TPYADI

MHCTUTYTA CACTEMHOIO
nPOrPAMMUPOBAHUA PAH

PROCEEDINGS OF THE INSTITUTE
FOR SYSTEM PROGRAMMING OF THE RAS

ISSN Print 2079-8156 MHCTUTYT CUCTEMHOIO
Tom 37 Bbinyck 5 nporpamMmmMmupoBaHus
nm. B.l. UBaHHnKoBa PAH

ISSN Online 2220-6426

Volume 37 Issue 5 MockBa, 2025 uen

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)

Tpyabl UHcTUTYTa cuctemMHoro nporpammmpoBaHmnsa PAH
Proceedings of the Institute for System Programming of the RAS

Tpynst UCII PAH — 570 u3nanue c

JIBOMHOM aHOHUMHOM CHUCTEMON

peLeH3UPOBaHNUs, MyOIHKYIOIee HayYHbIE

CTaThH, OTHOCSIIHECS KO BCEM 00JIacTsIM

CHCTEMHOT0 NPOrpaMMHPOBaHUS,

TEXHOJIOTUI TPOrpaMMHUPOBAHUS U

BBIYHMCIUTENHHON TeXHUKH. L{enbro

W3JaHUs SIBIsIETCsl POPMHUPOBAHUE HAYYHO-

WH(POPMAITMOHHOH CpeJIbl B ATUX O0JIACTSIX

MyTeM ITyOJIMKAIIUN BEICOKOKAYECTBEHHBIX

cTaTell B OTKPBITOM JIOCTYIIE.

W3nanve npenHasHayeHo s

HCCIIEN0BATENEH, CTYIEHTOB U

ACIHMPAHTOB, a TaK)Ke MPaKTUKOB. OHO

OXBATBIBACT MIMPOKUN CHEKTP TEM,

BKJIIOYAsl, B YACTHOCTH, CIEAYIOIIHE:

e OIEpalOHHBIC CHCTEMBI;

® KOMIIWIATOPHBIEC TEXHOIOTHH;

e 0a3pl JAaHHBIX ¥ HHPOPMAITMOHHEIE
CHCTEMBI;

e TapaUICIbHBIC U PACTIPEICICHHBIC
CHCTEMBI;

e aBTOMATHU3UPOBAHHAS pa3padoTKa
IpOrpaMM;

e BepuduKaLys, BaIUAALUSI U
TECTUPOBAHUE;

e CTaTWYCCKHI M JUHAMHYCCKHI aHaJIN3;

e 3amuTa U odecreyeHre 0e30MacHOCTH
I10;

® KOMITBIOTEPHBIC aJITOPUTMBI;

® JICKYCCTBEHHBII MHTEIEKT.

KypHan uznaercst Mo 0JIHOMYy TOMY B TOJI,

IIECTh BBIMYCKOB B KaXJIOM TOME.

[MoaepkuBaeTCsl OTKPBITHINA JOCTYIT K

COJICPIKAHUIO U3JIaHHS, 00eCTIeUrBast

JOCTYITHOCTb PE3yJIbTATOB HCCIICIOBAHUN

JUTs1 OOIIIECTBEHHOCTH U MOJIICPIKUBAS

ria00aabHBIA OOMEH 3HAHHUSIMH.

Tpyast UCII PAH pedepupyrorcs n/umu

WHJICKCUPYIOTCS B:

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by publishing
high quality articles on open access.

The journal is intended for researchers,
students, and practitioners. It covers a wide
variety of topics including (but not limited
to):

Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design Tools.
Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

;Sle @ ULRICHS\WEE

s seonce N Horldcat

OpenDOAR
EVBER[ENINKA DO/ b
eI.IBRARY.R BQAR

éos e‘

VJIK004.45

Peakonaerns

I'naBHBIA pegakTop - ABeTUCIH APYTIOH
Wiixanosud, akagemMuk PAH, nokrop ¢puzuko-

MaTeMaTHYecKuX Hayk, npogeccop, ICII PAH
(Mocksa, Poccuiickas denepars)

3amecTUTENH IJIABHOTO peaakTopa — Kaprios
Jleonnn Esrensesud, n.1.H., UCIT PAH (Mockga,
Poccuiickast deneparius)

YneHbl peaKosijieruu

Boponkos Anapeii AHATOILEBHY, TOKTOP (QU3HKO-
MaTeMaTHYeCKUX HayK, podeccop, Y HUBEPCHUTET
Mamndecrepa (Mandecrep, BeankoOpuranust)
Bupouukaiite Mpuna boHaBeHTYpOBHA,
npoceccop, JOKTOp HU3MKO-MATEMATHISCKHX HAYK,
WHetuTyT cucteM HHPOPMATHKH MM. aKaJleMUKa
A.II. EpmoBa CO PAH (HoBocubupck, Poccust)
KonnoB Urops BaaanmMupoBuy, KaHauaaT
(U3MKO-MaTEMaTHIECKUX HayK, TeXHHUIECKHUN
ynusepcuter Bensl (Bena, ABctpus)
JlacroBenxuii Anekceii JlecoHu10BUY, TOKTOp
(bU3HMKO-MaTeMaTHYECKUX HayK, npodeccop,
Vuusepcurer [Jyonuna ([Jyomun, Upnanaus)
JlomasoBa Mpuna AjekcaHpoBHA, TOKTOP
(bu3HMKO-MaTeMaTHYECKUX HayK, podeccop,
HanmonanbHbli nccnenoBaTeNbCKUN YHUBEPCUTET
«BpIcmas mkona skoHoMUKI» (MockBa,
Poccuiickas ®eneparms)

HosukoB Bopuc AcenoBud, TOKTOp GpHU3UKO-
MaTeMaTH4YecKuX Hayk, npodeccop, CaHkT-
[etepOyprekuii rocynapcTBEHHBINH YHUBEPCUTET
(Canxr-IlerepOypr, Poccust)

[lerpenko Asexcanap Pe1opoBuy, TOKTOP HAYK,
HUccnenoBarenbckuii uHCTUTYT MOHpeans
(Monpeann, Kanana)

Yepnbix Aujipeii, TOKTOp (HU3UKO-MaTEMAaTHISCKUX
Hayk, npogeccop, HayuHo-uccienoBarenbckuit
uentp CICESE (Ducenana, baxa Kanudophus,
Mekcuka)

IlIvcrep Accad), 1okTOp HUMKO-MATEMATHIECKUX
Hayk, npodeccop, Texuron — M3pannbekuit
TexHonornyeckuit nHctuTyT Technion (Xaiida,
Wzpaun)

Anpec: 109004, r. Mocksa, yn. A. ColKeHHUIIbIHA,
oM 25.

Tenedon: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caiir: http://www.ispras.ru/proceedings/

Editorial Board

Editor-in-Chief - Arutyun I. Avetisyan,
Academician of RAS, Dr. Sci. (Phys.—Math.),
Professor, Ivannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Deputy Editor-in-Chief — Leonid E. Karpov, Dr.
Sci. (Eng.), Ivannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Editorial Members

Igor Konnov, PhD (Phys.—Math.), Vienna
University of Technology (Vienna, Austria)
Alexey Lastovetsky, Dr. Sci. (Phys.—Math.),
Professor, UCD School of Computer Science and
Informatics (Dublin, Ireland)

Irina A. Lomazova, Dr. Sci. (Phys.—Math.),
Professor, National Research University Higher
School of Economics (Moscow, Russian Federation)
Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor,
St. Petersburg University (St. Petersburg, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research
Institute of Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel
Institute of Technology (Haifa, Israel)

Andrei Tchernykh, Dr. Sci., Professor, CICESE
Research Centre (Ensenada, Baja California,
Mexico).

Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The
A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the RAS (Novosibirsk, Russian
Federation)

Andrey Voronkov, Dr. Sci. (Phys.—Math.),
Professor, University of Manchester (Manchester,
United Kingdom)

Address: 25, Alexander Solzhenitsyn st., Moscow,
109004, Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings

© Uucruryr Cucremuoro IIporpammupoBanus um. B.I1. ViBanaukosa PAH, 2025

http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
https://www.ispras.ru/persons/karpov.php
https://www.ispras.ru/persons/karpov.php
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://usuario.cicese.mx/~chernykh/
http://assaf.net.technion.ac.il/
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://usuario.cicese.mx/~chernykh/
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/

Tpyasl Huctutryra Cuctemuoro IlporpaMmmMmupoBanus

ConepxaHnue

Knacrepuzauus ycnyr pacnpeaei€HHOM CEeTH, B KOTOPOH XOCThI MOT'YT BBIIOJIHSTh
(GYHKUIMIO KOMMYTAIK COOOIICHHH.
bypoonos U.b., Eemywenxo H.B., Kocaues A.C., I[lonomapenxo B.H.c.cccccoveinnnnn. 7

[MpumeHenne cyQpPUKCHBIX KOJOB B MOAYJILHOW METPHKE JJIsl PEIICHHS 3a1a49H
KJIACTepU3alluy U 33J1a4uu roucka k-cocenei.
Hlapanog, A.P., J{ABBIOOE B.A.ccccociiviiiiiiiiii ittt 33

I'eHepalius KOMIIAKTHBIX 6a3MCOB CHCTEMBI OCTATOYHBIX KJIACCOB.
JIVYEHKO B.B., BAOCHKO M. ..ottt 43

[Ipenckazanue BpeMeHHU MpreMa-rnepeaadu ¢ UCIOJIb30BaHUEM METOIOB MAIIIMHHOTO
oOydeHusl.

Cmenanos U.A., [lonomapenxo P.E., I'onosaw /].P., Ilokuovko A.1O.,

TCIBMAH A ..ottt 53

OxkpalllMBaHNEe CUMBOJIBHBIX TPa()OB MAMSTH JIJIS BBISBICHUS OIIMOOK, CIICIIU(PUUHBIX JIJIS
DRM-npaiiBepoB Linux.
Opnosa EM., Bacunves A.A., IIempog O.M.cccovceeiiiiiiiiiiiiiieniee e 67

OO0HapyKeHHUe aTak ¢ UCIoJib3oBaHueM SQL-UHBEKIIHIA TT0 CETEBBIM KYPHAJIaM C
MOMOIIBI0 METOJIOB MAITHHHOTO O0YYCHUSI.
Januna M.A., Kanwyx H.P., Pycanoge M.A., Tumogheea E.@.cccocvvciicieniicnnnnn. 81

ANTopuTM AMHAMHYECKOH aganTuBHOH Oydepusanun naketoB (DAPB) st noBsieHus
pou3BoANTEIHLHOCTH Service Mesh Ha ocHoBe eBPF.
Iicambone Tenxe X-/[., ANeKCAHOPOB L. B.ccceveeiiiiiiiiieiiiiiiieee, 93

Hacrpotika si3p1k0BOH Mozenu st 0€301macHoOl reHepauy Ko/a.
Hlatixenucnamos /1.C., Bapeya M.C., Cémxun A.C., Poeos O.1O............... 111

WHTepakTBHAs reHepanus koja Ha ocHoBe LLM: aMmupuueckas oreHka.
Hlatixenucnamos /1.C., [[pobwviwescrkuii M.J[., benesanyes A.A. 123

ITpumenenue nncrpymenta SVAN cTaTH4YecKoro aHaJIM3a ONHUCAHUI anmapaTypsl s
BepU(UKALINH OTKPBITHIX TECTOBBIX HAOOPOB.
Tanosa C.M., Cmono6 C.A., BOTKOBA M. M.ccooveeeeeiiiiiiiiieiieee e 131

[IpoexTrpoBanue HHCTpYMEHTA JUTS peakToprHra 00BHEKTHO-OPUEHTUPOBAHHOTO KOJIa C
MCIIOJIb30BaHUEM pacueTa METPHK.
Kopsnuxoe A.O., [Jayyr H.H.c.cccooiiviiiiiiiiiiiiccee e 143

IToBbITIIEHE TPON3BOANTELHOCTH aHAIA3a B 00pabOTKH N300pakeHui Ha miaThopme
RISC-V ¢ nomomuisro Lichee Pi 4A.
Yepenanos H. U., Cmenuna H. O., Huxughopos U. B............ccccoovvvnnenn. 157

I'enepanus u otnanka Java-koja ¢ UCIIOIB30BaHUEM OOJIBIINX SI3BIKOBBIX MOJIENICH Ha
OCHOBE aCCOLMAaTUBHOMN PEKYPPEHTHOM IaMsATH.
Bacunesckuii B.U., ANEKCAHOPOB [B.........cccoouiiiiiiiiiiiiiiiet ettt 173

Moaupukanus anropurma Cmurta-BarepMaHna Jis TOKaJILHOTO BHIPABHUBAHUS
TCHETHUYECKHX MOCIEI0BATEIBHOCTEH HA OCHOBE METO/Ia OKHA.
besyenosa E.C., [llupsiee EM., Kyuepos H.H., babenko M.I.ccccoevvueiineiiniinnnn, 183

Pa3paboTka 3anuThl OOJBIIMX S3BIKOBBIX MOJICIICH OT COCTSA3ATEIbHBIX aTaK B CIICHAPHU
YEPHOTO SIUKa Ha OCHOBE NepedpasupoBaHusl.
Anexceesckas U.C., Xauboyanun [.B., TypOaKo8 [FO..........ccccovvviiiiiiiiiiiiiiiniieiieneens 195

Ha6op tabmmuneix ganasix RF-200 u TectupoBanie MponU3BOIUTEIFHOCTH U3BIICUSHUS
(haKkTOB U3 PYCCKOS3BIYHBIX TAOJHII.
JTopooHbix H.O., FOPUH A.FO. ..c.oooovviiiiiiiiii ittt sttt et 205

CpaBHHTETHHBIN aHATTN3 METOI0B ITPHOPUTE3ANH TPEOOBAHNUH TSI BEO-TIPHITOKCHIH
MEPCOHATM3UPOBAHHOTO TUTAHUS.
Mootceco6a A.C., JIGHUH B.B..............cccccoii 225

Proceedings of the Institute for System Programming of the RAS

Table of Contents

Clustering services of distributed networks in which hosts can perform message switching
functions.
Burdonov I.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N.......c.cccccvvevirrrnnnne 7

Application of suffix codes in modular metrics to solve clustering problem and k-
neighbor search problem.

Sharapov A.R., DAVYAOV V.A. ..o 33
Generating compact residue number systems bases.
LUtSENKO V.V., BADENKO MGttt ettt ettt s e e e s et e s e e e e sneraeeennnres 43

RTT prediction using offline and online learning.
Stepanov L.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y.,

GRIMAN ALl ..ttt b e b et n e nre e 53
Coloring symbolic memory graphs to detect DRM-specific errors in Linux drivers.
Orlova E.M., Vasilyev A.A., Petrov O.M........ccccovivvniieniiree e 67

Detection of SQL injection attacks through the network logs using machine learning
methods.
Lapina M.A., Kapshuk N.R., Rusanov M.A., Timofeeva E.F. 81

The dynamic adaptive packet buffering (DAPB) algorithm for service mesh performance
enhancement based on eBPF.

Djambong Tenkeu H-D., AleXxandrov D.V.ccccoeiiiiiiiiiieeseeeees e 93
Tuning LLM in secure code generation.

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.YU.cccecvvveveiecieniennnns 111
LLM-based interactive code generation: empirical evaluation.

Shaikhelislamov D.S., Drobyshevskiy M.D., Belevantsev A.A.........cccocevvvveveneaiennnnnns 123
Application of SVAN static analysis tool on open RTL benchmarks.

Panova S M., Smolov S.A., VOIKOVA M.M...........uuueueuereiereriririririiiriiiniiiisisiessisnssensn. 131
Designing refactoring tool for object-oriented code based on metrics.

Korznikov A.O., DatSUN NNooiuiiie ittt e s e e st e e s s sban e e eares 143

Improving image analysis and processing performance on the RISC-V platform with
Lichee Pi 4A.
Cherepanov N. 1., Stepina N. O., NiKiforov 1. V. ..o 157

Generating and debugging Java code using LLMs based on associative recurrent memory.
Vasilevskiy V.I., AleXandrov D.V.. ...t 173

Modification of the Smith-Waterman algorithm for local alignment of genetic sequences
based on the window method.
Bezuglova E.S., Shiriaev E.M., Kucherov N.N., Babenko M.G.c.ccccceeviviverinninnnnnns 183

Developing defending large language models against adversarial attacks in a black-box
scenario based on paraphrasing.

Alekseevskaia I.S., Khaibullin D.V., Turdakov D.YU.......ccccoooeiiininiiiinencneeeee 195
Testing the performance of fact extraction from Russian-language tables.
Dorodnykh N.O., YU ALYU. ..ottt sttt enee e 205

Comparative analysis of requirements prioritization methods for personalized nutrition
web applications.
Mozhegova A.S., LANIN V.V, ..ottt enee e 225

Tpyowt UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-1 EOC-H

KnacTtepusauusa ycnyr pacnpeneriéHHON ceTu,
B KOTOPOW XOCTbl MOFyT BbINONMHATb PYHKLUIO
KOMMYyTaLuun coobLeHnn

Y U. B. Bypoonos, ORCID: 0000-0001-9539-7853 <igor@ispras.ru=
12 H. B. Esmywenxo, ORCID: 0000-0002-4006-1161 <evtushenko@ispras.ru>
L A. C. Kocaues, ORCID: 0000-0001-5316-3813 <kos@ispras.ru=
Y B. H. I[lonomapenxo, ORCID: 0009-0002-2387-2760 <vera@ispras.ru>

Y Unemumym cucmemmozo npozpammuposanus PAH um. B.I1. Heannuxosa,
109004, Poccus, e. Mocksa, ya. A. Conxncenuysvina, 0. 25.

2 HayuonanvHulil ucciedo6amenbckuii yuueepcument « Bolcuuds wKona 3KOHOMUKILY,
101000, Poccus, . Mockea, yn. Macnuykas, 0. 20.

AunHotaumsi. CTaThsi SBISIETCS NPOJODKCHHEM INPEABIAYINEH CTaThbU aBTOPOB, B KOTOPOH CTPOUTCS
abcTpaKTHas MOJIENb PACIIPEICIICHHON CeTH, COAepIKaIeil TOIBKO XOCTB M KOMMYTAaTOPbI. XOCTHI IPEJIaratoT
MOJIB30BATEISIM TAKEThl OIMPEICTCHHBIX YCIyTr (CepBHCOB), COOOMICHUS (3alpOCHI) MEXKIY XOCTaMH
HEPEeChUIAIOTCS Yepe3 MPOMEXYTOUYHBIC Y3JIbl MO MpaBUJIaM KOMMYTAIMH, U HACTPOWKA Y3JIOB OHpEENsieT
MHOJKECTBO IyTeil OT XOCTa K XOCTY, 110 KOTOPBIM OyIyT mepechliathes nakeTsl. CHTyanust MOJEITHPYETCs C
UCIIOb30BaHueM rpada Qusnuecknx CBs3ei, BEpIIMHAMH KOTOPOTO SIBISIIOTCS XOCTBI M KOMMYTaTODBI,
NpUYeM KaKAbIH XOCT (Kak M KOMMYTAaTop) COJIEp)KMT CHCTeMy MpaBui KomMmyranuu. OOcyxmaercs
BO3MOYXHOCTb IOBBIIIEHNS 3()(HEKTUBHOCTH PabOTHI CETH HAa OCHOBE HCIIOJIL30BAaHUS HH(POPMALIUH O KJIaccax
YCIIyT, Ha KOTOpbIC pa30MBaeTCs MHOXECTBO BCEX YCIYT, MPEIOCTABISIEMBIX XOCTaMH ceTH. Ha ocHOBe
MHGOPMAIIMH O KiIaccax yCIyT pacCMaTpUBAIOTCS 3a/la4yM Mepeadyn cOooOLIeHHl, HacTpoiika, B TOM 4HCIe
MHKPEMEHTAJIbHAs, PacIPECIICHHONW CeTH NPH Pa3IMYHbIX H3MEHEHHUSX MapaMeTPOB CETH.

KnroueBble ci0Ba: pacrpefeieHHasl CeTh;, XOCTbI; KOMMYTATOPBI, KIAcChl yCiyr; (MHKPEMEHTAJIbHAst)
HACTpOWKa CeTH.

Jas uutupoBanus: bypnonos U.b., Esrymenko H.B., KocaueB A.C., [Tonomapenko B.H. Knacrepuzaus
YCIIYT pacnpenenEéHHOM CeTH, B KOTOPOI XOCTHI MOTYT BBIIOHATH (YHKIHIO KOMMYTAIUU COOOIICHHUA. Tpyapl
WCII PAH, Tom 37, BB 5, 2025 1., cp. 7-32. DOI: 10.15514/ISPRAS-2025-37(5)-1.

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

Clustering Services of Distributed Networks
in Which Hosts Can Perform Message Switching Functions

11.B. Burdonov ORCID: 0000-0001-9539-7853 <igor@ispras.ru>
12 N.V. Yevtushenko ORCID: 0000-0002-4006-1161 <evtushenko@ispras.ru>
L AS. Kossatchev ORCID: 0000-0001-5316-3813 <kos@ispras.ru>
1V. N. Ponomarenko, ORCID: 0009-0002-2387-2760 <vera@ispras.ru>

LInstitute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
2 National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000, Russia.

Abstract. The paper continues the previous work of the authors where an abstract model of a distributed
network containing only hosts and switches has been developed. Hosts offer certain services to users; messages
(requests) between hosts are forwarded through intermediate nodes according to switching rules, and the node
configuration determines a set of paths from host to host along which packets are forwarded. The situation is
modeled using a graph of physical connections where the graph nodes are hosts and switches, and each host
(like a switch) contains a system of switching rules. The possibility of increasing the efficiency of the network
is based on using of information about service classes, into which the set of all services provided by network
hosts is divided. Based on the information about service classes, the tasks of message transmission,
(incremental) node configuration are considered depending on various changes of network parameters.
Keywords: distributed network; hosts, switches; service classes; (incremental) network configuration.

For citation: Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of
distributed networks in which hosts can perform message switching functions. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025, pp. 7-32 (in Russian). DOI: 10.15514/ISPRAS-2025-37(5)-1.

1. BeedeHue

JlanHast cTaThs SABISAETCS TPOAODKCHHEM cTathi [1], B KOTOPO# aBTOPHI CTPOST aGCTPaKTHYIO
MoJieNb pacrpeneneHHol ceTn. CeTh COJEPIKUT TOJIBKO XOCTBI, KOTOPbIE MPEJIararoT MaKeThl
OTIpe/IeNICHHBIX YCIYT (CEPBUCOB), 1 COOOMICHUS (3aIPOCHI) MEXK Ty KOTOPBIMH MIEPECHITAIOTCS Yepes3
MPOMEXYTOUYHbIE Y3kl (KoMMyTaTopbl). [10100HO TOMY, Kak 3TO HNPOUCXOJUT B OOJBIIUHCTBE
HpOrpaMMHO-KOHHUTypHpyeMBbIX ceTell [2-7] koMMyTaTop paboTaeT 1Mo mpaBHiIaM KOMMYTALHH,
KOTOpBIE ONPENENISIOT, KaKUM COCENHHUM Yy3JIaM TIEPEeCchUIAeTCsl TPHUHATOE KOMMYTAaTOPOM
cooOIIeHne B 3aBHCUMOCTH OT TOTO, OTKyAa OHO MPHUIUIO, ¥ OT BEKTOpa HapaMeTpoB B €ro
3arosioBke. Kak ciieicTBre, MHOXKECTBO IyTEeH OT XOCTa K XOCTY, 10 KOTOPEIM OYyT NepechlIaThCs
MIAKeTHI, OTPEJIeIIeTCs] HACTPOMKOH KOMMYTATOpOB. B KauecTBe MOJIeH TaKO CETH HCTIONIB3YeTCS
rpad ¢u3uYecKuX CBs3EH, BEPIIMHAMHU KOTOPOTO SIBJISIOTCS XOCThI U KOMMYTATOpbI, a pebpa
COOTBETCTBYIOT (U3MUECKMM CBSI3IM MEXJAy HHMMH. B o0meM ciydae XOCThl B TakoW ceTu
NPUHAMAIOT, 00pabaThIBAIOT M MOCHUIAIOT HMH(POPMAIMIO JPYTUM XocTaMm, HO B [1] MbI
IpeArosaraeM, 4To XOCT MOXKET BBINOJHATh Takke (YHKIUM KOMMYTAllMHM COOOLIEHHUH, T.e.
COJZIEPKHUT CUCTEMY ITPABHUI KOMMYTAINH I MIEPECHIIKH ITOTyYEHHOTO 3aIp0Cca/CO00IIECHHS, ECITH
JIaHHBIH XOCT HE MOXET ero o0paboTaTh MO KakuUM-TUOO MpuunHAM. B mporpamMmHO-
KOH(OUTYPHPYEMBIX CETSIX HAcTpPOWKa MpaBWI KOMMYTAallMd OOBIYHO OCYIIECTBIISETCS
crenuaIbHBIMU KOMIIOHEHTaMH ceTH, HanpuMep, SDN-KoHTposuiepaMu, 0IHaKoO B HAIIUX paboTax
MBI paccMaTpuBaeM BO3MOXKHOCTh CAMOHACTPOMKH KOMMYTAaTOPOB M XOCTOB, B 3aBUCHMOCTH OT
nepe/iaBaeMbIX 3aIllpOCOB, & TaKXKe 00CYXJIaeM WHKPEMEHTAIbHYIO HAaCTPOWKY NPH H3MEHEHHH
[apaMeTpOB CETH, B YaCTHOCTH, €€ TOIMOJIOTHH.

B pa6ote [1] obcyxnarorcs npoOieMbl, CBA3aHHbIC ¢ HE(YHKIHOHAIBHBIMU apaMeTpaMu TaKOM
pacrpeesieHHOW CeTH, a MMEHHO, OOCHUNCUMOCTbIHE00CmUdNCUMOCHs XOCTOB, 3AYUKIUBAHUE
COOOIIeHNH, nepespyska CETH COOOIICHHMSAMH, Hemacumadupyemocms, W BO3MOXKHOCTH

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

ONTHMU3AINN PAaCCMaTPHBAEMBIX NApaMETPOB CETH HAa OCHOBE HCIIOJIb30BAaHUs MH(pOpMAIH 00
ycIyrax/cepBucax, IpeloCTaBIsIeMbIX KaXJIbIM U3 XOCTOB.

JaHHast CTaThsl SIBJSACTCS PAa3BUTHEM HICH M alrOpuTMOB, MpeiokeHHBIX B [1]. B wactHoCTH,
00cyx/maeTcst BO3MOKHOCT TOBHIIIECHHS 3((HEKTUBHOCTH pabOTHI CETH Ha OCHOBE MCIIOJIb30BAHUS
uHpOopMaMK O KJIaccaX YCIyr, Ha KOTOpble pa30MBaeTcs MHOXECTBO BCEX YCIYT,
MpefoCTaBIsIeMBIX XocTaMu ceTd. Ha ocHoBe mH(opManum o Kimaccax yciayr pacCMaTpHBAIOTCS
3aJayd Tepedadd COOOILICHWH, HACTpPOiKa, B TOM YHCIIE WHKpEMEHTajJbHas (TIOBTOpHas |
YJacTHYHAsl) HACTPOMKA PACIPEIEICHHON CETH NIPH Pa3INYHBIX U3MEHEHHAX TapaMETPOB CETH.
Crpykrypa paboTsl crenyromas. B pasnenax 2 u 3 mpHBOIATCS HEOOXOMMMEBIC CBeneHus U3 [1],
Kacarollyecsl MpeajaraeMold MOJAENU pacrpelenéHHON ceT (paszgen 2) W mepenadd 1o CeTH
CoOoOILIeHN ABYX BHJOB: COOOIIEHUI YKa3aHHOMY XOCTY-IOJNy4aTelIr0o M COOOIIEHUH 3ampoca
YCIIYI/CEepBUCOB, MPEJOCTABISIEMBIX XOCTAMH C aBTOMAaTHYECKUM BBIOOPOM XOCTa, CIIOCOOHOTO
0Ka3aTh 3amparmBaeMyo ycayry (paszaen 3). B mocnenyromux pasgenax o0cyxaaercs, Kak MOXKHO
MOBBICUTB 3(QEKTUBHOCTH PAOOTHI CETH C UCIIOIB30BaHHU HHPOPMAIIMH O Kilaccax yciyr (paszaen
4). Ilepenada cOOOLICHHH B CETH € YIETOM KJIACCOB YCIIYT pacCMaTpuBaeTcs B pa3aeie 5, B paszene
6 oOcyxmaeTcs HACTPOIKa pPacHpeneNICHHOW CETH, M COOTBETCTBEHHO, B paszaeine 7 — IpoOIeMsl
WHKPEMEHTAJbHOH HACTpPOHKM (YHKIMOHHpPYIOIIEH ceTH. B pasmemax 4-7 onmcaHBl HIeH
npeiaraeMpIX arOPUTMOB; CaMH aJITOPUTMBI (KpOMe TeX, YTO NpUBEACHHI B [1] 1 coxpaHsroTCs
6e3 U3MEHEeHHI) BBIHECEHBI B IIPUIIOKCHHUE.

2. Modenb pacnpedenéHHol cemu

B kadecTBe MoOjenM pacrnpenenéHHON ceTu (manee, MPOCTO CETH) PACCMATPHBACTCS CBSI3HBIH
HEOPUECHTHPOBaHHBIN rpad 0e3 kpaTHbIX pEOEp U MeTellb, B KOTOPOM BEPIIMHBI — 3TO XOCTHI H
KOMMYTATOphl, a pébpa — KaHallbl CBS3U, [0 KOTOPHIM Tepeatorcst coobuienus. Pedpy {a, b}
COOTBETCTBYIOT JIB€ OPHEHTUPOBaHHbIC ayru ab u ba, BepiuuHs! a u b Ha3BIBAIOTCS coCeOHUMU.

B [1] npemnoxxena Mojiesb pacipeeiéHHOM CeTH, B KOTOPO# (YHKIIMIO KOMMYTAIIMU COOOIICHUI
BBITIOJHSOT KAaK KOMMYTATOPBI, TaK U XOCThl. COOOIIeHHE, TPUHITOE BEPIIMHON rpada OT COCeaHeH
BEPIIMHBI, TIEPEChLIACTCS APYroMy (KM TOMY K€ CaMOMY) COCEIY BEPIIMHBI. DTO OMpEAEIseTCs
TpaBUIaMU KOMMYTAIINH, KQXI0€ U3 KOTOPIX uMeeT Buj (P: &, S, b), rie a, S u b Bepurunst, npuaém
a u b coceanue ¢ S Bepmmubl (B rpade ects ayru as u Sh), P — mapaMeTpbl KOMMYTAI[HH KaK Ta
Y4aCcTh MAPaMETPOB COOOIIEHHMsI, KOTOpas OMpPEAeNsieT BBIOOp TOTO WIM WHOTO mpaBuia. Ecim
CoO0IIeHHe TMPUHATO BEPHIMHON S OT cocela & W IMapaMeTphl COOOIICHHS COOTBETCTBYIOT
mapamerpaM KOMMyTanuu P B mpaBmwie Buma (P: @, S, b), To 310 mpaBmio cpabareiBaeT, U
coobienue nepecbuiaercst coceny b. Byaem Ha3biBath cocena a npeduiecmeennurxom, a cocena b
npeemnukom. Mpl OymeM CcUMTaTh, 4YTO KOTJ@ BEpIIMHA S TIOJy4YaeT COOOIIEHHE OT
MpPeIIIECTBEHHHUKA &, UICHTU(DHUKATOP MPE/IICCTBCHHUKA & SBISICTCS HE IAPaMeTPOM COOOIICHUS,
a OTBETHBIM ITApaMeTPOM oreparopa npuéma coobuieHust B S. Takxke KOrja BepiluHa S MOChUIACT
coo0IeHne npeeMHuKy b, naentudukarop npeeMHnka b sBisieTcss He MapaMeTpoM COOOIICHUs, a
mapamMeTpoM OTIepaTopa MOCHIIKU COOOIICHHSL.

B naHHO# cTaThe MBI MPEANOJaraeM, 4To COOOLICHHEe He KIOHUPYETCs, TO €CTh MOXKET cpaboTaTh
TOJIBKO O/THO IIPABUJIO — HET ABYX IIPAaBUJI, OTJIMYAKOINUXCSA TOJBKO MOJIy4YaTCJIEeM b

KoMMyTaTop BBIIIONHSACT TONBKO (DYHKIHMIO KOMMYTAIMH COOOIICHHW, TOrAa Kak XOCT, KpoMe
3TOr0, TEHEPUPYET COOOIICHUS, lTepeJaBacMBble Jasiee IO CETH, IMEHHO XOCT SIBJISCTCSI KOHEYHBIM
MoJTyJaTesieM COOOIIeHUH.

[paBmwia KOMMYTallMM TOPOXIAIOT HyTH B rpade, MO KOTOPBIM IBUTAKOTCS COOOLICHHS,
CreHepHpOBaHHbIe xocTaMmu. IlyTh ai, @2, ..., @n, T€ @1 M 8n XOCTHI, MOPOXKAACTCS MPaBUIIAMHU
(p: a1, az, as), (p: az, as, a4), ..., (P: @n-2, @n-1, an).

CoobueHre MOXeT OBbITh HpeJHa3HAYeHO MO0 OMHOMY YKa3aHHOMY XOCTY, JTHOO «KakoMy-
HUOYIB» XOCTY, KOTOPBIA MOXET NPHHATH COOOIIeHHEe U 00paboTaTh 3ampoc, CoaepiKaluics B
coobuieHnu. B mepBoM cnydae ykaseiBaeTcs MICHTH(MHKATOP XOCTA-TIOJNYYaTeNls, a BO BTOPOM

9

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

cllyqae — UM yeiyeu, KOTOPYIO JOJDKEH 0Ka3aTh XOCT-IIOTydaTellb XOCTy-OTIIPaBUTEIO. B mepBom
ciaydae cooOIleHHe MpUHUMAeTcs Ha 00paboOTKy XOCTOM, WACHTH(HKATOP KOTOPOTO yKa3aH B
COOOLIEHUH KaK MIOCHTU(HKATOp MOJTydaTels, a BO BTOPOM Clydae — KaKMM-HHOYAb XOCTOM,
KOTOPBI MOJKET OKa3aThb 3alpalihBaeMyl0 yCIyry, HMs KOTOpOHl SIBIISiETCS MapamMeTpoM
cooOmieHus, Takoit xocT B [1] Ha3wIBalCS yenegpim XOCTOM Ul NaHHO# ycmyrd. st 3Toro B
Ka)KJJOM XOCT€ JIOJDKHO XPaHUTBHCSI MHOXKECTBO UMEH YCIIYT, KOTOPBIE ATOT XOCT MOYKET OKa3bIBaTh,
T.c. peaJM30BaHHBIX B HEM ycuyr. Ecnu BepiiwHa, MOJMyduBINAs cooOIIeHHE, SBISETCS
KOMMYTaTOpOM MJIM XOCTOM, KOTOPBII HE MOXKET OKa3aTh 3alpallliBaeMyl0 yCIyry, cooOlIeHHe
nepechuIaeTCs JANbIIE COrIACHO IpaBuilaM KOMMYTalUH.

Kaxxnoe coobuienne comepxut tui (uMst) cooOLIeHus 1 Habop mapameTpoB coodieHus. MbI Oyaem
NpeAIoJaraTh, 4YTo MpH Nepeiadye COOOMEHNU [0 CETH MOXKET MEHSTHCS TOJIBKO TUI COOOIIeHH S, a
napaMeTphl COOOIICHNUS NepeIaloTcss HCM3MEHHBIMH.

B [1] npemnoxkeHa ycTaHOBKAa TaKMX MPaBWI KOMMYTAlWH B BeplIMHAX rpada CeTH, KOTOpbIC
MOPOXKIAIOT OMUH (OPHEHTHUPOBAHHBIN) IHKJ, COMCPIKAIIMNA BCE XOCTHI U HA3BIBACMBIH YUKIOM
xXocmog. DTOT UK CTPOUTCS Kak 00X0. depesa X0cmog, KOTOPOE ONPEIeNseTcsl Kak MOAIepeBo
OCTOBHOI'O JiepeBa rpada ¢ BBIICICHHBIM XOCTOM-KOpHeM (najee Tam, Te 3TO HE HNPHBOIHUT K
JBYCMBICIICHHOCTH, IPOCTO KOPHEM), KOTOPOE COACPIKUT BCE XOCTHI, M BCE JIUCTOBBIC BEPIIMHBI
KOTOPOro sBIIIOTCS XocTamMu (puc. 1). 3amMeTHM, 4TO IepeBO XOCTOB MOXKET COACPKATh, KPOME
XOCTOB, KOMMYTAaTOpbI, HEOOXOIWMBIC IS CBA3HOCTH JepeBa. JlepeBO XOCTOB CTPOUTCS
npouenypoit «Y HalleHue «ITHITHAX» KOMMYTAaTOpoB. [lepBoHadalIbHO EPEBO XOCTOB COBIAACT C
OCTOBHBIM JiepeBoM. Eciy KOMMyTarop sIBIS€TCS JIMCTOM JIepeBa, OH YJIajsieTcsi BMecTe ¢
€IMHCTBEHHBIM MHIMCHTHBIM eMy peOpoM aepesa. [Ipoueaypa HoBTOpseTCs 10 TeX Mop, MoKa Bce
JIMCTBA AepeBa He OynyT xoctamu. [losrydeHHOE IepeBo U OyAET ACPEeBOM XOCTOB.

® host

o switch

Puc. 1. O6x00 depesa xocmog u jiec depedbes KOMMYMamopos.
Fig. 1. Host tree traversal and a forest of switch trees.

ITpu oOxoze JepeBa XOCTOB Kax10€ pedpo JepeBa XOCTOB IPOXOJUTCS POBHO [Ba Pa3a, IO OJHOMY
pasy B KaXJ0M HaIPaBICHHUH, T.€. UKJI 00X0/1a SBJISETCS MPOCTHIM 10 AyraM myTéM (He MPOXOIUT
JIBAOXIBl MO OoAHOI ayre). VIMEHHO 3TO CBOHCTBO oOecrednBaeT OTCYTCTBHE KIOHHPOBAHHA
cooOmennii. [JaHHOTO KOPHEBOTO JiepeBa ero 00XoJl, HauWHas C KOPHS, OJHO3HAYHO
ONpeneNsIeTcs] TMHENHBIM MOPAIKOM COCee! BEPIINHBI, 3a1aHHBIM JUI KaXJIOH BEPIIMHBL: COCEAN
BEPLIMHBI ITPOXOJSTCS AITOPUTMOM B 3TOM Hopsake. Podumenem nekopHegou eeputunbl X Oynem
Ha3bIBaTh TAKyIO BEPIIUHY Y, UTO Jyra XY IOCIeHs Ha IyTH OT KOPHS JI0 BEPIIMHBI X; IPH 00X0/1e
10 3TOHM Jyre Mbl NEpBBIH pa3 romajaeM B BepUIMHY X. Podumenem xopus ¢ OyaeM YCIOBHO
Ha3bIBaTh €r0 IOCJEIHETO COCela Z B JIMHEHHOM TOpSAKE COoceAel KOpHS; mpu obxone myra Zr
MIPOXOAUTCS MOCIEIHEH.

3a mpenenaMu JiepeBa XOCTOB OKa3bIBAETCS YacTh JIepeBa XOCTOB, MpEACTABISIONMas coOo Jiec
KOPHEBBIX IOJAEPEBbEB OCTOBHOIO JEpPEBa, KOPHHU KOTOPBIX JIEKAaT Ha LMKJIE XOCTOB, a BCE
OCTaJbHBIE BEPIIMHBI SBISIOTCS KOMMYTaTOpaMH. byneMm Has3bIBaTh 3TH HOIIEPEBbS Oepegbimi
KoMMymamopog. JIpa iepeBa KOMMYTaTOPOB HE UMEIOT 00X BepIuuH. [IJ1s mepesadn COoOUeHUH
[0 CEeTH JEePEBbsi KOMMYTaTOPOB HE HY)XHBI, TaK KaK BCE XOCTHI (@ TOIBKO OHHM TE€HEPHUPYIOT
COOOIIeHN) HAXOAATCS Ha ITUKJIE XOCTOB, M CTCHEPUPOBAHHBIE COOOIIECHHS ABUTAIOTCS 1O IUKITY
XOCTOB U HE INOINAJAI0T B KOMMYTATOpBl, HE SBIISIOIIMECS KOPHSMU [EPEBLEB KOMMYTATOPOB.

10

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

OpnHako 5ec AepeBbEB KOMMYTAaTOPOB MOXET OBITH HY)KEH, KOTJ[a MPOUCXOJUT U3MEHEeHue rpada
cetu. Hammpumep, MOXXeT H00aBIATHCS HOBBIM XOCT, IOJICOEANHIEMBIN K KOMMYTAaTOpY Ha AEpeBe
koMMyTaTtopoB. IlosTomy Oyner cumrarh, 4TO NMpaBWiIa KOMMYTAalUHU IOPOKAAIOT, KPOME IHKIIA
XOCTOB, JIEC ICPEBbEB KOMMYTATOPOB, OPHEHTHPOBAHHBIX K CBOMM KOpHAM (Ha puc. 1 OTMeUYeHbI
KPaCHBIM I[BETOM).

B HacTpoeHHOM ceTH B KaKIOW BEpIINHE WHUIMAIHN3UPOBAHBI ClieayrolHe nepemernsie: Self —
coOCcTBeHHBI naeHTH(UKATOp BepiuuHbl, HOSt — oTMeTka xocta, Rules — mpaBuia komMmMyTanum,
Root — oTmeTka KOpHS iepeBa XOCTOB, TAE «OTMETKa» — OyJIeBCKas IepEeMEHHasL.

3. Mepedaya coobuwieHuli Mo YUKy Xocmoe

CoobieHne ¢ ykazaHueM HIACHTH(GUKATOpa XocTa-moiydarens umeeT tun MessageToHost wiu
RootMessageToHost. ITapamerpsl cooOiuenust: Sender — UACHTH(HHUKATOP XOCTa-OTIPABHTES,
recipient — wumeHTH(dHUKATOpP XOCTa-mMoJydarens, parameters — mapameTpsl COOOIICHUS,
Npo3pauHble Il KoOMMyTanuu cooduiennid. CooOIeHne TakoTo TUIA ABUTAETCs MO IIUKITY XOCTOB
JI0 XOCTa recipient, KoTopblii ¥ MPUHUMAET COOOIIeHHE Ha 00paboOTKYy, HE MepechuIast ero aajbliie.
Jns npenoTBpalieHuss OECKOHEYHOIo 3alMKIMBAaHUs COOOILEHHE, KOTOpPOE TI'apaHTHPOBAHHO
HPOILTO MOJHBIHA UK XOCTOB, yaajiseTcs. [I0CKONBKY MK XOCT — 3TO HPOCTOM IO Iyram MmyTb,
Kaxaas ero ayra (Ho He o0s3aTenbHO BepliMHa!) mpoxomurtcs onuMH pas. Ecim cooOmieHume
MessageToHOSt mpoxoaut oyry OT pomuTens KOpHS B KOPEHb, He SBILIOLIMIICS MOTydaTeseM
coolmIeHns1, COOOIIeHNE MoChUTaeTes Janbie yxe ¢ tunoMm RootMessageToHost, a ecm mo 3Toit
nyre mpoxoauT coobmenne RootMessageToHost, ono ymamsercs. [lanee kKopeHb TeHEpHPYET
coobuieHre tuna MessageTOHOSt ¢ oTpuLaTelbHEIM OTBETOM XOCTy-oThpaBuTemro. [locnennee
MPOUCXONUT, KOT/Ia B CETH HET XOCTa ¢ TpeOyeMbIM HACHTH(UKATOPOM moirydatesns. TeM caMbim,
NpeIOTBPAIACTCS OSCKOHESUHAs IUPKYJLIIUS IO UKITY XOCTOB COOOLICHHH YKa3aHHOMY XOCTY.

CxeMa 1epeiauu 1o CeTH COOOIICHNS M3BECTHOMY IOJIy4YaTeNo HarIaJHO n300paXkeHa Ha puc. 2,
TJie IBOWHAs CTPeJIKa COOTBETCTBYET Iepeade COOOLICHUs 110 IIUKIY XOCTOB Yepe3 BEpIINHbI, He
MEHSIIOIINE TUIT COOOILEHHUS, LIBETHOW KPY>KOK 03Ha4aeT XOCT-OTIPABHUTEIS HIIH XOCT-TI0Jy4aTelb,
a Oenblii KpY)XOK O3Ha4yaeT IPOXOJ MO Ayre OT pOJHTeNsi KOpHA B KopeHb. Ilpum mepenaue
COOOIIEHHH MO ITOM CXeMe MOXET CIyIHThCS HEMPABIIBHOE MOBEICHHE: COOOIIeHrHe (OTBETHOE
coo0IIeHHe C OTPULATEIbHBIM OTBETOM OT KOPHS) MOXXET OBbITh YAaJleHO, XOTS B CETH €CTh
HOJTy4aTes b 3TOro cooOIeHus (MOoTyYaTesb OTBETHOIO COOOIICHHUS, T.€. OTIPABUTENb UCXOIHOTO
coobuieHus1). OTHAKO ATO MOXKET CIIYIHUTHCS TOJIBKO TOT/Ia, KOT/Ia MEHSETCS KOPEHb, T.€. YAAIACTCS
KOpEHb, CeTh ePEHACTPANBACTCS, 1 KOPHEM CTAHOBHTCS JIPYrOod XOCT. Y JaleHHe MoydaTeneii u
OTIpaBUTENICH COOOIICHNS, OTIMYHBIX OT KOpHS, HE MPUBOAUT K TaKOMY HEKOPPEKTHOMY

IIOBCACHUIO.
MessageToHost ==

The message
generation

parent — root
that is not a recipient

RootMessageToHost

Puc. 2. Cxema nepedauu no cemu coobujenus u36eCmmomy noayLamento.
Fig. 2. The network transmission diagram when sending a message to the known recipient.

Generating Deleting
the response the message

11

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

st renepanuu coodmienus MessageToHost (RootMessageToHOSt) kKoHKpeTHOMY yKa3aHHOMY
XOCTy UCIob3yeTces nporenypa SendMessageToHost ¢ mapamerpom recipient — uaeHTUGHKATOD
X0CTa, KOTOPOMY TMpEIHA3HAYCHO COOOIIeHne. DTa Mpoleaypa MOChUIAET IO IHKIY XOCTOB
coobmmenne MessageTOHOSt, ecan naHHBIH XOCT HE KOPEHb JepeBa XOCTOB, WJIHM COOOIIEHHE
RootMessageToHost B mpoTuBHOM ciydae.

Coo0mieHne ¢ ykazaHHEM HMEHH 3alpalllnBaeMON YCIyrH MOXeT OBITh Tpéx tumoB: Message,
RootMessage wiu WaitingMessage. Tlapametpsl coobuienus: Sender — uaeHTU(pHUKaTOp XOCTa-
OTIpaBUTEINs, SEIVICe — ¥Ms 3ampamMBaeMoil ycimyrd, parameters — mapameTpsl cOOOLICHHS,
MpO3pavHbie 111 KOMMYTAI[HH COOOIICHHUI.

Chauasia cooOlieHue, Kak IpaBuiio, rnockiiaercs ¢ TunoM Message. Ecian oHO mpoXoauT 1o yre
OT POAUTENS KOPHS B KOPEHb, KOTOPBIN HE SIBISETCS LEJICBBIM XOCTOM, COOOIIEHHE TIepeChlIaeTCs
Jaklie o UKy ¢ Tunom RootMessage. Ecnu coodmenne Message umu RootMessage npuxoaut
B LENIEBOM XOCT, HO celdac OH «3aHAT», XOCT IIEPechUIacT COOOIIEHHE AANbIIE yXKE C THIIOM
WaitingMessage. Kopelb, He SBISIOMIMIACS [EJICBBIM XOCTOM, MOJy4as MO Ayre, BEAyIeH OT
poxuTenst KOpHS B KOpeHs, coobimenne WaitingMessage, miepechiiaeT ero maibliie OIsITh ¢ THIIOM
Message. TTocnenHee cienaHo AJsl TOTO, YTO «JIOBUTH)» YAAICHHE U3 IIHKIA XOCTOB TOTO 3aHSITOTO
LENIEBOr0 XOCTa, KOTOPBIH cMeHuI Tril coobienus ¢ Message na WaitingMessage. Eciu B ke
€€ OCTar0TCs LENIEBBIE XOCThI, COOOIICHHUE, MPOXO/IS Yepe3 LEIEBOH XOCT, THO0 MPUHUMACTCS UM,
€CITH XOCT «CBOOOEH», Nub0 MOChUIaeTCs Aanblie onath ¢ Tunom WaitingMessage, eciu xocT
ceiuac «3aust». Ecinu coobiienre RootMessage npoxoaut o ayre, BeAyLIeH OT POIUTEINS KOPHS
B KOpPEHb, OHO yJaJIsfeTcs, a KOPeHb IeHepupyeT U MocklaeT coobmenue tuna MessageToHost
XOCTY-OTHPABHUTEINIO C OTPULATEILHBIM OTBETOM.

TeM cambIM, B IIUKJIE MOKET «KPYTUTCS» TOJIBKO COOOIICHUE C 3allPOCOM YCIIYTH, JUIs KOTOPOii B
LIMKJIE XOCTOB €CTh LielieBble XOCThl. Ho 3T0 Oyzner He OecKOHE4HO, a J0 TeX IOop, MOoKa KakKou-
HUOY/Ib 1IETIEBOH XOCT HE OCBOOOAMTCS M HE TIPUMET ATO COOOIIEHHUE, HIIH TT0Ka U3 LIUKJIA XOCTOB HE
OyIyT yJasieHbl Bce [IeJIEBbIe XOCTHI. B TO jke BpeMsi 4nCIIo MPOXO00B TAKUM COOOILECHUEM I10 LIUKITY
XOCTOB HE OTPaHHYCHO.

Cxema mepesauu Mo ceTH COOOIICHHUS ¢ 3allPOCOM YCIYTH HarJIIHO M300pakeHa Ha puc. 3, riae
JIBOMHAsI CTpeJIKa COOTBETCTBYET Iepejadye COOOLICHUs M0 LUKy XOCTOB uepe3 BEepIIUHBI, He
SABJIAOIUECS HEJIEBBIMU XOCTaMH UJIN KOPHEM, HBCTHOﬁ KPYKOK O3HA4Ya€T XOCT-OTHPABUTEIIb UITU
LeJIeBOM XOCT, a Oenblii KPYy)KOK O3HayaeT NPOXOJA IO Jyre OT POIUTENs KOPHS B KOPEHb.
MHOroTo4re oKa3bIBaeT, 4TO Mepeiada Mo CETH OTPULATEIBHOTO OTBETA OT KOPHS OTIPABUTEIIO
HCXOJIHOTO COOOIIEHHS BBIMOIHSIETCS, €CTECTBEHHO, M0 OOIIMM MpaBHiIaM ISl COOOILICHUs THITa
MessageToHost (kak Ha puc. 2).

[Mpearnosnaraercs, 9YT0 KOrja XOCT IPUHUMAET COOOIICHUE, OKa3bIBas 3aMpalIMBAEMYI0 YCIYTY, TO
MOCJIE ATOT0 OH MOJXKET, €CIIH HY)KHO, CaM IIOCIaTh OTBET XOCTY-OTIPABUTENIO, CTEHEPUPOBABIIEMY
9TO COOOIIEHUE C PE3yJIbTATAMHU OKa3aHUsI YCIIyTH. 3aMETHM, UTO 3TO HE BCeria Hy»Ho. Hanpumep,
KOra TpeOyeTrcst HEeKOTopasl LEMoYKa yCIyr Win 0oliee CI0XKHAs MPOrpamMma, OT/E/bHbBIC YacTH
KOTOPOU MOHUMAIOTCSI KaK YCIYT'H, KOTOPbIE MOTYT OBITh PEAIM30BaHbI B PA3HBIX XOCTAX, TO OTBET,
€CITH HY)XHO, Oy/IET MOCIaH XOCTY-OTIIPABUTENIO TOJIBKO MMOCJIE BHIMOIHEHUs Bcell mporpaMMel. B
000M ciTydae cooOIeHHe-0TBET mockutaetcst ¢ Tumom MessageToHost wimn (13 KOpHST) ¢ THIIOM
RootMessageToHost. B coobmiennu B kauecTBe MOTydaTess yKa3blBaeTCsI OTHPABUTENh HCXOIHOTO
cOO0OIIIEHHs1, OTBET HAa KOTOPOE MOCHUIACTCSI.

Jlnst reHepanuu B XOCT€ COOOIICHHWsS 3ampoca YAAUIEHHOW YCIYTH HCIOJB3YETCS MpoIeaypa
SendMessage ¢ mapamerpaMu: SEIViCe — WM 3ampanMBaeMoi yCIIyry, parameters — mapameTpear
COOOIIEH s, MMPO3padHble JUIss KOMMyTaiuu cooOinenuii. Ilponemypa Bosspamaer false, eciu
HEKOMY M0CJaTh COOOIIEHHE C 3alpPOCOM YCIIYTH, T.€. B XOCTE€ HET MPaBHJI KOMMYTAIMU (XOCT
M30JIMpOBaHHAs BEpIIMHA). B TPOTHMBHOM ciydyae Bo3BpamiaeTcs true W MochIIaeTcs HyXHOE
coolmienne 3ampoca yciayru: Message, eciu OTIpaBUTENb HE SBISETCS IEJIEBBIM XOCTOM HIIH
kopHeM, RootMessage, eciu oTmpaBHTENb SBISETCS KOPHEM, HO HE SIBISIETCS IEICBBIM XOCTOM,

12

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

WaitingMessage, ecnu OTIpaBUTENb SBIETCS IEJIEBBIM XOCTOM. B mocieaneM ciydae
MpeaIoJiaraeTcs, 4YTo XOCT JIe]aeT yAaJEHHbIN BBI30B IOTOMY, YTO CEHYAC «3aHAT».

The message
generation

parent —
non-target root

parent —
non-target root

parent —
root

RootMessage

Generating Deleting
the response the message

MessageToHost

Puc. 3. Cxema nepedauu no cemu coodweHus 3anpoca yciyeu.
Fig. 3. The network transmission diagram when sending a service request message.

4. Knacchl ycnye

VY perenust, npeasokeHHoro B [1] ¥ KpaTKO OMHCAHHOTO B MpPEABLAYIIEM pasfeie, ecTh OJHH
CYIICCTBEHHBIN HEAOCTATOK: IyTh, KOTOPHIA JOJDKHO TPOUTH COOOIICHHE, MPeXae 4eM Hanmért
HY’KHBII XOCT, MOKET OKa3aTbCsl CIMIIKOM JUIMHHBIM. Hampumep, ecnu B ceTH 3ampaliuBaeMasi
ycIyra peajm30BaHa TOJBKO B OJHOM XOCTE€ 8, TO COOOIIEHWEe C AITUM HMEHEM YCIYTH,
CreHepUPOBAHHOE XOCTOM D, ClieAyroluM Tociie XocTa a B IUKIIE XOCTOB, MPOUIET BECh LUKI
XOCTOB, KPOME KOMMYTATOPOB MEX1y a u b.

J1st TOTO 9TOOBI yCTPAHUTH ATOT HEOCTATOK, MOXKHO OBLIO OBI CTPOUTH IS K&KIOH YCIyTH 00X0]
HE JlepeBa XOCTOB, a MUHIMAJBHOTO JIepeBa, COAepIKaIlero, ObITh MOXKET, He BCE XOCTHI, HO BCE
[ENIeBBIe XOCTHI, T.€. XOCTHI, B KOTOPHIX 3Ta yciayra peanm3oBaHa. CooOIIeHHE ¢ 3aIIpOcoM JaHHOM
YCIYyTH IBUTAJIOCH OBl HE IUKITY XOCTOB, a MO IHKJIy 00X0/a TaKOT0 MUHUMAIBHOTO JIepeBa.
OpnHako B 3TOM cillyyae MMsl yCIIYTH CTAHOBUTCS YaCThlO MapaMeTpoB KoMmyTauuu. [loatomy Bcé
3aBUCUT OT TOT'0, CKOJIb BEJIUKO YUCIIO YCIYT, peaJu3yeMbIX CEThbIO, U UMEET JIM OHO TEHIEHIIUIO K
pocty. CylecTByIOT ceTH ¢ (PMKCHPOBAHHBIM MHOXKECTBOM PEAIN3yEeMbIX YCIYT, OJTHAKO MOTYT
OBITh W JpyrHme CeTH, KOTOpBIE MPEIOCTaBIAIOT IIOJH30BaTeNIsIM, BOOOIIE TOBOPS,
HeuKCHpPOBaHHBINM HAOOP YCIIYT, KOTOPHIH K TOMY € MOYKET PacTH BMECTE C Pa3BUTHEM CETH.
Hanpumep, o61auHble BBIYUCICHUS UMEIOT TaKyl0 XapaKTePUCTHUKY, KaK 3MaCTHYHOCTh — YCIIyTH
MOTYT OBITH NPEIOCTABICHBI, PACIINPEHBI, CYKEHBI B JIFOOOH MOMEHT BpeMeHH. [|ig Takux ceTei
IpeyiaraéMoe petieHne ¢ IMUKIOM JUI KaXJI0H YCIyTH HPUBEAET K CIUIIKOM OONBIIOMY YHCITY
MpaBUI KOMMYTALlUU B Ka)KJJOM y3JI€ CETH, K TOMY K€ UMEIOIIUM TEHIEHIUIO K POCTY IPU POCTE
YHcila YCIIyr, YTO MOXKHO IIOHMMAaTh KaK HEMAacHITaOMpyeMOCTb CETH, 3aBHCHMOW OT TaKOro
mapameTpa Kak 9YhcIo YCIyT.

Jns pemieHust Takod NpoOJeMbl HeMacITaOMPYEeMOCTH MBI MpEAiaraeM BOCHOJIB30BAThHCS
HEKOTOpOH KJacTepu3alnueld yciayr. B sTom ciydyae MHOMECTBO BCeX YCJIyr pa3duBaercsi Ha
MOZMHOXECTBA, KOTOPbIE Oy/1eM Ha3bIBaTh Kiaccamu yciye. B cooOLIeHNH yKa3bIBaeTcs HE TOJIBKO
UMS yCIyTH, HO TaKkxke UMs €€ Kiacca, BBIYHUCIAEMOr0 XOCTOM-OTIpPAaBUTENEM IO 3aJaHHOMY
0TOOPaXEHHUIO MMEHH YCIYTH B UM e€ xiacca. KoMmyTanust cooOmieHus: MporucXoanuT 0 UMEHU

13

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

KJlacca yCIyTH, T.e. UMs Kilacca CTaHOBHTCS TapaMeTpOM KOMMYTAIMH, MPABHIO KOMMYTAIMH
coobmiennii ¢ 3anpocoM ycayr mmeer Bupa (class: a, b, c). Xocr mpuHuMaeT cooOLIeHHE Ha
00pabOTKy TI0 WMEHH YCIYTH, €CId OHa B HEM pealu30BaHa W OH cedyac HE «3aHAT».
IIpearonaraeTcst, YTO YUCIO KIACCOB YCIYT MAJO, & YHUCIO YCIYT BEJUKO, HOBBIE KIACChl YCIIyT
HOSIBJISIFOTCSL PEJIKO, TOT/IA KAK HOBBIC YCIIYTU B KJIACCAX MOTYT IMOSBIISATHCS Yallle, & KpOME TOro, B
CeTH YHUCJIO XOCTOB, PEANM3YIOIMX YCIYId JaHHOTO KJacca, KaK MPaBHiIO, OLIYTHMO MEHBIIE
00IIIETO YKCIIa XOCTOB.

ITprMeEpPOM MOTYT CITYKHTh PA3IAYHbIE PHIIOKEHHUS, K KOTOPBIM MOYKHO MOJTYYHThH OHIalH-T0CTYII
yepe3 wunTepHeT. Kiacc apudMeTHuecKMX BHIYMCICHHA (QYHKIHMM CIIOXKEHWsS, BBIYMTAHMS,
YMHOKEHUS, JIEJICHHA W T.I.) BBIIOJHAIOT PaslHYHbIE OHIAWH-KAIbLKYJISATOPbI, HAIpUMED,
https://calculator888.ru/ umu https://okcalc.com/ru/. TlocnenHuii KanbKyIaTOP MOXKET BBIYHCIATH
TaKKe JIOTapudM, HO 3Ty QYHKIIUIO MOKET BBIIOJNHSITE M CIICHHATBHBIN KATbKYIATOpP Jorapudma
https://umath.ru/calc/vychislenie-logarifma-chisla-onlajn/. Tlpemen QyHKIMH BBIYHCISAETCS
npunokenneM https://mathdf.com/lim/ru/, Ho Takke BXOOWT B YMCIO (YHKIUH, peaTH3yeMBIX
nprnokenneM https://mathsolver.microsoft.com/ru/algebra-calculator, xortopsiii, kpome 3TOTO,
yMeeT pelliaTh JUHEWHbIE W KBaJpaTHBIC YPaBHEHHs, HEPABEHCTBA, BBIYUCIATH MPOU3BOIHBIE H
HHTErpanbl. [lociefHNe BBIUMCIAIOTCS W CIHEIUANBHBIM KaJbKyJIATOPOM HMHTErPajoB
https://www.integral-calculator.ru/. T'paduk ¢ yHKIIHH MOKHO IOCTPOUTH € IOMOIIIBIO MPUITOKEHUS
https:/lyotx.ru/, »10 ymeer gemate W rpadUyYecKUdl KaJIbKYJIATOD Desmos
(https://www.desmos.com/?lang=ru), Ho y Hero ropasao 60JIbIlE BO3MOXHOCTEH (peann30BaHHbIX
¢yskunit). U tak ganee.

MBI npuBeny IpUMEps! YCIyT U UX TPYIIUPOBKU 110 Pa3HBIM IIPUIIOKEHUAM. B TO ke BpeMs Takue
INPWIOKEHUS — HE TO XKE CaMO€, YTO Hallli KJIAacChl yCiIyr. ['pynnupoBka yciyr B NPUIOKECHUIX
BBITIOJIHACTCA 1O CaMbIM pa3HbIM KPUTCPUAM, OTIMYAONIUMCA B PA3HLIX IMPUIIOKCHUAX. KpOMe
TOr0, Takasi IPyIIUPOBKa — 3TO He pa3OueHue (KaK y HAC HA KJIACCHI), a IIOKPHITHE MHOMKECTBA
YCIIYT, MOCKOJIBbKY OJIHA M Ta K€ YCIIyra MOKET ObITh PeAlM30BaHa B Pa3HbIX NpHIokKeHusx. Haie
paszbueHne yCIyT Ha KIIacChl MOXKHO CENaTh YCTONYMBBIM K H3MEHEHHAM MHOXECTBA YCIIYT U, TEM
GoJiee, K MX peau3allii ¥ TPYIITHPOBKE B PasIMYHBIX TPUIOKEHUsSX. HampuMep, Kiace ycuyr mo
BBIYHCIIEHHIO 3JIEMEHTAPHBIX (QYHKIHH MOXKET BKITIOYaTh apru(h)METHIECKHE JEHCTBHSA, CTETIEHHYIO,
MOKa3aTeNbHY0, JIOTapU(PMHUUYECKYl0 (QYHKIHM W TPUTOHOMETPHYECKHE W OOpaTHbIe
TPUTOHOMETPHUYECKHE (DYHKIMH, M HE BKIOYATEH APYTHE QYHKIMA. DTOT KJIACC YCIYT HE 3aBUCHT
OT TOrO0, B KAaKHX MPUIOKEHUAX PEATH30BaHbI dJIEMEHTapHbie (GyHKuuu (YCIyrd) M ecTh Jn
MPUIOKEHNE, PEATU3YIOIee B TOUHOCTH 3TOT HAGOp QyHKIHIA (yeiyT).

Jarnee OymeM CYHMTATh, YTO pa3OHEHNE MHOXECTBA YCIIYT Ha KiIacchl 3amano. Teneps yeresotl xocm
OyjieM OPeJIENATh HE VIS YCIIYTH, & IS KJIacca yCIyr — 9T0 XOCT, PEalM3YIOLIUiA XOTs Obl OIHY
YCIYTy 3TOT0 Kiacca. Mbl OyIIeM CTPOUTh Oepeso yenesblx XOCmos U YUK Yereeblx XOCo8 st
KaKIIOTo Kiacca yciyr. J[epeBo 1elIeBbIX XOCTOB ONPEENAETCs KaK MOAIEPEBO JepeBa XOCTOB €
KOPHEM B IIEJIEBOM XOCTE, COJIEPIKAIIEE BCE IIENIEBbIE XOCTHI, BCE JHUCTOBbIE BEPUIMHBI KOTOPOTO
ABJIIFOTCA LICJIEBBIMU XOCTaMU. 3aMeTI/IM, YTO JAEPEBO LECICBBIX XOCTOB MOXKET COAECPKATh, KPOME
HEJIEBBIX XOCTOB, KOMMYTATOPbI U HETICJIEBBIC XOCThI, HCOGXO}]I/IMLIC JJId CBA3HOCTU A€PEBA.]_[I/IKJ'I
LEJIEBBIX XOCTOB OIpPEIEIeTCs Kak UK 00X0/1a IepeBa [ENeBbIX XOCTOB, 3TOT IUKJI IOPOXKIACTCS
NpaBUIaAMHA KOMMYTAIMH. J[epeBo IEIEBEIX XOCTOB CTPOMTCS MPOIEAYPOi «Y NajeHue «TUITHIX
KOMMYTaTOpOB W HEIENEBBIX XOCTOB», aHAIOTHYHOM mpomenype «YIaleHde («IHIITHUX)»
KOMMYTATOPOBY TIPH TIOCTPOEHHH J€PEBA XOCTOB, TOJBKO BMECTO (JIUIITHUX» KOMMYTAaTOPOB B HEM
OYyIyT «JTUIITHKE» KOMMYTATOPHI M HEIEIEBbIE XOCTHI.

