unknown result.

5) Otherwise, change the program CFA. dd chooses what to do based on the results of previous
verification round.

6) CPAchecker starts verification with the time limit specified for one verification round.
7) If an unsafe verdict is produced, check the counterexample.

8) If the counterexample is confirmed against the original program, CPAchecker returns the
unsafe verdict.

9) Otherwise, go to step 4. For dd, unsafe and safe mean pass outcome, and timeout means
fail.

3.1 Simplification problem

The main question is how to arrange a sufficiently fast enumeration of simplified versions of the
program. In the following, we are considering only removing function bodies, as it makes sense to
remove coarser elements of the input program before removing more fine-grained elements like
blocks and statements, and this case has been implemented and evaluated.

4 In practice, other problems may occur (such as exceptions thrown by the verification tool), but here we consider only safe,
unsafe, and timeout possible for simplicity.

155

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

On the one hand, the more complex the function, the more likely it (or the code that uses it) has a bug.
On the other hand, the analysis of complex functions is also resource intensive. In addition, it is worth
considering that a large number of simple functions can be worse than a few complex ones.

The complexity of a function can be estimated through the characteristics of its control flow
automaton as a graph: the number of vertices, edges, cycles, its cyclomatic complexity, whether
there are sink vertices in the function (the possibility of early termination of the entire program); the
semantic characteristics of a function as a program: the number of variables, pointers, function calls
in it and whether it calls itself, is it a pure function or does it have side effects; finally, how many
times the analysis entered certain locations of the function.

The presented problem can be reformulated as the knapsack problem: it is necessary to choose as
many interesting (here value is probability of an unsafe) functions as possible so that the analysis does
not exceed resource constraints (i.e. weight is an estimate of the is complexity of a function for
analysis). In such setting, it is enough to enumerate the largest sets of functions, for which the
verification completes before the allotted time limit, since smaller subsets of such a set can only miss
an unsafe. Such a maximum set can be found using Delta Debugging, with timeout being the fail
outcome, and verdicts safe and unsafe being the pass outcome.

Contrarily, it may be interesting to find a minimum set of functions that can be called a core of
complexity, as the verification of this set ends in a timeout. As the ddmin algorithm approaches
minimum, it tries some of its subsets too, including removing each function from minimum set
individually.

Thus, the proposed algorithm for enumerating simplified versions is based on the previously
implemented dd algorithm, which localizes the cause. Based on it, algorithms dd*min* and dd*max*
were developed for searching for a suitable configuration by enumeration of minima and, accordingly,
maxima.

3.2 Iterative algorithms DD**

The ddmin algorithm can be used to find the minimum set of functions each of which is required
to reproduce the timeout. Below a dd*min algorithm is proposed for finding the minimum set of
causes, since we may be interested in the structure of the minimum set of functions, i.e., which functions
together form “causes”. dd*min showed speed comparable to ddmin.

To search for functions without which a timeout does not occur, the dd algorithm can be used. The
first run of dd will split the set of functions into three sets: the set of removed functions, the set
of “safe” functions (which the verification tool manages to analyze in the allotted time), and the
isolated “cause”, i.e., the set of functions, after adding which to the set of “safe” functions a timeout
reappears.

By repeating dd on the set of safe functions, we can isolate a new cause among them (and remove some
of these functions, adding them to the set of removed functions). dd is repeated until the set of safe
functions is empty; now we have a set of removed functions and a set of isolated causes, which makes
up the minimum program that the verification tool can not verify in the allotted time.

Similarly, you can find the maximum program not with the ddmax algorithm, but by iteratively
removing causes with dd*max. To do this, the cause is deleted after each run, and all the functions that
were removed on this run are returned. This way a new cause can be isolated among all other
functions. The process continues as long as the timeout continues to occur after the return of the
removed functions. Thus, we get a set of causes that have been removed from the program, and a set
of safe functions.

It is possible to construct an algorithm that enumerates the optimums based on algorithms that find
a local optimum. In the following, two such algorithms, dd*min* and dd*max*, are described.

To iterate over minima, it is enough to return all removed functions and remove one of the isolated
causes. If the timeout does not occur without this cause, then we return it and try to remove another
one. If the timeout reoccurs, then we can find another minimum, since it will not have the cause

156

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

that we removed. This way all the causes found can be removed one by one. Similarly, it is enough
to add one of the causes to the found maximum to find another maximum by isolating another cause.
Taking into account that dd’s complexity with respect to the number of analysis runs performed is
linear in the number of considered elements, we obtain, in the worst case, a quadratic dependence on
the number of elements. Assuming that the number of causes in the found minimum is bounded from
above by some constant, we obtain a linear complexity estimate (with the indicated constant as a
factor).

3.3 Counterexample check

CPAchecker has three implementations for checking counterexamples: using CBMC (Bounded Model
Checker for C and C++ programs®), concrete execution, and using CPAchecker itself. In the first two
cases, the found counterexample is exported as a C program. In the latter case, it is exported as a
violation witness in the form of a special automaton that directs the analysis along the already
found trace [29]. Since translated programs or a violation witness significantly limit the number of
possible execution paths of the program, their analysis is much easier than the analysis of the complete
original program. Because of that, more complex analyses may be used to confirm unsafes found with
simple analyses.

When checking a counterexample, it is necessary to correct the representation of the error trace in
order to compensate for the fact that it was found on a modified program. For representation as
a program, definitions of removed functions have to be added.

To check a counterexample found for a simplified version of the program, the following was
implemented. The counterexample is translated into C in much the same way as for CBMC, but the
definitions of the removed functions are added to the resulting text. Then re-verification is started
from within CPAchecker (by default with the same configuration). Although there is now a potentially
complex function, the rest of the program has been simplified to a single trace, so this check requires
much less resources compared to the entire program.

4. Evaluation

Two experiments were conducted to evaluate implemented algorithms, both compare dd*min* and
dd*max* against the baseline CPAchecker analysis with the same CPU time limit. Effectiveness is
evaluated as amount of found unsafes, efficiency is evaluated as time spent for the tasks.

4.1 A few programs from SV-COMP/ReachSafety

29 programs were chosen arbitrarily for the first experiment from ReachSafety category of the SV-
COMP benchmark®. These programs are checked for reachability of specified function call (reachable
call is considered a bug). 21 of the chosen programs have an error (the call is reachable) and

8 of the programs do not have an error (the call is not reachable). Most of the programs consist of a
few functions, some have a lot of branching. For each of the chosen programs, CPAchecker did not
provide a verdict in the 2022 competition due to timeout (15 minutes of CPU time).

The time limit was increased from 15 minutes (900 seconds) to 2.5 hours (9000 seconds) of CPU time
for verification of one program. The run was performed using BenchExec’ on a machine with a
16-core 11th generation Intel Core i7-11700 processor at 2.50 GHz, with 32 GB of RAM (of which
CPAchecker had allocated 10 MB on the heap and default 1 MB on the stack), and 64-bit operating
system Ubuntu 20.04.6 LTS.

5 http://www.cprover.org/chme/

6 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
" https://github.com/sosy-lab/benchexec
157

http://www.cprover.org/cbmc/

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

Baseline configuration (-svcomp22 -benchmark with extended timelimit) uses sequential
combination of different analyses [30]. dd*min* and dd*max* configurations used same analyses with
time limit of 200 seconds for each verification round.

As seen in Fig. 1 and Table 2, baseline analysis found 6 unsafes (out of 21 programs with an error) and
0 safes (out of 8 programs without an error), while both dd*min* and dd*max* found only two unsafes.
For one program with error, an unsafe was found by all three configurations. For another program
with error, only dd*min* found an unsafe. For yet another one program with error, only dd*max*
found an unsafe.

@ bassline 4 (found unsafe) @ cdmir® % [found unsafe) @ ddmax® @ (found unsata)
100000
50000 —
« ®
10000 R T T TR RN R R Gi G e . . . I
L]
5000 . + * ° . B
=
Tk -
.
O : B & »
1000 5 1 :
. . . .- . . -
- - L] -
500 . - . - .
L

Fig. 1. CPU time for analysis of a few benchmark programs (sorted by baseline time)

Table 2. Results for 29 ReachSafety programs.

Baseline analysis dd*max* dd*min*
Total CPU time, h 161 19.0 234
Total wall time, h 44.8 7.5 13.3
Safe (8 expected) 0 0 0
Unsafe (21 exp.) 6 2 2
Enumeration completed — 27 27
Timeout 23 0 0

Small amount of obtained baseline verdicts is not unexpected, as the programs were chosen
because CPAchecker could not verify them in time in competition. As these programs consist of
small amount of functions, DD** algorithms need more granular elements to manipulate in order to
simplify program more precisely and not lose a verdict.

As shown in the table, dd*min* and dd*max* in sum took 26% of CPU time of the baseline analysis
(46% of wall time).

4.1 Linux USB drivers

In the second experiment, 284 modules of Linux operating system kernel USB device drivers, version
5.10.27, were verified against memory leaks, incorrect dereferences and use after free. It was carried
out using Klever system [31] on an 8-core Intel Xeon E3-12xx v2 (lvy Bridge, IBRS) machine
with 32 GB of RAM, and a 64-bit Debian 4.9.246-2 OS.

Baseline analysis configuration (-smg-1dv) uses symbolic memory graphs [32].

dd*min* and dd*max* configurations used same analysis with time limit of 350 seconds for each
verification round.

158

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

Fig. 2 shows a quantile graph of the spent CPU time; baseline analysis found 62 unsafes (13 of them
regired more than 5 minutes of CPU time), and found 90 safes (16 of them required more than 5
minutes of CPU time). Verdict was not produced (result is unknown) for other 132 modules:

e for 5 modules, due to encountered recursive functions in module;
e for 100 modules, because of timeout;
o for 6 modules, because more memory was needed:;

o for 21 modules, verification was not conducted at all due to a problem outside of verification
tool (these are not shown on the figure).

@ baseline anslysis @ with dd*max* @ with dd*'min”

10000 e’ e
5000 L _,,_.——-'-’—/’ -~
S’ el
-] -;
» 1000 " =
g 500 g =
o ' i
O _ o ’_,-""'
100 g P
. - -
jD -____-—-“_’tf/‘/
10
0 50 100 150 200 250

Fig. 2. CPU time for analysis of Linux device driver modules (quantile graph)

It can be seen that for modules whose verification takes 15-35 seconds, the time for the proposed
algorithms will most likely also be 15-35 seconds; the time for modules with baseline analysis longer
than 35 seconds averages 40-50 minutes for dd*max* and 40-90 minutes for dd*min*. Difference
under first 350 seconds is explained by the fact that DD** algorithms do not stop verification after
first error found, while baseline analysis does. This change in analysis was introduced in order to find
all errors that can be present in the original program.

The results for the Linux drivers are presented in Table 3 and Table 4. dd*max* and dd*min*
obtained 74 and 75 safe verdicts, respectively, in cases where verification took less than 350
seconds of CPU time. There was not enough time to verify 100 modules by baseline analysis;
there was not enough time for one module to analyze using dd*min*. For dd*max* and dd*min*,
the analysis of 130 and 50 modules, respectively, ended because enumeration of simplified versions of
the module ended without a verdict.

The dd*max* algorithm consumed just 29% of the total CPU time (31% of the total wall time)
of the baseline. 26 unsafes (42% as percentage of unsafes obtained by baseline analysis) were found
in programs for which baseline analysis can not obtain a verdict.

The dd*min* algorithm spent 49% of the total CPU time (51% of the total wall time) of the baseline
analysis and found 38 unsafes (61% as percentage of unsafes by baseline analysis) in modules for which
baseline analysis can not obtain a verdict.

In total, DD** algoritms obtained new unsafes for 42 modules out of 132 modules with unknown
baseline verdict. Both algorithms obtained an unsafe for 23 of these modules.

Change of safe to unsafe can be explained by incorrect counterexample check: the used analysis
does not stop after target state is reached. Additionally, incorrect translation of C enum types induces
raise of exceptions.

159

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

From the results of the experiments, we can conclude that it may be more effective to use the proposed
technique together with a trivial increase of the time limit. For example, simply running the proposed
algorithms after the baseline analysis, it is possible to get a linear increase in the number of unsafes
found (according to the results of the second experiment, 32% of new unsafes for additional 29% of
total CPU time).

Table 3. Results for 29 Linux USB drivers.

Baseline analysis dd*max* dd*min*

Total CPU time, h 493 142 240

Total wall time, h 427 131 218
Safe 90 74 75

Unsafe 62 49 77
Enumeration completed — 130 50
Timeout 100 0 1

Out of memory 6 3 12
Recursion in module 5 5 5
Other exceptions 0 7 46
Other problems 21 21 21

Table 4. Changed verdicts for Linux USB drivers.

dd*max* dd*min*
Baseline analysis
safe unsafe | unknown safe unsafe | unknown
safe, 90 in total 74 3 13 75 9 6
unsafe, 62 in total 0 20 42 0 30 32
unknown, 132 in total 0 26 106 0 38 94

5. Conclusion

In this paper, the problem of software model checking is considered from the point of view of
resource constraints.

Modern methods and approaches for verification of program models were considered. The problem
of finding unsafes in programs by simplifying the verified program is stated.

Two algorithms, dd*min* and dd*max*, were proposed for enumerating simplified versions of
programs based on Delta Debugging approach. These algorithms were implemented in the static
verification framework CPAchecker, and evaluated on a small set of programs from SV-COMP
benchmark and whole set of 5.10 Linux kernel USB device driver modules.

Experiments have shown that the proposed technique takes less than half the total time of baseline
analysis and is able to find unsafes in programs that are too difficult for baseline analysis, although
the total number of verdicts obtained may be less than that of baseline analysis.

There are several directions for a future work: a) program blocks and statements manipulation, b)
improvement of counterexample translation, c) reuse of partial results obtained in the analysis of the
original program or its simplified versions, d) the optimal time for one round of verification, and e)
the optimal order of functions and causes in DD** enumeration.

160

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

References

[1].
[2].

(3.

[4].

(5].

(6].
[71.
(8l
(91

[10].
[11].
[12].

[13].

[14].

[15].

[16].

[17].
[18].
[19].
[20].
[21].
[22].

[23].

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. Addison-Wesley, 1986.
D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configurable software verification,” in Computer
Aided Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings 23. Springer, 2011, pp. 184-190.

D. Beyer, S. Gulwani, and D. A. Schmidt, Combining Model Checking and Data-Flow Analysis. in E. M.
Clarke, T. A. Henzinger, H. Veith, and R. Bloem, eds. Handbook of Model Checking, 1st ed. Cham: Springer
International Publishing, 2018, pp. 493-540.

A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov, “Establishing linux driver verification process,”
in Perspectives of Systems Informatics: 7th International Andrei Ershov Memorial Conference, PSI 2009,
Novosibirsk, Russia, June 15-19, 2009. Revised Papers 7. Springer, 2010, pp. 165-176.

I. S. Zakharov, M. U. Mandrykin, V. S. Mdutilin, E. Novikov, A. K. Petrenko, and A. V. Khoroshilov,
“Configurable toolset for static verification of operating systems kernel modules,” Programming and
Computer Software, vol. 41, pp. 49-64, 2015.

D. Beyer, “Software verification: 10th comparative evaluation (SVCOMP 2021),” Tools and Algorithms for
the Construction and Analysis of Systems, vol. 12652, pp. 401 — 422, 2021.

“Progress on software verification: SV-COMP 2022,” in International Conference on Tools and Algorithms
for Construction and Analysis of Systems, 2022.

“Competition on software verification and witness validation: SVCOMP 2023,” in International Conference
on Tools and Algorithms for Construction and Analysis of Systems, 2023.

N. Piterman and A. Pnueli, Temporal Logic and Fair Discrete Systems, in E. M. Clarke, T. A. Henzinger, H.
Veith, and R. Bloem, eds. Handbook of Model Checking, 1st ed. Cham: Springer International Publishing,
2018, p. 27-73.

A. V. Khoroshilov, M. U. Mandrykin, and V. S. Mutilin, “Introduction to CEGAR — counter-example guided
abstraction refinement”, Trudy ISP RAN/Proc. ISP RAS, vol. 24, 2013, (in Russian).

D. A. Peled, Partial-Order Reduction, in E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, eds.
Handbook of Model Checking, 1st ed. Cham: Springer International Publishing, 2018.

E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla, “Symmetry reductions in model checking,” in
International Conference on Computer Aided Verification, 1998.

S. Chaki and A. Gurfinkel, BDD-Based Symbolic Model Checking, in E. M. Clarke, T. A. Henzinger, H.
Veith, and R. Bloem, eds. Handbook of Model Checking, 1st ed. Cham: Springer International Publishing,
2018, p. 219-245.

A. Biere and D. Kroning, SAT-based model checking, in E. M. Clarke, T. A. Henzinger, H. Veith, and R.
Bloem, eds. Handbook of Model Checking, 1st ed. Cham: Springer International Publishing, 2018, ch. 10, pp.
277-303.

F. Nejati, A. A. A. Ghani, N. K. Yap, and A. B. Jafaar, “Handling state space explosion in component-based
software verification: A review,” IEEE Access, vol. 9, pp. 77 52677 544, 2021.

S. Apel, D. Beyer, V. O. Mordan, V. S. Mutilin, and A. Stahlbauer, “On-the-fly decomposition of
specifications in software model checking,” Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016.

T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido, “Extreme model checking,” in Theory and
Practice, 2003.

D. Beyer, S. Lo"we, E. Novikov, A. Stahlbauer, and P. Wendler, “Precision reuse for efficient regression
verification,” in ESEC/FSE 2013, 2013.

D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler, “Conditional model checking: a technique to
pass information between verifiers,” in SIGSOFT FSE, 2012.

D. Beyer and S. Kanav, “CoVeriTeam: On-demand composition of cooperative verification systems,” in
International Conference on Tools and Algorithms for Construction and Analysis of Systems, 2022.

M. Weiser, “Program slicing,” IEEE Transactions on Software Engineering, vol. SE-10, no. 4, pp. 352-357,
1984.

M. Chalupa and J. Strejéek, “Evaluation of program slicing in software verification,” in International
Conference on Integrated Formal Methods, 2019.

P. Andrianov, V. Mutilin, M. Mandrykin, and A. Vasilyev, “CPA-BAM-Slicing: Block-abstraction
memoization and slicing with region-based dependency analysis,” in Tools and Algorithms for the
Construction and Analysis of Systems, D. Beyer and M. Huisman, Eds. Cham: Springer International
Publishing, 2018, pp. 427-431.

161

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

[24]

[25].
[26].
[27].

[28].

[29].

[30].

[31].

[32].

. M. Spiessl, “Configurable software verification based on slicing abstractions,” Master’s thesis, Ludwig-
Maximilians-Universita"t Mu nchen (LMU Munich), Mu nchen, Germany, Jun. 2018.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE Trans. Software Eng.,
vol. 28, pp. 183-200, 2002.

G. Misherghi and Z. Su, “HDD: hierarchical delta debugging,” Proceedings of the 28th international
conference on Software engineering, 2006.

D. Vince, R. Hodovan, D. Barsony, and A. Kiss, “The effect of hoisting on variants of Hierarchical Delta
Debugging,” Journal of Software: Evolution and Process, vol. 34, 2022.

C. G. Kalhauge and J. Palsberg, “Binary reduction of dependency graphs,” Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019.

D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and T.
Lemberger, “Verification witnesses,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, pp. 1 - 69, 2022.

M. Dangl, S. Lowe, and P. Wendler, “CPAchecker with support for recursive programs and floating-point
arithmetic,” in Tools and Algorithms for the Construction and Analysis of Systems, C. Baier and C. Tinelli,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 423 425.

E. Novikov and 1. Zakharov, “Towards automated static verification of GNU C programs,” in Perspectives of
System Informatics: 11th International Andrei P. Ershov Informatics Conference, PSI 2017, Moscow, Russia,
June 27-29, 2017, Revised Selected Papers 11. Springer, 2018, pp. 402-416.

A. A. Vasilyev and V. S. Mutilin, “Predicate extension of symbolic memory graphs for the analysis of memory
safety correctness,” Programming and Computer Software, vol. 46, pp. 747 — 754, 2020.

Ungpopmayusi 06 aemopax / Information about authors

Oner MaxkcumoBna [IETPOB — crapmmuii nmaGopaHt, maructp ¢(akynpreTa BBEIYHCIUTEIBHON
MaTeMaTHKu U kuOepHeTtuku (2023). Ero HaydHBIE MHTEpeCHl BKIIIOYAIOT BEPUPHKANHNIO MOMAEICH
nporpamwm, delta debugging.

Oleg Maximovich PETROV is a senior laboratory assistant and a master of the Faculty of
Computational Mathematics and Cybernetics (2023). His research interests include software model
checking, delta debugging.

162

Tpyowr UCIT PAH, mom 35, evin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-12 tocld

Framework for Machine Instruction Usage Analysis

D.E. Pechenev, ORCID: 0000-0003-0575-0807 <d.pechenev@spbu.ru>
I.A. Kirilenko, ORCID: 0000-0003-4384-8274 <y.kirilenko@spbu.ru>
O.A. Afonina, ORCID: 0009-0009-4109-1248 <o.aphonina@gmail.com>

St. Petersburg State University,
7-9 Universitetskaya Embankment, St. Petersburg, Russia, 199034

Abstract. When migrating software to new hardware architectures, including the development of optimizing
compilers for new platforms, there is a need for statistical analysis of data on the use of different machine
instructions or their groups in the machine code of programs. This paper describes a new framework useful for
statistical research on machine opcodes that is designed to be extensible and a dataset that can be used by other
researchers. We automatically collect data on different GNU/Linux distributions and architectures and provide
facilities for its statistical analysis and visualization. Related technical issues are discussed, and solutions to
some of them are proposed.

Keywords: RISC-V; software migration; software reengineering; machine code analysis; machine instructions
analysis; ISA analysis; opcodes; compiler construction; code optimizations.

For citation: Pechenev D.E., Kirilenko I.A., Afonina O.A. Framework for machine instruction usage analysis.
Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 163-170. DOI: 10.15514/ISPRAS-2023-35(3)-12

¢peI7IMBOpK AnA aHanu3a ncnosfib3oBaHNA MallNHHbIX MHCprKLIMﬁ

J.E. Ileuenes, ORCID: 0000-0003-0575-0807 <d.pechenev@spbu.ru>
A.A. Kupunenxo, ORCID: 0000-0003-4384-8274 <y kirilenko@spbu.ru>
O.A. Aponuna, ORCID: 0009-0009-4109-1248 <o.aphonina@gmail.com>

Cankm-Ilemepbypeckuii 20cyoapcmeeHHblil YHugepcumenn,
199034, Poccus, e. Cankm-Ilemepoype, Yuusepcumemckasn nabepesicuas, 0. 1-9.

AnHoTanus. [Ipn Murpanum nporpaMMHOTO OOECIIedYeHHsI Ha HOBBIE alapaTHBIE apXUTEKTYpPhl, BKITIOYAs
pa3paboTKy ONTHMHU3HPYIONIMX KOMIHMJIATOPOB IUISI HOBBIX IUIAaTGOPM, BO3HMKAET HEOOXOJMMOCTH B
CTaTHCTUYECKOM aHAJIN3€ JAHHBIX 00 MCIIOIBb30BAHUM PA3IMIHBIX MAMIMHHBIX HHCTPYKIUI WM UX TPYMII B
MaIllMHHOM KoOZle¢ TporpaMM. B maHHO# paboTe ommchIBaeTcs HOBBI (PEHMBOPK, MOJE3HBIA JUIA
CTaTHCTUYECKOTO aHaJM3a MAIIMHHOTO KOJA, KOTOPBHIH pa3paboTaH C y4eTOM BO3MOXKHOCTH PACIIMPEHHUS.
[IpenocraBnsiercs HAOOp JAaHHBIX, KOTOPBIA MOXET OBITH HCIONB30BaH JPYTMMH HCCICAOBATEISIMU.
DpeiiMBOPK MO3BOJISICT aBTOMATHYECKH COOMpATh [@HHbIC C pa3inuuHbiX aucTpuOytHBoB GNU/LInuxX u
ApXUTEKTYp, a TaKkXkKe INPeNOCTaBIsAeT CpPEeACTBA AN HX CTAaTHUCTMYECKOTO aHaluM3a M BHU3YaJIM3allUu.
OO6CyXmatoTcst CBAI3aHHBIE C TUM TEXHUYECKHE MTPOOIIEMBI M IPEUIAaTaloTCsl PEIeHHs] HEKOTOPBIX U3 HUX.

Kuarwuesbie ciaoBa: RISC-V; murpanus [10; pemmxuaupuar [10; aHanu3 MammHHOTO KOJA; aHAIIU3
MAaIIMHHBIX HHCTPYKIUiT; aHamu3 [SA; onKoIbl; co3/1aHie KOMITIIIATOPOB; ONTUMH3ALNS KOJIa.

Jas uutupoBanus: Ilewene JI.E., Kupmnenko S.A., Adonmna O.A. ODpeiiMBOpk a1 aHamm3a
MCIONIB30BaHusl MamMHHBIX UHCTpYKiuid. Tpyasr UCIT PAH, tom 35, Bem. 3, 2023 r., ctp. 163-170 (na
anrsmiickom sa3bike). DOI: 10.15514/ISPRAS-2023-35(3)-12

163

mailto:y.kirilenko@spbu.ru
mailto:y.kirilenko@spbu.ru
mailto:o.aphonina@gmail.com

Pechenev D.E., Kirilenko I.A., Afonina O.A. Framework for machine instruction usage analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 163-170.

1. Introduction

Currently, the open-source RISC-V Instruction Set Architecture (ISA) is actively developing and
gaining popularity. According to RISC-V International [1], more than 3,100 RISC-V members
across 70 countries contribute and collaborate to define RISC-V open specifications as well as
convene and govern related technical, industry, domain, and special interest groups. In September
2022, the RISC-V Alliance was created in Russia [2]. And in December 2022, the European Union
released €270 million to build RISC-V hardware and software [3].

In the RISC-V community, the issue of optimizing programs specifically for this architecture is
acute. In order to plan software migration, compiler developers and specialists optimizing particular
sections of machine code in a non-trivial way manually need to understand which packages and
utilities in popular GNU/Linux distributions on various platforms use, for example, vector
extensions or instructions for speeding up encryption. This knowledge would help them understand
how the compiler can be improved, and in which programs there are sections of machine code that
should be optimized manually for the RISC-V architecture.

In this context, it is also necessary to understand how the various GNU/Linux distributions are ready
to migrate to RISC-V, that is, how the machine code of their packages is optimized and able to
perform tasks in an efficient manner.

To achieve this, a statistical analysis of the machine code is essential, namely, an analysis of the use
of different types of machine instructions in the program code. However, the described problems are
far from the only cases when such an analysis would be useful. Another example is when the
compiler developer needs to find out how the generated machine code of programs has changed in
general after changes in the compiler. This technique in particular is planned to be used

to assess the quality of firmware optimization in embedded systems, for example, routers and data
warehouses.

In this paper, we describe a new framework that makes it easy to answer such questions. On the one
hand, it allows one to automate the collection of data on the machine instruction usage on different
GNUJ/Linux distributions and architectures, and on the other hand, it provides a wide range of tools
for statistical analysis and visualization of this data. We also demonstrate how using our framework
one can get the main results of [4] and show our advantages over it.

The framework code is open and posted on GitHub [5].

2. Background

As described in [4], “static analysis applies to a binary at rest, and, in this case, operates on a
disassembled instruction stream. In contrast, dynamic analysis observes an executing application
using hardware traps and debug instructions, or analyzes an instruction trace gathered during prior
execution.”

The quality and completeness of dynamic analysis depend on the representativity of the input data
provided to the application. Given the fact that even for a single application collecting such data
requires a thorough and time-consuming analysis of the code and execution graph, it becomes clear
that obtaining such a set of representative inputs for all of the analyzed packages is impossible. This
effectively rules out dynamic analysis. Taking that into account, this article considers only static
analysis of the machine code.

We need the framework to be able to help answer various questions: discover the most popular and
rare instructions, find out exactly where in certain packages specific instructions that accelerate the
program are used, compare usage of various types of machine instructions between different
GNU/Linux distributions and platforms and a lot more. In this paper, we show that to attain this
goal, the instructions and their number are sufficient as data to be collected from a specific file.
Nevertheless, the question may arise how to analyze such data when there are so many instructions,
and some of them do fundamentally the same thing, for instance, mov1, movw, and movb. We also
propose an approach that will help to cope with this problem for the x86-64 architecture.

164

Tleuenes /I.E., Kupunenxo S1.A., Aponunna O.A. OpeltMBOPK A5 aHATH3a UCIIONB30BAHMS MAIIMHHBIX HHCTpYKIwmit. Tpyast UCIT PAH,
2023, tom 35, Baim. 3, ¢. 163-170.

Considering that GNU/Linux is the de facto standard in the community of developers from all over
the world, we make the framework work with this operating system. However, we require it to be
able to collect data from different distributions, since they are compiled with various options, which
makes the machine code of their packages distinct. Moreover, we demand that the framework is
capable of working with different ISA, since the same packages can be optimized in various ways
for different architectures. This is particularly important for performance critical code optimized
manually in such software as archivers, video codecs, machine learning libraries, and so on.

3. Related work

The idea of applying static analysis of machine code is not novel. As an example, it is widely used
in malware detection tasks. In article [6], the frequencies of 29 opcodes chosen by the author are
used as features to train Random Forest, AdaBoost, XGBoost, and Voting Classifier-based models
for detecting malicious executable files. Another research [7] reveals the relationship between the
rarest instructions and code maliciousness. However, the data was collected from a few files, which
is not enough for complete analysis. Moreover, data of the research is not publicly available.
Instruction frequencies have also been used in works [8]-[10] to determine not only the
maliciousness of executable files, but also their belonging to virus families. Firstly, the opcodes with
the highest predictive value were identified [8] using 8 evaluation metrics. The authors of the paper
found out that it is possible to reduce the number of features (opcodes) from 443 to 180 without loss
of accuracy and to 10 with 94.2% accuracy. The analysis was performed for 5 families of crypto-
ransomware for Windows.

Secondly, it is shown [9] that histograms of instruction frequencies can help classify a family of
metamorphic viruses. A set of such histograms was collected for the NGVCK family of viruses and
an average histogram was constructed for it. The frequencies were obtained by counting the
operation codes of the instructions in the disassembled binaries (PE, COFF). The classification is
based on the calculation of the Minkowski distance for the histograms. The proposed method was
tested on only 100 files, and only one family of viruses was considered, so it is not possible to claim
its effectiveness.

Thirdly, distribution of instruction usage frequencies is used [10] to quickly classify and detect
malware with low computational cost. For ELF binary files, sequences of instructions, sorted by
frequency of use, are constructed, and the number of intersections where edges join the same
instructions in the resulting sequences is counted. Depending on the range in which the number of
crossovers lies, we can assume whether the program is malicious and belongs to the family of viruses
in question. The results obtained in the study are pretty encouraging, but the ideas were not tested
on a large dataset, and no reliable metrics for the proposed classification were presented.

Besides, instruction n-gram (a contiguous sequence of n items) frequencies are used to determine
the maliciousness of executable files. In [11], opcode n-gram patterns are used as features for the
classification process. The authors conduct experiments to identify the representation of n-grams,
sizes of n-grams, ways to select them for using as features, and the best classifier. The 2-gram
opcodes outperformed all others, and DF proved to be the best feature selection method.

Paper [12] explores methods to detect malware based on machine instruction behavior. The authors
propose an approach to extract instruction sequences based on the control tree. The decompiled
executables are not only analyzed as text files: all kinds of program execution paths are constructed
for them, which are concatenated to produce a flow of operations. The frequency statistics of 3-gram
instructions in the decompiled file has been collected for the resulting flow of instructions and their
text sequences from the tree. Since the sequences of three consecutive instructions are too many to
be used as features for classifiers, 400 sequences with the highest information gain rate were taken.
The results obtained by the classifiers (k-nearest neighbors, decision tree, and support vector
method) were better for the features derived from the control tree: the rate of correct responses is
higher, and the false positive rate and false negative rate are lower.

165

Pechenev D.E., Kirilenko I.A., Afonina O.A. Framework for machine instruction usage analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 163-170.

Also, in [13] a moderate relationship between GCC compiler options and the frequencies of n-gram
instructions was found, but the hypothesis was not tested due to the lack of datasets for analysis.
Instruction frequencies data was also applied to evaluate the efficiency of hardware resource
utilization. For instance, the instruction set of four ISA was analyzed [14], and it was found that on
average only 5-20% of all instructions were used, measuring instruction set utilization by the SPEC
CPU 2006 benchmark application group. The applications were compiled using GCC and PCC with
the option to generate assembly files instead of binary files on Ubuntu 10.04 LTS.

The authors of [15] analyzed the set of x86 instructions in Windows 7 for 32- and 64-bit applications
and collected various statistics for them. For each instruction, information about its type, arguments,
length, and addressing mode was collected. From this data, statistics on the instruction frequencies,
register usage, and number of occurrences of different types of addressing were gathered. The
authors assume that this information is useful for developing intermediate languages such as Java
bytecode to minimize memory consumption.