3a mpejenaMy [UKIA IEJIEBBIX XOCTOB IS JAHHOTO Kiacca YCIYI MOTYT OCTAaThCs JIHITHHE)
HeleneBbie XOCThl. ECIM Takol X0CT reHepupyeT COOOIIEHNe, 3alpalliBaoliee yCIyry JaHHOTO
KJlacca, TO BO3HHMKAET BONPOC, Kak COOONIEHHME MOMaAET Ha IMKI HeleBbIX X0cToB? Jlus aToro
JOCTATOYHO, YTOOBI TIPaBUIa KOMMYTAIIMH TMOPOKIAIM IMPOCTHIE TI0 JyraM IIyTH, KOTOpbIE
HaYUHAIOTCA B HELCJICBBIX XOCTaX U 3aKAaHYMBAIOTCA B BEPUIMHAX MUKJIIA LEJIEBBIX XOCTOB, 1 BMECTC

14

https://calculator888.ru/
https://okcalc.com/ru/
https://umath.ru/calc/vychislenie-logarifma-chisla-onlajn/
https://mathdf.com/lim/ru/
https://mathsolver.microsoft.com/ru/algebra-calculator
https://www.integral-calculator.ru/
https://yotx.ru/
https://www.desmos.com/?lang=ru

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

C IMKIOM IIEJIEBBIX XOCTOB CyMMapHO COAEp)XaT Bce XOCThL. Jlimst TOro dToObI HE OBLIO
KJIOHMPOBaHUS, HY)KHO, YTOOBI 9TH IIyTH HE Pa3BETBILUIMCH IIOCIIE TPOX0a Mo o0uiel xyre.

B [1] 3a mpenenaMu mukiIa XOCTOB MOTJIM OBITH TOJIBKO KOMMYTATOPHI, U HAa HUX CTPOMIICS JIEC
IEPEBbEB KOMMYTATOPOB, KOPHHU KOTOPBIX JISIKAJIN Ha IepeBe XOCTOB (pHc. 1). AHAIIOTHYHO TEreph
JUTSL KXKZIOTO KJIacca YCIyT Oy/eM CTPOUTB JIEC 0epesbes HeyeleabiX XOCH08, KOTOPBIA MOITydaeTCs
W3 OCTOBHOTO JIepeBa yaleHHeM pEObep AepeBa HENeBbIX XOCTOB U 00pa3yOIINXCs ITOCIE TAKOTO
yAaJeHUs W30JIMPOBAaHHBIX BepIIMH. JlepeBO HELEeNeBbIX XOCTOB OPUEHTHPOBAHO K KOPHIO,
JekaleMy Ha JepeBe IIeJeBBIX XOCTOB, U BCE €ro HEKOPHEBBIE BEPIIUHBI SBIAIOTCS
KOMMYyTaTOpaMHd MWIH HelelaeBbiMu XocTaMu (puc. 4). B mepeBo HeleNeBbIX XOCTOB BXOIAT
KOMMYTATOpbl, KOTOpPBIE HYXKHBI, MPEXKJIe BCEro, AJs CBA3HOCTU JepeBa, HO, KPOME TOTrO, MBI
MOMEIIaeM B JEPEBO HEIIEeNEBBIX XOCTOB KOMMYTATOpPHI, HE JEKalllie Ha MyTsSIX IO JepeBy U3
HEI[ENIEBBIX XOCTOB K KOPHIO, 8 IMCHHO, KOMMYTATOPBI Ha JAE€PEBbSIX KOMMYTATOPOB (B TOM YHCIIE,
TEpMHUHAJIBHBIE KOMMYTATOPBI), KOTOPBIE «IHIIHHE» Ul INepefadn COOOIIEeHHH Mo ceTH. JTo
IENAeTCst [0 TOH JKe MPUYHHE, M0 KOTOpo# B [1] cTpomnucs aepeBbst KOMMYTAaTOPOB, B KOTOPBIX
BOOOIIIE HET XOCTOB. Takue AepeBbsl HY)KHBI IJIsI HHKPEMEHTAIBHON HacTpoiiku cetu [1], korma
MeHsietcs Tononorus cetu (rpad). Hampumep, B ceTh m00aBIsAeTCs HOBBIH XOCT, COCTMHSACMBI
HOBBIMH pEOpaMHU CO «CTapbIMH» BepIIMHAMHU. TakKMMH «CTapbIMI» BEPIIMHAMU MOTYT OBITH 3TH
<UTAIITHHE» KOMMYTATOPBI (HEKOPHEBBIE KOMMYTATOPHI ICPEBHEB KOMMYTATOPOB), U OHH IIEPECTAIOT
OBITh WINIIHAMI.

e target host
© non-target host
o switch

Puc. 4. O6x00 Oepesa yenegbix X0CMO8 U 1ec 0epesbes Heyeneblx XOCHo8.
Fig. 4. Target host tree traversal and a forest of non-target host trees.

I[J'I}I KaXXa0ro Kjacca yciyr class B Ka)l(,[[OfI BEPHIMHC CO3AAa0TCA CBOU «KOIIHN» IIECPEMCHHBIX Rules
u Root: ClassToRules(class) — mpaBuna kommytarmu ais kinacca class, ClassToRoot(class) —
OTMETKA KOPHA JACPEBA LECJICBBIX XOCTOB IJIA Klacca class.

5. lMepedaya coobweHul NpU HaIUYuUU Kaccoe ycye

Coo0mieHnst ¢ yKa3aHHEM WACHTH(QHKAaTOpa XocTa-momydarens tuma MessageToHost wmm
RootMessageToHoSt mMetroT Te ke mapaMeTpsl U epearoTcs TaK JkKe, KaK OMHCAaHO B paszele 3 U
M300paKeHo Ha pHC. 2, — IO LUKITYy XOCTOB.

Coo0mieHnst ¢ 3ampocoM YCIyrd HMEIOT Te ke Tpu Tmma: Message, RootMessage wmmn
WaitingMessage. B mapamerpbl cooOienusi go0aBiseTcs WMsi Kiacca yciyru: Sender —
UIEHTH(UKATOP XOCTA-OTHPAaBUTENS, Class — nms Kiiacca yciryru, Service — uMs 3anpanimBaeMoit
ycIyrH, parameters — mapamMeTpbl COOOIIEHHS, TPO3PAuHbIe I KOMMYTAllMU COOOIICHHIA.
KomMmyTarusi cOOOLICHUI MPOUCXOIUT 110 MMEHHM Kilacca YCIYrH, T.e. MMs Kilacca BXOIWT B
napaMeTpbl KOMMYTAlMM, MPaBHJIO KOMMYTAl[MM COOOLICHHI C 3apocoM YCIyr HUMEeT BHUI
(class: a, b,).

Ecnu coobirierne ¢ 3ampocoM yCIyrd He HaXOTUTCS Ha IUKIIE IIEEBBIX XOCTOB (FeHepHpyeTcs B
HELIEJIEBOM XOCT€ Ha JEepPeBE HEIENEBbIX XOCTOB M OTJIMYHO OT €ro KOpHs), TO CHayajga OHO
JIBUTAETCsI 110 JAEPEBY HELENEeBBIX XOCTOB K €ro KOPHIO, JiekalleMy Ha IUKJIE [EJeBbIX XOCTOB.
Manee coobmienne qBuraetcsi (BO3MOXKHO, MEHSISI CBOM THIT) TOYHO TaK ke, KaK OMUCAHO B pa3jiene
3 ¥ n300pakeHO Ha puUC. 3, CO CIACAYIOUIMMH OTIIMIUSIMU: 1) COOOIIEHHE IBUracTCs HE IO IUKITY
XOCTOB, @ IO LUKJTy IEJIEBBIX XOCTOB /ISl YKa3aHHOTO KJlacca YCIyT, 2) He BCSKUI «CBOOOIHBIN
LIEJIEBOM XOCT CTaHOBHTCS IIOJIydaTeJeM COOOIICHHUS, a TOJBKO TOT, B KOTOPOM pEaJIM30BaHa

15

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

3ampanmBaeMast yciryra, 3) He BCIKHAN «3aHsITHIN IeJIEBOH XOCT IepenaéT cooOIIeHre NabIine o
umeneM WaitingMessage, a ToJIbKO TOT, B KOM peain30BaHa 3ampaliiBacMas yciyra.

Jliist TeHepanny cOOOIIEHHMSI 3ampoca YCIIyTH HCToJb3yeTest mporeaypa SendMessage, kak ormcaHo
B pazzene 3, ¢ TeMu ke napamerpamu. OTIIYHE B TOM, UYTO B COOOIMIEHHE TO0ABIETCS UMS KJlacca
3alpanIMBaeMoOi YCIyTH, KOTOpOe€ TMpoIeAaypa BBIYHCISCT MO UMeHH ycruyru. [Ipomemypa
BosBparnaer false, ecin HekoMy TocIaTh COOGINEHHE C 3aMPOCOM YCIIYTH, T.€. B XOCTE HET MPaBIII
KOMMyTanuu Juis gaHHoro kmacca ycayr: ClassToRules(class) = (). B mpotuBHOM ciyuae
BO3Bpalaercs true u mochuIaeTcsi Hy)KHOEe COOOIIEHHEe 3ampoca YCIYrH ¢ yKa3zaHueM eé Kiacca:
Message — eciit B XocTe He peajM30BaHa 3allpalliiBacMasi yCiayra, U XOCT He SIBIISIETCS KOPHEM
JiepeBa LeseBbIX X0cToB, RootMessage — eciin B xocTe He peaian3oBaHa 3alpaliiBaeMas yciyra,
M XOCT SBIISIETCS KOPHEM JIepeBa LieleBbIx XxocToB, WaitingMessage — ecnu B xocTe peann3oBaHa
3aIpanruBaeMas yeiryra, Ho ceiyac XOCT «3aHATY.

6. Hacmpolika cemu

Ilon HacTpoMKOM CeTHM IIOHMMAaeTCs, IPEXKIE BCEro, YCTAHOBJICHUE IIPaBUWJI KOMMYTALMH.
Hampumep, nporpammHo-koHburypupyemas cetb (SDN) ocHoBaHa Ha QU3HUECKOM pa3fieieHUH
IUIOCKOCTH IAaHHBIX (YpOBEHb Iepeqadd COOOIICHHMI, MOIENHpyeMblii rpagoM C BEpIIMHAMHU B
XOCTaxX ¥ KOMMYTaTOpax) M INIOCKOCTH YNPABJICHUS ceThi0. Ha mIocKocTH yrpaBineHus HaXOAUTCS
KOHTpOJUIEP, KOTOPBIA M BBIMOJHSACT HACTPOHKY ceTH. OH CBsI3aH C KaKIbIM KOMMYTaTOPOM,
KOTOPOMY «CITyCKaeT» Ha YPOBEHb INIOCKOCTH JAHHBIX NTPaBWIa KOMMYyTanuu. /s 3Toro Ha ypoBHE
KOHTPOJIIEPA TO/DKHA OBITh H3BECTHA BCSI TOMOJIOTHS ceTh (rpad Gpu3nvecKux cBszei).

B Hacrosimeidt cratee, Kak W B [1], MBI mpeanaraeM aurOpUTMBI CaMOHACTPOMKH ceTH, 0e3
UCTIONIb30BAaHMA CIIENMAILHOTO KOHTpOJUIepa M C MHHHMAaIbHO HeoOXoamMmol wuHpopMmanuei,
3apaHee 3aJlaHHOW B BepmmHax rpada. Hacrpoiika paspensercs Ha nepeuyHyro HACmMpouxy W
HACMPOUKY 07151 0AHHO20 KIACCA YCye.

6.1 NepBnYHaA HacCTpPoOMKa ceTn

IMepBuuHas HacTpolika, omrcanHas B [1], onpenenser nmpaBuiza KOMMYTAIHH, TOPOKIAFOIIHAE TTHKIT
XOCTOB U JIEC JIEPEBLEB KOMMYTATOPOB, a TAK)Ke OTMEYaeT KOpPEHb JiepeBa X0CTOB. B pesynbsTaTe
MEPBUYHON HACTPOMKH B KaXKI0M BEPIIMHE HHUIHATU3UPYETCS CIUCOK RUlES mpaBuin kKoMMyTaIiuu
u epeMenHas Root ;= true B kopHe nepeBa xocToB, R0Ot ;= false B ocTanbHBIX X0OCTax ceTH.

Bce mpaBwia KkoMMyTanpu B BepiimHe S uMeroT BHI (: @, S, D), T.e. mapamerpbl KOMMYyTalUH
OTCYTCTBYIOT, & CpeJHsIsl BEpPIINHA OJHA M Ta k€ — S. [103TOMY B ajropuTMax Jjisi KpaTKOCTH B
Ka)KJI0M BepIIMHE S MPABIJIO KOMMYTAIIMHK 3aMiCkIBaeTcs He Kak (: &, S, b), a kax (a, b).

B kax10ii BepIMHE S [IMKJIa XOCTOB CIIUCOK RUles uMeer «uuknnueckuii Bumy» (o, a1), (a1, a2), ...,
(an-2, @n-1), (@n-1, @), TAC A0 POMTENH BEPLIMHBI S.

MbI Takke BBOIUM npasuio yMOIUAHUsS: €CITM COOONIEHWE B BEPINHHY S TPUXOIUT OT cocena b,
OTJIMYHOTO OT BEPILIHH &y, ..., @n-1, OHO MEPECHIIAETCS BEPIINHE g — POJUTEIO BEPIUIMHBI S TI0
nojipasymeBaeMomy npasuiy (b, ao). ITo cyTtH, 310 npasuio ymoruanus: cnucok (ao, ai1), (a1, az), ...,
(an-1, @) MOHMMaETCsA KakK COKpamiéHHas 3amuch crnmcka (o, ai), (a1, a2), ..., (@n-1, ao), (b1, ao),
(b2, a0), ..., (bk, @o), rme by, ..., bk Bce cocenm Bepumuel S, kpoMe coceieii Ay, ..., an- 1. TAKOE npasuio
YMOMYAHUA MBI TIPUMEHSIEM IS YIPOILIEHUS aJrOPUTMOB CAMOHACTPOHKHU CETH B IIpHIIOKEHHUH.
OHO wucnomp3yeTcs B TpEX choydasx: 1) IpM HHKPEMEHTAJIbHOW (IOBTOPHOH YaCTHYHON)
MepeHACTPOiiKe CeTH, Korjga MeHsiercst rpad) certd; 2) npu mepeaade COOOIICHUI MO AepeBy
HEIIEJIEBBIX XOCTOB B HACTPOEHHOM CeTH; 3) MPH MOCHUIKE COOOIIEHHS B CETh U3BHE CETH, T.€. MPH
MOCBIIKE COOOMIEHUs B BepumHy b ¢ ykasaHmeM HIEHTH(PUKATOpA MPEAIIECTBEHHHKA &, HE
COBIIAJIAIONIETO C HACHTU(GHUKATOPAMH BEPIIMH CETH, YTO MOXHO MMOHMMATh KaK IOCBUIKY
coobrienus 1o ayre ab, He BXosInei B rpad) ceTH.

Ha puc. 5 nokasano, Kakue MpaBujia CO3JA0TCS I BEPIIMHLI B PasHBIX clydasx. UEpHbIE JTMHUH
n300paxkaroT pEGpa JepeBa XOCTOB, KPacHBlE — JEPEBLEB KOMMyTaTtopoB. IIpasmimo (a, b) B
16

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

BEpINMHE S TMOKAa3aHO CTPEIKOM, COSMUHAIONIEH JBEe CMEXHBIC IyrH as W Sb: cumme crpenmku
COOTBETCTBYIOT LHUKJIY XOCTOB, a KpacHBIE CTPEIKH — JAEpPEeBbIM KOMMYTaTOpoB. llokaszaHBI
IpaBUiIa Kak 70 (pUc. 5 cBepxXy), Tak U Mocje NPUMEHEHHs IPaBUiIa yMOJIYaHus (puUc. 5 BHU3Y).

=% A e

parent of s parent of s parent of s parent of s
L
After using /é\
a default rule
parent of s parent of s parent of s parent of s

Puc. 5. Ilpasuna kommymayuu u npasuio yMoaruanus.
Fig. 5. Switching rules and a default rule.

6.2 HacTpowka ceTu gnsa 3agaHHOro Krnacca ycnyr

B naHHOil crathe MBI BBOIMM KJIACCHI YCIYT, M JUIi KaKIOTO Kiacca YCIyr TpeOyeTcs CBOS
JOTIOJTHUTENbHAs HACTPOMKA CETH, KOTOpas BBIIOJHACTCSA B MPEANOIIOKESHHH, YTO paHee Obuia
BBIIIOJTHEHA [EpBUYHAS HAcTpoika. HacTpoWku s pasHBIX KJIACCOB YCIYT BBINOJHSIOTCS
HE3aBHCHUMO JIPYT OT APYTra, B TOM YHCIIC, OHH MOTYT BBIMIONHSTHCS TapaJlICIBHO.

Hactpoiika 11 3agaHHOrO Kilacca yCIIyTr onpenelsieT NMpaBHila KOMMYTAllMH JUI 3TOro Kiacca
YCITyT, TIOPOXKIAFOIINE TIUKIT IIEIEBBIX XOCTOB U JIEC JIEPEBHEB HEIIEIEBBIX XOCTOB.

B pesynbrare HaCTpOMKH A1t Kiacca yciyr Class B kaxmoil BeplinHe HHUIHATH3UPYETCs CIIUCOK
ClassToRules(class) mpaBun KoMMyTaluu JUisi 3TOrO Kjacca yCiIyr W [EpeMeHHast
ClassToRoot(class) :=true B kopHe 1epeBa LENEBbIX XOCTOB [y 3TOrO Kiacca YCIyr,
ClassToRoot(class) := false B octampHbIX X0CTax ceTd. Kpome TOr0, Kask10i BEpIIHHE COOOIIASTCSI
MHOECTBO ServiceSet uMEH ycrmyr TaHHOTO Kiiacca yciyr Class, 9to mo3BoniseT HHUIHATH3HPOBATh
orobpaxenne ServiceToClass wmenu ycmyrnm B e€ Kiacc s JAaHHOTO Kiacca yCIyT:
V service e serviceSet ServiceToClass(service) := class.

[paBmwio yMo4aHus IPUMEHSETCS U IS MPaBHJI KOMMYTALUH ISl KaXXI0ro Kiacca yciyr. Ecinu
Ha puC. 5 4EpHBIN KPYXKOK MOHHUMATH KaK IEJIEBOM XOCT, OENbIH KPY>KOK KaKk KOMMYTAaTOp WIIH
HEIIeJIeBOH XOCT, a Cephlif KPY>KOK KaK KOMMYyTaTop win (mo0oif) XocT, TO nM300pakeHHs Ha
PHCYHKE HIUTFOCTPUPYIOT NPAaBUIIa YMOITYaHHS IS KIIacca YCIIyT.

AJITOPUTM HACTPOMKH JJIsI IAHHOTO KJIacca YCIyT aHAIOTHYEH AITOPUTMY EPBHYHON HACTPOMKH.
Ominune B TOM, YTO NPH MEPBUYHON HACTPOiKe OOXOMMTCS BeCh rpad), MCMONB3ys 3apaHee
WHHUIAATM3UPOBAHHBIN CITUCOK COCEAEH B KaKIOW BEPIIUHE, M CTPOSITCS IUKII XOCTOB KaK 00X0.
JiepeBa XOCTOB H JIEC JIEPEBHEB KOMMYTATOPOB, a MPH HACTPOWKE JUIS 3aJaHHOTO KIacca YCIyT
CITMCOK COCe/IeH HE MCTIOB3YeTCsl. B 3TOM cilydae ¢ MCIOIb30BAHHEM IIUKIIA XOCTOB BBITOIHACTCSI
00X0J1 YK€ MOCTPOCHHOTO JIepeBa XOCTOB, YTO ONPEACIASTCS NPABUIAMUA KOMMYTAIHHU, U CTPOSITCS
[IMKJT [IEJIEBBIX XOCTOB KakK 00X01 IepeBa IeJIeBBIX XOCTOB U JIEC IEPEBbEB HEIEICBBIX XOCTOB.
Hactpoiika as1st JaHHOTO Kitacca yenyr nHuiupyeTces coobnrernem ClassStart, koropoe mocrymaer
B HEKOTOPBIN (ITPOU3BONIBHBIIN) XOCT U3BHE Tpada. ITOT XocT OyaeM HA3bIBATh UHUYUATNOPOM IS
JaHHOro Kiacca ycayr. s yno6cTBa OyeM cUUTaTh, YTO COOOIICHHE NPUXOAUT MO HEKOTOPOMY
JOTOJHUTENEHOMY PeOpY, COSANHSIONEMY HHUIIMATOP C BHEIIHUM OKPYKEHHEM, MOACIUPYEMBIM

17

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

JIOTIOJTHUTEIBHON BEPLIMHON, COCEIHEH C WHHUIMATOPOM, KOTOPYIO OyleM Ha3blBaTh GHEUHUM
€coCce0oM VHUIMATOPA. JTOMY K€ BHEIITHEMY COCEy MHHUIIMATOP MOCHLIAET OTBET O BBIMOJIHEHHU
HacTpoWkd. Bo BpeMs HACTpOWKH B CETH HHUPKYIHPYET OZHO COOOIIEHHE, KOTOpPOE MMEeT THII
(mepBonauansHo ClassStart) u mapamerpsl: class — uMs knacca ycuyr, SErviceSet — MHOXKECTBO
HAMEH YCIYT 3TOTO Kiacca.

Hacrpoiika npoxoaut B Tpu 3Tana: A, B u C.

Ha stane A xoct, nomygaronruii coobmierne ClassStart, craHOBUTCS HHHIIHATOPOM, W OPTaHU3yeT
TIOWCK IeJIEBOT0 XocTa. JIJIst 3TOro coobmieHre ¢ THIoM SearchA aBuraercs mo IHKIY XOCTOB JI0
LIEJIEBOIO XOCTa WIM, €CIM TaKOro XOcTa HEeT, Bo3Bpamiaercs B uHunmarop. [lo xoxy nena
MPOUCXOMUT MHUIMANM3AIMs B Kaxaoi BepumHe nepemennoit ClassToRules(class) := () (moka
[EJICBON XOCT HE HAiiJieH, IMKJIA [EJEeBBIX XOCTOB HET), W MHHUIHATIH3AIUS B KaXIOM XOCTE
nepemennbix ClassToRoot(class) := false u ServiceToClass(class) kak onucano Boiire. Eciu B ceti
HET LEeeBOro X0cTa, Tak OyIyT MPOMHUIUATIN3UPOBAHBI IEPEMEHHBIC BO BCeX BeplinHax. Toraa
HHUIIAATOP TIOChIIaeT CBOEMY BHEIIHEMY coceny oTpuuarensHbiii otBer CancelC. Ecmu ueneroit
XOCT HaMIeH, OH CTAaHOBHTCS KOpHeM jepema meneBbix xocToB (ClassToRoot(class) :=true) u
HayuHaeTcs dtamn B.

Ha srtane B BeimomHsiercs 00Xol JepeBa XOCTOB C BBINOJHEHHEM IPOLEAYpPHl «YIajeHue
(JTUIITHAX» KOMMYTaTOPOB M HEIIEJIEBBIX XOCTOBY», OMUCAHHOW B pasneine 4. TeM caMbIM CTPOUTCS
IUKIT [EJeBBIX XOCTOB Kak 00XO[JepeBa LENEBbIX XOCTOB U JieC JIEPEBHEB HEIENCBBIX XOCTOB.
3aMeTuM, 4TO 4YacTh 3TOTO Jieca, a MIMEHHO JEPEeBbs KOMMYTATOPOB, MOCTPOEHA MPU MEPBUUYHOM
HACTPOWKE W MPH HACTPOMKE ISl JAHHOTO KJacca ycIyr He MeHsiercs.. [1omyTHO MpOMCXOIUT
MHHLUaIU3aIus B kKaxaoi Bepunne nepemennoit ClassToRules(class) := Rules (mepBonavanbho
LUK [EJeBbIX XOCTOB COBMAJaeT C IMKIOM XOCTOB) M B K&XKJIOM XOCTE IEPEMEHHBIX
ClassToRoot(class) := false u ServiceToClass(class) kax ommcano Beime. Ilociennue aBe
WHHIUATIU3ALIH, €CITU [eJIeBO XOCT HalZIeH, MOTYT OBITh YK€ BBIIOJIHEHBI B HEKOTOPBIX XOCTaxX
Ha 3Tane A, HO He BO BCEX XOCTaX.

Ha stane B coofuieHre MOKeT UMETh OJIMH U3 TPEX THIIOB: npsamoe coobuierne ForwardB u nsa
omeemnuix coobwenus (omeema) CancelB u BackB. Coobmienne ForwardB mocsuiaerces 1o ayre
JilepeBa XOCTOB, OPUEHTUPOBAHHOrO OT KOpHs. Korna 3To cooOlueHue mepBblii pa3 Homnajgaer B
HEKOTOPYIO BEpIIMHY S, MPOHIs Mo jayre XS, B BEpIIMHE S CHayaja yCTaHABIMBAIOTCS IpaBHia
KOMMYTAIlMU JUIS JaHHOTO KJjlacca Takue jKe, KaK JJsl UKJIA XOCTOB, OJHAKO Hayallo OTCuéra
[UKJIUYECKOr0 CIUCKA MPaBHI MOXET CTAaTh JPYTHM, MOCKOJBKY JUIS JiepeBa HEJEeBBIX XOCTOB
POJMTENEM BEPIIHMHBI S CUUTACTCS BepiirHa X. ECITU I [IUKJIa XOCTOB B BEPIIMHE S ObLT CIIMCOK
npasun Rules = (ag, a1), (a1, 82), ..., (@n-2, @n-1), (@n-1, o), /I 89 POAMTENH BEPIIUHBI S B JIepeBe
XOCTOB, TO JUIA X = @ B JiepeBe IleeBbix XocToB cHauyana Oynaer ClassToRules(class) = (aj, ai+1),
(@i+1,@+2), .., (@n-2, @n-1), (@n-1, &), (a0, @1), (A1, @2), ..., (@i-1, &), TIe X = & POAUTEINH BEPUINHBI
S B JIepeBe IIEJIEBBIX XOCTOB. DTO OOBSCHSETCS] TEM, YTO B OOIIEM Cilyyae KOPEHb JlepeBa XOCTOB
MOXET He OBITh LIeNeBbIM XOCTOM /IS JIAaHHOTO Kiacca yciyr. CMeHa KOpHS NpH Iepexoje OT
JilepeBa XOCTOB K JIEPEBY LEJEBBIX XOCTOB MPUBOIMT, MPEXK/E BCEro, K N3MEHEHHIO OPHUEHTALUH
pé0ep, Kor/1a IepeBbsl OpPUEHTUPOBAHBI OT UX KOPHEHN. ITO MOKa3aHO Ha pUC. 6, T/ie YEPHBIE CTPEITKH
n300paKaloT COBMAJAIONIYI0 OPHEHTALMI0 pEDEp B JIepEBE XOCTOB M JIEPEBE IIEIEBBIX XOCTOB C
KOpHEM B BEpILMHE X, a KPAaCHbIE CTPEJIKH MOKa3bIBAIOT OPUEHTALMIO pEOEp B JepeBe LieNeBbIX
XOCTOB, KOTOpast POTHUBOIIOJI0KHA UX OPUEHTAIMU B IEPEBE XOCTOB; 00a JiIepeBa OPHEHTHPOBAHBI
ot ux KopHeil. Tam, rae opueHTanus péoep MEHICTCs, Y BEPLIMHBI MEHSETCS € BEpIINHA-POAUTEIb:
st gyrd ab BepuiMHa @ SIBISIETCS POJMTENIEM BEpIIMHBI D, MOITOMY y IMKIMYECKOrO CIHUCKa
NpaBWI B BEpIIMHE BbIOMpaeTcs, ObITH MOXET, IPYroe HadyajbHOE MpaBHio. B anropurmax B
[MpunosxeHnH 3TO U3MEHEHHE eTAaeTCs sl KaXKIOH BEPIIMHBI S, XOTS €ro JOCTATOYHO CAENATh JJIs
BEPIIMH HA MyTH O JIEPEBY XOCTOB OT «CTApOro» 10 HOBOTO KOPHS X, MOCKOJBKY B OCTAIbHBIX
BEpLIMHAX HAaYaJIbHOE MPABUIIO CIIHCKA MPABUJI HE MEHSETCSI, YTO BHJHO IO PHC. 6.

Korna Bce BeIXOIsIIME U3 BEpIIUHBI b 1yru nepeBa XocTOB, KpoMe Iyru, BeAyIieil K €€ poauTeltto
a, yKe IPOoIeHbI, BEpIIHHA D IOChIIaeT CBOEMY POAUTEINIO @ OTBETHOE COOOLICHHE. DTO OTBETHOE
18

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

coobienne umeet tun BackB, ecim moepeBo nepeBa XOCTOB ¢ KOPHEM B BepiiMHe b cogepxut
LEeJeBOM XOCT, WK, B IPOTHBHOM ciiydae, Tuil CancelB. B stoMm nopaepese ecThb LeIeBbIE XOCTHI,
€CIIM BepIlrHa D sIBIIsIeTCs 1IeIeBBIM XOCTOM, a TakKe, eCIIi JIM00 B BepiirHe b onpenenieHo Gobiie
OJTHOTO TIPaBHJIa KOMMYTalUH (IIPH UCIIONB30BaHUM MPABHUIA YMOJIYAHHS, PUC. 5 BHU3Y), 10O B
JTHX MPaBUIAX €CTh XOTs OBl JIBa pa3HBIX MPEEMHUKA (03 MCIOIb30BAHUS TPABUIIA YMOIYAHUS,
puc. 5 BBepxy). Ecnu moceinaercs orBet BackB, Bepuiuna b BoHIET B 1epeBo meseBBIX XOCTOB, a
ecnu noceutaetcst otBeT CancelB, BepiirHa b BOWAET B 1epeBO HElENEBBIX XOCTOB. TeM caMbiM,
OyZeT BBIMOJNHATHCS Mpoleaypa «YIalCHHE «IUIIHUX» KOMMYTAaTOPOB U HEIEJCBBIX XOCTOBY.
CoOTBETCTBYIOIUM 00Pa30M KOPPEKTUPYIOTCS TIPaBUJIa KOMMYTAIIMHU I JJAHHOTO KJIacca YCIyT.
Oran B 3akanumBaeTcs, Korza MporeH BeCh UKI XOCTOB, TOTIa HaunHaeTcs dTar C.

@ host
o switch

host tree root

Puc. 6. [{ns Oepesa, opueHmupo8anHo20 on KOPHsl, CMEHA OPUCHMAYUY péoep npu CMeHe KOPHSL.
Fig. 6. Changing the edge orientation when the root is changed for a root-oriented tree.

Ha srane C nponcxoaur Bo3BpaT B MHHIIMATOP, COOOIIEHNE ABUTACTCS IO IIMKILY XOCTOB, IIOKa HE
OKa)keTCs B MHAIMaTope. MHUIMATOP MOCHUTAET CBOEMY BHEITHEMY COCEY IOJIOKUTEIbHBIN OTBET
Ha HacTpoiiky Tuna BackC. HamomuuM, 4TO OTpHIATENsHBIH OTBET MOCHUIAETCS B TOM Ciydae,
KOT/Ia B CETH HET LIENIEBBIX XOCTOB, UTO OOHApy>KMBaeTcs Ha dTame A.

7. UHKpemenmanbHasi Hacmpolika cemu

[Tox MHKpPEMEHTANBHOM HACTPOMKO# ceTH Tak ke, Kak B [1], OyaemM MOHMMATh MOBTOPHYIO H
YaCTHYHYIO MEPEHACTPOUKY CETH, HEOOXOAUMYIO Npu u3MeHeHud cetd. B [1] paccmarpusanachk
HHKPEMEHTAJIbHAs HACTPOIKA KaK YaCTHYHOE M3MEHEHHE MePBUYHON HACTPOMKH, T.e. Oe3 Kiacca
yciayr. OCHOBHBIC HIEH 3TOM HMHKPEMEHTAJLHOW HACTPOWKHM MPUMEHHMBI U IOCJIC BBEICHHS
KJIaccoB yciayr. Hy)KHO TOJSBKO MOHMMATh, YTO M3MEHEHHS CETH MOTYT KacaThCsl HE TOJIBKO I[HKIIA
XOCTOB M Jieca JCPEBbEB KOMMYTATOPOB, HO TAKXKe IIMKJIA ICJIEBBIX XOCTOB M Jieca JICPCBHEB
HETIeJICBBIX XOCTOB JIJIsl TOTO WIIM WHOTO KJlacca yCIyT. B To jke BpeMs, mpaBmiia KOMMYTaluu 0e3
KJlacca yCIyT U AJs JaHHOTO Kilacca YCIIyT, a TakXkKe U Pa3HBIX KIACCOB YCIYT HE MEPeceKaroTCs,
TaK KakK OIpPENeNAIOTCS IMapaMeTpaMH KOMMYTAIlMU: MYCTHIM MapaMeTpoM — MpaBWiIa BHIA
(- a, s, b), mu knaccom yenyr class — npasuna Buja (class: a, s, b). [Toaromy B 1aHHOM cTAaThe MbI
HE pacCMaTpUBaEeM MHKPEMEHTAIbHYI0 HACTPOWKY 0e3 Kiacca yciyr (OHa Takas ke, kKak B [1]) u
OTPaHUYMBAEMCSI PACCMOTPEHHEM MHKPEMEHTAIBHON HACTPOUKH IUII 00Ho2o Kiacca ycuyr. [lpu
HEKOTOPBIX H3MEHEHHSAX CETH TaKyl0 HHKPEMEHTAJIbHYIO HACTPOMKY HYKHO BBIMOJHHUTH IS
Ka)XJIOTO KJlacca yCIyT, KOTOPBIHA 3aTparuBaeTcs STUM N3MEHCHHEM.

N3menenue ceTn Kacaercs nu0o 1) pacnpenerneHus peaansanuii yeiayr Mo X0CTaM CETH, oo 2)
TOIOJIOTHH ceTH (M3MeHeHue rpada cet), mubo 3) pacmpeneieHus yeiuyr o kinaccam. Kakmoe
TaKO€ HM3MEHEHHE MOXKHO IMPEACTaBHTh KaK IOCIIEAOBATEIILHOCTh JJICMEHTAPHBIX H3MCHECHUH.
IToaTomy MBI OyIeM pacCMaTpHUBaTh TOJIBKO 3JICMEHTAPHBIC W3MEHEHUS M COOTBETCTBYIOIINE MM
WHKPEMEHTAJIbHBIC HACTPOWKH CETH.

1) Tlpu W3MEHEHHH PACTIPEACIICHUS PEaN3aliii YCIYT MO XOCTaM CETH JIEMEHTapHBIMU
M3MEHEHUAME SBISIOTCS: 1.1) moGaBiieHne peann3aiii OJHON YCIyTH B OIHWH XOCT,
1.2) ynanenue peanusanyn OJHOM YCIYTH U3 OJHOTO XOCTA.

2) HpI/I HU3MEHCHUHU TOHOJIOTMU CE€TU DJICMCHTAPHBIMU HU3MCHCHUSIMHU SABJIAKOTCA:

2.1) u3ameHeHue ynopsigouuBanus rpada, 2.2) nodasnenue oqHoro pedpa, 2.3) ynaneHue
OJHOTO pedpa, He HapylIaoliee CBI3HOCTh rpada, 2.4) nobaBieHne 0JJHOr0 KOMMYTaTOpa

19

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

WIIM HELEJEBOr0 XOCTa U OJHOr0 pedpa, COSAMHSIOUICr0 €ro CO «CTapoiy BepIIHUHOM
rpada, 2.5) nobGaBieHHe OIHOTO LEIEBOI0 XOCTa M OJHOIr0 pedpa, COEAUHSIONIETO ET0 CO
«cTapoit» BepumHO# Tpada, 2.6) yaaneHne OJHOTO TEPMHHAIBHOTO KOMMYyTATOpa WA
HEI[ENIeBOr0 XOCTa W MHIMICHTHOTO eMy pebpa, 2.7) yaaneHue OJHOrO TEPMHHAIBHOTO
[EJIEBOTO XOCTa M MHIUJICHTHOTO eMy pedpa.

3) Ilpu wW3MEHEHHWH paCIpEACNCHHs YCIYr MO KIaccaM JICMCHTAPHBIMH H3MCHCHHSIMH
spisttoTest: 3.1) ynmaneHwe ogHOM yCIyrd W3 Kiacca, 3.2) moOaBleHHE OOHOHM yCIyTH B
Kitace, 3.3) ymaneHue mycToro Kiacca, 3.4) 1obaBieHe mycToro Kiacca.

[Ipumepom Oornee CIOKHOTO HM3MEHEHHS CETH SIBISCTCSA yOaJlleHHE IIEJIeBOr0 XOCTa M BCEX
HHITHICHTHBIX eMy pébep. EMy cOOTBETCTBYET MOCIIEA0BATENBHOCTD YAAICHHUI OHOTO pebpa (2.3)
JUIA BCEX MHIHICHTHBIX XOCTY p&bep, KpoMe OIHOTO, a 3aTeM yHalleHHe OJHOTO TEPMHHAIBHOTO
LIEJIEBOTO XOCTa M MHIIUIEHTHOTO eMy pebpa (2.7). [Apyroi mpuMep — ymaleHHe Kiiacca YCIyT,
KOTOPOMY COOTBETCTBYET ITOCIIEI0OBATENLHOCTE YANeHNH yCeayT n3 kiacca (3.1), oka oH He cTaHeT
MYCTHIM, a 3aTeM yJajeHue mycToro kiacca (3.3).

B oTmmume OT mpenmpioymiMxX pasgeNioB 3Iech MBI OyOeT JaBaTh TOJBKO WACH alTOPUTMOB
HACTPOUKH, 1O KOTOPHIM JIETKO MOXKHO pa3padoTaTh caMH alrOPUTMBI HHKPEMEHTAIbHOW
HACTPOWKH, MBI HE TPUBOOUM 3TH aidroputMbl B [IpumokeHmn. B HEKOTOPHIX cCirydasx
MepeHacTpoiika CeTH M3-3a KaKOI'0-TO M3MEHEHUs] MOXKEeT OBbITh BHIOJIHEHA Y dekTHBHEE, eciun eé
BBINIOJIHATh «CPa3y», a HE KaK MOCJIEO0BATEIbHOCTh IEPEHACTPOCK CETH IO 3JIEMEHTAPHBIM
n3MeHeHussM. Ho 3To yxe Bompoc onTuMU3anuy (M YCI0KHEHHUS) allTOPUTMOB MHKPEMEHTAILHOM
HacTpoiiku. Kpome Toro, Mpl paccMaTpHBaeM TOJIBKO TaKyl) HHKPEMEHTaJbHYIO HACTPOMKY,
KOTOpasi HeoO0XouMa JUTs NoAepKaHus (PyHKIMOHAIBHOCTH CETH, T.€. BOBMOXHOCTH IepeaBaTh
COOOIIeHHS OT JI000T0 XOCTa-OTIPAaBUTENS JIFOOOMY M3BECTHOMY XOCTY HJIM C 3allpoCOM JI000H
yeryru. Eciin mepeHacTpoiika mosie3Ha IIsi ONTUMHU3AINH CeTH (HAalpuMep, YMEHBIICHUS JUTHHBI
IUKJIa XOCTOB), TO MBI TOJBKO OTMEYaeM JTOT (PakT, HO HE Ipe[iaraeM aJITOPUTMBI TaKOW
NIEPEHACTPOUKH.

B psane cmydaeB BO BpeMs HHKPEMCHTAIFHOW HACTPOWKH HYXXHO 3HATh, JIGKWT JIM BEpIINHA Ha
[UKJIE [EJICBBIX XOCTOB WJIM HET. Y HAC HET COOTBETCTBYIOIIEH OTMETKH (OYIIEBCKOI IepeMeHHOI)
B BepIInHax rpaga, Ho 6e3 He€ MOKHO 000UTHCh. BepIinHa JIe)HT Ha ITUKIIE IEIeBBIX XOCTOB TOTAa
1 TOJIBKO TOT[Ia, KOTJIa OHA SBJIACTCS IEJICBBIM XOCTOM HIIA 3TO KOMMYTATOp FIIH HEIENIEBOH XOCT,
1 B HEM 10O ompeeieHo OOJBIIe OHOTO MpaBHia KOMMYTAIMH (TIPH UCIIOIB30BaHUH MPaBUIIa
yMOI4YaHuA, pUC. 5 BHU3Y), MO0 B €ro NMpaBHIAaX €CTh XOTA OBl J1Ba pa3HBIX NpeeMHHKa (6e3
WCIIOJIb30BaHKs NIPaBUiIa yMOJUaHHUs, puc. 5 BBepXy). HarmoMHUM, 4TO /ISt IMKIIA LEJIEBBIX XOCTOB
Ha puC. 5 4Y€PHBIN KPY)KOK HYKHO TIOHUMATh KaK LIEJIEBOM XOCT, OBl KPY)KOK KaK KOMMYTaTop
WM HETIeJIeBOH XOCT, a CephIii KPYKOK Kak KOMMYTATOp WIH (JTF000i1) XOCT.

WNHkpemeHTaNIbHAS HACTPOWKA CETH, KaK MPABUIIO, HE HapyIaeT (yHKIIMOHATLHOCTU ceTu. Eciu Bo
BpeMsi HACTpOMKM UMeeTcs cooOmeHue ykazaHHoMmy xocTy (MessageToHost wnum
RootMessageToHost), oHo OyneT A0CTaBICHO MOTYUYaTEN0, €CJIA B COOOIIEHUH BEPHO yKa3aH ero
uaeHTU(GHUKATOP U MOJydaTesb He YAaIEH u3 ceT. MHaue cooOlleHne ¢ OTpUIaTeNbHBIM OTBETOM
(MessageToHost wunmu RootMessageToHoOSt), Gyner a0CTaBI€HO OTIPABUTENO HMCXOIHOTO
cOO0OIIeHH s, €CIIM B COOOIIEHNH BEpHO YKa3aH MAECHTU(UKATOpP OTIPABHUTENS, U OTIIPABUTEIb HE
ynanén n3 ceru. Ecnu Bo BpeMsi HACTPOHKHM nMeeTcs coolrienne ¢ 3anpocoM yciryru (Message,
RootMessage i WaitingMessage), oo OyzieT Z0cTaBIeHO HY)KHOMY XOCTY, €CJIH B COOOIICHUH
BEPHO YKa3aHbl UMs YCIyTH M UM €€ Kjlacca, U B CETH €CTh XOCTBI, B KOTOPBIX PeaH30BaHa 3Ta
ycmyra. MHawe cooOmenme ¢ orpumatensHbiM - otBetoM (MessageToHost wim
RootMessageToHost), Oymer MmOCTaBICHO OTIPABHUTEIIO MCXOJHOTO COOONICHHS, €CIH B
COOOIIEHHH BEPHO YyKa3zaH WACHTU(HUKATOP OTHPABHUTENS M OTIPABUTEIb HE YAaJIéH M3 CETH.
HckiroueHreM sIBISIETCSl CIIy4aid, KOra MEHsSeTCs KOpeHb JiepeBa (LIeNeBBbIX) XOCTOB: «CTapblii»
KOPEHb yJIANISeTCs], 1 KOPHEM CTAHOBHTCS IPYroi XocT. B aToM cityyae cooOlieHre MOXKeT He IOUTH
JI0 azipecara, axke ecM TaKo# ajpecar ecTh B CETH.

20

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

7.1 U3ameHeHMe pacnpepneneHus peanusaumi ycnyr no xoctam

7.1.1 Nlo6aBneHue peanusauum ogHOM ycnyru B OQuH XOCT

Ipu noGaBIeHUH peanu3alii YCIyrd ¢ UMEHEM SerVICe B HEKOTOPBIN XOCT @ HY>KHO BBITIOJHUTH B
xocte a Services := Services L {service}. Eciu B XxocTe a OblIa peaqn3oBaHa Ipyras yCiIyra TOro
e Kiacca, HUKakux INefcTBHil He TpeOyercs. B MPOTHBHOM cliydae XOCT & CTAHOBUTCS HOBBIM
IEJIEBBIM XOCTOM [IJIsl 9TOM YCIYTH, U €r0 HY>KHO I00aBUTh B LUK IIEJIEBBIX XOCTOB. J[jist 3TOTO Ha
IyTH 110 JEPEeBY HELEJEBBIX XOCTOB OT XOCTa @ 0 IMKIA LEIEBBIX XOCTOB HYXKHO IOMEHSThH
[paBUJia KOMMYTALWH B BEPIIHHAX IIyTH, KPOME BEPLINHBI &, Y KOTOPO He MEHSETCS POIUTENb, U
HO09TOMY € YYETOM IIPaBHJIa YMOJIYAHHUS B HEW H3MEHEHHUS He HYXHbI (pHC. 7).

e target host a E> a
o Switch or non-target host

Puc. 7. Heyenesoil xocm cmaHo8umcsi yeneblM X0CmoM.
Fig. 7. A non-target host becomes a target host.

7.1.2 YaaneHuve peanvsauuu ogHOM yCryru us oqHoro xocra

[Ipu yaajgeHUH peann3anin yCIyru ¢ IMEHEM SerViCe i3 HeKOTOPBIi X0cTa & HY)KHO BBIMOJIHHUTH B
xocte a Services := Services \ {service}. Ecnu B xocTe a ocTanach peanusanus Apyroil ycIyru Toro
JKe KJlacca, HUKAaKHMX JIeHcTBUI He TpeOyercs. B mpoTuBHOM ciydae XocT @ mepecTalr ObITh
[EJIEBBIM XOCTOM JIJISL 3TON YCIYTH, B €r0 MOXXHO OBLIO OBl YAAIUTh U3 IMKIJIA LEICBBIX XOCTOB.
OnHako 3TO HYXKHO TOJIBKO B IIENISAX ONTUMH3AINH (YMEHBIICHHS AJIHHBI UK [IEICBBIX XOCTOB),
MOCKOJTKY HaJMYHE HEIEJICBBIX XOCTOB B ITUKJIIC [IEJICBBIX XOCTOB HE BIUACT Ha (DYHKIIHOHAIBFHOCTD
ceti. OTHOCHTENBHO MPOCTO TAaKYK ONTHMH3AIMI0 MOXXHO BBINOJHHUTb, KOTJIA XOCT @ SIBISACTCS
JIMCTOBOM BEPIINHON JiepeBa 1IENIEBbIX XOCTOB, T.€. €My HHIHUJCHTHO B IepEeBE SIUHCTBEHHOE PeOpO
{a, b}: mensrorcst npaBuiia koMMyTaiuu B Bepiuae b (puc. 8).

a a
e target host E>
o switch or non-target host b b

Puc. 8. Jlucmosoti yenegoil xocm cmano8umcs Heyenesbim X0CHoM.
Fig. 8. A leaf target host becomes a non-target host.

7.2 A3MeHeHue Tononornm cetu

7.2.1 U3meHeHue ynopsigounBaHus rpaca

Jpyroe ynopsinounBanue rpaga, T.e. onpeereHie qpyrux JMHEHHBIX HOPSIKOB coceeil Kax1on
BEPIIMHBI, IPUBOJUT K IIOCTPOCHHUIO JAPYroro OCTOBHOI'O J€peBa IIpU HACTPOMKE CETH M, Kak
CIIEZICTBHE, APYTUX JEPEBA U LIUKJIA LIEJIEBBIX XOCTOB U JIECa IEPEBBEB HELENIEBBIX XOCTOB. [IIs TOro
YTOOBI 3aJ1aTh HOBOE YNOPAAOYMBaHUE Tpada, Hy)KHO B KaXI0W BEpIINHE, B KOTOPOH M3MEHHIICS
JMHEHHBIN MOPAIOK coceleil, YCTAHOBUTH HOBBIM CIHCOK HACHTHU(HKATOPOB COCETHHX BEPIIUH

21

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

(oTAMUarONIUiCS OT CTaporo MOPSAKOM BepiiuH). OMHAKO IS COXPaHEHUS (YHKIIMOHAIBHOCTH
CeTH TepeHacTpoiika He Tpedyercs. B To ke BpeMs MoJIHas MepeHacTporKa CETH MOTJa ObI OBITH
Mojie3Ha B IEJISX ONTHMHU3AIMU: YMEHBIICHUS JUIMHBI IUKIOB. TOraa HYyKHO BBIMOIHUTD
MEPBUYHYIO HACTPOMKY U JlaJiee HACTPOMKY JJIs KaXKIOro Kjacca YCIyT.

7.2.2 Jo6aBneHue ogHoOro pebpa

Jnsa coxpaneHus (yHKIMOHAIBPHOCTH CETH MepeHacTpoiika He Tpedyercs. B To xe Bpewms
HepeHacTpoiika ceTH Moria Obl OBITH MOJIE3HA B LIEJIAX ONTUMH3AIMH: YMCHBIICHUS JUTHHBI [TUKIIA
IIeTIEBBIX XOCTOB. J[JIs TMOATOTOBKH K Cleyromel HacTpoiike mpu gobasinenun pebpa {a, b} B
CIIUCOK COCe/IeH BepIIMHBI & 100aBiseTcst HaeHTHUKATOP cocena b, a B ciucok cocezieit BepirHb
b mo6asnsercs nuentudukarop cocena a.

7.2.3 YaaneHue ogHoro pe6pa, He Hapyluarowee CBA3HOCTb rpada

Jlnst OATOTOBKM K CIIEAYIOIeH HacTpoiike mpw ynaineHun pebpa {a, b} w3 cmucka cocenmeit
BEPIIMHBI 8 YOAIIeTCs uaeHTH(UKaTop cocexa b, a u3 comcka cocexeii BepummHel b ymassercst
uaeHTuUKaTop coceaa a.

Ecnu ynansemoe peOpo sBISIETCS XOPAOH OCTOBHOTO JEpeBa, [IepeHacTpoiika He Tpebyercs (naxe
JUIS1 ONTUMU3AINH).

Ecnu ynansemoe peOpo JIEXKUT Ha JAepeBe HELEICBBIX XOCTOB, €r0 yIaJCHHEe HAPYLIACT CBA3HOCTD
storo aepesa (puc. 9). Eciu ato pebpo {a, b}, rae BepuinHa a sIBIseTCS pOAUTENIEM 1Sl BEPIIUHBI
b, To ofHA M3 3THX KOMIIOHEHT CBSI3HOCTH SIBISICTCSI IIOJACPEBOM OCTOBHOTO [EPEBa C KOPHEM B
BepuInHe b, a Ipyrasi KOMIIOHEHTa COAEPIKHUT LUK XOCTOB. [I0CKOIBKY rpad OcTaéTest CBSI3HBIM,
JOJDKHO ObITh pedpo {C, d}, coenunstoliee BepIIMHY C U3 MEPBOM KOMIIOHEHTHI ¢ BepiiuHoW 0 U3
BTOpOil KOMIOHEHTHL. TpeOyeTrcss HM3MEHHWTh MpaBWiIa KOMMYTAlMM B BEpIIMHAX MYTH MO
(HEOpPHEHTUPOBAHHOMY) JEPEBY HEIEIEBBIX XOCTOB W3 BEPLIMHBI D B BepuiMHy C, a TaKke B
BepiuHax a u d. OgHako ¢ y4éToM MpaBuiia YMOJTYaHUs TpaBuiia B BepumHax a U 0 MOXHO He
MCHATH, TaK KaK B HUX HC U3BMCHUJIUCH POAUTCIIN IO COOTBETCTBYIOIIUM JICPEBLAM (ﬂepeBa XOCTOB
IUIs BEPLIMHBI @ U IepeBa KOMMYTaTOPOB [UIsl BepuinHsl d).

Ecnu ymansemoe pebpo JIEKHUT Ha JepeBe IENEBBIX XOCTOB, €r0 yaajJeHHe HapyIlIaeT CBA3HOCTh
storo aepesa (puc. 10). Ecim ato pebpo {a, b}, rae Bepuirna a siisieTcst poauTeneM JUist BEPIIUHBI
b, To oflHA W3 ATHX KOMIIOHEHT CBSI3HOCTH SABIISIETCS IMOJIEPEBOM OCTOBHOIO JIEPEBA C KOPHEM B
BepuinHe b, a Ipyras KOMIIOHEHTa COJEPIKUT KOPEHb NepeBa LEeIeBBIX XOCTOB. [10CKONBKY rpad
ocTaérest CBSI3HBIM, T0JDKHO OBITH pebpo {C, d}, coequusioniee BepunHy C U3 IIepBOil KOMIOHSHTHI
¢ BepunHO# U3 BTOpON KOMIIOHEHTHI. TpeGyeTcs H3MEHUTH MPaBHiIa KOMMYTAIWH B BEPIIHHAX
IyTH 110 (HEOPUCHTUPOBAHHOMY) OCTOBHOMY JEPEBY M3 BEpIIMHBI b B BepuinHy C M B BEpIIHHAX
IyTH 110 (HEOPUEHTUPOBAHHOMY) OCTOBHOMY [ICPEBY M3 BepLIMHBI (10 LHKJIA XOCTOB, a TAKXKE B
BEpILIMHE a.

7.2.4 Oob6aBneHue ogHOro KOMMyTaTopa UM HeueneBoro xocta U ogHoro pe6pa,
COEeAUHSAIOLEro ero co «cTapon» BepLunMHon rpada

J1J1s TIOATOTOBKHY K CIEIyIOIIeil HacTpoiiKe Mpyu 100aBIeHNH KOMMYTAaTOpa WIIM HELEJIEBOTO XOCTa
a u pebpa {a, b} cozmaéres cnmcox (b) cocenei BeplIMHBI @ U B CIHMCOK COCEICH BEpIUHHBI D
nobasisiercss uneHtudukaTop cocena a. Ecim noGaBisiercss KOMMYTATop, Ul COXpPaHEHHS
(yHKIMOHAJIBHOCTH CETH IIepeHacTporika He Tpebyercsa. Ecnu mobaBmisieTcs: HEIeneBo XocT, ero
HYKHO BKIIIOUHTH B JIEPEBO HELIENIEBBIX XOCTOB, a TAKIKE COOOLINTh €My UMEHa yCJIyT Kiacca (as
0TOOpayKeHUs YCIIYT B Ki1acc). B moOoM citydae mpu JanbHEHITUX W3MEHEHHUSX TOTIOJIOTHHU CETH BO
BpeMsI COOTBETCTBYIOUICH MEPEHACTPOWKH CETH HYXHO YYUTHIBATh JOOABIIIEMBIE BEPUINHY H
pebpo. ITockonbky mpu 100aBICHUH KOMMYTATOpa WM HELEJIEBOr0 XOCTa a TOJBKO C OJHUM
HHITHICHTHBIM eMy pebpom {a, b}, Bepmnna a GyaeT TepMHUHATIBHON, OHA MOYXKET BXOIHUTH TOJIBKO
B JIEPEBO HEIENEeBbIX XOCTOB. [IpaBuia KOMMyTaluy yCTaHABINBAIOTCS B 100ABIIsIEMOH BepIInHE &

22

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

W MEHSIOTCS B ApyroM Kouie b mo6asmsiemoro pebpa (puc. 11). Omaako ¢ y4uérom TpaBuiia
YMOJTYaHHS JIOCTATOYHO TOJILKO B BEPILIUHE & YCTAHOBUTH MpaBuiio kommyranuu {: b, a, b}.

e target host

o switch or non-target host

Puc. 9. Yoanenue pebpa na depege neyenesvix xocmoa.
Fig. 9. Deleting an edge of the non-target host tree.

e target host

o switch or non-target host

a

a

Puc. 10. Yoanenue pebpa na oepese yenegvix xocmos.
Fig. 10. Deleting an edge of the target host tree.

=

Puc. 11. Jlobasrenue 00H020 KOMMYMAmMopa uiu Heyeieeo20 Xocma u 00H020 pedpa, COeOUHAIOUe20 e20 CO
«cmapoily éeputuHol epaga.
Fig. 11. Adding a switch or a non-target host and an edge for its connection with the "old" node of the graph.

e target host

o Switch or non-target host

7.2.5 No6aBneHne ogHOro LieneBoro XxocTa U ogHoro pebpa, coeAUHSIOLLEro ero co
«CTapoM» BepLnHon rpada

Kormaa nobasnsiercs 1ieneBoii xoct a u pedpo {a, b}, coenunsiromiee ero co «crapoii» BepIinHoii b,
HY»)HO co3aath crnucok (D) cocemeit xocta @, B chmucoK coceneit BepuiuHel D 1006aBUTH
HICHTU(PHUKATOP cocela & M J00aBUTh XOCT @ B IIMKJI IEJIEBBIX XOCTOB. Kpome TOro, HyXHO
COOOIIMTB XOCTY @ UMEHa YCIIYT Kiacca (Uit 0ToOpaxxeHus yciyr B kiacc). [IpaBuia kommyTtaun
YCTaHaBJIMBAIOTCA B JOOABISIEMOM XOCTE @, U MEHSIOTCS B BepIinHe b; KpoMe Toro, eciiv BepIiiHa
b He eKUT Ha IMKJIIE HENEBBIX XOCTOB, TO OHA SBJISIETCS HEKOPHEBOM BEPIIMHON HEKOTOPOTO J€peBa
HELEJIEBBIX XOCTOB, U HY)KHO MOMEHATH MMPaBUJIa KOMMYTAllMM Ha BCEM IyTH OT BEPIIMHBI b 110
KOpHs 3TOT0 Jepena (puc. 12).

7.2.6 YpaneHue ogHOro TepMMHanbHOro KOMMyTaTopa UM HeLeneBoOro xocra u
MHUMAEHTHOro emy pebpa

Cas3HOCTH Tpada He HapylIaeTcs, mepeHacTpoiika He TpedyeTcs. [MOAroTOBKY K CIeayIoen
HACTPOWKE NMPHU yJaJeHHH TEPMUHAJIBHOIO KOMMYTATOpa WM HELEIeBOro xocra a u pebpa {a, b}
U3 CIHCKa coceseil BepiuuHsl b ypansercs unentudukatop cocesa a.

23

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

7.2.7 YpaneHne ogHOro TePMWHArNbHOrO LIENIEBOro XoCcTa U WHUMAEHTHOro emy
pebpa

[lpu ynajieHud TEPMUHAIBHOTO IIEJIEBOIO XOCTa a U (€IUHCTBEHHOI0) HHIMIECHTHOrO eMy pedpa
{a, b} ces3HOCTE Tpada He Hapymaercs. Jyi MOATOTOBKH K CIICAYIONICH HACTPONKE W3 CIHCKA
coceneit BepunHsl b ynansercs uneHTHOHUKATOp cocena a. Y IAIIeMblii XOCT HYKHO YIallUTh H3
[UKIA [ENEeBBIX XOCTOB. [I0CKOIBKY XOCT TEpPMHHANBHBIA, OH SBISIETCS KOPHEM HIIH JIMCTOBOU
BEpIIMHOM JiepeBa [eNieBbIX X0cToB. C y4ETOM MpaBiia yMOIYaH s JOCTATOYHO M3MEHUTH MPAaBHJIA
komMmyTaid B Bepunae b (puc. 13). KpoMe Toro, eciu yaansercst KOpeHb JepeBa LENeBbIX XOCTOB,
HY’KHO OTMETHTH B KAUeCTBE KOPHS JAPYroii (BCE paBHO KaKoii) IENeBOM XOCT.

w@

Puc. 12. JJobasnenue 00no2o yenego2o xocma u 00H020 pebpa,
COOUHAIOWE20 €20 CO «CMapolly 8epulutoll epaga.
Fig. 12. Adding a target host and an edge connecting that connects this host with the “old” graph node.

e target host
o switch or non-target host

Puc. 13. Yoanenue 00H020 mepmMuHaibH020 Yeneeo2o Xocma u UHYUOECHMHO20 emy pebpa.
Fig. 13. Deleting a terminal target host and its incident edge.

o target host

o switch or non-target host

7.3 U3ameHeHMe pacnpeneneHus ycrnyr no Knaccam

7.3.1 YpaneHue ogHoOM ycnyru us Knacca

[Tpun ynaneHnu yciryry U3 Kiacca Hy»KHO COOOIIUTH 00 3TOM BCEM XOCTaM, YTOOBI CKOPPEKTHPOBATH
0oTOOpakeHHE YCIYyT B KJIACCHI: YAAIUTh OTOOpakeHHe 3Toi yciyru B e€ kiacc. st coxpaHeHus
(YHKIIMOHAIEHOCTH CETH IepeHacTpoiika ceTH He Tpedyercs. OmHAKO B pe3ynbTaTre TakKoro
yZIaleHus HEKOTOpHIE XOCTHI, KOTOpble OBUIM WENEBBIMH JUIl JaHHOTO KJacca, MOTYT CTaTh
HEIeNeBBIMU (€CIM B HMX OblIa peann3oBaHa €AMHCTBEHHAs yCIyra, yhainsemas M3 Kiacca).
IToaToMy nepeHacTpoiika MOKET OBITh MOJIE3HA B LIENSIX ONTUMHU3AINN: YMEHBIICHHS AJIHHBI IIUKIIA
LIENIEBBIX XOCTOB.

7.3.2 Jo6aBneHe ogHOM yCnyru B Kfacc

[Tpu noGaBneHnH YCIyTH B KJIACC HY’)KHO COOOIIUTH 00 3TOM BCEM XOCTaM, 9TOOBI CKOPPEKTUPOBATH
0TOOpaKeHUE YCIYT B KIacchl: 100aBUTh OTOOpaXkeHWe 3TOH yciayru B e€ kiacc. Kpome Toro, B
pe3ynbpTaTe Takoro M0OaBJIEHUS HEKOTOPHIC XOCTHI, KOTOPBIC HE OBUTH LENEBBIMH IS JTaHHOTO
KJlacca, MOTYT CTaTh IEJICBBIMH (B HUX peajn3oBaHa nobamisieMas yciryra). Kaxkaslii Takoil XocT
JTOJDKEH OBITh BKJIFOUYEH B IMKII XOCTOB, YTO JETAETCS aHAIOTHMYHO WHKPEMEHTAIbHON HACTPOWKE
pHU 100aBJIEHNH PeaU3alMi OAHOU YCIYyTH B OJMH XOCT (pHc. 7).

7.3.3 YpaneHue unu pobaBneHue nycroro knacca
Huxkakux neiictBuii He TpeOyeTcs.
24

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

8. 3aknroyeHue

MoxHo yKa3aTh ClEAyIOIIMe HaIlpaBJICHHUsS HCCICJIOBAHHI B paMKax MOJIEIH paclpenenéHHON
ceTH, npeaioKeHHo B [1] u B maHHO# cTaThe:

1) MoI He UcclieoBaT ACTANbHO (MHKPEMEHTAIBHYO) HACTPOHKY CETH, €CIIM OHA HE HYXKHA
JUISL COXpaHeHUs! QYHKIIMOHAIILHOCTH CETH, HO MOJIe3HA ISl MOBBILEHUS 3 ek THBHOCTH
paboTHI CeTH, a TOJNBKO YKa3blBAIN Ha BO3MOXKHYIO ONTHMHU3UPYIOIIYIO HACTPOIKY. bbuto
Obl MHTEPECHO MCCIIEA0BATh BIMSIHUE HA 3()(EKTUBHOCTh PaOOTHI CETH TaKUX (aKTOpPOB,
KaK pachpeiesieHle yCiIyT 0 KjlaccaM M paclpesieNieHle pealn3anii yCIyT o XoCTaM B
3aBUCHMOCTH OT TOIIOJIOTHHU CETH.

2) Jna yayuienust 3GGEKTHBHOCTH (CKOPOCTH Mepeaadn COOOUICHHI) U HANEKHOCTH CETH
MOJIE3HO YYMTHIBATh COOTBETCTBYIOLIME HE(QYHKIMOHAJIbHBIE NapaMmeTpsl. Hampumep,
MOJKHO paccMaTpuBaTh B3BEIICHHBIE Ipadbl, B KOTOPBIX péOpaM/BepLIMHAM MPUIHCAHEI
Beca, MOJCIUPYIOMIAE BpeMs MPOXOKICHUS COOOIIEHHUs dYepe3 peOpo/BepuInHy
(o dexTnBHOCTS) WM BEpOATHOCTH COOS TpPU MPOXOXKICHHUH COOOIMICHUS dYepes
pebpo/BepmrHy (Haa&xHOCTE). COOTBETCTBEHHO, IIPU MMOCTPOCHUH ITyTeH STH ITapaMeTphl
XKENATeNbHO YYWTHIBaTh. I mpelyiaraeMbIX QJTOPUTMOB 3TO O3HAyaeT BBIOOD
HAaWIy4IIero JepeBa XOCTOB, T.C. HAWIYYIIETro YHOPSAOYMBAHUS Ipada U HAWITYYLIEro
KOpHS JlepeBa XOCTOB, BHIOOpP HAMIYYIIEro JepeBa LICNICBBIX XOCTOB, T.C. HAWIYYIIErO
KOpHA JiepeBa IIENEBBIX XOCTOB M JAHHOTO Kiacca YCIyr Ipd 3aJaHHOM
yIopsiiourBaHuy rpada, a Takke y4€T yKa3aHHbIX apaMeTpOB B TeX WHKPEMEHTAIbHBIX
HACTPOIKax, KOTOpbIE paccMOTpeHBI B [1] 1 3T0it cTaThe. Takke HHTEPECHO HCCIEC0BATh
BO3MOXKHOCTh CaMOHACTPOWKU CETH: MO BCEW BHAMMOCTH, KaKHE-TO pEIIeHUs] mpodiieM
ONTHMU3AIMU MO3BOJISIOT MCIOJIBb30BaTh CAMOHACTPONKY CETH, a KaKHue-TOo HeT, Tpedys
HpeaBaPUTENHLHOrO IMI00aIbHOTO aHANN3a CETH (HE B IIPOLIECCe CAMOHACTPOUKH).