Another research [16] performs static analysis of virtual machine disk images. An instruction
crawler was implemented that looks through each disk image and counts how many times each
unique instruction signature (UIS) appears in any executable file. In addition to static analysis,
dynamic analysis was performed on a modified virtual machine because new instructions may be
generated and executed at runtime. The analysis was performed for 32-bit machines running
different Ubuntu and Windows versions from 1995 to 2012. It was discovered which instructions
were not used or had ceased to be used over time. Based on the collected data, a tool was developed
to remove old instructions without affecting backward compatibility. However, its source code was
not published.

Finally, the authors of [4] explored the relative importance of instructions based on the number of
their occurrences in packages and the popularity of these applications. The study was conducted for
the Ubuntu 16.04 distribution and x86-64 architecture. For each package, the frequency of
instructions in binary files and in called libraries is recursively counted using the readelf and
objdump utilities. The authors suggest using the data they collect to measure the completeness of
binary tools, since for many applications it is not necessary to support all instructions. They also
claim that 55 packages covering all instructions are sufficient to verify binary tools.

Summing up, analysis of machine instruction usage can be successfully applied to a variety of
problems. However, many authors do not provide source code and datasets. This makes the results
of their studies not reproducible and prevents other researchers from using the data for new
experiments. We take this into account and provide access to both the source code of the framework
and the received data. As one could see, we could not find studies using data analysis on the
appearance of various machine instructions for planning software migration to new hardware
architectures or developing optimizing compilers. For this reason, this work highlights new ways of
using static analysis of machine code.

4. Implementation
In this section, we describe the capabilities of our framework as of May 1, 2023.

4.1 Data collection

To collect data, a program was written that provides many configuration options for the needs of
specific users, as well as a convenient command-line interface that allows one to gather all the
necessary data with a single command. Its main functionality is to count the number of instructions
in all programs in the specified folder and its subfolders and save the received data in a CSV table.
This is achieved using the read1ink and objdump utilities.

On different GNU/Linux distributions. In order for data collection to take place on different
GNU/Linux distributions, regardless of which operating system is installed on the machine that starts
the data collection process, the program described above is run in Docker containers. Docker images

166

Tleuenes /I.E., Kupunenxo S1.A., Aponunna O.A. OpeltMBOPK A5 aHATH3a UCIIONB30BAHMS MAIIMHHBIX HHCTpYKIwmit. Tpyast UCIT PAH,
2023, tom 35, Baim. 3, ¢. 163-170.

of distributions are built according to dockerfiles stored in the repository. This approach allows to
attain extensibility: to add a new distribution for scanning, it is enough to add the corresponding
dockerfile, and to add a new package, one just needs to write its installation in the dockerfile.

Local data collection can take a lot of time and resources. To solve this problem, data collection
starts automatically on the servers. At the moment, the ability to launch via GitHub Actions is used.
This happens in two stages. First, Docker images are built according to dockerfiles and published in
the repository [17] on DockerHub. If the dockerfile has not been modified since the last GitHub
Actions workflow, the image is not rebuilt. This determines such an architecture. At the next stage,
data is collected on all distributions concurrently: in each distribution, a Docker image is loaded
from DockerHub, a Docker container is launched, and the program described above is run. The
collected data is uploaded to a temporary storage in the cloud, from where it can be taken for
analysis.

For a better understanding of how long it can take to collect data on GitHub Actions, we present
Table 1. It contains measurements for Manjaro, Ubuntu and OpenSUSE distributions on x86-64
architecture with firefox, chromium, kcachegrind, and v1c packages installed. As the data
collection time, we took the median value for 15 launches.

Table 1. Measurements for data collection process

Image Size of image, GB Data collection time, s |Size of obtained data, MB
Ubuntu 1.26 623 8.17
OpenSUSE 1.66 620 6.88
Manjaro 2.34 1192 9.61

On different platforms. The framework provides the ability to scan disk images (currently, in .iso,
.img, and .vmdk formats), which allows one to collect data from different ISA. One can run a
script to obtain data from a disk image that is already downloaded or scan the image by its URL.
Compressed image processing is provided too (for now, in .xz, .7z, and .bz2 formats). In
addition, data from disk images by their URLSs can be gathered automatically using GitHub Actions.
In order to give everyone the opportunity to explore the data, come up with new or improve existing
analysis and visualization tools, we have uploaded the datasets obtained on April 1, 2023 to the
repository [18].

4.2 Data analysis

To simplify the typical tasks of analyzing data on the use of machine instructions, a library of
domain-oriented auxiliary functions has been implemented, which extends standard pandas library
functions for working with tabular data and allows, for example, in the Jupyter Notebook
environment to answer subject area questions in a few lines of code with the possibility of
interactivity. For instance, using the framework, one can solve the following tasks.

e Find the top N most popular or rarest instructions.

e Divide instructions into some clusters (described in more detail in the following
subsection).

e Figure out in which files some instructions (or their categories or groups) are used. In
particular, it makes it possible to discover where vector extensions of instructions for
speeding up encryption are applied.

e Plot interactive histograms of the distribution of instructions (or their categories or
groups).

e Quickly get full information about the instruction (based on third-party documentation)
and more.

167

Pechenev D.E., Kirilenko I.A., Afonina O.A. Framework for machine instruction usage analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 163-170.

An example of data analysis with a demonstration of some of the capabilities of the tool is presented
in the repository. Particular attention was paid to writing detailed documentation. It is published on
GitHub Pages [19] and is updated automatically when changes occur.

4.3 Splitting instructions into categories and groups

One of the most significant difficulties that one faces when analyzing the use of machine instructions
is their large number. As already mentioned, some instructions, although they are different, perform
essentially the same task. In addition, users frequently want to find out where not a specific
instruction is used, but some cluster of them, for example, vector or encryption acceleration
extensions. For these reasons, it is necessary for the framework to provide the possibility of dividing
instructions into certain categories. This problem is indeed non-trivial, since many sources [20] offer
descriptions of instructions without any division into larger units. Others [21], having the division
of instructions into groups, do not include some important extensions.

At the moment, the framework provides an approach for solving the described problem for the x86-
64 architecture. To accomplish this, a Python program was written that collects information from
Linux Assembly libraries project [22], covering a fairly large number of instructions. We call the
category of the instruction the section of the site on the left where it is included, and the group — its
subsection in it. Thus, a two-level clustering of instructions is achieved. The program collects a
description, category, and group for each instruction and stores the result in a json file, the data from
which is then used to divide instructions into groups and categories during data analysis. This file is
also placed in the repository so that everyone can use it.

As an example, Fig. 1 shows part of some histogram before splitting instructions into categories and
groups. Fig. 2 shows a histogram of the total instruction category distribution for the same data. As
one can see, the latter may be more convenient and clear for perception.

5. Evaluation

The proposed method of categorizing instructions for the x86-64 architecture, however, does not
cover all possible instructions. So, on Manjaro, Ubuntu and OpenSUSE distributions, with
firefox, chromium, kcachegrind, and v1c packages installed, the number of occurrences
of non-covered instructions ranges from 7 to 10 percent. We refer them to the “Other” group and
category.

varlable B manjaro B uwbunty B opensuse

value

15

q
% I
0

3

rrcent of sum of

£

F

8 5 3 B 3 =

=E &% § 7
= 2

I]|Hm|||||||I“I|Li'ﬂil.liﬂlﬂian:ﬁE‘.mn::l o s L e o

pppeda |

Fig. 1. Part of the histogram of the total instruction distribution before splitting into categories and groups

168

Tleuenes /I.E., Kupunenxo S1.A., Aponunna O.A. OpeltMBOPK A5 aHATH3a UCIIONB30BAHMS MAIIMHHBIX HHCTpYKIwmit. Tpyast UCIT PAH,
2023, tom 35, Beim. 3, ¢. 163-170.

variable |] manjaro_categories | ul.;-Ll!ulu_LdL—_'gu-'Ies | | opensuse_categories

percent of sum of value

Ca v Oy ’%,» S!’""{) fp-o 4’5,5_9 Ly e i;zlf "

Fig. 2. Histogram of the total instruction category distribution

At the moment, the presented framework allows one to reproduce the main results of [4], which was
discussed in Section 3, and differs from it in the following advantages.

1) The ability to update data whilst the results of [4] have not been updated for more than four
years.

2) The ability to easily vary the analyzed applications by means of configuring building of
distribution images in dockerfiles.

3) The ability to collect data from any GNU/Linux distribution.

4) The ability to collect data from any architecture.

5) Two-level clustering of instructions.

6) The ability to flexibly change data filters and visualization tools.

6. Future work

As mentioned in Section 1, it is often necessary to compare the use of certain groups of instructions,
for example, vector or encryption acceleration extensions, in applications on different architectures.
To do this automatically, it is necessary to divide the instructions into larger units for other
architectures besides x86-64. We are planning to do it.

References

[1]. RISC-V International home page, Available at:: https://riscv.org/about/ (accessed: 01.05.2023).

[2]. RISC-V Alliance in Russia, Available at: https://riscv-alliance.ru/ (accessed: 01.05.2023).

[3]. Global News on High Performance Computing (HPC), Available at:
https://www.hpcwire.com/2022/12/16/europe-to-dish-out-e270-millionto-build-risc-v-hardware-and-
software/ (accessed: 01.05.2023).

[4]. Akshintala A., Jain B., Tsai C., Ferdman M., Porter D. X86-64 Instruction Usage among C/C++
Applications. Proceedings of The 12th ACM International Conference On Systems And Storage. pp. 68-
79 (2019), DOI: 10.1145/3319647.3325833.

[5]. GitHub repository, Available at:
https://github.com/DanilaPechenev/InstructionAnalysisFramework/tree/syrcose (accessed: 01.05.2023).

[6]. Kollara A. Opcode Frequency Based Malware Detection Using Hybrid Classifiers. National College of
Ireland, 2020.

[7]. Bilar D. Opcodes as Predictor for Malware. Int. J. Electron. Secur. Digit. Forensic. 1, 156-168 (2007,1),
DOI: 10.1504/1JESDF.2007.016865.

[8]. Baldwin J., Dehghantanha A. Leveraging support vector machine for opcode density based detection of
crypto-ransomware. Cyber Threat Intelligence. pp. 107-136 (2018), DOI: 10.1007/978-3-319-73951-9 6.

[9]. Rad B., Masrom M., lbrahim S. Opcodes histogram for classifying metamorphic portable executables
malware. 2012 International Conference On E-Learning And E-Technologies In Education (ICEEE). pp.
209-213 (2012), DOI: 10.1109/ICeLeTE.2012.6333411.

169

Pechenev D.E., Kirilenko I.A., Afonina O.A. Framework for machine instruction usage analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 163-170.

[10]. Han K., Kang B., Im E. Malware Classification Using Instruction Frequencies. Proceedings Of The 2011
ACM Symposium On Research In Applied Computation. pp. 298-300 (2011), DOI:
10.1145/2103380.2103441.

[11]. Shabtai A., Moskovitch R., Feher C., Dolev S., Elovici Y. Detecting unknown malicious code by applying
classification techniques on opcode patterns. Security Informatics. 1, 1-22 (2012).

[12]. Ding Y., Dai W., Yan S., Zhang Y. Control flow-based opcode behavior analysis for Malware detection.
Computers & Security. 44 pp. 65-74 (2014), DOI: 10.1016/j.cose.2014.04.003.

[13]. Kenneth V. Opcode statistics for detecting compiler settings. University of Amsterdam, 2018.

[14]. Mutigwe C., Kinyua J., Aghdasi F. Instruction set usage analysis for application-specific systems design.
Int’l Journal Of Information Technology And Computer Science. 7 (2013).

[15]. Ibrahim A., Abdelhalim M., Hussein H., Fahmy A. An Analysis of x86-64 Instruction Set for Optimization
of System Softwares. International Journal Of Advanced Computer Science. 1, 152-162 (2011, 10).

[16]. Lopes B., Auler R., Ramos L., Borin E., Azevedo R. SHRINK: Reducing the ISA Complexity via
Instruction Recycling. SIGARCH Comput. Archit. News. 43, 311-322 (2015,6), DOI:
10.1145/2872887.2750391.

[17]. DockerHub repository, Available at:
https://hub.docker.com/repository/docker/danilapechenev/instructionanalysis/general (accessed:
01.05.2023).

[18]. Obtained datasets, Available at:
https://github.com/DanilaPechenev/InstructionAnalysisFramework/tree/syrcose-data (accessed:
01.05.2023).

[19]. Framework documentation, Available at:
https://danilapechenev.github.io/InstructionAnalysisFramework/ (accessed: 01.05.2023).

[20]. x86 and amd64 instruction reference, Available at: https://www.felixcloutier.com/x86/ (accessed:
01.05.2023).

[21]. x86 Opcode and Instruction Reference, Available at: http://ref.x86asm.net/geek.html (accessed:
01.05.2023).

[22]. x86-64 Instructions Set (Linux Assembly libraries project), Available at:
https://linasm.sourceforge.net/docs/instructions/index.php (accessed: 01.05.2023).

Ungpopmayusi 06 aemopax / Information about authors

Hanuna EprenpeBnd [IEYHEHEB siBisiercst ctynenToM u uccnepoBarenem Cankr-IletepOyprekoro
TOCY/IapCTBEHHOTO yHUBepcHuTeTa. Ero Hay4dHbIe HHTEPECH! BKIIOYAIOT IIPOrPaMMHYI0 HH)KEHEPHIO,
aHaJIN3 IPOU3BOAUTEIHFHOCTH TIPHIIOKEHUH, CTATHYECKUI aHAIN3, IBPUCTHYECKHIE AJITOPUTMBI.

Danila Evgenevich PECHENEY is a student and researcher at St. Petersburg State University. His
research interests include software engineering, application performance analysis, static analysis,
heuristic algorithms.

Sxo Anekcannposuu KUPUWJIEHKO sBnsercs pykoBOAWTENEM JabOpPaTOPHUH TEXHOIOTUI
nporpaMmMupoBanusi MHGPACTPYKTYpHbIX peiieHnii CaHkT-IleTepOyprckoro rocynapcTBeHHOTO
yHHBepcuTeTa. Ero HayuHBIe MHTEpEeCHl BKIIIOYAIOT PEHH)KUHUPUHT MPOrPAMMHBIX KOMIUIEKCOB,
TEXHOJIOTUH TIPOIPAaMMHPOBAHUS, ONTHMHU3AIMIO IPOTPAMMHOIO OOECIEUYEHHUs, APXUTEKTYPY
BBIUHCIIUTEIIBHBIX CUCTEM.

lakov Aleksandrovich KIRILENKO is the head of the Infrastructure Solutions Programming
Technologies Laboratory at St. Petersburg State University. His research interests include software
reengineering, programming technologies, software optimization, and architecture of computing
systems.

Onsra AngpeeBna ADOHMHA - crymentka u wuccnenoBatenb Cankr-IleTepOyprekoro
TOCYJapCTBCHHOTO YHUBEpCUTETa. Hay4yHbIe HHTEPECHI: IPOrpaMMHasl HH)KEHEPUS U CTATUIECKHUI
aHasu3.

Olga Andreevna AFONINA is a student and researcher at Saint Petersburg State University. Her
research interests include software engineering and static analysis.

170

https://leader-id.ru/314394/

Tpyowr UCIT PAH, mom 35, evin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

[OMO

Using Process Mining to Leverage the Development
of a Family of Mobile Applications

DOI: 10.15514/ISPRAS-2023-35(3)-13

L.4. Rezunik, ORCID: 0009-0000-9428-4718 <Irezunic@gmail.com>
A.l. Perevoznikova, ORCID: 0009-0009-8248-8954 <alice.castiell@gmail.com>
D.V. Eremina, ORCID: 0009-0008-0653-5889 <dveremina@edu.hse.ru>
A.A. Mitsyuk, ORCID: 0000-0003-2352-3384 <amitsyuk@hse.ru>

HSE University,
11, Pokrovsky boulevard, Moscow, 109028, Russia.

Abstract. Enterprises often provide their services via a family of applications based on various platforms.
Applications in such a family can behave differently. Their development processes can differ as well. Moreover,
modern development processes are often complex and sometimes vague. This can lead to bugs, defects, and
unwanted discrepancies in applications. In this paper, we show that process mining can be applied to leverage
the development in such a case. Real-life models can be discovered and investigated by the developer teams in
order to reveal differences in application behaviour, find bugs, and highlight inefficiencies. We consider
datasets with event data of two types. Firstly, we analyse event logs of Android and iOS applications of the
same product family. Secondly, we consider event data from working repositories of these applications. We
show how by analysing such datasets, the real-life development process can be discovered. Besides, application
event logs can help to find more and less severe bugs and unwanted behaviour.

Keywords: software process; software development; process mining; mobile application; software product
family.

For citation: Rezunik L. A., Perevoznikova A. I., Eremina D. V., Mitsyuk A. A. Using Process Mining to
Leverage the Development of a Family of Mobile Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue
3, 2023. pp. 171-186. DOI: 10.15514/ISPRAS-2023-35(3)-13.

Acknowledgements. This work is an output of a research project implemented as part of the Basic Research
Program at the National Research University Higher School of Economics (HSE University).

NMpumMeHeHne MeTo40B MHTENJEeKTyanbHOro aHanu3sa npoueccoB B
Xoae pa3paboTKu cemMencTBa MOOUIbHBLIX MPUIOXEHUN

JI.A. Pezynux, ORCID: 0009-0000-9428-4718 <Irezunic@gmail.com>
A.HU. Ilepesosnuxosa, ORCID: 0009-0009-8248-8954 <alice.castiell@gmail.com>
J.B. Epemuna, ORCID: 0009-0008-0653-5889 <dveremina@edu.hse.ru>
A.A. Muyrox, ORCID: 0000-0003-2352-3384 <amitsyuk@hse.ru>

Hayuonanvuulil uccie0o8amenbCckull yHusepcumen « Boicuuas wikona skoHomMuxuy,
Poccus, 109028, 2. Mocksa, Ilokposckuii 6ya., 11, cmp. 10.

AHHoTanusa. Kommepueckue mpeanpusaTHs 4acToO MPEJOCTABISIOT CBOM YCIYTH C IOMOILBIO ceMeHcTBa
IPHJIOKEHNUH, pa3paboTaHHBIX Uil PabOTHl HAa pa3nUYHBIX MuaTdopmax. [IpunokeHns B TAKOM ceMelcTBe
MOTyT BecTH ce0st mo-pasHoMy. Ilpomeccsl MX pa3paboTKM TakKe MOTYT OmIMdYatecs. bonee Toro,
COBPEMEHHBIE TPOIIECCH pa3pabOTKH YacToO CIOXKHBI, @ HOTAA U HE BIOJIHE YETKO ONpeJelIeHbl. DTO MOXKET

171

Rezunik L.A., Perevoznikova A.l., Eremina D.V., Mitsyuk A.A. Using Process Mining to Leverage the Development of a Family of Mobile
Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 171-186.

NPUBOJMTE K olMOKaM, neeKTaM U HeXeNaTeNbHbIM OTIIMYMAM B NOBEICHUH NPUIOKEeHUH. B 3T0i pabdore
Mbl II0Ka3blBaEM, YTO METOJbl WHTEIEKTYyaJIbHOIO aHalIW3a IPOLIECCOB MOTYT IIPUMEHATHCS B XOJe
pa3paboTKH Takoro poja ceMmelcTBa NpuiIokeHHil. KomaHIs! pa3pabOTYMKOB MOTYT CHHTE3UPOBATh H
HCCIIEI0BATh MOJIENN PEaIbHOTO ITOBEACHHMS IPHIIOKEHUH IS BEISBIICHNS OTIMYUN B HX ITOBEICHUH, TIOMCKA
OmMOOK ¥ BEIABJICHHS IPOOJIEM IPOU3BOANTENBEHOCTH. B paboTe paccmarpuBaroTcs HaOOPHI JaHHBIX IBYX
THUIIOB. Bo-TIepBEIX, aHANMM3UPYIOTCS JKYPHAIIBI COOBITHH IpHiIokeHnHt 1yt mwiatdopm Android u i0S u3 oxHOTO
U TOTO e ceMeiicTBa NPOrpaMMHBIX NMPOAYKTOB. BO-BTOPBIX, paccMaTpUBAIOTCS COOBITHIHBIC NaHHBIC W3
pabounx pEno3UTOPHEB, B KOTOPBIX NPOMCXOMUT pa3paboTKa 3THX NpUIOKeHWH. Iloka3bIBaeTcs, Kak,
AQHATM3UPYS TaKue HaOOpbl JAHHBIX, MOXHO BBIBHTh XapaKTEPHCTHUKH PEAbHOTO mHpoliecca pa3paboTKu.
Kpome Toro, aHanmms xypHajIoB COOBITUI CaMUX MPUIOKEHUN MOXET IOMOYb OOHAPYKHUTh Oosee MiIH MeHee
cephe3HbIe OIIMOKH, a TAKKe HeXKeIaTeIbHOE ITOBEICHHE.

KiroueBrbie ciioBa: MIpOTpaMMHBIC ITPOLECCHI; pa3pa60TKa nporpaMMHOIO 06eCHe‘{eHI/I${; I/IHTeJ'IJ'[eKTyaJ'[I)HHﬁ
aHaJIn3 MPOLECCOB; MOOUJIbHBIE TIPUIIOKEHUSA ceMericTBa IpOrpaMMHBIX IPOJAYKTOB.

Jasa nutupoBanusi: Pesynuk JI. A., IlepeBo3nukoBa A. U., Epemuna [I. B., Mumtok A. A. IIpumeHenue
METOJI0B MHTEIUIEKTYalbHOTO aHaNIN3a MPOIECCOB B X0J€ Pa3paboTKu ceMecTBa MOOMIBHBIX MPUITOKEHUH.
Tpymst UCIT PAH, tom 35, Beim. 3, 2023 1., ctp. 171-186 (Ha anrmiickom si3bike). DOI: 10.15514/ISPRAS—
2023-35(3)-13

BaarogapHocru: JlanHas paboTa SBISETCS PE3yJIbTaTOM HCCIIEA0BATEIBCKOTO MPOEKTA, PEATH30BAaHHOTO B
pamkax [Iporpammsl pyHIamMeHTaNbHBIX HecnenoBannii HUY BIID.

1. Introduction

It is a common practice for business enterprises to provide their services via different user
applications. We can, for example, use a web-application at our desktop and a mobile application
when outdoors. Moreover, users have different mobile devices based on various technologies. All
this leads to a family of applications that is developed and maintained by an enterprise to provide its
services directly to potential users on their familiar platforms. Companies can develop members of
such a software product family separately, one-by-one, or maintain a common software development
environment. Combined with modern agile development approaches, all this leads to high
variability, complexity, and sometimes vagueness of the development process. This, in turn, can
lead to bugs and defects in software.

To our fortune, software applications on all platforms generate a large number of data records in the
process of their functioning. Different types of data are present: user activity logs, error and system
logs, debug information, communication logs, and other. We can use these records to discover the
actual development process, find its inefficiencies and drawbacks. Moreover, an investigation of
application’s event logs can shed light on its structure and behaviour (see Section VIII). Process
mining [1], [2] is a particular field providing us with tools which help to extract valuable information
and insights out of raw event data.

In this paper, we consider two datasets (see Section 1V) for a concrete family of mobile applications
(see Section Il for a system description). The first of these datasets contains event data from the
repositories with source code. The second one has been obtained by recording logs of how users
interact with the applications.

The main goal of this paper is twofold: (1) to show how we can reveal the real development process
of a family of mobile applications using event data, (2) to provide the reader with the approach to
find drawbacks and errors in both applications and their development process.

Our case study is conducted in accordance with the PM? methodology [3] for process mining
projects. By analysing applications log data, companies aim to improve their business processes [4].
We show that this methodology can be successfully applied within the domain of software
engineering with valuable outcomes.

172

Pesynuk JI.A., TlepeBoszuukoBa A.1., Epemuna J1.B., Muiiok A.A. [IpiMeHeHNEe METOI0B HHTEIUICKTYaIbHOTO aHAIIM3a IPOLIECCOB B X0O/1€
pa3paboTku cemeiicTBa MOOMIBHBIX TpuinokeHuit. Tpyost UCII PAH, 2023, Tom 35, Bbim. 3, ¢. 171-186.

2. System

The analysis was conducted for a family of mobile applications — HSE App X, which includes iOS
and Android applications with the same functionality.

HSE App X as a whole is a client-server application used by students and staff of HSE University
to interact with the university’s systems. As it was mentioned, there are two client applications —
for iOS and Android.

Taking as an example the iOS application, it can be seen how the client is built (the access to the
project repository was granted by the developers).

The client contains several modules: a module for authorization functionality, a module for Apple
Watch application, widgets, and the main module, which represents the iOS application (see Fig. 1).

[—
ul
[=
Deadlines Profile Signin
HSEAuthorization
TimetableWidget
] 1 1
A Onboarding Search Timetable
) A
-
A &
|
HSEAppX Watch) HSEAppX
|
> Core
| Ny = 1
/ Events Main Models
[
Helpers Assets
] 1
Navigator Services

Fig. 1. Package diagram of the iOS client
The main module is organised into groups of files (packages): Core, Ul, Assets, Helpers. A summary
of each package is provided below.

Core — includes sub-packages which implement the logic for authorisation, system events, API
calls. This package also contains the main entry point of the application.

Ul — contains separate packages for each of the applications’ screens.

Assets — package with various media files (images, sounds). Moreover, it stores all the fonts and
colours used in the application along with localisation.

Helpers — holds helper classes, extensions for existing classes, mocks.
An example of a typical user scenario is viewing the timetable. What happens on application start:
1) All the classes that need to connect to the API are initialised.

2) The application sends requests to the API to get:
a) the catalogues (e. g. all the HSE buildings) from the server;
b) the user’s notifications;
¢) information about the user;
d) list of features available to a certain user.

Along with sending requests, the first screen of application loads (in parallel). As soon as the screen
controller object is created, the authorisation token is verified and the request to get the user's

173

Rezunik L.A., Perevoznikova A.l., Eremina D.V., Mitsyuk A.A. Using Process Mining to Leverage the Development of a Family of Mobile
Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 171-186.

schedule is sent. After receiving a response, the application shows all the data on screen and saves
it in cache.

Both Android and iOS applications are logging results of API calls, system events and user activity.
Thus, the logs can be effectively used for analysis.

3. Research Tasks and Questions
In this paper, our goal is to perform the following tasks and to answer related research questions:

1) to build a process model for various user scenarios and determine if there are any
“abnormal” (deviating from the norm) events. If there are any, try to explain them;

2) toanalyze the process model for iOS and Android applications and find differences. If there
are any, find out if they affect the performance and operation of the system, whether they
need to be resolved;

3) to check if there are inconsistencies between the request body and the server response;

4) to identify the sequences within the process model that lead to error with the greatest
frequency;

5) to analyze the data from the project repository and evaluate the team’s work style;

6) to track which parts of the code (modules, files) have not been refactored/redesigned for
the longest time and that are worth paying attention to.

4. Data

4.1 Data

In order to answer the research questions, two main sources of data were taken into consideration:
logs of mobile applications and the project’s repository.

Mobile applications log the user’s actions, making it possible to extract files with a detailed history.
They contain all the necessary information about the time and content of each request sent to the
server and system logs as well. The developers are provided with different options to interact with
debug mode of the application (it is hidden from regular users), which is helpful in obtaining suitable
data for analysis. For these purposes it is necessary to clear previous session logs, so it becomes
possible to focus on the particular user’s interactions.

Log files collected for particular use cases of the application were parsed by found patterns and then
aggregated using common Python libraries. As a result, the data contained structured information
about requests’ URL, body and response with corresponding timestamps.

The repository stores all the project members’ activity: commits, merge requests, issues, etc. This
data can be effectively used to analyze the processes within the team. Considering the research
questions, it was identified that commits hold the most information. Thus, all the commits stored in
the GitLab repository were extracted into a single .csv file. For data retrieval, a few scripts were
written using the Java library GitLab4J to make the process of working with GitLab’s API more
straightforward.

The resulting data file contains all the needed information about the commits: id, author’s name,
title of commit, all the changes (file paths), and timestamp, which corresponds to the exact date and
time the commit was made locally (before push).

4.2 Data Preprocessing

The previous section described the process of collecting the data from the project’s repository,
resulting in only the necessary data for analysis remaining, including commit id, date and time of
commit creation, author’s name, and all the names of changed files.

174

Pesynuk JI.A., TlepeBoszuukoBa A.1., Epemuna J1.B., Muiiok A.A. [IpiMeHeHNEe METOI0B HHTEIUICKTYaIbHOTO aHAIIM3a IPOLIECCOB B X0O/1€
pa3paboTku cemeiicTBa MOOMIBHBIX TpuinokeHuit. Tpyost UCII PAH, 2023, Tom 35, Bbim. 3, ¢. 171-186.

In addition, it was decided that commits should be also grouped in some way, because the number
of individual commits was too large to be efficiently processed by some process mining tools.
Knowing that the project was managed using Agile methodology, sprint number was added to each
of the commits (sprint is a 2 week long time interval). Thus, each of the commits was assigned a
sprint it was created in. This also improved the dataset, because not only time of creation of a single
commit could be used for analysis, but also a group of commits.

Besides, the logs of iOS and Android applications were collected separately, after which they were
converted into a format suitable for processing. After processing the data, it acquired the following
form: session id, date and time of the request, request URL (without parameters), response status,
duration of the request, message (see Fig. 2).

session timestamp url status elapsed message
0 2023-01-14 18:03:4! hitps.//api hseapp.ru/v2/dump/favourtes/me 200 0.109
0| 2023-01-14 18:03:4; hitps://api hseapp.ru/toggles 200 1.085
0 2023-01-14 18:03:4: hitps://apl hseapp.ru/v2/notifications/feed 200 0.099
0 2023-01-14 18:03:4! https://api hseapp.rwfem/devices 200 0.081
0 2023-01-14 18:03:4: hitps.//api. hseapp.ru/v3/ruz/lessons 200 0.987
0| 2023-01-14 18:03:4: https://api.hseapp.ru/banners 200 0.222
0 2023-01-14 18:03:4; https://apl.hseapp.ru/vd/ruz/lessons 200 0989
0| 2023-01-14 18:03:4! hitps://api.hseapp.ru/ve/deadlines/invites 200 0.222
0 2023-01-14 18:03:4! https://api.hseapp.ru/v2/deadlines 200 0.352
0 2023-01-14 18:03:4: https.//api. hseapp.ru/v2/deadlines/groups 200 0.236
0 | 2023-01-14 18:03:4¢ hitps://apl.hseapp.ru/v2/deadlines 200 0.348
0 2023-01-14 18:03:5 https:/api.hseapp.ru/ve/deadiines/disciplines 200 0.845
0| 2023-01-14 18:04:4: https://api.hseapp.ru/ve/deadlines 200 021
0 2023-01-14 18:04:5 hitps.//api hseapp.ru/v2/deadlines/6396565230560777db366¢8/con 200 0.146
0| 2023-01-14 18:05:0° hitps://api.hseapp.ru/ve/deadlines/6346ecaB369372faabcdBad4/com 200 0.128
0| 2023-01-14 18:05:1" hitps://api.hseapp.ru/v2/deadlines/B346d3ab2deb6df1d013eact/con 200 0.109
0 | 2023-01-14 18:05:1" hitps://api.hseapp.ru/ve/deadlines/63c2c48cdasc?19d41440b6e/con 200 0.114
1| 2023-01-14 17:59:2¢ https://api.hseapp.ru/v2/dump/favourites/me 200 0.123
1 2023-01-14 17:59:2: https://api_ hseapp.ru/v2/notifications/feed 200 0.068
1 2023-01-14 17:58:2! https.//api hseapp.ru/toggles 200 1.46

Fig. 2. Example of a dataset collected from the Android application

At the same time, both the request and the response are logged in the Android application, so it was
necessary to remove duplicates from the file. Also, in the Android application, in case of incorrect
requests, incorrect dates appeared that had to be processed. To determine the case id, the session
number was added (a separate application launch), and the date and time format was also changed
to fit the mining algorithms provided by mining tools. Additional parameters were removed from
the URLSs that would interfere with building a graph due to the presence of too specific information.

5. Development Process Analysis

5.1 Analysis

The dataset from the previous section, which was formed using repository data, was applied to
interpret the processes among the developers. Analysis of the data was conducted using ProM [5], a
program specifically developed for process analysis. It provides a big tool set, which was used
throughout all research.

Firstly, the team workflow was analysed by generating dotted chart diagrams with different display
options. For example, by putting the value of the commit creation time (since the start of the week)
on the X axis and commit id on the Y axis, a chart representation of developer’s working schedule
was built (see Fig. 3).

175

Rezunik L.A., Perevoznikova A.l., Eremina D.V., Mitsyuk A.A. Using Process Mining to Leverage the Development of a Family of Mobile
Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 171-186.

= 160 o
£ ﬁ'
£ g
e R
Eiza s
: : 5
2480 : .
2680 .:.;-
1am ed
3080 -.:‘- .
200 - e
e
400]
&

H
38,

=~3hi; 1008 im0 1005 Lezihirmn pme 2021h0mE, D0t Sz im0 0008 Azihfmom SEZIfir 00y Bd21hOmE. s
EVEAC Dme TimeSneswasksiir

100 % rendered ; o = e % \ r
In 0,25 sec. -

Fig. 3. Dotted chart that shows developers’ working schedule

Moreover, the time of creation of all commits was analysed. The constructed dotted chart gave
representation of developers’ individual working hours.