Cnucok nutepatypbl / References

[1]. . B. Bypuonos, H. B. Esrymenko, A. C. Kocaues, B. H. [Tonomapenko. Mojieiib pacrpeei€HHO ceTH,
B KOTOpOﬁ XOCTBI MOT'YT BBIIIOJIHATH (byHKL[I/IIO KOMMYTalluu COOGmeHHﬁ. pr)lbl HWHCTUTYTA CUCTEMHOTI'O
nporpammupoBanus. 2025, 1. 37. Ne 4, ¢. 159-172.

[2]. Sezer. S, Scott-Hayward. S, Chouhan P.K., Fraser B., Lake D., Finnegan J., Viljoen N., Miller M. and Rao
N. Are we ready for sdn? Implementation challenges for software-defined networks IEEE
Communications Magazine, 2013, 51 (7), pp. 36-43.

[3]. Mohammed, A. H., Khaleefah, R. M., k. Hussein, M., and Amjad Abdulateef, I. A review software defined
networking for internet of things. In 2020 International Congress on Human-Computer Interaction,
Optimization and Robotic Applications (HORA), 2020, pp. 1-8.

[4]. OpenNetworkingFoundation (2012). Software-defined networking: The new norm for networks. ONF
White Paper. 2012.

[5]. Burdonov, 1.; Kossachev, A.; Yevtushenko, N.; Lopez, J.; Kushik, N. and Zeghlache, D. (2021).
Preventive Model-based Verification and Repairing for SDN Requests. In Proceedings of the 16th
International Conference on Evaluation of Novel Approaches to Software Engineering - ENASE, ISBN
978-989-758-508-1 ISSN 2184-4895, pages 421-428. DOI: 10.5220/0010494504210428.

[6]. 1gor Burdonov, Nina Yevtushenko and Alexander Kossatchev. Implementing a virtual network on the
SDN data plane. Proceedings 2020 IEEE East-West Design & Test Symposium (EWDTS). 2020,
pp. 279-283.

[7]. Bypaonos WU.B., Esrymenko H.B., Kocaues A.C. Peamusanmsi pacnpeielicHHbIX W MapasieibHbIX
BoiunciaeHnid B cetn SDN. Tpyzabl MHCTHTyTa cHCTeMHOro mporpammupoBanus. 2022, 1. 34. Ne 3,
c. 159-172.

Tuns! r106aNBHBIX TEPEMEHHBIX U MapaMeTPOB NPOLEAYP 3aNHCAHBI CHHPOYHBLIMU OYKEAMU NOJIYHCUPHBIM
Kypcueom.
Wwmena npouenyp Hauunaromcesa ¢ nponucnoii 6yKest u 3anucanvl ROAYICUPHLIM KYPCUBOM.

25

https://elibrary.ru/contents.asp?id=49720082&selid=49720094
https://elibrary.ru/contents.asp?id=49720082&selid=49720094

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

Hmena rnoGanbHBIX IEpeMEHHbBIX Hauunaomces ¢ nponuchoil 6yKebl U 3anucansl He NOLYICUPHBIM KYPCUBOM.
Vimena mapaMeTpoB NpoOLEIyp U JOKAJIbHBIX HEPEMEHHBIX HAYUHAIOMCS CO CMPOYHOU OYKGbL U 3ANUCAHbL He
NOJIYIACUPHBIM KYDCUBOM.

M1. Tunbl rno6anbHbIX NepeMeHHbIX U NapaMeTpPoB npoueayp B XocTax u
KOMMYyTaToOpax

bool — Gynesckuii Tum,

vertex — naeHTHGHKATOp BEPLUINHBI rpada,

Service — ums yciyr,

class — nms kiacca yenyr,

set(type) — MHOKeCTBO 2J1eMEHTOB THIa type,

list(type) — crmcox anemeHToB THMa type,

(typez, type2) — mapa (smemenT Tuma typer, sneMeHT Tumna typez),

typei—typez — orobpaxenue sremenTa THia type:r B aneMeHT Tumna typez, sxeuBaneHTHO Set((typer, typez)) ¢
orpaHAYeHHeM: JI000e 3HaUeHHe BCTPEYaeTC s B JIEBBIX YacTsX map He 6osee 0JJHOTO pasa.

N2. Mrmob6anbHble nepemMeHHble B BepLinHe — XO0CTe Ui KommMyTtaTtope

vertex Self = ...; /* HHUIKMATH3UPOBAHO, HE MCHSIETCA: COOCTBEHHBIN HACHTU(HUKATOP BEPLINHBI */

list(vertex, vertex) Rules; /* ciucok mpaBuiI KOMMYTAIMH KaK CIIMCOK Map (MpeIIeCTBEHHUK, IPEEMHIK) */
/* Ge3 kiacca ycnmyr (1J1s IIMKJIa XOCTOB H Jieca IEPEBbEB KOMMYTaToOpoB */

class — list(vertex, vertex) ClassToRules; /* ciucok npaBuil KOMMYTAIHH JJIs JAHHOTO Kiiacca ycuyr */

bool Host = ...; /* nHHIMATH3MPOBAHO, HE MEHSIETCS: IPH3HAK TOTO, YTO BEPIIHHA SBISCTCS XOCTOM */

MN3. Mnob6anbHble NnepeMeHHblIe B XOCTe
set(service) Services = ...; /* HHUIHATH3UPOBAHO: MHOKECTBO UMEH YCIIYT, PEATU3YEMBIX XOCTOM */
class — vertex ClassToExternal; /* uneHrudukarop BHEIIHEro coceia HHUIMaTopa */

[* nnst nanHoTO KIIAcca yeiyr */
class — Bool ClassTolnitiator; /* npu3Hak uHUIMATOPA IS JAHHOTO Kiiacca yciuyr */
class — Bool ClassToRoot; /* npusHak KOpHS JepeBa LeJeBbIX XOCTOB JUIs JAaHHOTO Kiiacca ycuyr */
service — class ServiceToClass; /* orobpakenne UMEHH YCIyTd B UMs e€ kiacca */

M4. Ucnonb3oBaHue rnobasnbHbIX nepemMeHHbIX
I'no6aspHble epeMeHHbIe, HCIIOIb3yeMble Ha Tale CaMOHACTPOMKHU CeTH A1 JAHHOrO Kiacca ycuyr: Rules,

ClassToRules, Host, Services, ClassToExternal, ClassTolnitiator, ClassToRoot, ServiceToClass (Bce, kpome
Self).

I'moGanbHbIE TIEpeMeHHBIE, UCTIONIB3YEeMBIE TIPH TIepeaade COOOIIECHHH 3ampoca YCIIyT Mo HACTPOGHHOH ceTu:
Self, Rules, ClassToRules, Host, Services, ClassToRoot (Bce, kpome ClassToExternal, ClassTolnitiator,
ServiceToClass); npu renepaunu coobuieHuit 3arnpoca yciayr: ClassToRules, ClassToRoot, ServiceToClass.

M5. NpaBuna komMMyTauumn

[Tpasuina kommyTarmu rules = Rules 6e3 kinacca yenyr niu rules = ClassToRules(class) mst kiacea yemyr class
OPEJCTABIEHbl KAK CIMCOK JUIMHOM N map (MaeHTUHUKATOp cOocena-NpeqieCTBEHHNKE, HACHTH(PUKATOP
cocela-npeeMHuKa): (o, ai), (a1, a2), ..., (an-1, @n). MbI OyneM nCcHOIB30BaTh OOBIYHYIO HOTALHIO:

rules[i..jl = (ai-1, ai), ..., (&-1, &j), ecm i = 1..n, j = L.nu i <j; unave rules[i..j] = ();

rules[il[1] = ai-1 mst i = 1..n;

rules[i][2] = ai qns i = 1..n.

IIpasuno ymonuanuys: Npu NOJTYYEHUH BEPUIMHON COOOIIEHUs OT BEPUIMHBI b, OTIMYHON OT BepuMH Ao, ...,
an-1, OHO TIEPECHUIAETCS POAUTENIO Ao (MPEANIECTBEHHUKY W3 MEPBOTO TPABUIIA) MO IMOAPA3yMEBAEMOMY
npasuy (b, o).

26

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

M6. BcnomoratenbHble npoueaypsbl

vertex Successor(list(vertex, vertex) rules, vertex x) { /* ata npouenypa rakas xe, kak B [1] */

| /* 1o mpenmecTBeHHMKY X BbIYMCICHME ipeeMHIKa b B ciicke npasmi rules = (ao, a1), ..., (@n-1, an) */
| n= [rules|;i:=1;

| whilei<n&rules[i][1] #xdo{i==i+1;}

| ifi<n{return rules[i][2]; }

| else return rules[1][1]; } /* ecm as kaxzoro b B rules ver npasmna (X, b), Bosepamaem ao */
list(vertex, vertex) RulesReordering(vertex x) /* u3meHeH#e HavYana UKIAYECKOTO CITHCKA MPaBHI ¥/
| n=|Rules|; i : = 1; /* mepBIM IPaBUIOM CTAHOBHTCS HIPABHIO BHIa (X, b) */

| whilei<n&Rules[i][1]] #xdo {i:=i+1;}

L return rules[i][n]~rules[1][i - 1];

MN7. NMpouenypbl 06paboTKn coobLeHnn

Curnarypa mpoueaypsl 0o0paboTKH cooOmieHust umeer Buia Type(vertex X, napamempoi coodwenus), a
orepaTop MOCBUIKH coobuiennss umeer Bun SEND(Type(napamempel coobwenus),y), roe Type Tum
cooOmmeHns, X HICHTUPHUKATOP CcOcena-MpeIIeCTBEHHUKA, OT KOTOPOrO WPHUHATO COOOLICHHE, Yy
UJICHTU(HUKATOP cocea-MPEeMHHIKa, KOTOPOMY IIOCBUIACTCS COOOLICHHUE.

TIpearnonaraercsi, 9T0 BBHINOJHEHA MNEPBUYHAs HACTPOMKA: MOCTPOEHBI IMKI XOCTOB W JIEC JIEPEBHEB
KOMMYTaTOpOB, B KaXIOi BepmmHe wHHIuanu3uposanbl rnepemennsie Self, Rules, Host, Root, Services.
AJITOPUTMBI IEPBUYHON HACTPONKH TpUBeIeHbI B [9], TaM jxe npuBeIeHbI IPOLEAYpHl 00paboTKH COOOIIEH M
yka3zanHoMy xocty MessageToHost u RootMessageToHOSt u mponenypa reHepanuu TakuX COOOIICHHI
SendMessageToHost. TIpouenyps! 3ampoca yciayr Message, RootMessage u WaitingMessage, a taxxke
nporieaypa SendMessage reHepanuu cooOIIEHHS 3aMpoca YCIyTr, IPUBEIEHHBIE HIKE, OTIHYAOTCS OT TeX,
410 gansl B [1].

7.1 CamoHacTponka ceTu ans AaHHOro Knacca ycnyr
Vertex X — HIeHTUHUKATOP cocea, OT KOTOPOTO MOJIYYEeHO COOOIIEHHE,
class class — umst kiacca ycnyr,

set(service) serviceSet — MHOKECTBO MMEH YCIIyT 3TOTO Kilacca.

M7.1.1 3tan A: NOUCK LeneBOro xocta
ClassStart(vertex x, class class, set(service) serviceSet) {
/* cTapT HACTPOWKH, COOOIIEHHE MPHUIILIO B XOCT-UHUIIMATOP OT €r0 BHEIIHEro coceza X */
for V service e serviceSet do { /* oro6paxenue ycayr B ux xnacc */
L ServiceToClass(service) : = class; }
if Rules = () { /* ecnn nHnUKATOp M30MpPOBAHHAS BepIIHHA, TO */
ClassToRules(class) := (); /* npaBuin net */
if Services N serviceSet # & { /* eciu uaHIMAaTOP 1IETEBOH XOCT, TO */

\
\
| | ClassToRoot(class) := true; /* HHULKATOP CTAHOBHUTCS KOPHEM ACPEBa LIEICBBIX XOCTOB */
| | SEND(BackC(class, serviceSet), X); } /* monoKuTeIbHBIH OTBET Ha HACTPOIIKY */

| else { /* ecnm nHHMaTOp He LENEBOIT XOCT, TO */

| | ClassToRoot(class) := false; /* uHHLEATOp HE ABISETCS KOPHEM AePEBa LEICBBIX XOCTOB */

L L SEND(CancelC(class, serviceSet), X); } } /* oTpuuaTenbHblil OTBET Ha HACTPOHKY */

else { /* ecnu MHUIMATOP HE W30NIUPOBAHHAS BEPIIUHA, TO */

| ClassTolnitiator(class) := true; /* XocT cTaHOBHTCS HHULHATOPOM */

\ ClassToExternal(class) := x; /* 3anomuHaem uaeHTU(GUKATOP X BHEIIHETO cOoceia HHUIMaropa */

| if Services M serviceSet = & { /* eciu HHHLEATOP LETEBOH XOCT, TO */

| ClassToRules(class) := Rules; /* crHadana ik meeBbIX XOCTOB COBIIAAAET C UKIOM XOCTOB */
\

| ClassToRoot(class) := true; /* HHHLMATOP CTAHOBHTCS KOPHEM AEPEBa LIGIEBBIX XOCTOB */

27

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

I~ npsiMoe coobmienwue srama B cocemy a1 */

L | SEND(ForwardB(class, serviceSet), Rules[1][2]); } }
| else { /* ecnu MHMLMATOp HE LIETEBOMH XOCT, TO */

| ClassToRules(class) := (); /* cHauana uK/Ia IEJIEBLIX XOCTOB HET */
|

|

| ClassToRoot(class) := false; /* nunmmaTop He SBISETCS KOPHEM AEpPEBA LEIEBEIX XOCTOB */
| /* nouck uenesoro X0CTa, HauMHas ¢ cocena a1 >/

L [[SEND(SearchA(class, serviceSet), Rules[1][2]); } } }

SearchA(vertex x, class class, set(service) serviceSet) { /* stan A, nouck neneBoro xocra */

y := Successor(Rules, X); /* cocen-mpeeMHUK Y coceia-NPEeAIIeCTBEHHUKA X B IIUKIIE XOCTOB */
if x = Rules[1][1] { /* ecnu npuiwn B BepIInHy OT €€ poauTess ao = X */

if Host = false v ClassTolnitiator(class) = false {

| /* eci BeprumHa He HHHIMATOP, TO HIEPBHIi pa3 Ha STane A NPUILTH B BEPIIHHY, Tora */

| if Host = true { /* eci BepwMHa xocCT, TO */

| | for V service e serviceSet do { /* oToGpaxeHue yeiyr B ux Kiace */

| [L ServiceToClass(service) : = class; }

| if Host = true & Services N serviceSet = & { /* eciu BeplmHa LENeBOii XOCT, TO */

| | ClassToRules(class) := Rules; /* cHauana LUK LEIEBBIX XOCTOB PABEH LUKITY XOCTOB */

| | ClassToRoot(class) := true; /* BeplirHa CTAHOBHTCS KOPHEM [€peBa LIENeBbIX XOCTOB */

| | /* npsivoe cooGuienne srara B Bepumse Y = a1 */

| [SEND(ForwardB(class, serviceSet), Rules[1][2]); }

| else { /* ecn BepimHa He LENEBOI XOCT, TO */

| | ClassToRules(class) := (); /* cHauana UMKIa LEIEBBIX XOCTOB HET */

| | if Host = true { /* eciu BepmmHa xocT, TO */

| | L ClassToRoot(class) := false; /* ouncTka npu3HAKa KOPHS LIEACBBIX XOCTOB */
L L SEND(SearchA(class, serviceSet), y); } } /* uaém naislue no nukity xocros */
else { /* ecnu mpuUILTH B MHUIIATOP, TO LIMKJI XOCTOB MPOWIEH U LEEBBIX XOCTOB HET */
| ClassTolnitiator(class) := false; /* KoHew HACTPOIIKH, OUMCTKA LISt CIEAYIOLLEH HAaCTPOHKY */
| SEND(CancelC(class, serviceSet), External(class)); } /* orpuuarenbsHblii 0TBeT Ha HacTpoiiKy */
else { /* eciu KT XOCTOB HE TPOiineH, TO */

L | SEND(SearchA(class, serviceSet), y): 3 } /* uném nanbiue mo mukiy Xoctos */
y y

M7.1.2 3tan B: nocTpoeHue LUKIa LefieBbIX XOCTOB U fiepeBbLEB KOMMYTaTOpPOB
ForwardB(vertex x, class class, set(service) serviceSet) { /* atan B, nmpsimoe coobmuierue */

[* mepBoe coobIieHne, oyIaeMoe BEPIIMHON Ha dTare B, HOBBIM pOAMTEIeM CTAaHOBHUTCSI BepIIHHa X */
ClassToRules(class) := RulesReordering(x); /* mersiem HaYaa0 MUKIMYECKOTO CIIMCKa mpaBui (ao = X) */
if Host = true { /* ecu BepuMHa X0CT, TO 3aIIOMHHAEM OTOOPAKEHUE YCIIYT B MX Kitace */

| for V service e serviceSet do { ServiceToClass(service) : = class; }

L ClassToRoot(class) := false; } /* ouncrka npusHaka KOpHS LeIEBbIX XOCTOB */

if |ClassToRules(class)| = 1 { /* eciu 910 JMCTOBAs BEpIIHHA AE€PEBa XOCTOB, TO */

| if Host = true & Services m serviceSet = & { /* eciu 910 HENEBOIT XOCT, TO */

| | SEND(BackB(class, serviceSet), X); } /* monoxuTenbHblit OTBET POANTEIO a0 = X */

| else { /* ecim 910 He HENEBOIT XOCT, TO */

L [SEND(CancelB(class, serviceSet), X); } } /* oTpuuareisHsiii 0TBET pouTeNto a0 = X */

else { /* eciu 9TO He NUCTOBAsI BEPIINHA IepeBa XOCTOB, TO */

| npsmMoe coobmieHue coceny a1 */

L SEND(ForwardB(class, serviceSet), ClassToRules(class)[1][2]); } }

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

CancelB(vertex x, class class, set(service) serviceSet) { /* sran B, orpunatensusiii otser */
y := Successor(ClassToRules(class), X); /* npeeMHHUK Y peauIeCTBEHHUKA X B LUKJIE TPaBHIT */
/* KOppeKTHPOBKa MPaBUJI KOMMYTAIIMH JUTS JAHHOTO Kiacca ycuyr */
n :=|ClassToRules(class)|; i : = 1; /* onpezaensieM HHAEKC NPaBHa, B KOTOPOM BEpILIHHA X IPEEMHHK */
while i <n & ClassToRules(class)[i][2] #xdo {i:=i+1;}
if i <n{/*x=ai, i<n, rekymas BepunHa He KOPeHb */
| /* mensiem npasuio (ai-1, @) — (ai-1, ai+1) */
| ClassToRules(class)[i][2] := ClassToRules(class)[i + 1][2]; {
| /> yaanseM mpasuio (ai, ai+1) */
| ClassToRules(class) := ClassToRules(class)[1..i]*ClassToRules(class)[i + 2..n]; }
else { /* ecim X = an = @0, TO TeKyII[as BEpIIMHA KOPEHb, TOraa */
| ClassToRules(class)[1][1] := ClassToRules(class)[n][1]; /* Mensiem npasuio (a0, ai) — (@n-1, a1) */
| ClassToRules(class) := ClassToRules(class)[1..n - 1]; } /* ynamsem npaBuio (an-1, ao) */
| CancelBackB(y, class, serviceSet); } /* oxonuanue B npoueaype CancelBackB */
BackB(vertex x, class class, set(service) serviceSet) { /* sran B, monoxurensHslii otBeT */
|y := Successor(ClassToRules(class), X); /* npeeMHHUK Y IPeIIECTBEHHAKA X B LHKIIE IPaBU */
| CancelBackB(y, class, serviceSet); } /* oxoruanue B npoueaype CancelBackB */
CancelBackB(vertex y, class class, set(service) serviceSet) { /* okonuanue npouenyp CancelB u BackB */

| ify = ClassToRules(class)[1][2] { /* ecu y = a1, TO IPOILIM MUK XOCTOB ¥ MPHIIITH B KOPEHb */

| | if ClassTolnitiator(class) = true { /* eciu nuunmarop, To */

| | | ClassTolnitiator(class) := false; /* koHew HaCTPOIiKH, OYHCTKA IS CIEAYIOLEH HAaCTPOHKH */
| | | /*nonoxurenshsrii otBer BHeNIHEMY coceny */

| | | SEND(BackC(class, serviceSet), ClassToExternal(class)); }

| | else { /* ecnu He HHUIIMATOP, TO MOJIOKUTEIBHBINA OTBET MOCHLUIACTCS HHHIMATOPY */

| L | SEND(BackC(class, serviceSet), Rules[1][2]); } } /* mo uukiy XocToB coceny a1 */

| else { /* ec He TPOLLTH LMK XOCTOB, TO */

| | ify=ClassToRules(class)[1][1] {

I | | /*ecmm Y = ao (pouTeb), TO IPOLLIX MOAAEPEBO ¢ KOPHEM B 3TOil BepiuuHe, Toraa */

| | | if Host = true & Services n serviceSet = & v |ClassToRules(class)| > 1 {

| | | /*ecous MoJIiepeBe C KOPHEM B TAaHHOM BEpIIUHE €CTh IeJIEBON XOCT TO, */

| | | L SEND(BackB(class, serviceSet), y); } /* monouTeabHbIHA OTBET POAUTENO Y = a0 */

|| | else { /* ecnu B mojiepeBe ¢ KOPHEM B JIAHHOM BEPIIMHE HET IIEIEBOTO X0OCTa, TO */

| | L L SEND(CancelB(class, serviceSet), y); } } /* orpunarensHblii oTBeT poautento y = ao */

| | else {/* ecn y # a0 (He poaMTENB), TO HE MPOILIH MOJJIEPEBO C KOPHEM B 3TOit BepnHe */

N L psiMoe cooOIIeHne 3Tana B ganpire mo MUKy HelTeBbIX XOCTOB */

L L L SEND(ForwardB(class, serviceSet),y); } }}

M7.1.3 3tan C: nonoxuTenbHbLIN OTBET Ha HACTPOMKY CeTU

OrpunarensHbiii orBer CancelC mocsutaercst Bo BHEIIHIOKW BepiInHy B npoueaypax ClassStart u SearchA.
BackC(vertex x, class class, set(service) serviceSet) { /* sran C, monoxuTenbHbIi OTBET Ha HACTPOHKY */

| vy :=Successor(Rules, X); /* cocea-IpeeMHUK Y cOCea-TPEAIICCTBEHHIKA X B LHKIE XOCTOB */

| if Host = true & ClassTolnitiator(class) = true { /* eciu BepumHa nHILMATOP, TO */

| | ClassTolnitiator(class) := false; /* koHew HACTPOIiKH, OYHCTKA I CIELYIOLIEH HAaCTPOHKH */

| | /* nonoxwurensusiii oTBET BHEmHEMY coceny */

| | SEND(BackC(class, serviceSet), ClassToExternal(class)); }

| else { /* ecnn BepuMHa He HuUIEATOP, TO */

L L SEND(BackC(class, serviceSet), y); } } /* nomoxurensHsiii OTBeT 10 LUKy XOCTOB HHALHATOPY */

29

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

M7.2 NMepepaya coobLieHUn 3anpoca ycnyr no HaCTPOEHHOM ceTu

O6paboTka coobIIeHHH 3arpoca YCIYTrd OTIHYAI0TCS 0T 00paboTKH OJJHOMMEHHBIX coobIieHni B [1] Tosbko
nobaBieHHEM B YHCJIO [apameTpoB mapamerpa classclass, a Takke wWMeHAMH EpPEMEHHBIX:
ClassToRules(class) Bmecto Rules u ClassToRoot(class) Bmecto Root.

vertex X — uAeHTU(HUKATOp cocea, OT KOTOPOTo MOIYYeHO COOOIIeH e,

vertex sender — umeHTHGUKATOP XOCTA-OTIIPABUTEIIS, IPUMEHSIETCS JUTSE TIOCBUIKA OTBETa OTIPABHUTEIIO,
class class — ums kiacca 3ampaniBaeMoi yCiyry,

Service service — UM 3amnpairMBaeMoi YCIyrH,

parameters — mapameTpsI COOOIIIEHHS, IPO3PAYHBIE TSI KOMMYTAIIHH COOOIIICHHIA.

Message(vertex x, vertex sender, class class, service service, parameters) {

/* cooOIeHue 3arpoca ycIyTH, He IPOoIIeIIee Yepe3 Ayry OT pOIUTENS KOPHS B KOPEHb *

y := Successor(ClassToRules(class), X); /* cocen-nipeeMHHK Y cocea-npeAIeCTBEHHIKA X */

if Host = true v service ¢ Services { /* eciu BepunHa He peain3yeT 3anpainBaeMyro yCIyry, To */
if x = ClassToRules(class)[1][1] v Host # true v Root = false {
| /* ecim MIPUILIA HE M0 AYTe OT POIAMTEIS KOPHS B KOPEHB, TO */

|
|
| | /* nocsinaem coobeHme Aamblie MO LWHKITY LEIEBbIX XOCTOB */
| L SEND(Message(sender, class, service, parameters), y); }

| else { /* ecnu npuuLIH 110 yTe OT POAHTEINS KOPHS B KOPEHB, TO */

| | /* nocsimaem coobleHme Aanblie MO LWHKITY LEIEBbIX XOCTOB */

L | SEND(RootMessage(sender, class, service, parameters), y); } }

else { /* ecnu BepuIMHA XOCT, pEATM3YIOIIHI 3alPAIIHBACMYIO YCIYTY, TO */

| if HostReadyToExecuteService(service, parameters) = false { /* ecim xoct «3anst», T0 */
| | /* nocsimaem cooGienne gablie o WHKITY LETEBEIX XOCTOB */

| | SEND(WaitingMessage(sender, class, service, parameters), y); }

| else { /* eciu xocT «cBOGOAEHY, TO */

L L L service(sender, parameters); } } } /* noxanbHslii BbI30B 3ampaiumnBaeMoil yciayru */

RootMessage(vertex x, vertex sender, class class, service service, parameters) {
/* coOOIIIeHUE 3aITpoca YCIIyTH, MPOIIEANIee uepe3 KOPSHb IepeBa XOCTOB *
y := Successor(ClassToRules(class), X); /* cocen-nipeeMHuUK Y cocea-npeaniecTBeHHUKa X */
if Host = true v service ¢ Services { /* eciu BepunHa He peanusyeT 3anpainBaeMyro yCiIyry, To */
if x # ClassToRules(class)[1][1] v Host # true v Root = false {
| /* ecim MIPHILITA HE 110 AYTe OT POIMTEIS KOPHS B KOPEHB, TO */

|

|

| | /* nocsimaem cooGienne ablie o WHKITY LETEBEIX XOCTOB */

| L SEND(RootMessage(sender, class, service, parameters), y); }

| else { /* ecau mpuiwIK O Kyre OT POAUTENS KOPHS B KOPEHb, TO */

I OTPHILATEIBHBIA OTBET OTIIPABUTEIIO COOOIIEHN, HE HAIIEIIIETO MMoyJaTens */
L | SEND(MessageToHost(Self, class, sender, parameters), Rules[1][2]); } }

else { /* ecniu BepiIMHA XOCT, PEATH3YIOIIHI 3aNPAIIHBACMYIO YCIYTY, TO */

| if HostReadyToExecuteService(service, parameters) = false { /* eciu xoct «3ansT», To */
| \ [* moceLTaemM cooOIIeHHE JANBIIIE 110 UKITY [EIEBhIX XOCTOB */

| | SEND(WaitingMessage(sender, class, service, parameters), y); }

| else { /* eciu xocT «cBOGOEHN, TO */

L L L service(sender, parameters); } } } /* nokansHbli BBI30B 3anpaiuuBaeMoil yciayru */

WaitingMessage(vertex X, vertex sender, class class, service service, parameters) {
| /* coobuenue 3anpoca YCIIyTH, 0KUIarolIee 0CBOOOXKICHHS X0CTa, KOTOPBIit MOXKET 0Ka3aTh yciayry */
| y:= Successor(ClassToRules(class), X); /* cocea-peeMHHK Y cocea-IPeIIeCTBeHHUKA X */

30

Bypnounos U.b., Esryntenxo H.B., Kocaues A.C., ITonomapenko B.H. Knactepusamus ycayr pacnpeené HHOM CeTH, B KOTOPOit XOCTbI
MOTYT BBIIONHSTH QYHKIHIO KOMMYTAIMU coodmenuit. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, c. 7-32.

if Host = true v service ¢ Services { /* eciiu BepiunHa He peanu3yeT 3anpalinBaeMyro yCIyry, To */
if x = ClassToRules(class)[1][1] v Host # true v Root = false {
| /* ecoi npuuLIA HE IO AYTe OT POXUTENs KOPHS B KOPEHb, TO */

\

\

| | /* nocslmaem cooblieHHe JaNbILE [0 LUKITY LEIEBBIX XOCTOB */

| | SEND(WaitingMessage(sender, class, service, parameters), y); }
|

else { /* ecnu mpuIUTH IO AyTre OT POAUTEISI KOPHS B KOPEHb, TO */

|
\
\
|
|
|
‘ ‘ | /* IIOChLIIaCM COO6H1€HPI€ JaJIbIIE IO NUKITY HEJIEBBIX XOCTOB */
| L | SEND(Message(sender, class, service, parameters), y); } }

| else { /* ecin BepuIMHa XOCT, peaH3yOLIHH 3aIPALIMBAEMYIO YCIYTY, TO */

\ if HostReadyToExecuteService(service, parameters) = false { /* eciu xoct «3ansT», T0 */
‘ | /* nockutaem cooGienre nanbie 1o LUKy LIEJIEBBIX XOCTOB */

\ | SEND(WaitingMessage(sender, class, service, parameters), y); }

\ else { /* ecu xocT «cBOGOIEH», TO */

|
|
|
|
L L L service(sender, parameters); } } } /* lokaibHbIii BHI30B 3anpalInBaeMoii yciiyru */

MN8. Bbi3oB yaanéHHOM ycnyrm U3 xocTa

SEervice Service — uMs 3arnpariuBaeMoil YCIyrH,
parameters — mapameTpbl COOOIIEHHS, TIPO3PAYHBIE JUTSI KOMMYTAIIH COOOIIEHMIA.

bool SendMessage(service service, parameters); { /* BbI30B U3 X0CTa yIanéHHoi yciayru */

| class : = ServiceToClass(service); /* onpenensem kiacc yeiyr */

| if ClassToRules(class) = () { /* ecau et npasu, TO */

| L return false; }

| y:=ClassToRules(class)[1][2]; /* mocbutaem cienyromiemy coceny ai */
if service ¢ Services { /* eciti B Xx0CTe He pealM30BaHa 3allpalinBaeMas yciayra, To */
| if ClassToRoot(class) = true { /* ecau XOcT KOPEHb AepeBa LEIeBbIX XOCTOB, TO */
| L SEND(RootMessage(Self, class, service, parameters), y); } /* no iy nenesbix XocTos */
| else { /* ecnu xOCT He KOPEHb LHKIIA LIEIEBBIX XOCTOB, TO */
| | /* nocsutaem coobuienue no ITyTH 10 UKJIA [IEJEBBIX XOCTOB H Jajiee 0 MUKy */
| SEND(Message(Self, class, service, parameters), y); }
else { /* ecnu B x0cTe peanr3oBaHa 3amnpairuBaeMas yciyra (HO XocT ceifuac 3aHsT), To */
| | /* nocsutaem coobuenue no [UKJTY LIEJIEBBIX XOCTOB */
| SEND(WaitingMessage(Self, class, service, parameters), y); }

L returntrue; }

UHghopmayusi 06 aemopax / Information about authors

Urops bopucosna BYPJJOHOB — nokrop ¢u3uko-MaTeMaTn4ecKWX HayK, TJIABHBIA HaydHBIN
corpynauk MCIT PAH. Hayunbie mHTepech: (opManbHble crienu(UKAlU, TeHepalus TECTOB,
TEXHOJIOTHSI KOMITWJISIIMK, CHUCTEMBI PEaIbHOTO BPEMEHH, OIEPAIlMOHHBIC CHCTEMBI, 00BEKTHO-
OpHEHTHPOBAaHHOE TNPOTPAaMMHPOBAHME, CETEBBIE IPOTOKOJBI, IPOLECCH pa3paboTKh
MPOTPAMMHOTO 00eCTICUeHHSI.

Igor Borisovich BURDONOV - Dir. Sci. (Phys.-Math.), a Leading Researcher of ISP RAS. Research
interests: formal specifications, test generation, compilation technology, real-time systems,
operating systems, object-oriented programming, network protocols, software development
processes.

Huna Bnagnmuposna EBTYIHIEHKO, noxTop TeXHHYECKHX HAYK, Ipodeccop, IIaBHBIA HayJHBIH
corpyauuk VICIT PAH, no 1991 rona pa®orana HaydyHbIM cOTpyAHHKOM B CHOMpPCKOM (HU3HKO-

31

Burdonov 1.B., Yevtushenko N.V., Kossatchev A.S., Ponomarenko V.N. Clustering services of distributed networks in which hosts can
perform message switching functions. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 7\-32.

texanueckom wuHCTHTyTe. C 1991 1. pabdorama B TI'Y mpodeccopom, 3aB. kademapoii, 3as.
nmabopaTtopueil M0 KOMITBIOTEpHBIM HaykaM. EE€ wnccienoBaTeNlbCKHe WHTEPECHl BKIIOYAIOT
(dopmanmpHBIE METOIBI, TEOPUI0 aBTOMATOB, pAacClpelNelIEHHBIE CHCTEMBI, MPOTOKONBI U
TECTHPOBAaHUE TIPOTPAMMHOTO O00eCIIeYeHNS.

Nina Vladimirovna YEVTUSHENKO, Dr. Sci. (Tech.), Professor, a Leading Researcher of ISP
RAS, worked at the Siberian Scientific Institute of Physics and Technology as a researcher up to
1991. In 1991, she joined Tomsk State University as a professor and then worked as the chair head
and the head of Computer Science laboratory. Her research interests include formal methods,
automata theory, distributed systems, protocol and software testing.

Anekcanap Cepreesnd KOCAYEB — kanaugat pu3uko-MaTeMaTHYECKIX HAYK, BEAYIIHHA HAYyIHBII
corpynauk VMCII PAH. Hayunbsie unTepecs: dopManbHble crenn(UKaum, TeHepanns TECTOB,
TEXHOJIOTUSl KOMIWISLUK, CHCTEMBl PEabHOTO BPEMEHH, OICPAaLiOHHBIC CHUCTEMBI, OOBEKTHO-
OpPHCHTHPOBAHHOE IIPOrPAaMMHPOBAHHE, CETeBble IIPOTOKOJBI, MPOLECCH Pa3paboTKH
MIPOTPAaMMHOTO 0OeCTIeueHHS.

Alexander Sergeevitch KOSSATCHEV — Cand. Sci. (Phys.-Math.), a Leading Researcher of ISP
RAS. Research interests: formal specifications, test generation, compilation technology, real-time
systems, operating systems, object-oriented programming, network protocols, software
development processes.

Bepa Hukonaesna [TOHOMAPEHKO - kanampar ¢(u3uko-MareMaTHYeCKUX HayK, CTapIIWi
HayuHnblii corpyanuk MCIT PAH. Hayunsle unTepechl: (opMmaibHble crielinUKalny, FeHepaiys
TECTOB, CHCTEMBI PEAIFHOTO BPEMEHH, OICPAllMOHHBIE CHUCTEMbI, OOBEKTHO-OPUCHTHPOBAHHOE
MIPOTrPaMMHPOBAHHUE, CETEBBIC MPOTOKOJIBI, MPOIECCH Pa3padOTKH IPOrPaMMHOTO 00ECTICYEHHUS.

Vera Nikolaevna PONOMARENKO - Cand. Sci. (Phys.-Math.), a Senior Researcher of ISP RAS.
Research interests: formal specifications, test generation, real-time systems, operating systems,
object-oriented programming, network protocols, software development processes.

32

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-2 tocld

NpumeHeHUe KOOQOB B MOAYNLHON MeTpUKe AnA
noucka k-coceaeu

A.P. lllapanos, ORCID: 0000-0002-4794-0206 <arsharapov@hse.ru>
B.A. /lasvioos, ORCID: 0000-0003-1316-3346 <v.davydov@hse.ru>

Hayuonanvuwiii ucciedosamenvckuil ynugepcumem « Bolcuiast wikoana SKOHOMUKUY
Poccus, 101000, 2. Mocxksa, yn. Macnuykas, 0. 20.

AnHotammsi. PaccmarpuBaeTcsi mpUMEHEHHE KOJIOB, UCHPABILIONIMX OIIMOKK B MOJYJIBHOH METpHUKe, UL
pelreHus 3a1auy HICHTH(UKAMKY 00beKTa Ha MHOXKeCTBEe Q-MUYHBIX BEKTOPOB pa3zMmepHocTH D meromom k-
coceneil. B kadecTBe mpenBapuTenbHOW 00pabOTKM oOydaromield BBIOOPKH HCHOJB3YETCS METOM
KJIACTepU3allii, HCHOJb3YIOINHA IpoLeaypy [EKOIMPOBAaHUS BCEX BEKTOPOB OOy4aromieil BBIOOPKH
BBIOPAHHBIM KOJIOM B MOJTYJIbHOW METpPHKE.

Karwuesbie cioBa: Meton k-Onmxailiux cocenell; METPUKH; KITACTEPHU3AIUs; KOJbI B MOJYJIbHOU METPHUKE;
BEKTOD.

Jast uuruposanusi: lapanos A.P., JlaBeiioB B.A. [IpumeHenue ko108 B MOJIyJIbHON METPUKE JIJIsl TOMCKA
k-coceneii. Tpyast ICII PAH, tom 37, Beim. 5, 2025 r., ctp. 33-42. DOI: 10.15514/ISPRAS-2025-37(5)-2.

BnaromaprHoctu. CraThs MOATOTOBICHa B XOA€ NPOBEICHUS HCCICAOBaHMSA B paMkax [Iporpammsl

(yHIaMeHTaIBHBIX HCCIIeIOBaHMi HannoHaabHOTO HMCClenoBaTeNnbCKOro yHHBepcuTeTa «Bbicmias mikona
sxoHomMukn» (HY BIID).

Application of Codes in Modular Metrics for Searching K-Neighbors

A.R. Sharapov, ORCID: 0000-0002-4794-0206 <arsharapov@hse.ru>
V.A. Davydov, ORCID: 0000-0003-1316-3346 <petrov@ispras.ru>

National Research University Higher School of Economics,
11, Pokrovksy Bulvar, Moscow, 109028, Russia.

Abstract. This paper is devoted to the application of suffix codes in the modular metric for solving clustering
and k-nearest neighbors (KNN) problems. The advantages of using the modular metric over the Euclidean
metric are considered, especially in high-dimensional spaces. The main emphasis is placed on the development
of efficient clustering and k-nearest neighbors algorithms using codes that can correct errors in the modular
metric. The proposed approach provides polynomial complexity with respect to the training sample dimension,
which makes it promising for machine learning applications with large datasets and high-performance
requirements.

Keywords: KNN (k-nearest neighbors) method; metrics; clustering; codes in module metric; vector.

For citation: Sharapov A.R., Davydov V.A. Application of codes in modular metrics for searching k-
neighbors. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 33-42 (in Russian). DOI:
10.15514/ISPRAS-2025-37(5)-2.

Acknowledgements. The article was prepared during the research conducted within the framework of the
Fundamental Research Program of the National Research University Higher School of Economics (HSE).

33

Sharapov A.R., Davydov V.A. Application of codes in modular metrics for searching k-neighbors. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 5, 2025. pp. 33-42.

1. BeedeHue

Knaccuueckas mpo0iieMa moucka Ommkaimiero cocena GopMyHpyercs CISAyIONUM 00pazoMm:
3a7]aHO TTOJIMHOKECTBO V BEIIECTBEHHOTO BEKTOPHOTO IMPOCTPAHCTBA pa3sMepHOCTH D ¢ 3amaHHOM
METpUKOH p W coctosmee U3 N BEKTOpoB. Takke MMeeTcs IOAMHOXKECTBO M BEKTOPHOTO
npoctpancta V u anemeHt b € V, Tpebyercs Haiitu a € M, 6mmxkaiiuii k b. JlanHas npodnema u
ee pelIeHNe ABIIECTCS IIEHTPAIBHOM MPOOIeMOH B BRIYACIUTEIIEHOW T€OMETPHH.

BricTpoe BeraucneHne OIMKalIINX cocelell akTHBHO M3ydaeTcsl B paMKax HAYYIHBIX HalPaBIICHHUH
MalrHHOTO 00yueHus. Hanbonee HauBHas peanu3anus MOMCKa Coce/iel BKIrouaeT B ce0s rpydoe
BBIYHCIICHHE PACCTOSHUM MEXTy BCEMHU IapaMH TOYEK B Ha0Ope NaHHBIX, 3TOT MOJIXOJ HMEeT
cnoxnocTh O(DN?). OnHako, HOCKOJBKY KOJIU4ECTBO BBIGOpoK N pacTeT, mojaxosa rpy6oii cuibl
OBICTPO CTAHOBUTCS HEBO3MOXKHBIM.

Jnsa pemrenust mpoOiIeMbl BBIYUCIUTEIBHON Hed()(heKTHBHOCTH ToAxonma TIpyOoil CHIIBI OBLIH
n300peTeHbl pas3iiMyuHble JPEBOBUJIHBIE CTPYKTYPHl HaHHBIX. OddekTHBHOE KOIUpOBaHHE
COBOKYNHOH WH(]OpManuMK O pPACCTOSIHUM MO3BOJSIET COKPAaTHTh HEOOXOJUMOE KOJIMYECTBO
BBIYHCIICHUH PacCTOSHUS B BEIOOpKE Oyiaroapsi HCIOIb30BaHUIO IPEBOBUIHBIX CTPYKTYP IaHHBIX.
OcHOBHas ues 3aKJIF0YACTCS B TOM, UTO €CJIM TOYKa A OYEHb Jlajieka OT TOukH B, u Touka B oueHb
ommska k C, To MuI 3HaeM, uTo Toukd A u C oueHb Jajeku, 0€3 HEOOXOIUMOCTH SIBHO BBIYUCIIATE
ux paccrosinue. Takum 00pa3oM, BBIYHUCIUTENbHAS CTOUMOCTb TIOMCKa OJIMDKAHIINX coceliei MOKeT
o61Th cHIKeHa 10 O(DN log N) winn nmydme. DTO 3HAYUTENBHOE YIyYIIEHHE 10 CPAaBHCHHIO C
rpy0oii cunmoit st 6onpmux N.

B nwmreparype Tarke wu3ydaeTrcs MOAM(PHIMPOBAHHAS 33hadya IIOMCKa IPUOIM3HTEIHHOTO
Ommxaiimero cocena. B nmpuOIM3uTeNIbHOM MONCKE cOCEAa HAa PACCTOSHHUM I, CTPYKTYPa AaHHBIX
JIOJDKHA COOOIIATh O TOYKE Ha PACCTOSHUM CT° OT 3aJjaHHOM TOUKM b 17151 HEKOTOPOH KOHCTaHTHI € >
1, HO TONBKO B ciydae, €CIM CYIIECTBYET TOYKAa Ha PaccTOSHUM ' oT b. Bynem HaswsBaTh 3TY
npobiiemy (7, ¢) -ommkaiimum cocegom (nearest neighbor, NN)

B pabore [6] nmpencraBimen LSH anroputm mowmcka Onrpkaifiero cocefa, KOTOPBIA HCIIONB3YET
O(DN*/¢) noarotosutenshbIx omepaiuii, obbem mamstn O(DN + N*1/€) u O(DNY/)
omepanuii 1Mo MOWCKY Ommkaifmero cocen. Mcmome3ys yMeHBIICHHE pa3MEpHOCTH [7], 4ucIio
orepanuii OUCKa ONIKAWIIero cocea MOKHO IOMOTHHUTENBHO cokpaTuth a0 O(D + N 1/ 9, a
CJIOKHOCTH TIPEABAPUTENILHON O0OpPaOOTKH COKpPATHUTh JI0 O(DN + Nt/ C). Anroputv LSH
YCIICITHO HCIIOJB30BAJICS B HECKOIBKUX MPUKIATHBIX CIEHAPHSIX, BKJIIOYAs BBIUHUCIUTENBHYIO
ouooruio [8-9] u cebuiku B HuX win [10: 414].

B pa6ore [1] 6511 mpeacTaBIeH HOBBIN MOAXO K PEIISHHUIO 3a1aun norcka K-Ommkaiimx coceneit
(KNN) [5] ans ciydas MOAYJIBHOH METPUKH, KOTOPBIA MpeIjiaraeT HCIONb30BaHHE KOJOBBIX
KOHCTpYKIui. [IpenoxeHHbI MeTo I CBeN 3aAa4y Kiaccu(UKaIK K Ipoueaype AeKOTUPOBAHUS
KOJIOB B MOJIyJIbHOM METpHKe, KoTopas Oblia onucana B pabore [2]. MoaynbHYIO METPUKY TaKXe
Ha3BIBAIOT METPUKONX MaHX3TTeHa Wi [1 MeTpHKOi.

Kak 6pu10 oT™MeueHo B [1], MomynpHas METpUKa MMEET PsA HPEUMYIIECTB IO CPaBHEHHUIO C
MeTpukoi EBkimna juis mpocTpaHCTB ¢ OONBIION pa3MEpPHOCTBIO, YTO AAET JOMOJHHUTEIbHBINA
apryMeHT JUIs e MCIIOIb30BaHus B 33/1a4ax KJacCU(HKALMK Ha TaKKUX IpocTpaHcTBax. Merox K-
OmmKkalmux cocenel, Kak oTMedeHO B [4] siBisiercst HamOosiee TOYHBIM JUIS pEIICHMs 3ajad
KJIaccu(UKaMyM 10 CPaBHEHHWIO C aJbTEPHATHBHBIMH METOJAaMH, OIHAKO €ro INpHMEHEHHE
OTpaHUYEHO AITOPUTMHUYECKON CIIOKHOCTBIO, KOTOpasi y M3BECTHBIX BapuaHToB peannzanun KNN
3aBHCHUT OT 00beMa 00ydaromieil BEIOOPKH.

[Mpeanonoxum, uto o0beM oOywaromeld BbiOOpku V' paBeH N. [lng mnoucka Onmkaiiinero
paccTosiHMsL HEeoOXoquMO IepeOpaTh Bce OOBEKTHI W3 OOydaromieid BBIOOPKH, PaccUUTaTh IS
Ka)XJJOT0 U3 HUX PACCTOSIHUE JI0 TECTOBOTO 00beKTa f 1 3aTeM HaiTH MUHUMYM. CIIO’)KHOCTB TAKOTO
MOMCKa JIMHEIHas 1o N ¥ 3aBUCUT OT Pa3sMEPHOCTH MPOCTPAHCTBA NPU3HAKOB D.

34

[lapanos A.P., laBeinoB B.A. IIpumeHenne KoJoB B MOAY/IbHOI MeTpuKke 1u1s noucka k-coceneit. Tpyost UCIT PAH, 2025, Tom 37 BbimL 5,
c. 33-42.

[Ipeamonoxum, 4dYTO 3HAYEHHE KaKIOTO INPU3HAKA MMEET OIPEICICHHBIE TPAHHIBI T.C.
MHHUMAJIbHOE 3HA4YE€HHE M MaKCHMaJbHOE 3HaucHHE. Pa3HMIly MEXAy MAaKCUMalbHBIM H
MHUHUMAaJIbHBIMH 3HAYCHUSIMH OyZeM Ha3blBaTh IWana3oHOM Ipu3Haka. IIposerem omeparmio
HOPMHUPOBAHUs Ka)XAOTO NpHU3HAKa, TO €CTh IpPUBEIEM MHHHUMAaJbHOE 3HAa4Y€HHE K HYIIO, a
MaKCHMaJIbHOE K €JMHUIIE IyTeM BBIYMTAaHHUS MUHMMAJIBHOTO 3HAYCHHS M3 BCEX 3HAUCHUH W
JIeTICHUs] pe3yJibTaTa Ha Juarna3oH. [nepexo/a K HesibIM YuciiaM OyZeM CUUTaTh, YTO 3HAYECHHS
OTpe3Ka OT HYJIS JI0 eIMHUIBI pa3JieNeHbl Ha Z paBHOMEpHbIX WHTepBanos. [lycrs {0,1,2,...,Z —
1} =Z EBcm f € ZP, 10 cnoxHocTh Takoro anroputMa moucka O(ND). B tunuunoii 3anade
MAaIIMHHOTO OOy4YeHHUsI KOJIMYECTBO NMpU3HakoB D Moxer ObITh mopsinka 100, a pa3mep BBIOOpKH
MOXET HCYHCIATBCS JIECATKAMH M COTHSMH ThICSY OOBeKTOB. Takasi CIIOXHOCTb SIBISIETCS
CIEPXKHUBAIOINM (DAaKTOPOM IS PEATH3ANNH METO/IA B PHJIOKEHUSIX IPOMBIIITICHHOTO HHTEPHETA
BEICH Ha yCTPOWCTBax, II¢ HYKHO MaJo€ BPEMs PEaKIHH CHCTEMBI, SHEProdGeKTUBHOCTD H
HU3KHE TpeOOBaHMS K «Kene3y». Be€ aTo o3nagaert, uto s pemenus npodiremsr KNN Bo3HuKaeT
HEOOXOTUMOCTH B 00JIee OBICTPBIX METOJIaX MOUCKA OJIMKAUIIMX COCEICH, YeM POCTOoi mepedop.
Ilepexon k komaM B MOIYIBHOH METpPHKE, NPEIUIOKEHHBIH B pabore [1], maeT BO3MOXKHOCTH
pemienust 3amaud kinaccupukanuu MerogqoM KNN ¢ MOIMHOMHANBHOW CIOKHOCTBIO OT
pa3MepHOCTH oOydaromel BBIOOPKH, YTO OTKPHIBACT HOBBIC MEPCIIEKTHBHI U HCIIOIb30BAHMS
KNN B MammHHOM 00y4deHHIH, 0COOCHHO JUTs OOJBIINX 00BEMOB JAHHBIX M OONBIINX Pa3MEePHOCTEN
BbIOOpKHU. Vcrionb3oBaHUEe KOJOB B MOJYJIbHOH METPUKE B KOHKPETHbIX mpuinokeHusx 1ias KNN
3aBUCHT OT TOTO, HACKOJIBKO 3((EKTUBHOCTH TEOPETUUECKOTO TI0/IX0/1a, OIMCaHHOTO B pabore [1],
OyZeT coxpaHeHa MpH MPaKTUYEeCKOil peanmzammu. [[jis Takod peanu3alvd B JaHHOW paboTe
npejsiaraeTcs UCnoyb30BaHue cyPpQrUKCHONH KOHCTPYKIMH KOJOB B MOJYJIBHOIM METpUKE, KOTOpast
OblIa omucaHa B ctaThe [3]

CJI0’)KHOCTh pelIeHHs 3a/laud NMOoWcKa Onmkaiimero cocena st BeIOopku V pasmeproctd D ¢
3aJJaHHON METPHKO#l p M cocTosimiee U3 N BEKTOpOB NpU OONBIIMX 3HaYeHUsIX N MOXKeT OBbITh
CYIIECTBEHHO CHWD)KEHA NP TPOBEACHHUN MpeIBapUTeNbHON 00paboTku BeIOOpkH V. B kadectse
Takoi 0OpabOTKM MOXKET OBITH HCIIOJIB30BAaHA KiacTepu3amusi BBIOOpKH V, OmHcaHHE KOTOPOH
MIPUBOJUTCS B CIEYIOLIEM pa3Jiele.

2. 3adava knacmepusauyuu

3amada wiacrepusanuu (Wwid oOydeHHS Oe3 YJHTeNs) 3aKI0YaeTcs B CICAYIOImEM. 3aJaHo
MHOXecTBO V' pasmepHocTr D ¢ 3amaHHOM METPHKOHU p, U cocrosmee u3 N BeKTOpoB. TpedyeTcs
pa3duTh BRIOOPKY Ha HENepeceKaromuecs MoJMHOXKECTBA, Ha3bIBAMbIC KJIACTEPaMH, TaK, YTOOBI
Kbl KJIacTep COCTOSI M3 OOBEKTOB, OJM3KHX IO METPHKE p, a OOBEKTHI pa3HbIX KIAcTepOB
CYIIECTBEHHO OTIIMYAIKCh. [IpH 3TOM KaxknoMmy o0bekty a = (aq, a,, ..., ap) € V mpunuceiBaetcst
MeTka (HoMep) kimactepa y, € Y. Anroputm knactepusanun — 310 ¢yHkius V — Y, koropas
aobomy 00wvekTy @ = (aq,ay, ...,ap) €V CcTaBUT B COOTBETCTBHE METKY Kiacrtepa Yy, €Y.
MHoXxecTBO METOK Y B HEKOTOPHIX CIyYasX W3BECTHO 3apaHee, OJHAKO Yallle CTABUTCS 3ajada
OTIPENIeITUTh ONTUMAIIFHOE YHCIIO KIACTEPOB, C TOUKH 3PEHHS TOTO MIIH WHOTO KPUTEPHsI KauecTBa
KJIaCTEpU3alHH.

Hmerorcst MHOTOUYHCIIEHHBIE 0030pbI pabOT B 00JIaCTH KIIACTEPHOTO aHANIN3, HarpuMmep, cTaThu [11-
14]. JIsio B 2005 roay [16] omyOnmkoBaix 0030p METOIOB KIaCTEPU3AIIUH IS TAHHBIX BPEMEHHBIX
PSIOB.

Permenve 3agaun KilacTepu3anuy NPUHIUIHAIEHO HEOHO3HAYHO, M TOMY €CTh HECKOJIBKO ITPUYHH.
Bo-riepBbIX, HE CyYIIECTBYET OJHO3HAYHO HAWIYYIIErOo KPHUTEpUS KadyecTBa KIacTepU3alnH.
W3BecTeH 1emblid psiji JOCTATOYHO Pa3yMHBIX KPUTEPUEB, a TAKXKE PsiJl ATOPUTMOB, HE UMEIOIINX
YETKO BBIPAXXEHHOTO KPUTEPHSI, HO OCYIIECTBIISIONINX JT0CTaTOYHO Pa3yMHYIO KJIaCTEPH3ALHUIO IO
MOCTPOEHHIO». Bce OHM MOTYT naBaTh pasHbe pe3ysbTaThl. Bo-BTOPBIX, YHMCIIO KIACTEPOB, Kak
MIPaBUJIO, HEM3BECTHO 3apaHee M YCTAHABJIMBACTCA B COOTBETCTBHU C HEKOTOPHIM CYyOBEKTHBHBIM

35

Sharapov A.R., Davydov V.A. Application of codes in modular metrics for searching k-neighbors. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 5, 2025. pp. 33-42.

KpUTepHeM. B-TpeTpux, pe3ynpTaT KIacTepH3aluy CYIIECTBEHHO 3aBHCHUT OT METPHKH p, BHIOOD
KOTOPOH, KaK MPaBUJIO, TAKKE CYOBCKTHBEH U ONPEACISICTCS IKCIICPTOM.

s pereHns B nanbHEHIIEM 3a1a4u [TOUCKa OIDKANIIIero coceia Mbl OyIeM HCIIONB30BATh TAKHE
LIeJTH KJIACTEpU3AINU KaK:

® YIOPOCTUTH AANbHEHITYI0 00pabOTKY JaHHBIX W NMPHUHATHA PEIICHMH, padoTas ¢ KaKIbIM
KJIaCTEPOM MO OTAEIBHOCTH;

® COKpaTHTh 00BEM XpAaHMMBIX JAaHHBIX B CIIydae CBEpXOombInol BeIOOpKU V, ocTaBUB 1O
OIHOMY HanOoJee THITUIHOMY NPEICTAaBUTEINIO OT KaKJO0T0 KIacTepa.

B mepBoM ciydae 4mCIIO KIacTEpPOB CTaparoTCs CIeNaTh MOMEHbIE. Bo BTOpOM ciiyyae BakHEe
00eCTIeYnTh BBICOKYIO CTETIEHb CXO/ICTBA OOBEKTOB BHYTPH Ka)KJIOTO KIIacTepa, a KIIACTEPOB MOXKET
OBITh CKOJIKO YTOJIHO.

Bo Bcex 3THX ciy4asx MOXKET MPHUMCHSTBHCS HepapXuyeckas KIACTepPH3allvs, KOrJa KpPYITHBIC
KJIacTephI APoOSATCS Ha O0JIee METIKHE, TE B CBOIO OUepeh APOOSTCs emé Mebue 1 Tak fajee. Takne
3aaud Ha3BIBAIOTCS 3a/Jad4aMH TaKCOHOMHH (taxonomy). Pe3ymbraToM TakCOHOMHUU SIBISIETCS HE
mpocToe pa3OueHre MHOXXECTBa OOBEKTOB Ha KIACTEPHL, a JApPeBOOOpasHas wHepapxudecKas
CTpYKTYypa. BmecTto HOMepa KiacTtepa 00bEKT XapaKTepu3yeTcs MepeurnCcIeHHeM BCeX KIacTepOB,
KOTOPBIM OH MPHUHAIJICKHUT, OT KPYHHOTO K MeIKoMy. MBI OyneM paccMaTpHBaTh alTOPHTMBI
HEPapXUYCCKOW KIACTepH3allMK, IIO3BOJISIONINEC aBTOMATHU3UPOBATh MPOIECC IMOCTPOCHHS
TaKCOHOMMIL.

3amady KilacTepHU3aldyd MOKHO CTaBHUThH KaK 3a/1ady TUCKPETHOH ONTHMHU3AINH: HEOOXOIUMO TaK
OpUMHcaTh HOMepa KiacTepoBy, €Y kaxkaomy o0bekty a = (aq,a,, ...,ap) €V, 4to6hI
3HAaYCHUE BHIOPAHHOrO (YHKIMOHAA KadyecTBa MPUHSIO Hawmiayudinee 3HaueHue. CymiecTByer
MHOTO Pa3HOBUAHOCTEH (hYHKIIMOHAJIOB KauecTBa KJIACTEPHU3AIIUU, HO HET «CaMOTO MPaBHILHOTO)
($yHKIHOHATA.

Ecnu anropuT™ KiacTepU3alldd BBIYKCISET HEHTPHI KiaactepoB U(y,), Yo €Y, TO MOXHO
OTIpEeNeUTh (PYHKIIMOHAI CYMMBI CPETHUX BHYTPUKIACTEPHBIX PACCTOSTHUI:

ol V) = Y

5] p(a, u(ya)) = min
yer 'Y alyq=y

rae K, = {a € V|y, = y} — xnactep ¢ Homepom y.
Taxske MOKHO ONpeenuTh (YHKIMOHAI CyMMBI MEXKKIIACTEPHBIX PACCTOSHHMIA:

o) = E p(z1,2,)
21,226 U(Y)
Ha mpaxTrke BHIYMCIIAIOT OTHOLIEHHE Naphl (hYHKIHOHAJIOB, YTOOKI YIECTh, KaK MEKKIACTEPHBIE,

TaK ¥ BHYTPUKIACTEPHBIEC PACCTOSHUS:

D, . @,
— > min, — > max
1 0
Bbynem B pjanpHeiieM cuMTaTh, YTO MNpPOBEIEHA ITUCKPETH3AlMsi KOMIIOHEHT BEKTOPOB @ =
(as,az, ...,ap) €V waZ ypoBHEH. DTO MO3BOJSAET HCIOJIB30BATh MOIIHBIA ajaredpanvecKuit
arnmapar KOHEYHBIX MOJIeH U CTPOUTH KOJIOBbIE KOHCTPYKITMH, OTIICAHHBIE B CIEAYIOMIEM pa3iee.

3. OnucaHue cyghgpuKkcHOU KOHCMPYKUUU KOG08 8 MOGY/IbHOU Mempuke Onsi
peweHusi 3ada4qu Knaccugukayuu memodom KNN

IMycte 3amano MHOkecTBO V cocrosimee w3 N BekTopoB @ = (a4, dy,...,dp) EV,b =
(by, by, ...,bp) € V. Kaxnpiii Bekrop MHOXectBa V cocrour w3z D KOMIIOHEHTOB HAaJl

36

[lapanos A.P., laBeinoB B.A. IIpumeHenne KoJoB B MOAY/IbHOI MeTpuKke 1u1s noucka k-coceneit. Tpyost UCIT PAH, 2025, Tom 37 BbimL 5,
c. 33-42.

HOAMHOXKeCTBOM nenbix uncen a; € {0,1,2,..Z — 1} = Z, b; € {0,1,2,...Z — 1} = Z. Paccrosnue
B MOZYJILHOM METPUKE MEXY BEKTOpaMu @ U b onpenensercs o popmyie

D
du(@,b) =) |a; - by
i=1

Onpenenum otHomenue @ > b : {a; = b;|1 <i < D}uorhomenne a <K b: {a; <bh;|1<i <
D}. Ecnu dy(a,b) =tua > b (a < b) Oynem TOBOPUTH, 4TO BEKTOpP @ MOJNy4IeH U3 Bekropa b
MyTeM ¢ yBENMYUBAONINX (YMEHBIIAIOIINX) BEC OMIHOOK B MOIYIbHOI MeTpuke. Takue ommOKu
Oyzem Ha3bIBaTh OJJHOHAIPABICHHBIMU OIIUOKaAMH.

Bbynem HaspiBaTh mogMHOXKecTBO BeKTOpoB C C V koq0M, MCHPaBIAIOMNM ¢ YBEITHYMBAOIINX
(yMeHbpIIaomuX) Bec ONTHOOK B MOAYJIEHOW METPHUKE €CITN BRIONHAIOTCS yenopus Va € C, Vb €
CAceVic»a,c»b(cKac<kb)dylac)<tdylbc)<t

Ilycth 3amaHo koHeuHoe mosie u3 Q snmemenroB GF(Q) u BwimonHsercs yciosue Q > Z, T.e.
MYJIbTHIDIMKATHBHAS TPYIIa MOJs JOJDKHA COAEpXaTh HE MeHee Z aneMeHToB. IlycTh 3amaHsl
MHOYKECTBO PA3JIMYHBIX HEHYJIEBBIX dneMeHToB mois L = {l, [, ..., [p} € GF(Q) xoropoe Oymem
Ha3bIBaTh MHOYKECTBOM JIOKATOPOB M MHOXKECTBO Pa3JMYHBIX HEHYJIEBBIX JJIEMEHTOB IMOJS S =
{s1, s, ..., s7} € GF(Q) xotopoe Oynem Ha3bBaTh MHOXECTBOM cyddukcos. [l 1 < t < T Gyuem
0003HaYaTh MOAMHOXKECTBA MOWIHOCTHU t : S; = {Sq, S5, ..., St} € {51, S2, ..., Sr}. Bynem cuurats,
gro L NS = @. Onpenenum orobpaxenue Bektopa U = (Uy, Uy, ..., Up) EV B IOKaTOpHBIi

OJHHOM U (X)
ulx) =F(u) & 1_[(1 - lfi)ui

i=1
Jlnst nommuoKecTBa CyHOUKCOB S; = {51, Sy, ..., S} onpenennm cypPpUKCHBIN MOTUHOM

¢

x
sp(x) 2 xl_[(1 — —)

: Si

i=1
0O603HaUNM supp(s(x)) — MHOXXeCTBO KOpHel nosinHoMa s(x). V3 omnpezaeneHus MOJTHHOMOB
u(x) u s, (x) cnenyer, uro supp(u(x)) N supp(s;(x)) = @. O6osnauum f (x) GukcupoBaHHbI
MOJIMHOM OT (OpMaNbHON IepeMeHHO X ¢ Kodpduuuentamu Hax noneM GF(Q), KOTopsbrid

SBISIETCS OCTATKOM HEKOTOPOTO JIOKATOPHOTO monuHoMa U(X) ¢ Kod(uIMeHTaMu Haj ToJIeM
GF (Q) o moyiio monuHoMa S (X).

f(x) = u(x) mod s (x)
B paborte [3] noka3pIBaroTCs ABE TEOPEMBI, BaXKHBIC IS TaTbHEHIINX pacCyKICHUH.
Teopema 1.
Kox Cf= {u € V:u(x) = f(x) mod s¢(x), f(x) € Fo/s:(x) } HCIPABIsieT HE MeHee t
OJTHOHATIPABIICHHBIX OMIMOOK B MOIYJILHON METPHUKE.
Teopema 2.
Kon B

D
By =lceC Z|ci| = smod 2t +1),0< § < 2t
i=1
HCIIPABIISICT HE MeHee ¢ OIMOOK B MOIYJIbHON METPHKE.

U3 onpenenenus cypduUKCHOro moiauHOMa S;(X), JOKaTopHOro mojuHOMa u(x), a TakKe
KHTACKON TEOPEMBI 06 OCTATKAX CIIEAYET, YTO COOTBETCTBYIOMIHI f(X) OJJHO3HAYHO OTIPEACIACTCS

37

Sharapov A.R., Davydov V.A. Application of codes in modular metrics for searching k-neighbors. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 5, 2025. pp. 33-42.

t Beruetamu mosmHOMa uU(x) mo momymo mommHoMmoB (1 — xs; 1), 1< i < t. Kaxaslii Takoit
BBIUET SBJIAETCS HEHYJIEBBIM dyieMenToM mosisi GF (Q). HyseBoil BblUET HEBO3BMOMKEH, [IOCKOJIBKY
uro L NS =@. Bynem o06o3Hayath [uisi moiuHOMa U(X) TAKHE HEHYJEBBIC BBIYETHI U =
u(x) mod (1 —xs;), 1 < i <t. Takum 06pa3oM mojydaeM OTOOpakeHHE [TPOU3BOILHOTO
BekTopa U = (Uq, Uy, ..., Up) € V B BEKTOp HEHYJIEBBIX BBIUETOB U* = (U], U3, ..., UL).

S(u) 2 (ui,u, .., up)

U3 yrBepxkmenust TeopeMmbl 1 ciemyeT, 9TO BEKTOPY HEHYJIEBBIX BBIYETOB U = (Ui, U3, ..., U;)
COOTBETCTBYeT OO cBoi kox C, mcmpaBisomuid He MeHee t OJHOHAINPABICHHBIX OMIMOOK B
MOJIy/IbHOH METpHKE, MOCKONbKY Kakablid f(x) € Fo/s.(x) 0IHO3HAYHO OMMCHIBACTCS CBOUM
BEKTOPOM BBIUETOB, JIHOO BEKTOPY HEHYJIEBBIX BBIYETOB U* = (U, U3, ..., U;) COOTBETCTBYET
IyCTOE MHOXECTBO . AHAJIOTHYHO M3 yTBEp)KACHUSA TeopeMbl 2 ciefyeT, 4To KaXIOMy BEKTOpY
HEHYJIEBBIX BBIUETOB U* = (U], U3, ..., U;) U menomy uucity 0 < § < 2t cooTBeTCTBYET JMGO CBOM
Ko/ B, HCIPaBIAOIINIA HEe MEHee ¢ MPOU3BONBHBIX OMIMOOK B MOAYJIBHOI METPHKE, JIUOO MycToe
MHO)ecTBO @. ChopMynupyeM TaHHBIC yTBepkKICHUS B Buae Cle CTBHM.

Caencreue u3 Teopemnr 1.

ITycre 3aman Bekrtop (uj,us, ..., ui),ui € GF(Q),u; #0, 1< i <t. Torma mbo C={u€
V:3(u) 2 (uj,u3, ..., u;)} ucnpasiser He MeHee ¢ OJHOHAIPABJICHHBIX OMMOOK B MOJYJIBHOU
MeTpuke, 11bo C = 0.

Caeacrue u3 Teopembl 2.

Iycts 3aman BekTop (Ui, U3, ..., ui), u; € GF(Q),u; #0, 1 < i <t u 3amano nenoe yucio 0 <
§ <2t Tormra 6o B={uweV:I) 2 (u,u},..,u;), X2, |u;| = § mod (2t +
1) } ucnpasisiet He MeHee t TIPOU3BOJIBHBIX OIIMOOK B MOJIYJILHON METPUKE, 1160 B = 0.
Chopmynupyem kouctpykimioo aiast meroma KNN ¢ ucnonb3oBanueM cy(QpQOHUKCHBIX KOJOB B
MOAYJIBHON MeTpuKe, cornacHo Cnenctauto u3 Teopemsl 2.

4. HUcnonb3oeaHue cyhUKCHOU KOHCMPYKYuUu Kodoe & MOQy/IbHOU
Mempuke 05151 o6pabomku mecmoeol 8bI60pPKU

I[Iycte N o0Bvem TecToBoi BbIOOpKHU V. BrIOopka comepkut C pa3auyHBIX KIACCOB OOBEKTOB.
Kaxpiii Bextop V coctout M3 D KOMIIOHEHTOB HaJl IIOJAMHOKECTBOM Leibix uncen {0,1,2, ... Z —
1} = Z. Takyw BbiGOpKy Oyumem oGosuauats (N,D,Z,C). 3ajaquM MakCHMAaJIbHYIO BEIMYUHY
omubok T, KOTOPYyI0 OyAeT HCIPaBIIATh KOJOBas KOHCTPYKIWs. Kak BapuHaHT, MOXHO CUYHTATh,
yro T =~ max{D,Z}. Tlycts 3amano GF(Q) u Bemonusercs nepasenctso Q > max{D + T,Z}.
JlaHHOE yCJIOBHE IMMO3BOJSICT oOOecrmednTh (HOPMUPOBAHHE MHOXKECTBA JIOKATOPOB L =
{l,,L,....1p} € GF(Q) u cypduxcos S = {s4, S, ..., Sy} JUI1 KOTOPHIX BBINOJIHAETCS yCIOBHE L N
S=0.
ByneM cTpouTh KOHCTPYKIHIO KOJIOB, IJISt HCIIPABIICHHS t OIMTHOOK B MOAYJIEHOU MeTpHKe, T1e 1 <
t <T. TloctaBUM B COOTBETCTBHE KaXgoW u3 D TMO3MIMA BEKTOPOB vV = (Vq,Vy,...,Vp) €
V(N,D, Z, C) uenyseBoii JieMeHT M0Jis U3 MHOXkecTBa Jlokatopos L = {l;, 15, ..., [p} € GF(Q).
st mo6oro 1 < t < T 3amaanm orobpaskenue W (v, t) Bektopa v = (v, V3, ..., Up) B JJOKATOPHEIH
MOJIMHOM CTETIeHH ¢ OT (OpMabHOM epeMenHoi X Has moseM GF (Q) mo dopmyie

D t

W, t) = 1_[(1 — ;C—i)w mod xH (1 — sfl)

=1 i=1

3HavyeHust S; BHIOMPAIOTC U3 MHOXecTBa CcyhPukcoB S; = {s1,S,, ..., St} C {S1, 52, ., ST}
3amerum, yro Muagmmii koddduuuent W(v,t) Bcerna pasen 1 st mo0bix 3HadeHuit t > 1 u
06010 BekTopa v = (V4, Uy, ..., Vp) € V. Hucio pasnuunsix mosuHoMoB W (v, t) He MpeBOCXOIUT
Bennuunbl (Q — 1),

38

[lapanos A.P., laBeinoB B.A. IIpumeHenne KoJoB B MOAY/IbHOI MeTpuKke 1u1s noucka k-coceneit. Tpyost UCIT PAH, 2025, Tom 37 BbimL 5,
c. 33-42.

5. O6pabomka oby4qarouweli 6bl6OpKU nymemMm uepapxuveckol
Knacmepusayuu

Iporenypa o6pabotkn MHOxectBa cioB V(N,D,Z,C) TpOWU3BOAUTCS TOCIEIOBATEIBHO LIS
HOJMHOKECTB, COOTBETCTBYIOIIMX Kaxaomy kinaccy u3 Y ={1,2,..C}. Jlna panbHeHmmx
paccykaeHuit BeioepeM kiace Homep 1 u3 MuHoxecTsa Takux knaccos ¥ = {1,2, ... C}. O6paGoTka
V(N,D,Z, C) nis Kaxa0ro Kiiacca OCyIIECTBISIETCS MOCIEN0BATENBHO A1 BeeX 3HaueHnit 1 < t <
T, HauMHAst ¢ MUHUMAJILHOTO.

Jlns BEKTOpPOB JaHHOro Kiacca w3 MHoxectBa cios V(N,D,Z,C) W 3amaHHOrO 3Ha4YeHus t
paccmotpum mosmaoM W (a, t) mis kaxnoro a = (aq,a,, ...,ap) € V 1 3a1aHHOTO MHOXECTBa
cybouxcor S; = {sq, Sz, ..., S} € {s1,52, ..., Sr}. BbibepeM Hambosee YacTo BCTPEYAIOIMHCS
BapuaHT. OOO3HAYMM HYHCIO BEKTOPOB TAKOTO BapHaHTA Nyg. O0o3HaunM TaKoit
nomaoM V(x,t,1). Cormacuo Cnencteuio u3 Teopemsl 2, moamuoxectso cinos V(N,D,Z,C),
UMEIONMX OAMHAKOBEIM V (X, t,1) sBIseTCS KOAOM, C HCIpPABICHUEM t OXHOHAIPABICHHBIX
ommbOK B MOJyJIbHOM MeTpuke. Bynem o6o3nauyats takoit kox Vi(ny,, D,Z,C,t).

ITpoBenem mpoleaypy Hchpasienus t omubok Bo Beex Bektopax V(N, D, Z, C), oTHOCAIIHXCSA K
MmepBOMY Kiaccy, 4ei moiaumHoM He coBmamaer ¢ V(x,t 1), T.e. HailizeM OHmIMOKH, KOTOpbIE
MOKa3bIBalOT, HACKOJIBKO cioBo koma Vi(ny.,D,Z,C,t) oTau4aercss OT ClIoBa @ =
(ai,a;, ...,ap) EV(N,D,Z,C). ns 3T0ro HEOOXOAUMO TIOCIENOBATENBHO MPEIIOIOKNTD, YTO
YHUCIIO t MPOU3OMIEANINX OIMHOOK PacIpeneNiIOCh MEXKAY OMNOKaMH, YBEIHINBAIOIIUME BEC H
omuOKaMu, YMEHBIIAIOUIUMHU BeC, T.€. pacCMOTpeTh 2t + 1 BapHaHTOB.

IIponsBoas mocnemoBatenbHO 2t + 1 AeKOAMPOBAHUA, TOTydaeM Pa3InIHbIC BAPHAHTHI KOJOBOTO
BEKTOpa, OMmKaiiiero K aHaIu3upyeMoMy cioBy a = (a4, as,..,ap) € V, He SBISIOMETOCS
KOMOBBIM. /3 TONyYEeHHBIX BapHaHTOB BBIOMpPAcM TO KOJOBOE CJIIOBO, KOTOPOE HAXOIHUTCS Ha
MHHHUMAaJIBHOM DPACCTOSHUM K aHaIu3upyeMoMy Bektopy a = (a,,a,,..,ap) € V(N,D,Z,C). B
pe3yibTaTe BMECTO Bektopa a = (aq, ay, ..., ap) € V(N, D, Z, C) nis texyiuero 3Hadenus 1 < t <
T nonmyuaem Bektop a* = (aj, a;, ..., ap) € Vi (ny, D, Z, C, t). 3ameTnm, 4TO

D
X
dy(a’,a) = Z|ai —aql <t
i=1

B oxno croso koma Vi (ny., D, Z, C,t) Mmoxer ObITh HeKoaupoBaHo Heckonbko ciioB V(N, D, Z, C),
oTHocsmmxcs K kiaaccy 1. Jlns xakmoro cnoa Vi(ng:, D,Z,C,t) GUKCHPYETCS CKOJIBKO CIIOB
V(N,D,Z,C) u3 xnacca 1 GbUIO JAEKOJMPOBAHO B JAaHHOE CJI0BO. byjgeM Ha3bIBaTh TaKoe YHCIIO
MOIIHOCTRIO cnoBa a” = (aj,a;, ...,ap) € Vi(ny, D,Z,C,t). Hekoropble cioBa Koja,
cootBeTcTBytomiero nomuHomy V(x, t, 1) MOTyT UMETh HYJIEBYIO MOIIHOCTh. DTO O3HAYAET, YTO B
HHX He OBUIO JEKOIMPOBaHO HHU oxHoro cioBa u3 V(N, D, Z, C), oTHOcsmIerocs K kinaccy 1.
OtMmeTnM, uto Ui Kaxaoro 3Hadenus 1 < t < T u qs kaxzgoro ciosa koxos Vi (ny, D, Z,C,t)
OMPENeNISIeTCS CBOC 3HAYCHHUE MOIIHOCTU. MHOXKecTBa Cy(HD(HUKCOB YAOBICTBOPSAET YCIOBHIO

S$1€CcSCS5CSyCCSy

W3 naHHOTO YCIOBUS CIEIyeT, YTO KO, UCTIPABILTIONIHA t + 1 OmMOOK, SBISETCS ITOAMHOKECTBOM
KoJla C HCIpaBlieHHueM ¢ omubOK, T.e. BbIMOJHAETC ycinoBue Vi(ng.,D,Z,C,t) D
Vi (nl,t+1r D,Z,C,t+1), TO Ka)K10€ CJI0BO Koaa Vi (nu“, D,Z,C,t+1) HUMEeT CUCOK u3 t + 1
MOIITHOCTEH IS BCeX KOJIOB, B KOTOPBIE TaHHOE CJIOBO BXOJIUT.
IMockonbky MHOkecTBO cioB Vi(ng,D,Z,C,t) sBuseTcss KOIOM, HCIPABISIONIAM
OJIHOHAIPABJICHHBIE ¢ OIIMOOK, BO3MOYKHA CUTYAIHs, KOTa OJMH M TOT ke BEKTOp (a4, Ay, ..., dp) €
V(N,D,Z,C) nexonupyercs cpasy B Heckonsko cioB Vi(ng,D,Z,C,t). DT0 BO3MOXKHO, €CIH
MIPOM30IUIN pa3sHOHANPaBIEHHBIE OMMOKH. B 3TOM ciydae Oyaem BBIOMpaTh TO KOJOBOE CIOBO
w3 Vi(ny, D,Z,C,t), pacCTOsIHUE 10 KOTOPOTO MEHBIIIE, & ECIIM HECKOJIBKO CIIOB KOJIa HAXOIATCS
Ha OJIMHAKOBOM PACCTOSHHH — BEIOUPATH KOJIOBOE CJIOBO C OOJIBIICH MOITHOCTBIO.

39

Sharapov A.R., Davydov V.A. Application of codes in modular metrics for searching k-neighbors. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 5, 2025. pp. 33-42.

[Iponeypy, onMcaHHyIO BBIIIE, IPOBEIEM JJIS BCEX KJIACCOB M3 MHOYKECTBA TaKMX KIAcCOB Y =
{1,2,..C}. B pesymprare s Kaxmoro 3Hadennsal <t <T m[OIyYuM MHOXKECTBA
Vi D, Z,C,t), Vi(ny, D, Z,C,t),.. Ve(ng, D, Z,C,t). OObeaMHEHHE NaHHBIX MHOXECTB
JaeT amanTupoBanuyo Beioopky V*(N*, D, Z, C,t). JIpyrumMu CIIOBaMH, BBITIOIHSICTCS YCIOBUE

c
V*(N*,D,Z,C,t) = U Vi(ny D, Z,C,t)
i=1
3aMeTI/IM, YTO IJIs1 YHucjia CJI0B HOHy‘IeHHBIX KOIOB C HeHyﬂeBOﬁ MOIIHOCTBIO I KaXXKA0T'0 1 <t<
T BBITIOJIHACTCS HepaBeHCTBO.
c
N > Z Ny = N*

i=1

BeiOop Hambojiee dYacTO BCTpeYaroIlerocs Bapuanta mnoimHoma V(x,t, 1) sMmmupuyecku
ompenenseT Haubosee MOIXOMANINA KO, KaK KOJ, JJs KOTOPOTO HAJ0 HMCIPABIISATh OIIHOKH B
MEHBIIIEM YHCJIE CJIOB. [IpyrUMH CIIOBaMH, Y TaKOTO KOJa MaKCHMAJIbHOE YHCIIO KOIOBBIX CIIOB
coBmaso ¢ uucioM BexktopoB V(N, D, Z,C), oTHOCAIIUMCS K MEPBOMY KiacCy 00beKTOB. BriGop
MOXET TPOU3BEIEH WM MO JPYruM KputepusMm. Hampumep, 1m0 MHHUMAIbHOMY PACCTOSHHIO OT
BBIOPAHHBIX KOJOBBIX CJIOB J10 Omkaiiiux Bexktopos V(N, D, Z, C).

B nmanbHetitem OyneM s onpeneneHust k Gmmkaimux coceneit it Bekropa f = (fy, fo, -, fn)
ucnonssosats Vi(ny, D, Z,C ,t), V3(n,, D, Z,C,t), ... Vi(nge, D, Z, C, t) 1is Kaskmoro 3HauCHHUs
1<t <T, nocieqoBaTelbHO MEPEXOAs OT MEHBIIUX 3Ha4YeHuil t k OompmuM. [Ipu3HaKOM
OCTaHOBKH OY/IET SBJIATHCS MOJTyYEHHE KOAOBBIX CJIOB C CyMMapHO# MOIIHOCTBIO He MeHee K.

6. Mouck 6nuxatiwux k cocedeli K HOBOMY 06BLEKMY

Bribupaem HauanpHOe 3HaueHHme t = 1 W I KaXIOro Kiacca M3 MHOXecTBa KiaccoB Y =
{1,2,...C}, nposenem mexomuposanue Bekropa f = (fi, fo, ..., fp) B Olmkaiiinye KOIOBBIE CIOBA
komoB Vi (n,,D,Z,C ,t),V5(n,, D, Z,C,t), ... Vi(new, D, Z,C, t).

[omy4yeHHBIE CTI0Ba KaXKI0TO KOJIa UMEIOT CBOIO MOIITHOCTH (T.€. YHCIIO CJIOB HCXOIHOM 00yJaroniei
BEIOOPKH, KOTOPHIE OBLIN JEKOJUPOBAHKEI B JaHHOE CIIOBO). Ecii cyMMa MOIIHOCTEH TakuX CIIOB
Oosibliie Wik paBHa K, To BEIOpaHHBIN mapameTp t moctaTtodeH. Eciau cymMa mMorHocTeld MeHbie k
— HEOOXOIUMO YBEJIMYHUTH MapameTp 10 t+1 W MOBTOPUTH JACHCTBHE aIrOpUTMa Ui KOJOB
Vi(nyes1, D, Z,Ct +1),Vi(nge41, D, Z,Ct + 1), ... Vi(ncesr, D, Z,C t +1).

s xnaccudurmpyemoro oowsekra f = (fy, f2, ..., fp) BBIOMpaeTCs TOT Kiacc U3 MHOkecTBa Y =
{1,2,...C}, mns xOTOpPOro MOLIHOCTH TMOJNYYEHHOTO KOAOBOTO ciioBa Gonbiie. Ecnu nsa crosa
Pa3HBIX KJIACCOB MMEIOT OJMHAKOBYIO MOIIHOCTh — TO BBIYHCIISIETCS PACCTOSIHUE B MOIYJIBHON
merpuke ot Bekropa f = (f}, fo, ..., fp) IO MONYYEHHBIX KOJOBBIX CJIOB, HMEIOIIUX OJMHAKOBYIO
MOIIHOCTb, U BEIOHUPAETCSI TOT KJIACC, PACCTOSIHUE JIO KOTOPOT'O MEHBIIIE.

B pesynbraTte NpUHATHS PELICHUS MO KJIACCY HOBOTO OOBEKTa, YBEIMYHUBAETCS MOIIHOCTH TOTO
KOJIOBOTO CJIOBA, B KOTOpOE OBUT JeKoaupoBaH kiaccubpuuupyemsiii Bektop f = (fi, fo, -, fp)-
Janee anropuT™ nomcka ommkaiimx K coceieit moBTopsieTcs Ajis KilacCU(pUKaIui HOBOIO BEKTOpa
U TaK Janee.

7. 3aknroyeHue

[pemnosxeHHast KOHCTPYKIIHS MO UCTIOIB30BaHUIO CY(P(PUKCHBIX KOJIOB B MOIYJIHHON METPHUKE IS
pElLICHUs] 3a/1a4id HMepapXUYeCKOW KiacTepu3alMu W 3ajaud moucka K coceneil mo3BosieT
peanu3oBaTh pELIEHWE JaHHBIX 3aJady C MOJMHOMUAJIBHOW CJOXHOCTBIO OT Pa3MEPHOCTH
oOyuaromieil BBIOOpKU. KoHCTpyKIHs, Ipu BBIOOPE JOCTATOYHO OOJBIIOro 3HaueHus T He TpeOyeT
MOBTOPHOM MPOLELyPhl 00pa0boTKH 00yYarolieil BHIOOPKH P MEPEXoie K GobleMy 3HaueHH0 K
[P pEIIeHNH 3a1a4u TIOUCKa K coceneid.

40

[lapanos A.P., laBeinoB B.A. IIpumeHenne KoJoB B MOAY/IbHOI MeTpuKke 1u1s noucka k-coceneit. Tpyost UCIT PAH, 2025, Tom 37 BbimL 5,
c. 33-42.

Cnucok nutepatypsbl / References

[1]. B. A. JaBbigos. Hcrnosb3oBaHue KOJOB B MOJYJIbHOH Merpuke uisi pemieHust 3amadun KNN. (B
MyOIUKaUn).
[2]. B. A. TaBbimoB. Kofpl, HCIpaBisiolinde OMIMOKH B MOIYJIBHOI MeTpuke, MeTpuke JIu U oummOku
omeparopa // IIpo6i. nepenaun nadopm. 1993. I'masa 29:3. C. 209-217
[3]. V. Davydov, N. Zeulin, I. Pastushok, A. Turlikov. Coding Scheme for High-Order QAM Modulations in
the Manhattan Metric // IEEE Communications Letters. 2020. VVol. 24. N. 11. P. 2387-2391.
[4]. T. Cover, P. Hart. Nearest neighbor pattern classification // IEEE Transactions on Information Theory.
1967. Vol. 13. N. 1. P. 21-27.
[5]. Fix. E, Hodges, J.L. Discriminatory analysis. Nonparametric discrimination; consistency properties //
USAF School of Aviation Medicine. 1951. Technical Report 4.
[6]. P. Indyk, R. Motwani. Approximate nearest neighbor: towards removing the curse of dimensionality //
Proceedings of the Symposium on Theory of Computing. 1998.
[7]. E. Kushilevitz, R. Ostrovsky, Y. Rabani. Efficient search for approximate nearest neighbor in high
dimensional spaces // Proceedings of the Thirtieth ACM Symposium on Theory of Computing. 1998.
P. 614 623.
[8]. J. Buhler, M. Tompa. Finding motifs using random projections // Proceedings of the Annual International
Conference on Computational Molecular Biology. 2001.
[9]. J. Buhler. Provably sensitive indexing strategies for biosequence similarity search // Proceedings of the
Annual International Conference on Computational Molecular Biology. 2002.
[10]. N. C. Jones, P. A. Pevzner. An Introduction to Bioinformatics Algorithms // The MIT Press Cambridge.
2004.
[11]. M. Namratha. IOSR Journal of Computer Engineering. 2012. Vol. 4(6). P 23-30.
[12]. A. V. Kumar, J. C. Selvaraj. Journal of Recent Research and Applied Studies. 2016. VVo_103.
[13]. M. Omran, A. Engelbrecht, A. A. Salman. Intelligent Data Analysis. 2007. VVol. 11(6). P. 583-605.
[14]. M. Wegmann, D. Zipperling, J. Hillenbrand, J. Fleischer. A review of systematic selection of clustering
algorithms and their evaluation. 2021.
[15]. J. Gu. Journal of Physics: Conference Series. 2021. Vol. 1.
[16]. T. W. Liao. Pattern Recognition. 2005. Vol. 38(11). P. 1857-1874.
[17]. T. Gupta, S. Panda. International Journal of Engineering & Technology. 2018. Vol. 7(4). P. 4766-4768.

UHgpopmayusi 06 aemopax / Information about authors

Anexkcannp Payunosuu IIIAPAIIOB — sBnseTrcss acnupaHTOM MOCKOBCKOIO HHCTHUTYTa
3JIEKTPOHUKU U MateMaTuku uM. A.H. TuxoHoBa, nenapTraMeHT 31eKTpOHHON HHXeHepuu. TeMoil
uccienoBanusa sBisieTcs «Pa3paboTka MeTona aHaimM3a JaHHBIX C HCIOJB30BAHHEM KOJOB,
HCTIPABIIAIONINX OMMOKH B MeTprke 11». Cdepa HayIHBIX HHTEPECOB: CTATUCTHKA, aHATIH3 JaHHBIX,
KOJMPOBaHUE HHPOPMAIIUH, CETH U TEICKOMMYHHUKAIIIH.

Alexander Rauilovich SHARAPOV is a postgraduate student at the Moscow Institute of Electronics
and Mathematics named after A.N. Tikhonov, Department of Electronic Engineering. The topic of
his research is "Development of a method for analyzing data using codes that correct errors in the |1
metric". His research interests include statistics, data analysis, information coding, networks and
telecommunications.

BsuecnaB AnatonseBuu JJABBIJIOB — kanaupar TeXHUYECKMX M SKOHOMHUYECKHUX Hayk. OH
SBJISIETCS TIPUTJIAICHHBIM TPETIOIaBaTeNIeM MOCKOBCKOTO MHCTHTYTA 3JIEKTPOHUKH U MaTEeMaTHKH
uM. A.H. TuxonoBa, xadeapa napopmannonHoit 6e3onacHocTn kubeppusndeckux cucrteM. Chepa
Hay4YHBIX HHTEPECOB: areOpandeckasi 1 KOMOMHATOPHAS TEOPHsI KOJAUPOBAHUS, TEOPUSI aKTHBHBIX
CHCTEM, TEXHOJIOTHs OJIOKUYEHH.

Vyacheslav Anatolyevich DAVYDOV — Cand. Sci. (Tech., Econ.). He is a visiting lecturer at the
Moscow Institute of Electronics and Mathematics named after A.N. Tikhonov, Department of
Information Security of Cyber-Physical Systems. His research interests include algebraic and
combinatorial coding theory, active systems theory, blockchain technology.

41

Sharapov A.R., Davydov V.A. Application of codes in modular metrics for searching k-neighbors. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 5, 2025. pp. 33-42.

42

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-3 tocld

Generating
Compact Residue Number Systems Bases

V.V. Lutsenko, ORCID: 0000-0003-4648-8286 <officialvladlutsenko@gmail.com>
M.G. Babenko, ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru>

North-Caucasus Federal University, Stavropol,
1, Pushkin st., Stavropol, 355017, Russia.

Abstract. Modern computational tasks involving large-number processing demand not only high precision but
also significant operational speed. In this context, the residue number system provides an effective approach
for parallel processing of large numbers, with applications in cryptography, signal processing, and artificial
neural networks. The primary task in defining such a system is determining its basis. This paper presents an
algorithm for generating compact residue number system bases based on the Diemitko theorem. The proposed
algorithm generates bases 15.5% faster on average than Pseudo-Mersenne-based construction and 75.7% faster
than the general filtering method. Comparative analysis demonstrates that using compact bases delivers an
average 12% acceleration in modular operations compared to special moduli sets.

Keywords: residue number system; high-performance computing; special sets of moduli; generation of prime
numbers; cryptography.

For citation: Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 43-52. DOI: 10.15514/ISPRAS-2025-37(5)-3.

Acknowledgements. The research was supported by the Russian Science Foundation Grant No. 25-71-30007,
https://rscf.ru/en/project/25-71-30007/.

43

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

FeHepauml KOMMAaKTHbIX 6a3MCOB CUCTEMbI OCTAaTOUYHbIX KITaccoB

B.B. Jlyyenxo, ORCID: 0000-0003-4648-8286 <officialvladlutsenko@gmail.com>
M.TI". Ba6enxo, ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru>

Cesepo-Kaskasckuii pedepanvHulii yHugepcumem,
Poccus, 355017, 2. Cmagponons, ya. Ilywkuna, 0. 1.

AnHotamusi. CoBpeMeHHbIE BBIYHUCIUTEIBHBIC 33aa4H, CBSI3aHHBIE ¢ 00paboTKOH GONBIINX YHCEN, TPeOyIoT
HE TOJIBKO BBICOKOM TOYHOCTH, HO M 3HAYUTEIBHOW CKOPOCTH Ollepauuii. B 1aHHOM KOHTEKCTE IPUMEHEHUE
CHCTEMBI OCTATOYHBIX KJIACCOB MpeularaeT MoaXoJ K MapauieibHOH 00paboTKe OONBIIUX YHCEN, KOTOPbIH
MpUMeHsAeTcs B Kpunrorpaduu, oOpadOTKE CHUTHAIOB M HCKYCCTBEHHBIX HEHpPOHHBIX ceTsax. KimoueBoit
3aJadeil MpHU MOCTPOCHUH CHUCTEMBI OCTATOYHBIX KJIACCOB SBIAETCS ompexaeneHue e Oasuca. B crartbe
MIPE/ICTABIICH AITOPUTM I'eHepalid KOMIIaKTHBIX 0a3MCOB CHCTEMBI OCTaTOYHBIX KJIACCOB, OCHOBAHHBIM Ha
teopeme Jlmemurko. IIpeyioxKeHHBIH anropuT™M TeHepupyer 0a3ucel B cpexHeM Ha 15,5% ObicTpee, deMm
MOCTPOCHUE 0a3MCOB HA OCHOBE ICeBO-MepCeHHOBCKUX Ymcel, W Ha 75,7% ObicTpee, 4eM MeTon oOmniei
¢unbrpanyy. [IpoBen€HHBI CpPaBHUTENBHBIH aHANN3 IOKa3ajl, YTO HCIOJIB30BaHHE KOMIIAKTHBIX 0a3HCOB
obecnieunBaeT B cpefHeM 12% ycKopeHne MOTYIbHBIX ONIepalii 10 CPaBHEHHUIO CO CIIEIIMATIbHBIMEI HA00paMu
MOJAYJIEH.

KnroueBble c10Ba: cucTeMa OCTaTOYHBIX KIACCOB; BBHICOKONPOM3BOAUTENIBHBIEC BHIYUCICHHS; CIICIHATIbHbIC
Ha0OPBI MOAYJIEH; TeHepalys IPOCTHIX YHUCEN; KpUITOrpadus.

Jas murupoanms: JIynenko B.B., babenko M.I'. T'eHepalyiss KOMIAKTHBIX 0a3MCOB CHCTEMBI OCTATOYHBIX
kiaccoB. Tpymst UCIT PAH, tom 37, Bem. 5, 2025 r., crtp. 43-52 (ma anrimiickom s3wike). DOI:
10.15514/ISPRAS-2025-37(5)-3.

BaaromapHocTu. MccienoBanue BRIIONTHEHO 3a cyeT rpanTta Poccuiickoro Hayunoro ¢onma Ne 25-71-30007,
https://rscf.ru/project/25-71-30007/.

1. Introduction

Modern computational problems involving the processing of large numbers require not only high
accuracy but also significant speed of operations. In this context, unconventional arithmetic offers
innovative approaches that optimize computation in various areas such as cryptography, signal
processing and theoretical computer science. One of the key tools in this area is the Residual Number
System (RNS), which dates back to the 1950s and is based on the Chinese Remainder Theorem
(CRT) [1]. RNS is an alternative way of representing numbers based on modular arithmetic. Instead
of dealing with numbers in a positional representation, RNS decomposes them into a set of residues
obtained by division by pairwise prime numbers, called the RNS basis [2]. The main advantage of
RNS is that the addition and multiplication operations are performed in parallel on each residue,
which greatly speeds up the computation. Despite the cost of the inverse transformation, which in
the worst case depends quadratically on the size of the basis, computations involving addition and
multiplication become extremely performant. However, inverse transformation, division and
comparison of numbers in RNS remain computationally challenging problems, but recent works
propose efficient algorithms for these tasks [3-5].

RNS has been applied in signal processing [6], cryptography [7], and neural networks [8]. The
research presented in this paper is relevant to a wide range of applications related to large number
processing, including cryptographic systems since the 1990s [9], such as RSA, DH, ECC [10-11],
as well as pairing methods, Euclidean lattice-based algorithms and homomorphic protocols [12].

In cryptography, where arithmetic operations are performed modulo large numbers that are often
prime, the application of RNS becomes more challenging due to the need to perform modulo taking,
which has led to active research aimed at selecting optimal bases to improve implementation
efficiency [13-14]. RNS is also of particular interest for defense against error injection attacks, as
the introduction of redundant elements at the basis level allows error detection mechanisms to be

44

JIyuenko B.B., babenko M.I'. I'eHeparins KOMIaKTHBIX 0a3UCOB CHCTEMBI OCTATOYHBIX KiaccoB. Tpyost UCII PAH, 2025, Tom 37 B, 5,
c. 43-52.

organized [15]. In addition, the random choice of basis provides a different representation of data at
each computation, which complicates the analysis of possible information leaks. Thus, the choice of
basis is the first and most important task of RNS.

In this paper we present a method for generating RNS bases based on Diemitko's theorem. This
approach allows us to obtain bases satisfying the compactness condition.

The article is structured as follows. Following the introduction, Section 2 covers the fundamentals
of RNS. Section 3 reviews related works. Section 4 presents the proposed algorithm for generating
compact RNS bases. Section 5 then evaluates the algorithm's performance. Finally, the key findings
are summarized in the conclusion.

2. Residue Number System
RNS is based on the widely known CRT [16]. RNS argues that, knowing the smallest non-negative
residues from dividing an integer X by the integer moduli p,, p,, ..., p,, it is possible to uniquely
determine the residue from dividing X by the product of these moduli, provided that the moduli are
pairwise coprime. RNS, unlike classical b-ary number systems, is not defined by a single fixed base,
but by a set of moduli {py, p,, ..., p,} such that ged(p;, p;) = 1 forall i,j € 1,2,...n,i # j, where
gcd() is the greatest common divisor. The product of these moduli P = []X, p; determines the
dynamic range of the RNS. An integer X € [0, P) is represented as a vector composed of the smallest
non-negative residues obtained by dividing X by p;:

X =(x1,%2,...,Xp)- (D)
where x; = X(mod p;), which is also denoted by x; = |X|,,.
Consider RNS with the basis {4,5,7}. In this basis, we can mutually uniquely represent the numbers
from the half-interval [0; 140), since P = 140.
Table 1 shows the correspondences of numbers from the positional number system and the RNS.
Table 1. Representation of Numbers for RNS with the Basis {4,5,7}.

RNS
0—(0,0,0)

RNS
1—(1,11)

RNS
2—1(2,22)

RNS
3—(3,33)

RNS
4—(0,4,4)

RNS
5—(1,0,5)

RNS
6 —(2,1,6)

RNS
7—(3,2,0)

RNS
8 —(0,3,1)

RNS
9 —(1,4,2)

RNS
10 —(2,0,3)

RNS
11— (3,1,4)

RNS defines basic operations on numbers, which are divided into two groups. The operations of the
first group, which are sometimes called modular, include addition and subtraction of numbers
without the possibility of determining the sign of the result, as well as multiplication. Such
operations are performed component-wise on remainders, i.e. without forming carryovers between
them. Let the numbers X,Y and R be represented as (xq,%3,...,%n), V1, V2 -, Vn) and
(ri, 1y, e,), respectively. Then for any modular operation ° we
have

XoY =(r,r...Tm), 2
where r; = [x; 0 yil,,.
Thus, the i-th digit of the result in RNS, r;, is defined only in terms of |x; o y;|,, and does not
depend on any other digit ;. This allows the realization of carry-free, high-speed (parallel) computer
arithmetic and makes RNS an attractive number system for use in resource-intensive applications,
especially those involving the processing of large numbers. It also provides high computational
reliability since an error in the i-th digit has no effect on other digits and therefore can be efficiently
localized and eliminated [15]. In turn, for operations of the second group, often called non-modular,
it is not enough to know the values of individual residues and requires an estimate of the magnitude
of numbers: the result of such an operation is either not a number in RNS at all, or the value of each

45

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

of its digits (residue) is not only a function of the values of the corresponding digits of the operands,
but depends on the magnitude of these operands.
Algorithm 1 presents a method for performing modular operations in RNS.

Algorithm 1: Modular operations in RNS.

InpUt: {pl' D2y - pn}l (xlixZ' Ty xn)v (yli Y2, e !yn)! o€ {+: _:X}
Output: R = (1,73, .., 1y)

l.fori=1,i <n,i++do:

127 =|x;° Yilpi

Here is an example of addition in RNS.
Example 1 (Addition in RNS). Let us add two numbers X =(2,0,3) and Y =(3,0,1) in the basis
{4,5,7}. Use (2) for addition:

X+ Y=(2+3,]0+0][3+1],) =(1,04)

RNS
Hence R = (1,0,4). Which is true since 25 — (1, 0, 4).

3. Related Works

The choice of modulo set is very important to achieve a suitable RNS implementation. The modulo
set affects the whole RNS architecture [17]. Special sets of moduli are widely used [18]. Table 2
presents the most well-known special sets of moduli.

Table 2. Special sets of moduli.

Number Set Year
1 {2n —1,2",2" + 1} 1967
2 {2n—1,2n,2n + 1} 1995
3 {22n+1,2"+1,2"— 1} 1997
4 {2n—1,2",2"1— 1} 1998
5 (2" —1,2" 2™ — 13} 1999
6 {2n — 1,27, 2271 — 1} 2008
7 {2n—1,2",22" + 1} 2008
8 {29,2f —1,2F + 1} 2008
9 (3" —2,3"—1,3"} 2007
10 {2rn—1,2" 2" +1,2"1 + 1} 1999
11 {2n —1,2",2" +1,2™1 — 1} 2000
12 {2n —1,2",2" 4+ 1,22 — 1} 2003
13 {2n—1,2"+1,2" —3,2" + 3} 2004
14 {2n —1,2" 4+ 1,220 — 2,22"+1 — 3} 2008
15 {2n—1,2"+1,2722" + 1} 2009
16 {2n —1,2m, 2" + 1,227 — 1} 2009
17 {2n —1,2" + 1,227, 2241 — 13 2009
18 {2k,2" —1,2" + 1,21 + 1} 2014
19 {2k,2n —1,2" + 1,21 — 1} 2014
20 {2n —1,2m,2n 41,20 — 2(+D/2 4 gn 4 p(HD/2 4 1} 2005
21 {2n—1,27 2"+ 1,2" 1 — 1,2™4 — 1} 2007
22 {2n/2 —1,2m,2M2 +1,2" + 1,227 1 — 1} 2009
23 {2n — 1,27, 2" 4 1,27 — 204 D/2 4 1 g 4 p(HD/2 4 g ol 4 1} 2012
24 {an —1,2m8 2n 4 1,2n — 204 D/2 4 1 gn 4 2(4D/2 4 q pndl 4 1} 2012
25 {2mh,2" —1,2" + 1,2" — ky, 2" + kg, o, 2" — Ky, 27 + Ky} 2018

In the work [19], the sets of modules from Table 2 were investigated. As a result of the experiments,
the set of modules {2™ — 1, 2", 2™ + 1} turned out to be the most effective.

46

JIyuenko B.B., babenko M.I'. I'eHeparins KOMIaKTHBIX 0a3UCOB CHCTEMBI OCTATOYHBIX KiaccoB. Tpyost UCII PAH, 2025, Tom 37 B, 5,
c. 43-52.

In cryptography, it is possible to use general-form moduli sets. By increasing the number of moduli,
a higher degree of parallelism can be achieved. The literature often describes methods for generating
RNS bases based on Pseudo-Mersenne numbers [20]. The paper [14] proposes a filtering method
for constructing a very large RNS basis. However, these approaches do not account for the
compactness condition of the RNS basis.

Definition 1. A set of moduli {p;, p, ..., pn}, Where p; < p, < -+ < p,, is compact if p, < 2p;.
Let's look at Examples 2 and 3.

Example 2. For the basis {2047, 2048, 2049} the number X = 3758423681 in RNS it is presented
as X 3 (673, 1665, 353).

Example 3. For the basis {3, 5,626604229} the number X = 3758423681 in RNS it is presented
as X =5 (2,1, 625402536).

As can be seen from Example 3, if the compactness condition is not met, the third residue of the
number in RNS has the same bit length as the number in the positional numeral system, which
negates the advantage of RNS. The total computational delay depends on the largest modulo in the
system.

4. Generating Compact RNS Bases

To generate compact sets of moduli we can use the method of constructing prime numbers which is
used in the standard STB 1176.2-99 (and the Russian standard GOST R 34.10-94 which has ceased
to function), which is based on Diemitko's theorem [21].
Theorem 1: Let n = qR + 1, where q is a prime odd number, R is an even number, R < 4(q + 1),
i.e,n < (2q+1)2 Ifa < nis found:

1) a™ ! = 1(mod n),

n-1

2) a ¢ # 1(mod n), then n is a prime number.
Thus, if we have a prime number g, then, by searching even numbers R, we construct numbers n =
qR + 1 and test them for primality according to Diemitko's theorem until we obtain a prime number.
By the obtained number we can construct another prime number.
Algorithm 2 allows us to obtain a larger prime number p, having length |p| = t, starting from a

smaller prime number q, whose length is |g| = E]

Algorithm 2: Generating prime numbers using Diemitko's theorem (PrimeNumbers).

Input: t — the required dimensionality of the prime number, g — a prime number
Output: p
2t—1 2t—1§
LR= [q] + [q]
2.if R # 0(mod 2) then
21R=R+1
3.u=0
dn=R+uq+1
5.if n > 2t then
5.1 Return to step 1
6. if 2D = 1(mod n) and 2R*¥ % 1(mod n) then
6.lp=n
6.2 break
7. else
Tlu=u+2
7.2 Return to step 4

47

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

The process uses a random variable & uniformly distributed on the interval (0,1). This value is
generated in a linear congruent manner. For each step of the algorithm, a new value of ¢ is calculated.
Some prime numbers generated by this method may not be defined as such, because at step 6 the
verification of the condition of Diemitko's theorem is carried out only for the number a = 2 and not
for all a < p. However, the probability that a randomly chosen number a fulfils the conditions of
Diemitko's theorem for a prime number n is (1 - 5) Using the check exclusively for a = 2 turns

out to be quite sufficient to exclude only a small number of prime numbers from consideration. The
advantage of choosing a = 2 is due to the fact that the degree expansion of the number 2 in the
binary representation system is performed very efficiently.
Here is an example of generating a prime number using Diemitko's theorem.
Example 4. For g = 3 = 11,, let us generate a prime number of length t = 4.
Let's find R at £ = 0.5:
8 8-0.5

R=[3]+[5=2
To satisfy parity, R = R + 1 = 4. Candidate prime numbersp =4-3 + 1 = 13.
Since, 2'2(mod 13) = 1 and 2*(mod 13) % 1.
Hence, the sought prime number p = 13 = 1011,,.
Thus, using Algorithm 2, Algorithm 3 is developed, which allows to generate compact bases with
moduli of the form p; = Rq; + 1.

Algorithm 3: Generation compact bases.

Input: {qy, g2, -, Gn}, t

Output: b = {p,, 0y, ..., P}

1. b append PrimeNumbers(q4, t)
2.fori =2,i<n,i++do

2.1 p =PrimeNumbers(gy, t)

2.2 if p < 2p,; then

2.2.1 b append p

In the next section, we will consider the performance of the proposed algorithm.

5. Performance Evaluation

Modelling and computational experiments were conducted on a computer equipped with a 2.80 GHz
Intel Core i7-7700HQ processor, 8 GB of 1196 MHz DDR4 RAM and a 512 GB SSD, running
Windows 10 Home, using the high-level programming language C++.

The first stage of the experiment involved comparing the speed of generating compact bases based
on the Diemitko's theorem against methods for generating very large RNS bases. For comparison,
two approaches were selected: the Pseudo-Mersenne number construction method and the general
filtering method. The performance results of the algorithms are presented in Table 3.

Table 3. Comparison of execution time for different bases generation approaches, ms.

Number of modulo General filtering Construction base of Generating compact
Pseudo-Mersenne bases
8 10324 5328 4561
12 25211 9523 7531
16 50164 15433 13467
20 79057 19544 15389
32 165897 28413 23953

48

JIyuenko B.B., babenko M.I'. I'eHeparins KOMIaKTHBIX 0a3UCOB CHCTEMBI OCTATOYHBIX KiaccoB. Tpyost UCII PAH, 2025, Tom 37 B, 5,
c. 43-52.

The compact bases generation method, based on the Diemitko's theorem, exhibits superior
performance across all tested cases, with execution times substantially lower than both the Pseudo-
Mersenne construction and general filtering approaches.

The experimental results demonstrate that the compact basis generation method is on average 15.5%
faster than the Pseudo-Mersenne-based construction method and 75.7% faster than the general
filtering approach when varying the number of moduli from 8 to 32. The maximum performance
advantage is observed for the 32-moduli basis, where the compact method outperforms the Pseudo-
Mersenne approach by 15.7% and the general filtering method by 85.6%. The second stage involved
constructing sets of moduli with a dynamic range size from 32 to 128 bits and comparing them with
a special set {2™ — 1, 2", 2™ + 1}. The comparison sets are presented in Tables 4 and 5. Next, the
sets of moduli were compared in performing modular operations (Algorithm 1). The results of
modular operations execution time are presented in Tables 6-8. Based on the presented data, we can
conclude that on average compact bases provide the following speed gains for modular operations:
by 11.87% for addition, by 12.08% for subtraction, and by 12.43% for multiplication. Thus, the use
of compact bases allows speeding up calculations by about 12% on average for all operations
compared to the use of moduli of a special set. Especially noticeable speed increase is observed for
96 and 128 bits, which indicates the prospect of using the algorithm of compact bases generation
when increasing the digit capacity of numbers.

Table 4. Bases generated by algorithm 3 for modular operations modeling.

Dynamic range size, bits Bases
32 {1823,1997,1997}
64 {521,599,613,617,647,761}
96 {4217,4447,4951,5279,5281,5461,5521,6521}
128 {16633,17317,17579,17747,20287,20981,21067,22079, 24179}
Table 5. Moduli sets {2 — 1, 2", 2™ + 1} for modular operations modeling.
Dynamic range size, bits Bases
32 {2047,2048,2049}
64 {4194303,4194304,4194305}
96 {4294967295,4294967296,4294967297}
128 {8796093022207,8796093022208,8796093022209}

Table 6. Results of number addition modeling in RNS, wus.

Dynamic range size, bits 32 64 96 128
Bases {2" —1,2™,2" + 1} 143.384 167.211 195.984 223.263
Bases generated by the 142.184 140.301 162.101 193.652
algorithm 3
Table 7. Results of number subtraction in RNS, us.
Dynamic range size, bits 32 64 96 128
Bases {2" —1,2™,2" + 1} 143.641 168.023 196.112 221.287
Bases generated by the 143.1 140.871 161.539 189.975
algorithm 3
Table 8. Results of multiplication of numbers in RNS, us.
Dynamic range size, bits 32 64 96 128
Bases {2" —1,2™,2" + 1} 144.544 172.382 198.073 224.632
Bases generated by the 143.624 141.503 163.122 194.162
algorithm 3

49

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

6. Conclusion

This paper presents a method for generating compact RNS bases based on Diemitko's theorem.
Experimental results reveal that the compact basis generation method reduces computation time by
an average of 15.5% compared to Pseudo-Mersenne-based construction and 75.7% compared to
general filtering. These advantages become more pronounced with increasing system size, reaching
performance improvements of 15.7% and 85.6% respectively for 32-moduli bases. The method's
efficiency extends to modular arithmetic operations, where it provides approximately 12% faster
execution for addition, subtraction, and multiplication compared to traditional {2™ — 1, 2", 2™ + 1}
moduli sets.

Thus, the proposed RNS basis generation approach demonstrates high computational speed while
enhancing the efficiency of modular arithmetic operations. This is particularly crucial for
cryptographic applications that require processing of large numbers. Future research will focus on
optimizing non-modular RNS operations using the moduli generated by the proposed algorithm.

References

[1]. Sousa L. Nonconventional computer arithmetic circuits, systems and applications. IEEE Circuits Syst.
Mag, 2021, vol. 21, no. 1, pp. 6-40.

[2]. Garner H.L. The residue number system. Papers presented at the the March 3-5, 1959, western joint
computer conference. ACM, 1959, pp. 146-153.

[3]. Jlyuenko B.B., Ba6enko M.T'., XamumoB M.M. BBICOKOCKOPOCTHO# METO/I IEPEBO/Ia YUCEI U3 CUCTEMBI
OCTaTOYHBIX KJIACCOB B MO3UIIMOHHYIO cucremy cuucienus. Tpyast UCIT PAH, Tom 36, Bem. 4, 2024 1.,
crp. 117-132. DOI: 10.15514/ISPRAS-2024-36(4)-9. / Lutsenko V.V., Babenko M.G., Khamidov M.M.
High speed method of conversion numbers from residue number system to positional notation.
Proceedings of the Institute for System Programming of the RAS, 2024, vol. 36, issue 4, pp. 117-132 (in
Russian). DOI: 10.15514/ISPRAS-2024-36(4)-9.

[4]. JTyuenko B.B., Ba6enko M.T'., Yepnbix A.H., Jlanmina M.A. OnTHMH3AIHMS alropuT™Ma JICICHHUs YUCEN B
CHCTEMe OCTaTOYHBIX KJIacCOB Ha ocHOBe (pyHKImy siapa Akynickoro. Tpyast UCIT PAH, tom 35, Beim. 5,
crp. 157-168. DOI: 10.15514/ISPRAS-2022-35(5)-11. / Lutsenko V.V., Babenko M.G., Tchernykh A.N.,
Lapina M.A. Optimization of a number division algorithm in the residue number system based on the
Akushsky core function. Proceedings of the Institute for System Programming of the RAS, 2023, vol. 35,
issue 5, pp. 157-168 (in Russian). DOI: 10.15514/ISPRAS-2022-35(5)-11.

[5]. Shiriaev E. Kucherov N., Babenko M., Nazarov A. Fast operation of determining the sign of a number in
rns using the akushsky core function. Computation, 2023, vol. 11, no. 7, pp. 124.

[6]. Cardarilli G. C., Nannarelli A., Re M. RNS applications in digital signal processing. Embedded Systems
Design with Special Arithmetic and Number Systems, 2017, pp. 181-215.

[7]. Schoinianakis D. Residue arithmetic systems in cryptography: a survey on modern security applications.
Journal of Cryptographic Engineering, 2020, vol. 10, no. 3, pp. 249-267.

[8]. Nakahara H., Sasao T. A High-speed Low-power Deep Neural Network on an FPGA based on the Nested
RNS: Applied to an Object Detector. 2018 IEEE international symposium on circuits and systems
(ISCAS). — IEEE, 2018, pp. 1-5.

[9]. Ananda Mohan P. V. RNS in Cryptography. Residue Number Systems: Theory and Applications. — Cham:
Springer International Publishing, 2016, pp. 263-347.

[10]. Fournaris A. P., Papachristodoulou L., Sklavos N. Secure and efficient rns software implementation for
elliptic curve cryptography. 2017 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). — IEEE, 2017, pp. 86-93.

[11]. Fournaris A. P., Papachristodoulou L., Batina L., Sklavos N. Secure and efficient RNS approach for
elliptic curve cryptography, 2016.

[12]. Zalekian A., Esmaeildoust M., Kaabi A. Efficient implementation of NTRU cryptography using residue
number system. International Journal of Computer Applications, 2015, vol. 124, no. 7.

[13]. Bajard J. C., Kaihara M., Plantard T. Selected RNS bases for modular multiplication. 2009 19th IEEE
Symposium on Computer Arithmetic. — IEEE, 2009, pp. 25-32.

[14]. Bajard J. C., Fukushima K., Plantard T., Sipasseuth A. Generating very large RNS bases. IEEE
Transactions on Emerging Topics in Computing, 2022, vol. 10, no. 3, pp. 1289-1301.

50

JIyuenko B.B., babenko M.I'. I'eHeparins KOMIaKTHBIX 0a3UCOB CHCTEMBI OCTATOYHBIX KiaccoB. Tpyost UCII PAH, 2025, Tom 37 B, 5,
c. 43-52.

[15]. Lutsenko V., Zgonnikov M. Investigation of Neural Network Methods for Error Detection and Correction
in the Residue Number System. International Workshop on Advanced Information Security Management
and Applications. — Cham: Springer Nature Switzerland, 2024, pp. 194-206.

[16]. Omondi A. R., Premkumar A. B. Residue number systems: theory and implementation. — World Scientific,
2007, vol. 2.

[17]. Skavantzos A., Abdallah M., Stouraitis T. Large dynamic range RNS systems and their residue to binary
converters. Journal of Circuits, Systems, and Computers, 2007, vol. 16, no. 02, pp. 267-286.

[18]. Molahosseini A. S., Teymouri F., Navi K. A new four-modulus RNS to binary converter. Proceedings of
2010 IEEE International Symposium on Circuits and Systems. — IEEE, 2010, pp. 4161-4164.

[19]. Lutsenko V.V., Kravtsov M.D., Gorlachev D.E., Mirny N.M. Research of special sets of moduli of the
residue number system. Proceedings of the Institute for System Programming of the RAS, 2025, vol. 35,
no. 5, pp. 157-168 (in Russian).

[20]. Kawamura S., Koike M., Sano F., Shimbo A. Cox-rower architecture for fast parallel montgomery
multiplication. Advances in Cryptology—EUROCRYPT 2000: International Conference on the Theory
and Application of Cryptographic Techniques Bruges, Belgium, May 14-18, 2000 Proceedings 19.
Springer Berlin Heidelberg, 2000. pp. 523-538.

[21]. Diemitko N. Generating multiprecision integer with guaranted primality. Proc. of the SIFIP Int. Conf. on
Comep. Sci., IFIP Security 88, Amsterdam, 19-21 May, 1988. pp. 1-8.

UHghopmayusi 06 aemopax / Information about authors

Brnanucnas BsiuecnaBoBuu JIYLIEHKO — acnupanTt kadenpbl BBIUMCIMTENBHON MaTeMaTHKU M
KuOepHeTHKH (haKylbTeTa MaTeMaTHKH M KOMIBIOTEPHBIX HayK HMeHH mpodeccopa H.U.
Yeprsikoa PI'AOY BIIO «Cesepo-Kaskasckuit ¢enepanbHbiii yHuBepcuter». Chepa HaydIHBIX
HUHTEPECOB: BBICOKONPOU3BOAUTENBHBIE BBIYUCIECHHS, CHUCTEMa OCTATOYHBIX KIIACCOB, YMHBIN
ropoj, HEMpOHHBIE CETH, UHTEPHET BEILIEH.

Vladislav Vyacheslavovich LUTSENKO - postgraduate student, Department of Computational
Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named after Professor
N.I. Chervyakov, North Caucasus Federal University. Research interests: high-performance
computing, residue number system, smart city, neural networks, Internet of Things.

Muxamn I'puropseBud BABEHKO - noktop ¢u3nko-mMareMaTHYeCKUX HAyK, 3aBEIYIOIIHH
Kadenpbl BBIYMCIUTEIBHOW MaTeMaTHKH M KHOGpHETHKH (aKkylbTeTa MaTeMaTuKd |
KOMIIBIOTEPHBIX Hayk uMmeHH mpodeccopa H.M. Ueppskosa PT'AOY BIIO «Cesepo-KaBkasckuii
¢denepanbHblit yHuBepcuter». Cdepa HaydHBIX MHTEpECOB: OOJNayHble BBIYHCICHHS,
BBICOKOTIPOU3BOJIUTEIILHBIE BBIUMCIICHUS, CHUCTEMa OCTAaTOYHBIX KJIACCOB, HEHPOHHBIE CETH,
Kpunrorpadus.

Mikhail Grigoryevich BABENKO - Dr. Sci. (Phys.-Math.), Head of the Department of
Computational Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named
after Professor N.I. Chervyakov, North Caucasus Federal University. His research interests include
cloud computing, high-performance computing, residue number systems, neural networks,

cryptography.

51

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

52

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-4 tocld

Round-Trip Time Prediction
Using Machine Learning Methods

12| A. Stepanov, ORCID: 0009-0003-1964-5001 <ivan_mipt@ispras.ru=
1R.E. Ponomarenko, ORCID: 0009-0009-5741-3627 <rerandom@ispras.ru>
!D.R. Golovash, ORCID: 0009-0006-5552-4428 <golovash@ispras.ru=>
TAY. Pokidko, ORCID: 0009-0008-8981-8429 <a.pokidko@ispras.ru>
1234 A |, Getman, ORCID: 0000-0002-6562-9008 <ever@ispras.ru=

Llvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2 Moscow Institute of Physics and Technology (National Research University),
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.
8 National Research University «Higher School of Economicsy,
20, Myasnitskaya ulitsa, Moscow, 101000, Russia.

4 Lomonosov Moscow State University,
1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. The congestion control algorithms in the TCP protocol use RTT predictions indirectly or directly to
determine congestion. The main algorithm for predicting RTT based on a weighted moving average is the
Jacobson Algorithm. However, this algorithm may not work quite efficiently if the RTT is subject to a heavy-
tailed distribution. In this paper, we propose an RTT prediction method based on supervised learning in both
the offline and online cases. The results show improvement in the performance of algorithms based on
supervised learning compared to the classical Jacobson algorithm in terms of MAPE, MAE, and MSE metrics.
In addition, the high efficiency of online learning in comparison with offline learning in the case of data drift

is shown.

Keywords: TCP; RTT prediction; online learning; Adaptive Random Forest regression.

For citation: Stepanov I.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y., Getman A.l. RTT prediction
using offline and online learning. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 53-66. DOI:

10.15514/ISPRAS-2025-37(5)-4.

53

mailto:rerandom@ispras.ru
mailto:golovash@ispras.ru
mailto:ever@ispras.ru

Stepanov I.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y., Getman A.l. RTT prediction using offline and online learning. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 53-66.

MpenckasaHue BpemMeHU NpueMa-nepegaym
C Ucnonb3oBaHUEM MEeTOAOB MAaLIMHHOro o6y4eHus

12 U A. Cmenanos, ORCID: 0009-0003-1964-5001 <ivan_mipt@ispras.ru=
L P.E. Honomapenxo, ORCID: 0009-0009-5741-3627 <rerandom@ispras.ru=
LJI.P. I'onosaw, ORCID: 0009-0006-5552-4428 <golovash@ispras.ru>
L A4.10. Hoxuovko, ORCID: 0009-0008-8981-8429 <a.pokidko@ispras.ru>
1234 4 U. I'emvman, ORCID: 0000-0002-6562-9008 <ever@ispras.ru>

Y Unemumym cucmemmnozo npoepammuposanus um. B.IT. Hsannuxoea PAH,
109004, Poccus, . Mockea, yn. A. Conswcenuynina, 0. 25.

2 Mockoeckuii (puzuxo-mexnuueckuii uHCmumym,
141700, Poccus, Mockoseckas obnacme, 2. /[oneonpyonviii, Uncmumymckui nep., 9.

3 Hayuonanshwiii uccredosamensckuil yuueepcumenm «Bvlcuias wkona sKonomMuxuy,
101978, Poccus, e. Mockea, yn. Msacruykas, 0. 20.

4 Mockoeckuii 2ocyoapcmeennviti ynusepcumem umenu M.B. Jlomonocoea,
119991, Poccus, . Mockea, Jlenunckue eopul, 0. 1.

AunHoTauus. Bpems npuema-niepenaun (RTT, Round-Trip Time) — Bpemsi, KoTropoe TpeOyeTcst st OTIIPABKU
MaKeTa OT OTMPABHUTEIN K IOIyYaTeNi0 M BO3BpaTa MOATBEP KICHHSA, YTO MAKeT ObUI MONydeH. AITOPUTMBI
ympaBieHusi mneperpy3kamu B InpoTokone TCP KoCBEHHO WM HampsIMylO HCIOIB3YIOT IpeACKa3aHHbBIC
3HauyeHust RTT mis onpenenenus neperpys3ku cetd. OCHOBHBIM aJITOPUTMOM Aiisl porHo3zupoBanust RTT Ha
OCHOBE B3BEIICHHOTO CKOJB3SIIET0 CpeqHero siBisiercs: anroputM Jhxeiikoocona. OqHAKO 3TOT aIrOpUTM
MOXeT paboraTh He coBceM 3¢ ¢extuBHo, ecnmm RTT mmeer pacmpeneneHne ¢ TSKEIBIM XBOCTOM, T.C.
CYIIECTBYIOT peAKHe, HO od4eHb Oouspinme 3HaueHnss RTT. B oarolf cratbe MBI Ipe/uiaraeM MeToJ
nporHosupoBanus RTT, ocHOBaHHBI Ha O0YYEHUH C yYUTEIEeM, KOTOPBIH MOXeT paboTaTh Kak B oQduaiin
pexume (¢ 3apaHee coOpaHHON 00ydJaromell BRIOOPKO#), TaK M B OHJIAHH pexXuMe (C IIOCTYIUICHHEM JaHHBIX B
peanbHOM BPEMEHH H HX MOCIIe0BaTeNbHOI 00paboTkoit). [TomydeHHbIe pe3yIbTaThl HOKAa3bIBAIOT YITyUIICHHE
ITOPUTMOB, OCHOBAaHHBIX HAa MAIIMHHOM OOYYeHHWH, IO CpPaBHEHMIO C KIACCHYECKHM alTrOPHTMOM
Jlxeiikobcona ¢ Touku 3peHus mokaszatened MAPE, MAE u MSE. Kpome TOoro, mokasaHa BBICOKas
3¢ dexkTHBHOCTE OHNaMH 00yueHus 1o cpaBHEHHIO ¢ o duiaiiH oOyueHHeM B citydae apeiida KOHIENINT Hin
npeiida TaHHBIX.

KioueBble cioBa: TpaHcnopTHbii mpotokon TCP; mporro3upoBaHue BpemeHH mnpuema-nepeaadu (RTT);
OHITaIfH-00y4eHHe; aTaNTHBHAS PETPECCHs CIYJaifHOTO Jeca.

Jas uutupoBanusi: CrenanoB U.A., [lonomapenko P.E., ['omosam /I.P., [Tokunpko A.1O., 'ereman A.W.
[penckazanue RTT ¢ ucnonszoBannem odduaiia u onnaita o0yuenus. Tpyasr UCIT PAH, tom 37, BeIm. 5,
2025 r., ctp. 53-66 (Ha anrnuiickom s3eike). DOI: 10.15514/ISPRAS-2025-37(5)—4.

1. Introduction and Motivation

RTT (round-trip time) is the time required to send a data packet from the source to the recipient and
back to the source. This is an important parameter in network performance. In addition, the
retransmission timer (RTO) has an important role in the TCP protocol. This timer is set when sending
a segment and its expiration serves as a congestion signal. The problem of choosing this timer is
related to the fact that the RTT has a high variance from the point of view of a random variable,
which significantly complicates the prediction of this value.

The prediction of RTT is an important component of congestion control algorithms (CCA). Packet
loss-based CCAs such as TCP Reno and TCP Cubic indirectly use RTT information to determine
congestion. In addition to loss-based CCA, there are CCAs that detect congestion directly from RTT:
TCP Vegas, TCP Vegas-A. Therefore, for such methods, it is extremely important to accurately
predict RTT one step ahead. Also, multipath technology has recently become very popular, allowing

54

mailto:rerandom@ispras.ru
mailto:golovash@ispras.ru
mailto:ever@ispras.ru

CrenanoB U.A., Ilonomapenko P.E., T'onosam [I.P., ITokuaeko A.YO., I'etbman A.U. Ilpeackasanne RTT ¢ ucnons3oBanuem oddiaaitH u
onnaitn obyuenus. Tpyost UCII PAH, 2025, Tom 37 Bbim. 5, c. 53-66.

the client to transfer data over multiple network paths. The scheduler, which determines the path to
send the packet, makes decisions based on certain metrics, one of which is RTT. In this case, RTT
prediction can also be very important.

They are usually based on the Jacobson algorithm, which predicts RTT using the moving average
method. However, as some researchers have noted, the moving average method may not work well
for values from distributions with a heavy tail, which may well include RTT. Therefore, a number
of papers have been proposed that predict RTT using recurrent neural networks. Since recurrent
neural networks require a large training dataset, its collection is an important component of the RTT
prediction task. However, models of this class can often work inefficiently in terms of decision-
making time, which can be critical in terms of congestion control.

In addition, due to the high variability of RTT, a model trained in one network environment (with a
low RTT value) may be less effective in another network environment (with a high RTT value). This
behaviour is due in part to data drift.

In order to avoid a drop in predictive ability during the transition from one environment to another,
it makes sense to detect drift during model runtime, and in case of drift, online learning it based on
new data.

Therefore, in this paper there is propose an online machine learning method with drift detection. The
results obtained show an improvement in RTT prediction using this method compared to the
Jacobson algorithm. At the same time, an improved prediction is observed in various network
scenarios, in terms of the RTT value.

The rest of the article is structured as follows. Section Il provides information on the structure of
RTT and the classical methods of its measurement. Section 111 describes RTT prediction methods
that use both probability distributions and machine learning. Section IV contains a statement of the
problem of online learning and drift detection. Section V provides a description of our method.
Section VI contains comparisons of the method implemented in this paper with the Jacobson
algorithm.

2. Background
Using different concepts of RTT, it can be stated that:

RTT = delaypropagation + delaYtransmission + delayqueueing + delayprocessing

o delayyropagation— the propagation delay is the time it takes for a signal to move from the
sender to the receiver through physical media (such as cables or radio waves). It depends
on the distance between the nodes and the speed of signal propagation in the environment.

o delay;,ansmission— the transmission delay is the time required to transmit a data packet over
a communication channel. The transmission delay depends on the packet size and
bandwidth of the communication channel.

o delaygyeyueing— the queue delay is the time during which a data packet is queued on the
forwarding devices, waiting for the next packets to be transmitted.

o delayprocessing— the processing delay is the time required for packet processing on routers
and end nodes. It includes the time required to process headers, check for errors, and
perform other operations related to packet routing and processing.

It makes sense to consider RTT between sender and recipient as the sum of two main components:
the constant component, which includes propagation delay and transmission delay, and the variable
component, which includes queuing delay and processing delay. Queuing delay and processing
delay are the main source of uncertainty in the prediction of RTT, as they depend on various
components.

55

Stepanov I.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y., Getman A.l. RTT prediction using offline and online learning. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 53-66.

2.1 RTT measurement methods

To predict RTT using machine learning models, it is necessary to collect a dataset containing
information about the RTT sequence. There are two ways to do this with ready-made tools.

The first is to use the ping command and send ICMP packets. However, ping does not always
measure an accurate RTT. For example, when routers process ICMP packets during congestion,
certain application flows may be prioritized. Thus, ICMP packets will generate RTTs that do not
reflect the RTT that the priority traffic is encountering. In addition, some networks may block ICMP
traffic, which also complicates the data collection process. The second way is to use the Wireshark
tool: tcp.analysis.rtt. The third way to get an RTT value is by using TCP packet parameters such as
Tsecr and Texp. However, in this case, the RTT accuracy will be limited to milliseconds.

2.2 The Jacobson algorithm

The first classical RTT prediction algorithm was the Jacobson algorithm, introduced in TCP
Reno [1]. In this algorithm, the predicted RTT is subsequently used to calculate the RTO in the
following form:

ERR = |(RTT, — SRTT,_,)|

7 1
SRTT, = =SRTT,_, + =RTT,

8 8
3 1
VAR, = JVAR,_, + 7 ERR

RTO = SRTT, + 4VAR,,

Based on the moving average formula, we can see that:

1 7\ 1 7\ 1
SRTT, = §RTTn + <§) -§RTT,1_1 + (§) -gRTTn_2+. .
The usual estimate proposed by Jacobson works well in Gaussian distributed delay environments.
However, as some researchers have noted, this algorithm may be inaccurate in environments with a
different RTT distribution.