This method of analysis was also used to discover project members’ involvement in the development
process. It can be seen through the dependency between changes in project modules and the author
of the commit. The diagram (see Fig. 4) illustrates the division of duties among the developers, and
shows which pieces of code can only be changed by a particular person.

| .
i i
l =
| :

NSEAGTClD.
HEEAp Care Main i l
MR Ermety i w st

HSEApREMoge ks

i . i
METARASerEes ¥
HEER R Camiman
HEERGN U Debuig
HEERp I Group l
i

2
f:: U1 M Tl
';’, AP Frifect Arcaaty
- SRR U Sl
HSERg U b !
HSEAStherizatonihuch 3 s
FSERsthrzation Signi & Spa0ut Featirs . . .
oo I ! i : :
Timscabisidoat 1 - 1 1 !]
105 Mgl it 105 Mde 5Lead Team Lead 105 hurior W fusior ef)
Traca: pariormar
100 % rendered = = ety "~

In 0,28 sex f =

Fig. 4. Dotted chart that shows the commits submitted by developers for certain modules

In addition to the dotted chart diagrams, which resemble statistical research methods, some models
were synthesised by applying the inductive mining algorithm (using the Inductive Miner [6] inside
ProM). These models were used to see the transfer of work (if it exists) between the developers.
Instead of inspecting individual commits, groups of commits were taken into consideration (each
group was represented by sprint number).

The inductive miner algorithm requires a dataset with 2 columns selected. The first column
represents case id, which identifies a single trace of the process (in this case it is one sprint — 2

176

Pesynuk JI.A., TlepeBoszuukoBa A.1., Epemuna J1.B., Muiiok A.A. [IpiMeHeHNEe METOI0B HHTEIUICKTYaIbHOTO aHAIIM3a IPOLIECCOB B X0O/1€
pa3paboTku cemeiicTBa MOOMIBHBIX TpuinokeHuit. Tpyost UCII PAH, 2023, Tom 35, Bbim. 3, ¢. 171-186.

weeks). The second selected value type — activity, which basically is an event in the trace (hame
of commit’s author was used).

Thus, the resulting model (see Fig. 5) shows the generalised behaviour of the team members during
one sprint. Conclusions on this model will be given in the next section of the document.

14

50 g e R |

4 3

6

1143
43
o0 i
]

1 i 1

105 Junior (left 6 : HSE zApps
36 []

105 Middie (left)
1143

@ 1143

&4

Fig. 5. Model depicting activity of all developers during one sprint

Another approach for viewing data, which was used in the research — generating a skeleton of the
event journal. This model can give a clear understanding of the dependencies between the execution
of events in one trace of the process. If the trace is represented by a single commit and the events in
the trace are file changes, the resulting model can depict which files do not ever change together in
a commit or vice versa.

5.2 Main Findings

After analysing the generated dotted chart diagrams, it was noticed that the team does not have a
strict working schedule, commits in the repository are made every day of the week. However, there
is a tendency among the developers to leave the weekends to themselves, that is why there is less
activity on Sunday and Saturday.

Moreover, the working hours are not established for any of the team members. Distribution of the
commits covers almost all the area of a one-day timeline. The developers can make changes to the
project even in the early morning, although the peak activity is in the daytime.

The dotted chart diagram made it possible to assess in more detail the degree of familiarity of
developers with individual modules of the project. For example, it was noticed that the person who

177

Rezunik L.A., Perevoznikova A.l., Eremina D.V., Mitsyuk A.A. Using Process Mining to Leverage the Development of a Family of Mobile
Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 171-186.

was no longer on the team was initially working on the authorisation module, and the other
developers’ tasks only included small changes and refactoring of that code.

By applying the inductive miner algorithm (described in the previous section) a model was
produced, which depicts the order in which the developers make commits in a sprint. As it can be
seen there is no dependency between the developers. The team members work in parallel, there are
situations when a person does not make a single commit per sprint, but there is no certain sequence
of work transfer between developers. This also shows that the tasks are mostly independent of each
other.

It was also discovered that some developers never co-existed in the team: iOS Middle, both of the
iOS Juniors and HSE Apps, which is another account run by the project manager.

The Log Skeleton Visualiser [7] was applied to discover relations between packages in a commit (if
there are such relations). Thus, the case id for the mining algorithm was represented by the id of a
single commit and the activity was represented by the changed file.

It was noticed that some changes never co-occur in a commit. Developers try to keep their commit
history clean, thus, it is not favourable to make changes in completely separate modules at once.
Taking for example Apple Watch module and Widget module, it is true that project members try to
change files in those modules separately (see Fig. 6).

HSEAppClip Timetable Widget Watch HSEApr/AppDelegale swift HSEAppX/Base.lproj HSEAppX/Core/Events HSEAppX/
WSEAPDCI2400.35 (_ Timetable Widget Waich 83 | 0..14) WSEAppX/AppOelegate swift] 1 | 0.1 HSEApDX /Rase.Iproj 3| 0.2 HSEARDX|Core/bventh 165] 0..11 T VSEApRX Care

HSEAppX/ Ul/Weanzw HSEApr/VIewController swift HSEAppXWatch/HSEAppXWatch.entitlemen HSEAuthonzanon/Auih HSI
HSEApRX/Ul/WebView | 32| 0.2 HSEAppX /ViewControlier swift| 5 | 0.1 T HSEAppXWatch) HSEAppXWatch entitements | 3 | 0.1 WSEAthorization /Auth 15 | 0.4

Fig. 6. Fragment of the log skeleton model depicting relations between file changes

While looking at the statistics overview for all the commits, it was noticed that the number of
changed files in one commit has a strong variation: from 1 changed file up to 693 files.

It is strongly advised to not have too many file changes in a single commit, because the code needs
to go through a more in-depth code review. The developer in that case cannot keep track of all the
changes, with a high probability such code may be bugged.

6. Application Behaviour Analysis

6.1 Analysis
For each dataset one of the application usage scenarios from the following list was reproduced:

1) Viewing a personal timetable. The user gets to the main screen of the application, looks at
his timetable, and then opens the page of a certain lecture (or another type of activity) to
view information about it.

2) Searching for a person’s timetable. The user goes to the search section from the main
screen, searches for the person, looks through his timetable.

3) Searching for free classrooms. The user goes to the services section from the main screen,
configures the parameters for searching for classroom (building, date, time), after which he
receives a list of available classrooms and views the schedule of a specific one.

4) Viewing the grade book. The user goes to the profile screen from the main screen, where
he selects his grade book, a year of study, a discipline for which statistics should be viewed.
After that, he returns to the screen with the grade, and clicks on the cell with his rating to
view the full rating list.

178

Pesynuk JI.A., TlepeBoszuukoBa A.1., Epemuna J1.B., Muiiok A.A. [IpiMeHeHNEe METOI0B HHTEIUICKTYaIbHOTO aHAIIM3a IPOLIECCOB B X0O/1€
pa3paboTku cemeiicTBa MOOMIBHBIX TpuinokeHuit. Tpyost UCII PAH, 2023, Tom 35, Bbim. 3, ¢. 171-186.
5) Deadline monitoring. The user goes to the deadlines section from the main screen, creates
a new personal deadline, sets the necessary parameters (discipline, title, description,
participants, time), saves it and marks it as completed. Similar sequence of actions should
be performed in case when the user creates a new group to add a common deadline.
To compare the conformance for different scenarios, Log Skeleton models were built. Using the
example of one scenario, it can be seen that the models are generally similar to each other, they send
requests to the same URLSs, and in full use case scenario go all the way to the certain disciplines (in
case of the first scenario).
At the same time, separate models were built that take into account the responses and errors returned
by the requests (see Fig. 7)

S [34

200hnps //api. hseapp ru/v2 ldump/bulldinqs/groups[200

’|~n 3k heeann 1w v2/dumo /Bulidingt grouds 200 | %

hups l/aptheap

o Reapp ra

Fig. 7. Fragment of the log skeleton visualisation of the schedule viewing scenario in an iOS application with
detected errors

Such anomalies were found in almost all scenarios, which made it possible to analyse the causes of
such errors. For example, the Android application does send requests that are cancelled afterwards
to avoid “race condition” in the application, which confirms the detected problem.

In addition, Petri nets were built for each process by applying Inductive Miner. Using the example
of the “Timetable View” scenario, there is a noticeable discrepancy in its execution of the passage
from the main screen to the necessary target (the screen of a specific discipline in the timetable).
However, it is clear that applications send similar requests and reach similar endpoints (see Fig. 8).

Jodos 1/ Api hssapp ru/togales 3

e |
P ~ ‘ﬁy' Japl.hseapp. mu/banners| 200f
() { o Hrpd.) fapichseappry vz urites (me 2004 ps./fapt hseagporu§ = g
— ¥ Baammedi / ,” = 9
o

et/ faps hiseapp.na 2 fnotfications e

v3/ruzllessons 984395 200

Android g /2oL hsezp.ru

v =
hip] //3pl. hs0app.ri v/ ruz [lessans ;9345037 200]

T ST ;

‘- - SRR, a5

Fig. 8. Petri nets depicting the process of viewing the schedule using Android and iOS applications

6.2 Main Findings

A research study of mobile application logs was conducted to compare the operations of iOS and
Android mobile applications, with a focus on identifying differences and unexpected behaviour
patterns. The dataset of mobile application logs was analysed with the aim of uncovering insights
that could help the business and the developers optimise their mobile apps for each platform. In this
section, the main findings of this study are presented, highlighting the key differences and
similarities between iOS and Android mobile applications.

179

Rezunik L.A., Perevoznikova A.l., Eremina D.V., Mitsyuk A.A. Using Process Mining to Leverage the Development of a Family of Mobile
Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 171-186.

First of all, in the study was used the Log Visualiser and summaries for each use-case to gain insights
into the types of server requests being made on each platform. The Log Visualiser provided a
graphical representation of the logs, while the summaries allowed for a more detailed analysis of the
data. The analysis of the logs revealed that there were similar server requests being made on both
platforms, with matching URLSs. However, the frequency of these requests varied depending on the
platform, due to the involvement of different screens. Despite these differences, the behaviour of the
mobile applications on both iOS and Android platforms was found to be quite similar. Overall, this
part of research contributes to a better understanding of high-level application behaviour, while next
mining approaches helped to find out more detailed information.

After summaries analysis, several models were built to discover any differences in performed
activities and their drawbacks. The Petri Nets were used to visualise the traces of the mobile
applications. The use of such models in this study was beneficial as it allowed us to identify potential
bottlenecks, because requests were the same at first sight and had no significant findings. However,
there were some unexpected steps in traces. This led to usage of the Log Skeleton Visualiser in
ProM, which provided a detailed graph of requests and their corresponding responses, allowing for
a more comprehensive analysis of the mobile application logs. One of the key findings of this
research was that the Android application logs graphs almost always contained an unexpected node
with the error message java.io.Exception: Canceled’. This finding prompted us to take a
closer look at the processes involved in the Android application logs. Upon closer examination, it
was discovered that there were confirmed issues with sending requests and cancelling them due to
race conditions, which were likely contributing to the found type of error in the Android application
logs graphs. Moreover, a repeating error in some log traces of the iOS application was found. It was
caused by incorrect parsing of the data that was coming from the server.

This research highlighted the need to address the issues in the Android application to improve its
performance and reliability. Such analysis can help developers to optimise their software and prevent
similar issues from arising in the future.

7. Discussion

During the research of application processes, Android and iOS logs were collected and prepared for
analysis, as well as a representation of individual scenarios in the form of models obtained from
them. To do this, it was necessary to clear the logs of useless information, parse the needed parts,
bring them to a tabular form and select columns for analysis. This made it possible to track the
behaviour on various platforms, to identify patterns and anomalies in the requests, which should
lead to the same result.

7.1 Answers to Research Questions

During the analysis of diagrams, models and the general report in relation to a set of different
scenarios, it was found out that there are no critical discrepancies regarding the requests sent, since
the requests URLs, their number, as well as the overall behaviour on the traces coincided. Thus, it
can be assumed that there are no abnormal events and discrepancies in the general case. This answers
the first research question.

To answer the second research question a more detailed analysis of the logs collected in one scenario
was conducted. It allowed us to identify erroneous events that are often found only in the Android
application. On Log Skeleton models, it was noticeable that an event with a request cancellation
error appears in the response. There were no dependencies on specific scenarios, but it was clear
that such a response was returned as a result of sending a duplicate request that had already left the
application. Serialisation errors were noticed for the iOS application, which did not lead to further
deviations, but occurred in several traces.

It was also found that the sequences which are more prone to errors are those which include search
requests (for Android). For iOS such obvious sequences were not found. There also weren't any

180

Pesynuk JI.A., TlepeBoszuukoBa A.1., Epemuna J1.B., Muiiok A.A. [IpiMeHeHNEe METOI0B HHTEIUICKTYaIbHOTO aHAIIM3a IPOLIECCOB B X0O/1€
pa3paboTku cemeiicTBa MOOMIBHBIX TpuinokeHuit. Tpyost UCII PAH, 2023, Tom 35, Bbim. 3, ¢. 171-186.

inconsistencies between the response data and application requests. Thus, the research questions 4
and 3 were also answered.

As a result of analysing the data from the repository, it became possible to understand the team’s
work style (the daily routine, working days of the week, methodology of development, quality of
commits — size, which parts of the code were affected).

As it turned out, the developers’ work schedule is not strictly set, each team member independently
determines when it is more convenient for him to work. It can be noticed that developers commit to
the repository less often on Saturday and Sunday. That is, programmers, even if they are not limited
in the choice of working hours, decide not to work on weekends. In the same way, it is noticeable
that commits are made at completely different times.

Project participants work on tasks in parallel with each other and everyone’s familiarity with the
project is approximately on the same level. Everyone has worked with almost every file in the
repository at some point in time. The only exception is the junior developer, which is logical, given
his level.

It was also possible to notice that commits are carried out in all modules of the project so far. It can
be assumed that the tasks relate to different parts of the project and they can be issued to different
developers. This approach to working on software products is also popular in large companies —
when new functionality is gradually added to the product over time and when needed. That suggests
any of the Agile methodologies is used in the development process (or no methodology is used at
all, and programmers work the way they are used to). This concludes the answer of the fifth question
of this research.

It was also possible to identify the parts of the project in which commits have been carried out the
least recently (the last research question). The informativeness of such a list is a little doubtful, since
there are several auxiliary files (for example, SberPaySDK). There are also many references

to the authorisation module and to the main module of the project. With the help of additional tools,
it was possible to identify several files where commits have not been performed for a long time —
these are files related to network interaction and some basic files. However, this information is not
accurate enough, since the analysis included large commits affecting almost all project files.

7.2 Open Questions and Problems

Among the open questions regarding the various versions of the application, is an in-depth
comparison of the body of the response to the request with the current status. To do this, it is
necessary to improve parsing, explore examples of responses and such cases in logs, on the basis of
which it will be possible to build new models. The detection of such discrepancies will improve the
responses from the service, which will affect their processing in applications. It would be better to
test the application work on a large number of scenarios and with the participation of real users.

8. Related Works

This section is a brief review of the field of mining software data. Process mining considers software
as a research object for more than fifteen years [8], [9], and a lot of contributions have been made
in this field. Most of them can be grouped into two major classes depending on what processes are
considered:

» software behaviour,

+ software (development, maintenance etc.) process.
Let us consider papers of both these classes. In this paper, we begin with the analysis of a
development process. Therefore, in this section, we will follow the same approach.
The problem of team work assessment is crucial in the domain [10]. Indeed, process mining can be
used to evaluate process performance. Software development processes can be evaluated more or
less in the same way as other business processes. To achieve more detailed results, mining of event

181

Rezunik L.A., Perevoznikova A.l., Eremina D.V., Mitsyuk A.A. Using Process Mining to Leverage the Development of a Family of Mobile
Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 171-186.

logs can be combined with more conventional approaches like surveys and expert evaluation [11].
Lightweight development approaches are a target for mining due to their agility and non-linear
nature [12]. Marques et at. [13] evaluates programmer’s activities within agile development teams.
The aim is to find what Scrum disciplines and practices can be revealed and checked using event
logs from a case-handling system. Interestingly, some of the practices can be discovered using very
basic techniques.

Mining event logs of individual programmers is another emerging sub-domain [14], [15]. Process
mining techniques can be used, for example, to assist and fine-tune the learning process of novice
developers [16]. Supplementary data from repositories of student projects can be investigated as
well [17]. Such an analysis gives many ideas of how to improve and evolve existing programming
courses in more interactive learning facilities. Security training of programmers and users can
benefit from user log mining no less than other sub-domains [18], [19].

Let us now consider applications of process mining to software behaviour analysis.

Process analysis methods can be applied to very low-level technical problems. For example, Wakup
and Desel [20] considered how logs of an application with active TCP/IP information interchange
can be analysed using process mining. Authors constructed models of client-server communication
with both sides clearly separable.

Leemans et al. proposed [21] and later developed [22] a methodology to analyse event logs of
software systems. The goal is to reverse engineer a (possibly, legacy) system to reveal and grasp its
behavioural characteristics. The methodology combines a general approach to software process
analysis (similar to P M 2 [3]) with very technical tools [23]. Leemans et al. even constructed a
ProM plug-in — Statechart Workbench [24] — that can support users of this approach.

In 2015, Shershakov and Rubin published a paper [25] on how to analyse real-life software
executions and what can be discovered from event logs of such executions. Later, the team of
collaborators of Sergey Shershakov developed several techniques to synthesise UML activity
diagrams and other types of visual model for service-oriented and component-based systems [26],
[27].

The same component-based systems have been analysed by Liu with his co-authors [28-30] In a
series of papers, they worked on a problem of identifying communicating components and interfaces
through which components communicate. Separate services in an enterprise-scale service-oriented
system can be discovered based on event log analysis as well [31].

Process analysis approaches can be valuable in more specific sub-domains of software engineering.
Software reliability can be assessed based on process mining techniques. A lot of approaches
reviewed by Macak et al. [32]. Interestingly, even the evolution of highly-distributed systems like
block-chain applications can be successfully revealed using process analysis approaches [33].
Mobile applications can also be the object for process analysis. Process mining is a popular research
topic in various fields related to user applications, such as mobile games [34] and others. Usually,
the goal of the research projects is to solve some common problem and find various (anti-)patterns
in user behaviour. Sometimes, researchers are trying to answer business-related questions for
particular mobile applications [35]. Log analysis for a specific platform was also mentioned in
literature [36], but without the goal to compare behaviour of several applications for different
platforms.

From this concise literature review, we conclude that as software generates a lot of data, this data
can be analysed with valuable outcomes for developers, designers, and users. The field of software
process analysis develops actively. Methods applied in our paper are in line with the state-of-the-art
approaches in process mining. The object of our investigation — a family of mobile applications —
is new for the field.

182

Pesynuk JI.A., TlepeBoszuukoBa A.1., Epemuna J1.B., Muiiok A.A. [IpiMeHeHNEe METOI0B HHTEIUICKTYaIbHOTO aHAIIM3a IPOLIECCOB B X0O/1€
pa3paboTku cemeiicTBa MOOMIBHBIX TpuinokeHuit. Tpyost UCII PAH, 2023, Tom 35, Bbim. 3, ¢. 171-186.

9. Conclusion

In this paper, we presented the results of a case study. We applied process mining to analyse datasets
containing event data recorded within the development process of mobile applications. Usually,
mobile applications are developed and maintained as a family because enterprises want to provide
their services on various platforms. In the paper, we show that different applications of the same
family can behave in a variety of ways. Besides, their development processes can differ as well.
Process mining allows for discovering real process models which can be easily investigated by
developer teams in order to reveal unwanted discrepancies, find bugs, and highlight inefficiencies.

References

[1].
[2]
[3].
[4].
[5].
[6].
[71.

[8].

[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17].
[18].
[19].

[20].

van der Aalst W. M. P. Data Science in Action — Second Edition. Springer, 2016. 467 p.

van der Aalst W. M. P., Carmona J. Process Mining Handbook. Springer, vol. 448, 2022. 503 p.

van Eck M. L., Lu X., Leemans S. J. J., van der Aalst W. M. P. PM”2: A process mining project
methodology. CAISE. Springer, vol. 9097, 2015, pp. 297-313.

van der Aalst W. M. P., Weijters T., Maruster L. Workflow Mining: Discovering process models from
event logs. IEEE Transactions on Knowledge and Data Engineering, vol. 16, n. 9, 2004, pp. 1128-1142.
Verbeek E., Buijs J. C. A. M., van Dongen B. F., van der Aalst W. M. P. ProM 6: The process mining
toolkit. CEUR Workshop Proceedings, vol. 615, 2010.

Leemans S. J. J. Robust Process Mining with Guarantees — Process Discovery, Conformance Checking
and Enhancement. Springer, 2022. 467 p.

Verbeek H. M. W. The Log Skeleton Visualizer in ProM 6.9. Int. J. Softw. Tools Technol. Transf., vol.
24,n. 4,2022, pp. 549-561.

Rubin V. A., Giinther C. W., W. M. P. van der Aalst, Kindler E., B. F. van Dongen, Schifer W. Process
mining framework for software processes. ICSP: Lecture Notes in Computer Science. Springer, vol. 4470,
2007, pp. 169-181.

Rubin V. A., Mitsyuk A. A., Lomazova I. A., W. M. P. van der Aalst. Process mining can be applied to
software too! ESEM. ACM, 2014, pp. 57:1-57:8.

Caldeira J., F. B. e Abreu, J. P. dos Reis, Cardoso J. Assessing software development teams’ efficiency
using process mining. ICPM. IEEE, 2019, pp. 65-72.

Vavpotic D., Bala S., Mendling J., Hovelja T. Software process evaluation from user perceptions and log
data. J. Softw. Evol. Process, vol. 34, n. 4, 2022.

Rubin V. A., Lomazova I. A., W. M. P. van der Aalst. Agile development with software process mining.
ICSSP. ACM, 2014, pp. 70-74.

Marques R., M. M. da Silva, Ferreira D. R. Assessing agile software development processes with process
mining: A case study. CBI. IEEE Computer Society, 2018, pp. 109-118.

Ioannou C., Burattin A., Weber B. Mining developers’ workflows from IDE usage. CAiSE Workshops:
Lecture Notes in Business Information Processing, vol.316. Springer, 2018, pp. 167-179.

Ardimento P., Bernardi M. L., Cimitile M., Maggi F. M. Evaluating coding behavior in software
development processes: a process mining approach. ICSSP. IEEE / ACM, 2019, pp. 84-93.

Ardimento P., Bernardi M. L., Cimitile M., Ruvo G. D. Learning analytics to improve coding abilities: a
fuzzy-based process mining approach. FUZZ-IEEE. IEEE, 2019, pp. 1-7.

Macéak M., Kruzelova D., Chren S., Buhnova B. Using process mining for git log analysis of projects in a
software development course. Educ. Inf. Tecnol., vol. 26, n. 5, pp. 5939-5969, 2021.

Macék M., Oslejsek R., Buhnova B. Process mining analysis of puzzle-based cybersecurity training.
ITICSE. ACM, 2022, pp. 449-455.

Macak M., Oslejsek R., Buhnova B. Applying process discovery to cybersecurity training: An experience
report. EuroS&P Workshops. IEEE, 2022, pp. 394-402.

Wakup C., Desel J. Analyzing a TCP/IP-protocol with process mining techniques. Business Process
Management Workshops: Lecture Notes in Business Information Processing, vol. 202. Springer, 2014, pp.
353-364.

183

Rezunik L.A., Perevoznikova A.l., Eremina D.V., Mitsyuk A.A. Using Process Mining to Leverage the Development of a Family of Mobile
Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 171-186.

[21]. Leemans M., van der Aalst W. M. P. Process mining in software systems: Discovering real-life business
transactions and process models from distributed systems. MoDELS. IEEE Computer Society, 2015, pp.
44-53.

[22]. Leemans M., van der Aalst W. M. P., van den Brand M. G. J., Schifferers R. R. H., Lensink L. Software
process analysis methodology — A methodology based on lessons learned in embracing legacy software.
ICSME. IEEE Computer Society, 2018, pp. 665-674.

[23]. Leemans M., van der Aalst W. M. P., van den Brand M. G. J. Recursion aware modeling and discovery
for hierarchical software event log analysis (extended). CoRR, vol. abs/1710.09323, 2017.

[24]. Leemans M., van der Aalst W. M. P., van den Brand M. G. J. The statechart workbench: Enabling scalable
software event log analysis using process mining. SANER. IEEE Computer Society, 2018, pp. 502-506.

[25]. Shershakov S. A., Rubin V. A. System runs analysis with process mining. Modeling and Analysis of
Information Systems, vol. 22, n. 6, pp. 818-833, 2015.

[26]. Davydova K. V., Shershakov S. A. Mining hybrid uml models from event logs of soa systems. Proceedings
of the Institute for System Programming of the RAS (Proceedings of ISP RAS), vol. 29, n. 4, pp. 155-174,
2018.

[27]. Zubkova N. S., Shershakov S. A. Method for building uml activity diagrams from event logs. Proceedings
of the Institute for System Programming of the RAS (Proceedings of ISP RAS), vol. 31, n. 4, pp. 139-150,
2019.

[28]. Liu C., van Dongen B. F., Assy N., van der Aalst W. M. P. Component behavior discovery from software
execution data. SSCI. IEEE, 2016, p. 1-8.

[29]. Liu C., van Dongen B. F., Assy N., van der Aalst W. M. P. Component interface identification and
behavioral model discovery from software execution data.

[30]. Liu C., van Dongen B. F., Assy N., van der Aalst W. M. P. A general framework to identify software
components from execution data. ENASE. SciTePress, 2019, pp. 234-241.

[31]. Alwis A. A. C. D., Barros A., Polyvyanyy A., Fidge C. J. Function-splitting heuristics for discovery of
microservices in enterprise systems. ICSOC: Lecture Notes in Computer Science, vol. 11236. Springer,
2018, pp. 37-53.

[32]. Macék M., Daubner L., Sani M. F., Buhnova B. Process mining usage in cybersecurity and software
reliability analysis: A systematic literature review. Array, vol. 13, pp. 100120, 2022.

[33]. Miiller M., Ruppel P. Process mining for decentralized applications. DAPPCON. IEEE, 2019, pp. 164-
169.

[34]. Kwon H., Kim D. A method for churn analysis of new users of mobile games using process mining. ICIC
Express Letters, vol. 7, n. 8, 2016.

[35]. Kim S., Kim D. Analyzing mobile application logs using process mining techniques: An application to
online bookstores. ICIC Express Letters, vol. 9, n. 6, 2013.

[36]. Park Y. C. B., Cho I., Lee W. A log analysis of smartphone application usage: Focusing on domestic
iphone users. Journal of the HCI Society of Korea, vol. 2011, n. 1, 2011.

Ungpopmayusi 06 aemopax / Information about authors

Jropmmna Anekcarapoaa PE3YHUK — 6akanasp nporpamvHuoii nmkenepun, HUY BIID. Chepa
HAyYHBIX HHTEPECOB: pa3pabOTKa MOOWIBHBIX NPWIOKEHHH, apXWUTEKTypa IPOrpaMMHOTO
obecrieueHusi, aHaIu3 MPOIECCOB Pa3pabOTKH MPOrPaMMHOT0 00eCTIeUeHHUS.

Lyudmila Alexandrovna REZUNIK — Bachelor of Software Engineering, HSE. Research interests:
mobile application development, software architecture, software process mining.

Amuca Uropesra [IEPEBO3HUKOBA — 6akanaBp nporpammHoit nmxenepun, HY BIID. Chepa
Hay4HBIX HWHTEPECOB. pa3paboTKa MOOWIBHBIX NPUIIOKEHUH, web-pa3paboTka, apXUTEKTypa
IIPOTrPaMMHOT0 00ecHeYeHUsL.

Alisa Igorevna PEREVOZNIKOVA - Bachelor of Software Engineering, HSE University.
Research interests: mobile application development, web development, software architecture.

Japest BaneppeBna EPEMUHA — GakanaBp nporpammuoil umxkenepun, HIY BIID. Cdepa
HAyYIHBIX HHTEPECOB. OdKEHT pa3paboTKa, apXUTEKTypa IPOTPaMMHOT0 00ECTIEIECHNS.

184

Pesynuk JI.A., TlepeBoszuukoBa A.1., Epemuna J1.B., Muiiok A.A. [IpiMeHeHNEe METOI0B HHTEIUICKTYaIbHOTO aHAIIM3a IPOLIECCOB B X0O/1€
pa3paboTku cemeiicTBa MOOMIBHBIX TpuinokeHuit. Tpyost UCII PAH, 2023, Tom 35, Bbim. 3, ¢. 171-186.

Daria Valerievna EREMINA — Bachelor of Software Engineering, HSE University. Research
interests: backend development, software architecture.

Anexceit Anexcarnposmd MULIOK — kaHARIAT KOMITBIOTEPHBIX HAYK, JOLEHT, CTAPIIAN HAyIHBIH
COTPYJHHMK Hay4HO-y4eOHOH 11abopaTOpu IpOIECCHO-OPUEHTHPOBAHHBIX HWH(MOPMAIIMOHHBIX
cucreM (HYJI TIOUC) dpaxynbrera komnbeioTepHbix Hayk HUY BIID. Cdepa HaydHBIX HHTEPECOB:
MHTEJUIEKTYaIbHBIN aHaJIM3 MPOLECCOB, HHPOPMAIMOHHBIE CUCTEMBI, apXUTEKTypa MPOTrPaMMHOTO
obecrnieuenus, cetu lerpu.

Alexey Alexandrovich MITSYUK — PhD in Computer Science, Associate Professor, Senior
Research Fellow at the Laboratory of Process-Aware Information Systems (PAIS Lab) of the
Faculty of Computer Science at the HSE University. Research interests: process mining, information
systems, software architecture, Petri nets.

185

Rezunik L.A., Perevoznikova A.l., Eremina D.V., Mitsyuk A.A. Using Process Mining to Leverage the Development of a Family of Mobile
Applications. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 171-186.

186

Tpyowr UCIT PAH, mom 35, evin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-14 EOC-H

Predicate Abstraction Refinement in Thread-
Modular Analysis

V.P. Rudenchik, ORCID: 0009-0000-6719-2594 <rudenchik@ispras.ru>
P.S. Andrianov, ORCID: 0000-0002-6855-7919 <andrianov@ispras.ru>

Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. Thread-modular approach over predicate abstraction is an efficient technique for software
verification of complicated real-world source code. One of the main problems in the technique is a predicate
abstraction refinement in a multithreaded case. A default predicate refiner considers only a path related to one
thread, and does not refine the thread-modular environment. For instance, if we have applied an effect from the
second thread to the current one, then the path in the second thread to the applied effect is not refined. Our goal
was to develop a more precise refinement procedure, reusing a default predicate refiner to refine both: a path
in a current thread and a path to an effect in the environment. The idea is to construct a joined boolean formula
from these two paths. Since some variables may be common, a key challenge is to correctly rename and equate
variables in two parts of the formula to accurately represent the way threads interact. It is essential to get reliable
predicates that can potentially prove spuriousness of the path.

The proposed approach is implemented on top of CPAchecker framework. It is evaluated on standard SV-
COMP benchmark set, and the results show some benefit. Evaluation on the real-world software does not
demonstrate significant accuracy increase, as the described flaw of predicate refinement is not the only reason
of false positive results. While the proposed approach can successfully prove some specific paths to be spurious,
it is not enough to fully prove correctness of some programs. However, the approach has further potential for
improvements.

Keywords: static verification; predicate abstraction; thread-modular analysis.

For citation: Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis.
Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 187-204. DOI: 10.15514/ISPRAS-2023-35(3)-14.

YTouHeHue npeauMKaTHOM abCcTpakuum Npu pasaenbHOM aHanuse
NOTOKOB

B.I1. Pyoenuux, ORCID: 0009-0000-6719-2594 <rudenchik@ispras.ru>
I1.C. Anopuanos, ORCID. 0000-0002-6855-7919 <andrianov@ispras.ru>

Hncmumym cucmemnozo npoepammupoganus um. B.I11. Heannuxosa PAH,
Poccus, 109004, e. Mockea, yn. A. Comicenuyvina, 0. 25.

Aunnoranus. KomOuHaiws ananusa ¢ pasaeibHbiM paccmorpenueM motokoB (Thread-Modular analysis) u
NpeIuKaTHOW abcTpakuuu sBisercss 3()GEKTHBHOW TEXHHKOW BepH(HKAIMHM PEATbHOr0 MPOrPAaMMHOIO
obecrieqeHnsi. OHUM U3 HEIOCTaTKOB STOM TEXHUKH SBIAETCS YTOYHEHHE NPEJUKATHOW aOCTpaKIUM Ipu
aHaJIM3¢ MHOTOMOTOYHBIX TPporpaMM. B Kkiaccuueckoil nmpouenype yro4HeHHs: abCTpaKIiy pacCMaTpUBaeTCs
TOJIBKO MyTh B OJHOM MOTOKe, U okpyxkenue Thread-Modular ananusza nHe yrounsiercs. Hanpumep, npu
npuMeHeHnH 3¢ deKTa u3 BTOPOro MOTOKa K MEePBOMY MyTh K dQQEKTy BO BTOPOM IOTOKE HE YTOUHSICTCS.