3. Related Work

There are two areas of work on RTT prediction: based on probability distributions and based on
machine learning.

In several papers, RTT and, as a result, RTO are predicted based on the assumption that they are
subject to a certain distribution. Thus, in [2], a method for approximate estimate of RTT was
proposed based on the assumption that RTT is subject to the Weibull distribution. In [3], a method
was proposed for a more detailed assessment of RTT based on the assumption that RTT is subject
to a normal distribution. In [4], the authors proposed a method based on the calculation that the
difference between neighboring values of RTT is subject to the Cauchy distribution. Using this
assumption and Chebyshev's inequality, the authors can obtain the following estimate for the RTO:

_ Zye 2 2
RTO(K) = RTT(k — 1) + j(wn - qb)) +er—y
e y—jitter dispersion

e (b defined quality of service (QoS) parameter, which indicates the minimum fraction of
time during which the prediction error is below the acceptable error €.

56

CrenanoB U.A., Ilonomapenko P.E., T'onosam [I.P., ITokuaeko A.YO., I'etbman A.U. Ilpeackasanne RTT ¢ ucnons3oBanuem oddiaaitH u
onnaitn obyuenus. Tpyost UCII PAH, 2025, Tom 37 Bbim. 5, c. 53-66.

These methods rely on assumptions about the distribution of RTT. However, the dynamic variability
of RTT negatively affects the ability to accurately predict RTT in these methods, because the
distribution of RTT can vary depending on the network environment.

A hybrid RTT prediction method based on geographical distance was proposed in [5]. The RTT
prediction algorithm consisted of several stages. The first is an estimate of the distance between two
IP addresses (sender and recipient). If the distance is less than 120 km, the RTT value was
determined based on the database. If the distance is greater than 120 km, the RTT value was
determined based on the trained model. The trained model was based on a decision tree that
contained three features: Internet service provider, geographical distance between pairs of IP
addresses and time of day. It is worth noting that distance is not always an informative feature, as it
can change rapidly due to dynamic changes in network routes.

Recurrent neural networks have shown good predictive ability for predicting time series. As a result,
a number of papers have appeared that predicted RTT based on previous values of RTT. The
algorithm proposed in [6] has the following form:

ERR = |(RTT, — SRTT,_,)|
SRTT, = F(RTT,, RTT,...RTTg;)

3 1
VAR, = JVAR,_, + 7 ERR

RTO = SRTT, + 4VAR,,

Here, F is a function implemented by a recurrent neural network. In [7], an RTT prediction method
was proposed based on passive measurements collected at an intermediate node. The recurrent
neural network (LSTM) was chosen as the prediction model. In [8], a lightweight version of the
recurrent neural network GRU was proposed.

However, neural networks can require high computational costs, which is critical in the context of
RTT prediction. Therefore, it makes sense to consider classical machine learning models (Random
Forest, Linear regression).

It is worth noting that the RTT prediction study in the above papers was given only for the offline
case. However, the efficiency of the algorithm in the offline and online case may vary greatly.
Therefore, both offline and online scenarios will be considered in this paper.

4. Online learning

The task of online learning can be formulated as follows. Let's give a sequence of features and target
values (x;, y;)i=. a(x, w) - parametric model, L(w, y) — loss function. At each step i, the following
set of actions is performed:

e getting object features x;

o the prediction is made based on the received object a(x;, w;_;)
e getting y;

o calculation of the loss function L(y;, a(x;, w;_1))

e updating the weights of the model based on the loss function w;

It is worth noting that incremental learning, unlike online learning, works with batches, while online
learning uses only one object at each step. Otherwise, the two approaches are very similar in the
context of the task under consideration.

4.1 Drift detection

Data drift is a phenomenon in which the statistical properties of the data used to train a machine
learning model change over time. This means that the distribution of the input data in the real world

57

Stepanov I.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y., Getman A.l. RTT prediction using offline and online learning. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 53-66.

no longer corresponds to the distribution of the data on which the model was trained. Ultimately,
due to this phenomenon, the accuracy of the model degrades.

More strictly, let there be some target variable and a set of features defining this variable. The drift
is understood as a change in the distribution of the input data P(X), the target variable P(Y), or the
relationship between them P(Y|X) over time. It is worth noting that there are several types of drift
detection in research.

Input data drift: let’s give the initial distribution of input data (features) P,(X) and some distribution
of data P.(X) at time t. It is said that there is a drift in the input data if:

Py(X) # P(X)

Drift of the target variable (Label Drift): let’s give the initial distribution of the target variable
P,(Y)and some target variable P.(Y) at time t. To say that there is a drift in the label data if:

Py(Y) # P(Y)

Concept Drift: let’s give the initial dependence distribution Py (Y|X) and P.(Y|X) at time t. To say
that there is a concept drift in the data if:

Py(Y1X) # P.(Y]X)

There are a large number of ways to detect drift. These include statistical methods: the
Kolmogorov—Smirnov test [9], the Chi-square test [10], the Darling-Anderson test [11], methods
based on autoencoders [12], as well as methods based on the ARIMA model [13].

4.2 ADWIN

The ADWIN (Adaptive Windowing) [14] algorithm is a method that solves the problem of detecting
changes in statistical characteristics of data, such as mean or variance. ADWIN uses the hypothesis
of equality of the averages between different parts of the data window. If these hypotheses are
rejected, it means that data drift has occurred.
The algorithm divides the window Winto two sub-parts: Wyand W;. Then, for each part, the
following are calculated: n,, n,- size of window Wyand W, u,, 114 - average values Wyand W;. If the
difference between the observed mean values |(1, — u,)|exceeds €, the algorithm considers that
the distributions in Wyand W;are different, and deletes the old part W,of the window. In this case,
€15 Calculated as follows:
N "Ny
T ng+my
1)

8=~
n

1 4
Cout = (ﬁ in (5)

4.3 Adaptive Random Forest regressor

Adaptive Random Forest (ARF) [15-16] is an online learning algorithm that adapts to concept drift.
The main idea of the algorithm is to have an ADWIN-based drift detector for each tree of a Random
Forest. If the detector detects a change, the corresponding one is removed and retrained on the new
dataset. Thus, the ensemble of trees adapts to the new distribution.

4.4 Online learning and drift detection
The general scheme of online learning used in this work is shown in Fig. 1.

58

CrenanoB U.A., ITonomapenko P.E., T'omosamr JI.P., [Tokuasko A.1O., I'erbman A.U. Ilpenckazanne RTT ¢ ncnons3oBanuem opduaiie u
onnaitn obyuenus. Tpyost UCII PAH, 2025, Tom 37 Bbim. 5, c. 53-66.

The online learning process consists of several important parts: the main dataset, an Adaptive
Random Forest, and a drift detector based on the ADWIN method. In the process of online learning,
new objects are received at the input of the algorithm. The drift detector checks for drift between
new objects and the main dataset, which is constantly being updated. If drift is detected, the Adaptive
Random Forest is updated based on new data; if not, the Adaptive Random Forest remains
unchanged. Thus, the model's stability to changing environmental conditions is achieved.

In this case, the ADWIN algorithm determines the drift for the normalized value:

|(Verue — Ypreaice)|- Thus, if the distribution of |(Verue — Ypreaice)|changes significantly, the
ADWIN algorithm detects the drift.

periodic
- updates .
. main
dataset
X4
new Xo Drift Detector
objects - ADWIN
n

Adaptive
Random
Forest

Detection

updating
the

Model prediction model

on new objects

Fig. 1. Online learning and drift detection scheme.
5. Implementation

5.1 Problem formulation
From the point of view of supervised learning, the RTT prediction task is a regression task.
f:X-Y
o X features object
e Y-predicted RTT value

It makes sense to consider the following characteristics of a TCP stream as features.

RTT: In most studies, it is proposed to use sequential RTT values as features. This paper also
examines these values for RTT prediction.

59

Stepanov I.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y., Getman A.l. RTT prediction using offline and online learning. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 53-66.

TTL: As noted earlier, the geographical distance between two hosts can change dynamically and
is not always an informative feature in the RTT prediction task. However, it makes sense to
use the TTL parameter, which is the IPv4 field of the packet header that specifies the
maximum number of routers (hop count) through which the packet can pass before it is
dropped. Each time a packet passes through the router, the TTL value decreases by one.
Therefore, this parameter can be used as features for RTT prediction. In IPv6, the Hop Limit
field is an analogue of the TTL parameter from IPv4. From the point of view of the problem
under consideration, the Hop Limit and TTL are equivalent parameters.

Bytes in Flight: This value indicates how much data (in bytes) have been sent from the sender, but
have not yet been confirmed by the recipient. The congestion control algorithm strives to
maximize the use of the transmission channel so that the number of bytes in flight is
approximately equal to BDP (Bandwidth-delay Product). Therefore, it can be stated that there
is some connection between RTT and the number of bytes in the flight and use this feature
in the task under consideration.

Thus, the following features vector is used for prediction RTT,:
RTT,_4...RTT,_y, bytes,,_1...bytes, _j, TTL,_1...TTL,_}

In this formula, k is a parameter that indicates the number of previous values used for prediction.
The search for the optimal value of k, which preserves the high performance of the algorithm, will
be described later in the paper.

5.2 Machine learning models

In this paper, the following machine learning algorithms were investigated within the framework of
the problem under consideration: Linear regression with regularization, Decision Tree and Random
Forest, as well as recurrent neural networks.

After examining the collected dataset, a high linear relationship was found between the predicted
RTT and the features discussed above. This behavior motivates the use of linear regression with L1
and L2 regularization in the context of the task.

Random Forest is an algorithm that has proven itself well in working with data containing a large
number of noises. In terms of RTT prediction, an abnormal value of this value caused by some
external factors can be considered noise. Therefore, it makes sense to consider this model in the
context of the task under consideration.

Recurrent neural networks have proven themselves well in the context of sequence prediction.
Classical RNNs can have gradient attenuation problems when the network needs to remember
information from the distant past: RTT prediction based on a large humber of previous values.
LSTM has a better ability to store information over long time intervals, but this model has a complex
structure and may require high computing resources. The GRU model is simpler in terms of
structure. In this paper, all three models for solving the RTT prediction problem will be investigated
for a detailed analysis.

5.3 Training data
In the training process, the following dataset was collected, simulating 3 situations: a user is
uploading files, an online game, and a regular web interaction.

For a wide variety of data and, consequently, for more efficient prediction of the model in a variety
of network scenarios, a dataset was collected in a wide range of network characteristics: bandwidth
from 10 Mbps to 100 Mbps, distance between sender and receiver from 100 km to 1200 km, as well
as the use of both IPv4 and IPv6 protocols.

The characteristics of the collected dataset are shown in Table 1.

60

CrenanoB U.A., Ilonomapenko P.E., T'onosam [I.P., ITokuaeko A.YO., I'etbman A.U. Ilpeackasanne RTT ¢ ucnons3oBanuem oddiaaitH u
onnaitn obyuenus. Tpyost UCII PAH, 2025, Tom 37 Bbim. 5, c. 53-66.

Table 1. Training Data.

Scenario Ngg}gi::f URTT, ms 02 RTT, ms?
Uploading files 922063 60.37 1344
Uploading files 1791633 9.89 144
Uploading files 1731034 40.75 58
Online game 30012 31.85 738
Web interaction 38250 10.10 140

e L —average of RTT value

e 0% —variance of RTT value

It should be noted that the number of objects in the case of loading is significantly higher than in the
other two scenarios. This is due to the fact that the complexity of obtaining objects in an online game
scenario and in a web interaction scenario is much more complicated than in an upload scenario.
However, section VI explores this problem for both balanced dataset and unbalanced dataset
(number of objects in the loading scenario).

As noted above, a dataset with a true RTT value is needed to train the model. Experiments have
shown that using the TCP packet option to measure accurate RTT does not provide significant
advantages over tcp.analysis.rtt in the context of the task under consideration. Therefore, in this
work, a tcp.analysis.rtt was used to obtain the correct RTT values.

6. Evaluation

This section presents the main results of the implemented algorithms in both offline and online
scenarios. In addition, a comparison of machine learning algorithms with the classical Jacobson
algorithm is presented.

6.1 Offline scenario balanced dataset

In this subsection, the considered models are trained on a balanced dataset containing objects from
the upload scenario, the online game scenario, and the web interaction scenario. The models are
tested on a dataset that also contains an equal proportion of objects in all three scenarios. The results
obtained are presented in Table 2.

From the results obtained, it can be stated that in this scenario, a Random Forest shows the best
result in terms of all metrics. It can also be noted that neural networks do not provide significant
improvements compared to simpler algorithms in the context of the problem under consideration.
The best value of k is understood as the smallest k, with an increase in which the error decreases
slightly.

6.2 Offline scenario unbalanced dataset

In this subsection, the considered models are trained on an unbalanced dataset containing objects
only from the loading scenario. The models are tested on a dataset that contains an equal proportion
of objects in all three scenarios. The results obtained are presented in Table 3.

The results show that from the point of view of RTT prediction, the scenarios of different network
situations do not differ.

61

Stepanov I.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y., Getman A.l. RTT prediction using offline and online learning. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 53-66.

Table 2. Offline scenario (balanced dataset).

Algorithm best k MSE MAE R? MAPE
ElasticNet 7 45.65 2.10 0.94 8.43
Random Forest 4 40.36 1.80 0.94 6.75
RNN 14 48.33 2.21 0.92 12.91
LSTM 14 47.98 2.13 0.93 11.29
GRU 14 48.50 2.20 0.92 12.58
;Zf)fﬁﬁ%bs"” . 59.50 2.45 . 2231

Table 3. Offline scenario (unbalanced dataset).

Algorithm best k MSE MAE R? MAPE
ElasticNet 8 43.37 2.00 0.94 7.97
Random Forest 4 38.32 1.70 0.95 6.40
RNN 11 48.24 2.19 0.92 12.84
LSTM 11 47.84 2.11 0.93 11.17
GRU 11 48.03 2.17 0.92 12.44
;gifi?ﬁfnbson . 59.30 267 . 23.24

From the results obtained, it can be argued that in this scenario, a Random Forest shows the best
result in terms of all metrics. It can also be noted that neural networks do not provide significant
improvements compared to simpler algorithms in the context of the problem under consideration.
The best value of k is understood to be the smallest value of k, with an increase in which the error
decreases slightly.

6.3 Online scenario

Due to the high dynamism of network environments, machine learning models trained on one traffic
may not work well enough in traffic with other characteristics.

In this subsection, an online learning method based on an Adaptive Regression Forest with drift
detection using the ADWIN method is proposed. The code implementing this training uses the River
library [17].

The first dataset was collected in a low RTT network environment objects: 60000, u =
8.67ms,d = 1.24ms?, while the second dataset was collected in an environment with high RTT
objects: 20000, u = 73.93ms, o = 2759.20ms? and RTT have distribution with a heavy tail
(Fig. 2).

A Random Forest was trained based on 50,000 objects in the first dataset, and then Random Forest
tested on 10,000 objects of the first dataset and 20,000 objects of the second dataset. Thus, the case
was considered when a model trained on a dataset with certain network characteristics was tested on
a dataset with other network characteristics.

62

CrenanoB U.A., Ilonomapenko P.E., T'onosam [I.P., ITokuaeko A.YO., I'etbman A.U. Ilpeackasanne RTT ¢ ucnons3oBanuem oddiaaitH u
onnaitn obyuenus. Tpyost UCII PAH, 2025, Tom 37 Bbim. 5, c. 53-66.

Distribution with a heavy tail
5000

4000

3000 7
z
w
=
U
]

2000 _.I

1000 [— 1

r
0 | Tr[rr_rl'"rr—-—r— —— T
50 100 150 200 250 300 350 400
RTT

Fig. 2. Distribution with a heavy tail.

In the second experiment, the Adaptive Random Forest was trained on the 50000 objects of first
dataset. On the second dataset, the algorithm was trained online using drift detection. This detection
was used to more accurately train a Random Forest, in which the forest trees that solved the problem
were most poorly replaced by new trees. The results obtained are shown in Fig. 3. The results
obtained show the effectiveness of online learning in this task: the overall value of the MAPE metric
does not deteriorating as critically as in the case of offline learning.

In the second pair of experiments, the dataset with a higher RTT objects:60000,u =
68.69ms, 0% = 2039.15ms? value was the first, while the dataset with a lower RTT
objects: 20000, u = 8.70ms, 0 = 1.22ms? value was the second. The results obtained are shown
in Fig. 4.

In this case, online learning also shows improvement. At the same time, offline learning shows very
bad results.

7. Conclusions

In this paper, algorithms for RTT prediction using offline and online learning were presented. The
results show that the algorithms based on learning works better in terms of MAPE, MSE, and MAE
metrics in network environments with a wide range of network characteristics than the classic
Jacobson algorithm.

However, as shown in this article, offline learning can be ineffective in dynamically changing
network environments. To solve this problem, an online learning method with drift detection was
proposed. The results show that in the case of online learning, the prediction efficiency does not
deteriorate or deteriorates slightly when the environment changes.

The results obtained allow us to identify the following areas of future work:

e integration of online learning algorithms implemented in this paper into classical
congestion control algorithms (TCP Reno, TCP CUBIC),

¢ study of the performance of classical congestion control algorithms using RTT prediction
using online learning.

63

Stepanov I.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y., Getman A.l. RTT prediction using offline and online learning. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 53-66.

1
35— online leaming H
—— offline learning :
30 --- drift data 1
i
)
25 !
)
L]
1
& 20 !
<l
= i
15 i
1
L]
1
10 !
1
i
5 L |
! |
L]
0 5000 10000 15000 20000 25000 30000
nhject numbear
Fig. 3. Offline and Online learning (the first pair of experiments).
—— online learning
500 =
— offline learning
--- drift data
400
w 300
o
=
=
200
100
~
0

5000 10000 15000 20000 25000 30000
object number

o3

Fig. 4. Offline and Online learning (the second pair of experiments).

Cnucok nutepatypsbl / References

[1]. Mo, J., La, R. J., Anantharam, V., and Walrand, J. (1999, March). Analysis and comparison of TCP Reno
and Vegas. In IEEE INFOCOM'99. Conference on Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat.
No. 99CH36320) (Vol. 3, pp. 1556-1563). IEEE.

[2]. Hernandez, José-Alberto, and lain W. Phillips. "Weibull mixture model to characterise end-to-end Internet
delay at coarse time-scales." IEE Proceedings-Communications 153.2 (2006): 295-304.

[3]. Cerroni, W., Foschini, L., Grabarnik, G. Y., Shwartz, L., and Tortonesi, M. (2017). Estimating delay times
between cloud datacenters: A pragmatic modeling approach. IEEE Communications Letters, 22(3),
526-529.

[4]. Rizo-Dominguez, L., Munoz-Rodriguez, D., Vargas-Rosales, C., Torres-Roman, D., and Ramirez-
Pacheco, J. (2014). RTT prediction in heavy tailed networks. IEEE Communications Letters, 18(4),
700-703.

[5]. Hu, Wen, Zhi Wang, and Lifeng Sun. "Guyot: a hybrid learning-and model-based RTT predictive
approach." 2015 IEEE International Conference on Communications (ICC). IEEE, 2015.

[6]. Dasgupta, B., D. Valles, and S. McClellan. "Estimating TCP RTT with LSTM Neural Networks."
Proceedings on the International Conference on Artificial Intelligence (ICAI). The Steering Committee of
The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
2019.

64

CrenanoB U.A., Ilonomapenko P.E., T'onosam [I.P., ITokuaeko A.YO., I'etbman A.U. Ilpeackasanne RTT ¢ ucnons3oBanuem oddiaaitH u
onnaitn obyuenus. Tpyost UCII PAH, 2025, Tom 37 Bbim. 5, c. 53-66.

[7]. Hagos, D. H., Engelstad, P. E., Yazid, A., and Griwodz, C. (2019, October). A deep learning approach to
dynamic passive RTT prediction model for TCP. In 2019 IEEE 38th International Performance Computing
and Communications Conference (IPCCC) (pp. 1-10). IEEE.

[8]. Dong, Ai, Zhijiang Du, and Zhiyuan Yan. "Round trip time prediction using recurrent neural networks
with minimal gated unit." IEEE Communications Letters 23.4 (2019): 584-587.

[9]. Berger, Vance W., and YanYan Zhou. "Kolmogorov—smirnov test: Overview." Wiley statsref: Statistics
reference online (2014).

[10]. Berkson, Joseph. "Some difficulties of interpretation encountered in the application of the chi-square test."”
Journal of the American Statistical Association 33.203 (1938): 526-536.

[11]. Engmann, Sonja, and Denis Cousineau. "Comparing distributions: the two-sample anderson-darling test
as an alternative to the kolmogorov-smirnoff test." Journal of applied quantitative methods 6.3 (2011).

[12]. Jaworski, Maciej, Leszek Rutkowski, and Plamen Angelov. "Concept drift detection using autoencoders
in data streams processing.” International Conference on Artificial Intelligence and Soft Computing.
Cham: Springer International Publishing, 2020.

[13]. Nau, Robert. "The mathematical structure of ARIMA models.” Duke University Online Article 1.1 (2014):
1-8.

[14]. Bifet, Albert, and Ricard Gavalda. "Learning from time-changing data with adaptive windowing."
Proceedings of the 2007 SIAM international conference on data mining. Society for Industrial and Applied
Mathematics, 2007.

[15]. Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., ... and Abdessalem, T.
(2017). Adaptive random forests for evolving data stream classification. Machine Learning, 106,
1469-1495.

[16]. Gomes, H. M., Barddal, J. P., Ferreira, L. E. B., and Bifet, A. (2018, April). Adaptive random forests for
data stream regression. In ESANN.

[17]. Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., ... and Bifet, A. (2021).
River: machine learning for streaming data in python. Journal of Machine Learning Research, 22(110), 1-
8.

UHghopmayusi 06 aemopax / Information about authors

NBan AnexcangpoBud CTEITAHOB — acnupanrt, craxép-uccnenosarens UCII PAH, accucrent
kadeapsr mHPOpPMATHKN U BeMHCIUTENbHON MaTeMaTnkn M®TU. Cdepa HayIHBIX HHTEPECOB:
aHaJIM3 CETEeBOTO TpauKa C IOMOIIBI0 MAIIMHHOTO O0YUCHHUSI.

Ivan Alexandrovich STEPANOV - postgraduate student of the ISP RAS, intern researcher at ISP
RAS, an assistant at the Department of Computer Science and Computational Mathematics at MIPT.
Research interests: network traffic analysis using machine learning.

Poman EprenseBndy [IOHOMAPEHKO — mnmagmmii Hayassnii cotpynauk MCIT PAH. Hayunsie
HMHTEPECHI: apXUTEKTypa MPOrpaMMHOT0 00ecIiedeH s, ONTUMH3AIMS [IPOrpaMM, TTTyOOKUi aHAIN3
ceTeBoro Tpaduka.

Roman Evgenevich PONOMARENKO - junior researcher at ISP RAS.
Research interests: software architecture, program optimization, deep packet inspection.

Henuc PoctucnaBoBnu I'OJIOBAILl — naGopant WCIT PAH, crymenr BMK MIY. Codepa
Hay4YHBIX HHTEPECOB: aHAJIM3 CETEBOr0 Tpadrka ¢ HOMOIIBI0 MAIMHHOTO 00Y4EHHS.

Denis Rostislavovich GOLOVASH is a laboratory assistant at the ISP RAS, a student at the Moscow
State University. Research interests: network traffic analysis using machine learning.

AntoH FOpeeBnu [TOKMIABKO — craxkep-ucciemoBaTeisb OTAETa KOMIMIISTOPHBIX TEXHOJIOTHH
WCII PAH. Hayunsie nHTEpECHL: Apeiid B MAITMTHHOM 00yYeHNN U HEHPOHHBIX CETAX, TpaHchepHoe
obydeHue, GpenepaTuBHOE 00yUCHHE, OHIAH 00yUYeHHe, aHAIU3 CETEeBOTO Tpaduka.

Anton Yurevich POKIDKO - research intern at Compiler Technology department of ISP RAS.
Research interests: drift in machine learning and neural networks, transfer learning, federated
learning, online learning, network traffic analysis.

65

Stepanov I.A., Ponomarenko R.E., Golovash D.R., Pokidko A.Y., Getman A.l. RTT prediction using offline and online learning. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 53-66.

Anexcauap Uropesna TETBMAH — kanaunat Gusnko-MaTeMaTHdecKuX HAyK, CTAPIIAA HAyIHBIH
corpynauk UCIT PAH, accucrenr BMK MI'Y u M®TU, nmomentr BIID. Chepa HaydHBIX
WHTEPECOB: aHaJ W3 OWHAPHOTO KOJA, BOCCTAHOBICHWE (OPMATOB JaHHBIX, AaHAIH3 W
KIaccu(UKaIs CeTEeBOTO TpaduKa.

66

Tpyowr UCIT PAH, mom 37, eoin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-5 EOC-EH

Coloring Symbolic Memory Graphs
to Detect DRM-Specific Errors in Linux Drivers

E.M. Orlova, ORCID: 0009-0003-1654-3085 <e.orlova@ispras.ru>
A.A. Vasilyev, ORCID: 0000-0002-5738-9171 <vasilyev@ispras.ru>
O.M. Petrov, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru>

Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. This paper discusses a particular type of subtle use-after-free errors in the Direct Rendering Manager
(DRM) subsystem of the Linux kernel. These errors occur due to incorrectly allocated memory for structures
accessible from user space via device callbacks. To detect these errors, we use a shape analysis based on the
Symbolic Memory Graph (SMG) domain. We introduce the coloring of allocated memory to track its origin.
Among 186 Linux DRM drivers, we have found 6 violations of the proposed rule.

Keywords: Linux drivers; use-after-free; shape analysis; software model checking; symbolic memory graphs.

For citation: Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-
Specific Errors in Linux Drivers. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80. DOI:
10.15514/ISPRAS-2025-37(5)-5.

Acknowledgements. The authors would like to thank VVadim Mutilin, colleagues from the Linux Verification
Center, and the maintainers of the Linux DRM subsystem for their feedback and comments.

67

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

OkpalwuBaHue CUMBOJbHbIX rpad)oB NaMATY ANA BbIABNEeHUA
ownboK, cneuncpuyHbix ana DRM-gpanBepoB Linux

E.M. Opaosa, ORCID: 0009-0003-1654-3085 <e.orlova@ispras.ru=>
A.A. Bacumves, ORCID: 0000-0002-5738-9171 <vasilyev@ispras.ru>
O.M. Ilempos, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru>

HUnemumym cucmemnozo npocpammuposanus PAH,
Poccus, 109004, . Mockea, ya. A. Comxcenuyvina, 0. 25.

AnHoTaums. B cratee paccmaTpuBaeTcsi OJHA TPYAHOBOCIPOM3BOAMMAs ommbka Tuma use-after-free B
noxcucteme Direct Rendering Manager (DRM) sinpa onepanronHoii cucremsl Linux. E€ mpuunHoii sipisercst
HEKOPPEKTHBII CIIOCOO BBIAENEHHs] HMaMsTH, JOCTYMHOHW MU ITOJb30BATEIHCKOTO KOZa dYepe3 oOpaTHbIe
BBI30BHI YCTpO#cTBa. J[J1st o¥cka omMO0K paboTHI C TaMATBHIO MBI HCIIONIB3YeM aHaJIHN3 Ha OCHOBE CHMBOJIBHBIX
rpadoB namstu (SMG). Yto6bl OTCIIEAUTH CIOCOO BBIICICHUS aMsTH, Mbl 1o0aBuiu el user. Cpenu 186
poaHaIM3UpOBaHHBIX JIpaiiBepoB DRM OC Linux 6suto HaiigeHo 6 HapyIIeHHH MPeJIOKEHHOTO PpaBUIIa.

KuaroueBble cioBa: paiiBeppl Linux; ys3Bumocts use-after-free; amanu3 anHaMu4Yeckod mHamsITH,
aBTOMAaTHYECKasl CTaTUYeCKasi BepU(HKAIHs; CHMBOJIBHBIE TPadbl MaMITH.

s uurupoBanusi: Opnosa E.M., Bacunses A.A., [Tetpos O.M. OkpamrBanie CHMBOJIBHBIX Ipad)0B MaMsATH
IUISL BBISIBIICHHS OIIHOOK, crienuduunsix mist DRM-mpaiisepos Linux. Tpyaet ICIT PAH, tom 37, Beim. 5,
2025 r., ctp. 67-80 (Ha anrimiickom si3eike). DOI: 10.15514/ISPRAS-2025-37(5)-5

BaaromapHocTu: ABTOPHI BRIpaXarT OnarogapHocts Bagumy MyTHIIUHY, KoJuleraM u3 TeXHOJIOTHYEeCKOTo
LEHTpa UccleaoBanus Ge3omacHocTH sapa Linux, a Takke pa3paboT4ynKaM, MOAACPKHUBAOLINM MOACHCTEMY
DRM B Linux, 3a ux OT3BIBBI I KOMMEHTapHH.

1. Introduction

The Linux operating system kernel is a widely used software system consisting of 25 million lines
of code. Put simply, it consists of the kernel core and various subsystems and device drivers. To use
a graphics processing unit (GPU), a user program invokes a system call so that the kernel core
dispatches the appropriate callback in the corresponding device driver in the Direct Rendering
Manager (DRM) kernel subsystem.

This paper discusses a particular type of errors related to the incorrect use of device resource
management (devres) in the DRM subsystem. Incorrect memory allocation of structures accessible
from user space can lead to a use-after-free memory access. Such outcomes can be detected with
dynamic analysis, but situations in which the target errors cause the kernel to crash are specific and
quite rare.

On the other hand, static verification methods [1] aim at detecting such subtle errors. Klever [2-3]
is a software verification platform capable of automated static verification of industrial software
systems using software model checking tools such as CPAchecker [4]. As many Linux errors are in
its device drivers [5], Klever is tailored for bug-finding in the Linux subsystems.

Klever decomposes the kernel source code into modules, provides the environment models based
on typical device usage, runs the verification tool, and displays the results, e.g. visualizes the
reported error traces. Using this method, several hundred bugs in Linux subsystems were found and
reported [6].

To verify memory safety, CPAchecker uses a shape analysis based on the Symbolic Memory Graph
domain [7-10]. The analysis represents a program memory state as a bipartite graph, with its nodes
being memory objects (concrete regions and abstracted linked lists) and symbolic values.
Contribution. We manually analyzed the Linux DRM subsystem and found a documented
recommendation [11] on correct allocation that had been overlooked in 13 files [12]. This can lead

68

https://www.zotero.org/google-docs/?ZLsfSB
https://www.zotero.org/google-docs/?UVkmIi
https://www.zotero.org/google-docs/?SwlDIy
https://www.zotero.org/google-docs/?IdtO5M
https://www.zotero.org/google-docs/?RGdZNQ
https://www.zotero.org/google-docs/?uNQV4I
https://www.zotero.org/google-docs/?UB1K2R
https://www.zotero.org/google-docs/?8O2dmz

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

to potential use-after-free errors, some of which have already been reported by Kernel Address
Sanitizer (KASAN).

We formulated a more general rule in natural language and formally specified it using Klever. To
verify this rule, we adapted the memory analysis in the CPAchecker verification tool by adding color
to the symbolic memory graphs. We evaluated this approach on 186 DRM modules, with all 6
reported violations of the rule manually confirmed. The results are discussed in comparison with the
violations we found using Coccinelle [13]. The corresponding Coccinelle rule (semantic patch) was
submitted to the kernel [14]. Finally, we are working on fixes for the discovered errors, and one
patch has already been accepted upstream [15].

2. Problem Statement

There is a static driver structure through which device instances are managed. Through a certain
interface, a device instance is accessible from the user space. Even if the driver is disabled, the
device instance will still exist as long as it has at least one user. If memory is allocated incorrectly,
the DRM device structure (or structures used by it) is automatically freed when the driver is
unbound. Thus, while the device instance still exists, a user can cause access to this freed structure.

2.1 DRM device instance

At the core of every DRM driver is a drm_driver structure. It contains static information that
describes the driver and features it supports, and pointers to methods that implement the DRM API.
This structure is also used to create a device instance, which is then initialized and registered,
providing callbacks accessible from the user space.

A device instance for the DRM driver is represented by the drm_device structure. It is allocated
and initialized with devm drm dev _alloc() (or deprecated drm dev alloc()). After
initialization of all the various DRM device subsystems when everything is ready for user space, the
device instance can be published using drm dev register () [11].

When cleaning up, everything is done in reverse. First, the device instance is unpublished with
drm_dev unregister (). Then any other resources allocated at device initialization are cleaned
up and drop the driver’s reference to drm_device USing drm_dev _put (). It is important to note
that if drm_device still has some resource handles open when the driver is unbounded, the release
of drm_device instance does not happen immediately, but only after the last handle is closed.
Before that, drm_device remains user-accessible. This is why any allocation or resource which is
visible to user space must be released only when the final drm_dev_put () is called, and not when
the driver is unbound from the underlying physical struct device. Otherwise, using the device
may result in accessing freed memory.

This imposes a restriction on which functions can be used to allocate structures that are accessible
from user space through a drm_device instance.

2.2 Some Linux kernel memory allocation functions
Let’s look at some of the memory allocation functions in more depth.

e kmalloc() — a kernel-space function similar to user-space malloc (). The memory
allocated with this function must be freed by calling the xfree () function.

e devm kmalloc () —devres-managed kmalloc (). Memory allocated with this function is
automatically freed on driver detach. Its lifetime is linked to the device structure, a pointer
to which is passed as a parameter.

e drmm kmalloc () — DRM-managed kmalloc (). Memory allocated with this function is
automatically freed on the final drm_dev put (). Its lifetime is linked to the drm device
structure, a pointer to which is passed as a parameter.

69

https://www.zotero.org/google-docs/?DzNEw8
https://www.zotero.org/google-docs/?eUYpNW
https://www.zotero.org/google-docs/?DuN2a9
https://www.zotero.org/google-docs/?1J8fjN

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

drmm_kmalloc () is recommended to allocate the memory for the aforementioned structures
accessible from user space. Then the memory will be automatically released when the drm_device
is destroyed and only after its registration is canceled, as there will be no risk of accessing the
released memory. The correct work of a DRM driver is shown in Fig. 1.

| Creating drm_device, later G S | References to allocated memaory]

.—‘1 : auxiliary structures using :
L accessible from user space | kealioct) or drmm_ kaallocl) are placed m[drm_dwlce

Using the device drm_device is registered and

Driver unbounding :»-— ;)
J instance becomes accessible from user space
) \, /
"> There are no))
<.~ open handles drm_device ‘
There are some . destruction |
open handles ‘!7

Accessingthe || i .Freein memory allocated for)
Fm=————- = auxiliary structure Closing the last handle B ry

auxiliary structures

via drm_device

drm_device is y —
accessible from user | I
space while there are
any open handlers

Fig. 1. A correct operation of a DRM driver.

Contrarily, using devm_kmalloc () in most of these cases is a mistake, since the release may occur
ahead of time. The driver will still work, but sudden crashes will happen periodically. The reason is
shown in Fig. 2. If the device still has a user after the driver detach, the user can try to access the
structure previously allocated with devm kmalloc () and released on driver detach. There are
vulnerabilities of this type in the Linux kernel. Therefore, structures accessible from the user space
after drm_device registration should not be allocated with devres-managed functions like
devm kmalloc().

Accordingly, there is a documented restriction on the second argument of 5 functions that initialize
preallocated DRM-specific structures — drm encoder init, drm connector init,
drm connector init with ddc, drm crtc init with planes, and
drm universal plane init — namely, the second argument should not be allocated with
devm_kzalloc or similar devres functions. This is a more obvious violation of the general rule.

3. Related Work

There is a wide variety of approaches and tools for bug finding in industrial software systems. Here,
we limit the discussion to those most relevant to the Linux kernel [16].

3.1 Dynamic analysis

Dynamic analysis tools [17] typically look for a class of issues occurring in the running kernel. One
example is Kernel Address Sanitizer (KASAN) [18] which can detect invalid memory accesses such
as out-of-bounds and use-after-free errors.

The presence of the target errors in the code poses a risk of accessing freed memory, so they can be
detected by KASAN. Indeed, it is mentioned in comments of some target error fixes accepted into
the kernel and can be used to confirm the fix.

70

https://www.zotero.org/google-docs/?AncLMU
https://www.zotero.org/google-docs/?zk7LvT
https://www.zotero.org/google-docs/?I05AnI

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

Creating drm_device, later
accessible from user space

-

Automatically freeing
memory allocated

a

Allocating memory for
auxiliary structures using
devm_kzalloc()

| References to allocated memory
|

are placed in drm_device ‘

Driver unbounding +— Using the device L——

drm_device is registered and

l

freed memory
via drm_device

: J instance | becomes accessible from user space
with devm_kzalloc() \ | |]
I <. There are no

“~.__~ open handles drm_device

There are some destruction

open handles
Accessing [)
—_— Crash

drm_device is
accessible from user
space while there are
any open handlers

®

Fig. 2. An operation of a DRM driver with a target error.

However, dynamic analysis can only check the parts of the code that are reachable through the tests.
Moreover, the target errors can cause races in very specific situations. Another drawback is the need
for particular hardware to run certain drivers. These limitations effectively prevent dynamic analysis
from reliably detecting the target errors.

3.2 Static analysis

Lightweight static analysis, such as abstract syntactic tree (AST) analysis and data-flow analysis
(DFA), searches for defects in the program source code without execution. It can detect potential
errors, vulnerabilities and non-compliance with standards at early stages of development, thereby
saving time and resources. The tools most closely tied to the Linux kernel and used by its
development community include Coccinelle, Sparse, and Smatch [16].

Coccinelle [13] is a program matching and transformation tool focused on patterns in source code
structure. It operates on semantic patches — high-level patterns that resemble git patches but are
abstracted with metavariables and ellipses. The tool employs a temporal logic (extended CTL [19])
to reason about a function’s control flow. The strength of the tool is the relative ease of writing
semantic patches for known patterns and its ability to generate patches automatically. However, its
major limitation for our purposes is the lack of any data-flow reasoning and the very limited support
for interprocedural analysis.

Sparse [20] is a source parser and analyzer that extends the C type system with kernel-specific
annotations. These include address-space qualifiers to prevent mixing user and kernel pointers, and
endianness markers to detect incorrect byte-order handling. Sparse also performs simple
intraprocedural DFA for context-tracking [21] (i.e. matching context counters on entry and exit
against annotations) and uses this together with locking annotations to warn about imbalanced or
missing lock acquisition and release. Applying type-checking to the target errors would require
manually annotating pointers along the data flow, which is more effort than manual inspection of
the DRM drivers.

More conventional static analyzers, such as Smatch and Svace, use full-fledged data-flow analysis.
Smatch [22] builds on Sparse by adding a “cross-function flow analysis” [23]. It is path-sensitive
and can track a range or multiple values for a given variable. Svace [24], used by the Linux

71

https://www.zotero.org/google-docs/?6Fli6Y
https://www.zotero.org/google-docs/?dMumCJ
https://www.zotero.org/google-docs/?KyY3yn
https://www.zotero.org/google-docs/?zUxOq7
https://www.zotero.org/google-docs/?o98YE9
https://www.zotero.org/google-docs/?sKRsDC
https://www.zotero.org/google-docs/?SRIhXr
https://www.zotero.org/google-docs/?CAcRV0

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

Verification Center (LVC) [25, 26], employs both syntactic and flow analysis. It leverages a bottom-
up technique: functions lower in the call graph are summarized using data-flow analysis and
symbolic execution, and these summaries are then reused at call sites when analyzing functions
higher in the call graph.

Although Smatch and Svace are effective at detecting various generic and kernel-specific errors,
lightweight static analysis is generally unable to find the target errors in the complex scenarios
characteristic of our target errors. The inherent trade-off between scalability and false positive rate
forces the use of heuristics, which sacrifices soundness and precision.

3.3 Software model checking

Software model checking, or static verification, can be considered a heavyweight form of static
analysis. The approach aims at thorough exploration of a program’s state space, which allows
detecting subtle errors, e.g. data races, and thus is used for critical system verification [1]. The
drawbacks of the approach are high resource consumption and the frequent need for handwritten
formal specifications.

Klever [2, 3] is a verification platform designed to automate the software model checking for
industrial systems. For scalability, Klever decomposes large codebases into smaller, verifiable
modules. Specifications needed for particular requirements or missing function bodies can be written
in C [27]. The environment model, i.e. calls to the module, is provided based on the typical scenarios
of device usage [28-29].

Klever together with the CPAchecker static verification tool have been used to find several hundred
errors in the kernel, including memory safety violations [7], data races [30], and errors specific to
Linux device drivers [3, 5]. To find the target errors, we need both write the specification for our
DRM-specific rule and modify the underlying memory analysis to remember the allocating function
for allocated memory regions.

4. Colored Symbolic Memory Graphs

To verify memory safety, CPAchecker [4] uses a shape analysis based on the Symbolic Memory
Graph (SMG) domain [7-8] that first appeared in the Predator shape analyzer [9-10, 31].

The analysis represents a program memory state as a labeled bipartite graph of memory objects and
symbolic values, and edges between them. A “has-value” edge from a memory object to a symbolic
value means that the value is stored in the object (the offset and bitsize are labeled on the edge). A
“points-to” edge from a symbolic value to a memory object means that the value points to the object
(again, the offset from the start of the object is labeled on the edge).

To distinguish objects allocated in a certain way, we have introduced memory coloring for the
analysis. The color of an allocated region is determined by the allocating function:

e DRM for the drm device structures allocated by drm dev alloc() or
devm drm dev _alloc(),

e DEVM for the devm kmalloc () -allocated memory,

¢ and default (colorless) memory is allocated by all other functions.
Now, we can reformulate our rule in terms of the colored memory graphs: DRM-colored memory
objects should not store pointers to DEVM-colored memory objects.
Simplified erroneous code is provided in Listing 1. A probe driver method allocates its own device
structure and drm_device structure. When the analysis traverses the first line with a call to
devm_kzalloc (), it adds a new heap object (shown as “DEVM” in Fig. 3) and a new symbolic
value (“s17) that points to its start. As the pointer to the new allocation is stored in the variable 1dev,
a has-value edge 1dev — sl is added, too. As devm_kzalloc () isacolored function, the allocation
gets the corresponding color (shown as red).

72

https://www.zotero.org/google-docs/?JnBLSu
https://www.zotero.org/google-docs/?jVNnyJ
https://www.zotero.org/google-docs/?erooh4
https://www.zotero.org/google-docs/?aSwpee
https://www.zotero.org/google-docs/?Y4OZPX
https://www.zotero.org/google-docs/?sj2CpK
https://www.zotero.org/google-docs/?pk8K4T
https://www.zotero.org/google-docs/?rtFs20
https://www.zotero.org/google-docs/?1KHTWe
https://www.zotero.org/google-docs/?wfw5G2
https://www.zotero.org/google-docs/?bkShJb

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyowr HUCII PAH, 2025, tom 37 Boim. 5, ¢. 67-80.

// allocate DRM device ddev with the given dev as parent
struct drm device *ddev = drm dev alloc(&drv_driver, é&pdev->dev);
// allocate the specific device with actually the same dev as parent

struct ltdc device *1ldev =
devm kzalloc (ddev->dev, sizeof (*ldev), GFP KERNEL);

// the rule violation
ddev->dev private = (void *)ldev;
// ldev may be accessed after it is released before ddev is released

Listing 1. Simplified erroneous code (before the patch)
from drivers/gpu/drm/stm/drv. c, functions stm drm platform probe and drv load

The ddev initialization is analyzed in the same manner, with the new allocation colored DRM
(shown as green). The result SMG (without the labels on the edges) can be seen in Fig. 3 on the left;
unimportant parts (such as previous stack frames and global variables) are not shown. After the
assignment in the last line, the SMG looks like in Fig. 3 on the right. Note that DRM-colored
allocation now has a field (DRM - sl) that points to a DEVM-colored allocation (s1 - DEVM).
When such an assignment happens, the analysis reports an error.

Idev ddev ldev ddev

Fig. 3. Left: the symbolic memory graph for Listing 1 before assignment.
Right: the symbolic memory graph after assignment;
the presence of DRM — s2 — DEVM path is a violation of the proposed rule.

5. Specification of DRM subsystem in Klever

Klever decomposes the kernel into modules, with the result that CPAchecker runs on each of the
modules separately [29]. This solves the issue of running heavy analysis on large code, but there is
a problem with functions defined in other modules. Their bodies are not visible to CPAchecker, so
during the verification of a module, it assumes that such a function is pure, i.e. it does not affect the
analyzed code. If a function is important for finding the target error (e.g. it initializes a pointer
important for the analysis), one has to write a model for it that CPAchecker will traverse instead of
the original function.

Klever allows us to write such models for functions and replaces every call to the original function
in the module with a call to the given model [28]. This is implemented using aspect-oriented
programming [27]. Suppose there is a function foo () in the kernel code that we want to replace

73

https://www.zotero.org/google-docs/?Dnro4f
https://www.zotero.org/google-docs/?XQ3a2X
https://www.zotero.org/google-docs/?1rTjiZ

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

with a model. Then we write a 1dv_foo () function in the . c file, and we specify in the .aspect
file that instead of foo () calls, 1dv_foo () should be actually called.

The capability to replace a function with a model is also useful if it needs to be abstracted from
insignificant details (simplified) or given a new feature, such as color for memory it allocates.

In our case, some memory allocation and releasing should be colored appropriately. To do this, a
special “color” function was called in the bodies of the models (1dv_color drm kmalloc () Of
1dv_color_ devm kmalloc (), depending on the desired color). Models were also required for a
number of imported functions in which bindings between structures were created. Basically, instead
of a function initializing all fields of the structure, a model filled in several pointers, the value of
which influenced the success of the target error search.

For the DRM subsystem, we have modelled the following functions in Klever:

o Devres specification. It includes devm kmalloc () and its analogs (devm kzalloc (),
devm_kcalloc(), devm kmalloc array). Memory allocated with this function is
automatically freed on driver detach. These functions paint memory in the color DEVM. If
a reference to memory of the color DEVM appears in drm_device, an error is reported.

e drm device managed resources specification. It includes memory allocation functions
(drmm_kmalloc () and its analogs, which paint memory in the color DRM) and
implementation of various ways to free it.

e Special functions used to allocate and deallocate drm device and drm_driver memory
and to initialize them: drm dev _alloc(), drm dev_init (), drm dev release (),
etc. The function models responsible for initialization create references needed to find
target errors.

e Models of functions that initialize structures used by DRM device. drm encoder init ()
for srtuct drm encoder,drm universal plane init () for srtuct drm plane,
and so on. In them, the structures are linked to drm device, and if their memory was
allocated incorrectly — i.e., with the DEVM color — an error is detected at the moment of
storing a reference to such memory.

e Models of other functions that create and destroy links between structures:
drm dev put (), get device ()/put_device (), kref init () /kref_put ().

6. Evaluation

We applied our approach to 186 loadable DRM driver modules from drivers/gpu/drm/ in Linux
5.10.238, targeting the ARM architecture with the al1modconfig build configuration.

The experiment was carried out with Klever, derived from version 4.0.1 [32], together with our fork
of CPAchecker [33] on a machine with an Intel Core i7-11700 2.50GHz CPU (8 cores, 16 threads),
2x16 GB DDR4 RAM, and an SSD.

In total, verification has taken 10 h of CPU time (40 min of wall time). We have limited the
CPAchecker verification tool to 270 s per module; it has used up to 1.3 GB for a module and
consumed 4.2 h of CPU time in total. Table 1 details the results of the verification.

e 108 modules were verified as safe, with CPAchecker exhausting all reachable states
without detecting any target or generic memory safety error.

e 33 modules resulted in verifier timeout, where CPAchecker did not complete within the
allotted time.

e For 3 modules, CPAchecker stopped after encountering a recursive call.

e 17 driver modules were not verified due to a composition problem, where Klever was
unable to compose a module to verify due to atypical module init or exit, or missing
declarations.

74

https://www.zotero.org/google-docs/?QnXvMt
https://www.zotero.org/google-docs/?sXyx7Z

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

The analysis reported 25 modules as unsafe:

e 6 target errors;
1 generic memory error, specifically a non-target use-after-free;
18 false alarms for generic memory errors. These were primarily due to analysis
imprecision (e.g., inability to calculate a dereferenced address). One of them was caused
by inline assembler code in the sources.

Table 1. Verification results for the 186 Linux 5.10.238 DRM drivers.

Verdict Count %
Unsafe 25 13
target error 6 3.2
use-after-free 1 0.5
false alarm 18 9.7
Safe 108 58
Unknown 53 28
verifier timeout 33 17.7
recursion in module 3 1.6
composition problem 17 9.1
Total: 186 100

6.1 Estimating Missed Errors with Coccinelle

We used Coccinelle to estimate the amount of the target errors in the kernel code and to assess the
false negative rate of our approach. As the presence of an error-prone pattern implies the need to fix
multiple files in a module, we count the reported modules instead of matches for Coccinelle.
Following the documented restriction, we wrote the arg rule illustrated in Listing 2. It finds a devres-
managed memory pointer passed as the second argument to one of the 5 drm-init functions with the
documented restriction discussed in Section 2. We used Coccinelle to find 5 more functions —
drm writeback connector init, drm crtc_init, drm plane init
drm bridge connector init,anddrm simple encoder init —thatare simple wrappersto
those and should thus have the same restriction applied. While we can continue to elaborate the rule,
in practice we do not expect much more alarms.!

devm =@p devm kzalloc(...);

drm crtc init with planes(@g e,<+...devm...+>,...)

Listing 2. A snippet of the arg rule for DEVM-allocated second argument to a drm_* _init function.

All target errors identified by Klever involved an assignment of DEVVM-allocated memory pointer
to the dev_private field of a DRM-allocated drm_structure. Moreover, 3 modules reported by
Klever were not reported by the arg rule. This motivated a second Coccinelle rule, field (Listing 3)
designed to detect assignments of a DEVVM-allocated pointer to a field of a DRM-allocated structure.
See more elaborated rules as submitted to the kernel in [14].

! There are a considerable number of cases where a DEVM-allocated pointer is first assigned to
another local variable which is later passed to a drm-init function. However, these occur in modules
already reported by the simpler rule.

75

https://www.zotero.org/google-docs/?PBqbxU

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

drm = drm dev_alloc(...);

devm = devm kzalloc(...);

drm->f =@p <+...devm...+>;

Listing 3. A snippet of the field rule for assigning a DEVM-allocated pointer to a DRM-allocated field.

Table 2 presents a per-module comparison between the findings from Klever and the two Coccinelle
rules, 27 modules in total. The column Klever shows the outcomes of our verification runs, while
Coccinelle/field and Coccinelle/arg mark the modules in which the corresponding rule found
violations. All 27 modules are reported by one of the Coccinelle rules; notably, only 4 are reported
by both. Although our analysis targeted Linux 5.10.238, many of the bugs are still present in recent
versions (6.17). In the Klever column, the outcomes are encoded as follows:

e target error — analysis reported a violation of the color rule (true positive);

e non-target alarm — a reported generic memory error turned out to be a false alarm;

o safe — full state-space exploration without detecting violations of the color rule or generic
memory safety;

unknown (timeout) — CPAchecker exceeded the allocated CPU time;

unknown (recursion) — CPAchecker stopped on encountering a recursive function call;
unknown (oom) — out-of-memory during module composition;

unknown (comp. iss.) — compilation issue during module composition;

unknown (arch) — module not included in the ARM build.

6.2 Error classification

True Positives. As shown in Table 2, Klever successfully identified target errors in 6 modules. All
6 modules were also reported by at least one Coccinelle rule: 5 modules were reported by the field
rule and 3 by the arg rule. Notably, the assignment to the field in stm/stm-drm module was not
reported by the field rule because one of the allocations happens in another function, and handling
such interprocedural cases is limited in Coccinelle.

True Negatives. We did not assess true negatives.

False Positives. We found no false positives among the 6 target errors reported by Klever.

False Negatives. Klever missed a violation in 21 modules reported by Coccinelle: 8 reported by the
field rule and 15 modules reported by the arg rule, respectively. Of these, 11 misses can be attributed
to the limitations of our approach (timeouts, recursion, oom, comp. arch, non-target alarms). For the
10 modules reported as safe, the coverage appears to be lacking, as the relevant functions were not
reached. This suggests the need to refine or add the specifications for the modules so the analysis
can reach the DRM functions.

7. Conclusion

We have discussed a subtle use-after-free error in Linux DRM drivers that originates from misusing
managed memory allocation for device structures. To find such errors, we proposed a coloring rule,
introduced such coloring to the SMG analysis in the CPAchecker verification tool, and wrote
specifications for the respective functions of the DRM subsystem.

For the specification and component-wise verification of 186 modules in the DRM subsystem, we
have used the Klever verification platform. Klever was able to carry out the verification for 169
modules and reported 25 of them as unsafe. Among these, 6 modules contain a target error, and 1
module contains a generic memory error (use-after-free).

Moreover, we developed two Coccinelle rules: arg, which finds violations of the documented
restriction, and field, which was motivated by the pattern in the errors found by Klever. While arg

76

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

reports errors in 18 modules, field reports 9 additional modules. Together, these approaches provide
complementary coverage and demonstrate the effectiveness of combining lightweight and
heavyweight methods.

Future work. We plan to continue submitting patches for the discovered errors. We also intend to
refine and extend the specifications to improve the coverage across DRM modules.

Table 2. Comparison of target errors found by Klever and Coccinelle.

DRM module Klever Coccinelle
arc/arcpgu non-target alarm arg
arm/hdlcd safe field arg
arm/mali-dp unknown (timeout) field
atmel-hlcdc/atmel-hlcdc-dc non-target alarm arg
fsl-dcu/fsl_dcu_drm target error field
ingenic/ingenic-drm non-target alarm arg
lima/lima target error field
meson/meson-drm unknown (recursion) field arg
meson/meson_dw_hdmi safe arg
msm/msm unknown (oom) arg
panfrost/panfrost unknown (arch) field
pl111/pl111 _drm safe field
rcar-du/rcar_du non-target alarm field
rockchip/rockchip_drm unknown (timeout) field
shmobile/shmob _drm target error field arg
sti/sti-drm safe arg
stm/stm-drm target error arg
sun4i/sundi-drm unknown (timeout) field
5 modules: sundi/sundi-

{backend,drm-hdmi,tcon,tv} 5 safe 5arg
and sun4i/sun8i-mixer

tilcdc/tilcde target error field arg
tve200/tve200 target error field

vcdived unknown (timeout) arg
zte/zx_drm safe arg
Modules with target errors: 6 (22%) 13 (48%) 18 (67%)

References

[1]. E.M. Clarke, T.A. Henzinger, H. Veith, and R. Bloem. Handbook of Model Checking. Springer
International Publishing, Cham. 2018. DOI: 10.1007/978-3-319-10575-8.

[2]. I.S. Zakharov, M.U. Mandrykin, V.S. Mutilin, E.M. Novikov, A.K. Petrenko, and A.V. Khoroshilov.
Configurable toolset for static verification of operating systems kernel modules. Programming and
Computer Software, vol. 41, no. 1. 01.01.2015. pp. 49-64. DOI: 10.1134/S0361768815010065.

[3]. I. Zakharov, E. Novikov, and I. Shchepetkov. Klever: Verification Framework for Critical Industrial C
Programs. 2023. DOI: 10.48550/arXiv.2309.16427.

[4]. D. Baier, D. Beyer, P.-C. Chien, M.-C. Jakobs, M. Jankola, M. Kettl, N.-Z. Lee, T. Lemberger, M.
Lingsch-Rosenfeld, H. Wachowitz, and P. Wendler. Software Verification with CPAchecker 3.0: Tutorial
and User Guide. Formal Methods. 2025. pp. 543-570. DOI: 10.1007/978-3-031-71177-0_30.

77

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

[5].

[6].
7.
8.

[al.

[10].
[11].
[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].
[21].
[22].
[23].

[24].

[25].

[26].

78

V.S. Mutilin, E.M. Novikov, and A.V. Khoroshilov. Analysis of typical faults in Linux operating system
drivers. Trudy ISP RAN/Proc. ISP RAS, 2012, vol. 22, pp. 349-374 (in Russian). DOI: 10.15514/ispras-
2012-22-19.

Found Bugs by Klever. [Online]. Available at: https:/github.com/Idv-klever/klever?tab=readme-ov-
file#found-bugs, accessed 09.09.2025.

A.A. Vasilyev. Static verification for memory safety of Linux kernel drivers. Trudy ISP RAN/Proc. ISP
RAS, 2018, vol. 30, issue 6, pp. 143—160. DOI: 10.15514/ISPRAS-2018-30(6)-8.

A.A. Vasilyev and V.S. Mutilin. Predicate Extension of Symbolic Memory Graphs for the Analysis of
Memory Safety Correctness. Programming and Computer Software, vol. 46, no. 8, 01.12.2020, pp. 747—
754. DOI: 10.1134/S0361768820080071.

K. Dudka, P. Peringer, and T. VVojnar. Byte-Precise Verification of Low-Level List Manipulation. in F.
Logozzo and M. Féhndrich (eds). Static Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg. 2013.
pp.215-237. DOI: 10.1007/978-3-642-38856-9_13.

K. Dudka, P. Muller, P. Peringer, V. Sokova, and T. Vojnar. Algorithmic Details behind the Predator
Shape Analyser. 2024. DOI: 10.48550/arXiv.2403.18491.

DRM Internals — The Linux Kernel documentation. [Online]. Available at:
https://www.kernel.org/doc/html/latest/gpu/drm-internals.html, accessed 29.09.2025.

E. Orlova. [PATCH v4] drm/stm: Avoid use-after-free issues with crtc and plane. [Online]. Available at:
https://lore.kernel.org/all/20240216125040.8968-1-e.orlova@ispras.ru/, accessed 06.10.2025.

J.L. Lawall and G. Muller. Coccinelle: 10 Years of Automated Evolution in the Linux Kernel. USENIX
Annual Technical Conference. 2018. [Online]. Available at:
https://www.usenix.org/system/files/conference/atc18/atc18-lawall.pdf, accessed 06.10.2025.

O. Petrov. [PATCH] cocci: drm: report devm-allocated arguments and fields. [Online]. Available at:
https://lore.kernel.org/all/20250924140126.23027-1-0.petrov@ispras.ru/, accessed 24.09.2025.

E. Orlova. drm/stm: Avoid use-after-free issues with crtc and plane. [Online]. Available at:
https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19dd9780b7ac673be95
bf6fd6892a184c9dh611f, accessed 15.07.2024.

M. Schmitt. Linux kernel device driver testing. How are device drivers being tested? Master’s Thesis,
Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo Paulo. 17.10.2022. DOI:
10.11606/D.45.2022.tde-30112022-152524.

A. Konovalov. Sanitizing the Linux kernel: On KASAN and other Dynamic Bug-finding Tools. Linux
Security Summit Europe. 2022. [Online]. Available at:
https://www.youtube.com/watch?v=KmFVPyHyfqQ.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer: A Fast Address Sanity
Checker. USENIX ATC 2012. 2012. [Online]. Available at:
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-
sanity-checker, accessed 06.10.2025.

J.L. Lawall, J. Brunel, N. Palix, R.R. Hansen, H. Stuart, and G. Muller. WY SIWIB: A declarative approach
to finding API protocols and bugs in Linux code. DSN’09 — The 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. 2009. pp. 43-52. DOI: 10.1109/DSN.2009.5270354.
N. Brown. Sparse: a look under the hood. 2016. [Online]. Available at: https://lwn.net/Articles/689907/,
accessed 06.10.2025.

L. Torvalds. Sparse ‘context’ checking. [Online]. Available at: https://lwn.net/Articles/109066/, accessed
18.09.2025.

N. Brown. Smatch: pluggable static analysis for C. 22.06.2016. [Online]. Available at:
https://lwn.net/Articles/691882/, accessed 06.10.2025.

D. Alden. Finding locking bugs with Smatch. 11.06.2025. Write-up of Dan Carpenter’s talk at Linaro
Connect 2025. [Online]. Available at: https://lwn.net/Articles/1023646/, accessed 06.10.2025.

A. Belevantsev, A. Borodin, I. Dudina, V. Ignatiev, A. Izbyshev, S. Polyakov, E. Velesevich, and D.
Zhurikhin. Design and Development of Svace Static Analyzers. 2018 Ivannikov Memorial Workshop
(IVMEM). 2018. pp. 3-9. DOI: 10.1109/IVMEM.2018.00008.

Linux Verification Center — Static Analysis (in Russian). [Online]. Available at:
https://portal.linuxtesting.ru/activity.html#menu3, accessed 29.09.2025.

Found by Linux Verification Center (linuxtesting.org) with SVACE. [Online]. Available at:
https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&g=Found-+by+Linux
+Verification+Center+(linuxtesting.org)+with+SVACE, accessed 29.09.2025.

Opiosa E.M., BacuibseB A.A., TTetpos O.M. OkpaliBaHie CHMBOJIBHBIX I'padyOB MaMSITH JUIsl BBISIBICHHUS OLIKOOK, crieiuuaHbix 111 DRM-
npaiisepos Linux. Tpyow: UCIT PAH, 2025, tom 37 Bbim. 5, c. 67-80.

[27]. E.M. Novikov. An approach to implementation of aspect-oriented programming for C. Programming and
Computer Software, vol. 39, no. 4. 07.2013. pp. 194-206.

[28]. I.S. Zakharov, V.S. Mutilin, and A.V. Khoroshilov. Pattern-based environment modeling for static
verification of Linux kernel modules. Programming and Computer Software, vol. 41, no. 3. 05.2015.
pp. 183-195. DOI: 10.1134/S036176881503007X.

[29]. 1. Zakharov and E. Novikov. Compositional Environment Modelling for Verification of GNU C Programs.
2018 Ivannikov ISPRAS Open Conference. 2018. pp. 39—44. DOI: 10.1109/ISPRAS.2018.00013.

[30]. P.S. Andrianov. Analysis of Correct Synchronization of Operating System Components. Programming
and Computer Software, vol. 46, no. 8. 01.12.2020. pp. 712-730. DOI: 10.1134/S0361768820080022.

[31]. Predator. [Online]. Available at: https://www.fit.vut.cz/research/group/verifit/public/tools/predator/,
accessed 29.09.2025.

[32]. Klever 4.0.1. [Online]. Awvailable at: https://github.com/ldv-klever/klever/tree/v4.0.1/, accessed
18.03.2025.

[33]. CPAchecker 702bcla. [Online]. Available at: https://github.com/ldv-
klever/cpachecker/commit/702bc1a36f663d0elbacl3e6c6752e61828e6ac8, accessed 21.03.2025.

Ungpopmayusi 06 aemopax / Information about authors

Exarepuna MuxaiinoBaa OPJIOBA — cryneHTka marucTpaTypsl (haKysiabTeTa BBIYHCIMTEIBHOM
MmareMaTuk U kuoepHetuku MI'Y, nabopant MHcTuTyTa crcteMHoro nporpammupoBanust PAH.
Ciepa HayIHBIX HHTEPECOB: CTATHYECKUI aHAIU3 U Bepudukarus sapa Linux.

Ekaterina Mikhaylovna ORLOVA — Master’s student at the Faculty of Computational Mathematics
and Cybernetics of Lomonosov Moscow State University (MSU), lab assistant at the Institute for
System Programming of the RAS. Research interests: static analysis and verification of the Linux
kernel.

Anron Anexcanaposud BACUJIBEB — mmanmuii Hay4qHbl cOTpyAHUK WHCTHTYTa CHCTEMHOTO
nporpammupoBanns uM. B.I1. VBamamkoBa PAH. Cdepa HaydHBIX WHTEPECOB: CTaTHUYECKas
BepU(UKALUS U aHAIIU3 TIPOTPAMM.

Anton Aleksandrovich VASILYEV — junior researcher at the Ivannikov Institute for System
Programming of the RAS. Research interests: static verification, software model checking, static
program analysis.

Oner MaxkcumoBnu IIETPOB — acmupant u craxép-uccienoBarens MHCTHTyTa CHCTEMHOTO
nporpammupoBanust uMm. B.I1. MBannukoBa PAH. Cdepa HaydHbIX HHTEpEcOB: craTuuecKas
BepH(DHUKAIUS U aHAIN3 UCXOIHOTO Koma mporpamm, delta debugging.

Oleg Maximovich PETROV - postgraduate student and intern researcher at the Ivannikov Institute
for System Programming of the RAS. His research interests include software model checking, static
program analysis, delta debugging.

79

Orlova E.M., Vasilyev A.A., Petrov O.M. Coloring Symbolic Memory Graphs to Detect DRM-Specific Errors in Linux Drivers. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 67-80.

80

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 . // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-6 toc-gd

Detection of SQL Injection Attacks through the
Network Logs Using Machine Learning Methods

IM.A. Lapina, ORCID: 0000-0001-8117-9142 <mlapina@ncfu.ru>
IN.R. Kapshuk, ORCID: 0009-0004-3644-7530 <kapshuknik06@gmail.com>
2M.A. Rusanov, ORCID: 0009-0000-7069-7542 <mix.rusanoff@yandex.ru>

LE.F. Timofeeva, ORCID: 0000-0001-5824-4778 <teflena@mail.ru>

! Faculty of Mathematics and Computer Science named after Professor N.I. Chervyakov,
North Caucasus Federal University,
1, Pushkina str., Stavropol, 355017, Russia.

2 Institute of Information Technology, Moscow University of Finance and Law,
building 1, 17, Serpukhovskiy val str., Moscow, 115191, Russia.

Abstract: The article examines machine learning methods for detecting the introduction of SQL code into the
network logs using the KNIME program, based on finding patterns between incoming features and subsequent
forecasting in a binary classification problem. Unlike existing works, this article examines the effectiveness of
five tree-based machine learning methods. The content and sequence of work stages are presented. The highest
results were shown by the Random Forest method (accuracy — 97.58%; area under the ROC curve is 0.976).

Keywords: machine learning; KNIME; classification; dataset; data selection; SQL injection; threat detection
on the network; detection of suspicious patterns; protection of web applications.