187

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

Lenpro Hameil paboTsl Obuta pa3paboTka Oosiee TOUHOW MPOLERYpbl YTOYHEHUs abCTpakiuu, KOTopas Obl
[EePEHCIIOb30BaNIA UMEIOIIYIOCS TPOLENYPY YTOUHEHHs aOCTPaKLMU M 103BOJIsIa Obl yTOUHATH M IYTh B
aHAIN3UPYEeMOM IIOTOKE, M IMyTh B OKpyXkeHHH. OCHOBHas Hpesl 3aKII0YAeTCsl B ITOCTPOSHHH COBMECTHOM
JIOTHYecKoi (opMynbl st ABYyX myTed. Tak Kak MMeHa IEepPEeMEHHBIX Pa3HBIX HMOTOKOB MOTYT COBIACTH,
HE0OXOIMMO KOPPEKTHO IepeNMEHOBATh M IIPHPABHATH HEKOTOPHIE IIepEeMEHHBIE ISl TOTO, YTOOBI opMyIia
MIPaBWJIGHO OTpakaja CBS3M MEXAY MOTOKaMH. DTO IO3BOJISET IMOJYYHUTh NPEAUKATHI, HEOOXOANMEIE IS
JI0Ka3aTeNIbCTBA HEJOCTHKUMOCTH IyTH.

[IpennoxeHnuslit moaxon ObUT peaan30BaH Ha 0a3ze WMHCTpyMeHTa craTthueckoil Bepugukauuun CPAchecker.
[onxon ObuT oLeHEH Ha cTaHgapTHOM Habope 3amad SV-COMP u mokaszan HeGousbinoe ymyumieHue. s
GOJIBLINX IPOrPaMM YIyHIICHHH B pe3ysbTaTax He HaOII0Aaach, TaK KaK OIMCAHHbIN HEJIOCTATOK aHAIN3a He
SIBIISIETCSL €JUHCTBCHHOHN NMPUYHHON JIOXKHOIIONOKHUTEIBHBIX PE3yIbTaToB. [IpemoskeHHBIH MOAX0M MOKET
YCIICTHO JO0Ka3aTh HEZOCTIDKMMOCTb HEKOTOPHIX IIyTeH, TO 3TOro MOXKET OBITh HEIOCTaTOYHO IS
JIOKa3aTeJIbCTBA KOPPEKTHOCTH TporpamMMmel. OmHAKO IOxXoj o0najaeT MaTbHEHIIMM ITOTEHIIHATIOM IS
COBEPIICHCTBOBAHHSI.

KiioueBble cioBa: cratuyeckas BepU(UKAIMA; NpeaMKaTHAs aOCTpaKUus; aHaIu3 C Pa3AelIbHBIM
PaccMOTPEHHEM ITOTOKOB.

Jas uurtupoBanus:. Pynenumk B.I1., Anzpmano I1.C. YToyHeHHe mpeAMKaTHON aOCTpakUMU NIPH
paznenbHoM aHamu3e motokoB. Tpymst UCIT PAH, tom 35, Bem. 3, 2023 r., ctp. 187-204 (Ha aHriuiickom
s3pike). DOI: 10.15514/ISPRAS-2023-35(3)-14.

1. Introduction

Program verification is a process of checking if a program satisfies certain requirements. In static
verification a program or its model is analyzed without actually running the code. There are multiple
tools for program verification that implement various techniques targeted at different types of tasks.
One of them is a reachability problem — a task of determining if a given point in a program is
reachable. For reachability problem verification process can be broken down into two separate parts:
1) building a set of reached states; 2) checking if target state is in this set. While the second part is
relatively simple, the first part is complex and resource-intensive. Various techniques and
optimizations are developed to solve it. One of such approaches is abstraction.

There are many different types of analyses, which implement different kinds of abstractions. Using
several abstractions at once can make analysis more efficient, especially for complicated pieces of
code. CPA (Configurable Program Analysis) [1-2] was introduced as an approach of unifying
different techniques for software verification (including abstractions). It allows combining different
kinds of abstractions in various ways, so they can be used simultaneously and construct a more
accurate model of a program.

In software verification approaches a model of a program is automatically extracted from the source
code. It may not be accurate enough to prove certain properties of a program. Constructing more
complex models is not always resource-efficient. This problem can be solved by using algorithms
of iterative model refinement such as CEGAR [3], which refines abstractions using a
counterexample. The algorithm iteratively refines the abstraction until it achieves a level of precision
suitable for proving a specific property. Further, we will consider predicate abstraction [4], which
assigns to each state a predicate that limits possible values of variables in the state.

Multithreaded programs traditionally cause additional problems for software verification. Classic
approaches, which consider different combinations of thread interleavings, quickly result in state
space explosion. There are other approaches, for example, Thread-Modular approach [5]-[7], which
considers each thread separately in combination with some environment. The environment is
constructed automatically during the verification process, and may be unique for every process.
Thread-Modular approach demonstrates good performance and precision for industrial software as
a target code. However, as we use abstraction technique, we need to have a refinement procedure.
This presents a challenge, as the threads may interact with each other, for example, they may operate
with the same shared variables or use local variables with the same names.

188

Pynenunk B.I1., Aunpuanos [1.C. YTouHeHHE MpeANKAaTHON abCTpaKInK IPH pa3aeibHOM aHaIu3e MOTOKoB. Ipyosr UCIT PAH, 2023, Tom
35, Boim. 3, c. 187-204.

The paper presents a way of refining predicate abstraction in Thread-Modular approach. In Thread-
Modular an error path is a path in a one thread, as threads are analyzed separately. However, it may
contain effects from other threads, and there are paths to the effects in other threads. We introduce
an efficient way to construct a joined boolean formula for two different thread paths. The idea is to
rename local variables to avoid matching and add specific equalities of shared variables to represent
dependencies of values of shared variables in different threads. Constructing a joined formula allows
reusing a basic predicate refinement procedure to refine multiple paths all together. However,
practical implementation poses some technical problems such as hanging caused by repeated
analysis of the same path.

A current limitation of the approach is complicated thread interleavings. For example, if the analyzed
thread interleaves with the second one that is also affected by the third one, the proposed approach
might not be effective.

Experiments show that the approach allows refining more paths than the default predicate refinement
procedure. It can successfully prove absence of errors for a certain number of tasks. However, the
benefit is shown mostly on small artificial tests, as large real-world examples have a complicated
thread interaction. Thus, even if the proposed predicate refinement procedure is able to remove some
infeasible paths from abstractions, there are still other spurious paths due to other reasons, which do
not allow to prove the correctness.

The main contributions are:

e an approach for environment refinement in predicate abstraction;

e implementation of the approach on top of the CPAchecker framework®. The source code
is already merged in the main branch.

The rest of the paper is organized as follows. Section 2 gives a brief introduction to the theory.
Section 3 contains a motivation example with a description of the problem. The proposed solution
is presented in section 4. In section 5 some implementation features are described. Evaluation details
are given in section 6, and section 7 contains brief information about related work.

2. Preliminaries

2.1 Software model checking

We consider a multithreading program as target software. This is a program, which contains more
than one execution thread. The threads can operate with local variables, which are available only to
specific threads, and shared variables, which are available to all threads. We do not specify any
interface, like, POSIX, ARINC, or other, as it is irrelevant to our analysis.

Further, we consider software model checking approach for static verification. Such approaches
allow the automatic extraction of a formal model from the source code and check it against
predefined specifications or properties.

One of such properties is reachability. If a specific error state is reachable, then the property is
violated and the program is incorrect. Accordingly, if no error state is found, the program is
considered to be correct.

Another possible property is absence of data races [8]. Theoretically, it can be expressed via
reachability [9], however in practice it is more efficient to consider it separately. Further, we will
consider only reachability problem, as it is simpler. However, it is possible to apply the proposed
refinement procedure for verification of other properties. Also, we do not consider any specifics of
weak memory models [10].

1https://gitlab.com/p.andrianov/cpachecker/
189

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

2.2 Abstractions

As mentioned above, instead of analyzing a program itself we analyze a model of a program.
Traditionally, a model of a program is a graph built upon Control Flow Automaton (CFA). The
edges represent program operators from CFA and the states represent program memory, including
location from CFA (pc) and assignment of values to all variables. The states are called concrete
ones.

Even for a one integer counter possible values are numerous. Real-world software contains
thousands of variables, and using concrete states in analysis leads to combinatorial explosion of a
state-space. One of the ideas to reduce the number of considered states is abstraction. Abstract states
represent multiple concrete data states. There are many different kinds of possible abstractions. Our
approach is based on predicate one, so, further we will consider it. In predicate abstraction [3] an
abstract state contains predicates over program variables. For example, abstract state (x = 0)
represents many concrete states, including (x >0,y > 0), (x >0,y > 1), (x > 0,y > 2), etc. It
constrains x to have a value of zero, but does not specify values of other variables. The same way

abstract state (x = 0) A (y < 1) constraints variables x and y in the way defined by the predicates.

An operator transfer allows to build a next abstract state for a parent state and program operation
(control flow edge). In predicate abstraction the operator transfer is the strongest postcondition of
the parent state and program operation. A set of states, which are reachable by a transfer from some
initial state, is a reached set. Note, that the reached set is a set of abstract states, and potentially,
some abstract states may represent those concrete states, which are impossible in a real execution of
a program. This is, because an abstraction is an overapproximation of a program. This is necessary
for the soundness of an analysis i.e. in order for the program to not be falsely considered correct.
Reached set is usually represented by Abstract Reachability Graph (ARG).

Abstraction is built with a certain precision: high precision means more precise abstraction.
Precision is formally defined by an analysis. In predicate analysis a precision = is a set of predicates,
which are used in constructing predicate abstract states. The lowest (the weakest) predicate precision
is an empty set = = @. Predicate abstraction with the empty precision will contain only trivial
predicate states T, which corresponds to formula True. They represent any concrete state.

And how can the precision be changed? For example, if the abstraction is not precise enough and
contains spurious paths, there is a need to refine it. This question will be addressed in the following
section.

2.3 Refining predicate abstractions with CEGAR

As we have already described, abstraction is an overapproximation of a program, so, it may omit
some details. Because of such imprecision, a program can be falsely considered incorrect. Therefore,
there should be a way to refine the abstraction.

Counter-Example Guided Abstraction Refinement (CEGAR) [3] is an approach for increasing
precision of an abstraction. It iteratively refines an abstraction using counterexamples. In case of
reachability problem, counterexample is a path to an error state. Let us consider the way CEGAR
refines the abstraction.

First, an initial abstraction (a set of reached states) is built with a given precision. By default the
initial precision is set to the lowest precision, i.e to the empty one, meaning the abstraction is built
imprecisely.

Then we should check if an error state is present in the abstraction. For the initial abstraction it means
just syntactical reachability, as there are no valuable predicates. If the error state is unreachable, the
program is correct and the analysis finishes.

If the error state is present in the abstraction, it does not mean that it is reachable in the program
since the abstraction can be imprecise. The counterexample (a path to this state) needs to be checked

190

Pynenunk B.I1., Aunpuanos [1.C. YTouHeHHE MpeANKAaTHON abCTpaKInK IPH pa3aeibHOM aHaIu3e MOTOKoB. Ipyosr UCIT PAH, 2023, Tom
35, Boim. 3, c. 187-204.

for feasibility precisely. If the error path is feasible in a precise model, the program is incorrect and
the analysis finishes. If the error path is infeasible in the precise model, abstraction needs to be
recomputed with the new precision provided by CEGAR. That is a default CEGAR loop. There are
two points of interest here: how the counterexample is checked for precise feasibility and how new
precision is obtained. Further we will consider these issues in case of predicate abstractions.

In predicate abstraction a path formula is calculated in order to check the counterexample for
feasibility. Path formula is a conjunction of predicates that correspond to path operators. For
instance, if a path contains three consecutive operators: an assignment operator a = 1, a conditional

operator if (a > 0) and another assignment operator b = 1, the corresponding path formulaisa=1 A

a > 0 Ab =1 There is no contradiction in the formula, so it is satisfiable. Formulaa=1Aa<0A
b = 2 corresponds to operators a = 1, if (a < 0) and b = 2. This formula is unsatisfiable.
Satisfiability of a path formula is equivalent to existence of such input data (initial values of
variables) that the error state is reachable. The satisfiability of the formula is checked by a specific
external tool — SAT solver. If the formula is satisfiable, then the error state is considered reachable
and analysis ends. Feasibility of the path in the abstraction but not in the program means that the
abstraction is not precise enough and needs to be refined.

The way precision is extracted from a spurious counterexample depends on the abstraction.
Moreover, there are different ways to refine predicate or any other abstraction. We are using Craig
interpolation [11] to extract predicates from an unsatisfiable path formula. There is an interpolation

theorem, which claims that for any logical formulas ¢, w such that pAy = L there exists logical

formula p, called an interpolant, such that every non-logical symbol in p occurs both in ¢ and v, ¢
S>pandwyAp = L.

In practice, we use interpolating solvers such as MathSAT [12], Z3 [13], or CVC5 [14], to calculate
the interpolants. Being a conjunction of predicates, an unsatisfiable path formula can be split in two
parts, usually in multiple ways, to satisfy the precondition of the theorem. Solver extracts multiple
interpolants from a path formula, those interpolants are then added to precision. Note that
interpolants are not the only way to extract new precision.

It is important to mention one of the optimizations for efficient abstraction rebuild. It is called lazy
abstraction [15]. The main idea is to rebuild not all abstraction after refinement, but to identify the
changed parts and reconstruct only them. During the refinement procedure a refinement root is
identified. This is the state, which is a common parent of all changed subtrees in the reached set.
The subtree is removed after refinement, and the analysis continues from the refinement root.

One more optimization, which also should be mentioned, is Adjustable Block Encoding (ABE) [16].
Its main idea is to avoid reconstructing predicate formulas in every state. Instead, formulas are
constructed for every block that is composed of multiple states. Because of it, interpolants are usually
not set for every abstract state. We do not need to describe this optimization in detail since it is
irrelevant to our work.

This concludes an overview of predicate abstraction refinement with CEGAR. So far, we have only
considered a path in a single thread. It is not immediately obvious how this refinement procedure
can be applied to an analysis of multithreaded programs where a path contains operators from
different threads. In the following section we describe an approach to analysis of multithreaded
programs that can be combined with CEGAR.

2.4 Thread-Modular Analysis

Thread-Modular analysis [5]-[7] is an approach for verification of multi-threaded programs. Unlike
algorithms that rely on complete enumeration of possible thread interleavings, Thread-Modular
analysis uses an abstraction of thread interactions. It analyzes each thread individually with
consideration of an environment, which is a model (abstraction) of possible effects that threads can

191

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

have on each other [7]. The more accurate the environment is, the more precise analysis is going to
be. And less accurate and more abstract models can be used for analyzing large programs for which
brute-force approaches are not applicable.
Interactions of threads can be formally described in terms of projections. A projection of an
operation is an effect that the operation can have on other threads or an overapproximation of such
effect. A projection can also contain a condition under which its effect can be applied. For instance,
assigning a value to a local variable does not affect other threads, so a projection of this operation is
empty. Now let us consider an assignment x = 0 to a global variable x. Its projection may contain
the same assignment x = 0. Alternatively, a projection may be more abstract and contain assignment
= x, meaning “the thread can change a value of variable x to anything”. Therefore, environment
can be defined as a set of projections of all operators in the program.
While analyzing each individual thread, Thread-Modular analysis builds projections of every
operator of this thread. The projections are part of the environment for other threads. After the
primary analysis of each thread, Thread-Modular analysis considers an effect of the environment.
For that purpose it checks each projection from the environment and each state in other threads if
they are compatible, i.e. if the projection can be applied to the state. In predicate abstraction two
predicate abstract states are considered compatible if a conjunction of their predicates looks
satisfactory. If a projection and a state are compatible, the effect of the projection is applied to the
state which results in creation of a new state called applied state. Projections express an effect of
other threads, and applied states contain the effect, which is applied to the particular state in the
current thread.
Applied states and the states that are reachable from them by operator transfer are added to the
reached set. The state to which the projection was applied is considered to be a parent state of the
applied state. Because of this, new paths are created that represent how threads interact with each
other. Note that the applied state may be the same as the parent state, meaning the effect does not
change anything.
An illustration of the approach is given in Fig. 1. There is a part of ARG representing the first thread
and a part of ARG representing the second thread. Assignment operator x = 0 that follows state B
from the second thread can be projected.
If the new projection is compatible with the state A from the first thread, it can be applied to the
state A. The new applied state corresponds to application of the effect x = 0 to the first thread. The
analysis continues in the first thread from the new applied state.
As Thread-Modular approach considers threads separately, the error path is also a path in a separate
thread. However, the path may contain different effects, representing the thread interaction. The next
section shows the problem during refinement of paths in the Thread-Modular case.

3. Motivating example

Let us consider the program in the Fig. 2. It contains two threads threadl and thread2, both can
change values of global variables a and b. The first thread assigns the value of 1 to variables a and
b with mutex protection. Then it releases the mutex and checks that the value of b has not changed.

192

Pynenunk B.I1., Aunpuanos [1.C. YTouHeHHE MpeANKAaTHON abCTpaKInK IPH pa3aeibHOM aHaIu3e MOTOKoB. Ipyosr UCIT PAH, 2023, Tom

35, Boim. 3, c. 187-204.

Thread 2

S
environment +

O

T
Xx=0

applied
state

0

X =
\ 4

<

O
S,

Fig. 1. Thread-Modular approach

1int a =8, b = 8;
2
3 void *threadi{void *arg) {
4 pthread _mutex_lock({&mutex);
5 a=1;
6 b= 1;
7 pthread_mutex_unlock(&mutex);
8 assert (b == 1);
9}
10
11 void *thread2(void *arg) {
12 pthread_mutex_lock({&mutex);
13 if (a != 1){
14 b= 23
15 }
16 pthread mutex unlock(&mutex);
17 }
18
19 int main(void) {
20 int t1, t2;
21 pthread_create(&t1, ©, threadi, o);
22 pthread_create(&t2, ©, thread2, 8);
23 return 9;
24}
Fig. 2. Example of a program

The second thread checks if the value of a has changed and if it has not, then it changes the value of
b to 2; all while the mutex is locked. The error label (assertion in line 8) is not reachable, because

193

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

change of the variable b is allowed only in case of a # 1. However, analyzing the program with
CPAchecker using Thread-Modular analysis with default predicate refinement returns a
counterexample, meaning the error label is feasible. The reason this is happening is the inability to
refine the predicate abstraction.

First, the analysis constructs a path to the error state. The path is in the first thread, as the error state
(assert in line 8) is in the first thread. Initially, the predicate precision in empty, the path corresponds
to operatorsa =1 inline 5, b =1 in line 6, and assert in line 8 and does not contain any effects.

The corresponding path formula: (a=1) A (b =1) A (b # 1). It is unsatisfiable, because the value of

b is not considered in the abstraction. So, the abstraction is successfully refined and the interpolant
b =1 is added to the predicate precision.

In the next iteration of the analysis another path is constructed. The path is in the first thread and it
contains an application of the effect b = 2 (line 14) from the second thread right before line 8. The
path corresponds to succession of operators a = 1 (line 5), b = 1 (line 6), b = 2 (line 14, thread 2),
and assert in line 8. Actually, this effect cannot be applied since the operation b = 2 can only be
executed if a does not equal 1 (line 13) but the value of variable a before line 8 is equal to 1.

The path is spurious, abstraction is not precise enough, because it does not contain any predicate
over value of a. And the abstraction is supposed to be refined. But default refiner fails to prove that
the effect cannot be applied.

The counterexample is shown in Fig. 3 (highlighted in dark color). State A corresponds to the line
8, before assertion check. State B corresponds to the line 14 with operation b = 2. So, the projection
represents the effect from operation b = 2 for other threads. It is indeed feasible as a path in a single
thread if the projection is applied. But the projection could not have been applied. Default predicate
refiner refines only a path to the error state, and it does not check the projection, state from which it
was projected (state B in Fig.3) or a path to that state. Predicate abstraction of the second thread is
not refined, and it stays not precise enough to exclude the application of the projection. Because of
that, spurious counterexample is not ruled out.

If the predicate precision contained predicates a == 1 and a # 1 then state A would contain predicate

a == 1 and both state B and the projection would contain predicate a # 1. That would make state A

and the projection incompatible and the projection would have been applied. The question is, how
to obtain such predicates.

4. Proposed solution

4.1 An approach overview

Let us consider a path to an error state in an abstraction. This is a path in a single thread, and it
contains an applied effect, meaning it is affected by another thread. Let the path in the single thread
be reachable in the abstraction. If the effect cannot been applied, the path is technically unreachable.
One would naturally expect a refiner to detect the unreachability of the path and construct a more
precise environment in which the effect would not be applied. However, the default refiner lacks the
capability to do so as it only refines the path in a single thread and does not refine the environment.
It is unable to prove that the effect cannot be applied. Therefore, the analysis considers the path
feasible and the error label can be falsely recognized as reachable.

The problem arises, as the default refinement procedure considers only thread abstraction and misses
the environment. So, we need an efficient way to refine two parts of the abstraction (thread and
environment) together. And it means that the counterexample now consists of two parts: a path in
thread (main path) and a path in an environment. If the two paths are spurious, we need to obtain
interpolants that can potentially prove the incompatibility of these paths, and add them to precision.
The next step is to determine an imprecise part of the abstraction and rebuild it with new precision.

194

Pynenunk B.I1., Aunpuanos [1.C. YTouHeHHE MpeANKAaTHON abCTpaKInK IPH pa3aeibHOM aHaIu3e MOTOKoB. Ipyosr UCIT PAH, 2023, Tom
35, Boim. 3, c. 187-204.

ERROR

Fig. 3. Counterexample

One of the options to refine two paths is to develop a new refiner specifically for this task. However,
this approach would lead to a considerable amount of code duplication, since only the refinement
target is changed, not the refinement technique itself. Instead, we choose to extend an existing
approach, and refine two paths altogether by reusing an existing refiner. While reusing a large piece
of code is generally practical and efficient, it requires addressing certain issues to ensure successful
code reuse. Since the input of a default refiner is a single path, the two paths need to be joined into
one to be refined by it. Moreover, names of local variables may overlap, and global variables may
appear in both paths, so they need to be carefully renamed in order to avoid false dependencies.
Although the interpolation procedure stays the same, we still need some post-processing of obtained
interpolants. Now we present the approach in more detail.

Consider an instance of a projection depicted in Fig. 3, where the projection originates from state B
and is applied to state A. We consider two paths: the first is a path to state A and the second is the
path to state B. The paths are reconstructed using ARG relations. A path formula, which is a
conjunction of predicates that correspond to program operators, is constructed for each path, as it is

195

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

performed in default predicate analysis. In order to check simultaneous feasibility of these two paths,
we check satisfiability of a conjunction of these two path formulas. Since the resulting formula is
still a conjunction of predicates, it can be processed like a regular path formula of a single path. And
then we request SAT solver about its satisfiability. However, the process is not as straightforward
due to complications in joining the formulas.

4.2 Joining formulas

The path to the error state in Fig. 3 contains multiple assignments to the same variable. For instance,
b =0and b =1 are successive assignments to variable b. If the path formula contained the
unsatisfiable conjunction of the corresponding predicates b = 0 A b = 1, it would be unsatisfiable
regardless what other predicates it contains. Thus, path formulas are built with SSA indexation [17],
which assigns an index to each variable that increments with each assignment. Variables with
different indices are considered different. And since each variable is only assigned a value once,
there are no collisions in path formula caused by multiple assignments.

SSA indexation can cause problems when joining formulas. Each thread (path) has its own SSA
indexation. That means that a global variable can have multiple overlapping sets of indices, one for
each thread. In a joined formula two instances of the same global variable from different threads but
with equal indices will be considered as the same variable. This can cause unexpected dependencies.
This problem can be solved by renaming variables in one of the threads.

For instance, we rename global variable b in the second (environment) formula to env_b. Adding a
special symbol, which is not permitted in a variable name in real code, to the variable ensures that
the newly renamed variable does not coincide with any other variable.

However, renaming loses relation between two threads, and we need to artificially restore it. Values
of global variables at the point of projection application in both threads must be equal. In the opposite
case, for example, if a global variable b in one thread is equal to 1 and in the second thread the same
variable b is equal to 2, it means that the two states are incompatible. In order for a path formula to
reflect that, we need to add variable equalities. Each global variable with the latest index in one
thread is considered equal to this global variable with the latest index in the other thread. The
equalities are then added to the joined path formula as new predicates in a conjunction. That ensures
that the formula reflects relation between threads.

Another problem occurs if formulas contain local variables. There can be two local variables in
different threads with identical names. When joined into one path formula they can potentially be
treated as one global variable, which can affect satisfiability of the formula. To avoid that, all local
variables of one of the two threads should be renamed. For instance, similarly to global variables,
we rename local variable i in the second (environment) formula to env_i. However, we do not add
any variable equalities for the local variables.

The resulting formula accurately represents two paths and a relation between them. If the formula is
satisfiable then the two paths are considered feasible simultaneously and the error state is reachable.
If this formula is unsatisfiable then the two paths are not feasible simultaneously and abstraction
needs to be refined. The default Craig interpolation can be used to get interpolants. Usually, a path

formula can be split into parts ¢ and w such that ¢ A w = L in multiple ways. Interpolation is then

performed for each partition to obtain more potentially useful predicates. The joined path formula is
no exception. It is a conjunction of predicates and interpolants are extracted from it just like from
any other path formula.

Let’s take a closer look at predicates that are obtained during the interpolation. Let’s consider a
projection proj that was applied after state A and that was projected from the state B. Let u1 and u»
be path formulas for the paths to A and B respectively. If u1 A u2 = L (meaning proj could not have
been applied) then Craig interpolation theorem can be applied for such unsatisfiable conjunction.
Therefore, there exists a predicate p; such that every non-logical symbol in p1 occurs both in u; and

196

Pynenunk B.I1., Aunpuanos [1.C. YTouHeHHE MpeANKAaTHON abCTpaKInK IPH pa3aeibHOM aHaIu3e MOTOKoB. Ipyosr UCIT PAH, 2023, Tom
35, Boim. 3, c. 187-204.

U2, w1 = prand u2 A p1 = L. Since uz A p1 is an unsatisfiable conjunction, there exists predicate p;

such that every non-logical symbol in p, occurs both in w2 and p1, u2 = p2and p1 A p2 = L.

Predicates p1 and p; are then added to precision. A part of the abstraction is reconstructed with the
updated precision (see lazy abstraction). In the default refinement procedure the rebuilt part of
abstraction does not include states in the environment, but in order to eliminate the infeasible paths
a part of the environment also has to be reconstructed. Predicate p; is an implication of path formula
w1 which resembles a path to state A. Since predicate state is built as the strongest postcondition of
the path, predicate state of state A will contain predicate p; in the rebuilt ARG. Likewise, predicate

state of state B will contain predicate p,. Since p1 A p2 = L, states A and B are now considered
incompatible, and the projection cannot be applied. That proves infeasibility of the counterexample.
Finally, let’s see how the counterexample in Fig. 3 is refined. The first path is the path to state A
and its path formulaisa; =0 Ab; =0 Aaz =1 A by = 1. Note, the subscript here is an SSA index.

The second path is the path to state B and its path formulais a; =0 A b1 =0 A a; # 1. By renaming

variables in the second formula we obtain env_a; =0 A env_b; =0 A env_a; #1. After that we join
the two formulas and add variable equalities: a2 = env_ai A bz = env_bs. The resulting formula is

ar=0Abi=0Aa=1Ab=1A
Aenv_ai=0Aenv_bi=0Aenv_a; #1A
Aaz=env_ai Aby=env_b;
Precise extracted interpolants depend on the solver and block encoding (see ABE). In theory, we
can obtain interpolants a; = 1 and env_a, # 1. The variables in the interpolants are then reverted to

their original names, in our case by removing the prefix. Resulting predicates a =1 and a # 1 are
added to precision. In the rebuilt abstraction predicate state of state A would contain predicate a =1

and predicate state of state B would contain predicate a # 1. Sincea=1Aa # 1= 1, states Aand B

are now incompatible, meaning the projection cannot be applied. That proves infeasibility of the
counterexample.

4.3 Limitations of the approach

In theory new interpolants must exclude a spurious error path from the abstraction. Actually, an error
path may be found again due to different reasons: optimizations, errors, unsupported cases, and so
on. To avoid infinite loops of CEGAR loop, there is a technique for detection of repeated
counterexamples. The default predicate refinement procedure compares error paths from last two
CEGAR iterations and if they are equal stops the analysis. However, there are some difficulties in
thread-modular case.
First, paths with effects can be falsely deemed equal. The default technigue for detection of repeated
counterexamples considers paths equal if their edges are identical, i.e. if paths correspond to the
same sequence of executed operators. This approach does not take into account paths to effects if
there are effects applied. For instance, two similar paths, each with different effects applied to the
same state, are considered equal. The issue leads to false errors. In our approach this issue is more
crucial since the environment can be refined and a new path can differ from the previous one solely
based on paths in the environment.
Secondly, reusing the refiner multiple times in a single CEGAR iteration can lead to losing
information about repeated paths, potentially resulting in looping. The default refiner procedure is
run multiple times for one counterexample with applied effects. Both the path to the error state itself
and the pairs of main paths and paths in the environment are refined, all within the same iteration.
That interferes with error path detection. Default refiner only caches one path from the previous
197

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

refinement, and deletes it after comparing it with a next path. So, if a repeated counterexample
contains an effect, the refinement procedure will be executed at least twice for it. The
counterexample will be cached during the first execution but will be overwritten in the second one.
As a result, the repetition of such a counterexample will go undetected, causing looping.

Caching all paths, which is an existing option, will not resolve the issue either. The same effect can
be applied to the same state in different iterations. That means that the same joined path may be
refined multiple times. However, that does not indicate repetition of counterexample and should not
stop the analysis.

So far we have only considered a case where an error path contains only one applied projection that
originates from a single state from the other thread. But in reality there might be several projections
applied. If multiple projections are applied to the main path, meaning there are several effects applied
to the first thread, we may iteratively check all of them one by one. If a main path and any path to
one of these effects are not feasible together, the path is considered spurious and abstraction needs
to be refined.

One more problem occurs when a projection is projected from multiple effects. Such projection can
be created by the optimization which merges projections from different states into a single one. In
that case all pairs of a path to each of these states and a path to the applied state are refined. In theory,
the path should be considered spurious if at least one of the pairs of paths is infeasible
simultaneously. But in reality, that projection merging optimization is not consistent with this theory.
Because of this, we consider a projection application spurious if each path to each effect it was
projected from is spurious.

Another problem occurs when projections are applied to the different threads. For example, one
projection is applied to the first path, and a path to that projection in the second thread contains an
effect from the third thread. The part of the environment that is important for the path to the
projection will not be refined. The natural idea is to include recursion in the refinement process, but
it is not yet clear if it would work somewhat effectively or work at all, considering other already
existing limitations. The problem occurs when effects are applied not successively, multiple times
and etc. Currently, this is a limitation of our approach.

5. Implementation features

The proposed approach was implemented on top of the CPAchecker framework as a separate
predicate refiner. Its input is an error path in a main thread. First, the default refinement procedure
is applied. If the path is spurious, the abstraction is refined with default predicate abstraction
refinement procedure. It means that the contradiction is found in the path in one thread without any
thread interaction. If the main path is feasible, it is analyzed with the proposed approach. For that
purpose, we find all applied states in the path. An applied state is applied from a projection that can
be projected from multiple states in another thread. For each such state the refiner checks feasibility
of two paths: a path to the state in another thread and the main path.

It is important to note that the implemented approach differs from the presented theory.
Theoretically, the first set of predicates should be obtained by interpolating a combination of two
path formulas. That part is fully implemented in the actual code. However, the second set of
predicates, in theory, should be obtained from interpolating a combination of path formula and the
first set of predicates. Implementing this within the framework of the given task would be
problematic. Given our decision to reuse an existing refiner which only input is a path, not a set of
predicates; it would be quite a challenge to acquire these exact predicates. Nonetheless, the
implemented method still has potential to prove infeasibility of a path.

One of the implementation features is refining two different combinations of paths. A main path and
a path to an effect are concatenated in both possible ways and both combinations are refined. Solver
extracts different predicates from these two constructed paths and both of these sets of predicates
are necessary to prove spuriousness of the counterexample. Additionally, if two combinations of

198

Pynenunk B.I1., Aunpuanos [1.C. YTouHeHHE MpeANKAaTHON abCTpaKInK IPH pa3aeibHOM aHaIu3e MOTOKoB. Ipyosr UCIT PAH, 2023, Tom
35, Boim. 3, c. 187-204.

paths are refined, the already existing code provides correct refinement root (a root of the subtree in
the ARG that is rebuilt with new precision).

As it has been established, repeated counterexample detection is a problem. The same error path can
be rediscovered again and again, which leads to hanging. To solve it, we integrated detection of
repeated counterexample into our refiner. It checks if the last two paths in main thread are equal and
caches the main path to the error state until next iteration. That effectively prevents looping.

The previously mentioned issue of paths being falsely regarded as equal also requires a suitable
solution. In default repeated counterexample detection paths are considered equal if the (ordered)
sets of executed operators are equal. Comparing paths by states is problematic since it would require
caching a considerable part of ARG. We implemented an enhanced method of comparing paths by
edges. Apart from edges in main paths it also compares edges in all paths to applied effects. It allows
differentiating between paths with effects more effectively, but does not completely eliminate the
possibility of false repeated counterexample detection.

6. Evaluation

The proposed approach was evaluated on standard benchmark set SV-COMP?. The benchmark set
contains 161 tasks from directories:

e pthread/;

e pthread-C-DAC/;

e pthread-divine/;

e pthread-ext/;

e pthread-memsafety/;
e pthread-atomic/;

e pthread-complex/;

e pthread-driver-races/;
e pthread-lit/;

e pthread-nondet/.

The tasks are mostly artificially created tests with about 1 KLoc and 2-3 worker threads. They may
contain a specific synchronization, like atomics, Dekker algorithms and others. We evaluated the
new approach against two existing ones.

e Default. The default predicate refiner, which refines only one error path without
considering other threads.

e Simple. The simplified version of refinement that checks feasibility of every path
(including paths to effects) separately. Thus, it is more precise than Default, as it is
possible to exclude paths to infeasible effects.

e Effect. The proposed approach for simultaneous refinement of two paths.
The tool was run with the thread modular approach over predicate analysis. The following options
were used:

e precise encoding of environment actions;

e SMTInterpol is used for SAT check and interpolation;

e support for the same threads in tests.

199

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

The experiments were performed on a machine with Intel® Core™ i5-8250U CPU @ 1.60GHz x 8
and 8 GB of RAM, using 4 CPU cores; with Ubuntu 22.04.2 LTS. Timeout was set to 5 minutes.

The results are presented in Table 1.
Table 1. Evaluation on SV-COMP benchmarks

Approach Default Simple Effect
Correct results: 50 38 44
e Correct true 20 20 22
e Correct false 30 18 22
Incorrect results 71 51 52
e Incorrect true 0 0 0
e Incorrect false 71 51 52
Unknowns 40 72 65
e Timeouts 12 6 12
e Repeated Counterexample error 0 41 40
e Other Unknowns 28 25 13
CPUtime, s 6040 3969 6780

The proposed approach was able to prove correctness of two tests, which both thread-modular
analysis and the simplified version of presented approach falsely considered incorrect. The
simplified version didn’t show any improved results.

The most frequently encountered error (both for Effect and Simple) was the repeated
counterexample error, which indicates that the analyses recognized a counterexample as spurious
but failed to refine the abstraction, leading to the counterexample being rediscovered. One possible
explanation for this is that the obtained interpolants were insufficient to eliminate the path. Some
errors were falsely reported due to the imperfect nature of repeated counterexample detection. At
least three tests falsely reported a repeated counterexample error. The decreased amount of correct
(and incorrect) false results is also caused by the repeated counterexample error.

As expected, the proposed approach is more time-consuming. Most of the extra time is spent on
refining joined paths. The simplified version (Simple) averaged in less time than the default
approach only because it reported repeated counterexample error almost immediately on several
time-consuming tests.

The proposed approach was able to prove correctness of a motivation example (program in Fig. 2).
We also evaluated the approach on a benchmark set of more complicated tasks, based on Linux
device drivers. Each task contains about 10 KLoc and about 5 threads. There are 7 such tasks. The
proposed approach did not show any improvement, it mostly reported repeated counterexample
error.

The reason for that is complicated thread interleavings. The proposed approach can refine specific
paths, but eventually a path will be constructed that it cannot refine. A common example of such
path is one where effects are applied to the different threads: one effect is applied from the second
thread to the first thread and a path to that effect contains another effect application. However, in
smaller tests, the predicates obtained during the first few iterations are typically enough to prevent
such path from being constructed in the first place.

The evaluation results show benefit on a small subset of the benchmarks. The proposed approach
did not show any improvement on complicated tests, since it is not targeted to analyze intricate

200

Pynenunk B.I1., Aunpuanos [1.C. YTouHeHHE MpeANKAaTHON abCTpaKInK IPH pa3aeibHOM aHaIu3e MOTOKoB. Ipyosr UCIT PAH, 2023, Tom
35, Boim. 3, c. 187-204.

thread interleavings. While it can successfully prove infeasibility of counterexamples, this is often,
but not always, not enough to prove correctness of a program. It works in a reasonable time and has
potential for future improvement, as the issue with repeated counterexamples is mostly technical.

7. Related work

There are different approaches to the analysis of multi-threaded programs. They have different
features and performance.

Precise approaches, based on bounded model checking techniques, investigate different techniques
to reduce state space. The examples of the optimizations are partial-order reduction [18], context
bounding [19-20], etc. They consider thread interleavings, and they do not have such problems with
environment refinement. We do not dive deep into BMC approaches, and concentrate on thread-
modular ones.

Thread-modular approach was first suggested by [21] and a predicate abstraction was composed
with a thread-modular approach in [22]. There was only one thread in several copies, so, the
environment of the thread is formed by itself.

An extension of the thread-modular approach, which also uses an abstraction, is firstly presented in
[23] and then implemented in TAR [5]. One of the main difference is underapproximation of the
environment. So, the approach does not need environment refinement.

A similar approach was also implemented in Threader tool [24]. Threader uses over-approximation
for an environment, based on Horn clauses.

A thread modular approach to formal verification was presented in [25]. The idea is to provide
invariants for every process, which together imply the formal requirement.

8. Conclusion

The paper presents an approach for predicate refinement in case of Thread-Modular analysis. The
basic idea is to join thread-parted formulas into a single one, and check its satisfiability to determine
whether two paths are feasible simultaneously.

Refinement of two paths in combination provides higher precision for the analysis. Because of this,
specific spurious paths can be eliminated and a program can be proven to be correct. The evaluation
results show benefit on medium-sized programs. Large programs contain intricate thread
interleavings and the proposed approach is not enough to prove their correctness.

While the results show potential of the approach, there is room for future improvement. Some ideas
for future work include recursive application of the approach to paths in the environment and
improving the detection of repeated counterexamples.

Overall, the approach presented in this paper can be used in analyzing small and medium-sized
multithreaded programs. It can successfully prove the correctness of programs that it is targeted at.
Its efficiency can be increased by resolving technical problems that arise in its implementation.

References

[1]. D. Beyer, T. A. Henzinger, and G. The oduloz, “Configurable software verification: concretizing the
convergence of model checking and program analysis,” in Proceedings of CAV, (Berlin, Heidelberg), pp.
504- 518, Springer-Verlag, 2007.

[2]. D. Beyer, T. Henzinger, and G. Theoduloz, “Program analysis with dynamic precision adjustment,” in
Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Conference on, pp.
29— 38, sept. 2008.

[3]. M. Mandrykin, V. Mutilin, and A. Khoroshilov, “Vvedenie v metod CEGAR - utochnenie abstraktsii po
kontrprimeram [Introduction to CEGAR — Counter-Example Guided Abstraction Refinement],” Trudy
ISP RAN [Proceedings of ISP RAS], vol. 24, pp. 219-292, 2013.

[4]. S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,” in Computer Aided Verification
(O. Grumberg, ed.), (Berlin, Heidelberg), pp. 72-83, Springer Berlin Heidelberg, 1997.

201

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

[5]. T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer, Thread-Modular Abstraction Refinement, pp.
262-274. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

[6]. A. Gupta, C. Popeea, and A. Rybalchenko, “Threader: A constraint-based verifier for multi-threaded
programs,” in Proceedings of the 23rd International Conference on Computer Aided Verification,
CAV’11, (Berlin, Heidelberg), pp. 412—417, Springer-Verlag, 2011.

[7]. P. Andrianov, “Analysis of correct synchronization of operating system components,” vol. 46(8), p. 712—
730, Programming and Computer Software, 2020.

[8]. P. Andrianov and V. Mutilin, “Scalable thread-modular approach for data race detection,” Frontiers in
Software Engineering Education, pp. 371- 385, 2020.

[9]. D. Kroening and M. Tautschnig, “Cbmc — ¢ bounded model checker,” vol. 8413, pp. 389-391, 04 2014.

[10]. J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig, “Software verification for weak memory via
program transformation,” ESOP’13, (Berlin, Heidelberg), p. 512-532, Springer-Verlag, 2013.

[11]. W. Craig, “Three uses of the herbrand-gentzen theorem in relating model theory and proof theory,” Journal
of Symbolic Logic, vol. 22, pp. 269 285, Sep 1957.

[12]. R. Bruttomesso, A. Cimatti, A. Franze'n, A. Griggio, and R. Sebastiani, “The mathsat 4smt solver,” in
CAV, pp. 299-303, 2008.

[13]. L. de Moura and N. Bjerner, “Z3: an efficient smt solver,” vol. 4963, pp. 337-340, 04 2008.

[14]. H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, Mohamed, M. Mohamed, A. Niemetz,
A. No'tzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, cvc5: A Versatile
and Industrial-Strength SMT Solver, pp. 415-442. 01 2022.

[15]. T. A. Henzinger, R. Jhala, and R. Majumdar, “Lazy abstraction,” in Symposium on Principles of
Programming Languages, pp. 58—70, ACM Press, 2002.

[16]. D. Beyer, M. E. Keremoglu, and P. Wendler, “Predicate abstraction with adjustable-block encoding,” in
Proceedings of the 10th International Conference on Formal Methods in Computer-Aided Design
(FMCAD 2010, Lugano, October 20-23), pp. 189-197, FMCAD, 2010.

[17]. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck, “Efficiently computing static single
assignment form and the control dependence graph,” ACM Trans. Program. Lang. Syst., vol. 13, pp. 451—
490, 10 1991.

[18]. P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic partial order reduction,” SIGPLAN
Not., vol. 49, pp. 373-384, jan 2014.

[19]. S. Qadeer and J. Rehof, “Context-bounded model checking of concurrent software,” in Tools and
Algorithms for the Construction and Analysis of Systems (N. Halbwachs and L. D. Zuck, eds.), (Berlin,
Heidelberg), pp. 93-107, Springer Berlin Heidelberg, 2005.

[20]. L. Cordeiro, J. Morse, D. Nicole, and B. Fischer, “Context-bounded model checking with esbme 1.17,” in
Proceedings of the 18th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’12, (Berlin, Heidelberg), pp. 534-537, Springer-Verlag, 2012.

[21]. C. Flanagan and S. Qadeer, “Thread-modular model checking,” in Proceedings of the 10th International
Conference on Model Checking Software, SPIN’03, (Berlin, Heidelberg), pp. 213-224, Springer-Verlag,
2003.

[22]. T. A. Henzinger, R. Jhala, and R. Majumdar, “Race checking by context inference,” in Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, PLDI *04,
(New York, NY, USA), pp. 1-13, ACM, 2004.

[23]. A. Malkis, A. Podelski, and A. Rybalchenko, “Thread-modular verification is cartesian abstract
interpretation,” in Theoretical Aspects of Computing — ICTAC 2006 (K. Barkaoui, A. Cavalcanti, and A.
Cerone, eds.), (Berlin, Heidelberg), pp. 183-197, Springer Berlin Heidelberg, 2006.

[24]. A. Gupta, C. Popeea, and A. Rybalchenko, “Predicate abstraction and refinement for verifying multi-
threaded programs,” SIGPLAN Not., vol. 46, pp. 331-344, Jan 2011.

[25]. A. Cohen and K. S. Namjoshi, “Local proofs for global safety properties,” Form. Methods Syst. Des., vol.
34, pp. 104-125, Apr. 2009.

UHgpopmayusi 06 asmopax / Information about authors

Beponuka IlaBnoBma PYJIEHYUYMK — cryneHtka 5 Kypca CHELHQIMTETa MEXaHHKO-
Maremaruueckoro Qakyinsrera MI'Y, mabopant MCII PAH. Hayunsle mHTEpechl: craTHdeckas
Bepu(HKaIus, aHAIN3 MHOTOMIOTOYHBIX ITPOTPAMM.

202

Pynenunk B.I1., Aunpuanos [1.C. YTouHeHHE MpeANKAaTHON abCTpaKInK IPH pa3aeibHOM aHaIu3e MOTOKoB. Ipyosr UCIT PAH, 2023, Tom
35, Boim. 3, c. 187-204.

Veronika Pavlovna RUDENCHIK — 5th year student of the Specialist’s program of MSU, faculty
of mechanics and mathematics; laboratory assistant at ISP RAS. Research interests: software model
checking, analysis of multithreaded software.

[aBen Cepreesuu AHJIPMUAHOB - Hayunwii cotpymuuk MCII PAH, xangupar d¢usuko-
MaTeMaTHYecKuX HayK. HayuHble WHTepechl: craTH4eckas BepU(HKalys, NapajulelibHbIe
HPOTPaMMBI.

Pavel Sergeevich ANDRIANOV - researcher in ISP RAS, Ph.D. Research interests: software model
checking, parallel programs.

203

Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 187-204.

204

Tpyowr UCIT PAH, mom 35, éwin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-15 EOC-:H

Debugger for Declarative DSL for
Telecommunication

1 T.M. Skazhenik, ORCID: 0009-0002-1959-2010 <taras.skazhenik@yandex.ru=>
2D.V. Koznov, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>
LITMO University,

Kronverksky Pr. 49, St. Petersburg, 197101, Russia
2 Saint-Petersburg StateUniversity ,

7-9 Universitetskaya Embankment, St Petersburg, 199034, Russia

Awunoramusi. Development of telecommunication product lines is still a very labor-intensive task, involving a
great amount of human resources and producing a large number of development artifacts — code, models, tests,
etc. Declarative domain-specific languages (DSLs) may reasonably simplify this process by increasing the level
of abstraction. We use the term “declarative” implying that such a DSL does not enable the development of a
closed software application, but rather supports creation, generation and maintenance of various kind of
software assets — product database, events and event handlers, target code data structures, etc. At the same
time, such a DSL may have some executable semantic, but it could be very specific and have many
environment-wise requirements. Thus, execution and debugging of such DSL specifications is a meaningful
task, which has no common solution due to the unique executable semantic. Consequently, it is not possible to
use debug facilities of known DSL environments, such as xtext, MPS, etc. for such a case. In the current paper,
we present a debugger for DevM — a declarative DSL intended for support device management in software
development in the context of a router product line by a large telecommunication company. We clarify
executable semantic for DevM, making it possible to execute DevM specifications in an isolated environment,
i.e. in simulation mode, without generation of target code. We use a graphic model-based notation to depict
every step of execution. Finally, we implement and integrate the debugger in the DevM IDE, using Debug
Adapter Protocol and language server architecture combined with the Eclipse xText/EMF tool chain.

Key words: product lines; telecommunication systems; DSLs; debugging; IDE.

For citation: Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy
ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 205-214. DOI: 10.15514/ISPRAS-2023-35(3)-15.

Otnapguuk geknapatuBHoro DSL ana pa3paboTku
TeNeKOMMYHUKALMOHHbIX CUCTEM

L T.M. Cxaxcenux, ORCID: 0009-0002-1959-2010 <taras.skazhenik@yandex.ru>
2 J1.B. Kosnos, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>
! Hayuonanonwiii uccredosamensckuii ynueepcumem UTMO,
Poccus, 197101, Cankm-Ilemepbype, Kponsepxckuii np., 0. 49, aum. A.
2 Canxm-Ilemepbypackuii 20cydapcmeeniviii yrusepcumen,
Poccus, 199034, Cankm-Ilemepoype, Ynueepcumemckas nab., o. 7-9.

AnHoTanus. TeleKOMMYHHKAIIMOHHBIE CHUCTEMBI SIBIIOTCS ONHHMH M3 caMbIX TpyaoéMkux suzioB 1O,
BOBJIEKas OOJIBIIIOE KOJMYECTBO JIFO/ICH, IEHEXKHBIX CPENICTB, a TaK)Ke BpeMeHH. JleKapaTHBHbIC PEIMETHO-
opueHTHpoBaHHBIE s3bIKH (DSLS) MOTyT CyIIeCTBEHHO NOMOYb B Pa3pabOTKE TaKUX CHUCTEM, PEaTU3ys

205

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

MoAXoAsAINe a0CTpaKIMu. MBI UCIIONB3yeM TEPMUH «IEKIapaTHBHBIE», MOAPa3yMeBasi, YTO MPOrpaMMbl Ha
takoM DSL npennasHauaioTcss He [MPOrPaMMHUPOBAHMS UCIIOJIHAEMON JIOTHKH, a JUIs ONUCAHUS JaHHBIX
(6a3pl maHHBIX CETEBOTO YCTPOMCTBA, CTPYKTYPHI AAaHHBIX IEIEBOTO KoJa M T.JA.) M 3aIaHHUs HEKOTOPOTO
MOZIENFHOTO TIOBEAEHHs] YCTPOHCTB NPH BO3HUKHOBEHHH ONPENCIEHHBIX COOBITHIL. Takum o0pazowm,
HCIIOJIHEHNE TAaKUX IPOrpaMM B [ENSIX OTIAAKH HEBO3MOXKHO OCYIIECTBHUTBH, CTCHEPHPOBAB M 3aIlyCTHUB
KOHEUHBIH KOJ, T.e. HE yHaércsi MCIoIb30BaTh cpenctBa tuma Xtext, MPS. Mexny Tem omiamka Takux
crnenuuKanui sBISETCA BOCTPeOOBAaHHOW 3amadeld B BUAY OOBEMHOCTU CHEHU(PUKALUA (TECATKH ThICAY
CTPOK KOJIa), a TaKKe GOJIBIIOro YHCiIa TOYSIHBIX H3MEHEHHMH, BHOCHMBIX IIpH COPY/paste, B xozxe pa3paboTKu
04EpEHON TENEKOMMYHUKAIIMOHHOM CUCTEMBI, TPUHAUIEKALLEH TaHHOMY CEMENCTBY POAYKTOB.

B npennaraemoit ctaThe ONUCHIBAETCS OTIAIUHUK IS IPEAMETHO-OPUEHTUPOBAHHOTO JIEKIAPATUBHOTO S3bIKA
DevM. DToT s3bIK IpeHa3HAYASTCs AT ONMCAHMs 0a3bl JTaHHBIX alliapaTyphl pOyTepoB U CBUYCH, 3a1aHUs
cnerupuueckoi MHGOPMAIMK, HEOOXOAMMOW Ui MHHUNMAIH3AIM{ ApaidBEepOB YCTPOMCTB, W OIMCAHUS
BBICOKOYPOBHEBOTO ITOBE/ICHNUSI CHCTEMBI IIPY OTyYEHHH CHEM()UIECKUX COOBITHI U3 CETH 1 OT alapaTypsl
caMoro ycTpolcTBa. SI3BIK OpHEHTHpOBaH Ha WCIOJNB30BaHME B KOHTEKCTE CeMelcTBa
TEIEKOMMYHHUKAIIMOHHBIX CHCTEM OJHOM KPYNHOW TEJIEKOMMYHHKAIIMOHHOW KOMIaHMH. B pamkax paGoThl
HaJ OTJaJuyhuKoM OblIa yTOYHEHa HCHoNHseMas ceMaHTHka DevM nana 3amaHus coObITHitHO-
OpPHEHTUPOBAHHOTO MOBEJICHUS CHCTEMBI, a TakKe BBEIEHA CIElHaNbHas MOJENb (T.e. CO3/jaHa HOBasl 4acTb
si3pika DevM) s 3aaHus OTIIaovHON KOHQUTYypauu OTIaKUBaeMOW cuCTeMBI. VIcTioTHeHne mporpaMMbl
Ha DevM BrimosHsieTcst 6e3 reHepayy IeneBoro koxa. [y HariasgHoro oToOpakeHWs miara WCIOJIHEHHUS
IIPOrpaMMBI HCTIOJIB30BATIACh Ipaduueckasi COOBITHIHO-OPHEHTHPOBAHHAsl HOTaMsl. MIHTerpanus co3gaHHoro
omranurka ¢ DevM-¢peiiMBopkom Obuia BeimonHeHa ¢ momomipio Debug Adapter Protocol u si3sikoBoro
cepsepa DevM (language server), paspaGoTaHHOTO ¢ OMOIIBIO cTeka TexHosoruii Eclipse XText/EMF.

KiroueBble c10Ba: ceMeCTBO NMPOrpaMMHBIX NPOAYKTOB; TEJIEKOMMYHUKAIMOHHAS CUCTEMa; IPEAMETHO-
OPHEHTUPOBAHHBIH A3bIK; OTJIAJKA; CPe/ia Pa3padOTKH.

Jas nurupoBanus: Cxaxenuk T.M, Kosnos [I.B. Otnamuuk i nexmapatuBaoro DSL ms paspabotku
TeNeKOMMYHHUKaHOHHBIX cucteM. Tpyast ICIT PAH, tom 35, Beim. 3, 2023 1., crp. 205-214 (Ha aHrIHiickoM
sizsike). DOI: 10.15514/ISPRAS—-2023-35(3)-15.

1. Introduction

Nowadays, it is typical for large companies to develop not a single software product but a number
of products with varying features and functionality, providing upgrades, etc. All of these products
and corresponding development infrastructure form a product line [1]. This approach expands the
market capacities of a company and provides reuse of various development assets, e.g. code, models,
requirements, tests, etc. Following the trend, a large telecommunication company is developing a
product line of network routers. The product line contains about fifty different products, hundreds
of unique boards, several hundred thousand C files, and more than ten million lines of source code.
One of the problems of a product line is the development of the Device Management layer. This
layer focuses on hardware drivers and network interfaces of the router being provided to network
management layer. The problem is in a large range of hardware, complicated hardware connections
(in particular, it is possible to insert various cards into the motherboard of the router) and various
configurations of one product depending on demands of customers. To meet these problems, a
special declarative DSL was developed [2]. This language provides the ability to specify hardware
structure of the product that is visible to software. Furthermore, it can also specify the behaviour of
a product in an event-based manner. It provides abstractions to define various product information,
supporting generation of product configuration, network data, events and event handlers, target code
data structure, etc. A special IDE that fully supports the proposed DSL was developed. Finally, a
debugger was needed to improve maintenance of DSL programs [3]. Leading DSL environments
such as Xtext [4], GEMOC Studio [5], and MPS [6] support a two-level debug model [7] that is not
suitable for declarative DSLs. Moreover, debug development facilities that are provided within these
environments are deeply integrated with them, and their transfer to other runtime platforms is highly
limited. Microsoft Visual Studio Code supports the Debug Adapter Protocol that provides a standard
for the debugger user interface rather than technologies for development. Thus, DSL debugging for

206

Cxaxenuk T.M, Kosnos /I.B. Otnagunk aexnaparusaoro DSL mnst pa3paOoTku TeeKOMMYHHKAIHOHHBIX cucteM. Tpyost MCIT PAH, 2023,
Ttom 35, BeITL. 3, . 205-214.

declarative languages is a pressing problem. There is a number of research papers concerning DSL
debugging [3, 8], but they do not deal with event-based behaviour DSLs. Event-based debugging is
implemented in a series of model-based development toolsets such as YAKINDU [9], Rhapsody
[10], but these tools are oriented at the UML-based system structure (components, interfaces, ports,
channels, etc.). In the case of DevM DSL, we have both a specific system structure model. We may
conclude that existing research and development tools do not provide any significant basis for
developing a debugger for event-based declarative DSLs.

Thus, creating it is going to be research-intensive. The novel contributions of our paper are as
follows:

e Scenario-oriented debugging concept for DevM dsl
e Use cases of the debugger

e An extension of DevM for configuration and initialization of system developed for
debugging

o Graphical model-based notation for visualization of debug execution trace

o Implementation of the debugger with the support of Debug Adapter Protocol and
integration into the DevM framework.

This article is organized as follows. Section 2 provides some background of the research. Section 3
presents scenario-oriented debugging concept for DevM and use cases of the debugger. Section 4
describes extension of DevM for specifying debug configuration of the product. Section 5 introduces
graphical model-based notation for visualization of debug execution trace. Section 6 describes
debugger implementation issues. Section 7 contains an overview of related work, and finally, section
8 provides the conclusions of the paper.

2. Background

The software part of the router in the considered product line consists of two main components:
network management and device management. The latter encompasses hardware drivers and a
network agent that provides an intermediate level between the drivers and the network management
component. It implements a set of rules that determine the router’s reaction to various network
management events. The domain-specific language DevM is intended for describing the Device
Management subsystem. DevM consists of the following parts:

e Composition model aims at describing hardware part of the router that is visible for drivers
and network management. It consists of a set of boards and cards. The latter are a special
type of boards and can be inserted into boards’ or other cards’ special slots, extending the
functionality of the parent device. Actually, DevM specification of the product describes a
set of board and card types (moduleTypes). A real configuration of the product delivery
depends on customer requirements — that is, similar to the variability of hardware units in
a laptop, when the customer just specifies type of the storage, volume of RAM, etc. during
their purchase. Thus, facilities for creating target product configurations are outside of the
DevM due to including not only device management level information. Some features of
DevM for creation of debug configurations (debug model) will be described later.

e Inheritance Model addresses to specifying network management attributes of hardware
elements.

e Behaviour Model focuses on event-driven behaviour of the network agent.

Let us consider the behaviour model in more detail. Specification of the network agent behaviour
consists of a set of rules. Each rule includes the event that the network agent is subscribed to. The
event triggers the action sequence if the logical condition attached to the event is true. The following
kinds of actions are allowed: create an alarm event, log information, restart the network agent,

207

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

change attributes of the hardware elements of the router, as well as, possibly, other elements on the
network.

It should be noted, DevM was designed to describe router hardware structure and special data
structures including various configuration information. DevM does not actually let the user specify
software’s control flow, whereas DevM specification is not a closed executable specification
although it includes some behaviour facilities. Moreover, various parts of DevM specification
generate various assets, including data for the router database, C data structures and function
signatures, etc. But generated C code is not closed and ready to be executed. A significant part of
device management code is implemented manually.

Thus, it can be said the DevM is a declarative domain specific language. It should be stressed we do
not imply logical programming facilities, but take into account to the fact that system code generated
on DSL is not closed and consequently executed. A lot of other code is needed to execute it, and this
additional code is developed outside the suggested DSL.

Nevertheless, declarative DSL could contain some part, which have executable semantic and may
be launched in some simulation environment. This simulation (debugging is a special case of such
simulation) may have a sense for DSL users helping to clarify dark corners of the DSL specification
or finding errors.

The complete grammar of DevM is an Extended Backus-Naur Form (EBNF), which was created via
XText [4]. Based on this grammar, an IDE language server is generated. DevM language server is
integrated to Visual Studio Code, where an IDE interface is implemented. Visual Studio Code as a
target environment is an external requirement to DevM.

3. Debug Concept and Debbuger Use Cases

In our case, we need a way to execute an event-based specification for a single component — that
is, the device management agent. The behaviour of this agent is set using the behaviour model
defined for the product with DevM tools. The device management agent receives events from
outside — as in, from the network, as well as from the hardware of its router. In addition, the agent
can create events for itself and process them itself too.

Being dependent on the environment, the device management agent must correctly process events
received from it. It is this aspect that is interesting from the point of view of the debugger, since the
processing of one external event is a purely internal matter of the device management agent, and it
does not require any additional data from outside. Thus, emulation of receiving such an event could
be the start of a debug section run by the developer in order to test the agent’s handling of it. It is
important to understand that the agent can be in different states, in each of which it must correctly
process such an event. For example, it can receive a request from the network for reconfiguration
and router restart either in a normal, regular state, or in a state of reduced bandwidth. Accordingly,
two different rules are required to process the same event, and they correspond to different
specifications of the initial state of the agent and different debug sessions.

During the processing of a single external event, the device management agent can activate more
than one rule. This happens via the mechanism of the agent creating events for itself, searching for
a suitable rule and executing it. Accordingly, the debug session ends when all rules are executed,
and the device management agent message queue is empty.

Let us explain why the device management agent generates events for itself. It is due to the fact that
the behaviour model is composite: different rules are created at different levels of the product’s
decomposition, for example, at the level of chips included in the board, or at the level of ports.
Specifying chips and ports, it is important to determine how the processing of various events
addressed to them takes place. At the same time, the exact origin of these events is not considered —
be it the network or the top level of the device management agent. These rules can also be created
by different developers responsible for managing different hardware units of the router. Moreover,

208

Cxaxenuk T.M, Kosnos /I.B. Otnagunk aexnaparusaoro DSL mnst pa3paOoTku TeeKOMMYHHKAIHOHHBIX cucteM. Tpyost MCIT PAH, 2023,
Ttom 35, BeITL. 3, . 205-214.

the same rule can participate in various scenarios, and in this case, rules are used for behaviour
decomposition and reuse.

Note also that the behaviour model may differ for different configurations of the product, since they
may include different types of equipment.

We have identified the following DevM debug use cases:

o Exploring the product configurations for a specific customer without a target platform, i.e.
on a DevM developer workstation.

e Considering a subset of product configurations during DevM development to detect
possible bugs. It is important to find bugs exactly on the development level they are made
on. If these bugs are detected on the following development levels, the cost of bug detection
will increase.

e Analyzing a specific product configuration in the situation when some bug occurs. It could
be possible that the reason for the bug is contained in the DevM specification. If it is not
s0, the next development level should be explored.

4. Debug Model

In order to run a debugger on a behaviour model of the product, it is required that the user precisely
defines the debug scenario: product configuration, current state, and debug event. This is done with
the DevM language, which has been suitably extended for this purpose.

In order to define the hardware product configuration used in this debug scenario, the appropriate
moduleTypes defined in the main DevM product specification are instantiated and the relationships
between these instances are specified. The latter means that cards are inserted into appropriate slots
of boards and possibly other cards. By this means, a tree of real devices of the product is built. All
necessary attributes of each device from this tree are then set — DevM has also been extended for
this purpose.

State of product configuration refers to setting values attributes, specifying the required current state
of the product configuration.

A debug event specifies the start event that triggers the debug scenario.

Below is a simplified example of a debug scenario for the case of “restarting” the router when the
voltage in the system drops” (see Listing 1). This scenario is described in the special
debug_scenariol package, which imports the core package of this product, containing the definitions
of the main moduleTypes of the product.

The composition section describes the product configuration, which consists of the main_boardl
and cardl inserted into the main_boardl in a slot called card_slotl. Note that the voltage sensor is
installed on the card, as follows from the type description of this card in the main DevM specification
of the product. Further, it is indicated that there is one external 100 Gbit port portl, into which the
split4_25 optical converter is inserted, splitting this port into four 25 Ghit ports.

Further, in the attributes section, the state of the specified product configuration is set: main_board1,
cardl, sensorT have the “ready for operation” status, and card_slotl is connected to power; sensorT
also has a valid value of 12; the first of the 25 gigabit ports is activated (i.e. through it, the router
communicates with the network).

Finally, in the event section, the event that triggers this debug scenario is set: the voltage measured
by sensorT becomes invalid (of value 9, but interval allowed is from 12 to 15). The behaviour model
has a rule which is activated when the voltage is below 12, see Fig. 1. It is triggered by the changing
sensor’s attribute from 12 to 9. In the context of this rule an alarm “Low voltage” is exposed and
another event is created. The last is done by changing the attribute
cardl.portl.port25GE.IS_AVAILABLE from 1 to 0, meaning the active port is disabled. The second
rule create alarm “Port is down”.

209

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

package degug_scenariol {
import core;

composition {
BoardHardType main_boardl;
CardHardType cardl:
main_boardl.card_slotl <=- cardl;
cardl.portl = split4_25;

}

attributes {
main_boardl |

IS_AVAILABLE = 1;

cardl {
IS_AVAILABLE = 1;
i
main_boardl. card_slotl |
POWER_STATUS = 1;
|
cardl .sensorT |
IS_AVAILABLE = 1;
VLT_CURR_VALUE = 12;
}
}
override attributes |
cardl.portl.port25GE {
IS_AVAILABLE = 1:
}
}

event |

modify cardl.sensorT
VLT_CURR_VALUE = 9;

H
Listing 1. Debug scenario.
[f))
I
v
card1.sensorT : 3 A{ AF](M | LOG
VLT_CUEQ-R_VALUE ek ala;r: ms \:;I_:'age
- [#5] [#4]
card!.port! port25GE CHANGE:
ALARM = fe— IS‘A\J&OILA%OLE-———, “— card1.port1.port25GE
Port 'I down IS_AVAILABLE=0

Fig. 1. An example of graphical model-based notation for visualization of debug execution trace

210

Cxaxenuk T.M, Kosnos /I.B. Otnagunk aexnaparusaoro DSL mnst pa3paOoTku TeeKOMMYHHKAIHOHHBIX cucteM. Tpyost MCIT PAH, 2023,
Ttom 35, BeITL. 3, . 205-214.

5. Visualization of debug results

Let us now consider the graphical model-based notation for visualization of the debug execution
trace. As mentioned above, such a trace visualizes the step-by-step execution of the rules involved
in the debug scenario. Fig. 1 shows an example of such a diagram. It starts with a Start symbol
(double circle filled in blue inside).

It is followed by the first event that triggered this scenario. Note that events in the DevM behaviour
model are changes of the attributes of the device database on the router. The corresponding router
devices are subscribed to changes of certain attributes; therefore, these devices have rules that start
with this event. Device management agent combines all of these rules to whole behaviour model as
described above. There can be multiple rules for handling the same event, but then they must differ
in conditions that immediately follow the event. An event is denoted by a blue diamond.

Further, the brown rectangle denotes an alarm, the lilac one — logging, and the green oval indicates
network device attribute changes. These changes, in turn, can cause further events to be fired for
which a suitable rule is found. After the execution of the last rule, the end symbol of the debug
scenario is drawn — a circle with crossed lines. At the top of each graphical symbol, except for the
start and end, the step number is indicated. The user executes the debug scenario step by step, and
as a result of each step, the corresponding graphic element is drawn in the diagram.