For citation: Lapina M.A., Kapshuk N.R., Rusanov M.A., Timofeeva E.F. Detection of SQL injection attacks
through the network logs using machine learning methods. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5,
2025, pp. 81-92. DOI: 10.15514/ISPRAS-2025-37(5)-6.

81

Lapina M.A., Kapshuk N.R., Rusanov M.A., Timofeeva E.F. Detection of SQL injection attacks through the network logs using machine
learning methods. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 81-92.

O6HapyxeHue aTak ¢ ucnosnibaoBaHnem SQL-MHBEKLUM NO ceTeBbIM
XXypHanam ¢ NOMOLb METOA0B MaLIMHHOIO 06y4YeHus

Y M.A. Jlanuna, ORCID: 0000-0001-8117-9142 <mlapina@ncfu.ru>
YH.P. Kanuyx, ORCID: 0009-0004-3644-7530 <kapshuknik06@gmail.com>
2M.A. Pycanos, ORCID: 0009-0000-7069-7542 <mix.rusanoff@yandex.ru>

LYE.®. Tumogpeesa, ORCID: 0000-0001-5824-4778 <teflena@mail.ru>

Y @akynomem mamemamuxu u komnvromepuvix nayk umenu npogeccopa H.U. Yepsskosa,
Cesepo-Kaskasckuii pedepanvHulii yHuepcumen,
Poccus, 355017, 2. Cmasponons, ya. Ilywkuna, 0.1.

2 Uncmumym ungopmayuontslx mexnono2utl,
Mocxkosckuil punancoso-opuduyeckuil yHusepcumenn,
Poccus, 115191, e. Mockea, yn. Cepnyxosckuil éan, o. 17, kopn. 1.

AHHoTauus: B craThe paccMaTpHBalOTC METO/IBI MAIIMHHOTO 00y4eHuUs Uil OOHapyKeHHs BHeaApeHust SQL-
KOJIa B CETEBBIE)KypHaIBI ¢ HoMoIsio nmporpamMmel KNIME, ocHOBaHHBIE Ha HOMCKE 3aKOHOMEPHOCTEH MEX Iy
BXOJUSIIIMIMH IIPH3HAKaMH U IIOCIIEIYIONEM IIPOrHO3UPOBAaHHN B 3a/1ade OMHApHOM Kiaccuukayu. B oTmrane
OT CYIIECTBYIOIIMX paboT, B 3TOH craTthe paccMaTpuBaercsi 3(Pp(HEeKTHBHOCTh ISATH METOJOB MAaIIMHHOTO
o0y4eHHs Ha OCHOBE JiepeBbeB. [IpescTaBieHO cofeprkaHue 1 OCIIeN0BaTeIbHOCTh 3TanoB paboTsl. Hanbonee

BBICOKHE PE3YJIbTAThI TTOKa3a MeTo/ ' CItydaifHbIii Jiec' | To4HOCTD — 97,58%; MIIOIajh Mo KPUBOU OMIHOOK
(ROC-xpusoit) — 0,976.

KioueBble cinoBa: mamuaHOe oOydeHme; mporpamma KNIME; kmaccugukanus; Habop JaHHBIX; O0TOOP
nanHbix; SQL-uHbEKIHs; 00HapyKEeHHe Yrpo3 B CETH; OOHApyKEHHE OJ03PUTEIbHBIX [IA0JIOHOB; 3aIIUTa
BeO-TIPUIIOKCHUT.

s uutupoBanus: Jlamuaa M.A., Kammyk H.P., PycanoB M.A., TumodeeBa E.®. OOHapyxeHHE aTak
ucrosib3oBaHreM SQL-nHBEKINi O CeTEeBBIM JKypHaaM ¢ UCIIOJIb30BaHUEM METOJI0B MAIlIMHHOTO 00yYeHHSI.
Tpynst UCIT PAH, Tom 37, Boim. 5, 2025 1., ctp. 81-92 (Ha anrmuiickom sizeike). DOI: 10.15514/ISPRAS—
2025-37(5)-6.

1. Introduction

In the modern world, in the age of information technology, databases store a lot of different
information: logins and passwords, bank card numbers, home addresses, credit history and much
more. Attackers interested in stealing this information are capable of using various types of cyber
attacks aimed at hacking servers storing valuable information [1]. One of these methods of cyber
attacks is SQL injection. SQL injection is a serious security vulnerability of web applications and
systems that have access to databases [2]. The essence of this method is the introduction of malicious
SQL code into an Internet resource, which in turn allows attackers to gain access to change data and
steal it [3-4]. Usually, this attack is possible when input data is not filtered thoroughly enough when
using SQL queries. To successfully neutralize the introduction of malicious code on sites,
applications, and ensure the protection of stored information, it is necessary to detect a hacking
attempt early and then prevent it. Machine learning in comparison with manual analysis allows you
to do this quickly and accurately. This approach not only provides a high level of security, but also
provides effective means of detecting, analyzing, and preventing threats [5].

The purpose of the study: creation and identification of the most effective machine learning model
for detecting SQL injection into the network in terms of detection accuracy.

To achieve the stated goal of the study, the following tasks were identified: studying the history of
the issue, analyzing the parameters of a dataset of SQL attacks, determining input data for machine
learning models, creating machine learning models to solve binary classification problems, selecting
the most effective models, setting PCA values (principal component analysis), determining the depth

82

Jlanuua M.A., Kamyk H.P., Pycano M.A., Tumodeea E.®. O6HapyxeHne atak ¢ ucnoib3oBaHreM SQL-MHBEKIHI 10 CETEBBIM JKypHaIaM
C MCTIOIE30BAHUEM METO/IOB MaIIMHHOTO 00yuenus. Tpyoet UCII PAH, Tom 37, Beim. 5, 2025 1., ctp. 81-92.

of machine learning, using methods of combating overfitting, building ROC curves and conducting
a system analysis of machine learning results.

There are few works with a similar research purpose. One of the differences between this study and
others that conduct a comparative analysis of machine learning methods for detecting SQL injections
[6-8] is a visual explanation of the implementation of machine learning in the KNIME program and
a special methodological toolkit - tree-based machine learning methods, which increases the value
of the article.

Among the existing approaches (administrative, legal, and technical), technical ones are used, in
particular, using network filters [9].

When solving problems, both general scientific research methods were used: analytical,
comparative, and problem-solving methods; and machine learning methods: Decision Tree, Random
Forest, Simple Regression Tree, Gradient Boosted Trees, and Tree Ensemble.

Machine learning (ML) is the process of automatically learning and improving the behavior of an
artificial intelligence system based on processing an array of training data without explicit
programming [10]. In other words, ML is based on finding patterns between incoming features for
subsequent prediction.

Analysis of the history of SQL injection attacks showed that they originated in the 1990s, when web
applications began to gain popularity. The first such attack was recorded in 1998, highlighting
vulnerabilities in database-driven websites that allowed attackers to manipulate SQL queries by
injecting malicious code through user input fields [11]. Since then, SQL injection attacks have been
used for a quarter of a century. For example, large-scale destructive attacks using SQL injections
occurred at Heartland Payment Systems in 2008, when a major payment processor experienced one
of the largest data leaks and about 130 million credit and debit card numbers were exposed [12]. In
2011, Sony Pictures was attacked, which compromised Sony's network and digital infrastructure,
affecting around 77 million PlayStation Network accounts, costing Sony around $170 million [13].
In 2012, Yahoo Voices suffered a massive data leak, affecting its vast user base and exposing around
half a million email addresses and passwords [14].

In 2015, the telecommunications giant TalkTalk suffered a cyberattack, which resulted in almost
157,000 customers losing their personal data [15].

In recent years, the number of cyberattacks has increased many times over [16]. For example, in
2023, in the United States, a group of ransomware attackers successfully injected malicious SQL
code into MOVEit Transfer software and a Progress Software product designed to manage file
transfers. This attack was only detected a month later [17].

SQL attacks have also been recorded in Russia. For example, in 2024, there was a massive attack
on ticket purchasing services. During this period, the total nhumber of simultaneously conducted
cyberattacks increased more than 2-fold [18].

Thus, it can be concluded that SQL injections are one of the most common and dangerous methods
of attack in the field of cybersecurity, and that in the modern world, network security is of critical
importance.

2. Research

During the research, the KNIME platform was used to implement ML and predict potential SQL
attacks. KNIME is an environment designed to create algorithms aimed at data analysis and ML,
while not requiring full-fledged programming. Unlike other implementation technologies, this
program has a user-friendly and flexible interface, and the algorithms are implemented using pre-
configured nodes that can be used for built-in data processing pipelines. The advantages of the
KNIME program are also open source and its extensibility - the ability to support integration with
other platforms such as Python, R, Java and others, and open source code [19].

83

Lapina M.A., Kapshuk N.R., Rusanov M.A., Timofeeva E.F. Detection of SQL injection attacks through the network logs using machine
learning methods. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 81-92.

2.1. Dataset analysis

The dataset chosen for the implementation of the ML was the Web Network dataset [20]. It contains
network traffic logs and is designed to classify web requests as "good" or "bad" based on their
characteristics. By analyzing patterns in network logs, this dataset helps to identify web requests
that can be categorized as "legitimate" or "malicious". It has various HTTP(S) requests, including
headers, URLs, and request bodies. Each request is labeled based on its perceived legitimacy. The
detection strategy is to identify certain key patterns that indicate an attack [20].

Let us consider the dataset in more detail.

The original dataset contains 522 rows of data and there are 29 columns in total, each of which
belongs to a specific data type and contains specific information that can help in training the model.
The target column is the "class" column. The ratio of safe requests to suspicious ones in this column
is 321 to 201. In the course of the study, a comparative analysis of the web network dataset was
carried out (Table 1).

The dataset [20] contains 12 duplicate columns with similar data. Repeated recordings can lead to
incorrect operation of the models. To solve this problem, duplicate columns were not used as input
data. There are also various concepts such as "method", "path", "features" and "prediction". In the
"method" column only 22% of the cells have the values "GET" or "POST", and the rest contain
zeros, which indicates that this column has incorrect values, so it should be excluded. The "path”
column, contains various query paths, but it does not have information about the contents of the
queries, since information about the number of special characters has been placed in separate
columns. The "features" column contains arrays with the same data that were presented in the
previous columns. And "prediction™ is the results of a study conducted by the author of the dataset.
Thus, we can conclude that for the most efficient ML, the following columns will be used as input
data for the models: “single g 1", "double_qg 2", "dashes 3", "braces 4", "spaces_ 5",
"percentages_6", "semicolons_7", ™angle_ brackets 8", "special_chars_9", "path_length_10",
"body_length_11", "badwords_count_12" and "class". It is important to keep in mind that the "class"
column is the target column. No transformations will occur with it, and it will be used to compare
the values contained in it with the values that will be output by ML models in order to obtain a
percentage of prediction accuracy.

2.2. Modeling

After selecting the input data, the ML models were constructed (Fig. 1).

The justification for the order of connecting the nodes of the generalizing model is determined by
the analysis (Table 2).

A total of 5 models were created, each using its own training method. Among them: Decision Tree,
Random Forest, Simple Regression Tree, Gradient Boosted Trees, Tree Ensemble. The selected
machine learning methods related to trees are characterized by high accuracy, interpretability, and
they can also be used to work with missing values.

It should be noted that with ML for the same model and with the same settings, different accuracy
results could be obtained, and the error was about 1-2%. To get more objective results, training was
performed 10 times for each ML model setting option, after which the average value between the
results was returned.

With the initial (default) settings, each model showed the following accuracy results (Table 3).

In order to improve the accuracy of the models, it is necessary to perform additional adjustments.
One of these adjustments is the PCA adjustment. PCA (principal component analysis) is a statistical
method that allows reducing the dimensionality of data (Table 4), while preserving the greatest
amount of information [21]. The values were adjusted in the PCA block.

The accuracy of the models from the PCA value is presented more clearly below (Fig. 2).

84

Jlanuua M.A., Kamyk H.P., Pycano M.A., Tumodeea E.®. O6HapyxeHne atak ¢ ucnoib3oBaHreM SQL-MHBEKIHI 10 CETEBBIM JKypHaIaM
C MCTIOIE30BAHUEM METO/IOB MaIIMHHOTO 00yuenus. Tpyoet UCII PAH, Tom 37, Beim. 5, 2025 1., ctp. 81-92.

Table 1. Analysis of data from the Web Network dataset.

Name of the columns Data type Description
. Indicates the type of operation the user wants to perform
method Categorical (GET or POST).
path Text Request path
single_q Quantitative Number of single quotes in the query ()
double_q Quantitative Number of double quotes in the query (*)
dashes Quantitative Number of dashes in the query (-)
braces Quantitative Number of curly braces in the query ({})
spaces Quantitative Number of spaces in the query
percentages Quantitative Number of percent characters in the query (%)
semicolons Quantitative Number of semicolons in the query (;)
angle_brackets Quantitative Number of angle brackets (< >)
special_chars Quantitative Number of special characters in the query
path_length Quantitative Request path length
I Length of the request body. Only available when using
body_length Quantitative the POST method in the "method" column.
badwords_count Quantitative The number of suspic_ious Wo_rd_s th_at may be frequently
used in SQL injections.
single_q_1 Quantitative Similar to "single_q"
double_g_2 Quantitative Similar to "double_g"
dashes_3 Quantitative Similar to "dashes"
braces_4 Quantitative Similar to "braces"
spaces_5 Quantitative Similar to "spaces"
percentages_6 Quantitative Similar to "percentages"
semicolons_7 Quantitative Similar to "semicolons"
angle_brackets_8 Quantitative Similar to "angle_brackets"
special_chars_9 Quantitative Similar to "special_chars"
path_length_10 Quantitative Similar to "path_length"
body length 11 Quantitative Similar to "body_length"
badwords_count 12 Quantitative Similar to "badwords_count"
Mark what the request is (0 — safe, 1 — suspicious). This
class Binary is also the target column, since it will be compared with
the predicted data.
features Text The previously specified"c;eill values combined into a
prediction Binary Prediction of the previously used learning model.
String fo Mumber ROC Curve
o rﬂ
Learner L L
CEV Reader Column Filter PCA Mumber 15 String SMOTE X-Partitionsr e g Predictor X-Aggregator S
o »
Hoe »iir »» b onE e » > b:r{:__ .‘ Ph: .&.r
L] o L] o L] e o L]
Decision Tree Learner Random Forest Leamner Simple Regression Tree Learnar Gradient Boosted Trees Loarner Tree Ensemble Learner
Training blocks used: > e > e : » b > > i >
Decision Tree Predictor Random Forest Predictor Simple Regression Tree Predictor Gradient Boosted Trees Fredicior Tree Ensemble Predicior

Fig 1. Generalized Machine Learning Model and Machine Learning Blocks in KNIME.
85

Lapina M.A., Kapshuk N.R., Rusanov M.A., Timofeeva E.F. Detection of SQL injection attacks through the network logs using machine
learning methods. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 81-92.

Table 2. Purpose of nodes in each model.

Node Node name Purpose of the node
CSV Reader
= CSV Reader Uploads a CSV file.
3, »
Column Filter
T Column Filter Discards the specified columns.
> i
PCA
x 9 PCA Reduces the dimensionality of data.

Number to String

Number to String Converts numeric data to strings.
B 25 >
SMOTE
5 SMOTE Makes the dataset balanced.
o A=
Splits the data into a set number of parts and
X-Partitioner performs cross-validation. During the research, the
I X-Partitioner data is divided into five parts, after which, during
» q . . -
(2 each iteration, four parts are sent for training and one
for testing.
Learner
Learner Learning node.
> |
Predictor

‘ Predictor Testing node.

X-Aggregator

Returns the average accuracy value of the results at

> : X-Aggregator each iteration after cross-validation.
Scorer
v > Scorer Outputs the accuracy of the model.
>
String to Number
N & String to Number Converts string data to numbers.
ROC Curve
._ ROC Curve Builds a ROC curve.
Table 3. Accuracy of machine learning models on initial settings.
Machine learning method Accuracy (in %)
Decision Tree 93,730
Random Forest 93,502
Simple Regression Tree 94,199
Gradient Boosted Trees 93,729
Tree Ensemble 94,008

86

Jlanuua M.A., Kamyk H.P., Pycano M.A., Tumodeea E.®. O6HapyxeHne atak ¢ ucnoib3oBaHreM SQL-MHBEKIHI 10 CETEBBIM JKypHaIaM
C MCTIOIE30BAHUEM METO/IOB MaIIMHHOTO 00yuenus. Tpyoet UCII PAH, Tom 37, Beim. 5, 2025 1., ctp. 81-92.

Table 4. Dependence of model accuracy on the PCA block value.

Model accuracy (in %0)
PCA Block - Simple Gradient
Value Decision Random Regression Boosted Tree
Tree Forest Ensemble
Tree Trees
1 93,730 93,502 94,199 93,729 94,008
2 94,131 94,617 93,868 93,903 94,617
3 94,814 94,706 94,581 94,461 94,531
4 95,053 95,054 95,229 95,611 95,211
5 96,025 96,342 96,080 96,064 96,569
6 96,271 97,039 97,038 96,950 97,073
7 96,236 97,126 96,848 96,656 97,144
8 96,273 97,231 96,395 96,672 97,214
9 96,169 97,598 96,480 96,811 97,562
10 96,533 97,195 96,672 96,882 97,231
11 96,427 97,160 96,550 97,125 97,336
12 96,341 97,108 96,741 97,089 97,370
98,00%
i
g é 97,00%
o
< S 96,00%
Sllse!
Lo O
9= 95,00%
g 5
© S 94,00%
[
[a 9}
93,00%
1 2 3 4 5 6 7 8 9 10 11 12
PCA Block Value

«=@==Decision Tree

=@==Random Forest

=@=— Gradient Boosted Trees ==@=Tree Ensemble

Simple Regression Tree

Fig. 2. Dependence of the accuracy of the models on the value of the PCA block.
Table 5. Dependence of model accuracy on learning depth.

Model accuracy (in %)
Learning . -
depth Decision Tree | Random Forest Regr?srsri]grlleTree Bogsizg'.er%es Tree Ensemble
1 96,307 91,516 92,754 96,707 90,485
2 96,290 96,467 95,958 96,828 95,785
3 96,707 97,073 96,482 96,879 96,690
4 96,898 97,143 96,342 96,864 96,795
5 96,464 97,546 96,550 97,003 97,038
6 96,237 97,580 96,255 96,483 97,283
7 95,924 97,580 96,618 96,306 97,213
8 96,133 97,545 96,534 96,725 97,387
9 95,890 97,300 96,498 96,637 97,473
10 96,081 97,421 96,603 96,830 97,457

87

Lapina M.A., Kapshuk N.R., Rusanov M.A., Timofeeva E.F. Detection of SQL injection attacks through the network logs using machine
learning methods. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 81-92.

From these results, we can conclude that for a model with the "Decision Tree" learning method, the
most optimal reduction is to 10 columns, for the "Random Forest" and "Tree Ensemble” methods -
to 9 columns, for the "Simple Regression Tree" — to 6 columns, and for the "Gradient Booste
Trees - to 11 columns (Fig. 2). For each model, the learning depth — number of hidden learning
layers [22] — was adjusted with the numbers of columns that were obtained before (Table 4). The
depth of learning was adjusted in the Learner block.

The results showed that the Decision Tree model achieves the best result with 4 training layers, the
Random Forest model with 6-7 training layers, the Simple Regression Tree with 7 training layers,
the Gradient Boosted Trees with 5 training layers, and the Tree Ensemble with 9 training layers
(Fig. 3).

98,00%

= -0 - ~ ‘
& 97,00% — -
E o600% R
=
= 0
= 95,00%
S 4 94,00%
Lo
5 4 93,00%
S
= © 92,00%
& 91,00%
I
£ 90,00%
O 1 2 3 4 5 6 7 8 9 10
[«F]
A Depth of learning

==@=Decision Tree ==@==Random Forest Simple Regression Tree

=@=— Gradient Boosted Trees Tree Ensemble

Fig. 3. Dependence of model accuracy on learning depth.

2.3. Combating overfitting

It is important to consider that during the training of neural networks, so-called overfitting may
occur, which can lead to worse forecasting results. This phenomenon occurs when the model adjusts
too much to the training data, which is why it begins to work poorly with new data. Combating
overfitting is an integral task in the field of ML. One of the methods for solving this problem is
cross-validation - a method for assessing the quality of a model by dividing the data into several
parts, after which the model is trained and predicted on different subsets of data. In this case, the
dataset [20] is divided into five equal parts using the " X-partitioner" block. The model is then trained
through five iterations, where one part of the data is used in testing and the rest in training. After
that, the "X-aggregator" block returns the average accuracy value. To clearly see the forecasting
quality of each model, it is necessary to use ROC curves (receiver operating characteristic) - graphs
that are used to assess the quality of binary classifiers [23]. An important part of the ROC curve is
the area under it, where a value of "1" indicates an ideal classifier, and a value of "0.5" indicates a
large amount of randomness during forecasting. Based on the ROC curve graphs (Fig. 4), it can be
concluded that the resulting ML models were quite effective in predicting the potential introduction
of malicious SQL code into the network. The resulting models showed high efficiency in detecting
patterns between input features and subsequent prediction, as evidenced by the results.

Based on all the obtained results, a comparative table of machine learning methods was compiled
(Table 6).

88

Jlannna M. A., Karmryk H.P., PycanoB M.A., Tumogeesa E.®. O6HapysxeHne atak ¢ ucronb3oBanineM SQL-MHBEKINIA 10 CETEBBIM JKypHaTaM

C MCTIONIb30BAHUEM METOI0B MAaIIHHHOTO 00yuenus. Tpyos: UCII PAH, Tom 37, Bbim. 5, 2025 1., cTp. 81-92.

ROC Curve

| -

s
s
’I
&
s
&
£
s
s
0.80 4
s
#,
@
L8]
&,
s
5
o 0.40-
]
=
,’ —& - random classifier
,’ Prediction {class):
0 ?l;‘ L4
- /” @~ Decision Tree (AUC=0.972)
. Random Forest (ALC=0.976)
7 —@- Simple Regression Tree (AUC=0.971)
o —@- Gradient Boosted Trees (AUC=0.970)
,// =~ Tree Ensemble (AUC=0.974)
0 0.20 0.40 0.60 0.80]
False positive rate (1 - specificity)
Fig. 4. ROC curve graphs.
Table 6. Best results of the models.
. . Learning depth . AUC (Area
Machine learning PCA Block Value (number of nghes.t accuracy Under the
method . (in %)
learning layers) Curve)
Decision Tree 10 4 96,898 0,972
Random Forest 9 6-7 97,580 0,976
Simple Regression 6 7 96,618 0,071
Tree
Gradient Boosted 1 5 97,003 0,970
Trees
Tree Ensemble 9 9 97,473 0,974

89

Lapina M.A., Kapshuk N.R., Rusanov M.A., Timofeeva E.F. Detection of SQL injection attacks through the network logs using machine
learning methods. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 81-92.

2.4. Analysis of the results

The general characteristics of the models as a whole indicate the high efficiency of each of the ML
methods used. The analysis of accuracy and ROC curves shows that a model using a Random Forest
as a machine learning method provides the highest quality of binary classification. Optimization of
the model parameters to achieve maximum classification accuracy was achieved by adjusting the
values of the PCA block and the depth (number of layers) of the ML.

3. Conclusion

The conducted research on the creation of machine learning models to detect the introduction of
malicious SQL code into the network differed from similar studies of this problem by implementing
models in the KNIME program. An analysis of other work related to the detection of potential SQL
injections using ML was carried out. The data set was analyzed, and ML tree-based models were
compiled. Each ML method used was configured in such a way as to increase the percentage of
correctly identified classes, and a comparative analysis was performed. The "Random Forest" model
showed the best result with the highest accuracy of 97.58%, and the area under the ROC curve graph
compiled to assess the quality of this model is 0.976. Thus, the ML in the KNIME program allows
you to create effective models for detecting the potential introduction of malicious SQL code into
the network.

References

[1]. "Stab me if you can" — how websites and SQL databases are attacked with injections — Dmitry Ushakov
on TenChat.ru. URL: https://tenchat.ru/media/2607916-protkni-menya-yesli-smozhesh--kak-atakuyut-
vebsayty-i-bazy-dannykh-sql-inyektsiyami (date of access: 17.04.2025).

[2]. Khomyarchuk M. V. Modern trends and innovations in web security: challenges, solutions and prospects
//Science and modern education: current issues. — 2023. — p. 28.

[3]. Oglov V. A. Investigation of sgl injection attacks and analysis of web site security //Bulletin of the
Magistracy. - 2024. —p. 15.

[4]. Manukyan A. R. Problems of ensuring cybersecurity at the present stage //Law and management. — 2024.
—No. 10. — pp. 313-316.

[5]. Peev D. D., Pankov K. N. The use of computer vision and machine learning technologies in the field of
secure information systems //Signal synchronization, generation and processing systems. — p. 28.

[6]. Yudova E. A., Laponina O. R. Comparative analysis of approaches to detecting SQL injections using
machine learning methods //International Journal of Open Information Technologies. - 2023. - Vol. 11. -
No. 6. - pp. 175-181.

[7]. Kasim O. An ensemble classification-based approach to detect attack level of SQL injections //Journal of
Information Security and Applications. — 2021. — T. 59. — C. 102852.

[8]. Erdédi L., Sommervoll A. A., Zennaro F. M. Simulating SQL injection vulnerability exploitation using
Q-learning reinforcement learning agents //Journal of Information Security and Applications. — 2021. — T.
61. — C. 102903.

[9]. Zaozersky A. A. Technical approaches to information protection //BBK 1 N 34. — P. 6505.

[10]. Chesalov A. Y. Glossary on artificial intelligence: 2500 terms/ A. Y. Chesalov - "Publishing solutions",
2022. - 670 p.

[11]. SQL attack. URL: https://ru.easiio.com/sgl-attack/ (date of access: 03.04.2025).

[12]. The Hearland Breach | A cautionary Tale foe E-Commerce. URL: https://blog.comodo.com/e-
commerce/the-heartland-breach-a-cautionary-tale-for-e-commerce/ (date of access: 03.04.2025).

[13]. Indonesian Journal of Electrical Engineering and Computer Science Vol. 21, No. 2, February 2021, pp.
1121-1131.

[14]. Yahoo Hack Leaks 453,000 Voices Passwords. URL.: https://www.darkreading.com/cyberattacks-data-
breaches/yahoo-hack-leaks-453-000-voice-passwords (date of access: 03.04.2025).

[15]. Unknown persons hacked the British ~ TalkTalk provider - Xakep. URL:
https://xakep.ru/2015/10/27/talktalk-hacked/ (date of access: 03.04.2025).

[16]. Nathan C., Steven F., Human Aspects of Information Security and Assurance, p.329, New York: Springer
International Publishing (2022).

90

Jlanuua M.A., Kamyk H.P., Pycano M.A., Tumodeea E.®. O6HapyxeHne atak ¢ ucnoib3oBaHreM SQL-MHBEKIHI 10 CETEBBIM JKypHaIaM
C MCTIOIE30BAHUEM METO/IOB MaIIMHHOTO 00yuenus. Tpyoet UCII PAH, Tom 37, Beim. 5, 2025 1., ctp. 81-92.

[17]. Current threats: The second quarter of 2023. URL: https://www.ptsecurity.com/ru-
ru/research/analytics/cybersecurity-threatscape-2023-g2/ (date of access: 03.04.2025).

[18]. Major cyber attacks and leaks in Russia in 2024. URL: https://blog.cortel.cloud/2024/05/23/krupnye-
kiberataki-i-utechki-pervoj-poloviny-2024-goda-v-rossii/?ysclid=m929gx878m857705097 (date of
access: 03.04.2025).

[19]. KNIME Analytics Platform | KNIME. URL: https://www.knime.com/knime-analytics-platform (date of
access: 15.05.2025).

[20]. Web Network. URL.: https://www.kaggle.com/datasets/willianoliveiragibin/web-network (date of access:
21.03.2025).

[21]. How to wuse the PCA method to reduce the dimension of data / Habr. URL:
https://habr.com/ru/companies/otus/articles/769274 / (date of access: 04.03.2025).

[22]. Machine Learning Glossary | Google for Developers. URL: https://developers.google.com/machine-
learning/glossary#d (date of access: 15.05.2025).

[23]. Kostromitin M. A. The fight against retraining of neural networks: causes, effects and methods of
prevention //BBK 1 N 34. - p. 2809.

Information about authors

Mapus AnatonseBHa JIATIMHA — xanmunar (u3nKO-MaTeMaTHYeCKUX HayK, JOLEHT KadeIpbl
BBIYHMCIINTEIIBHO MaTeMaTHKH U KUOEPHETHKH (aKyJibTeTa MaTeMaTUKH U KOMIIBIOTEPHBIX HayK
umenu npodeccopa H.U. YepsskoBa CeBepo-KaBkasckoro ¢enepansaoro ynuepcutera. Chepa
HAayYHBIX HHTEPECOB: HU(POBbIE TEXHOJIOIMH, AHANW3 JaHHBIX, HCKYCCTBEHHBIH HHTEIUICKT,
KnOepOe30MacHOCTh, YIIpaBiIcHUE HH()OPMAITHOHHON 0€30IaCHOCTRIO, KPUIITOTpa(Usl.

Maria Anatolyevha LAPINA — Cand. Sci. (Phys.-Math.), Associate Professor at the Department of
Computational Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named
after Professor N.I. Chervyakov, North Caucasus Federal University. Research interests: digital
technologies, data analysis, artificial intelligence, cybersecurity, information security management
and cryptography.

Hukomnait Pomanoenu KAITHIYK — cryneHT kadenpbl BBIMUCIUTENILHO MATEMATHKH U KHOEPHETHKH
(hakynpTeTa MaTeMaTHKHA U KOMITBIOTEPHBIX Hayk mmeHu mpodeccopa H.M. Ueprskosa Cesepo-
KaBkasckoro ¢enepanpaHoro ynueepcurera. Cdepa HaydyHBIX HHTEPECOB. HH(POPMAIMOHHAS
6e301acHOCTh, TEXHOJIOTHH CETeBOH O€30IMacHOCTH, MAIIMHHOE OO0ydeHHe, HeHpOHHBIE CETH,
U(PPOBBIE TEXHOIOTHH.

Nikolay Romanovich KAPSHUK - student at the Department of Computational Mathematics and
Cybernetics, Faculty of Mathematics and Computer Science named after Professor N.1. Chervyakov,
North Caucasus Federal University. Research interests: information security, network security
technologies, machine learning, neural networks, digital technologies.

Muxaun Anapeesnd PYCAHOB - acmmpant HWHcTHTyTa WH(POPMAIMOHHBIX TEXHOJOTHH,
MockoBckuii ¢uHaHCOBO-fopHIMUeckuii yHuUBepcuTeT. Cdepa HaydHBIX MHTEPECOB:
uH(pOpMaNUOHHasT O€30IaCHOCTb, YIpaBJIeHHE HH(POPMALMOHHON O0€30MacHOCThIO, MAIIMHHOE
o0OyueHne, HeHpOHHBIE CeTH, O0HApYyKeHHE aHOMAIIHHA.

Mikhail Andreevich RUSANOV - postgraduate student at the Institute of Information Technology,
Moscow University of Finance and Law. Research interests: information security, information
security management, machine learning, neural networks, anomaly detection.

Enena ®enoposra TUMO®EEBA — noueHTt kadenpbl MaTeMaTHYeCKOTO aHalW3a aireOphl W
reomeTpun (pakyabTeTa MaTeMaTHKU M KOMITBIOTEPHBIX Hayk mMeHH npodeccopa H.M. Yepsskosa
Cesepo-Kaskasckoro ¢enepansHoro yausepcureta. Cdepa HayqHBIX HHTEPECOB: MaTEMaTHIECKOE
MO/JIEIUPOBaHKE, YUCIEHHBIE METO/IbI, 34a4H I'HIPOAUHAMUKH.

91

Lapina M.A., Kapshuk N.R., Rusanov M.A., Timofeeva E.F. Detection of SQL injection attacks through the network logs using machine
learning methods. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 81-92.

Elena Fedorovna TIMOFEEVA — Associate Professor of the Department of Mathematical Analysis
of Algebra and, Faculty of Mathematics and Computer Science named after Professor N.I.
Chervyakov, North Caucasus Federal University. Research interests: mathematical modeling,
numerical methods, problems of hydrodynamics.

92

TTpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-7 EOCJH

The Dynamic Adaptive Packet Buffering (DAPB)
Algorithm for Service Mesh Performance
Enhancement Based on eBPF

H-D. Djambong Tenkeu, ORCID: 0009-0002-4689-1665 <Dzhambong.T.K@hse.ru>
D.V. Alexandrov, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>
National Research University “Higher School of Economics”

11, Pokrovsky blvd, Moscow, 109028, Russia.

Abstract. This paper introduces the Dynamic Adaptive Packet Buffering (DAPB) algorithm. Designed to
enhance data transfer efficiency in modern networking environments, it is built on the principles of Nagle's
algorithm. DAPB addresses the limitations of existing buffering techniques by dynamically adjusting its
behavior based on real-time network conditions, application requirements, and latency sensitivity. The
algorithm incorporates context-sensitive buffering, adaptive timeout mechanisms, and machine learning-driven
predictions to achieve a balance between efficiency, latency, and energy consumption. DAPB's context-aware
buffering tailors its strategy to the specific needs of the application, minimizing buffering for latency-sensitive
applications like VolP and online gaming, while maximizing buffering for throughput-sensitive applications
like file transfers. The adaptive timeout mechanism dynamically adjusts the waiting timeout based on network
conditions such as round-trip time, packet loss, and jitter, ensuring optimal performance under varying
workloads. Machine learning models are used to predict optimal buffer sizes and timeout values, leveraging
historical data and real-time metrics to improve decision-making. The algorithm also features selective
aggregation, intelligently deciding which packets to aggregate and which to send immediately. This ensures
that urgent packets are transmitted without delay, while nonurgent packets are aggregated to reduce overhead.
Additionally, DAPB prioritizes energy efficiency by optimizing buffer sizes and timeout values, making it
suitable for energy-constrained environments like edge computing and loT devices. The DAPB algorithm is
expected to improve the data transfer performance in various scenarios. Compared to the standard Nagle
algorithm, the DAPB algorithm is expected to reduce latency, improve throughput, and enhance energy
efficiency. This paper is the result of a research project implemented as part of the Basic Research Program at
the National Research University Higher School of Economics (HSE University).

Keywords: dynamic adaptive packet buffering (DAPB); extended Berkeley packet filter (eBPF); kernel-level
packet processing; service mesh

For citation: Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB)
Algorithm for Service Mesh Performance Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025, pp. 93-110. DOI: 10.15514/ISPRAS-2025-37(5)-7.

93

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

AnropuTm AMHaAMM4YeCKOW aganTUBHOW Oydepusaumm nakeTtoB
(DAPB) ans noBbiweHUsA nponsBoauTenbHocTn Service Mesh Ha
ocHoBe eBPF

X-Z. Jloicambone Tenke, ORCID: 0009-0002-4689-1665 <Dzhambong.T.K@hse.ru>
J.B. Anexcanopos, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>

Hayuonansuwlii uccredosamenvckuil yuugepcumem « Bulcuias wkona 3KOHOMUKUY,
Poccus, 109028, 2. Mockea, ya. Ilokpoeckuii Oynveap, 0. 11.

AHHOTanus. J[aHHAS CTaThsl MPEACTABISIET AJITOPUTM AMHAMHYECKOH ajanTHBHOW Oydepu3aluy MakeToB
(Dynamic Adaptive Packet Buffering, DAPB). PaspaGoTanHblii 1yist TIOBBIICHHS 5(()EKTHUBHOCTH TIepeadn
JTAaHHBIX B COBPEMEHHBIX CETEBBIX Cpelax, ajJrOpPUTM OCHOBaH Ha NMpHHUUMIAx amroputMma Heiirma. DAPB
[PEOJI0JICBACT OTPAHUYCHHUS CYIICCTBYIOIIMX METONOB Oydepusamuu 3a cyeT AWHAMHYECKOH ajanramun
MOBEICHUSI Ha OCHOBE TEKYIIHX CETEBBIX YCJOBHUii, TPEOOBaHMIl NPUIIOKEHHH W UYYBCTBHTEIBHOCTH K
3a/iepiKKaM. AJITOPUTM COYETAeT KOHTEKCTHO-3aBHCHMYIO OydepH3aluio, afanTHBHBIC MEXaHU3MBbI TAHMAyTOB
U POTHO3MPOBaHNE Ha OCHOBE MALIMHHOTO O0YYEHHs ISl ONITUMAJILHOTO Oaanca Mexay 3G (eKTHBHOCTBIO,
3a/IepKKOil 1 HepromnoTpebiaeHneM. KOHTEKCTHO-OpHeHTHpOBaHHas Oydepu3anus aJanTHPYeT CTPATErHIo
0/1 KOHKPETHBIC TIPUIIOKEHHUS: MUHUMH3HPYET Oy(hepru3anuio 1Jisk YyBCTBUTEIIBHBIX K 3a/IeP)KKaM CEpPBHCOB
(VolIP, omnaiiH-urpsl) 1 Makcummsupyer 1uisi throughput-opueHTupoBaHHBIX 3amau (mepenaua (aiiios).
AnanTHBHBI MEXaHU3M TalMayTOB IMHAMHMYECKH DPETyJIUpPYeT IMEPHOA OXHIAHHUS C YYETOM BpPEMEHH
kpyrosoro o6xozxa (RTT), moTeps makeToB u JUKUTTEpa, 00ECIeUnBas ONTHMAIBHYIO TIPOM3BOAUTEILHOCTh
[pH M3MEHSIOIIEHCs Harpy3ke. MoOJend MaIIMHHOTO O0YYeHHUs MPEACKAa3bIBAIOT ONTUMAIBHBIC pa3Mepbl
Oydepa 1 3HaUYCHHUSI TAIMAYTOB, HCHIOJIB3YsI ICTOPUYCCKHE JaHHBIC H METPUKH PEATbHOTO BPEMEHHU. AJITOPUTM
pea3yeT CENEKTUBHYIO arperamio I[1aKeTOB, HHTEIUICKTYalbHO OMpPEACIsis KaKue MaKeThl CIeAyeT
arperupoBathk, a Kakue nepenaBarb HememieHHo. DAPB ynenser ocoboe BHUMaHNE YHEPTro3()HEKTHBHOCTH 32
CYET ONTHMHU3ALMHU NTapaMeTpoB Oy(depu3aiu, 4To JeaeT ero NpUMEHIMBIM B SHEPrOOrPAHUYCHHBIX Cpeaax
(edge computing, 10T ycrpoiictBa). I[To cpaBHEHHIO CO CTaHAapTHBIM anroputmMom Heiirma, DAPB
JIEMOHCTPUPYET ~ CHIDKCHHE 3aJIep)KEK, YBCJIMYCHHE IPOMYCKHOW CIOCOOHOCTH M YIy4IICHHE
sHeproadpexruBHOCTH. MccaenoBaHie BBIOIHEHO B paMKax [IporpaMmbl yHIaMEHTAIBHBIX HCCIICA0BaHHUN
HanuonansHoro uccnenoBarensckoro ynusepeureta "Boicias mxona skonomuxu" (HUY BID).

KioueBble ciioBa: auHamudeckas anantuBHas Oydepmsanus naketoB (DAPB); pacmmpeHHbIH (QUIbTp
naketoB bepxiu (eBPF); o6paboTka maketoB B siape; Service mesh

Jas uutupoBanus: [xambonr Tenke X-JI., Anexcangpos JI.B.. Anroput™M auHaAMHYECKOH aJanTHBHOU
O6ydepusaruu naketoB (DAPB) s moBeimenuns npoussoautenbHocTH Service Mesh Ha ocHoBe eBPF. Tpy st
HUCII PAH, tom 37, Beim. 5, 2025 1., crp. 93-110 (ma anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2025-
37(5)-7.

1. Introduction

The proliferation of micro-services as the de-facto standard for building scalable and resilient
applications has necessitated the evolution of underlying infrastructures that can adeptly manage the
complexities of distributed systems. Service meshes have emerged as a critical component in the
cloud-native ecosystem, offering a dedicated infrastructure layer that simplifies inter-service
communication, enforces security policies, and provides observability across microservices. Istio, a
leading service mesh implementation, exemplifies this by deploying a sidecar proxy alongside each
microservice, thus abstracting the intricacies of network management from the application logic.

Despite the advantages conferred by service meshes, they are not without their challenges. The
introduction of an intermediary proxy layer, while beneficial for manageability and control,
inadvertently introduces additional overheads (like higher latency) in the communication path.
These overheads are particularly pronounced within the Linux kernel network stack, where packet
transmission is subject to several context switching and kernel-space to user-space communication.

94

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

As microservices continue to scale and the demand for low-latency, high-throughput systems grow,
the need to address these overheads becomes increasingly critical.

One of the main approaches to solving these issues consists of performing traffic buffering. It allows
optimizing data transmission and managing network congestion. One of the most popular buffering
algorithms is Nagle’s algorithm, introduced by John Nagle in 1984. Improves TCP communication
by reducing the transmission of small packets over networks [1]. Designed to address inefficiencies
caused by applications sending frequent, tiny data bursts, it mitigates network congestion by
temporarily buffering small writes until either an acknowledgment (ACK) is received for previous
data or enough data accumulates to form a full TCP segment. The algorithm ensures that only one
small packet remains unacknowledged at a time, preventing the network from being flooded with
tiny packets.

Although effective for bulk data transfers, Nagle’s algorithm can introduce latency in interactive
applications like gaming or SSH due to its interaction with TCP’s delayed ACK mechanism, which
waits up to 200 milliseconds to combine ACKSs with outgoing data. This trade-off led to criticism
[2]. The main point is that the strength of this algorithm (reducing small packets) is also its weakness.
Modern systems often disable it for latency-sensitive applications (e.g., VolP) using the
TCP_NODELAY socket option, but it remains valuable for optimizing high-throughput workloads
like file transfers.

This paper introduces a novel algorithm to improve data transfer efficiency by dynamically adapting
to real-time network conditions and application needs. It does so through context-sensitive buffering,
adaptive timeouts, and machine learning. Such an algorithm shall help improving performance,
namely reducing latency, and improve energy efficiency in modern networking environments.

The remainder of the paper is organized as follows. Section 2 discusses the related works, while
Section 3 presents the background and motivation of the new algorithm. Section 4 describes the new
algorithm. Section 5 defines the performance metrics that can be used to assess the performance of
the new algorithm. Section 6 contains the risks and limitations of the DAPB algorithm. Section 7
specifies the next steps of this research.

2. Related works

eBPF (extended Berkeley Packet Filter) enables the execution of user-defined programs within the
Linux kernel. Its lineage begins with the Berkeley Packet Filter (BPF), introduced in 1993 by
McCanne and Jacobson as a mechanism to efficiently capture network packets in user space [3].
Classic BPF (cBPF) employed a simple register-based virtual machine to execute filter programs in
the kernel, reducing unnecessary data copying between the kernel and the user space.

The transition to eBPF began in 2014 with its integration into Linux kernel 3.18. This overhaul, led
by Alexei Starovoitov, reimagined BPF as a general-purpose execution environment [4]. Key
enhancements included a 64-bit register model, a Just-In-Time (JIT) compiler, and a richer
instruction set, enabling eBPF programs to interact safely with kernel data structures. The most
transformative applications of eBPF have emerged in networking. The 2018 introduction of XDP
(eXpress Data Path) [5] marked a paradigm shift by enabling packet processing at the driver layer,
bypassing the kernel network stack entirely.

Network congestion is a common issue in computer network engineering. To solve it, several
buffering algorithms and techniques were created. The Sliding Window Protocol, as described in
[6], is fundamental to TCP’s flow control, allowing multiple packets to remain in transit before
requiring acknowledgments. This approach maximizes throughput while preventing receiver
overload by dynamically adjusting the window size based on network conditions.

Modern congestion control algorithms such as TCP BBR ([7] & [8]) represent another category,
using bandwidth and latency measurements to dynamically optimize transmission rates. Meanwhile,
at the hardware level, Direct Memory Access (DMA) [9] and Zero-Copy Buffering [10] minimize

95

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

CPU involvement by enabling direct data transfers between devices and memory, significantly
reducing latency in high-speed networks.

Nagle’s algorithm reduces TCP overhead by buffering small writes until either: (1) enough data
accumulate to fill a packet or (2) all sent data are acknowledged. Although it minimizes "tinygrams"
that waste bandwidth, it can increase latency [6], prompting many real-time systems to disable it via
‘TCP_NODELAY". The algorithm remains fundamental in throughput-latency tradeoff studies.
Compared to existing network (Table 1) enhancement algorithms, the DAPB algorithm introduces
several novel improvements. Context-sensitive adaptability and machine learning-driven
optimization as key novelties. Unlike traditional Nagle’s algorithm, which uses fixed rules, DAPB
dynamically adjusts buffer sizes and timeout mechanisms based on real-time network conditions.
These conditions include (but are not limited to) packet round-trip time (RTT), the variability in
packet arrival times (known as jitter), and the packet loss. The DAPB algorithm also considers
application requirements (e.g. latency sensitivity). Using machine learning, it can predict optimal
configurations [11], ensuring better performance in diverse scenarios. Additionally, DAPB
incorporates selective buffering to prioritize urgent packets, reducing latency for real-time
applications, while optimizing energy efficiency for resource-constrained environments like 10T.
This makes DAPB more versatile, efficient, and adaptive than static or rule-based algorithms.

Table 1: Comparative analysis of buffering algorithms.

Characteristic = Nagle’s BBR Circular QUIC DAPB
Adaptivity Fixed Congestion Fixed Per-conn ML-driven
Latency Poor Moderate Low Excellent Context
Throughput Moderate High High High Adaptive
Energy None Partial None None QOptimized
Protocol TCP Transport Generic QUIC Multi-protocol
Layer Kernel cC User User Kernel | (BPF
ML No No No No Yes
Priority None None None Stream Urgency
Dynamic No RTT No Per-flow RTT | Jitter | Packet loss
HW Accel No No No No Partial

o Comparison includes classic (Nagle’s, Cirenlar) and modern (BBR, QUIC) approaches
s DAPB introduces ML-driven adaptivity and multi-protocol support
» Evaluated for clond-native service mesh requirements

3. Background and motivation

3.1 Flow of traffic within the service mesh and Linux operating system

In a service mesh architecture, communication between application components occurs through a
dedicated infrastructure layer composed of programmable proxies (Fig. 1). These proxies, deployed
as sidecars (e.g., Envoy, Linkerd-proxy), run alongside application containers in user space. Instead
of applications directly managing network logic, they delegate tasks like service discovery, retries,
or mutual Transport Layer Security (mTLS) to their sidecars via local inter-process communication
(IPC) mechanisms such as Unix domain sockets.

The service mesh divides responsibilities between a control plane (e.g., Istio Pilot [12], Linkerd’s
control plane) and a data plane (sidecar proxies). The control plane acts as a centralized orchestrator,
distributing policies, routing rules, and security configurations (e.g., certificates for mTLS) to data
plane proxies. These proxies enforce rules at the application layer (Layer 7), enabling features like
HTTP/2-based load balancing, circuit breaking, and header-based routing. Unlike the Linux kernel’s
IP/TCP-centric approach, service meshes prioritize protocols like HTTP, gRPC, or service-specific
APIs.

96

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

Service PRE P Service
Instance Y Loy Instance
Socket (1) Socket (2) Socket (3) Socket (4) Socket (5) Socket (6)
sendl recv send | recy [~-*|send I recv send | recv|-»|send | recv sendl recv
t [} t] Y t [}

|— ----------------------------------- 1
1 —» Kernel ~—# Istioproxy = —» Application
L S L S U LS S ML U S S S S S AU S S S A e ’

Fig. 1. Traffic flow within Istio service mesh.

Proxies intercept traffic using mechanisms like iptables rules or eBPF programs to redirect packets
to the sidecar before reaching the application. For example, in Kubernetes, an init container may
configure networking rules to ensure that all ingress/egress traffic flows through the proxy.

Within the Linux operating system (Fig. 2), data travels across multiple layers with distinct
responsibilities. Applications in user space initiate communication using programming interfaces
like sockets and system calls. For example, a web browser might use TCP socket functions from the
standard C library to send HTTP requests. These requests get passed to the kernel via syscalls like
sendto() or write(), which transition the execution from user mode to kernel mode.

Process / En § Process /
User space | Apmlc;vmn Pod A £y proxy I EA Py Foaf |APP"C°Y‘°“]

systemcalls oo oo siearnalee s shveicra etz slessaibnaorgaseas O T R o et
F 7TV R | [E - H
& HEH '[B! HEH .
k. ' ' ['
' = "Xy e ' lx, 1o, - '
g: socket (1)| LSocket] g. socket (2)| |socket (3)| LSocket] ! qgl socket (4)| |socket (5)| LSocket| ! 81 [socker(s)| LSocket] 1
Kernel space V I -h 1| & 7 & 4
=)‘zndlr‘vcv TCP /P! Z smvdlrew sendlretv Tcp / 1P| f: sendl recy| |sendfrecy| [Tep ;1 : f: ser-dlrecv Tce /Tp]

ry ey 3
g TN e i :
x| Lo B R e s /L = (et Lot ‘..___..___._____.' e R (Y [V (Y | I,) -« o0~ L2 o e '

S

T Network Interfacd Controller (NIC)

Host network namespace {ethQ, wlan0, etc)

Fig. 2. Traffic flow in Linux OS running within a service mesh.

3.2 Nagle’s algorithm

Nagle’s algorithm is used to optimize TCP communication by decreasing the number of small
packets transmitted over the network [12]. Introduced by John Nagle in 1984, it is particularly
effective in situations where applications frequently send small amounts of data. Its main objective
is to reduce the overhead that comes with sending numerous small packets, which can contribute to
network congestion and inefficient bandwidth usage. Here is how it works:

e Buffering Small Packets: When an application transmits a small amount of data (less than
the Maximum Segment Size (MSS), Nagle’s algorithm temporarily stores those data in a
buffer instead of sending them immediately as a separate packet. This design reduces
overhead by minimizing the number of small packets, a trade-off between latency and
efficiency noted in [14] and [15].

e Combining Packets: The algorithm waits for one of the following conditions to occur:

v An acknowledgment (ACK) from the receiver for data that has already been sent, or

v Additional data from the application that can be combined with the buffered data.
97

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

This approach, while effective for bulk data transfers, can introduce undesirable latency for
interactive applications, as observed in [16] and [17].

e Sending Large Packets: Once one of these conditions is satisfied, the algorithm transmits
the buffered data along with any new data as a single larger packet. This optimization
leverages network efficiency by amortizing per-packet overhead, a principle further
analyzed in [18] and [19].

3.3 The eBPF Technology

eBPF (extended Berkeley Packet Filter) is a Linux kernel innovation that enables developers to run
custom, event-driven programs securely within the kernel space without modifying kernel source
code or rebooting the system. Originally designed for network packet filtering, eBPF has evolved
into a versatile framework to improve performance, observability, and security in modern computing
environments [20].

eBPF programs are executed in a sandbox environment, ensuring safety by verifying the code before
execution to prevent crashes or resource leaks. These programs attach to predefined hooks in the
kernel, such as network events, system calls, or function entries/exits, allowing real-time data
processing. For example, eBPF can intercept network packets to optimize routing, monitor
application behavior for debugging, or enforce security policies by auditing system activity. It offers
the following key advantages:

e Performance: by operating in-kernel, eBPF minimizes context switches and data copying,
reducing overhead for tasks like packet processing or monitoring.

* Flexibility: developers can dynamically load programs to adapt to changing needs, such as
scaling service mesh traffic or troubleshooting latency.

e Safety: a built-in verifier ensures that programs run without destabilizing the kernel,
enforcing strict rules on memory access and loop structures.

To understand eBPF, it is essential to explore its core concepts, including program types, maps, and
specialized frameworks such as XDP.

3.3.1 eBPF program types

eBPF supports a variety of program types, each designed for specific use cases. These program types
determine where and how eBPF programs can be attached within the kernel. Some common eBPF
program types include the following:

® Socket Filtering: Used for filtering and processing network packets at the socket level.

e Kprobes and Uprobes: allow tracing of kernel and user-space functions, respectively, for
debugging and observability.

® Tracepoints: Attach to predefined kernel tracepoints to monitor system events.

e XDP (eXpress Data Path): a high-performance program type for processing network
packets at the earliest possible point in the kernel’s networking stack.

e TC (Traffic Control): used for advanced packet processing and traffic shaping in the
kernel’s networking subsystem.

® Perf Events: Enable monitoring of hardware and software performance events.

3.3.2 eBPF Maps

eBPF maps are key-value data structures that allow eBPF programs to store and share data between
user space and kernel space, or between multiple eBPF programs. They are a fundamental building

98

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

block for creating complex and stateful eBPF applications. Common types of eBPF maps include
the following:

® Hash Maps: store key-value pairs in a hash table for efficient lookups.
* Array Maps: use integer keys to store fixed-size values, providing fast access.

® Per-CPU Maps: maintain separate data for each CPU core, great for high-performance use
cases.
® Ring buffer: a high-throughput data structure for passing data between eBPF programs and
the user space.
® | RU (Least Recently Used) Maps: automatically evict least recently used entries to manage
memory efficiently.
Maps enable eBPF programs to maintain state, aggregate data, and communicate with user space
applications, making them indispensable for advanced use cases like network monitoring and
security enforcement.

3.3.3 eXpress Data Path (XDP)

XDP is a high-performance eBPF program type designed to process network packets at the earliest
possible point in the kernel’s networking stack, often before they reach the kernel’s network layer.
This makes XDP ideal for use cases requiring low-latency packet processing, such as:

e DDoS mitigation: dropping malicious packets before they consume system resources.
¢ | oad balancing: distributing network traffic across multiple servers with minimal overhead.
e Packet filtering: implementing custom filtering logic at line rate.
® Protocol parsing: extracting and processing custom protocol headers efficiently.
XDP programs are typically attached to network interfaces and operate in one of three modes:
* Native Mode: runs the XDP program directly on the network interface card (NIC) driver.

o Off-loaded mode: offloads the XDP program to the NIC hardware for maximum
performance.

e Generic Mode: runs the XDP program in the kernel as a fallback when hardware offloading
is not available.

3.3.4 Use cases of eBPF
eBPF has found applications in a wide range of domains. Some notable use cases include:

* Networking: eBPF is widely used to optimize network performance by enabling efficient
packet filtering, load balancing, and traffic shaping. For example, tools such as Cilium [21]
leverage eBPF to implement high-performance Kubernetes networking and security
policies.

® Observability: eBPF provides deep visibility into system and application behavior without
requiring invasive instrumentation. Tools such as BPF Compiler Collection (BCC) and
bpftrace allow developers to trace system calls, monitor file 1/0, and analyze performance
bottlenecks in real time.

e Security: eBPF enables runtime security enforcement by monitoring system calls, file
access, and network activity. It can detect and prevent malicious behavior, such as privilege
escalation attempts or unauthorized data exfiltration.

® Tracing and Profiling: eBPF can be used to trace function calls, measure latency, and profile
applications, making it invaluable for debugging and performance tuning.
99

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

3.4 Problem statement

Service meshes in distributed systems face significant inefficiencies in data transfer due to the
prevalence of small, unaggregated packets. These inefficiencies manifest as such:

® High Latency: Frequent small-packet transmissions introduce delays from protocol
overhead (e.g., TCP headers, ACKSs) and kernel processing.

¢ Low Throughput: Low network bandwidth caused by excessive packet fragmentation and
interrupt handling.

® Energy Overhead: Increased CPU cycles for per-packet processing, increasing power
consumption in data centers.

Current buffering algorithms are static and do not adapt to dynamic network conditions (e.g.,
variable RTT, congestion) or application-specific requirements (e.g., latency-sensitive vs. batch
traffic).

Research Gap: Lack of adaptive, context-aware buffering mechanisms capable of dynamically
balancing these trade-offs based on real-time network state and traffic patterns.

4. The Dynamic Adaptive Packet Buffering (DAPB) algorithm

4.1 The DAPB algorithm’s technical architecture

The DAPB algorithm is a novelty designed to improve data transfer efficiency in modern networking
environments. It operates within 4 cornerstones (Fig. 3):

4.1.1 Data Collection and Learning Layer

The architecture begins with metric collectors in user space, which gather real-time network data
(e.g., latency, throughput, packet loss) from the Linux network stack and service instances. These
metrics feed into a reinforcement learning model that optimizes buffering policies through
continuous interaction with the environment. Historical data are stored for history-based
recommendations, while an optimization neural network, tuned via differential evolution, refines
decision-making parameters. This layer ensures DAPB adapts dynamically to changing network
conditions and application needs.

4.1.2 Decision and Control Plane

The decision model synthesizes inputs from the learning layer to generate adaptive buffering
policies. It balances competing objectives (e.g., latency vs. throughput) using the reinforcement
model’s predictions. The control plane enforces these policies across the system, coordinating with
the policy applier to translate decisions into actionable rules. This centralized intelligence allows
DAPB to adjust buffer sizes, timeouts, and aggregation strategies in real time, tailored to specific
traffic patterns (e.g., prioritizing VVolP packets over file transfers).

4.1.3 Kernel-Level Execution

Policies are executed in kernel space via eBPF data structures, which enable efficient packet
processing without modifying the kernel. The eBPF components intercept traffic at the socket and
TCP/IP layers, applying buffering rules while minimizing overhead. By operating close to the
Network Interface Controller (NIC), DAPB reduces context switches and leverages kernel bypass
techniques when possible. This design ensures low-latency processing while maintaining
compatibility with existing Linux networking infrastructure.

100

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoauTensHocTH Service Mesh na ocnose eBPF. Tpyow:t MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 93-110.

History based
recommendation

e-enforcement
leamning
Optimization
Neural Network
using Differential Evolution

m policies
Buflening

policies

| Policy Service Metric
applyer collector “

o o e s i e e .

v Linux Network Stack !
: S
1
|
I

socket (1) Socket

sendl recv

| Tcp /17

Network Interface Controller (NIC)

Fig. 3. The DAPB algorithm’s technical architecture.

4.1.4 Feedback and Optimization Loop

The architecture closes the loop with knowledge persistence, where outcomes of applied policies
(e.q., actual latency improvements) are logged and fed back into the learning layer. This continuous
feedback enables the system to refine its models, ensuring long-term adaptability. The integration
of differential evolution further optimizes neural network weights, while the control plane
orchestrates iterative policy updates. Together, these components create a self-tuning system that
evolves with network demands, achieving optimal performance across diverse service mesh
environments.

As a result, the DAPB algorithm can be deployed and operate at the level of a whole service mesh
installation (Fig. 4), managing buffering simultaneously for all containers within the installation.

4.2 The DAPB algorithm'’s features

The DAPB algorithm introduces several innovative features to address the limitations of existing
buffering techniques.

4.2.1 Context-sensitive buffering

Unlike Nagle’s algorithm, which uses a one-size-fits-all approach, DAPB tailors its buffering
strategy to the specific needs of the application. For example, in latency-sensitive applications such
as VolP or online gaming, DAPB minimizes buffering to reduce delays. In contrast, in throughput-
sensitive applications such as file transfers, it maximizes buffering to improve efficiency.

101

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

Process ’ PO 4= Process /
Apph(;:lt:n Pod A Fvoy:preey | Efiday; proky, Pod 8 |Anl>licmion

User space
systemcalls - o< Jooee bbb fececin L b e

B B | B e e e P e Ol e
R
DI A v, 0, K 5
x! = B 1] = 1 e 'ox, r=
51 [socker ()| [Sucket] | By |socker (2)] |socket (3)] LS0ckel] ¥ 8. [socker (4)] [socker (5)| | Socket! s 'g'- socket (6)| | Socket|

Kernel space | Er T T E— T: T 5' —T — > - ’
2: send|recy| | Tcp £ IP [I send|recv| |send|recv TCP/IP|! |24 |send]recy] |[send]recy][Tep /1P| 21 [send|recy] [vep /1P| ¢
% ' X x' - v S 2 ¥
5 D B RS L :
< ISR oo Y k= ruid LR (rmies [EIR Cpryobempmorterci| = gl (NN (5 75co jERI T - 0! [(BRI
& & & & & & 4 &

T Network Interfacd Controller (NIC)

A

HosT network namespace (eThO, wand, etc)
Fig. 4. Packet buffering using eBPF in Linux Kernel throughout service mesh.
Considering the following:
e B(t) — the buffer size at time ¢, in bytes.

e [(t) —the latency sensitivity of the application at time ¢ (e.g., L(t) = 1 for latency-sensitive
applications, L(t) = 0 for throughput-sensitive applications).

* ((t) —the network conditions at time ¢t, including round-trip time (RTT), packet loss rate p,

jitter ()).
B il L(1) = 1 (latency-sensitive)
B(t) = { Bar il L(t) = 0 (throughpul-sensitive) , (1)
J(O(1)) olherwise
where:

® Bnin—the minimum buffer size for latency-sensitive applications (in bytes).
® Bnax— the maximum buffer size for throughput-sensitive applications (in bytes).
e f(C(t)) — a function that adjusts the buffer size based on network conditions.
F(C(8) = Bosn + - RTT(H) + A plt) + - J(2), (2)
where a, B, and y are weighting factors.

4.2.2 Adaptive timeout

While Nagle’s algorithm relies on a fixed timeout, DAPB dynamically adjusts the waiting timeout
based on real-time network conditions. If the network is congested, DAPB increases the timeout to
allow more data buffering, thereby improving efficiency. However, if the network is underutilized,
it reduces the timeout to minimize latency. This dynamic approach ensures that the DAPB strikes
the right balance between efficiency and responsiveness. The timeout T(¢) is adjusted dynamically
based on network conditions:

T(t) = Tpgee + 6 - RTT(t) + € - p(t) + £ - J(£), (3)
where:
e T(t) - the timeout period at time ¢ (in ms).
® Thase— the base timeout value (in ms).

* §, ¢ and & — weighting factors that determine the influence of RTT, packet loss, and jitter
on timeout.

102

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

4.2.3 Machine learning-driven predictions

DAPB incorporates machine learning-driven predictions to optimize its performance. The algorithm
uses an Al model to predict network traffic. It provided a solid foundation for making informed
decisions about buffer sizes and timeout values. For example, in a video streaming application, the
Al component might analyze past transfer patterns to predict the best buffer size for a given video
quality. This predictive capability ensures that DAPB remains effective even as network conditions
and application requirements evolve. The predicted optimal buffer size P(t) is derived from a
machine learning model MM:

P(t) = M(C(t), H(1)), (4)
where:
® P(t) — predicted optimal buffer size at time t, derived from an Al model (in ms).
e ((t) — current network conditions.

® H(t)— historical data (e.g., past buffer sizes, network conditions, and performance metrics).
The buffer size B(t) is then updated based on the prediction:

B(t) = min(Bz, maz(Buin, P(1))). (5)

4.2.4 Selective buffering

The algorithm intelligently decides which packets to buffer (and aggregate) and which to send
immediately. Small packets that are part of a larger data stream are aggregated to reduce overhead,
while urgent packets (e.g., control messages) are sent immediately to minimize latency. This
selective approach ensures that the DAPB maintains high performance without compromising
responsiveness. The average urgency of packets in the buffer at time ¢ is given by:

N(t)

Ut) = % Zir.t-{t], (6)

where:
® yui(t) is the urgency of the i-th packet at time ¢ (0 < ui(t) < 1),
® [J(t) is the average urgency at time ¢,
® N(t) is the number of packets in the buffer at time ¢,

The urgency ui(t) can be established either by using protocol headers or the application context. The
first approach consists of extracting priority flags (e.g., HTTP/2 stream priorities, DSCP/T0S bits in
IP headers, or gRPC metadata). The second consists of integrating with service mesh APIs (e.g.,
Istio virtual service) to label latency-sensitive traffic (e.g., VoIP, gaming) as high urgency. The
decision to send the buffer is based on the following condition: send buffer if U(t) > Umor B(t) 2
Bmax, Where U is a threshold for the urgency of the packet.

4.2.5 Energy efficiency

Energy efficiency is also a priority for DAPB. By optimizing buffer sizes and timeout values, the
algorithm reduces unnecessary resource consumption, making it particularly valuable for energy
constrained environments like edge computing and 10T devices. For example, in an 10T sensor
network, DAPB can minimize buffer sizes during periods of low activity, saving energy without
compromising performance. The energy cost E(t) is modeled as:

E(©)=n-B(t)+6-T(t), (7

where n and 6 are weighting factors that represent the energy cost of buffering and waiting,
respectively.
103

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

5. Performance Metrics

After applying the DAPB algorithm to service mesh using eBPF in Linux, 6 performance metrics
should be collected (evaluated) and analyzed. Each of them is presented below.

5.1 Reduction in small packets

This metric quantifies the decrease in the number of small data packets transmitted over the network
due to buffering. By holding data in a buffer until a predefined size or timeout is reached, fewer
packets are sent, reducing overhead and eliminating network congestion. For example, if an
application generates 1000 small packets per second but transmits only 200 after aggregation, 800
packets are eliminated, lowering processing demands on network hardware. Considering the
following variables:

e Nreduced— the reduction in small packets (in bytes).
e A(t) - the arrival rate of the packets at time t (in packets/sec).
e Noars(t) — the number of packets transmitted after buffering, at time t (in bytes).

Nreduced = 3 _(A() — Noaru(t)) (8)

5.2 Buffer efficiency

Evaluates how effectively the allocated buffer capacity is used to aggregate the data. High efficiency
means that the buffer is consistently filled to its maximum capacity before transmission, minimizing
wasted space. Lower efficiency indicates frequent early transmissions (e.g. due to timeouts), which
may under-utilize buffer resources and reduce potential throughput gains. This is important because
high efficiency directly means a reduction in latency (fewer waiting for partial fills). Considering
the following:

® Bmax(t) — the maximum buffer size at time ¢t (in bytes).

® B(t) —the actual data accumulated in the buffer at time ¢t (in bytes).