6. Debugger Implementation

The debugger implementation scheme is shown in Fig. 2. The debugger is divided into two parts:
the Debugger Back End, which performs debugging and is integrated into the DevM language
server, and the Debugger Front End, which implements the user interface and is integrated into the
Visual Studio Code DevM plugin. These parts interact via the standard Debug Adapter Protocol,
which passes debug commands from user to debug back end and debug information (attribute values.
etc.) from back end to user the user to view.

The main difficulty was the implementation of the Debugger Backend. It consists of the following
components: ConfigProcessor, DebugController, DebugSession, Variables Control System.

The ConfigProcessor component processes DevM specification of the debug scenario DevM
specification or the whole product, transforming them into a convenient representation: namely, the
device tree of a given product configuration based on hardware connections. This abstraction
provides a structure that uniquely defines the “parent-child” relationship, which is important for
searching in the behaviour model.

The DebugController component connects the Debugger Frontend and Debugger Backend,
providing an API to initialize the debug session. When a request is received to start a debug scenario,
the DebugController processes the incoming debug configuration using the ConfigProcessor, and
creates an instance of the DebugSession based on the received data. Next, the controller redirects
the request received from the front end to the DebugSession, and upon completion of the action
sends the result back to the Debugger Frontend side.

The DebugSession component is the main debug engine. It implements various debugging steps,
and also provides control over the storage and updating of data that is relevant for each step. Unlike
general-purpose languages, where the program, as a rule, is executed on some hardware device,
DebugSession simulates the entire execution process. Thus, it is easy to support the rollback of steps,
which is a difficult task in the general case.

The Variables Control System component is a collection of classes responsible for storing,
processing and transforming debugging information. The tasks of this component are the following:
ensuring correct persistent storage of values and attributes of the router; splitting data into stack
frames corresponding to the debug state at a certain step; serialization of objects into a representation
that specifies the nodes of the debug graph. Thus, the component acts as a universal delegate for
working with data stored during debugging.

211

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

7. Related work

The need for debugger development tools for DSLs is recognized by the community. Due to this,
XText [4], GEMOC Studio [5], and MPS [6] as well as other DSL environments support meta-debug
facilities. However, these facilities are oriented at executable DSLs, which have strict executable
semantics and can be generated into Java and other industrial programming languages. Very often
in this case, a two-level debug model is used [7]. It means that real debug is performed for generated
DSL code, and special tools just raise debug information to the DSL level and accept the
corresponding user commands from there. This approach is not suitable for our case of various
program assets being generated according to the DSL specification, as they do not form a closed
executable application.

DDD VS Code plugin

Debugger Front End

Debug Adapier Protocol
DDD Language Server

Debugger Back End

usa | |
DebugController ——— b-i ConfigProcessor |
control

—

include '.n'a g
riables Contral |
DebugSession ——»| et |

Fig. 2. Debugger implementation schema

There are studies on creating meta debug facilities for more complex cases by declaratively
specifying executable semantics of the DSLs [3, 8]. However, these studies are at their pilot stages
and cannot be employed in the industry. In addition, using this approach, it is difficult to express
event-oriented executable semantics, which is important for our case.

Event-oriented debugging is implemented in a series of model-based development toolsets for real-
time systems such as YAKINDU [9] and Rhapsody [10]. Such toolsets support UML statecharts and
provide facilities for debug statecharts inside of the modeling environment. But, first, these solutions
are deeply integrated into the toolsets and cannot be reused. Second, they are oriented at the UML-
based system structure (components, interfaces, ports, channels, etc.). In practice, they provide
execution and debug for a set of communicated components including statecharts. This execution
model is redundant for our case, since we are executing a fragment of one component. In addition,
we have a significantly different structure model.

Thus, we can conclude that creation of debuggers for declarative industrial DSLs is an open task
that does not have a ready-made solution. Separate tools can be used for solving it, for example, the
Debug Adapter Protocol and templates for creating the debugger front end. But the majority of work
is in specifying the executable semantics for that part of the DSL that makes sense to debug, as well
as support the corresponding executable environment in the DSL IDE.

8. Conclusions

In this paper, we have proposed a debugger for the DevM declarative language, which is intended
for the development of device management components of a router product line of a large
telecommunication company. As a continuation of this work, we plan to focus on increasing the
number of actions used in the rules, as well as adding support for new features of the behaviour
model that will be introduced in the future.

212

Cxaxenuk T.M, Kosnos /I.B. Otnagunk aexnaparusaoro DSL mnst pa3paOoTku TeeKOMMYHHKAIHOHHBIX cucteM. Tpyost MCIT PAH, 2023,
Ttom 35, BeITL. 3, . 205-214.

References

[1]. P. Clements, L. M. Northrop, Software product lines — practices and patterns, SEI series in software
engineering, Addison-Wesley, 2002.

[2]. E. Semenov, S. Kai, C. Gen, D. V. Luciv, D. V. Koznov, Visual Language for Device Management in
Telecommunication Product Line. MEDI Workshops 2021, pp. 204-216.

[3]. R. T. Lindeman, L. C. L. Kats, E. Visser, Declaratively defining domain-specific language debuggers, in:
E. Denney, U. P. Schultz (Eds.), Generative Programming And Component Engineering, Proceedings of
the 10th International Conference on Generative Programming and Component Engineering, GPCE 2011,
Portland, Oregon, USA, October 22-24, 2011, ACM, 2011, pp. 127-136.

[4]. Eclipse Project, XText, 2022. URL: https://www.eclipse.org/Xtext/.

[5]. GEMOC, 2022. URL: https://gemoc.org.

[6]. MPS: Meta Programming System, 2022. URL.: https://www.jetbrains.com/mps/.

[7]. M. Kartashov, Two-level debugging, System Programming 1 (2005), pp. 348-365(In Russian).

[8]. A. Chis, M. Denker, T. Girba, O. Nierstrasz, Practical domain-specific debuggers using the moldable
debugger framework, Comput. Lang. Syst. Struct. 44 (2015), pp. 89-113.

[9]. Itemis AG, YAKINDU, 2022. URL.: https://github.com/Yakindu.

[10]. IBM, Rhapsody, 2022. URL.: https://www.ibm.com/docs/en/rhapsod, (accessed: 01.05.2023).

Ungpopmayusi 06 aemopax / Information about authors

Tapac Muxaiinosnay CKAXKEHUK — ctyneHT BTroporo Kypca Mmaructparypsl yausepcurera UTMO.
Cdepa HayyHBIX WHTEPECOB. MPOTpPaMMHAs HHKEHEPHs, TEeIEeKOMMYHHKAI[HOHHBIE CHCTEMBI,
OTIaKa, MAIMHHOE 00y4EHHE.

Taras Mikhailovich SKAZHENIK — second-year master-student of ITMO University. Research
interests: software engineering, telecommunication systems, debugging, machine learning.

Omurtpuit BmaguvupoBrna KO3HOB — mokTtop TeXHHYECKHX HayK, mpodeccop Kadpeaps
cucremHoro nporpammuposanus CII0I'Y. Ciepa HaydHBIX HHTEPECOB: IIPOrpaMMHast HHKCHEPHS,
MO/ICTIbHO-OPUEHTUPOBaHHas pa3paboTka MPOrpaMMHOTO O0ECIeUYeHUs], MPOrpaMMHbIC JaHHEIE,
MalllMHHOE 00yUYeHHE.

Dmitry Vladimirovich KOZNOV — Doctor of Technical Sciences, Professor of the Software
Engineering Chair, St. Petersburg State University. Research interests: software engineering, model-
driven software development, program data, machine learning.

213

https://gemoc.org/

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

214

Tpyowr UCIT PAH, mom 35, evin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-16 tocl%

Analyzing Hot Bugs in the Linux Kernel by
Clustering Fixing Commit Messages

S.M. Staroletov, ORCID: 0000-0001-5183-9736 <serg_soft@mail.ru>
N.A. Starovoytov, ORCID: 0009-0007-0242-0198 <nikstarall@gmail.com>
N.A. Golovnev, ORCID: 0009-0008-0258-4560 <kolya.golovnev@mail.ru>

Polzunov Altai State Technical University
46, prospect Lenina, Barnaul, Altai region, 656038, Russia.

Abstract. In system software environments, a vast amount of information circulates, making it crucial to utilize
this information in order to enhance the operation of such systems. One such system is the Linux kernel, which
not only boasts a completely open-source nature, but also provides a comprehensive history through its git
repository. Here, every logical code change is accompanied by a message written by the developer in natural
language. Within this expansive repository, our focus lies on error correction messages from fixing commits,
as analyzing their text can help identify the most common types of errors. Building upon our previous works,
this paper proposes the utilization of data analysis methods for this purpose. To achieve our objective, we
explore various techniques for processing repository messages and employing automated methods to pinpoint
the prevalent bugs within them. By calculating distances between vectorizations of bug fixing messages and
grouping them into clusters, we can effectively categorize and isolate the most frequently occurring errors. Our
approach is applied to multiple prominent parts within the Linux kernel, allowing for comprehensive results
and insights into what is going on with bugs in different subsystems. As a result, we show a summary of bug
fixes in such parts of the Linux kernel as kernel, sched, mm, net, irg, x86 and armé4.

Keywords: bugs; Linux; clustering; fixing commits; kernel.

For citation: Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by
clustering fixing commit messages. Trudy ISP RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242. DOI:
10.15514/ISPRAS-2023-35(3)-16

AHanu3 aKkTyanbHbIX OWIMOOK B siape Linux nyTem Knacrepmsaumm
coobueHnn 06 ucnpasrneHnsaX B git-peno3ntopum

C.M. Cmaponemos, ORCID: 0000-0001-5183-9736 <serg_soft@mail.ru>
H.A. Cmaposotimos, ORCID: 0009-0007-0242-0198 <nikstarall@gmail.com>
H.A. I'onosnes, ORCID: 0009-0008-0258-4560 <kolya.golovnev@mail.ru>

AmnmI'TY um. U.HU. Ilonzynosa
Poccus, 656038, Anmaiickuil kpaii, 2. Bapuayn, np. Jlenuna, 46.

AHHOTammsi. B cpemax CHCTEMHOro mporpaMMHOTO OOECHEYEHHs LHUPKYJIUPYET OTPOMHOE KOJINYECTBO
MH(bOPMAIIUK, TOAITOMY KpaiiHe BaKHO HCIOJIB30BaTh 3Ty HHGOPMALHUIO JUIsl YIydIleHHs: X padotsl. OqHOM
W3 TAKUX CHCTEM SIBISIETCS Apo Linux, KOTOpoe He TOJIBKO MOCTABIISETCS € MOMHOCTHIO OTKPBITHIM HCXOIHBIM
KOJIOM, HO ¥ MPEIOCTABISICT MCUEPIBIBAIONIYI0O UCTOPHIO O pa3paboTKe B CBOEM git-perno3uTopuu. 3mech
Ka)XXJ0e JIOTHIEeCKOe HM3MEHEHHEe KOJa COIMpPOBOXKAACTCS COOOIICHHWEM, HANHCaHHBIM pa3pabOTINKOM Ha
ecTecTBEHHOM s3bIke. OOpabaTbiBasi IaHHBIE PEMO3UTOPHS, MBI COCPENOTAYMBAEMCS Ha KOMMHTax C
COOOIIEHUIMH 00 MCTpPaBIeHUU OIIMOOK, MTOCKOJBbKY aHaINM3 MX TEKCTa MOXKET IIOMOYb BBIIBUTH Hauboiee
pacrpocTpaHeHHbIe TUMBI OMmKOOK. OCHOBBIBAsICH Ha HAUIMX MPEIBIIYIIUX padoTax, B ITOH CTaTbe MBI
IpeaIaraeM HCIOIb30BaTh METOAbl aHaNW3a AAHHbBIX. [NOCTHKEHHWs HAMX LeNed Mbl Ipearaem

215

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242.

Ppa3IMYHbIE METObI 00PabOTKU COOOICHUIA B Zit-PENO3UTOPHSIX U UCITIOI3YEeM aBTOMATH3UPOBAHHBIE METO/IBI
JUISL BBISIBIICHUSI PACIPOCTPAHEHHBIX OLIMOOK B HHX. BBIYHCISAS pacCTOSHUS MEXIy COOOLICHHSAMH 00
WCTIPaBIICHUN OIIMOOK, MPEBpalias X B BEKTOpPa W TPYNIHUPYS B KJIACTEPHI, MBI Jaiee MoxeM 3(PdekTHBHO
KIIaCCU(UIMPOBATh M BBIABIATH HanOoOJiee YacTO BO3HHKAroNWe omumOkdu. Hamr momxosn mpuMmeHsieTcs K
HECKOJIbKAM BaXKHBIM YaCTSIM siipa LinuX, 4To MO3BOISET MOHATH, YTO MPOUCXOJINT C OMIMOKAMH B Pa3THYHBIX
ero mnojcucreMax. B pe3ynpraTe MbI MOKa3bIBaCM CBOJIKY UCIIPABICHHN OIMUOOK B TAKUX YacTAX sypa Linux,
kak kernel, sched, mm, net, irq, x86 1 Arm64.

KuiroueBbie ciioBa: omubku; LiNUX; KiacTepu3anust; HCIPABISIOIIRE KOMMHETHI; SIPO.

s nuruposanusi: CraponeroB C.M., CraposoiitoB H.A., 'onoBaeB H.A. AHanu3 akTyanbHBIX OLIMOOK B
sape Linux myTem KiacTepu3aluu cooOmmeHnit 00 ucnpasneHusax B git-penosuropun. Tpyast UCIT PAH, Tom
35, Boi. 3, 2023 r., crp. 215-242 (na anrnmiickom si3bike). DOI: 10.15514/ISPRAS-2023-35(3)-16.

1. Introduction

In today's software development landscape, closed systems are no longer able to compete with open
ones due to the involvement of highly skilled users who can not only test the software but also
understand its code and suggest changes. The git version control system and its associated services
are based on a fork and pull request approach, allowing users to easily propose changes and
administrators to accept them after reviewing diffs. Git is designed for distributed work and
encourages local changes, with each commit being accompanied by a comment about what was
done. Originally created by Linus Torvalds for coordinating the development of the Linux kernel,
git has become a super successful project.

While system program code development direction is not that popular among most modern software
developers mainly due to the scarcity of qualified engineers, there is a large amount of data
circulating in system software environments that can be analyzed using popular data analysis
methods. This paper proposes to analyze commit messages in the development of the Linux kernel
using automated methods. With a large number of commit messages available, common patterns
can be automatically identified from the big data in natural language. The focus is on identifying
and correcting the most typical errors in system software.

The Linux OS, based on an open modular kernel concept by Linus Torvalds, is constantly evolving
with contributions from a large number of developers, both individuals and representatives of
leading companies in the industry. All changes are made by committing them to developers' gits,
and some eventually become available in the mainstream kernel at Torvalds GitHub. Such commits
are usually verified by leading developers using the pull-request mechanism. Therefore, commit data
analysis can provide insights into the evolution of the kernel.

The objective of this work is to automatically analyze commits in the Linux kernel repository to
identify the most representative bugs. The paper discusses and explores data analysis methods for
Linux commit messages.

The present paper is an extension of the report presented at SYRCoSE Software Engineering
Colloquium 2023 in Penza [1].

2. Related work

In the pioneering work by Chou, Yang, Chelf and Engler [2] as well as ten years later by Palix,
Thomas, Saha, Calves, Lawall and Muller [3], static analyzers were used to automatically check for
potential errors in the Linux kernel code based on a given configuration over different kernels.
Classes of errors were defined as predefined messages of a static analyzer, and graphs of the
evolution of errors over time and for different subsystems were presented. Specifically, drivers have
been found to be 3-7 times more error prone than other components.

Mutilin, Novikov and Khoroshilov made an analysis of typical errors in the drivers of the Linux
operating system [4]. Here the concept of a typical error is introduced. According to the researchers,
it is specific to a large number of drivers (for example, resource leaks, incorrect use of locks), while

216

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

a non-typical error is domain-specific for a particular driver. The authors manually analyzed the
changes during the transition from one kernel version to another and compiled tables of the
distribution of errors by classes. It was also found that drivers make 85% of all errors in the kernel.
The paper by Novikov [5] continues this work, summarizes various statistics on changes in the
kernel and concludes that about 40% of changes between stable versions of the kernel are fixes of
typical errors. Since more versions were analyzed and the code evolved, the author had to
supplement the previous created classes. Such manual analysis is more difficult, but the authors note
that it is more careful.

Lus and Arpaci-Dusseaus manually analyzed 5079 patches related to file systems made over 8 years
[6]. Classes of bugs, the so-called bug patterns, are identified and graphs of their evolution are given,
as a result, a dataset of 1800 bugs is compiled.

The empirical work by Tan, Liu, Li, Wang, Zhou and Zhai [7] is devoted to a broad study of bugs
in open-source software, including the Linux kernel. As their results for Linux, bugs are simply
assigned to one of the subsystems (core, driver, network, FS, arch, other), while several open-source
components are analyzed using message text from BugZilla with its vectorization and further
automatic classification.

The work by Xiao, Zheng, Yin, Trivedi, Du and Cai [8] is devoted to the study of 5741 Linux kernel
bug reports, which were analyzed according to the description, comments and attached files from
the Linux kernel bug tracker [9]. Bugs are classified into fast-reproducible (Bohrbug), difficult-to-
reproduce (Mandelbug) or context-dependent, and are also defined categories from which the bug
context depends, that is, errors with memory, not freed resources, etc. At the same time, the authors
built a network based on the Linux call graph, with the help of which they track the impact of the
functions affected in bug reports by counting various metrics.

The researchers Melo, Flesborg, Brabrand and Wasowski present the results of compiling 42,060
kernels with all warnings enabled [10]. As a result of the analysis of 400,000 warnings, they
classified by type and distribution by kernel subsystems and identified drivers as the most vulnerable
portion of the kernel.

The work by Hoang, Lawall, Tian, Oentaryo and Lo [11] presents the PatchNet network, created as
a result of automatic analysis of patches for the kernel, in order to predict whether a given patch will
be accepted in the mainline kernel or not. For evaluation, the texts of the commit messages and the
vector representation of the changes from the diff of the commit are used, which are then used to
build a convolution neural network.

The research by Tian, Lawall and Lo [12] is separately devoted to determining whether a patch to
the kernel is a bug fix or not. The authors note that simple analysis based on commit messages does
not always lead to correct results and propose a model that uses two classification algorithms:
Learning from Positive and Unlabeled Examples and Support Vector Machine. It also uses features
extracted from the commit diff.

In the study by Acher, Martin, Pereira, Blouin, Khelladi and Jezequel [13], the authors provide
infrastructure, classify and analyze Linux kernel-specific errors associated with errors in
configuration files, as a rule, these are errors with dependencies. 95,854 Linux kernel builds were
produced on random configurations, and of these, about 6% ended with errors, and which are
discussed in the work. It is noted that the number of errors has decreased with previous findings,
apparently due to testing processes with randomized configurations.

Summarizing the above on Linux bug analysis, it can be seen that (1) bugs in drivers are the most
common; (2) different methods are used for classification, this is static analysis, build logs and patch
analysis; (3) a lot of huge manual work has been done but the results may now be considered no
longer relevant (the code is constantly changing). However, automatic classification by analyzing
commits in git repositories has not been applied yet.

217

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242.

3. Preliminaries

To solve the problem of analyzing commit messages, we need to work with the Git repository at the
program level. This means that from a program in one of the programming languages using some
API, we need to get a list of commits, filter commits (by date, for example), iterate through them,
obtain changes and the text of the commit message. Probably, the most famous C-library for this is
libgit2. For JVM programs, the JGit library is popular. One can also use EGit to work with remote
repositories, including access to pull requests data, but this is not necessary for the current project
because we are working with the mainline kernel with changes already accepted. To be able to work
with a git repository from code in Python, the GitPython library can be a good choice.

In order to obtain a set of fixing commits from a set of interesting commits, the easiest way to check
the commit message to find a list of some signal words, but it is better to use some sort of Al-based
commit classifier like the one discussed in the work [12].

The next step is finding the similar fixing commit messages in order to reveal the most common bug
fixes. To compare commit messages, it is necessary to work out fuzzy string matching algorithms.
Note that fuzzy string comparison is popular in bioinformatics.

Of practical interest are efficiently calculated string similarity measures, such as the Levenshtein
distance. Formally, the Levenshtein distance L(s1, S2) [14] between strings s; and sz can be calculated
according to the following formulas:

L(s1,52):= Vie(0.|s1)): dio:=i+1,;
Vje (0.s]):doji=]j+1;
Vie (1.]s1)): (1)
(V] e (1.]s2]): cost := (sa[i-1] = s2[j-1]) ? 0: 1
di,j := min(min(di.1, j +1, di, j-1), di-1, j-1 + cost);
disa), s21-

With it, to find the closest string to the existing ones, in the simplest implementation, one needs to
calculate the distances between them using formula (1) and choose the minimum one. This method
does not require preliminary preparation of strings and is susceptible to slight changes in them.

Our previous papers [15, 16] demonstrated that the use of the Levenshtein distance can provide a
good understanding what is going on with the fixes in major Linux kernel parts. However, such an
analysis for big repositories takes a lot of resources (we need to compare O(fixing commit count?)
string comparisons) and its accuracy is very difficult to verify.

Therefore, in this paper, we would like to apply another simple method known from its use in search
engines (the use of “bag of words™ to convert a phrase into a vector + calculation of cosine similarity
between vectors to further determine the minimal distance).

To calculate the distance between commits messages using the cosine similarity approach, it is
required to represent the commit message string as a vector (from the features as the words of the
message). Here we denote w; j as the sign of the presence of the word j in the string i, while n
specifies the number of words in the dictionary of unique words. Then we are able to calculate the
cosine similarity between the vectors:

D(s1,52) = D((Wy1, Wy gy Wy), (Wp 1, Wo 5,00 Wp) =

In this case, permutations of words in a string will not change anything.

If we use dictionaries that give the stem word form for each word (without cases, endings, etc.), we
can get rid of the problems of counting the same words in different components of vectors. The
process is called lemmatization [17] or lemma normalization. In the simplest case, the Catvar

218

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

dictionary can be used [18]. Here, for each word from the commit message (column 1), its
normalized form can be obtained (column 2), for example, here is a dictionary fragment for the
words “fix”:

fix fix N

fix fix $V+0$

fixed fix $V+eds

fixed fix $V+ens$

fixes fix S$N+s$

fixes fix $N+s$

fixes fix $V+s$

fixing fix $V+ing$

In more advanced cases, the StanfordCoreNLP API [19, 20] can be used. Since not only the stem,
but also the part of speech is known for each word, when converting phrases into vectors, it is
advisable to filter them, cutting off articles and frequently used words.

For the purposes of searching for strings with “strong components” or relevant words/tokens (i.e.,
to reduce the weights of frequently occurring words in a string), the tf-idf approach [21] can be
applied. It does frequency counting, and with this, the vector components (features) instead of word
appearance (1 or 0) will contain tf-idf weights. If we denote my, as the number of occurrences of the
word w into a commit message m € M, and ny, as the total number of words in the document, and
|M] as the total number of messages, then:

M|

tfidf (w, m, M) :=tf (w, m) x idf (w, M) = T x log <M [wed] (3)

If we are able to vectorize commit messages, then it makes sense to try to cluster them automatically.
Clustering or cluster analysis involves the vectorization of given objects, calculating the distances
between them according to a certain metric and dividing objects into clusters or groups of nearby
objects. Vectorization involves the selection of key entities of objects and their presentation as a set
of vectors of the same dimension. The clustering algorithm is a function X—Y that assigns a cluster
identifier y e Y to any object x € X. Some popular clustering algorithms are K-means, DBSCAN,
and hierarchical clustering. The K-means algorithm iteratively minimizes the total square deviation
of cluster points from the centers of these clusters (a classical approach presented in [22]). The
density-based spatial clustering of applications with noise (DBSCAN) algorithm groups points in a
high-density area into one cluster, while marking lonely points as noise [23]. With hierarchical
clustering, a tree (dendrogram) is built, from leaves to root. Initially, each object is contained in its
own cluster. Next, an iterative process of merging the two nearest clusters takes place until all
clusters are combined into one, or the required number of clusters is found [24].

4. On the implementation

To work with git repositories, we utilize the Python git library, which enables us to iterate over
commits and insert conditions to process them in the code. Initially, we began our solution as a JDK
program since we had prior experience working with the JGit library. Subsequently, we implemented
a prototype for analyzing a Thunderbolt repository (as described in the work-in-progress article [1])
by overriding classes for processing commit messages using the minimum Levenshtein distance,
vectorization, and searching for minimum distances between phrases. Later on, we developed
methods for clustering vectors from phrases. Currently, we use the Python language since it
facilitates clustering methods with scipy packages.

The solution scheme is illustrated in Fig. 1. In this solution, we acquire all the commits of a given
repository, filter them according to the dates of interest, and extract only those explicitly indicating
a bug fix.

219

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242.

piven: git path, dates, max fxing commits

mext commit

e

pommit is not fixing

s¢ a commut classifier

@k is fixing
—

all commits - i rnesiags

were processed

veetonize

7
e

<:heuk ML commis

Cl.r-idr fc]l:ﬂu_!l/

nhmin centroids
L neralizations for vertors,

find nearest commits
for centroids
e

extract commit mcssagc_\ax\\
from nearest cDmTIs—’/
SRR

find summary of found
mt‘ssawes for each centrond
i

_.__,_,_._

find summary I'ur the
giwn sube)srm

Fig. 1. A diagram of our solution

220

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

For this purpose, we employ our own implementation of the method discussed in the paper [12]
using pre-trained classifiers based on information about the changes in the commit. Next, we work
with vectorized and lemmatized fixing commit messages. We further form flat clusters from
hierarchical clustering with a given threshold (which is calculated using some heuristics and can
subsequently be improved by expert evaluation of the resulting clusters). We store the resulting
vectors sorted by distance from the centroid, marking the most important words first. To obtain
meaningful results, we need to find the nearest commits for each of the discovered vectors using the
commit text. Afterward, through manual analysis, we can determine the most general message about
the fix and an example of such a fix for the error in the code.

5. Findings

In this section, we provide the results of our analysis for the major subsystems of the Linux kernel.
We analyzed some selected subsystems of the Linux kernel by examining the corresponding parts
of the path in the main git repository. Due to limited computing resources, we were only able to
process a maximum of 10,000 fixing commits for each subsystem. We present our findings in the
form of a list of vectors, each representing a grouping (blurring) of the most frequent messages. For
each vector, we provide a list of its components, sorted by importance, as well as git messages from
the closest commits to that vector. They we analyze these messages in order to describe each vector
in natural language. Finally, we provide a generalization of the fixes found for each analyzed
subsystem.

5.1 Kernel (/linux/kernel)

Vector #1: [cpu, period, grace, rcu, event, callback, commit, probe, function, state, check, structure,
rcu_node, stall, file]

Fix day-one dyntick-idle stall-warning bug

rcu: Suppress more involved false-positive preempted-task splats

rcu: Accelerate grace period if last non-dynticked CPU

rcu/segcblist: Prevent useless GP start if no CBs to accelerate

Go dyntick-idle more quickly if CPU has serviced current grace period

These fixes address the very important RCU subsystem in Linux, which provides ways to non-
blockingly synchronize concurrent entities [25, 26]. However, there are problems in the form of
potential unfinished waiting or inefficiency in its implementation, since processors in modern
computing systems can go into energy-efficient hibernation, which leads to bugs in the RCU
implementation for the tasks running on them (problems with the waiting period or grace period).

Vector #2: [buffer, kernel, ring, warning, doc, function, page, parameter, iterator, read, type,
member, resource, trace, tracepoint]

ring-buffer: Fix kernel-doc

ring-buffer: Always reset iterator to reader page

resource/docs: Fix new kernel-doc warnings

seccomp: fix kernel-doc function name warning

rcu: Fix a kernel-doc warnings for “count”

These fixes refer to corrections to code documentation, which are done in the form of comments
embedded in the code. The kernel-doc tool collects these comments and checks their completeness
[27]. The comments here refer to the ring buffer, which can be used to implement efficient network
applications [28].

Vector #3: [module, panic, patch, build, state, cpu, error, message, new, unloaded, code, function,
kernel, notifier, list, load_module]

module: Ensure a module's state is set accordingly during module coming cleanup
code

livepatch: Fix subtle race with coming and going modules
debug: track and print last unloaded module in the oops trace

221

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

[PATCH] Kprobes: Reference count the modules when probed on it
debug: show being-loaded/being-unloaded indicator for modules

These fixes concern errors when loading and unloading kernel modules, more precisely during their
live loading, when the already loaded code is replaced in a running system [29]. This is possible
using the function tracing approach.

Vector #4: [tracer, function, graph, ret_stack, task, tracing, option, new, callback, code, ftrace,
return, add, boot, buffer]

tracing/function-graph-tracer: drop the kernel text address check
function-graph: allow unregistering twice

tracing: Move mmio tracer config up with the other tracers
function-graph: move initialization of new tasks up in fork
tracing: Add ftrace events for graph tracer

These fixes concern the actual implementation of tracing [30] and working with the function call
graph.
Vector #5: [timer, base, cpu, target, clk, idle, code, interval, posix, task, tick, jiffy, case, race, trace]

posix-timers: Fix full dynticks CPUs kick on timer rescheduling
timers: Use proper base migration in add timer on()
timer/trace: Improve timer tracing

posix-cpu-timers: Unbreak timer rearming

hrtimer: Preserve timer state in remove hrtimer ()

These fixes are aimed at fixing the kernel code for implementing timers according to the POSIX
standard (see for example a discussion on its userspace interface [31]), namely errors during
recharging (when changing the response time of already set timers), which entails working with
related processes that may be located on temporarily retired processors.

Vector #6: [lock, ftrace, error, kernel, rlock, trace, deadlock, incompatible, type, possible,
comparison, lockdep, info, irq, timekeeping]

timekeeping: Avoid possible deadlock from clock was set delayed
sched/core: Make dl b->lock IRQ safe

timekeeping: Fix HRTICK related deadlock from ntp lock changes
cpu/hotplug: Drop the device lock on error

pid: fix lockdep deadlock warning due to ucount lock

These fixes are related to the internal kernel elapsed time measurement subsystem [32, 33] and
associated incorrect locking in the implementation.

Vector #7: [console, printk, boot, message, list, line, early, srcu, add, time, tracepoint, use, patch,
problem, console_lock]

console: prevent registered consoles from dumping old kernel message over again
[PATCH] CON_CONSDEV bit not set correctly on last console

printk: don't prefer unsuited consoles on registration

Revert "printk: Block console kthreads when direct printing will be required"
console: allow to retain boot console via boot option keep bootcon

This series of fixes is devoted to kernel diagnostic messages and their output via tty consoles.

Vector #8: [lockdep, lock, patch, time, code, cross, performance, release, run, second, boot, case,
kernel, bug, counter]

lockdep: spin_lock nest lock(), checkpatch fixes
lockdep, bug: Exclude TAINT FIRMWARE WORKAROUND from disabling lockdep
lockdep: more robust lockdep map init sequence

locking/lockdep: Add a boot parameter allowing unwind in cross-release and disable
it by default

tracing: use raw spinlocks for trace vprintk

222

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

These fixes are related to the work of the lockdep deadlock prevention tool [34] in the kernel and
the work of the checkpatch tool [35] to check the formal requirements of the patches associated with
it.

Vector #9: [kernel, inline, bpf, event, type, btf, pid, trace, number, buffer, foo, lock, rip, code, cat]
bpf: prevent decl tag from being referenced in func_proto
tracing: Free buffers when a used dynamic event is removed
coredump: fix crash when umh is disabled
tracing: Fix memory leak in eprobe register()
tracing: Check return value of create val fields() before using its result

The fixes are related to BPF integration into the kernel and tracing (described in [36] and discussed
in [37]), which were detected by the Syzkaller tool [38]. Since the tool reports contain listings with
the same keywords (register dump, call stack), they were detected as similar vectors.

Vector #10: [error, return, code, function, value, failure, case, cgroup, file, negative, ret, add,
userspace, bpf, caller]
cred: add missing return error code when set cred ucounts() failed
rcutorture: Fix error return code in rcu perf init ()
bpf: Fix error return code in map_lookup and delete elem()
ftrace: Deal with error return code of the ftrace process locs() function
genirg/timings: Fix error return code in irg timings test irgs()
This series of fixes included fixes for the “fix error return code” error in various parts of the kernel,
including the BPF and RCU torture functions [39].

In general, based on this key subsystem of the Linux kernel, we can conclude that most of the
problems found and corrected were associated with incorrect operation of multiprocessor concurrent
systems due to incorrect processing of all scenarios in the control flow, which involve accurate
processing in conditions of variability of resources such as processors, pages memory, etc. That is,
the handling of unexpected situations was not carried out completely correctly. The key kernel
components mentioned were the RCU subsystem, swap management, timing, BPF and tracing. The
code identified problems were related with the correct processing of return codes.

5.2 Drivers (/linux/drivers)

Fixes for kernel drivers are distinguished by the presence of a large number of identical changes
(“serial patches™). Essentially, some change to the API is made and then the code for a large number
of drivers that depend on that API should be changed. Such changes can be described in the form of
so-called semantic patches and applied to a given set of files [40] and also attempted to be
generalized from a set of source code files [41]. The next 10 vectors found describe exactly such
changes, all of them are repeating.

Vector #1: [remove, return, function, null, check, unused, error, value, staging, is_err, macro,
pointer, test, debug, definition]
mfd: pm8008: Fix return value check in pm8008 probe ()
misc/pvpanic: fix return value check in pvpanic pci probe ()
drm/1915/selftests: Fix return value check in live breadcrumbs smoketest ()
néd4cart: fix return value check in n64cart probe ()
net: sparx5: fix return value check in sparx5 create targets()

Vector #2: [error, code, return, negative, function, case, success, net, scsi, ethernet, drm,
mtk_eth_soc, path, add, einval]

RDMA/srpt: Fix error return code in srpt cm reqg recv()

HID: pidff: fix error return code in hid pidff init()

mmc: usdhi6rolO: fix error return code in usdhi6 probe ()

mtd: mtd oobtest: fix error return code in mtd oobtest init()

net: sparx5: fix error return code in sparx5 register notifier blocks()

223

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

Vector #3: [dev_err, error, redundant, remove, message, print, devm_ioremap_resource, avoid,
function, platform_get_irq, drivers, unnecessary, line, coccicheck, follow]

can: ctucanfd: Remove redundant dev_err call

fbdev: imxfb: Remove redundant dev _err() call

crypto: aspeed - Remove redundant dev_err call

mailbox: arm mhu db: Remove redundant dev _err call in mhu db probe ()
soc/tegra: cbb: Remove redundant dev_err call

Vector #4: [array, member, flexible, element, replace, length, zero, struct, help, kernel, code, helper,
use]
scsi: smartpgi: Replace one-element array with flexible-array member
staging: r8188eu: Replace zero-length array with flexible-array member
staging: rtl8723bs: Replace zero-length array with flexible-array member
scsi: megaraid sas: Replace one-element array with flexible-array member in
MR PD CFG SEQ NUM SYNC
scsi: megaraid sas: Replace one-element array with flexible-array member in
MR_FW_RAID MAP
Vector #5: [irg, interrupt, code, dt, core, hierarchical, resource, setup, static, use, platform_get_irq,
allocation, cause, chaining, domain]

ata: pata pxa: Use platform get irqg() to get the interrupt

can: ti hecc: ti hecc probe(): use platform get irg() to get the interrupt
serial: 8250 bcm7271: Use platform get irqg() to get the interrupt

net: pxal68 eth: Use platform get irg() to get the interrupt

i2c: riic: Use platform get irg() to get the interrupt

Vector #6: [pm_runtime_resume_and_get, error, pm, counter, usage, order, runtime, use, decrement,
add, medium, commit, usage_count, deal, dev]

media: i2c: ov9734: use pm runtime resume and get ()

media: i2c: ov5675: use pm runtime resume and get ()

media: i2c: ov5647: use pm runtime resume and get ()

media: i2c: hi556: use pm runtime resume_and get ()

media: i2c: dw9807-vcm: use pm_runtime resume and get ()

Vector #7: [dev_err_probe, error, code, probe, use, check, dev_err, path, helper, print, debugfs,
defer, reason, switch, replace]

usb: usb251xb: Switch to use dev _err probe() helper

drm/panel: simple: Use dev_err probe() to simplify code

backlight: ktd253: Switch to use dev _err probe() helper

USB: PHY: JZ4770: Switch to use dev_err probe() helper

usb: phy: generic: Switch to use dev_err probe() helper

Vector #8: [line, blank, comment, checkpatch, declaration, issue, style, patch, staging, net, block,
add, error, parenthesis]
net: cl01l: add blank line after declarations
net: hdlc_cisco: add blank line after declaration
net: hdlc: add blank line after declarations
net: sealevel: add blank line after declarations
net: pci200syn: add blank line after declarations
Vector #9: [return, error, i2c, remove, message, callback, make, value, void, core, device,
preparation, patch, result, cleanup]
iio:1light:ts12583: Remove duplicated error reporting in .remove ()
iio:1ight:1s129028: Remove duplicated error reporting in .remove ()
iio:raccel:mc3230: Remove duplicated error reporting in .remove ()
iio:light:opt3001: Remove duplicated error reporting in .remove ()
iio:light:jsal212: Remove duplicated error reporting in .remove ()

224

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

Vector #10: [dev_err_probe, use, error, code, benefit, deal, debugfs, defer, devices_deferred, file,
function, help, helper, issue, make]
iio: st 1sm9ds0: Make use of the helper function dev_err probe ()
iio: st sensors: Make use of the helper function dev_err probe ()
drm/panel: y030xx067a: Make use of the helper function dev err probe ()
drm/panel: xpp055c272: Make use of the helper function dev _err probe ()
drm/panel: sofef00: Make use of the helper function dev_err probe ()

5.3 Memory management (/linux/mm)

Vector #1: [page, swap, entry, pte, mm, dirty, cache, pmd, patch, error, code, check, bit, fault, lock]
mm: fix data corruption caused by lazyfree page
mm, swap: Fix a race in free swap and cache()
mm: filemap: coding style cleanup for filemap map pmd()
mm: invalidate hwpoison page cache page in fault path
mm, swap: fix swapoff with KSM pages

The most common error fixes in the memory subsystem are errors related to paging, including
disabling swap for KSM pages [42], accessing one page from two processes at the same time,
attempting to free the same page at a time; use a hardware-poisoned page remain in the page cache,
leading to data corruption, as well as problems with proper handling of shared pages when using
swapoff.

Vector #2: [slab, object, kmemleak, size, patch, kfence, slub, partial, add, debug, mm, kernel,
allocation, list, lock]

SLUB: ensure that the number of objects per slab stays low for high orders

slub: Fix calculation of cpu slabs

slub: When allocating a new slab also prep the first object

slab, slub: remove size disparity on debug kernel

kfence: add sysfs interface to disable kfence for selected slabs.

These fixes are devoted to correcting errors in the implementation of the SLUB allocation
subsystem. Such allocators are discussed in the presentation [43]. Some fixes were initiated after
using the kmemleak tool [44]. The identified fixes relate to working with slab objects that the
allocator operates on. The fix also concerns the implementation of the kfence tool [45], allowing
users to selectively disable kfence for certain slabs to improve performance.

Vector #3: [page, thp, migration, error, mm, memory, check, fault, cow, hugetlb, process, issue,
reference, anonymous, swapcache]

mm/memory-failure.c: transfer page count from head page to tail page after split

thp

mm: Wait for THP migrations to complete during NUMA hinting faults

mm: optimize do wp_page() for exclusive pages in the swapcache

mm/huge memory: streamline COW logic in do_huge pmd wp page ()

mm/rmap: fix missing swap free() in try to unmap() after arch unmap one() failed
These fixes are devoted to the code for operating with transparent huge page (THP) [46], namely,
counting the number of pages when a huge page is divided into several small ones, errors while
waiting for the completion of migrations of such pages, incorrect copy-on-write behavior, as well as
incorrect handling of errors when making unmap.

Vector #4: [damon, user, monitoring, patch, interface, space, context, region, scheme, mm, address,
sysfs, file, support, debugfs]

mm/damon/core: allow non-exclusive DAMON start/stop

mm/damon/core: add a new callback for watermarks checks

mm/damon/core: add a callback for scheme target regions check

mm/damon/core: add a function for damon operations registration checks

225

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

mm/damon/vaddr: register a damon operations for fixed virtual address ranges
monitoring
The listed fixes concern expanding the functionality of the DAMON subsystem [47]. This subsystem
provides a means of monitoring data in memory, and with its use, system developers can better
understand data circulation and implement optimizations.

Vector #5: [compaction, scanner, patch, zone, page, free, migration, mm, pageblock, pfn, order,
check, migrate, success, allocation]

mm, compaction: make whole zone flag ignore cached scanner positions

mm, compaction: more robust check for scanners meeting

mm, compaction: more focused lru and pcplists draining

mm: compaction: reset cached scanner pfn's before reading them

mm: compaction: detect when scanners meet in isolate freepages

These fixes are dedicated specifically to the compaction feature [48]. Compaction is a process that
tries to reduce fragmentation in memory by grouping pages around. The fixes affect the processes
of scanning such places using scanners that classify candidate pages as LRU (Least Recently Used)
and PCP (Per-CPU Page). This is important because if two scanners meet, it means that the
compaction process has reached a dead end and needs to be restarted. These fixes make the process
more focused, reducing the amount of unnecessary work done during compaction. Also a fix is
dealing with cached scanner page frame numbers (PFN), which are not being reset before being
read.

Vector #6: [folio, convert, page, use, compound_head, mm, filemap, function, patch, byte,
deactivate_page, head, caller, conversion, migrate]

migrate: convert unmap and move () to use folios

mm/memory: add vm normal folio()

mm/hugetlb: convert dissolve free huge page() to folios

mm/damon: Convert damon pa young() to use a folio

mm/hugetlb: convert move hugetlb state() to folios
The fixes concern the functionality of functions for use folios instead of pages. Folios are a new data
structure introduced in the kernel that represent a contiguous range of pages [49]. The use folios
instead of pages can improve the efficiency of memory migration, moving huge pages or freeing
huge pages.
Vector #7: [page, soft, offline, free, mm, compound, patch, hugetlb, hwpoison, tail, change, check,
order, buddy, flag]

mm: check PG HWPOISON separately from PAGE_FLAGS CHECK AT *

mm, hugetlb, soft offline: save compound page order before page migration

mm/page_alloc: move pages to tail in move to free list()

mm: verify compound order when freeing a page

mm, hwpoison: cleanup unused PageHuge () check
Current fixes are dedicated to improving the efficiency of page allocation by reducing fragmentation
and improving cache locality, as well ensuring that the correct number of pages is freed to avoid
issues with page splitting.
Vector #8: [memblock, memory, mm, static, make, add, list, array, free, region, reserved, allocator,
bootmem, debug, expose]

mm: free memblock.memory in free all bootmem

mm/memblock: make memblockfremovgira;qe() static

revert "mm/memblock: add missing include <linux/bootmem.h>"

mm/memblock: define memblock physmem add ()

memblock: also dump physmem list within memblock dump all
These fixes are dedicated to operate with memory blocks. These functions add a new range of
physical memory to the memory block allocator, allowing for more efficient memory management.

226

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

In the fixes something is done to provide more information about the system memory layout and aid
in debugging.
Vector #9: [doc, kernel, mm, function, parameter, warning, description, markup, error, add, shmem,
slab, vmalloc, cleanup]
mm/mempolicy.c: parameter doc uniformization
mm/page_vma mapped.c: add colon to fix kernel-doc markups error for check pte
[PATCH] more kernel-doc cleanups, additions
mm: fix fatal kernel-doc error
mm: fix kernel-doc markups

This series of fixes is dedicated to documenting this subsystem using the kernel-doc annotations.

Vector #10: [kasan, tag, mode, based, memory, hardware, report, fault, kernel, boot, feature, patch,
gemu]

kasan: simplify quarantine put call site

mm/mm_init.c: report kasan-tag information stored in page->flags

kasan, kmemleak: reset tags when scanning block

kasan: add kasan mode messages when kasan init

kasan, arm64: move initialization message

These fixes are devoted to special tags when scanning a memory block in both the Kernel Address
Sanitizer (KASAN) [50, 51] and Kernel Memory Leak (kmemleak) subsystems. This is done to
provide more detailed information about memory usage and aid in debugging.

To summarize all these fixes, it can be noted that modern changes in the Linux memory subsystem
relate to virtual memory, large memory blocks and various tools for memory monitoring and
debugging. Working with memory is so complex that without additional tools that are provided by
the kernel, debugging and optimization are not possible.

5.4 Scheduling (/linux/kernel/sched)

Vector #1: [deadline, dl_bw, task, total_bw, bw, dl_nr_running, dl_rq, sched, runtime, dl, parameter,
sched_deadline, bandwidth, problem, value]

sched/deadline: Fix a bug in dl overflow ()

sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched debug
sched/deadline: Fix switching to -deadline

sched/deadline: Show leftover runtime and abs deadline in /proc/*/sched
sched/deadline: Fix migration of SCHED DEADLINE tasks

A large number of fixes are dedicated to the Deadline Scheduler subsystem [52]. Namely, when
tasks with a deadline exceeding the maximum value were not being correctly handled; when it is
needed to add the ability to display the leftover runtime and absolute deadline for
SCHED_DEADLINE tasks in the /proc/*/sched file, and also when tasks were not being correctly
migrated between CPU cores.

Vector #2: [numa, node, fault, memory, rate, sched, task, mm, pte config_sched_debug, scan, access,
commit, local]

sched/numa: Count pages on active node as local
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node

Revert
node”

mm: sched: numa: Delay PTE scanning until a task is scheduled on a new

mm: numa: Rate limit setting of pte numa if node is saturated

sched/numa: Disable sched numa_balancing on UMA systems
The following fixes are dedicated to scheduling in NUMA (Non-Uniform Memory Access) systems
to improve performance and reduce memory latency. In particular, pages on the currently active
node were not being counted as local; delays can be appear in scanning of page table entries (PTES)

227

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

for NUMA balancing until a task is scheduled on a new node; pages on a saturated NUMA node
could cause excessive memory usage; the scheduler NUMA balancing feature on Uniform Memory
Access (UMA) systems, which do not have non-uniform memory access characteristics should be
disabled.

Vector #3: [cpu, idle, load, task, active, online, domain, utilization, fair, balancing, nohz, numa, core,
ilb, balance]

sched: Improve load balancing in the presence of idle CPUs

sched: Prevent raising SCHED SOFTIRQ when CPU is !active

sched: Allow migrating kthreads into online but inactive CPUs

sched: Fix cpu_active _mask/cpu_online mask race

sched/fair: Trigger the update of blocked load on newly idle cpu

The current fixes are devoted to the work of the scheduler when a CPU is idle. For example,to better
handle situations where there are idle CPUs in the system; prevent the scheduler from raising the
SCHED_SOFTIRQ interrupt on CPUs that are not currently active; allow kernel threads (kthreads)
to be migrated to CPUs that are online but currently inactive; ensure that the scheduler updates the
blocked load on CPUs that become idle. This can improve performance by making better use of
available CPU resources.

Vector #4: [macro, sched, kernel, debug, check, commit, default, fair, field, magic, new, number,
rename, runtime, schedstat_val]

sched: Move SCHED LOAD SHIFT macros to kernel/sched/sched.h
sched/debug: Fix /proc/sched debug regression

sched/debug: Rename 'schedstat val()' -> 'schedstat val or zero()'
sched: Fix kernel-doc warnings in kernel/sched/fair.c

sched: Move wait.c into kernel/sched/

These fixes are about reorganizing the code.

Vector #5: [load, cpu, task, group, cfs_rq, entity, weight, cgroup, vruntime, fair, time, sched, cpuset,
real, share]

sched/fair: Fix unfairness caused by missing load decay

sched/fair: Fix incorrect task group ->load avg

sched: Avoid scale real weight down to zero

sched/fair: Remove task and group entity load when they are dead

sched: Aggregate total task group load
The presented fixes usually relate to errors in the implementation of Completely Fair Scheduler
(CFS) [53] and to task group load, which could lead to unfairness in the distribution of CPU
resources. The design of CFS leads to the concept of schedulable entities, where tasks are managed
by the scheduler as a whole. The fixes address the following situations: when the scheduler was not
properly decaying the load of tasks over time, when it was calculating the load average of task groups
incorrectly, when it was not properly removing the load of dead tasks and task groups, as well us
there is some fix improves the way the scheduler aggregates the total load of task groups.

Vector #6: [sched, kernel, declaration, error, function, core, asm, implicit, paravirt, cputime, include,
print_cfs_rq, werror, change, commit]

sched/headers: Prepare header dependency changes, move the <asm/paravirt.h>
include to kernel/sched/sched.h

sched/s390: Fix compile error in sched/core.c

sched/debug: Move print cfs rq() declaration to kernel/sched/sched.h
sched/core: Fix compilation error when cgroup not selected
sched/debug: Move the print rt rq() and print dl rq() declarations to..

These fixes are also about reorganizing the code.
Vector #7: [cpu, kernel, sched_domain, time, commit, flag, foundation, infradead, link, linux]

228

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

sched/isolcpus: Fix "isolcpus=" boot parameter handling
when !CONFIG CPUMASK OFFSTACK

sched: Fix the broken sched rr get interval ()

sched/cputime: Resync steal time when guest & host lose sync
sched/nohz: Fix overflow error in scheduler tick max deferment ()
sched: Fix init NOHZ_IDLE flag

Current fixes match with scheduler domains [54] from different scheduling subsystems, including a
bug that was not returning the correct time quantum for round-robin scheduling; a bug with incorrect
CPU isolation; and an issue that steal time of a virtual CPU in a guest operating system could become
out of sync with the host operating system.

Vector #8: [rq, task, cpu, curr, deadline, test, enqueue_task_dl, run, dl, hotplug, lock, sched, stress,
offline, wa]

sched/deadline: Fix bad accounting of nr running

sched/rt: Fix task stack corruption under _ ARCH_WANT_ INTERRUPTS_ON_CTXSW
sched/deadline: Add missing update rqg clock() in dl task timer ()

sched: Add missing rcu protection to wake up all idle cpus

sched/deadline: Fix the intention to re-evalute tick dependency for offline CPU

The next series of fixes concerns the work of deadline and real-time schedulers leading to incorrect
scheduling decisions and system crashes: a counter for tasks and a clock value in a run queue were
not properly updated; the task stack could become corrupted when interrupts were enabled during a
context switch; a function was not properly protected by RCU.

Vector #9: [rt, task, cpu, current, run, user, tick, deadline, priority, pull, value, issue, sched, signal,
time]

sched/rt: Avoid updating RT entry timeout twice within one tick period

sched/rt: Kick RT bandwidth timer immediately on start up

sched/rt: Do not pull from current CPU if only one CPU to pull

sched/rt: Fix RT utilization tracking during policy change

sched, cgroup: Fix up task groups list

These fixes relate to RT (real-time) type schedulers for control groups [55, 56]. The latter concept
defines a set of tasks, and all their future children, as a hierarchical group with specialized behavior.
In details, the fixes address an issue where the real-time scheduler was updating the timeout value
for a task twice within a single tick period; correct an issue where the real-time scheduler was
delaying the start of the bandwidth timer; improve the behavior when the real-time scheduler was
unnecessarily pulling tasks from the current CPU even when there was only one other CPU
available, and fix the situation where the task_groups list was not properly updated when tasks were
moved between cgroups, which lead to unnecessary overhead and degraded performance.

Vector #10: [update_rqg_clock, add, core, sched, address, bug, clock, rq, update, double, effort,
minimize, post_init_entity util_avg, way]
sched/core: Add missing update rg clock() call in set user nice()
sched/core: Add missing update rg clock() in post init entity util avg()
sched/core: Add missing update rg clock() in detach task cfs rq()
sched/core: Fix double update rg clock) calls in attach task()/detach task()

These fixes solve the same problem: lack or excess of function calls to update time data in the run
queue per cpu structure of the scheduler.

To summarize, the fixes in the scheduling subsystem are mainly devoted to improving deadline, fair
and realtime scheduling for groups, correct work with idle cpu state, calculation of deadlines and
updating time counters, and work in NUMA systems.

229

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

5.5 Network (/linux/net)

Vector #1: [error, return, code, null, rate, function, check, value, case, net, use, icmp, mac80211,
pointer, netfilter]

Bluetooth: fix error return code in rfcomm add listener ()

sctp: fix error return code in _ sctp connect()

ieeeB802154: fix error return code in ieee802154 add iface()

ah6: fix error return code in ah6_ input ()

netfilter: nf conntrack: fix error return code

A large number of fixes concern returning error codes from functions. Such fixes were made for
many parts of the network subsystem.

Vector #2: [net, inline, fb, mm, kasan, fc, kernel, include, socket, common, core, arch, linux, ipv6,
X86]

net: sched: fix race condition in gdisc graft()

ipv6: Fix KASAN: slab-out-of-bounds Read in fibé nh flush exceptions

net: igmp: respect RCU rules in ip mc source() and ip mc msfilter()

tcp: cdg: allow tcp cdg release() to be called multiple times

devlink: Fix use-after-free when destroying health reporters

These fixes are related to typical errors in the code in this case for processing network things: a race
condition that could occur when multiple processes attempt to modify the same network queueing
discipline; a memory access error in the IPv6 forwarding information base (FIB6) code; a violation
of RCU synchronization rules in the Internet Group Management Protocol (IGMP) code; an issue
with the TCP Congestion Detection and Avoidance (CDG) algorithm, which could cause crashes or
other errors if its release function was called multiple times; and a memory management error in the
devlink subsystem, which could cause a "use-after-free™ error if a health reporter object was
destroyed while still in use.

Vector #3: [tcp, variable, unused, error, udp, warning, remove, function, ipv4, patch, net, compile,
ipv6, mac80211, packet]

net: ipv4: avoid unused variable warning for sysctl

[IPV4]: Fix "ipOutNoRoutes" counter error for TCP and UDP

mac80211: fix warning: unused variable invoke tx handlers

ipvé4: ipconfig: avoid unused ic_proto_used symbol

[TCP]: TCP highspeed build error

These fixes exclusively concern warnings and errors when building code for implementing things
related to TCP.

Vector #4: [rfkill, net, error, whitespace, state, input, issue, change, core, pointer, case, hardware,
software, class, device]

net/rfkill/rfkill-input.c needs <linux/sched.h>

[NET] RFKILL: Fix whitespace errors.

rfkill-gpio: include linux/mod devicetable.h

rfkill: copy the name into the rfkill struct

rfkill: allow to get the software rfkill state

These fixes encapsulate various fixes associated with the RFKILL subsystem [57]. RFKILL can be
used to disable wireless communication on a device. This can include devices such as Wi-Fi and
Bluetooth radios. The RFKILL subsystem in the kernel provides a unified interface for controlling
these devices. rfkill-gpio is a driver for RFKILL devices that are controlled by GPIO pins [58]. It
allows the kernel to control the state of the RFKILL device by toggling the GPIO pin.

Vector #5: [vlan, bridge, device, packet, add, error, hardware, port, driver, network, filtering, header,
notification, address, state]

bridge: vlan: Prevent possible use-after-free
rtnetlink: catch -EOPNOTSUPP errors from ndo bridge getlink

230

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

[VLAN] : Fix hardware rx csum errors

bridge: add vlan filtering change for new bridged device

vlan: Enable software emulation for vlan accleration.
This series of fixes is dedicated to VLAN and bridge devices. In particular, an error occurred when
a user tries to get information about a bridge device that does not support the requested operation.
Another fix addresses an issue with hardware rx checksums in VLAN devices. Hardware rx
checksums are used to verify the integrity of network packets, but some devices were reporting
incorrect checksums. Some fix adds support for VLAN filtering on new bridged devices. VLAN
filtering is used to separate network traffic into different virtual LANs. And a fix enables software-
based VLAN acceleration, ensuring that these systems can benefit from improved network
performance. VLAN acceleration is used to improve network performance by offloading some of
the processing required for VLAN filtering to hardware, but not all systems have this hardware
capability.
Vector #6: [command, hci, error, typo, request, event, nfc, support, code, patch, net, add, framework,
hci_req_add send]

Bluetooth: Fix HCI request framework

Bluetooth: HCI request error handling

Bluetooth: Reorganize set connectable HCI command sending

Bluetooth: Add support for custom event terminated commands

NFC: Implement HCI driver or internal error management
These fixes are dedicated to Bluetooth and HCI framework [59]. Previously, we already realized
that fixes for bluetooth are often made in the Linux kernel [15, 16]. The HCI request framework is
responsible for sending commands and receiving responses between the host and the Bluetooth
controller. This fix corrects the implementation of the framework, ensuring that commands are sent
and received correctly.

Vector #7: [static, address, br, edr, discovery, controller, function, make, le, mode, command, patch,
type, dual, setting]

Bluetooth: Introduce controller setting information for static address

Bluetooth: Support static address when BR/EDR has been disabled

Bluetooth: Fix issue with switching BR/EDR back on when disabled

Bluetooth: Check capabilities in BR/EDR and LE-Only discovery

Bluetooth: Fix advertising data flags with disabled BR/EDR
This fixes are devoted to a feature in the Bluetooth subsystem of the Linux kernel that allows users
to set a static Bluetooth address for their device's Bluetooth controller. Previously, the Bluetooth
address was generated randomly each time the device was restarted, which could cause issues with
some Bluetooth devices that relied on a consistent address. With this fix, users can now set a static
address that will remain the same across reboots. Then, the static Bluetooth address set in the
previous fix is still used even if the device's Bluetooth controller has been disabled for BR/EDR
(Basic Rate/Enhanced Data Rate) communication. Previously, if BR/EDR was disabled, the
Bluetooth subsystem would generate a new random address each time the controller was enabled
again.
Vector #8: [net, refcount, add, netpoll, tracker, device, struct, error, netns, socket, core, leak,
dev_put, help, kernel]

net: add net device refcount tracker to struct pneigh entry

netpoll: add net device refcount tracker to struct neEpoll

net: add net device refcount tracker to struct netdev rx queue

net: add net device refcount tracker to struct netdeviadgacent

net: bridge: add net device refcount tracker -
The mentioned fixes in the Linux kernel are related to adding a net device refcount tracker to
different structures within the network subsystem. The reference count tracker helps to keep track

231

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

of the number of references to this structure, which is useful for ensuring accurate and reliable
management of the network devices.

Vector #9: [unlock, error, path, mac80211, function, return, double, wifi, case, commit, deflink,
lock, mime, net, netfilter]
ceph: unlock on error in ceph osdc start request()
mac80211: unlock on error path in ieee80211 ibss join()
wifi: mac80211: unlock on error in ieee80211 can powered addr change ()
Bluetooth: delete a stray unlock
tipc: unlock in error path

These fixes check that any locks held are released before returning from a specified function even
where an error is appeared. For example, in the Transparent Inter-Process Communication (TIPC)
protocol implementation, this fix ensures that if an error occurs during specific operations, any locks
held during the operation are released. This can prevent potential resource leaks.

Vector #10: [port, devlink, switch, cpu, dsa, user, case, driver, net, link, number, upstream, mtu,
swlp4, attribute]

net: dsa: give preference to local CPU ports

net: dsa: Fix type was not set for devlink port

devlink: append split port number to the port name

net: dsa: calculate the largest mtu across all ports in the tree

netfilter: nf ct h323: fix bug in rtcp natting

These fixes are devoted to issues with network ports and improve the network performance on
systems using Distributed Switch Architecture (DSA) [60]. DSA is a framework in Linux kernel
that allows network switches to be controlled by the kernel. For example, with a fix, the kernel gives
preference to the local CPU (Central Processing Unit) ports, which reduces latency and improves
packet processing efficiency. Another fix addresses a bug related to the Maximum Transmission
Unit (MTU) calculation in the Distributed Switch Architecture. And there is a fix to resolve a bug
in the nf_ct_h323 module, which is responsible for Network Address Translation (NAT) handling
for the H.323 protocol in netfilter (Linux network packet filtering subsystem). The bug specifically
relates to Real-Time Control Protocol (RTCP) packets and their translation during NAT.

5.6 IRQ (/linux/kernel/irq)

Vector #1: [function, cleanup, kernel documentation parameter comment genirq irq patch recent
update add addition commit core]

genirqg: Fix handle bad irg kerneldoc comment

[PATCH] more kernel-doc cleanups, additions

[PATCH] genirqg: cleanup: no_irq type cleanups

Update irg domain alloc fwnode () function documentation

cpumask: Cleanup more uses of CPU MASK and NODE MASK

A large series of fixes in the IRQ subsystem is devoted to documentation, comments and code
organization.

Vector #2: [pointer, null, function, check, alias, bug, crash, debugfs, genirg, handle, boot,
compilation, dereference, driver, irgdomain]
genirg/irgdomain: Check pointer in irg domain alloc irgs hierarchy ()
genirqg/debugfs: Remove redundant NULL pointer check
genirqg: Fix null pointer reference in irqg set affinity hint()
sparseirq: work around _ weak alias bug
irgdomain: Fix debugfs formatting

Another series of fixes is devoted to errors in working with pointers.

Vector #3: [affinity, node, irg, interrupt, domain, genirq, software, case, device, driver, irgdomain,
setup, allocation, bad, default]

232

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

genirqg: Respect NUMA node affinity in setup irqg irqg affinity()

genirg/affinity: Fix node generation from cpumask

genirqg: Move initial affinity setup to irqg startup()

irgdomain: Allow software nodes for IRQ domain creation

genirqg/irqgdomain: Add an irqg create mapping affinity() function
The main domain fixes in the IRQ subsystem relate to working with IRQ affinity [61]. That specifies
which target CPUs are permitted for a given IRQ source. For example, a fix ensures that interrupts
are assigned to the correct NUMA node based on the affinity settings, improving performance and
reducing latency. Another fix corrects an issue where the node generation from a cpumask was not
working correctly, leading to incorrect affinity settings. The next fix improves the initialization of
interrupt affinities by moving it to the irq_startup() function, ensuring that affinities are set correctly
from the beginning. Some other fix allows the creation of software nodes for interrupt domains,
improving flexibility and allowing for better management of interrupts. Finally, a fix adds a new
function to create interrupt mappings with specific affinity settings, allowing for more fine-grained
control over interrupt allocation.

Vector #4: [gpio, error, drivers, ko, export, irg, add, function, chip, commit, export_symbol_gpl,
following, generic, genirq]

irg: Add EXPORT SYMBOL GPL to function of irg generic-chip

device property: export irqgchip fwnode ops

genirqg: Add missing irqg to desc export for CONFIG_SPARSE IRQ=n

irg: Export handle fasteoi irg
The following fixes concern exporting some IRQ functionality so that it is available to other parts
of the kernel, enabling them to interact with the irq chip functionality. For example, a fix adds the
missing export statement for irq_to_desc, ensuring that it is accessible to other kernel components
even when CONFIG_SPARSE_IRQ is disabled. Another fix exports the handle_fasteoi_irg symbol
from the irq subsystem. handle_fasteoi_irq is a function that handles FastEQI (Fast End Of Interrupt)
interrupts, which is a type of interrupt management mechanism [61].

Vector #5: [state, flag, interrupt, disabled, genirg, hardware, irq_data, add, callback, force, suspend,
access, avoid, certain, change]

genirqg/PM: Properly pretend disabled state when force resuming interrupts

genirqg: Add irqg disabled flag to irg data state

genirqg: Reflect IRQ MOVE PCNTXT in irg data state
The latest series of big fixes relates to IRQ state management. A fix addresses a problem related to
resuming interrupts after they have been disabled. In certain scenarios, interrupts may be forcibly
resumed even if they were disabled. However, the interrupt controller may still maintain some
internal state indicating that the interrupts are disabled. This fix ensures that the proper disabled state
is correctly reflected when interrupts are forcefully resumed. In a next fix, an additional flag for the
irg_data state is added to indicate whether the interrupts are disabled. This enables efficient checking
of the disabled state, as well as simplifying the interrupt handling code. Another fix enhances the
implementation of the IRQ_MOVE _PCNTXT feature in the genirg subsystem.
IRQ_MOVE_PCNTXT is used to move an interrupt context from one CPU to another.

As a result, we can say that the main fixes for IRQ in recent years have been devoted to code
refactoring, improving work with IRQ affinity, providing some functions for export to other
subsystems, and improving IRQ state management to support disabling interrupts and interrupt
context transfer to other processors.

5.7 x86 (/linux/arch/x86)

Vector #1: [xen, x86, microcode, error, arch, function, kernel, declaration, build, implicit, cpu, acpi,
include, page, guest]

arch/x86/xen/suspend.c: include xen/xen.h

233

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

x86, xen: fix hardirg.h merge fallout

xen/tracing: fix compile errors when tracing is disabled.

xen/trace: Fix compile error when CONFIG XEN PRIVILEGED GUEST is not set
xen: Move xen setup callback vector() definition to include/xen/hvm.h

A large number of fixes for x86 are devoted to various aspects of implementing support for the Xen
hypervisor [62] in the Linux kernel.

Vector #2: [iommu, tlb, flush, amd, x86, gart, add, aperture, device, kvm, vpid, patch, code, function,
12]

AMD IOMMU: add stats counter for domain tlb flushes

AMD IOMMU: add stats counter for single iommu domain tlb flushes

amd-iommu: add function to flush tlb for all devices

x86, AMD IOMMU: add detect code for AMD IOMMU hardware

x86, AMD IOMMU: add dma ops initialization function
Another large number of fixes are devoted to the implementation of AMD IOMMU and working
with TLB. IOMMU (Input-Output Memory Management Unit) is a hardware component that allows
for virtualization of devices and memory management. TLB (Translation Lookaside Buffer, see the
discussion in the tutorial [63]) is a cache used by the processor to store recently accessed memory
translations. The TLB is used to speed up memory access. For example, a fix adds a statistics counter
to track the number of times the IOMMU domain TLB is flushed. This improves performance
monitoring and helps identify potential issues. Another fix adds detection code for AMD IOMMU
hardware, allowing the kernel to properly identify and utilize the hardware.