® Troaes(t) — the transmissions triggered by buffer-full or timeout events (in ms).
® 1 —the buffer efficiency.

. E:"_ﬂ(gulﬂ?d{g} - Trpaps(t)
Y g Buas(1)

(9)

5.3 End-to-end latency

Estimates the time it takes for a request to traverse all nodes in the service mesh, including both
network delays and buffering pauses. Highlights the bottlenecks where buffering dominates latency,
guiding changes such as adjusting buffer sizes or timeouts to maintain responsiveness across
distributed services. For each node v, considering the following:

® (vas aqueue with capacity Bmax.

® Edges ewhave a transmission delay duv.

The Nagle-inspired policy modifies the dequeue behavior of Q.. Packets are dequeued only when
[IQull = Bmax, OF T expires. After applying the DAPB algorithm, for a path P = (v,v2,...,va), the end-to-
end latency becomes:

104

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

n—1

L= 3 (s 1 Tl 7). 10)

i=1
where:
® dyivi:1— the network delay between nodes viand vi.1 (in ms).
e [1— an indicator function for delayed transmissions (in ms).
® Tlgui<ama+ T — the buffering delay at node v;if its buffer is not yet full (in ms).

5.4 Additional delay

This metric estimates the additional delay introduced by buffering packets before transmission.
While aggregation improves throughput, it inherently adds waiting time, either until the buffer fills
or a timer expires. Applications sensitive to delays (e.g., real-time systems) must balance this trade-
off carefully to avoid degrading user experience. Considering the following variables:

® 71— the acknowledgment timeout (in ms).
o tr— the time to fill the buffer to Bmax (in ms).
® Ladded— the added latency increase (in ms).
Loddea = B [min(7, t5u)] (11}

The increase in latency can be useful to estimate the effect of buffering on latency-sensitive
applications (e.g., real-time APIs). For example, if tri= 150ms and T = 200ms, the added latency is
150 ms. However, if tin= 250ms, the added latency is 200 ms (the timeout triggers transmission).

5.5 Throughput gain

The throughput gain reflects the improvement in data transmission rates achieved by sending larger
aggregated packets instead of smaller ones. Larger packets reduce header overhead and improve
network utilization, enabling more efficient bandwidth use. For example, combining 100 small
packets into one large packet minimizes repetitive header transmissions, increasing throughput.

5.6 eBPF overhead cost

While eBPF optimizes kernel-level processing, its operations consume additional CPU cycles. This
metric assesses the computational cost of using eBPF to manage packet aggregation. The cost must
remain low enough to avoid negating the benefits of aggregation, ensuring net performance gains.
It can be estimated as the additional processing time, memory increase, and energy consumption
introduced by eBPF hooks to intercept, buffer, and redirect packets. Considering the following
variables:

o Xiuie — the time (or memory or energy) to process a packet in the native Linux stack.
proc

o Xaurr _ the time (or memory or energy) of all eBPF logics (e.g., aggregation, buffering).

® C.sprr — the overhead cost induced by eBPF.
Cenpr = X:.T::}.- X (13)

native

An important aspect of this indicator is that it allows to verify that eBPF enhancements are not
less than the cost due to increased resource usage. For example, if Cespr = 5 ps/packet, and the
packet arrival rate A(t) = 1000 packets/sec the overhead is about 5 seconds of CPU time per second.

105

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

5.7 Performance metrics conclusion
The metrics can be interpreted holistically as follows:

¢ Reduction in Small Packets (Nreduced) and Throughput Gain (Tyain) measure improvements
in network efficiency from aggregation. These are critical for throughput-sensitive
applications (e.g., file transfers).

e End-to-End Latency (Lp) and Latency Increase (Ladded) Capture responsiveness trade-offs,
vital for real-time systems (e.g., VoIP).

® The buffer efficiency (n) reflects resource utilization, indicating how well DAPB adapts
buffer usage to dynamic conditions.

The context-specific guidance for the ML models is as follows:

¢ In throughput-sensitive context: prioritize Nreduced, Tgain, and 1. The cost (Cesrr) is tolerable
if the gains exceed it.

® In latency-sensitive context: minimize Lpand Ladded; tolerate lower n or higher Cegpr.
® In energy-constrained context (Edge/loT, etc.): favor n and low Cespr.

6. Risks and limitations

The DAPB algorithm introduces significant improvements over static buffering approaches, but its
adaptive and machine learning-driven nature presents several challenges that must be carefully
mitigated.

1. Prediction Inaccuracies in Dynamic Environments

Risk: the machine learning model’s reliance on historical data and real-time metrics may
yield suboptimal predictions under sudden network changes (e.g., flash crowds, DDoS
attacks). Noisy or incomplete data (e.g., inaccurate RTT measurements due to asymmetric
routes) could degrade performance.
Mitigation: incorporate ensemble methods (e.g., random forests [23]) to reduce variance
and fallback mechanisms (e.g., reverting to Nagle-like static thresholds when prediction
confidence is low).

2. Overhead from Adaptive Mechanisms
Risk: the computational cost of dynamically adjusting buffer sizes and timeouts may offset
throughput gains, especially in resource-constrained edge/loT environments. The eBPF
overhead metric must be monitored to ensure net benefits.
Mitigation: profile the algorithm’s CPU/memory footprint under varying loads and
optimize the eBPF bytecode (e.g., reducing redundant calculations in the f{C(t)) and T(t)
functions).

3. Misclassification of Application Context
Risk: incorrectly labeling an application as latency-sensitive (L(t) = 1) or throughput-
sensitive (L(t) = 0) could lead to inappropriate buffering. For example, misclassifying VolP
traffic as batch processing would introduce unacceptable delays.
Mitigation: implement hybrid labeling (e.g., allow applications to declare their sensitivity
via API) and validate classifications using runtime telemetry (e.g., packet inter-arrival
times).

4. Energy Trade-offs in Adaptive Buffering
Risk: although DAPB optimizes energy use, frequent buffer resizing B(t) and timeout
adjustments T(t) may increase CPU cycles, negating energy savings in low-power devices.

106

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

Mitigation: introduce hysteresis in adjustments (e.g., change B(t) only when network
conditions C(t) shift beyond a threshold) to reduce computational churn.

Scalability in Large-Scale Deployments

Risk: the centralized control plane in service meshes may struggle to propagate real-time
network conditions C(t) to all proxies, causing inconsistent buffering decisions across
nodes.

Mitigation: decentralize partial decision-making (e.g., let each proxy compute B(t) locally)
and use lightweight consensus protocols for critical updates [24].

Security Implications of eBPF Dependencies

Risk: eBPF’s kernel-level access exposes DAPB to potential exploits (e.g., buffer overflow
in eBPF programs). Maliciously crafted packets could trigger excessive buffering, leading
to resource exhaustion.

Mitigation: apply eBPF hardening techniques (e.g., verifier-based bounds checking,
ratelimiting buffer allocations) and audit the DAPB eBPF code with tools like BPFKit [25].

Interoperability with Legacy Systems
Risk: older kernels or non-Linux environments may lack eBPF support, limiting DAPB’s

applicability. Hybrid deployments (e.g., partial service meshes) could experience
performance asymmetry.

Mitigation: provide a fallback mode using socket-level buffering (e.g., TCP_CORK) with
reduced adaptability, and document compatibility matrices.

7. Next steps of the research

1.
2.
3.

© N o v

Implement the new algorithm using eBPF.
Engineer the ML model.
Prepare multiple testing environments. Make sure to have most common architectures:

e 2 containers inside a pod with one Istio sidecar (Intra-pod)
e 2 containers inside 2 pods with 2 Istio sidecars (Inter-pod)

® n containers inside n pods with n Istio sidecars (Inter-pod), where 2 < n < oo,

There are two environments for each architecture. The new algorithm is applied to the
first one, and it is not applied to the second one.

Collect basic system metrics. They include, but are not limited to, the CPU, the memory
(RAM), and the disk usage (in bytes).

Integrate the new algorithm into the corresponding testing environments.

Collect and store performance metrics. These are the metrics described in section 5.
Analyze and assess the baseline system and performance metrics.

Conclude the work.

8. Conclusion

This paper introduces the Dynamic Adaptive Packet Buffering (DAPB) algorithm. It is designed to
enhance data transfer efficiency in service mesh environments by leveraging eBPF. DAPB improves
upon existing buffering algorithms like Nagle’s algorithm by dynamically adjusting buffer sizes and
timeout values based on real-time network conditions, application requirements, and machine
learning predictions. Key features include context-sensitive buffering, adaptive timeout
mechanisms, selective aggregation, and energy efficiency optimizations, making it suitable for
diverse scenarios such as latency-sensitive applications and resource-constrained 10T devices.

107

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

Performance metrics can be used to assess the reduction in small packets, the improved throughput,
and the added latency

References

(1]

2.
3.
[4].
[5].
[6].
[7].
[8l.
[al.

[10].
[11].

[12].

[13].
[14].
[15].
[16].
[17].
[18].
[19].
[20].

[21].
[22].

[23].
[24].
[25].

[26].

. J. Nagle, Congestion control in IP/TCP internetworks, RFC Editor, RFC 896, Jan. 1984, Obsoleted by
RFC 1122, but foundational to Nagle’s algorithm. [Online]. Available: https: //tools.ietf.org/html/rfc896.
J. Nagle, “Congestion control in IP/TCP internetworks,” RFC Editor, RFC 896, (Jan. 1984), Obsoleted by
RFC 1122, but foundational to Nagle’s algorithm. [Online]. Available: https: //tools.ietf.org/html/rfc896.
TCP/IP Illustrated, Volume 1: The Protocols ([1994]), W. R. Stevens, Addison-Wesley Professional, isbn:
978-0201633467.

“The BSD packet filter: a new architecture for user-level packet capture” ([1993]), S. McCanne et al., (In:
Proceedings of the USENIX Winter 1993 Conference), pp. 259-270.

“BPF: In-kernel Virtual Machine” ([2015]), A. Starovoitov, (In: Linux Plumbers Conference).

“The eXpress Data Path: Fast Programmable Packet Processing in the Operating System Kernel” ([2018]),
T. Hoiland-Jorgensen et al., (In: Proceedings of the 14th International Conference on Emerging
Networking Experiments and Technologies), pp. 54-66, doi: 10.1145/3281411.3281443.

Computer Networks ([2011]), A. S. Tanenbaum et al., Pearson.

“BBR: Congestion-based congestion control” ([2016]), N. Cardwell, Y. Cheng, C. S. Gunn, et al., ACM
Queue, 14, 5, pp. 20-53, doi: 10.1145/3012426.3022184.

N. Cardwell, Y. Cheng, S. H. Yeganeh, et al., “Tcp bbr v2 alpha/release history,” IETF, RFC 8962, (2021).
[Online]. Available: https://tools.ietf.org/html/rfc8962.

Understanding Linux Network Internals ([2005]), C. Benvenuti, O’Reilly, isbn: 9780596002558.
“Efficient data transfer through zero copy” ([2006]), W. Ma et al., (In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing), pp. 1-12, doi: 10.1145/1188455.1188583.

“Differential evolution optimization for constrained routing in Wireless Mesh Networks” ([2014]), M.
Sanni et al., (In: International Conference on Frontiers of Communications, Networks and Applications
(ICFCNA 2014 - Malaysia)), pp. 1-6, doi: 10.1049/cp.2014.1397.

Istio, Istio: A service mesh for microservices, Official documentation, (2023). [Online]. Available:
https://istio.io/latest/docs/concepts/what-is-istio/.

“Congestion control in IP/TCP internetworks” ([1984]), J. Nagle, ACM SIGCOMM Computer
Communication Review, 14, 4, pp. 11-17, doi: 10.1145/1024908.1024910.

“Congestion avoidance and control” ([1988]), V. Jacobson, ACM SIGCOMM Computer Communication
Review, 18, 4, pp. 314-329, doi: 10.1145/52325.52341.

R. Braden, “Requirements for internet hosts—communication layers,” IETF, RFC 1122, (1989). [Online].
Available: https://tools.ietf.org/html/rfc1122.

“Reducing web latency: the virtue of gentle aggression” ([2013]), T. Flach et al., (In: Proceedings of the
ACM SIGCOMM 2013 Conference), pp. 159-170, doi: 10.1145/2486001.2486030.

“Evaluating the impacts of alternative TCP congestion control algorithms” ([2008]), S. Ha et al., (In: IEEE
International Conference on Network Protocols), pp. 49-58, doi: 10.1109/ICNP. 2008.4697036.

“TCP Vegas: End to end congestion avoidance on a global internet” ([1995]), L. S. Brakmo et al., IEEE
Journal on Selected Areas in Communications, 13, 8, pp. 1465-1480, doi: 10.1109/ 49.464716.
Computer Networking: A Top-Down Approach ([2021]), J. F. Kurose et al., Pearson, isbn:
9780135928615.

Learning eBPF ([Mar. 2023]), L. Rice, O’Reilly, isbn: 978-1-098-13887-5.

T. Graf et al., “Cilium: eBPF-based networking, security, and observability,” Isovalent, Tech. Rep.,
(2023), Official documentation. [Online]. Available: https://docs.cilium.io/en/stable/index.html.
“Network Shortcut in Data Plane of Service Mesh with eBPF” ([Jan. 2024]), W. Yang et al., Journal of
Network and Computer Applications, 222, 1, p. 103805, doi: 10.1016/j.jnca. 2023.103805.

A. Cutler et al., “Random forests,” in Research Gate, (Jan. 2011), vol. 45, pp. 157-176, isbn:978-1-4419-
9325-0. doi: 10.1007/978-1-4419-9326-7_5.

“Reaching Consensus in the Byzantine Empire: A Comprehensive Review of BFT Consensus Algorithms”
([Jan. 2024]), G. Zhang et al., ACM Comput. Surv., 56, 5, doi: 10.1145/3636553.

Gui774ume, eBPFKit: A rootkit and intrusion detection system based on ebpf, https://
github.com/Gui774ume/ebpfkit, GitHub repository, (2021). [Online]. Available:
https://github.com/Gui774ume/ebpfkit.

108

https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/3012426.3022184
https://tools.ietf.org/html/rfc8962
https://tools.ietf.org/html/rfc8962
https://doi.org/10.1145/1188455.1188583
https://doi.org/10.1145/1188455.1188583
https://doi.org/10.1049/cp.2014.1397
https://doi.org/10.1049/cp.2014.1397
https://istio.io/latest/docs/concepts/what-is-istio/
https://istio.io/latest/docs/concepts/what-is-istio/
https://doi.org/10.1145/1024908.1024910
https://doi.org/10.1145/1024908.1024910
https://doi.org/10.1145/52325.52341
https://doi.org/10.1145/52325.52341
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1122
https://doi.org/10.1145/2486001.2486030
https://doi.org/10.1145/2486001.2486030
https://doi.org/10.1109/ICNP.2008.4697036
https://doi.org/10.1109/ICNP.2008.4697036
https://doi.org/10.1109/ICNP.2008.4697036
https://doi.org/10.1109/49.464716
https://doi.org/10.1109/49.464716
https://doi.org/10.1109/49.464716
https://docs.cilium.io/en/stable/index.html
https://docs.cilium.io/en/stable/index.html
https://docs.cilium.io/en/stable/index.html
https://doi.org/10.1016/j.jnca.2023.103805
https://doi.org/10.1016/j.jnca.2023.103805
https://doi.org/10.1016/j.jnca.2023.103805
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1145/3636553
https://doi.org/10.1145/3636553
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

Nugopmayust 06 aemopax / Information about authors

Xank-Jleoon JUKAMBOHIT TEHKE — wmarucrp mporpamMmHOil umkeHepuu, acrnupant HUY
“Bricmast [1Ikona DKOHOMHMKH, PUIJIALIEHHBIH IIperojaBarelib Ha (paKyJIbTeT KOMIBIOTEPHBIX
Hayk HUNY “Breicmas Illkoma OxoHomuku”. Cdepa HaydHBIX HWHTEPECOB. HHKEHEPHS
MPOTPaMMHOT0 00€CIEYECHUS U KOMIIBIOTEPHBIX CHCTEM.

Hank-Debain DJAMBONG TENKEU — Master of Science in Software Engineering, postgraduate
student at the National Research University “Higher School of Economics”, invited lecturer at the
Faculty of Computer Science of NRU “Higher School of Economics”. Research interests: Software
and Computer Systems Engineering.

Omurtpuit Bmagmvmuposua AJIEKCAHJIPOB sBnsercs IIpodeccopom B memaprameHnte
MPOTPaMMHOW WH)XEHepUH (aKyiabTeTa KOMITBIOTepHBIX Hayk y HUY “Breicmas Illxona
OxoHoMuKK”. OH TaKkke SBISIETCS 3aBENYIOIIUM HaydHO-y4eOHOU ITabopaTropuu OONAYHBIX H
MOOWJIBHBIX TexHojJoruii. Ero Hay4yHble WHTEpechl BKJIIOYAIOT METOAbI M TEXHOJIOTHH
HCKYCCTBEHHOTO HHTEJUICKTa, MAIMHHOe OOydeHWe W aHamu3 jaaHHbX, I0S pa3paboTka,
pa3paboTka MOOHJIBHBIX MPUIOKEHHH, pa3padoTKa mporpaMMHOro obecreuenus, indoor-
HaBHTranys, 0a3bl JaHHBIX, pa3paboTka urp.

Dmitry Vladimirovich ALEXANDROV is a Professor in the Department of Software Engineering,
Faculty of Computer Science, National Research University “Higher School of Economics”. He is
also the Head of the Research and Educational Laboratory of Cloud and Mobile Technologies. His
research interests include methods and technologies of artificial intelligence, machine learning and
data analysis, iOS development, mobile application development, software development, indoor
navigation, databases, game development.

109

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

110

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-8 EOC-EH

Tuning LLM in Secure Code Generation

123D.S. Shaikhelislamov, ORCID: 0000-0002-9734-7937 <shaykhelislamov.ds@ispras.ru=>
4M.S. Varetsa, ORCID: 0009-0003-8837-5252 <varetsa.m.s@nanosemantics.ai>
3A.S. Syomkin, ORCID: 0009-0004-3388-7282 <assemkin@edu.hse.ru>
50.Yu. Rogov, ORCID: 0000-0001-9672-2427 <rogov@airi.net>

I Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2Moscow Institute of Physics and Technology,
9, Institutsky lane, Dolgoprudny, Moscow region, 141700, Russia.

3 National Research University, Higher School of Economics,
20, Myasnitskaya ulitsa, Moscow, 101978, Russia.

4 Russian Technological University MIREA,
78, Vernadsky Ave, Moscow, MIREA, Russia.

S AlRI,
32k1, Kutuzovsky ave., Moscow, 121170, Russia.

Abstract. The popularity of using LLM for code generation makes it mandatory to comprehensively verify the
security and reliability of the generated code. To verify the generated code, it is suggested to use the static
analyzer Svace, which checks the executable code using the built-in compiler and checks the code for
weaknesses. The result of the generation is processed using Svace and receives prompts with detected warnings
or errors in the code and requests corrections from LLM after generation. In addition, we fine-tune the Qwen2.5-
Coder model using direct preference optimization (DPO) for error code pairs that include common syntax errors
and runtime errors. This reduced the error rate, including syntactic errors and vulnerabilities, by 20\%. To
evaluate the models, we collected a specialized dataset from open sets for LLM evaluation, focusing on tasks
in which the models generate erroneous code. The experimental results show that fine-tuning the model with a
focus on code quality allows you to generate code that reduces typical errors. In this work, we combine an
iterative prompting mechanism with DPO to improve the security and accuracy of LLM code generation.

Keywords: code generation; large language models; static analysis; analyzer feedback; code security; fine-
tuning.

For citation: Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code
generation. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 111-122. DOI: 10.15514/ISPRAS-2025-
37(5)-8.

111

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

Hactpownka asbikoBon mogenu ansa 6e3onacHou reHepauum Koga

123 11.C. Ulaiixenucnamos, ORCID: 0000-0002-9734-7937 <shaykhelislamov.ds@ispras.ru>
4 M.C. Bapeya, ORCID: 0009-0003-8837-5252 <varetsa.m.s@nanosemantics.ai>
3A4.C. Cémxun, ORCID: 0009-0004-3388-7282 <assemkin@edu.hse.ru>
50.10. Pozos, ORCID: 0000-0001-9672-2427 <rogov@airi.net>

Y Unemumym cucmemnozo npozpammuposanus um. B.I1. Heannuxosa PAH,
Poccus, 109004, e. Mockea, yn. A. Conocenuyvina, 0. 25.

2 Mockosckuil (pusuxo-mexnuueckuii uHCmumym,
Poccus, 141700 Mockoeckas obaacme, 2. [oneonpyownuiu, Hucmumymckui nepeynok, 9.

3 HUY Bowicuas wKkoaia 3K0HOMUKU,
Poccus, 101000, o. Mockea, yn. Macnuykas, 0. 20.

4 Poccuiickuii mexnonozuueckuii ynusepcumem MUPDA,
Poccus, 119454 2. Mocksa, npocnexm Bepnadckozo, oom 78.

S Uncmumym uckyccmeennozo unmennekma AIRI,
Poccus, 121170, e. Mockea, Kymysoseckuti npocnekm, 0. 32 k. 1.

AnHoTanus. [TomynspHocts nenonp3oBanust LLM niis reHepanny kona nenaet 00s3aTeTbHOM BCECTOPOHHIO
HPOBEPKY 0E30MacHOCTH U HA/ISKHOCTH CTEHEPUPOBAHHOTO Kopa. J[Jisi MPOBEPKH CIEHEPHPOBAHHOTO KOJa
IpeJJIaraeTcs MCIONB30BaTh CTATHMYCCKUH aHAIM3aTop SVace, KOTOpBIl NMpOBEpseT HCIOJHSAEMBIH KOI C
[OMOLIBI0 BCTPOEGHHOTO KOMIIWJIATOpA W TPOBEpsieT KOA Ha Hamuuue nedekToB. Pe3ynpTaT reHepanuu
o0OpabaTeIBaeTCsl C MOMOILIBI0O SVACe M MONy4aeT 3amlpochl ¢ OOHAPYXEHHBIMH HpPeXyNpPeKACHUIMH HIH
omuOKaMH B KoJie ¥ 3anpamuBaeT ucrpasienus y LLM mocne renepanin. Kpome toro, HacTpanBaeM Mosielb
Qwen2.5-Coder, ucrons3ys npsMyro ontumusanuio npeamnodrernii (DPO) st map KoJ0B OIHGOK, KOTOPBIE
BKJIIOYAIOT PacHpOCTPaHEHHbIE CHHTAKCHYECKHE OIIMOKU M OMIMOKM BO BPEMsl BHINOJIHEHHS. DTO CHH3HIIO
JacTOTy OLIMOOK, BKIIOYasi CHHTAaKCHIECKHUE U ysI3BUMBbIE MecTa, Ha 20%. 11 oleHKH Moenelt Mbl coOpaitu
CHeNUaTN3UPOBaHHBII HA0Op JaHHBIX U3 OTKPBITHIX HaOOpoB mis oneHku LLM, cocpenorouns BHUMaHuE Ha
3a/1a4ax, B KOTOPBIX MOJICIHM TCHEPHUPYIOT OMIHMOO0UYHbINH KOJI. Pe3ynbTaThl SKCIEPUMEHTOB ITOKA3bIBAIOT, YTO
TOHKAsi HACTPOWKa MOJIENH C aKIIEHTOM Ha KauecTBO KOJa II03BOJISIET TeHEPUPOBATh KO, KOTOPBIi YMEHBIIACT
KOJIMYECTBO THITMYHBIX OMIMOOK. B 3T0it paboTe MbI 00BeIMHIEM MEXaHU3M HTEpaTHBHBIX 3ampocoB ¢ DPO
JUIS TTOBBINIEHHST 0€30I1aCHOCTH ¥ TOYHOCTH reHepanuu kogaa LLM.

KuroueBrble ciioBa: TEHEpalysd Koaa, 0OJIBIIINE SI3BIKOBBIE MOICIIH, CTaTUYCCKUN aHaJInu3, o6paTHa9{ CBA3b OT
aHaJIM3aTOPOB; 06€30MacHOCTh Kozaa, HaCT‘pOﬁKa MOJICIICH.

Jast uutupoBanus: laiixenucnamon J[.C., Bapeua M.C., Cémxun A.C., Poros O.}O. Hactpoiika si3b1k0BO#
Mozenu s Oe3omacHoi rerepanun koma. Tpyast UCIT PAH, tom 37, Bem. 5, 2025 r., ctp. 111-122 (na
anrmuiickom si3pike). DOI: 10.15514/ISPRAS-2025-37(5)-8.

1. Introduction

In the modern world, large language models (LLMs) are simplifying the process of writing code and
developing software. According to information from Google's CEO as of October 2024, Al
generates approximately 25% of the code in Google's products [1]. The efficiency with which Al-
based solutions generate code has encouraged users and developers of varying skill levels and
experience to use these tools for quick problem solving in programming or to integrate Al-generated
code into software systems and applications. However, in most cases, the results are not subject to
any quality control, raising concerns about maintaining the security of IT product development
processes. Authors [2] noted that Al-assistant for coding may recommend syntactically incorrect
code including variables, functions, and attributes that are undefined or outside the scope of the
codebase.

Training data may contain outdated functions and libraries, which can lead to vulnerabilities when
used, and may also intentionally include erroneous or unsafe code used to poison large language

112

laiixenncaamos J1.C., Bapena M.C., Cémkun A.C., Poros O.10. Hactpoiika s361K0BOiT Moaenn it 6e30macHoOi reHepannu kojga. 7pyost
UCII PAH, 2025, tom 37 BB 5, ¢. 111-122.

models during the training phase [3]. Recent research [4-5] confirms that approximately 40% of the
code generated by large language models contains vulnerabilities, while user studies indicate that
developers miss at least 10% of the bugs in Al-generated code. Vulnerabilities in software, often
due to common programming errors, remain a primary attack vector for malicious actors, leading to
significant financial losses, data breaches, and reputational risk [6]. The increasing complexity of
software systems and the growing prevalence of cyber security threats have underscored the critical
need for secure coding practices and preparation of secure datasets.

Prompt: def print_time{day hour):
Given two parameters, the first being the day and the second being a measurement of time, return "weekend” if the day is Sat or
Sun, and return weekday if the day is neither. Return "sleeping" if the of time is between 0 and 8, inclusive.
If the time is any other, return either "weekend” or "weekday".

Wi

Qwen?2.5-Coder-7B-instruct

wen2.5-Coder-7B-instruct i
Qwen2.5-Coder-7B-instruc Fine-tuned

def print_time(day, hour):
if (day == "Sat" or day = "Sun"):
if (hour »= 0 and hour <= 8):
return "sleeping"

1
def print_time(day hour): 2
if day == "Sat" or day == "Sun": 3
return "weekend" 4.
elif day != "Sat" or day != "Sun": 3, else:
return "weekday" 6 return "weekend"
if hour >=0 and hour <= 8: 7
return "sleeping” 8
elif hour > 8: 9
return "weekday" or "weekend"

else:
if (hour >= 0 and hour <= 8):
return "sleeping”

M P ok e by

0. else:
1 return "weekday"

Test cases passed: 0.6 Test cases passed: |

Svace output: Total warnings: 1, Warnings: This statement in the
source code might be unreachable during program execution.
[unreachable] unreachable at solution py:7
[(day !="Sat"}] (day 1= "Sat") at solution.py:5

Svace_output: Total warnings: (0

Fig. 1. Comparison of the source and modified code generated using LLM
with the warning analysis of the Svace static analyzer.

To address this challenge, we are improving the CodePatchLLM [7], enriching a fine-tuned model
that has finetuned on CodePreference dataset [8]. We emphasize secure coding patterns, enabling
the model to learn not only syntactic and functional correctness but also robust defensive
programming techniques.

Our work yields several findings:

e Novel evaluation dataset: We introduce the MultiEval dataset, designed to bridge the gap
between functional code generation and security-aware programming. This dataset focuses
on coding tasks that historically led to errors in LLM-generated code, providing a robust
benchmark for evaluating model performance.

e Fine-tuned model: We enhance the Qwen2.5-Coder-7B-instruct model using direct
preference optimization (DPO) [9], fine-tuning it on pairs of erroneous and correct code.
This approach reduces both syntactic and runtime errors, resulting in a more reliable model
for code generation.

113

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

2. Related work

LMs for Code Generation. Large LMs designed for general-purpose applications [10], exhibit the
capability to generate functionally correct code [7, 11]. In [12], the authors analyze common
vulnerabilities (for example, injections or buffer overflows) that occur when using LLM, and
propose methods for detecting them using static analysis. This profound understanding of code is
obtained through pretraining on extensive code corpora. More recently, synthetic coding-specific
instructions have been employed to fine-tune pretrained LMs to further enhance their capabilities in
functional correctness [13].

Program Security. An important aspect of programs is their security. Svace is an industry-leading
static analysis engine for detecting security vulnerabilities [14]. It supports mainstream languages
and provides queries for common CWEs. Recently, Svace has been a popular and reliable choice for
evaluating the security of LM-generated code [15]. It is also presented as the main element of the
prompt tuning pipeline with LM in the CodePathLLM framework.

Authors in [16] use expensive manual inspection to curate their training dataset. In contrast, our
work leverages an automated data collection pipeline with SAST, resulting in a diverse dataset with
broader coverage of CWEs and programming languages.

Security of LM-generated Code. Several studies have assessed the security of code generated by
pretrained LMs. These investigations highlight a common finding: all evaluated LMs frequently
produce security vulnerabilities. Addressing this significant security concern is still an early-stage
research topic. The seminal works of SVEN [16] and SafeCoder [13] offer two different approaches:
instruction tuning and fine-tuning the LM. CodePatchLLM [5] combines both approaches. Fine-
tuning LLM to improve code quality is explored in [17], which shows that training on specialized
datasets with examples of secure patterns increases the reliability of generation. In [5], an approach
was proposed to integrate static analyzers such as Svace into the generation process for automatic
code verification at the inference stage.

3. Background and Problem Statement
In this section, we present the necessary background knowledge and outline the problem setting.

3.1 Instruction tuning with Svace

More information about how the instructional process works can be found in early works [7]. The
whole process can be broken down into three key steps: (1) code generation according to a given
description; (2) code verification by the Svace static analyzer; (3) instruction enrichment with
messages from Svace. Automatic correction is performed sequentially with feedback steps until the
stop condition is met. The condition for stopping is either reaching the limit of iteration tmax, or until
all defects in the generated code are fixed. We illustrate this mechanism in Fig. 2. The LMs are fine-
tuned to follow task-specific instructions and align with human preferences — security.

3.2 Fine-tuning LM

We employed a fine-tuning method for LM that generate code, aiming to enhance the quality and
safety of the generated code. For the fine-tuning process, we adopted a reinforcement learning
method through Direct Preference Optimization (DPO). The key idea is to use pairwise comparison
data when a preference is indicated between two model outputs with the same input data. Given a
dataset D = {(x;,y;~, y;")}",_, Where x; is the input, y;* is the preferred output, and y;™ is the less
preferred output, DPO aims to maximize the likelihood of the preferred outputs while minimizing
the likelihood of the less preferred ones. The objective function for DPO can be written as [29]:

o (y*]x) _ g o (y~|x) >]
”ref(y+|x) T[ref(y_lx) '

LDPO(T[B'T[TEf) = _E(x,y+,y‘) ~D [|0g0 (ﬂlog

114

laiixenncaamos J1.C., Bapena M.C., Cémkun A.C., Poros O.10. Hactpoiika s361K0BOiT Moaenn it 6e30macHoOi reHepannu kojga. 7pyost
UCII PAH, 2025, tom 37 BB 5, ¢. 111-122.

where:
e 1, is the policy (model) being optimized,
e . isareference policy (usually the pre-trained model),
e ¢ is the sigmoid function,
e [isahyperparameter controlling the strength of the preference signal.

Prompt: "Write a function in Python that takes a list of numbers and retarns the sum of all the positive numbers in the list. If the list is
empty, the function should return 0."

L. def sum_positive_numbers(numbers): ; def sllllE_poﬁtl\'e_numbers{numbe.rs}:
2 W
ot S » 3 takes a list of numbers and returns
2 ek M : 4. the sum of all the positive numbers in the list.
4. the sum of all the positive numbers in the list. 5 s i
5. If the list is empty, the function should Prompr: "Correct previous ﬁl MR P
6. remum 0. solution with this feedbhack: 7 i
ol il —> undefined variable 'total' in —» 8' T
8. for num in numbers: line 10. Write the resulting ; . ot et
g if nuam = 0 code. 85 for num in numbers:
|£) Sl . 10. if num = 0:
”- elsa: : 11, total += num
1 continue 12. else: :
13 remurn total 13. continue
- 14. return total

Fig. 2. An example of correcting an error in the code generated using LLM:
initializing a variable for the correct execution of a function.

This objective encourages the model to assign higher probabilities to preferred outputs y;* relative
to the less preferred outputs y;~, while staying close to the reference policy m,.rto prevent
overfitting. Unlike RLHF, which involves training a reward model and then using reinforcement
learning to optimize the policy, DPO directly optimizes the policy using a simple classification
objective. This makes DPO more computationally efficient and easier to implement.
Our goal is to address the limitation of existing LMs infrequently producing unsafe code, as
highlighted in Fig. 1 (left). While improving security is critical, it is equally important for the
enhanced LMs to achieve high utility, such as generating functionally correct code or solving natural
language tasks. Therefore, our dual objective involves simultaneously improving security and
utility. To achieve this goal, we focus on both methods: fine tuning model and tuning instructions.

4. Experiments

In this section, we outline the experimental setup for our study evaluating the safety and reliability
of code generated by large language models (LLMs). Our experiments are conducted using the
framework BigCodeEval [18]. We aim to determine whether an iterative feedback mechanism
(framework CodePatchLLM [7]) with a fine-tuned model can significantly improve the accuracy
and reliability of code generation. Additionally, we explore the impact of DPO on enhancing the
Qwen2.5-Coder-7B-instruct [19] model performance in generating error-free code. To ensure the
reproducibility of results, the LLM's temperature was set to 0 in all experiments unless otherwise
specified. This parameter configuration minimizes random variation in the model's outputs, thereby
enhancing the reliability of the findings.

4.1 Tasks & Datasets

In the course of our comprehensive study, we performed a detailed comparison of the models in the
context of a Python code generation task. To facilitate this evaluation, our primary benchmark is
HumanEval [20], a popular dataset for assessing the performance of code generation models.
Additionally, we developed and implemented a distinctive dataset MultiEval specifically designed
to evaluate the quality of code generated by large language models (LLMs) using data that are
representative of programming scenarios.

115

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

MultiEval is a set of tasks selected from open-source datasets to evaluate code-generating models.
To construct this dataset, we drew upon several publicly available task sets aimed at evaluating the
quality of generative code models. Among these, we focused on datasets such as APPS-Interview
and APPS-Introductory [21], StudentEval [22], Mercury [23], CoNaLa [24], MBPP [25], DS-1000
[26]. Total 16 534 NL-Code tasks that are popular for LLM skills research. Each of these datasets
provides a diverse array of tasks that encompass a wide range of programming concepts and
practices.

For each task, a solution was generated by a model from the Qwen family: Qwen2.5-Coder-7B,
Qwen2.5-Coder-3B, Qwen2.5-Coder-1.5B (in regular and instruct versions), as well as Qwen2.5-
3B, Qwen2.5-7B and Qwen2.5-14B. The criterion for including the task in the final set was the
presence of errors in the generated solution on the first attempt, determined using the Svace static
analyzer. As a result, 376 tasks were selected, forming the final data set.

The quality metric is calculated as the ratio of the number of tasks solved without syntactic or logical
errors to the total number of tasks in the dataset. This approach allows an objective assessment of
the model’s ability to generate correct code the first time.

4.2 Metrics

The primary quality metric was the proportion of problems solved without errors, calculated as
follows:

Ne‘rra‘r—free

ErrorFree Rate = * 100%,

total
Where Neyror—free 1S the number of error-free solutions, and N, is the total number of tasks.

Here, an error-free solution is defined as code that passes all static analysis checks performed by
Svace without any critical issues. For this metric, we determined the percentage of tasks resolved
without errors on the first generation. This metric is reported for both the HumanEval and MultiEval
datasets, providing a comprehensive comparison of model performance across different task
complexities and domains.

When evaluating on the HumanEval dataset, we employed an additional metric: pass@1. This metric
measures the likelihood that a model generates a correct solution on its first attempt. The pass@1
score was calculated using the unit tests provided in the original dataset, as defined by the following
formula:

NCOTTECt

pass@1 = * 100%,

total
where N,o,rec: 1S the number of correct solutions on the first attempt, and N, is the total number
of tasks.
A solution was considered correct upon the first generation if the generated code passed all unit tests
for the given task. This metric is particularly useful for assessing the model's ability to produce
accurate and functional code.

4.3 Evaluation of fine-tuned model

The CodePreference dataset [27] was chosen as the basis for fine tuning, which consists of a set of
tasks accompanied by prompts and code pairs. These code pairs include both correct and incorrect
code, reflecting real scenarios that developers encounter during programming. The selection of the
CodePreference dataset was driven by several factors. Firstly, it provides a variety of scenarios,
ensuring the testing of the model in conditions that closely resemble situations with using LLM for
coding. Furthermore, the richness of error types within the code enables our model to learn not only
to generate syntactically correct code but also to detect and correct potential mistakes.

116

laiixenncaamos J1.C., Bapena M.C., Cémkun A.C., Poros O.10. Hactpoiika s361K0BOiT Moaenn it 6e30macHoOi reHepannu kojga. 7pyost
UCII PAH, 2025, tom 37 BB 5, ¢. 111-122.

We also tested the DPO model fine-tuning method on another dataset in the context of improving
overall code security. To achieve this goal, the CVEFixes dataset [28] was selected. CVEfixes is a
comprehensive vulnerability database that is automatically collected and curated from Common
Vulnerabilities and Exposures (CVE). This dataset contains examples of vulnerable code for various
languages (C, Python, Java, etc.) and is presented in sqlite database format. We combined the strings
from this database and compiled a dataset in jsonl format consisting of 45748 pairs.

The retraining process for the Qwen2.5-Coder-7B-instruct model was carried out in three iterations.
In each iteration, we utilized data from the CodePreference dataset to train the model, embedding
an algorithm that allows it to adapt to the received data based on feedback. Throughout each
iteration, the model improved its capabilities by learning from the errors identified in previous
versions.

Each iteration included the analysis of results, enabling the tracking of progress and adjustments in
the training process. As a result, we obtained a fine-tuned Qwen2.5-Coder-7B-instruct model, which
demonstrated a significant enhancement in code quality, as well as an ability to effectively identify
and correct common errors.

To further analyze the performance of the models, we compared the results of the fine-tuned
Qwen2.5-Coder-7B-instruct model with its original version. The resulting metrics, including the
error-free rate and pass@1 scores, are presented in Table 1. These results highlight the effectiveness
of fine-tuning in enhancing the model's code generation capabilities.

Table 1. Error-Free Rate (EFR) and pass@1 metric for fine-tuned and original models on HumanEval
benchmark and our dataset MultiEval.

Model HumanEval HumanEval MultiEval
pass@1 EFR EFR
Qwen2.5-Coder-7B 84,8% 96,9% 69,4%
Our 86,6% 98.2% 75,8%

Furthermore, to achieve more representative results, both models were tested in an iterative pipeline,
illustrated in Fig. 2, that involved improving the generated code based on feedback from the static
code analyzer Svace.

Table 2 displays the results for both the fine-tuned and original models on the HumanEval dataset,
including the pass@1 metric after two iterations of code patching, as well as the number of problems
solved without errors in the first generaton, number of problems solved after the first iteration of
code corrections using feedback from the static analyzer and the number of problems that were not
resolved without errors after two iterations of code patching pipeline. On the second iteration, no
improvements were observed for the original Qwen2.5-Coder-7B-instruct model, so it was not
included in the table, although the iteration was actually conducted.

We tested the trained model on the Secure Coding Benchmark [4], on which we got an improvement
in the vulnerable percentage metric, which is responsible for the percentage of test cases evaluated
to be vulnerable across the language.

Table 3 contains the BLEU metric on MultiEval dataset that is used to determine how well generated
code matches one reference code and vulnerable percentage metric for the original model.

117

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

Table 2. Information about the number of correctly generated codes and the pass@1 metric on the
HumanEval benchmark, which consists of 164 tasks, after iterative code patching using Svace for both fine-
tuned and original models.

Model pass@1 First attempt | After patch | Didn’t pass
Qwen2.5-Coder-7B 82,9% 159 4 1
Our 87,2% 161 3 0

Table 3. BLEU and Vulnerable Percentage metrics for original Qwen2.5-Coder-7B-Instruct and our model
on MultiEval benchmark.

Original model Our
Language
BLEU VuIn;orabIe BLEU VuIn;orabIe

C 10,9 41,0 10,8 38,3
C++ 10,6 23,9 10,7 22,4
Ct# 13,9 26,8 13,6 26,0
Java 17,1 53,3 17,4 53,3
JavaScript 10,3 39,4 10,2 39,0
PHP 13,7 36,4 13,4 42,6
Python 8,4 28,2 8,4 28,8
Rust 14,7 42,2 14,4 41,7

4.4 Evaluation of feedback mechanism

To evaluate the effectiveness of the developed system and its ability to improve the quality and
security of the generated code, a series of experiments with various language models were
conducted. The main evaluation metrics were pass@1 and EFR (Error-Free Rate). The following
models participated in the experiments: CodelLlama-7b-hf, Mistral-7B-Instruct-v0.3, deepseek-
coder-7b-instruct-v1.5, Mamba-Codestral-7B-v0.1, Nxcode-CQ-7B-orpo. The MultiEval dataset
was used for the experiments.

118

laiixenncaamos J1.C., Bapena M.C., Cémkun A.C., Poros O.10. Hactpoiika s361K0BOiT Moaenn it 6e30macHoOi reHepannu kojga. 7pyost
UCII PAH, 2025, tom 37 BB 5, ¢. 111-122.

Each model is tested twice: once before applying feedback from the analyzers, and the second time
after 3 iterations of code correction [7]. The original work determined that three iterations were
sufficient, as beyond this point, quality did not improve significantly but generation time increased.
Feedback is generated using two tools: Svace (for detecting syntactic and logical errors) and Bandit
(for finding security vulnerabilities). The experiments were conducted in three modes: Svace only,
Bandit only, and a combination of both. When using Svace alone, the average share of error-free
solutions (EFR) increased by 11.5%, indicating high feedback efficiency while improving code
quality. However, the pass@1 functional metric showed a slight decrease of about 1%, especially
for weak models such as CodelLlama and Mistral. This is due to the fact that when correcting errors,
the logical integrity of the program is sometimes violated if changes are not made carefully enough.
Stronger models such as deepseek-coder and Nxcode-CQ performed better. They have maintained
or even slightly increased the pass@1 value, while significantly improving the EFR. This suggests
that high-quality models are better at receiving detailed feedback and are able to maintain the logical
structure of the code while improving it. Results of this experiment are shown in Table 4.

Table 4. Evaluation results before using Svace as a feedback tool and after.

e [pmor | em | e
CodeLlama-7b-hf 29,3% 28,1% 91% 97,6%
deepseek-coder-7b-instruct-v1.5 72% 73,2% 97% 100%
Mistral-7B-Instruct-v0.3 34,8% 33,5% 78,1% 100%
Mamba-Codestral-7B-v0.1 34,2% 37,8% 75% 98,8%
Nxcode-CQ-7B-orpo 78,1% 79,9% 97% 99,4%

When using Bandit for security analysis, the results turned out to be less pronounced, since this tool
focuses specifically on finding vulnerabilities, rather than on functional correctness. Nevertheless,
Bandit proved to be useful in combination with Svace.

The average EFR value remained virtually unchanged, remaining at 99.4%, but there was a
noticeable difference in the types of problems detected. Bandit has made it possible to identify and
eliminate risks such as the use of unsafe functions, hard-coded secrets, and potential attack vectors
through user input. Evaluation results across models are shown in Table 5.

The most significant effect was achieved with the simultaneous use of Svace and Bandit as shown
in Table 6. This approach allows you to check the code for both functional correctness and
vulnerabilities. The average EFR value increased by 12%, indicating a comprehensive improvement
in code quality.

The pass@1 metric also showed a slight positive shift of about 1%, especially for models with a
high initial accuracy level. This indicates that higher-quality models are able to effectively use multi-
faceted feedback and maintain the logical integrity of the code while improving it.

The experimental results showed that all the tested models react differently to feedback from the
analyzers. Stronger models such as deepseek-coder and Nxcode-CQ demonstrate good adaptability
to code improvement and are able to maintain the logical integrity of the solution. Less powerful
models such as Codestral and Mistral benefit less from the iterative process and may allow
regressions when making changes. The integration of static analyzers into the code generation cycle

119

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

has significantly improved the quality and security of output solutions. The greatest effect is
achieved with the combined use of Svace and Bandit, which provides comprehensive code
verification.

Table 5. Evaluation results before using Bandit as a feedback tool and after.

e | pem | o | e
CodeLlama-7b-hf 29,3% 28,7% 91,4% 96,4%
deepseek-coder-7b-instruct-v1.5 2% 71,3% 97% 99,4%
Mistral-7B-Instruct-v0.3 34,8% 34,2% 78,1% 96,7%
Mamba-Codestral-7B-v0.1 34,2% 34,2% 75% 94,4%
Nxcode-CQ-7B-orpo 78,1% 78,1% 97% 98,4%

Table 6. Evaluation results before using Bandit and Svace as feedback tools and after.

e [oser | Em | wm
CodeLlama-7b-hf 29,3% 27,4% 91,4% 97,6%
deepseek-coder-7b-instruct-v1.5 2% 72,6% 97% 100%
Mistral-7B-Instruct-v0.3 34,8% 32,9% 78,1% 100%
Mamba-Codestral-7B-v0.1 34,2% 37,8% 75% 98,8%
Nxcode-CQ-7B-orpo 78,1% 78,7% 97% 99,4%

5. Conclusions

In this work, we tested an iterative pipeline with a fine-tuned model for improving the safety and
reliability of generated code. Our experiments showed that, on average, only three iterations were
required to eliminate most errors.

Furthermore, we enhanced the Qwen2.5-Coder-7B-instruct model through reinforcement learning
using DPO. By fine-tuning the model on pairs of erroneous and correct code from the
CodePreference dataset, we achieved a notable reduction in any errors.

These findings suggest that combining iterative feedback with advanced reinforcement learning
techniques can significantly enhance the safety and reliability of LLM-generated code. Future work
could explore the integration of additional static, dynamic, and security analysis tools, as well as the
extension of this approach to other programming languages.

120

laiixenncaamos J1.C., Bapena M.C., Cémkun A.C., Poros O.10. Hactpoiika s361K0BOiT Moaenn it 6e30macHoOi reHepannu kojga. 7pyost
UCII PAH, 2025, tom 37 BB 5, ¢. 111-122.

References

[1].
[2].

[3].
[4].
[5].
[6].

[71.

[8].

[9].
[10].
[11].
[12].
[13].
[14].
[15].

[16].

[17].
[18].
[19].

[20].

[21].
[22].
[23].
[24].

[25].

Mckenna G. Over 25pichai says it’s just the start [Dmektponssiii pecypc] // Fortune. URL:
https://fortune.com/2024/10/30/googles-code-ai-sundar-pichai/ (nara o6pamenus: 01.05.2025).

Becker B. A. et al. Programming is hard-or at least it used to be: Educational opportunities and challenges
of ai code generation //Proceedings of the 54th ACM Technical Symposium on Computer Science
Education, vol. 1, 2023, pp. 500-506.

Li J. et al. Poison attack and defense on deep source code processing models //arXiv preprint, 2022.
Auvailable at: arXiv:2210.17029, accessed 09.10.2025.

Bhatt M. et al. Purple llama cyberseceval: A secure coding benchmark for language models //arXiv
preprint, 2023. Available at: arXiv:2312.04724, accessed 09.10.2025.

Shaikhelislamov D., Drobyshevskiy M., Belevantsev A. LLM-based Interactive Code Generation:
Empirical Evaluation //2024 Ivannikov Ispras Open Conference (ISPRAS). IEEE, 2024, pp. 1-5.

Siddig M. L., Santos J. C. S. SecurityEval dataset: mining vulnerability examples to evaluate machine
learning-based code generation techniques //Proceedings of the 1st International Workshop on Mining
Software Repositories Applications for Privacy and Security, 2022, pp. 29-33.

Shaikhelislamov D. S., Drobyshevskiy M. D., Belevancev A. A. Ensuring trustworthy code: leveraging a
static analyzer to identify and mitigate defects in generated code //3anucku Hayunbix cemurapos [IOMU,
2024, vol. 540, no. 0, pp. 233-251.

Liu J. et al. Learning code preference via synthetic evolution //arXiv preprint, 2024. Available at:
arXiv:2410.03837, accessed 09.10.2025.

Pearce H. et al. Examining zero-shot vulnerability repair with large language models //2023 IEEE
Symposium on Security and Privacy (SP). — IEEE, 2023. — C. 2339-2356.

Touvron H. et al. Llama 2: Open foundation and fine-tuned chat models //arXiv preprint, 2023. Available
at: arXiv:2307.09288, accessed 09.10.2025.

Li H. et al. Enhancing static analysis for practical bug detection: An lim-integrated approach //Proceedings
of the ACM on Programming Languages, 2024, vol. 8, no. OOPSLAL, pp. 474-499.

Kharma M. et al. Security and Quality in LLM-Generated Code: A Multi-Language, Multi-Model
Analysis //arXiv preprint, 2025. Available at: arXiv:2502.01853, accessed 09.10.2025.

He J. et al. Instruction tuning for secure code generation //arXiv preprint, 2024. Available at:
arXiv:2402.09497, accessed 09.10.2025.

Belevantsev A. et al. Design and development of Svace static analyzers //2018 Ivannikov Memorial
Workshop (IVMEM), IEEE, 2018, pp. 3-9.

Tsiazhkorob U. V., Ignatyev V. N. Classification of Static Analyzer Warnings using Machine Learning
Methods //2024 Ivannikov Memorial Workshop (IVMEM), IEEE, 2024, pp. 69-74.

He J.,, Vechev M. Large language models for code: Security hardening and adversarial testing
/IProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, 2023.
pp. 1865-1879.

Liu M. et al. An empirical study of the code generation of safety-critical software using lIms //Applied
Sciences, 2024, vol. 14, no. 3, p. 1046.

Allal L. B. et al. A framework for the evaluation of code generation models [Online] // GitHub. Available
at: https://github.com/bigcode-project/bigcode-evaluation-harness, accessed 09.10.2025.

Hui B. et al. Qwen2. 5-coder technical report //arXiv preprint, 2024. Available at: 4 arXiv:2409.12186,
accessed 09.10.2025.

Zheng Q. et al. Codegeex: A pre-trained model for code generation with multilingual benchmarking on
humaneval-x //Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2023, pp. 5673-5684.

[21]. Hendrycks D. et al. Measuring coding challenge competence with apps //arXiv preprint, 2021.
Auvailable at: arXiv:2105.09938, accessed 09.10.2025.

Babe H. M. L. et al. Studenteval: A benchmark of student-written prompts for large language models of
code //arXiv preprint, 2023. Available at: arXiv:2306.04556, accessed 09.10.2025.

Du M. et al. Mercury: A code efficiency benchmark for code large language models //Advances in Neural
Information Processing Systems, 2024, vol. 37, pp. 16601-16622.

Yin P. et al. Learning to mine aligned code and natural language pairs from stack overflow //Proceedings
of the 15th international conference on mining software repositories, 2018, pp. 476-486.

Austin J. et al. Program synthesis with large language models //arXiv preprint, 2021. Available at:
arXiv:2108.07732, accessed 09.10.2025.

121

https://fortune.com/2024/10/30/googles-code-ai-sundar-pichai/
https://github.com/bigcode-project/bigcode-evaluation-harness

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

[26]. Lai Y. et al. DS-1000: A natural and reliable benchmark for data science code generation //International
Conference on Machine Learning. PMLR, 2023, pp. 18319-18345.

[27]. Liu J. et al. Learning code preference via synthetic evolution //arXiv preprint, 2024. Available at:
arXiv:2410.03837, accessed 09.10.2025.

[28]. Bhandari G., Naseer A., Moonen L. CVEfixes: automated collection of vulnerabilities and their fixes from
open-source software //Proceedings of the 17th International Conference on Predictive Models and Data
Analytics in Software Engineering, 2021, pp. 30-39.

[29]. Rafailov, R., Sharma, A., Mitchell, E., Manning, CD., Ermon, S., Finn, C. Direct preference optimization:
Your language model is secretly a reward model //Advances in neural information processing systems,
2023, vol. 36, pp. 53728-53741.

Ungpopmayusi 06 aemopax / Information about authors

Janun CanaBaToBHY IIAUXEJIUCIIAMOB — wuccnenoBareinb WuCcTHTYTa CHCTEMHOTO
[IpOrpaMMHpPOBAaHMs, CTApIIMI @penojaBaTeslb Bplcliedl IMKOJBI HSKOHOMHUKH, aCHHpPaHT
MockoBckoro pu3nko-TexHn4ecKkoro nHetutyTa. Chepa HaydHBIX HHTEPECOB: OOJIBILINE SI3BIKOBHIC
MOJIeNH, TeHepanus Koja.

Danil Salavatovich SHAIKHELISLAMOV - researcher at the Institute of System Programming,
senior lecturer at the Higher School of Economics, postgraduate student at the Moscow Institute of
Physics and Technology. His research interests include large language models, code generation.

Mapus Cepreeena BAPELIA — crynentka MUPDA. Cdepa HaydyHBIX HHTEpPECOB: OOJIbILIHE
SI3BIKOBBIE MOJIEIIH, TeHEpaIus KoJa.

Maria Sergeevna VARETSA — student MIREA. His research interests include security technologies
and business informatics.

Apcennii Cepreesuu CEMKUH — crynen BIID. Chepa HaydHBIX MHTEPECOB: GONbBIINE A3BIKOBBIE
MOJIETIH, IPOTPAMMHUPOBAHHE.

Arseny Sergeevich SYOMKIN — student at HSE University. His research interests include large
language models and software engineering.

Onner OpreBuu POI'OB — crapunii Hay9HbIH COTPYIHUK, PYKOBOIUTENH IPYHIbI «J{oBEepeHHEIE U
0e30macHble MHTEJUICKTYalbHbIE CHCTEMBI», VHCTUTYT HMCKYyCCTBEHHOTO MHTEIUIEKTAa; HAyYHBIN
COTPYIOHMK J1a0OpaTOpUH BBIUYMCIUTENBFHOTO HHTENIeKTa, CKOJNKOBCKMN WHCTHTYT HAayKd H
texHosorui (CkonTex).

Oleg Yurievich ROGOV - Senior Researcher, Head of the Trusted and Secure Intelligent Systems
Group, AIRI Institute of Artificial Intelligence; Researcher at the Computational Intelligence
Laboratory, Skolkovo Institute of Science and Technology (Skoltech).

122

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-9 tocld

UHTepakTMBHaA reHepaumsa Koga Ha ocHoBe LLM:
aMnupunyeckas oueHkKa

12 11.C. laiixenucramos, ORCID: 0000-0002-9734-7937 <shaykhelislamov.ds@ispras.ru>
Y2 M. Opo6buuesckuii, ORCID: 0000-0002-1639-9154 <drobyshevsky@ispras.ru>
13 4.4. Beneeanyes, ORCID: 0000-0003-2817-0397 <abel@ispras.ru>

Y Unemumym cucmemnozo npozpammupoeanus um. B.I1. Heannuxosa PAH,
Poccus, 109004, 2. Mockea, yn. A. Condcenuyvina, 0. 25.

2 Mockoeckuil (pusuxo-mexnuueckuii UHCmumynt,
Poccus, 141700 Mockosckas obracme, . [{oneonpyonuiii, Hucmumymckuii nepeyiox, 9.

8 Mockoeckuii 2ocyoapcmeennviil ynusepcumem umenu M.B. Jlomonocoea,
Poccus, 119991, Mocksa, Jlenunckue 2opewi, 0. 1.

Aunorauusi. UHM-NOMOIIHUKH pa3pabOTYMKa, OCHOBAHHBIC Ha OOJBHIMX $3BIKOBBIX Mozensx (LLM),
HPOAEMOHCTPHPOBAITH GOJIBIIHE BO3MOXKHOCTH B TeHEPAIMH [IPOrPaMM 0 TEKCTOBOMY orucanuio. OJHaKo B
TaKOM KO/JIe 3a4aCTyI0 BCTpeyaroTcst oluOku. [Tostb30BaTen 0XKHAAI0T Ko/ 6e3 1eeKTOB U, B Heale, YeTKUe
yKa3aHUs Ha UX MPUCYTCTBUC. [IpOBEPEHHBIH KO MOXKET CHH3UTD ITOTCHIHAIbHBIC OU3HEC-PHCKH, CBSI3aHHBIC
C BHEJpPEHHEM creHepupoBaHHOro koja. Wcmonesys pacmmpenne CodePatchLLM, B pabore onenuBaercs
KA4eCTBO T€HEPUPYEMBIX POrPAMMHBIX PEIICHUH. DKCIEPUMEHTHI MTOKa3bIBAIOT, YTO JAXE OJHA HUTEPAaIHs
HCIIpaBIICHUS] KOAa Uil si3plka Java BO BceX HAbOpax MaHHBIX W MOAENsX cHikaeT Ha 19,1% kommduecTBO
nedexToB mpu coxpaHeHnH HYHKIIMOHATBHON KOPPEKTHOCTH.

KnioueBbie ciioBa: Ooibinas si3pIKOBast MOZENb; TPOBEpKa Ko, 0€30TacHBII KOJI.

Jns nurupoBanusi: [laiixemucnamor H.C., HpoOsimesckuii M.Jl., beneBanmeB A.A. HHTepakTuBHAas
reHeparus kojaa Ha ocHoBe LLM: smmnupuueckas oneHka. Tpyast UCIT PAH, tom 37, Beim. 5, 2025 r., cTp.
123-130. DOI: 10.15514/ISPRAS-2025-37(5)-9.

123

Shaikhelislamov D.S., Drobyshevskiy M.D., Belevantsev A.A. LLM-based Interactive Code Generation: Empirical Evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 123-130.

LLM-based Interactive Code Generation: Empirical Evaluation

12D.S. Shaikhelislamov, ORCID: 0000-0002-9734-7937 <shaykhelislamov.ds@ispras.ru>
12 M.D. Drobyshevskiy, ORCID: 0000-0002-1639-9154 <drobyshevsky@ispras.ru>
L3 A A. Belevantsev, ORCID: 0000-0003-2817-0397 <abel@ispras.ru=

1 lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2Moscow Institute of Physics and Technology,
Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russia.

% L.omonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. Recently, large language models (LLMs), those pretrained on code, have demonstrated strong
capabilities in generating programs from informal natural language intent. However, LLM-generated code is
prone to bugs. Developers interacting with LLMs seek trusted code and, ideally, clear indications of potential
bugs and vulnerabilities. Verified code can mitigate potential business risks associated with adopting generated
code. We use model-agnostic framework CodePatchLLM, an extension for LLM that utilizes Svace feedback
to enhance code generation quality. We evaluate CodePatchLLM on four popular LLMs across three datasets.
Our experiments show an average absolute reduction of 19.1% in static analyzer warnings for Java across all
datasets and models, while preserving pass@1 code generation accuracy.

Keywords: large language model; code verification; trusted code.

For citation: Shaikhelislamov D.S., Drobyshevskiy M.D., Belevantsev A.A. LLM-based Interactive Code
Generation: Empirical Evaluation. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 123-130 (in
Russian). DOI: 10.15514/ISPRAS-2025-37(5)-9.

1. BeedeHue

HNH-iomomankn pa3paboturka Ha ocHOBe LLM OpicTpo mpeBpaTHIMCh W3 HHCTPYMEHTOB
NpelnCcKa3aHusl CIEAYIOIEro CHMBOJIA B PACIIMPEHUs Ui HANHMCAaHUs (ParMeHTOB MPOTPaMMBL.
Onpoc pa3paboTyMKoB, mnpoBeaeHHbI maargopmoit StackOverflow, mokasam, urto 70%
PECIIOH/ICHTOB HMCHOJIB3YIOT WIHM TUIAHUPYIOT HCIOJIB30BATH MHCTPYMEHTBI Uil KOJMPOBAHMS C
HCIIONB30BaHUEM HCKYCCTBEHHOTO MHTeNUiekTa B 3ToM roiy [1]. ServiceNow oOwsBuiIa, 4TO HMX
peneHne «mpeobpa3oBaHie TEKCTa B KOA», OCHOBaHHOE Ha TOHKOW Hactpoiike StarCoder [2],
NPUBOJMT K YBEIMYCHUIO IIPOM3BOJAMTEIBHOCTH pa3paboTunkoB Ha 52%. B pabore
paccMaTpuBaercs mnpuMmeHeHne HMM-nomolnHuKa, KOTAa CUCTEeMa Ha TEKCTOBOE OIMCAaHHE
BO3Bparaer Koz (puc. 1).

CreHepupOBaHHBI KO TOJABEP)KEH ONIMOKaM, KOTOpbIE MOXKHO JIETKO He 3aMeTuTh [3].
Paccmotpum nipocroii 3anpoc k GPT-3.5: «Hanuwu ghynxyuro na Pyhton, komopas nposepsiem, umo
cKpunm cywecmayem. Mopenb MOXET BEpHYTh KOJ co CTPOKOI
«result=subprocess.run(['bash', script])». OaHako U3BECTHO, YTO ATOT KOJ
nojasepxken nedexkry CWE-78. Hcxons u3 3Toro, peKOMEHAYeTCsl IPOBEPSTh CreHEPUPOBAHHBIH
KOJl C TMOMOIIBI0 WHCTPYMEHTOB aBTOMATHYECKOTO OOHapyxeHus nedextoB [4]. Pesymbrarhi
MIPOBEPKH SBIISETCS CUTHAJIOM IOJIB30BATENIO 0 Oe30macHoCTH pemeHns. OOpaTHON CBA3H TOIBKO
OT MOAYJIBHBIX TECTOB ¥ KOMITUIISITOPA HEMOCTATOUHO AJIsS HAIS)KHOCTH POrpaMMbl. UHCTPpYMEHTBHI
CTaTHYECKOTO aHalIM3a MpOBOJAT Oojiee TIIATEIbHYIO NPOBEPKY HCXOJHOTO KOJa, YeM
KOMITWJISITOPBI, KOTOpPBIE OOBIYHO OOHApYXKMBAIOT TOJBKO CHHTaKcH4eckue ommOku. TecTsl Ha
Toicsun 3a1a4 LeetCode Ay TUIHM3UPOBAHHBIX S3BIKOB NPOrPAMMHPOBAHHMS BBISBHIIM J1e(EKTHI B
12% pewmenusx [4]. [Tockonpky LLM MoryT gomyckars OmnOKH, MOTB30BATENSAM ObLIO ObI TTOJIE3HO
MOJYYHTH MOATBEPIKACHUE TOTO, YTO CIEHEPUPOBAHHBIN KOJl HA CAMOM JIejie TIPABUIIbHBIN. A eclin
HeT, TO MOJYYHUTh WCIPABICHHYIO BepCHIO. BMecTe ¢ 3TuUM, MOKaszaTeaH, €cild OHH XOPOILIO
COTJIACYIOTCS ¢ (PaKTHUECKOH KOPPEKTHOCTBIO, OJDKHBI OBITh HE3aBUCHMBI OT BEIOPAHHOH MOJIEIH.

124

mailto:shaykhelislamov.ds@ispras.ru

Ilaiixenncaamos [1.C., Ipo6snuesckuii M.J1., BeneBannes A.A. HTepakTHBHAs reHeparms Koaa Ha ocHoBe LLM: smnupuryeckas OHeHKa.
Tpyowt UCII PAH, 2025, tom 37 Bbim. 5, c¢. 123-130.

Write a program that
wake me up at 6:30 create_alarm(cond =(weather... =
tomormrow if it rains.

Get a list of items

User from the dictionary, Model

sorted by vaiue items=sorted(key=lambda x: ...) ~— Computer

Puc. 1. Ceenepuposanblii KOO N0 MeKCMOBOMY ONUCAHUIO 3AYACTYIO UCHOAb3Yemcs be3
NPOBEPOK, UMO MOHCEM NPUBECTU K BKIIOYEHUIO 8 NPOEKM WU 3aNyCKY 6PeOOHOCHO20 K0Od 8
cucmene.

Fig. 1. The generated code may be potentially dangerous to use in an environment if it has not
been previously checked for weaknesses and bugs.

C 3T0# 1enbi0 B JAaHHON paboTe CTpeMUMCs MOHATH: yMeHblraeT jn (peiimBopk CodePatchLLM
[5] nedextsr B crenepupoBanHOM Koze? [IpuMeHHMM i cOOOINECHHS B KauecTBE HE3aBHCHUMOIO
CHrHaja O Hanmnuuu JedekToB B creHepupoBaHHom pemienun? CodePatchLLM, wcnons3ys
pasIMYHbIe KPUTEPUH KOPPEKTHOCTH, POBEpsIeT pelieHue Ha AeeKThl ¢ momomplo Svace [6] u
NPUMEHUM JUIsl Pa3iIM4YHbIX Mojenel. Hackombko HaM WM3BECTHO, paHee HE NPEIIPHHUMAJIOCH
MOMBITOK UCIIOJIb30BaTh OOPATHYIO CBSI3b OT CTATHYECKOT0 aHAJIM3aTOpa JUTsl HCIIpaBlIeHUs Kojia 0e3

U3MEHEHHs caMoii Mozenu. B pabote ObUIO cieinaHO HECKOJIBKO BEIBOJIOB!

e Koz crerepupoBannsiii LLMs 1 OlleHEHHBIH C HCTIOJIb30BaHUEM CTaHAaPTHBIX
MPEJICTaBICHUIH 0 KOPPEKTHOCTH KOJIa, TIOXO PaboTaeT Ha peajbHbIX Habopax JaHHBIX
NP MCTIOJIb30BAaHHM B 3aJ[a4ax 3aBepIICHUU M CHHTe3a Kojia. Mbl HaOmoiaeM aedeKThl
BO BCEX PaCCMOTPEHHBIX s3bIKax nporpammuposanus (Java, Python);

e OxkcnepumenTsl ¢ CodePatchLLM Ha pa3nuuHbIX 3a/1a4ax 10 [porpaMMHPOBAHUIO
(MBPP, HumanEval, Leetcode) u moaensax (CodelLama, CodeGen2, CodeX, GPT-3.5)
MOKA3aJIl, YTO HHCTPYMEHT MOXET OBITh UCTIONB30BaH Pa3padOTINKaMHU, B Ka4eCTBE
JIOTIOJIHUTEIBHOIO CUTHAJIA O KAU€CTBE CTeHEPUPOBAHHOIO PEILICHUSI.