Vector #3: [x86, vector, kernel, linux, redhat, boot, apic, intel, interrupt, code, cpu]

x86/entry/64: Clear registers for exceptions/interrupts, to reduce speculation
attack surface

x86/entry/64/compat: Clear registers for compat syscalls, to reduce speculation
attack surface

x86/traps: Fix up general protection faults caused by UMIP

%86, kasan, ftrace: Put APIC interrupt handlers into .irgentry.text

x86/kconfig/32: Rename CONFIG VM86 and default it to 'n’
The set of updates focuses entirely on fixing known vulnerabilities. The first fix targets a security
vulnerability called "speculation attack,” which allows attackers to exploit modern processors'
speculative execution feature to access sensitive data. This fix clears registers used during exceptions
and interrupts to prevent unauthorized access. The second fix is similar, but it specifically addresses
compatibility syscalls in 64-bit mode. These syscalls are used to run 32-bit applications on a 64-bit
system, and the fix clears registers used during these syscalls to prevent exploitation. The third fix
addresses a bug where UMIP was causing GP faults in certain situations, which could be exploited
by attackers. UMIP is a security feature that prevents certain instructions from being executed in
user mode. The fourth fix moves the APIC interrupt handlers to a more secure location in memory
to prevent exploitation. Finally, the last fix renames a kernel configuration option and sets its default
value to "no" to prevent attackers from exploiting the VMB86 feature, which allows 16-bit
applications to run in virtual 8086 mode. This feature is no longer necessary in modern systems and
can be exploited by attackers to gain access to sensitive information.

Vector #4: [page, table, error, x86, code, k8, powernow, kvm, cpumask, cleanup, fault, struct, guest,
address, bit]
KVM: SVM: Limit PFERR NESTED GUEST PAGE error code check to Ll guest
x86/espfix/xen: Fix allocation of pages for paravirt page tables
kvm: svm: Add support for additional SVM NPF error codes
x86, vmi: put a missing paravirt release pmd in pgd dtor
mm: add pt mm to struct page
The next set of fixes focuses on correcting vulnerabilities in the KVM, Xen hypervisor, AMD Secure
Virtual Machine, and Virtual Machine Interface subsystems. These fixes aim to prevent malicious

234

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

guest operating systems from crashing the host system and exploiting vulnerabilities to gain access
to sensitive information. The updates include limiting error code checks for
PFERR_NESTED_GUEST PAGE to only the first level guest, correcting page allocation for
paravirtualized page tables, adding support for additional error codes related to Nested Page Faults,
and adding a new field to track memory management context in the struct page data structure.

Vector #5: [mmu, page, tdp, kvm, shadow, vcpu, sp, x86, guest, code, change, check, 11, use, table]

KVM: x86/mmu: Pivot on "TDP MMU enabled" to check if active MMU is TDP MMU

KVM: x86/mmu: Protect marking SPs unsync when using TDP MMU with spinlock

KVM: MMU: move mmu pages calculated out of mmu lock

KVM: x86: nSVM: fix switch to guest mmu

KVM: MMU: move the relevant mmu code to mmu.c
The KVM hypervisor also undergo changes to improve its performance and prevent data corruption.
The changes include checking if TDP (two dimensional paging) MMU is enabled instead of
checking the CPU model to ensure that the correct MMU is used for virtual machines running on
different CPU models. The addition of spinlock protection when marking shadow page tables as
unsynchronized in a TDP MMU environment prevents race conditions. Moving the calculation of
MMU pages outside of the MMU lock reduces contention on the lock. Finally, a bug in the nested
SVM code is corrected to ensure that the hypervisor switches to the guest MMU when running a
nested virtual machine. Some links and an approach to formally verify such things are presented in
the paper [64].
Vector #6: [reboot, x86, dell, pci, quirk, add, platform, acpi, kernel, power, show_bug, ce4100, id]

ACPI, x86: fix Dell M6600 ACPI reboot regression via DMI

x86/reboot: Add Zotac ZBOX CI327 nano PCI reboot quirk

x86/ced100: Fix reboot by forcing the reboot method to be KBD

x86: Add Dell OptiPlex 760 reboot quirk

x86/reboot: Limit Dell Optiplex 990 quirk to early BIOS versions
These fixes address specific issues related to reboot functionality on certain computer systems by
adding or limiting certain quirks in the kernel.

Vector #7: [bank, error, mce, cpu, x86, check, hardware, machine, number, value, amd, interrupt,
type, register, disable]

x86/MCE: Determine MCA banks' init state properly

x86/mce: Avoid reading every machine check bank register twice.

x86/mce/AMD, EDAC/mce_amd: Enumerate Reserved SMCA bank type

x86/MCE: Initialize mce.bank in the case of a fatal error in mce no way out ()

x86/MCE/AMD: Define a function to get SMCA bank type
These fixes have been made to correct a bug in the Machine Check Architecture (MCA) code,
optimize it by avoiding unnecessary reads of machine check bank registers, add support for
enumerating reserved System Management Control Address (SMCA) bank types in the MCA code
for AMD processors, and initialize the MCA bank variable in case of a fatal error in the MCA code.
MCA is an internal architecture subsystem which detects and captures errors occurring within the
microprocessor’s logic [65].
Vector #8: [pci, bridge, window, €820, host, lenovo, region, space, x86, acpi, bar, address, device,
resource, bus]

x86/PCI: Revert "x86/PCI: Clip only host bridge windows for E820 regions”

%x86/PCI: Add kernel cmdline options to use/ignore E820 reserved regions

x86/PCI: Mark ATI SBx00 HPET BAR as IORESOURCE PCI FIXED

%x86/PCI: Use host bridge CRS info on Foxconn §8M850—8237A

x86/PCI: Ignore E820 rese;vations for bridge windows on newer systems

These fixes aim to improve the functionality of PCI devices in computer systems, in order to improve
PCI device enumeration and resource allocation and ensure efficient use of available memory

235

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

resources (the so-called PCI quirks [66]). They include reverting a previous change that caused
issues with certain devices accessing memory regions, adding kernel command line options for users
to specify the use of reserved memory regions, marking the HPET BAR on ATI SBx00 chipsets as
a fixed PCI resource, updating the PCI code for Foxconn K8M890-8237A systems, and modifying
the PCI code to ignore reserved memory regions for bridge windows on newer systems.

Vector #9: [x86, style, problem, i8259, function, cleanup, impact, include, arch, asm, shutdown,
code, error, file, irginit_32]

x86: 18259.c fix style problems

x86: module 64.c fix style problems

x86: irg 32.c fix style problems

x86: time 32.c fix style problems

x86: irginit 32.c fix style problems
Here are code style issues in x86-related components.

Vector #10: [bit, 32, 64, ptrace, x86, kernel, value, argument, code, syscall, firmware, mixed, mode,
sign, signal]

x86_64: make ptrace always sign-extend orig ax to 64 bits

x86/mpx: Fix 32-bit address space calculation

x86: ptrace: set TS COMPAT when 32-bit ptrace sets orig eax>=0

x86/efi: Truncate 64-bit values when calling 32-bit OutputString /()

efi/libstub: Distinguish between native/mixed not 32/64 bit
The fixes for x86_64 and x86/efi are important to ensure proper handling of 32-bit applications
running on a 64-bit system and to distinguish between native and mixed mode in the EFI libstub
code accurately.

To sum up, fixes for this historical part of the kernel are devoted to code reorganization, addressing
known types of vulnerabilities, better support for virtualization, playing around with quirks for
specific hardware, as well as providing support for legacy systems and subsystems.

5.8 ARM64 (/linux/arch/arm64)

It turned out that a huge number of fixes for the ARM platform are devoted primarily to additions
to device trees [67, 68]. There are a huge number of hardware configurations for the platform, and
such configurations are described through a device tree in order to be accessible later
programmatically by loading the appropriate drivers. Our software classified such fixes and the first
6 classes found describe support for different types of devices in the device tree.

Vector #1: [add, node, arm64, dts, renesas, support, device, thermal, tpu, patch, soc, zone, fd, hdmi,
r8a77995]

arm64: dts: renesas: r8a77995: add thermal device support

armé64: dts: renesas: r8a774c0: Add thermal support

arm64: dts: renesas: r8a77%9a0: Add TPU device node

arm64: dts: renesas: r8a77990: add thermal device support

arm64: dts: renesas: r8a77965: Add SATA controller node
Vector #2: [clock, node, arm64, dts, add, pcie, controller, gcom, sdm845, ipa, phy, support, soc, dt,
device]

arm64: dts: exynosautov9: add fsys0/1 clock DT nodes

arm64: dts: gcom: sdm845: add apr nodes

arm64: dts: rockchip: add the PCIe PHY for RK3399

arm64: dts: sdm845: Add lpasscc node

arm64: dts: gcom: sm6350: add IPA node

Vector #3: [dts, arm64, add, device, node, r8a7795, r8a7796, renesas, enable, salvator, hihope,
support, ush3, board, patch]
arm64: dts: r8a7795: add usb2 phy device nodes

236

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

arm64: dts: r8a7795: Add USB-DMAC device nodes
arm64: dts: r8a7796: Add USB-DMAC device nodes
arm64: dts: renesas: r8a7795: add USB3.0 peripheral device node
arm64: dts: renesas: r8a7796: add USB3.0 peripheral device node

Vector #4: [meson, gxbb, arm64, dts, add, node, gxl, pin, ush, cec, enable, regulator, controller,
amlogic, dt]

ARM64: dts: meson-gxbb: Add Meson GXBB PWM Controller nodes

ARM64: dts: meson-gxbb: Add CEC pins nodes

ARM64: dts: meson-gxbb-p20x: Enable USB Nodes

ARM64: dts: meson-gxbb-odroidc2: Enable USB Nodes

ARM64: dts: meson-gxbb-nexbox-a95x: Enable USB Nodes

Vector #5: [regulator, pwm, supply, usb, add, armé4, dts, vddcpu, device, power, dummy, gpu, boot,
change, board, meson]
arm64: dts: meson-gl2b: Fix the pwm regulator supply properties
arm64: dts: meson-sml: Fix the pwm regulator supply properties
arm64: tegra: Fix Jetson Nano GPU regulator
arm64: dts: meson: odroid-c2: Add missing regulator linked to P5V0 regulator
arm64: dts: rockchip: Correct regulator for USB host on Odroid-Go2

Vector #6: [node, table, opp, soc, arm64, dts, bus, add, cpu_thermal, doe, property, build, cpu,
following, qup]

arm64: dts: imx8mg: Move the opp table out of bus node

armé4: dts: 1sl046a: Move cpu thermal out of bus node

armé64: dts: 1sl043a: Move cpu thermal out of bus node

armé4: dts: 1sl0l2a: Move cpu thermal out of bus node

arm64: dts: gcom: sm8250: Move qup-opp-table out of soc node

Vector #7: [tcsr, mutex, address, space, mmio, device, armé4, dts, gcom, syscon, allow, check,
dedicated, dt, halt]

arm64: dts: gcom: sdm845: switch TCSR mutex to MMIO

arm64: dts: gcom: msm8998: switch TCSR mutex to MMIO

arm64: dts: gcom: sm8150: switch TCSR mutex to MMIO

arm64: dts: gcom: gcs404: switch TCSR mutex to MMIO

arm64: dts: gcom: sc7180: switch TCSR mutex to MMIO

TCSR (Thread Context Save and Restore) is a feature in Qualcomm processors that provides a
mechanism for saving and restoring the state of a thread during context switching. These fixes
modify the implementation to use MMIO (Memory-Mapped Input/Output), which enables direct
access to the TCSR register through memory addresses.

Vector #8: [vdso, arm64, offsets, kernel, support, arch, makefile, rule, enable, mremap, page, vma,
bti, handling, orphan]

arm64: fix vdso-offsets.h dependency

arm64/vdso: Support mremap () for vDSO

armé64: vdso: Enable vDSO compat support

armé64: vdso: Map the vDSO text with guarded pages when built for BTI

armé64: vdso: enable orphan handling for VDSO
These fixes are devoted to the virtual dynamic shared object (vDSO) [69] implementation on arm64.
vDSO provides a fast and efficient interface for certain system calls, allowing user-space programs
to directly access kernel functionality without needing to transition to kernel mode. Enabling vDSO
compatibility support ensures that both newer and older versions of user-space programs can make
use of the vDSO. The mremap() system call is used to move memory mappings to a new address
range or change their size. By enabling mremap() support for the vDSO, it allows for more efficient
management of the vDSO memory mapping. A listed fix enhances the security of the vDSO on
arm64 when built with support for Branch Target Identification (BTI). BTI is a security feature that

237

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242

protects against certain control-flow attacks. Orphan handling refers to the ability to handle
processes that have become detached or disassociated from their parent process. Enabling orphan
handling for the vDSO ensures that it behaves correctly in scenarios where a process using the vDSO
is orphaned.

Vector #9: [asm, arm64, function, arch, error, declaration, implicit, kernel, insn, mark, rutland,
include, linux, bug]

arm64: fix missing asm/io.h include in kernel/smp spin table.c

arm64: fix missing asm/alternative.h include in kernel/module.c

arm64: fix missing asm/pgtable-hwdef.h include in asm/processor.h

armé64: fix missing linux/bug.h include in asm/arch timer.h

arm64: kaslr: Use standard early random function

These fixes concern the reorganization of included files with headers for the ARM64 platform.

Vector #10: [sve, sme, state, flag, arm64, register, host, load, storage, vcpu, access, kvm, mode,
context, ell]

arm64/sme: Don't flush SVE register state when allocating SME storage

arm64/signal: Clean up SVE/SME feature checking inconsistency

KVM: arm64: Move SVE state mapping at HYP to finalize-time

KVM: arm64: Trap host SVE accesses when the FPSIMD state is dirty

KVM: arm64: Always start with clearing SVE flag on load
Several fixes have been made to improve the handling and synchronization of the Scalable Vector
Extension (SVE) state [70]. The first fix prevents unnecessary flushing of the SVE register state
during Secure Memory Encryption (SME) storage allocation. The next fix resolves an inconsistency
in feature checking for SVE and SME during signal processing, ensuring correct behavior. Moving
the mapping of SVE state in Kernel-based Virtual Machine (KVM) to finalize-time ensures proper
handling and synchronization. Host SVE accesses are now trapped in KVVM when the Floating-Point
SIMD (FPSIMD) state is dirty, preventing corruption. Lastly, consistently clearing the SVE flag
during load operations in K\VM guarantees correct initialization and handling of SVE features during
virtualization, avoiding potential issues related to its state.

Thus, for ARM64, the defining fixes are the reorganization of the device tree set, reorganization of
the code, synchronization of access to the state of internal registers and operations with virtual
dynamic shared objects.

6. Conclusion

In this study, we utilized natural language messages from the Linux kernel git repository to identify
the most common types of errors. Our approach involved clustering fixing commit messages to gain
insight into the prevalent error classes in specific domains, such as memory management and
scheduling subsystems. Unlike previous studies, we included links to specific commits, providing
examples of bug reports for each generalized vector identified. This differed from our earlier
approach, which relied on matching similar messages and working with frequently occurring
messages but not similar generalization vectors.

Our analysis yielded satisfactory results, presenting the main vectors (in the form of keywords) and
example messages for each class of fix. We also conducted a manual summary analysis for each
class, revealing typical fixes for each subsystem and the automated tools used to detect them. We
referenced these tools in our article and concluded that developers must study them when working
with the corresponding subsystem.

It is important to note that the analysis conducted in this study is relatively straightforward and can
be applied to any repository, with the ability to evaluate changes retrospectively. By selecting
specific dates and parts of the repository, it is possible to identify errors and gain valuable insights
into their prevalence. However, there is always room for improvement in any analysis, and our
current implementation could benefit from enhancements such as refining the detection of fixing

238

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

commits, improving the commit coupling thresholds for hierarchical clustering, better normalization
and removal of stop words, and developing methods for automatically describing each class of errors
found. These improvements are crucial for ensuring the accuracy and effectiveness of our analysis,
and we plan to address them in future research.

Ultimately, our goal is to provide system developers with a comprehensive understanding of the
most common types of errors in various subsystems, along with the tools and techniques needed to
address them effectively.

Acknowledgement

The work on this article was carried out at personal expense and in their own time by the authors.

We would like to express our gratitude to A.K. Petrenko and A. Kamkin for organizing the
SYRCOSE colloguium, as well as A. Martyshkin and A. Vorontsov for conducting excursions
around Penza and Nikolsk.

References

[1]. Starovoytov N., Golovnev N., Staroletov S. Towards methods to automatically identify the most common
errors in Linux by analyzing git commit messages. In Proc. of the Spring/Summer Young Researchers'
Colloquium on Software Engineering, 2023

[2]. Chou A, Yang, J. Chelf B., Hallem S., Engler D. An empirical study of operating systems errors. In Proc.
of the eighteenth ACM symposium on Operating systems principles, 2001, pp. 73-88.

[3]. Palix N., Thomas G., Saha S., Calves C., Lawall J., Muller G. Faults in Linux: Ten years later. In Proc. of
the sixteenth international conference on Architectural support for programming languages and operating
systems, 2011, pp. 305-318.

[4]. Mutilin V., Novikov E., Khoroshilov A. Analysis of typical errors in Linux OS drivers (in Russian),
Proceedings of the Institute for System Programming of the Russian Academy of Sciences, vol. 22, pp.
349-374, 2012.

[5]. Novikov E.M. Evolution of the Linux OS kernel (in Russian). Proceedings of the Institute for System
Programming of the Russian Academy of Sciences, vol. 29, no. 2, pp. 77-96, 2017.

[6]. Lu L., Arpaci-Dusseau A.C., Arpaci-Dusseau R.H., Lu S. A study of Linux file system evolution. ACM
Transactions on Storage (TOS), vol. 10, no. 1, pp. 1-32, 2014.

[7]. Tan L., LiuC,, Li Z., Wang X., Zhou Y., Zhai C. Bug characteristics in open source software. Empirical
software engineering, vol. 19, pp. 1665-1705, 2014.

[8]. Xiao G., Zheng Z., Yin B., Trivedi K.S., Du X., Cai K.-Y. An empirical study of fault triggers in the Linux
operating system: An evolutionary perspective. IEEE Transactions on Reliability, vol. 68, no. 4, pp. 1356—
1383, 2019.

[9]. Kernel.org. Bugzilla. Available at: https://bugzilla.kernel.org, accessed Sep. 14, 2023.

[10].Melo J., Flesborg E., Brabrand C., Wasowski A. A quantitative analysis of variability warnings in Linux.
In Proc. of the Tenth International Workshop on Variability Modelling of Software-intensive Systems,
2016, pp. 3-8.

[11].Hoang T., Lawall J., Tian Y., Oentaryo R.J., Lo D. PatchNet: Hierarchical deep learning-based stable
patch identification for the Linux kernel. IEEE Transactions on Software Engineering, vol. 47, no. 11, pp.
2471-2486, 2019.

[12].Tian Y., Lawall J., Lo D. Identifying Linux bug fixing patches. In Proc. of 2012 34th international
conference on software engineering (ICSE). IEEE, 2012, pp. 386-396.

[13].Acher M., Martin H., Pereira J.A., Blouin A., Khelladi D.E., Jezequel J.-M. Learning from thousands of
build failures of Linux kernel configurations. Ph.D. dissertation, Inria; IRISA, 2019.

[14].Levenshtein V.I. Binary codes with correction of dropouts, insertions and character substitutions (in
Russian). Reports of the Academy of Sciences, vol. 163, no. 4. Russian Academy of Sciences, 1965, pp.
845-848.

[15]. Staroletov S. M. Researching the most common bugs in the Linux kernel by analysing commits in the git
repository (in Russian). System Administrator, vol. 4(197), pp. 73-77, 2019 Awvailable at:
http://samag.ru/archive/article/3859, accessed Sep. 14, 2023.

[16]. Staroletov S. A survey of most common errors in Linux kernel. SYRCoSE Poster session, 2017.

239

https://bugzilla.kernel.org/
http://samag.ru/archive/article/3859

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242.

[17].Hann M. Towards an algorithmic methodology of lemmatization. Bulletin Association for Literary and
Linguistic Computing, vol. 3, no. 2, pp. 140-150, 1975.

[18].Categorial Variation Database (version 2.1). Awvailable at: https:/github.com/nizarhabashl/catvar,
accessed Sep. 14, 2023.

[19].Manning C.D., Surdeanu M., Bauer J., Finkel J. R., Bethard S., McClosky D. The Stanford CoreNLP
natural language processing toolkit. In Proc. of 52nd annual meeting of the association for computational
linguistics: system demonstrations, 2014, pp. 55-60.

[20].Class StanfordCoreNLP. Available at:
https://nlp.stanford.edu/nlp/javadoc/javanip/edu/stanford/nlp/pipeline/StanfordCoreNLP.html, accessed
Sep. 14, 2023.

[21].Salton G., Fox E. A., Wu H. Extended boolean information retrieval Communications of the ACM, vol.
26, no. 11, pp. 1022 1036, 1983.

[22].H. Steinhaus et al. Sur la division des corps mate riels en parties. Bull. Acad. Polon. Sci, vol. 1, no. 804,
p. 801, 1956.

[23].Ester M., Kriegel H.-P., Sander J., Xu X. et al. A density-based algorithm for discovering clusters in large
spatial databases with noise. KDD, vol. 96, no. 34, 1996, pp. 226-231.

[24].Ward J.H. Hierarchical grouping to optimize an objective function. Journal of the American statistical
association, vol. 58, no. 301, pp. 236-244, 1963.

[25].McKenney P.E. A Tour Through TREE_RCU's Grace-Period Memory Ordering. Available at:
https://www.kernel.org/doc/html/latest/RCU/Design/Memory-Ordering/Tree-RCU-Memory-
Ordering.html, accessed Sep. 14, 2023.

[26].McKenney P.E., Fernandes J., Boyd-Wickizer S., Walpole J. RCU usage in the Linux kernel: Eighteen
years later. ACM SIGOPS Operating Systems Review, vol. 54, no 1, pp. 47-63, 2020.

[27].Linux kernel guide. Writing kernel-doc comments. Available at: https://docs.kernel.org/doc-guide/kernel-
doc.html, accessed Sep. 14, 2023.

[28].Staroletov. S., Chudov R. An anomaly detection and network filtering system for Linux based on Kohonen
maps and variable-order Markov chains. In Proc. Conference of Open Innovations Association, vol. 32,
pp. 280-290, 2022. - EDN NNASCK.

[29].Linux kernel guide. Livepatch. Available at:
https://www.kernel.org/doc/html/latest/livepatch/livepatch.html, accessed Sep. 14, 2023.

[30].Linux kernel guide. Ftrace - Function Tracer. Available at:
https://www.kernel.org/doc/html/latest/trace/ftrace.html, accessed Sep. 14, 2023.

[31].Linux manual page. timer_create(2). Available at: https://man7.org/linux/man-
pages/man2/timer_create.2.html, accessed Sep. 14, 2023.

[32].Linux kernel guide. ktime accessors. Available at: https://www.kernel.org/doc/html/latest/core-
api/timekeeping.html, accessed Sep. 14, 2023.

[33].S. Boyd. Timekeeping in the Linux kernel. Available at:
https://elinux.org/images/0/0e/Timekeeping_in_the_Linux_Kernel_0.pdf, accessed Sep. 14, 2023.

[34].Linux kernel guide. Runtime locking correctness validator. Available at:
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html, accessed Sep. 14, 2023.

[35].Linux kernel guide. Checkpatch. Available at: https://www.kernel.org/doc/html/latest/dev-
tools/checkpatch.html, accessed Sep. 14, 2023.

[36].Linux kernel guide. BPF (Berkeley Packet Filter) Documentation. Available at:
https://www.kernel.org/doc/html/latest/bpf/index.html, accessed Sep. 14, 2023.

[37].Linux kernel guide. R. Davoli, M. Di Stefano, 2019. Berkeley Packet Filter: theory, practice and
perspectives (Doctoral dissertation, Master’s thesis, Universita di Bologna). Available at:
https://amslaurea.unibo.it/19622/1/berkeleypacketfilter_distefano.pdf, accessed Sep. 14, 2023.

[38].Google. Syzkaller. Available at: https://github.com/google/syzkaller, accessed Sep. 14, 2023.

[39].Linux kernel guide. RCU Torture Test Operation. Available at:
https://www.kernel.org/doc/html/latest/RCU/torture.html, accessed Sep. 14, 2023.

[40].Lawall J., Muller G. Automating Program Transformation with Coccinelle. In Proc. of NASA Formal
Methods Symposium, pp. 71-87, 2022.

[41].Serrano L., Nguyen V.A., Thung F., Jiang L., Lo D., Lawall J., Muller G. SPINFER: Inferring Semantic
Patches for the Linux Kernel. In Proc. of 2020 USENIX Annual Technical Conference (USENIX ATC
20), pp. 235-248, 2020.

[42].Linux kernel guide. Kernel Samepage Merging. Available at:
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html, accessed Sep. 14, 2023.

240

https://github.com/nizarhabash1/catvar
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/StanfordCoreNLP.html
https://www.kernel.org/doc/html/latest/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html
https://www.kernel.org/doc/html/latest/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html
https://docs.kernel.org/doc-guide/kernel-doc.html
https://docs.kernel.org/doc-guide/kernel-doc.html
https://www.kernel.org/doc/html/latest/livepatch/livepatch.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://man7.org/linux/man-pages/man2/timer_create.2.html
https://man7.org/linux/man-pages/man2/timer_create.2.html
https://www.kernel.org/doc/html/latest/core-api/timekeeping.html
https://www.kernel.org/doc/html/latest/core-api/timekeeping.html
https://elinux.org/images/0/0e/Timekeeping_in_the_Linux_Kernel_0.pdf
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html
https://www.kernel.org/doc/html/latest/dev-tools/checkpatch.html
https://www.kernel.org/doc/html/latest/dev-tools/checkpatch.html
https://www.kernel.org/doc/html/latest/bpf/index.html
https://amslaurea.unibo.it/19622/1/berkeleypacketfilter_distefano.pdf
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/latest/RCU/torture.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html

Craponero C.M., CrapooiitoB H.A., ['onosreB H.A. AHann3 akTyanbHbIX OMIKOOK B siApe Linux myTem kmactepusaiuu cooduieHunii 0o
WCTIpaBIeHUsX B git-penozuropun. Tpyost UCIT PAH, Tom 35, Beim. 3, 2023 1., c1p. 215-242.

[43].Lameter C. Slab allocators in the Linux Kernel: SLAB, SLOB, SLUB. LinuxCon/Diisseldorf, 2014.
Available at: https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf, accessed Sep.
14, 2023.

[44].Linux kernel guide. Kernel Memory Leak Detector. Available at:
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html, accessed Sep. 14, 2023.

[45].Linux kernel guide. Kernel Electric-Fence (KFENCE). Available at: https://docs.kernel.org/dev-
tools/kfence.html, accessed Sep. 14, 2023.

[46].Linux kernel guide. Transparent Hugepage Support. Available at:
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html, accessed Sep. 14, 2023.

[47].Linux kernel guide. DAMON: Data Access MONitor. Available at:
https://docs.kernel.org/mm/damon/index.html, accessed Sep. 14, 2023.

[48].Linux kernel guide. Concepts overview. Available at: https://www.kernel.org/doc/html/latest/admin-
guide/mm/concepts.html, accessed Sep. 14, 2023.

[49].Corbet J. Clarifying memory management with page folios. Available at:
https://lwn.net/Articles/849538/, accessed Sep. 14, 2023.

[50].Linux kernel guide. The Kernel Address Sanitizer (KASAN). Available at:
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html, accessed Sep. 14, 2023.

[51].Google. Kernel sanitizers. Available at: https://github.com/google/kernel-sanitizers, accessed Sep. 14,
2023.

[52].Linux kernel guide. Deadline Task Scheduling. Available at:
https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html, accessed Sep. 14, 2023.

[53].Linux kernel guide. CFS Scheduler. Available at:
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html, accessed Sep. 14, 2023.

[54].Linux kernel guide. Scheduler Domains. Available at:
https://www.kernel.org/doc/html/latest/scheduler/sched-domains.html, accessed Sep. 14, 2023.

[55].Menage. P. Linux kernel guide. Control Groups. Available at:
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html, accessed Sep. 14, 2023.

[56].Linux kernel guide. Real-Time group scheduling. Available at:
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html, accessed Sep. 14, 2023.

[57].Linux kernel guide. rfkill - RF kill switch support. Available at: https://docs.kernel.org/driver-
api/rfkill.html, accessed Sep. 14, 2023.

[58].Linux kernel guide. Using GPIO Lines in Linux. Available at:
https://www.kernel.org/doc/html/latest/driver-api/gpio/using-gpio.html, accessed Sep. 14, 2023.

[59].Bluetooth. Core Specification 5.4, 2023. Available at:
https://www.bluetooth.com/specifications/specs/core-specification-5-4/, accessed Sep. 14, 2023.

[60].Linux kernel guide. Distributed Switch Architecture (DSA). Available at:
https://docs.kernel.org/next/networking/dsa/dsa.html, accessed Sep. 14, 2023.

[61].Linux kernel guide. Linux generic IRQ handling. Available at:
https://www.kernel.org/doc/html/latest/core-api/genericirg.html, accessed Sep. 14, 2023.

[62].Barham P., Dragovic B., Fraser, et al. Xen and the art of virtualization. ACM SIGOPS operating systems
review, vol. 37 no. 5, 164-177, 2013.

[63]. Arpaci-Dusseau R.H., Arpaci-Dusseau A.C. Operating systems: Three easy pieces. Arpaci-Dusseau
Books, LLC, 2018. Available at: https://pages.cs.wisc.edu/~remzi/OSTEP/vm-tlbs.pdf, accessed Sep. 14,
2023.

[64].Li S.W.,, Li X., Gu R., Nieh J. Hui J.Z. A secure and formally verified Linux KVM hypervisor. In Proc. of
2021 IEEE Symposium on Security and Privacy (SP), pp. 1782-1799, 2021.

[65]. Constantinescu C. AMD EPYC™ 7002 series—a processor with improved soft error resilience. In Proc. of
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks-
Supplemental VVolume (DSN-S), pp. 33-36, 2021.

[66].Linux. Work-arounds for many known PCI hardware bugs. Available at:
https://elixir.bootlin.com/linux/latest/source/drivers/pci/quirks.c, accessed Sep. 14, 2023.

[67].Linaro. The Devicetree Specification. Current Release. Available at:
https://www.devicetree.org/specifications/, accessed Sep. 14, 2023.

[68].Linux kernel guide. Linux and the Devicetree. Available at:
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html, accessed Sep. 14, 2023.

[69].Linux manual page. vdso(7). Available at: https://man7.org/linux/man-pages/man7/vdso.7.html,
accessed Sep. 14, 2023.

241

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html
https://docs.kernel.org/dev-tools/kfence.html
https://docs.kernel.org/dev-tools/kfence.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://docs.kernel.org/mm/damon/index.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html
https://lwn.net/Articles/849538/
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://github.com/google/kernel-sanitizers
https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-domains.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html
https://docs.kernel.org/driver-api/rfkill.html
https://docs.kernel.org/driver-api/rfkill.html
https://www.kernel.org/doc/html/latest/driver-api/gpio/using-gpio.html
https://www.bluetooth.com/specifications/specs/core-specification-5-4/
https://docs.kernel.org/next/networking/dsa/dsa.html
https://www.kernel.org/doc/html/latest/core-api/genericirq.html
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-tlbs.pdf
https://elixir.bootlin.com/linux/latest/source/drivers/pci/quirks.c
https://www.devicetree.org/specifications/
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://man7.org/linux/man-pages/man7/vdso.7.html

Staroletov S.M., Starovoytov N.A., Golovnev N.A. Analyzing hot bugs in the Linux kernel by clustering fixing commit messages. Trudy ISP
RAN/Proc. ISP RAS, vol 35, issue. 3, 2023., pp. 215-242.

[70].Linux kernel guide. Scalable Vector Extension support for AArch64 Linux. Available at:
https://www.kernel.org/doc/Documentation/arm64/sve.txt, accessed Sep. 14, 2023.

Ungpopmayusi 06 aemopax / Information about authors

Huknra Anexcannposua CTAPOBOUWTOB — marucTpaHT M acCHCTEHT Kadeaphl MPUKIaTHON
Marematuky. Cdepa HaydHBIX HHTEPECOB: KIIACTepHU3alysl, aHAIN3 TEKCTOB.

Nikita Alexandrovich STAROVOYTOV - master student and assistant at the department of Applied
Mathematics. Research interests: clusterization, text analysis.

Huxonait Augpeesnu 'OJIOBHEB — maructpanT kadenpsl npukiagHoit marematuku. Cdepa
HaY4YHBIX HHTEPECOB. aHAIIU3 TeKCTOB, JVM.

Nikolay Andreevich GOLOVNEV — master student at the department of Applied Mathematics.
Research interests: text analysis, JVM.

Cepreit Muxaitnosua CTAPOJIETOB — xannuaat ¢pu3nko-MaTeMaTHYECKUX HayK, HoieHT. Cdepa
HAY4YHBIX MHTEpecoB: (GopmanbHas Bepudukamus, model checking, kubepdusnueckue cucremsi,
OTIEPAIIMOHHBIC CHCTEMBI.

Sergey Mikhailovich STAROLETOV - Candidate of Physical-Mathematical Sciences (PhD),
associate professor (docent). Research interests: formal verification, model checking, cyber-physical
systems, operating systems.

242

https://www.kernel.org/doc/Documentation/arm64/sve.txt
https://leader-id.ru/314394/
https://leader-id.ru/314394/