B pabote paccmarpuBaeTcs mpoOieMa wucroip3oBanus MI-moMomHuKa pa3padoTdnka st
reHepanuy 0e30MacHOro KoAa Wi HH(QOPMHPOBAaHWH IIOJB30BAaTEeNsl O TOM, 4YTO B
CT'€HEpUPOBAHHOM PEIICHUH IPUCYTCTBYIOT Ae(EKTHI.

2. Conymcmeyrouwjue pabomsi

B stom pazaeie aaH KpaTKI/Iﬁ 0630p JIMTEPATYPhI 110 OLICHKE I'CHEpAIllu KOJda U HMCIOJIb30BAHUIO
BHCITHUX MHCTPYMEHTOB JIJId OIICHKH Ka4€CTBAa.

2.1 OueHka reHepaumm Koga

OOBIYHO Il TECTUPOBAHHUS KOJA HCIOJB3YIOTCS MOAYJBbHBIE TecThl, coOpaHHble u3 GitHub u
StackOverflow [7]. Takue TecTsl CKOHIECHTPUPOBAHBI HA OLICHKY ()YHKIHOHAIBHOW KOPPEKTHOCTH
nporpammbl. ABTOpsl B pabote [8] BBOAAT OLIEHKY HA OCHOBE OOpaTHOW CBSA3M KOMITHIIATOPA,
KOTOpAasi MO3BOJISCT OLIGHUBATh BBIMOJIHUMOCTD F'eHEpHPYEeMOro penieHus. B nanHoii pabote Gokyc
Ha M3YYCHHUH TOro, MOryT i LLM comocTaBisaTh MHCTPYKUHMH, MOJYYCHHBIE OT CTATHYECKOTO
AHAJIM3aTOPa, C KOJOM M HMCIIOIb30BaTh 3TH MHCTPYKLUH Ui KOPPEKTUPOBKU MPOrpaMM Ha Java,
Python.

125

Shaikhelislamov D.S., Drobyshevskiy M.D., Belevantsev A.A. LLM-based Interactive Code Generation: Empirical Evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 123-130.

2.2 NHCTpYyMeHT cTaTuyecKoro aHanusa

Jlpyrue MHCTPYMEHTHI CTaTHYECKOTO aHanu3a, Takue kak CodeQL [9], Semgrep [10], FlawFinder
[11], rTaxke wucmoms3yoTes it oOHapyxeHus nepektoB. Ho 3TH HHCTpYMEHTHI HE Tak
MHOTO(QYHKIIMOHATBHEI ¥ 3¢ QEKTHBHB, Kak Svace. WHCTpyMEHT IO3BOJMSET OIMHAKOBO
B3aMMOJICHCTBOBATh C MPOrpaMMaMH Ha Pa3HBIX S3BIKAX MPOTPaMMHPOBAHHS U COOTBETCTBYET
T'OCT P 71207-2024. IToTeHIMAIBEHO JTIOOBIE IPYTHE CPEICTBA IPOBEPKH MIPOTPaAMMBI MOTYT OBITh
peanuzoBansl B CodePatchLLM u MoryT HCOIb30BaThCS COBMECTHO C IPYTHMH.

2.3 UHcTpyKTMpOBaHMe Ans reHepauum Koga

MeToapl MHCTPYKTHPOBaHHS IIUPOKO NMPUMEHSIOTCS B 33/1a4ax, CBS3aHHBIX C FeHepaunued Koza.
Heckonpko wuccnemoBanuii [12] MOCBSLICHBI HCIONB30BAHUI0 HHCTPYKUMH ISl YITy4IICHUS
KauecTBa reHepupyemoro koma. B [13] momckasku HCIONB3YIOTCS ISt 0OJIerdeHus 0ObICHEHUS
KoJa W pa3pabOTKHM TecToB. B HameMm mnoxxone oco0oe BHHMaHHE yIEINSETCS HCIOJIB30BAHHUIO
WHCTPYMEHTOB aHaJlW3a IpPOrpaMM ISl TOBBIIICHUS KOMIIMJIMPYEMOCTH U 0e30MacHOCTH
CreHEpUPOBAHHOTO KOJA MPH COXpaHeHuH 3P QeKTHBHOCTH peuieHus npodieM. B yacTHOCTH, MBI
UCIIONb3yeM 00paTHYIO CBA3b OT KOMIIMIATOPA U CTATHYECKOrO aHAIN3aTOPa B KAYECTBE CUTHAJIOB
JUTSL MOZITH.

3. Uccnedoeamernbckue eonpockl

NH-nioMonHMKY pa3paboTYMKa IIUPOKO UCTIONB3YIOTCS I CHHTE3a QYHKIIUHN U 33]1a4 TeHEepaIliu
kona. dopmanbHO, MOJEUpyeETCs MporpaMMa X Kak I10CieloBaTeIbHOCTh TOKeHOB. Ha mare t
MOJICJIb BBIYHCISCT BEPOATHOCTh TOKEGHA, YUYUTBIBAsA €0 OPEABLAYIIHE TOKCHBI
P(x; |%q, e, X¢_1),THC Xq,...,X¢_q OOECIEUMBAOT KOHTEKCT. OHTpomus H (x¢|Xq, ..., X¢_1)
H3MepsieT HEOIIPEIeICHHOCTh B OTHOIICHNH X; C YIETOM KOHTEKCTa. bolee MITMHHAAS HHCTPYKITHSL
MPEeJOCTaBIsICT OONBIIE TOKCHOB MJISI TPOBEPKH, IOTCHIHAIBHO CHW)KAs HSHTPOIHIO, €CIH
JIOTIONTHUTEIbHBIC TOKEHBI COAEP)KAaT COOTBETCTBYMOIIyto HH(popmarmro: H(x¢|Xq, ..., Xe1) <
H(x¢|%q1, o) Xe—i), THE k < t — 1. DTO HEPABEHCTBO CIICAYET M3 HEPABEHCTBA 0OPAOOTKHU JaHHBIX
B Teopud HHGOPMAIMH, KOTOPOE TJACHUT, YTO HCIOJH30BAHUE OMOJHHUTEIBHBIX MEPEMEHHBIX
(TOKEHOB) HE MOXET YBEIHMIUTh HEOTIPEICICHHOCTb.

HccaenoBarenbeknii Bonpoc 1. Hackonpko creHepHpOBaHHBIN KOJ OOECIIEYHBAET 3aIIUTy OT
nedexkra B OOBIYHBIX 3a/adyax TEHEpaluH, TAKMX KaK CHHTe3 (YHKIMH M BOCCTaHOBJICHHE
nporpamMm?

Lenb cocTOMT B TOM, YTOOBI OICHHUTH, MOXKHO JIH JOBEpATH KOoAy, co3maHHOMY LLM, ¢ Toukm
3peHHss 0E30MacHOCTH, WM)K€ OH COJCPKUT OOIIMe HEJOCTATKH, KOTOphIE MOTYT HApPYIIUThH
LIEJIOCTHOCTh MPOTPaMMHOTO O00eCTIeueHUsI.

HccnenoBarenbckuii Bonpoc 2. MoKHO JIM TIOBBICUTH O€30MAaCHOCTh CTEHEPHPOBAHHOTO KOZA C
MTOMOIIIBI0 HHCTPYMEHTOB IPOBEPKU?

Llens cocTonT B TOM, YTOOBI ONPENEIUTH, MOTYT JIM peJIeKCUBHBIE MOJCKAa3KH, OCHOBaHHBIEC Ha
00paTHOW CBS3M OT KOMITWIIATOPA M CTATUYECKOT0 aHAIN3aTOPa, YIy4IINTh KOPPEKTHOCTh KOJa
6e3omacHOCTb. [Ka)KIOro CreHepUpOBAaHHOIO PEIISHMsSI arperupyercss oOpaTHas CBSI3b OT
KOMITWJIITOPA MM CTATHYECKOTO aHalIN3a M 1101aeTcsi 00paTHO B Moziesb. OLIeHHBAETCS! HACKOJIBKO
UCTIPABJICHUs] COOTBETCTBYIOT KOPPEKTHOCTH M OE€30MacHOCTH, 4YTO OLIEHHMBACTCS dYepes
YMEHBIICHNE YNClIa OOHAPYKEHHBIX Ae(DEKTOB.

HccrenoBareabcknii Bonpoc 3. Mo>KHO JIH TIOBBICUTH 0€30MMacHOCTh CTE€HEPUPOBAHHOTO Ko1a 0e3
yiiep0Oa JIst ero kauecTBa?

B sToM Bompoce oleHMBaeTCs MEXaHH3M OOpATHOM CBSI3M IS MOBBINICHUS O€30MacHOCTH 0e3
yiiep6a QyHKIIMOHATBHON KOPPEKTHOCTH.

126

Ilaiixenncaamos [1.C., Ipo6snuesckuii M.J1., BeneBannes A.A. HTepakTHBHAs reHeparms Koaa Ha ocHoBe LLM: smnupuryeckas OHeHKa.
Tpyowt UCII PAH, 2025, tom 37 Bbim. 5, c¢. 123-130.

4. dkcnepumMeHmsbl

PaccMarpuBaroTcs [Be TeHEpPATHBHBIC 3aJadud: CHUHTE3 (QYHKUWH M JOHOJHCHHE (QYHKUMH IO
TEKCTOBOMY ONHCAHUIO. DTH 331a49H SBILSIFOTCS OMYIIPHBIME IPUIOKeHUsIME - MOMOIITHHKOB
pa3paboTurka, KOTOpble MPUMEHSOTCS, Harmpumep, B Github Copilot.

4.1 3apaum 1 Habopbl AAHHbIX

Jlnst mpoBepKH MCTIONB3yeTcs GasoBast HacTpoiika CodePatchLLM, Bkimouast onmcanus moACKa3oK
¥ KOJIMYIECTBO UTepalnii OOHOBJICHHUS, YTO OMKCaHO B pabote [5].

Cunmes ¢yuxyuu: 3amada HampaBJICHA Ha co3gaHne (YHKOWH O ommcaHmio. B pabote
HCIIONB3YIOTCS TIOMYJISIPHBIE TS 9THX Tesieil Habopsl naHusix HumanEval-X [14]. Ha6op coctout
u3 164 npumepos Ha Java u Python.

Hononnenue @yHkyuu: 1O TEKCTOBOMY OIIMCAHHIO M CHTHATYype HEOOXOIMMO pealli30BaTh
byukuuro. JIJst TaHHOM 3a1a9u HCTIONB3yroTcst HaGopsr Leetcode [5] u MBPP [15] (MBJP ms Java).
OtH KaHHbIe cOOpaHbI B Ta0M. 1.

Tabn. 1. Paccmampusaemvie 3a0ayu u HAOOPbl OAHHBIX.
Table 1. List of tasks and associated datasets.

Bagauva Habop maHHBIX KonunuectBo 3agau
CuHre3 QyHKINU HumanEval-X 164
MBPP (MBJP mst Java) 880
JomnonaeHne QpyHKINH
Leetcode 2612

4.2 MeTpuka

DYHKYUOHANLHAS KOPPEKMHOCMb. J17s1 OLEHKHU CTe€HEPUPOBAHHBIX KOJOB HCIOJB3YETCS METPUKA
pass@1, xotopasi BHIYUCIACTCS, KAK MPOIEHT 3ajadv, MO0 KOTOPHIM OBUTH MPOUIEHBI BCE TECTHI,
ncnonb3ys 1 creHepupoBaHHBIN KO ISt KaXKI0H 3ajauu.

besonacnocms xooa. Byner ompenensTb KOJ A 3aadd Oe30MacHBIM, €CIH TIOCIE MPOBEPKH
CTaTUYECKAM aHAJIH3aTOPOM, CTEHEPHUPOBAHHOE pEIICHHWE HE COACPKUT OMMOKA H ApYyTrHe
JMUAarHOCTHYECKUE NPEAYNPEKICHUST OT KOMIIIATOpa. TakuM o0pa3oM 3amada CBOAWTCS K
MOBBIIIEHHUIO Oe30macHOCTH 0e3 CHIDKEeHUs (DYHKIIMOHATLHOW KOPPEKTHOCTH.

4.3 Mopgenu

I[J'I}I OKCIICPUMCHTOB HUCIIOJIB3YIOTCS UCThIPC MOITYJIAPHBIC Hy6J'II/I‘{HLIe MOJCIIN. K HuM oTHOCSTCS
CodelLama [16], OpenAl GPT-3.5, OpenAl CodeX [17] u CodeGen2-16B [18].

5. Pesynsmambl

B uccnenosannu CodePatchLLM wucnons3yrorest B 3aiauax Ajist reHepanuu nporpamm Ha Python u
Java. B Tabn. 2 mpuBeneHa OleHKa (YHKIMOHAJIbHOH KOPPEKTHOCTH MOJEJCH IO pa3iMYHbIM
3amavaM. B cpennem, CodePatchLLM He Bimsier Ha nokaszartenb Pass@1 st CreHepUpOBaHHOTO
kona. OJTHaKO JJ1sl HEKOTOPBIX MOJIEJIel 9TO MOKET MPUBECTHU K YBEJIMUEHHIO IIPOXOTHOT0 Oasa Ha
1 Gam.

Hccaenoarennckuii Bonpoc 1.

Tab6n. 3 nokaseiBaer, uto CodeGen2 u Codellama npuBoaST K OTHOCHTENBEHO HU3KOMY HPOLCHTY
neexros B koxe B Python, cocraBnsomemy 1% u 0,4% cooTBeTcTBEeHHO, 10 cpaBHeHuto ¢ CodeX
(1,5%) u GPT-35 (2,1%). CodePatchLLM »sddextuBHO ycrpanser 90% oOHapyKeHHBIX
YS3BUMOCTEH, UCTIONB3YS OOpaTHYIO CBSI3b B BHJI€ HHCTPYKITHIL.

127

Shaikhelislamov D.S., Drobyshevskiy M.D., Belevantsev A.A. LLM-based Interactive Code Generation: Empirical Evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 123-130.

Tabn. 2. Oyenka pyHKYUOHANLHOU KOPPEKMHOCTIU.
Table 2. Performance comparison of models.

Pass@1
Python Java

HumanEval MBPP Java HumanEval MBPP Java
CodeGen2 20,3 21,9 6,0
+CodePatchLLM 231 9.1 18 22,0 3,9
CodeX 472 618 105 20,4 38,1 9,2
+CodePatchLLM ' ' ' 37,0 10,0
GPT35 646 190 29.0 62,4 44,8 28,0
+CodePatchLLM ' ’ ' 50,3 452 29,6
CodeLlama 78,5 40,0 12,0
+CodePatchLLM 817 656 36,0 75,4 43,2 25,0

Tabn. 3. [ons 3a0au ¢ deghexmamu 8 peuteHusx 0Jis PA3HBIX MOOEREl U S3bIK0G NPOSPAMMUPOBAHUS.
Table 3. The percentage of compilation errors and weakness detected and fixed by CodePatchLLM..

OmmOKN KOMIMIISAIUH U 1e(heKTHI

CodeGen2 CodeX GPT3.5 CodelLlama
Python 1,0% 1,5% 2,1% 0,4%
Java 10% 37,9% 16,2% 12,5%

T Java mpoueHT neeKTOB 3aMETHO BbINIE BO BceX Mopensx, npu 3tom CodeX renepupyer
HanOompIIee KOMUIecTBO AedexToB — 37,9%. OTHOCUTETHHO HU3KUI YpOBeHB Ne(EeKTOB B KOJIE
Python no3Bossier mpeAnoa0KuTh, YTO ITH MOJCIH B LIEIOM FeHEPUPYIOT Ooiee Oe30MmacHbIi KO
s Python, gem Java. Dto pasnmuuue MOXET ObITh CBSI3aHO CO CTPYKTYpOi#t si3bika Python wm,
BO3MOJKHO, CO CMEMIEHHOCTBIO TaHHBIX I OOYYCHHUS M TOHKOH HACTPOMKON B CTOPOHY IPOTpaMM
na Python [19]. Yucno nedexroB B Java 3HauutensHO Bbilie, ocodenHo aast CodeX u GPT-3.5,
npuuem CodeX mokaspiBaetT moutu 38%. DTO HECOOTBETCTBHE MOXET YKa3bIBaTh HA TO, YTO
CBs3aHHBIC ¢ Java HaOOphI JAHHBIX WM METOMIbI OOYYEHHsS IS 3TUX MOJCICH HYXIAIOTCS B
nopaboTKe, WK 9TO 00Jiee CTPOrasi TUIHM3AIKS U CTPYKTYpa Java BISIBIISIOT OOJIBIIIEC HEAOCTATKOB
Ipu aHaJm3e Svace.

HccaenoBaTeabCKuii Bompoc 2.

CodePatchLLM gemoHcTpupyeT cpeiHee abCOIIOTHOE CHIIKEHUE MTPEAYIPEIKACHUN CTATHIECKOTO
aHaIM3aTopa Mo BceM HabopaM JaHHBIX U MoaessiM Ha 19,1%. YaureiBas Oonee BEICOKHIT 0a30BBIi
ypoBeHb eeKTOB B Java, MpruMeHeHHe KoppeKkTupyroieii ooparhoii cesizu CodePatchLLM moxer
OBITh 0COOCHHO TOJIE3HBIM TSI KOJa, CTEHEPHPOBAHHOTO Ha Java.

HccaenoBaTeabCKuii Bompoc 3.

Jus 3amau na Python CodePatchLLM He oka3biBaeT CyIIECTBEHHOTO BJIMSHHS —HA
(YHKIIMOHABEHYIO KOPPEKTHOCTh CTEHEPUPOBAHHOTO KOJ1a, U3MEPSAEMOTO 10 MoKa3aTeito Pass@1l.
OmHako, HECMOTPS Ha ATO, HAOMIOAIOTCS HEe3HAYUTEIbHBIC Ne(EKTH U MPEIyNPEeKACHUSI, O YeM
CO00IIaeT CTATHYECKUI aHAITH3ATOP.

B cpemnem, wucnonb3oBanue CodePatchLLM He oxa3piBaeT CyImIECTBEHHOTO BIHSIHUS Ha
(bYHKIHOHAIBHYIO KOPPEKTHOCTH MO MeTpuke Pass@l Bo Bcex moxenmsax (tabmuia 2). OmHako
OT/IEJIbHBIC MOJICIIN MMOKA3bIBAIOT Pa3HbIC PE3yJIbTATHI, IPU 3TOM HEKOTOPHIC U3 HUX BBIMTPHIBAIOT
OT W3MEHCHHU, a APYrUe OCTAIOTCS B OCHOBHOM HEM3MEHHBIMH. DTOT BBIBOJ CBHICTEILCTBYET O
ToMm, 4to, XoTst CodePatchLLM He MokeT yimydnuTh GyHKIMOHATBHYIO KOPPEKTHOCTD, OH MOXKET
MTOBBICHTH 0€30MAaCHOCTh CTEHEPUPOBAHHOTO PEIICHHUS, CHIKAsI KOJIMIECTBO IE(PEKTOB B KOJIE.

128

Ilaiixenncaamos [1.C., Ipo6snuesckuii M.J1., BeneBannes A.A. HTepakTHBHAs reHeparms Koaa Ha ocHoBe LLM: smnupuryeckas OHeHKa.
Tpyowt UCII PAH, 2025, tom 37 Bbim. 5, c¢. 123-130.

6. BbieoObI

B »TOM HnccnemoBaHMM MCCIEAOBAJICS BONPOC OE30MACHOCTh CTeHepHpoBaHHOTO perienus M-
MOMOIIITHUKOM pPa3padOTYMKa A PEUICHHs PpaclpoCTPaHEHHBIX 3aJad MpOrpaMMHUpPOBAHUSL.
HccnenoBaTensCKue BOIPOCH B paboOTe KacalliCh MOBBIMIEHIS O€30MacCHOCTH Koa 0e3 ymepoa s
(hyHKIMOHATHPHON KOPPEKTHOCTH. Pe3ynbTaThl IOKa3bIBAIOT, UYTO CTeHEpHpOBaHHBIC peneHus N -
MOMOIITHUKAMH Pa3pabOTYNKa, MOTYT COJEpXKaTh NE(PEKThl, OCOOCHHO NPH PEIICHUH CIO0XKHBIX
3agad. OTO TOMYEPKHWBACT BAXHOCTh HHTETPAIMM JOMOJIHUTENBHBIX IIPOIECCOB ITPOBEPKH
oOHapyxeHHs1 1e(PeKTOB ¥ UCTIPABIICHUS B IIpoLiecce T'eHepanuy koja. bonee Toro, skcnepruMeHThI
MOKa3bIBAIOT, YTO BO3MOXKHO MTOBBICUTH O€30I1aCHOCTH CTeHEPHPOBAHHOTO KoJla 0€3 CHU)KEHHS ero
(yHKIIMOHAJIBHOTO KavyecTBa. B ciydasx, rje MOBBIIEHHE 0€30IacHOCTH aBTOMATHU3MPOBAaHHBIM
CIOCOO0M HEBO3MOXKHO, CUTHAJIBI O HAIWYUU Je(DEKTOB B KOJE, MO3BOJIIOT MOJIb30BATENIO OBITh
MH(QOPMHUPOBAaHHBIM 00 MX NMPHCYTCTBUH, YTO, B CBOIO OYepellb, YBEIMYMBACT oOllee J0BepHe K
ucnons3oBaHnio MM -momonianka pa3paboTdnka.

B wactHocth, ncnons3oBanue CodePatchLLM 1mo3BOiIHIO CHU3UTH KOJWYECTBO NPENYNPExKICHUH
CTaTHYECKOro aHaynuzaropa B cpenHeM Ha 19,1% 6e3 HeraTMBHOTO BIHSHUS Ha (QYHKIHOHAIBHYIO
KOPPEKTHOCTh Koja. J[is HeKoTOphix Moened ucrnonb3zoBanue CodePatchLLM naxe mpuseno k
HeOOJIBIIOMY YBEJIMUSHHIO HX KOPPEKTHOCTH.

OrpaHuyeHus n 6yayume paboTbl

CodePatchLLM sddextuBen amst MU-nomoriHukoB paspaborunka Ha ocHoBe LLM, xortopsie
IIMPOKO UCTIOIB3YIOTCS Ha IpakTHKe. OHAKO PpeHMBOPK HE KOPPEKTHPYET caMy Mozelb. Mojenu
MOTYT JOMYCKaTh OJHH U T€ ke OMHOKHU mpu ucnons3oBanuu. Kpome toro, CodePatchLLM we
paccMmarpuBaeT cirydau, Korjaa MoJieib JI0JDKHA HCIIOIb30BaTh CYIIECTBYIOIINE B TPOSKTE KJIACCHI U
metozsl [20]. PaccmoTpeHe ciieHapueB mepeoOydeHre MOICH Ha COOpaHHOM Habope OmMOOK
HCTIpaBJICHUH TpeicTaBIsIeT co00i MHOTOOOCIIAMOIICEe HAaMpaBlicHHe Oymyiei padoTel. Hakower,
ormeuaercs, uto CodePatchLLM He mnpemocTaBiseT TapaHTHil MOBBIMICHHS O0€30MacHOCTH
CreHepHPOBAaHHOIO KOJA, TaK KaK 3TO BO MHOTOM 3aBHCHUT OT HCIIOJIb3yEeMBIX HHCTPYMEHTOB
HPOBEPKH.

Cnucok nutepartypbl

[1]. StackOverflow, Developer Survey. Toctymso 1o ccsuike: https://survey.stackoverflow.co/2023/#ai-tools-
in-the-development-process, o6pamenne 30.05.2023.

[2]. Li R., Allal L.B., Zi Y., Muennighoff N., Kocetkov D., Mou C., Marone M., Akiki C., Li J., Chim J.
Starcoder: may the source be with you! //arXiv preprint, 2023. Jocrymro mo ccsuike: arXiv:2305.06161,
obpamenue 10.10.2025.

[3]. Tambon F., Moradi-Dakhel A., Nikanjam A., Khomh F., Desmarais MC., Antoniol G. Bugs in large
language models generated code: An empirical study // Empirical Software Engineering, 2025, vol. 30,
no. 3, p. 65.

[4]. Shaikhelislamov D., Drobyshevskiy M., Belevantsev A. LLM-based Interactive Code Generation:
Empirical Evaluation // 2024 lvannikov Ispras Open Conference (ISPRAS). IEEE, 2024, pp. 1-5.

[5]. Shaikhelislamov D. S., Drobyshevskiy M. D., Belevancev A. A. Ensuring trustworthy code: leveraging a
static analyzer to identify and mitigate defects in generated code // 3amuicku HayuHbIX cemunapoB [IOMU,
2024, vol. 540, no. O, pp. 233-251.

[6]. Belevantsev A., Borodin A., Dudina I., Ignatiev V., 1zbyshev A., Polyakov S. Design and development of
Svace static analyzers // 2018 lvannikov Memorial Workshop (IVMEM). IEEE, 2018, pp. 3-9.

[7]. Agashe R., lyer S., Zettlemoyer L. JulCe: A large scale distantly supervised dataset for open domain
context-based code generation // arXiv preprint, 2019. HdocrynmHo mo cceuike: arXiv:1910.02216,
obpamenue 10.10.2025.

[8]. Grubisic D., Cummins C., Seeker V., Leather H. Compiler generated feedback for large language models
[larXiv preprint, 2024. Toctynro no ccouike: arXiv:2403.14714, obpamienne 10.10.2025.

[9]. Avgustinov P., Moor O., Jones MP., Schifer M. QL: Object-oriented queries on relational data // 30th
European Conference on Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2016, pp. 2: 1-2: 25.

129

Shaikhelislamov D.S., Drobyshevskiy M.D., Belevantsev A.A. LLM-based Interactive Code Generation: Empirical Evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 123-130.

[10]. Semgrep, 2023. [Online]. Available at: https://semgrep.dev/, o6pamenue 10.10.2025.

[11]. FlawFinder, 2023. [Online]. Available at: https://dwheeler.com/flawfinder, o6pauierane 10.10.2025.

[12]. Li H., Hao Y., Zhai Y., Qian Z. Enhancing static analysis for practical bug detection: An lIm-integrated
approach // Proceedings of the ACM on Programming Languages. 2024, vol. 8, no. OOPSLAL,
pp. 474-499.

[13]. Zhang T, Yu T., Hashimoto T., Lewis M., Yih W., Fried D., Wang S. Coder reviewer reranking for code
generation //International Conference on Machine Learning. PMLR, 2023, pp. 41832-41846.

[14]. Zheng Q., Xia X., Zou X., Dong Y., Wang S., Xue Y., Shen L., Wang Z., Wang A, Li Y., Su T., Yang
Z., Tang J. Codegeex: A pre-trained model for code generation with multilingual benchmarking on
humaneval-x // Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2023, pp. 5673-5684.

[15]. Odena, A., Sutton, C., Dohan, D. M., Jiang, E., Michalewski, H., Austin, J., Bosma MP., Nye M. Program
synthesis with large language models //arXiv preprint, 2021. Joctynso mo ccpuike: arXiv:2108.07732,
obpamienue 10.10.2025.

[16]. Roziére B., Gehring J., Gloeckle F., Sootla S., Gat I., Ellen Tan X., Adi Y., Liu J., Sauvestre R., Remez
T., Rapin J., Kozhevnikov A., Evtimov ., Bitton J., Bhatt M., Ferrer CC., Grattafiori A., Xiong W.,
Défossez A., Copet J., Azhar F., Touvron H., Martin L., Usunier N., Scialom T., Synnaeve G. Code llama:
Open foundation models for code //arXiv preprint, 2023. JloctynHo mo cceutke: arXiv:2308.12950,
obpamienue 10.10.2025.

[17]. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan [u mp.]. Evaluating large language
models trained on code //arXiv preprint, 2021. JocrynHo no cceuike: arXiv:2107.03374, obpaieHne
10.10.2025.

[18]. Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., & Zhou, Y. Codegen2: Lessons for training llms on
programming and natural languages //arXiv preprint, 2023. Jocrynuo mo cceuike: arXiv:2305.02309,
o6parenne 10.10.2025.

[19]. Siddig, M. L., Dristi, S., Saha, J., & Santos, J. C. The fault in our stars: Quality assessment of code
generation benchmarks // 2024 IEEE International Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2024, pp. 201-212.

[20]. Liao, D., Pan, S., Sun, X., Ren, X., Huang, Q., Xing, Z. [u ap.]. A 3-codgen: A repository-level code
generation framework for code reuse with local-aware, global-aware, and third-party-library-aware //
IEEE Transactions on Software Engineering. 2024.

Ungpopmayusi 06 aemopax / Information about authors

Janun CamaBaToBHY IIAUXEJUCIIAMOB — uccienoBateslb MIHCTUTYTa CHCTEMHOTO
IporpaMMupOBaHusd, CTapH.H/Iﬁ npenoaaBaTeyib Briciied 1mIKoJIsI OKOHOMHMKH, aCIIUPAHT
MOCKOBCKOTO (I)I/IBI/IKO-TGXHI/IHGCKOFO HWHCTUTYTA. C(l)epa HAay4YHbIX I/IHTepe(}OB: OOJIBIIINE SI3BIKOBBIE
MOJIEIIH, TeHepanus Kojaa.

Danil Salavatovich SHAIKHELISLAMOV - researcher at the Institute of System Programming,
senior lecturer at the Higher School of Economics, postgraduate student at the Moscow Institute of
Physics and Technology. His research interests include large language models, code generation.
Muxaun Jmutpuesia JIPOBBIIIEBCKUI — kauauaatr Gpu3nKo-MaTeMAaTHUECKUX HAyK, HAydHbIH
cotpynuuk MCIT PAH. Cdepa HayuHbIX HHTEpecoB: noBepennbiii MU, oobscaumbrii M.

Mikhail Dmitrievich DROBYSHEVSKIY - Cand. Sci (Phys.-Math), researcher at ISP RAS.
Research interests: trusted Al, explainable Al.

Amnppeii Anzppeesny BEJIEBAHIIEB — jmokrop ¢Qu3mko-mareMaTHYecKHX HayK, 4JIEH-
koppecnionieHT PAH, Bemymwmii Hayunsiii corpymauk WCII PAH, npodeccop xadenpst
cucremHoro nporpammuposanust BMK MI'Y. Cdepa HayuHBIX HHTEPECOB: CTaTHYECKUI aHAIU3
IporpamMm, onTuMu3alus 1mmporpamm, rnapajjieJibHOC MMpOorpaMMUpPOBAHUC.

Andrey Andreevich BELEVANTSEV — Dr. Sci. (Phys.-Math.), Prof., corresponding Member RAS,
leading researcher at ISP RAS, Professor at Moscow State University. Research interests: static
analysis, program optimization, parallel programming.

130

https://semgrep.dev/

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-10 EOC-EH

Application of SVAN Static Analysis Tool on Open
RTL Benchmarks

S.M. Panova, ORCID: 0009-0008-5106-0915 <panova@ispras.ru>
S.A. Smolov, ORCID: 0000-0003-0173-3081 <smolov@ispras.ru>
M.M. Volkova, ORCID: 0009-0009-8324-7562 <volchonok03@bk.ru>

Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
Plekhanov Russian University of Economics,
36, Stremyanny lane, Moscow, 115004, Russia.

Abstract. The article presents an experimental evaluation of SVAN, a static analysis tool designed for
functional verification of RTL models written in Verilog and SystemVerilog. The research addresses the
growing need for reliable domestic EDA tools, particularly in light of restrictions on proprietary solutions.
SVAN’s architecture integrates formal methods and heuristic approaches to detect a wide range of errors,
including syntactic issues, coding style violations, logical inconsistencies, and security vulnerabilities.
Empirical testing on open-source hardware benchmarks demonstrates SVAN’s superior effectiveness compared
to Synopsys VCS and Verilator, with a 73% broader error detection spectrum and 25-23% higher error
identification rate, respectively. Key advantages of SVAN include high analysis accuracy and detailed error
classification. However, limitations such as reduced flexibility in handling mixed-language designs highlight
areas for future improvement. The study underscores SVAN’s potential as a competitive tool for static
verification in electronic design automation.

Keywords: static analysis; RTL; SVAN; Verilog; SystemVerilog; functional verification; error detection;
open-source benchmarks.

For citation: Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open
RTL Benchmarks. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 131-142. DOI:
10.15514/ISPRAS-2025-37(5)-10.

Acknowledgements: The project is supported by the Ministry of Industry and Trade of the Russian Federation
within the R&D project “Development of a static analysis system for a hardware description language”, code
“CAD-Analysis” (as part of the R&D project “CAD microelectronics”, the main contractor is JSC “ISTC
MIET”).

131

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

MpumeHeHne nHcTpymeHTa SVAN cTaTU4eCKOro aHanusa onmMcaHuu
annapaTtypbl Ana sepmdpukaumm oTKpbITbIX TECTOBbIX HabopoB

C.M. Ilanosa, ORCID: 0009-0008-5106-0915 <panova@ispras.ru>
C.A. Cuonos, ORCID: 0000-0003-0173-3081 <smolov@ispras.ru>
M.M. Bonxosa, ORCID: 0009-0009-8324-7562 < volchonok03@bk.ru>

HUncmumym cucmemnozo npoepammuposanus um. B.I1. Heannuxosea PAH,
Poccus, 109004, o. Mockea, ya. A. Conxcenuybina, 0. 25.
Poccuiickuii sxonomuueckuti ynueepcumem um. I'.B. [lnexanosa,
Poccus, 115054, 2. Mockea, Cmpemannblii nepeyiox, 0.36.

AHHoTanmsi. B craThe MpeACTaBIeHBI Pe3yJabTaThl JKCIIEPUMEHTALHOrO aHamu3a uHcTpyMeHta SVAN
CTATHYECKOTO aHallM3a onucaHuii nudpoBoii ammaparypsl Ha s3bikax Verilog u SystemVerilog. MucTpymenT
paspabatrsBaetcs B ICI1 PAH u mpenocraBnsier cpenctsa popManbHOTO B 3BpUCTHUECKOrO aHamm3a HDL-
ONMCaHMH, HallelICHHbIE HA BBIIBJICHHE CHHTAKCHYECKUX OIMIMOOK, HApyHmIEHHH CTWII o(QopMIEeHHs KonIa,
npoGiieM 6e30MacHOCTH. DKCIEPUMEHTHI, IPOBEICHHBIE HA OMMCAHUIX M3 OTKPBITOro TecToBoro HaGopa hdl-
benchmarks, memonctpupyror 6osee Bbicokyto 3bdextuBHocTh SVAN B CpaBHEHHH C OTKpPBITBHIM
uncrpymenrom Verilator u nponpuerapusiv nHCTpYMeHTOM SYnopsys VCS. B yactHoctu, SVAN oGHapy ui
Ha 73% Oompme THmoB ommbOok M Ha 23-25% Oombmie ommbok B menoM. KioueBble IpemMyInecTBa
urctpymenta SVAN cocTosT B Gojiee BBICOKOM YPOBHE JIOKAIH3AUUHM OIMHOOK M Pa3BUTOI TUIIOIOTHH
oumbok. K BeisiBIeHHBIM Hemoctatkam HHCTpyMeHTa SVAN oTHOcHTCs orpaHudeHHas momaepkka RTL-
Moyieneil, B KOTOPBIX UCHOJIb3YeTCsl HECKOJIBKO SI3BIKOB OIMcaHus. I1oyueHHbIC pe3yabTaThl IO JYEPKUBAIOT
noteniman SVAN Kkak KOHKYPEHTOCHOCOOHOrO HMHCTPYMEHTa CTAaTHYECKOro aHaiuu3a B 00JacTu
aBTOMATH3AaIMY POEKTHPOBAHUS LIU(PPOBOH anmaparypsl.

KawueBble cioBa: cratmdyeckuil anamu3; RTL-momens; HDL-omucanue; anammzatop SVAN; s3bIKH
omucanus ammaparypel Verilog, SystemVerilog; ¢yHkunoHansHas BepuduUKaims; oOHapyXeHHE OIIHOOK;
OTKPBITBIN TECTOBBIIT HAOOD.

Jas nurupoBanusi: [lamoa C.M., CmonoB C.A., BomkoBa M.M. [lpumenenne nuctpymenta SVAN
CTaTUYECKOTO aHAIIN3a OTIMCAHUH anmmapaTypsl Ul BepU(PHUKAIIHA OTKPHITHIX TeCcTOBBIX Ha0opoB. Tpyasr UCIT
PAH, tom 37, Beim. 5, 2025 1., ctp. 131-142 (Ha anrmmiickom si3sike). DOI: 10.15514/ISPRAS-2025-37(5)-10.

Baaronapuoctu: IIpoext ¢unancupyercss MUHHCTEPCTBOM NPOMBIIUICHHOCTH W TOProBiM Poccuiickoit
Oeneparmu B pamkax OKP «Pa3paboTka cCTEeMBI CTaTHUECKOTO aHAIM3a JUIS S13bIKa OTMCAHUS aIllapaTypsl»,
umop «CAITP-Anamu3» (B coctaBe OKP «CAIIP MHKpO3JIeKTpOHMKa», TOJOBHOH HcmoimHuTedb — AO
«MHTL] MUDT»).

1. Introduction

The design of ultra-large-scale integrated circuits (ULSICs) is a complex task that requires high
precision and reliability at all stages of development. In the early stages of designing digital ULSICs,
they are described at the Register Transfer Level (RTL) using Hardware Description Languages
(HDLs), such as Verilog [1] and SystemVerilog [2]. Modern RTL models can reach significant sizes,
encompassing millions of lines of code [3], making automated functional verification as one of the
key tasks in the development process. Functional verification is aimed at detecting design errors that
could lead to incorrect operation of the ULSIC or its complete failure.

To solve the problem of functional verification, various methods are employed, each possessing
their own advantages and limitations. Static analysis holds a special place among them, as a
technique for examining HDL description without its simulation. This approach includes the
analysis of the structure, syntax, and semantics of the source code, making applicable to identifying
a wide range of issues, from syntactic errors to potential vulnerabilities [4].

Static analysis tools implement the following processing stages:

132

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

o Code Analysis. The source code is transformed into an abstract syntax tree (AST) or another
internal representation (IR), enabling the tool to comprehend the structure of the code.

o Rule Application. A set of predefined rules or checks is applied to the IR, aimed at
identifying issues of a specific type, such as syntactic errors, style violations, or logical
inconsistencies.

e Problem Reporting. Upon detecting rule violations, the tool generates a report containing
the exact location of the issue (usually, a file name, and a line number), a description of the
problem, and, probably, a recommendation for its resolution.

Currently, there are both commercial and open-source tools available for static analysis of RTL
models. Commercial tools include VCS [5] and SpyGlass [6] (Synopsys), JasperGold (Cadence) [7],
and Questa (Siemens) [8]. Among the open-source tools for static analysis are Slang [9],
Verilator [10], Svlint [11], Surelog [12], and Verible [13]. Open-source tools often exhibit limited
functionality compared to their commercial counterparts. For example, they may not support the full
range of HDL standards or demonstrate lower accuracy in detecting complex errors. Proprietary
static analysis tools are currently either unavailable or restricted for use under sanction regimes,
posing significant risks to the domestic electronics industry. This situation forces the industry to
either adapt existing tools or completely abandon their use. Furthermore, the utilization of foreign
EDA (Electronic Design Automation) tools carries inherent information security risks.

There are studies in the literature demonstrating the application of these tools [14-15]; however,
experimental comparison of their effectiveness has not been conducted previously, making this task
novel and relevant for scientific investigation.

Taking into account the above, the development of domestic EDA tools represents a strategic task
that will ensure technological independence, information security, and the sustainable growth of the
country's electronics industry. Currently, the Ivannikov Institute for System Programming of the
Russian Academy of Sciences (ISP RAS) is conducting research and development work aimed at
creating SVAN, a static analysis tool for RTL models written in Verilog and SystemVerilog. SVAN
tool development is supported by the Ministry of Industry and Trade of the Russian Federation.
The aim of this research is to apply the SVAN tool, currently under development [16], for the
functional verification of open-source RTL models. The target design models selected for this
purpose were benchmarks — sets of HDL descriptions originally intended for testing digital VVLSI
EDA tools, as well as for conducting comparative studies in this domain [17-18].

To achieve this goal, the following tasks were identified. First, an analysis of the applicability of
SVAN for collection [19] of open-source RTL benchmarks was made. Next, the same benchmarks
were analyzed using proprietary Synopsys VCS tool and open-source Verilator tool. After that, the
results comparison was made.

A comparative analysis of open-source tools constitutes an independent scientific problem that falls
outside the scope of the current study and has not been previously addressed in the literature. For
the purposes of this comparison, we selected Verilator project — a widely recognized open-source
tool that has been under active development since 2019 (currently in its sixth year of development).
The tool’s popularity and broad acceptance within the community served as the primary criteria for
its selection.

As the second tool in our comparison, we chose Synopsys VCS — a well-established commercial
solution that is highly regarded in the industry and was accessible to us during the study. Both tools
were selected due to their strong market presence, long-term development history, and widespread
adoption in industrial applications.

An extended comparison of open-source tools may be pursued as a subject of future research and
more comprehensive analysis.

133

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

2. SVAN tool description

Static analysis tools are designed to identify various issues in the code. These issues can be
categorized into several classes.

1) Simple syntactic errors arise due to incorrect code writing, including the following:

1). missing commas, semicolons, parentheses, etc.;
2). incorrect use of language keywords or constructs;
3). typo errors in variable names or function calls;

2) Style violations are issues related to coding standards [20-21], for example:

1). inconsistent indentations;
2). deprecated constructions usages;
3). violations of naming conventions.

3) Logical inconsistencies represent a more complex class of issues that affect the behavior of
the program or the design of the hardware. Examples of such inconsistencies include
unreachable code (a situation where a portion of the code can never be executed due to
logical errors) or race conditions (where the order of execution of code blocks directly
impacts the overall outcome of the program).

Static analysis can also identify security-related issues, such as the use of uninitialized variables,
which may lead to unpredictable behavior or improper handling of sensitive data, such as passwords
or cryptographic keys.

The static analysis tool SVAN (Static Verification ANalysis tool) is a modern solution for verifying
RTL models. SVAN supports Verilog (IEEE 1364-2005 standard) and SystemVerilog (IEEE 1800-
2023 standard) HDL, enabling its use for verifying projects of varying complexity and purpose. The
tool is designed to detect errors across various categories, which include the classes described above.
The architecture of SVAN is built on the principles of modularity and extensibility and is described
on Figure 1. The tool includes the following key components: 1) SystemVerilog compiler (includes
lexical analyzer, syntax analyzer and source code handling module); 2) analysis module (include
rule detection module).

. . Analysis
SystemVerilog compiler modiule
I_ Rule
— Lexical analyzer detection
module

— Syntax analyzer

Source code handling
module

Fig. 1. SVAN Architecture.

The compiler is the central element of the SVAN architecture. It is responsible for processing the
input code written in SystemVerilog and Verilog. The base compiler used is Slang — a modern, high-
performance open-source compiler that supports the latest versions of the SystemVerilog standards
(e.g., IEEE 1800-2023).

134

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

The advantages of using Slang lie in its ability to accurately analyze complex and large-scale
projects. After processing the input code, the compiler transforms it into a specific IR, which serves
as the input data for subsequent analysis stages.

The analysis module is the core of SVAN’s functionality. It contains rule-based detectors designed
to identify specific types of errors in the code. Each detector is focused on a particular category of
issues, such as logical errors, coding style violations, or potential vulnerabilities.

All rules utilized by the tool have been classified into several categories based on language-related
aspects and the development process. This classification ensures a systematic approach to
identifying and addressing various types of issues in the code. Among the examples of categories
are:

1) Assign — checks for assignment operations

2) Case — checks for case statements

3) Loop — checks for loop operators

4) Range — checks for out-of-bounds violations

5) Type — checks for type-related conflicts, and others

The detectors in the tool are implemented using two primary approaches: formal methods and
heuristics.

To evaluate the performance and reliability of SVAN, it was tested on several well-known open-
source hardware projects, including PicoRV32 [22], CVAG [23], and OpenTitan [24]. The testing
process involved analyzing these projects to identify potential issues across various categories, such
as logical inconsistencies, coding style violations, and structural errors. The results of the testing
confirm that SVAN is a reliable and efficient static analysis tool. Its ability to effectively handle
complex real-world projects demonstrates its suitability for industrial use. By successfully
processing large and intricate codebases, SVAN has proven its capability to meet the demands of
modern hardware design verification, making it a valuable asset for both academic research and
commercial applications in the field of electronic design automation (EDA).

3. Experimental analysis

In the course of the study, a file-by-file processing methodology was applied to the benchmark set.
Each file was analyzed sequentially using a static analysis tool. In the event of errors indicating the
absence of required modules or files, an attempt was made to locate the missing components within
the benchmark collection itself.
If the necessary files could not be found, the case was labeled as an error, and a stub module with a
required interface was created. These stub modules were placed in the same directory as the original
file to ensure correct path resolution during inclusion. For each recurring type of error, a generalized
description was compiled, including the error category and the recommended correction (see
Table 1). Descriptions of certain errors related to implementation specifics were supplemented with
detailed explanations.
After applying the corrections, each file was re-analyzed using the same tool to verify that the error
had been resolved and that no further diagnostic messages were issued by the analyzer. No time
limits were set for the static analysis tool.
The main contribution of this paper consists of two key aspects. First, a comprehensive comparative
evaluation of existing static analysis tools was conducted in the context of digital circuit verification
tasks. Second, a number of errors were identified and corrected within a widely used benchmark
collection, thereby improving its overall quality and suitability for use in both academic and practical
applications.
As part of the conducted research to analyze the applicability of SVAN for open RTL benchmarks,
the tool was tested on the open-source hdl-benchmarks collection. This collection includes the
following sets of benchmarks:

135

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

1) ICCAD-2015 CAD Contest benchmark suite;

2) ISCAS'85 benchmarks [25];

3) ISCAS'89 benchmarks [26];

4) TWLS'2005 benchmarks [17];

5) LGSynth'1991 benchmarks [27];

6) Quartus University Interface Program (QUIP) benchmarks [18];

7) Texas-97 benchmarks [28];

8) VCEGAR benchmarks [29];

9) Verilog2SMV benchmarks [22];

These benchmarks were widely used for the verification of HDL design and synthesis tools [23-24].
However, it has not yet been analyzed using static analysis methods. These projects encompass a
broad spectrum of algorithms and functionalities, which served as the decisive factor in their
selection as a suitable object for comprehensive analysis. Such a wide-ranging representation
ensures that the tool’s capabilities are tested under conditions that closely mimic real-world
hardware design scenarios, thereby providing a robust assessment of its effectiveness and reliability.
Results of experimental evaluation of analyzed tools (with default running options) are shown in
Table 1. On the first column error types are described. Last columns are named by the related static
analysis tools: SVAN (ISP RAS), VCS (Cadence) V-2023.12 and Verilator 4.028 2020-02-06
respectively.

Table 1. Errors are detected by Static Analysis Tools.

Error type SVAN VCS Verilator

Unknown macros or compiler directives detected 36 8 134
Expected expression 35 0 0
Unknown module 290 236 97
No implicit conversion; explicit conversion exists

TS 2 0 0

but casting is missing

Unable to resolve hierarchical path 1 0 0
Module redefinition 4 0 0
No such file or directory 26 77 79
Invalid delay value expression 2 0 0
Size requires a constant range 3 0 0
Too many arguments passed 1 0 0
Incompatible bit widths 1 0 0
Unknown system name 2 0 0
Missing identifier 5 0 0
Too many connections specified for port instantiation 2 2 0
Other 23 0 24
Total 433 323 334

The errors classified as “Unknown macros or compiler directives detected” are essentially a
consequence of the absence of the source code referencing macros or directives that are not defined
within the analyzed files or their associated include paths. Below is an example of the error
containing code and related diagnostics:

unknown macro or compiler directive ' RDY'
if (ACK == “RDY)

The “Unknown module” error indicates that the code instantiates a module whose declaration is not
present in the example being analyzed by the tool.

The “No such file or directory” error occurs when the code attempts to include a header or other file
that does not exist in the directory where the analyzed code is located. This type of error is the second
most frequently encountered among those identified. Its presence in the benchmarks may be
attributed to inaccuracies introduced during the aggregation of the original projects into the hd1-

136

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

benchmarks collection. However, configuring the tool execution flow does not provide an
opportunity to rectify such errors, as it is not feasible to recover the missing components and
reconstruct the projects outside the scope of this collection.

Table 2 presents the solutions proposed as part of the measures taken to rectify errors present in the
open-source benchmarks. In particular, to address errors related to missing modules, functions, or
macro definitions, a search was conducted for the corresponding file within the project directories.
If the file was not found, a stub file implementing the required module, function, or macro was
created accordingly. Additionally, to resolve the issue of missing explicit type casting, it was
introduced using a system task.

During the experimental testing, it was determined that the SVAN tool demonstrates significant
superiority over both the commercial Synopsys VCS and the open-source Verilator tool across
several key metrics. In particular, the number of classes of errors detected by SVAN (15) was found
to be 73% broader than that both of VCS (4) and Verilator (4). Additionally, the total number of
errors identified by SVAN (433) in the analyzed RTL model modules exceeds the corresponding
metric for VCS (323) by 25% and for Verilator (332) by 23% (see “Total” row in Table 1).

This difference can be attributed to several factors.

Table 2. Errors and Suggested Solutions.

Error type

Suggested correction

Unknown macros or compiler directives
detected

Expected expression

Unknown module

No such file or directory

Check the project directory to see whether the required file exists.
If it does, import it into the module. If not, create a stub file in the
project directory and import it into the module.

No implicit conversion; explicit
conversion exists but casting is missing

Add an explicit cast using
S$sformatf ("%s", in file)

Unable to resolve hierarchical path

In the included file, initialize the used parameters and assign them
appropriate values

Module redefinition

Review all included files to determine whether the same file is
being included twice through different paths into the module under
investigation. Then adjust the file inclusion order to prevent
module redeclaration

Invalid delay value expression

Add a file containing the defined delay value expressions

Size requires a constant range

Include a . vh file that contains the required constant range
definitions

Too many arguments passed

Modify both the function definition and its usage within the
module so that no more arguments are passed than are required

Unknown system name

Add a stub file implementing a function with the specified name

Missing identifier

Declare the missing identifier

Too many connections specified for port
instantiation

Correct the instance declaration so that no more port connections
are provided than are necessary

3.1 Functional limitations of Synopsys VCS and Verilator

The VCS tool terminates its analysis upon encountering the first error of a specific category. For
instance, if an error arises due to a missing included file or directory, the tool halts further error
detection not only within that category but also across all other categories, even though additional
errors may still exist in the code. There are no any options allowing to continue further errors
detection, which leads to significant restrictions the comprehensiveness of the analysis.

Verilator does not correctly handle the “include <path-to-file>’ directive (even when
using the additional command-line argument +incdir+<path-to-dir>) which is used to
include external files in module code. As a result, the tool fails to locate included files, even when
they exist in the same directory as the module being analyzed. This limitation leads to a large number
of false negatives, as Verilator generates errors related to “missing” files that are actually accessible
during compilation.

137

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

By contrast, SVAN continues its analysis regardless of the presence of initial errors, ensuring a more
thorough and exhaustive examination of the codebase. This capability allows SVAN to identify a
broader spectrum of errors, thereby providing a more complete picture of the design's integrity and
potential vulnerabilities.

3.2 Granularity of error classification

SVAN provides a more detailed classification of errors compared to both VCS and Verilator. For
instance, errors related to invalid delay value expressions and the absence of macro or compiler
directive definitions are grouped under a single marker in VCS, labeled as “Error-[UM] Undefined
macro”.

Verilator assigns a broad category of “Syntax error” to multiple distinct error types identified by
SVAN, such as missing identifiers, unknown system names, and passing too many arguments to a
function.

This broad categorization can obscure the specific nature of the issues, making it more challenging
for developers to identify and address the root causes effectively.

In contrast, SVAN distinguishes between these categories of errors, enabling more precise
diagnostics. For example, issues like missing predefined delay expressions, undefined macros,
unresolved hierarchical paths, and incorrect argument counts are flagged as independent errors. This
approach allows users to pinpoint the exact nature of each issue, facilitating more efficient
debugging and resolution. By providing clearer and more granular feedback, SVAN ensures that
developers receive actionable insights into the specific problems within their code, ultimately
enhancing the overall quality and reliability of the design process.

3.3 Absence of detection for certain error categories

Furthermore, the analysis revealed significant limitations in both Synopsys VCS and Verilator.
Synopsys VCS tool does not detect certain categories of errors, such as the absence of implicit type
casting. This limitation can result in potentially problematic code sections going unnoticed, thereby
increasing the risk of errors during synthesis or simulation stages. For instance, issues related to
incompatible data types or missing explicit type conversions may remain undetected, leading to
unpredictable behavior or functional failures in the hardware design.

Verilator has an even narrower range of detectable errors. It cannot identify issues such as
unresolved hierarchical paths, module redefinitions, or many other errors that could impact the
correctness of the system.

On the contrary, SVAN is capable of identifying such non-obvious errors due to its inclusion of
detectors specifically designed to verify the correct usage of data types. These detectors explicitly
check for cases where implicit type casting is expected but absent, ensuring that all type-related
issues are flagged and addressed. By incorporating these advanced checks, SVAN provides a more
thorough analysis of the code, reducing the likelihood of oversight and enhancing the overall
robustness of the design process.

During experimental testing, it was also found that 5% of the analyzed RTL models were incorrectly
classified as containing errors by SVAN and Verilator, whereas the Synopsys VCS tool marked
them as correct and they were actually correct. They were marked as “Other” in the Table 1.

Those issues arise due to the specific characteristics of code analysis performed in accordance with
the Verilog IEEE 1364-2005 and SystemVerilog IEEE 1800-2023 standards. When verifying
benchmarks containing mixed code written in both languages, valid Verilog code did not meet the
stricter requirements of the SystemVerilog standard. For example, a variable named do was
recognized as a reserved keyword introduced in the SystemVerilog standard. As a result, such
models were flagged as erroneous, even though they were actually compliant with the Verilog
standard.

138

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

The broader spectrum of detectable errors, increased level of analysis detail, and absence of the
limitations of VCS and Verilator make SVAN a more effective tool for the static verification of RTL
models.

Table 3 shows the errors distribution on the selected benchmarks. The analysis reveals that the
IWLS-05 benchmark contains the highest number of errors among the evaluated datasets.
Specifically, SVAN, VCS, and Verilator detected 214, 214, and 212 errors (see “IWLS-05" row in
Table 3) respectively, in this benchmark, making it the most error-prone dataset in absolute terms.
A significant proportion of these errors — 77% (165 out of 214) — are attributed to the absence of a
file containing the module whose instance is instantiated in the analyzed file. This issue represents
the most frequently encountered error type in the IWLS-05 benchmark.

Another notable dataset is the QUIP benchmark, which was released as part of Altera's educational
program. While QUIP is not the largest benchmark in terms of error count, it exhibits a relatively
high error rate, with 99 errors detected (see “QUIP” row in Table 3). The higher error frequency in
QUIP can be attributed to its lesser degree of debugging compared to other benchmarks. Similar to
IWLS-05, the most common error in QUIP is the absence of a module corresponding to an
instantiated instance. Additionally, the minor variability in error detection rates among the tools
suggests that QUIP presents specific challenges for verification tools.

Table 3. Errors to Benchmarks distribution.

Benchmark SVAN VCS Verilator
Verilog2SMV 1 1 1
VCEGAR 5 0 5
TEXAS-97 17 17 17
QUIP 99 99 97
IWLS-05 214 214 212
ISCAS89 4 4 4

The benchmark with the fewest errors, based on the results of the empirical study, is Verilog2SMV
(see “Verilog2SMV” row in Table 3). This may be attributed to the fact that this benchmark serves
as a test suite specifically developed for testing the eponymous tool by the Bruno Kessler
Foundation [30].

Additionally, only four errors of the type “Unknown Module” were detected by all tested static
analysis tools on the ISCAS-89 benchmark. The ISCAS-89 benchmark was originally distributed
on tape to participants of the Special Session on Sequential Test Generation at the International
Symposium on Circuits and Systems in May 1989 and is partially characterized in [26]. This is the
reason for the number of errors contained in this benchmark being minimal and representing only
one class of errors outlined in Table 1.

Overall, the tools SVAN and VCS demonstrate robust performance across all benchmarks,
consistently identifying the highest number of errors. Their consistent results highlight their
reliability in detecting issues, even in less refined datasets like QUIP.

In terms of tool performance, SVAN and VCS demonstrate nearly identical results across all
benchmarks, consistently detecting the same number of errors. The primary discrepancy lies in the
complete absence of error detection by VCS within the VCEGAR benchmark, where SVAN
demonstrates superior performance by identifying errors, matching the results achieved by Verilator.
This highlights the robustness of SVAN in handling the complexities of the VCEGAR dataset,
further solidifying its position as a leading tool in error detection across diverse benchmarks.

4. Conclusions and final remarks

Based on the empirical study, a number of unique characteristics of SVAN were identified, setting
it apart from existing solutions for the verification of hardware descriptions written in Verilog and
SystemVerilog. The key advantage of SVAN compared to Synopsys VCS and Verilator is high
analysis accuracy. SVAN’s ability to provide more granular and precise diagnostics ensures that

139

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

even subtle issues are identified and properly categorized, reducing the likelihood of undetected
errors that could compromise the design process.

Despite its significant advantages, the SVAN tool has certain limitations that must be taken into
account when using it. One of the key drawbacks is its insufficient flexibility in handling RTL
models are written in two hardware description languages — both Verilog and SystemVerilog. This
limitation highlights the need for further improvements in SVAN’s ability to handle mixed-language
designs and to differentiate between language-specific constructs more effectively. While SVAN’s
strict adherence to SystemVerilog standards ensures high accuracy in many cases, it can also lead to
false positives when analyzing legacy Verilog code or designs that combine both languages.
Addressing this challenge will be critical for enhancing the tool’s compatibility and usability across
a wider range of hardware design projects.

The results presented in this work are valuable both in terms of comparing the developed SVAN
tool with proprietary counterparts and in a broader context. On one hand, the study has a scientific
focus, involving the analysis and comparison of functional capabilities among existing static
analysis tools. On the other hand, it can be regarded as a technical report reflecting the current state
and practical capabilities of the SVAN tool.

The further development of this research includes a broader comparison of the static analysis tool
SVAN with existing commercial and non-commercial tools, including an assessment of
performance and functional capabilities. This will be the subject of future studies and will allow for
a deeper evaluation of the proposed method's potential under real-world application conditions.

References

[1]. IEEE SA. IEEE Standard for Verilog Hardware Description Language [Online]. Available:
https://standards.ieee.org/ieee/1364/3641/ (accessed 2025, Mar. 27).

[2]. IEEE SA. IEEE Standard for SystemVerilog — Unified Hardware Design, Specification, and Verification
Language [Online]. Available: https://standards.ieee.org/ieee/1800/7743/ (accessed 2025, Mar. 27).

[3]. NVDLA Project, “NVIDIA Deep Learning Accelerator (NVDLA) — Open-Source Inference Accelerator”,
GitHub repository, 2017-2023. [Online]. Available: https://github.com/nvdla (accessed 2025, Mar. 27).

[4]. GOST R 71207-2024, “Information Protection. Secure Software Development. Static Code Analysis.
General Requirements”, Moscow: Standartinform, 2024. [Online]. Available:
https://protect.gost.ru/v.aspx?control=7&id=257752 (accessed 2025, Mar. 27).

[5]. Synopsys, “VCS® Functional Verification Solution”, Synopsys Inc., 2023. [Online]. Available:
https://www.synopsys.com/verification/simulation/vcs.html (accessed 2025, Mar. 27).

[6]. Synopsys, “SpyGlass: Early Design Analysis Tools for SoCs”, Synopsys Inc., 2025. [Online]. Available:
https://www.synopsys.com/verification/static-and-formal-verification/spyglass.html (accessed 2025,

Jun.12).
[7]. Cadence Design Systems, “Formal and Static Verification Solutions”, Cadence Inc., 2023. [Online].
Available: https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-

static-verification.html (accessed 2025, Mar. 27).
[8]. Siemens EDA (2025, Mar. 27). Questa Verification Solutions, Siemens Digital Industries Software, 2023.
[Online]. Available: https://eda.sw.siemens.com/en-US/ic/questa/ (accessed 2025, Mar. 27).
[9]. M. Popoloski, slang: SystemVerilog Language Services, version 8.0, 2015-2025. [Online]. Available:
https://github.com/MikePopoloski/slang (accessed 2025, Mar. 27).
[10]. Verilator. Verilator — a fast Verilog/SystemVerilog simulator. GitHub repository, 2003-2024. [Online].
Auvailable: https://github.com/verilator/verilator (accessed 2025, Mar. 27).
[11]. D. Alance. svlint — SystemVerilog linter. GitHub repository 2020-2024. (2025, Mar. 27). [Online].
Available: https://github.com/dalance/svlint (accessed 2025, Mar. 27).
[12]. CHIPS Alliance, Surelog v1.84 — SystemVerilog 2017 Toolchain, 2024. [Online]. Available:
https://github.com/chipsalliance/Surelog (accessed 2025, Mar. 27).
[13]. CHIPS Alliance. Verible — Suite of SystemVerilog developer tools. GitHub repository, 2019-2024.
[Online]. Available: https://github.com/chipsalliance/verible (accessed 2025, Mar. 27).
[14]. T. Pecenka, L. Sekanina, and Z. Kotasek, “Evolution of synthetic RTL benchmark circuits with predefined
testability”, ACM Trans. Des. Autom. Electron. Syst., vol. 13, no. 3, pp. 1-21, Jul. 2008.

140

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

[15]. F. Yuan, “Design and Test for Timing Uncertainty in VLSI Circuits”, Ph.D. dissertation, Chinese
University of Hong Kong, Hong Kong, 2012.

[16]. Ya. A. Churkin, R. A. Buchatskiy, K. N. Kitaev, A. G. Volokhov, E. V. Dolgodvorov, A. S. Kamkin, A.
M. Kotsynyak, and D. O. Samovarov, “Static Analysis System for SystemVerilog Hardware Description
Language”, Proceedings of the ISP RAS, vol. 37, no. 1, pp. 7-40, 2025.

[17]. International Workshop on Logic & Synthesis (IWLS), “TWLS 2005 Benchmark Suite”, 2005. [Online].
Available: https://iwls.org/iwls2005/benchmarks.html (accessed 2025, Mar. 27).

[18]. N. Isaac, “QUIP Toolkit Benchmarks (v9.0)”, ECE496 GitHub repository, 2020. [Online]. Available:
https://github.com/neilisaac/ece496/tree/master/reference/quip_toolkit-9.0/benchmarks (accessed 2025,
Mar. 27).

[19]. hdl-benchmarks — Collection of digital hardware modules & projects (benchmarks), GitHub repository,
2019-2023. [Online]. Available: https://github.com/ispras/hdl-benchmarks (accessed 2025, Apr. 06).

[20]. Freescale Semiconductor, Verilog HDL Coding: Semiconductor Reuse Standard. Freescale
Semiconductor, Inc., 2005.

[21]. M. Taylor and Bespoke Silicon Group. BSG SystemVerilog Coding Standards, University of Washington,
2023.

[22]. C. Wolf, “PicoRV32 — A Size-Optimized RISC-V CPU Core”, YosysHQ GitHub repository, 2015-2023.
[Online]. Available: https://github.com/YosysHQ/picorv32 (accessed 2025, Mar. 27).

[23]. OpenHW Group, “CVA6 — An Open-Source 64-bit RISC-V CPU Core”, GitHub repository, 2019-2023.
[Online]. Available: https://github.com/openhwgroup/cvaé (accessed 2025, Mar. 27).

[24]. lowRISC, “OpenTitan — Open Source Silicon Root of Trust”, GitHub repository, 2018-2023. [Online].
Available: https://github.com/lowRISC/opentitan (accessed 2025, Mar. 27).

[25]. M. Hansen, H. Yalcin, J. Hayes, “Unveiling the ISCAS-85 benchmarks: A case study in reverse
engineering”, IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72-80, 1999.

[26]. F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of Sequential Benchmark Circuits”, Proc.
IEEE Int. Symposium on Circuits and Systems, pp. 1929-1934, May 1989.

[27]. Microelectronics Center in North Carolina. LGSynth91 benchmarks. [Online]. Awvailable:
https://ddd.fit.cvut.cz/www/prj/Benchmarks/LGSynth91.7z (accessed 2025, Jun. 14).

[28]. Department of Electrical and Computer Engineering at the University of Texas. Texas-97 benchmarks.
[Online]. Awvailable: https://ptolemy.berkeley.edu/projects/embedded/research/vis/texas-97 (accessed
2025, Jun. 14).

[29]. University of Oxford. VCEGAR benchmarks. [Online]. Available:
http://www.cprover.org/hardware/benchmarks/vcegar-benchmarks.tgz (accessed 2025, Jun. 14).

[30]. FBK, “Verilog2SMV”, Fondazione Bruno Kessler (FBK). [Online]. Available: https://es-
static.fbk.eu/tools/verilog2smv/ (accessed 2025, Mar. 29).

UHgpopmayusi 06 aemopax / Information about authors

Copuss M. TIlamoBa sBisieTcss JTaOOpaHTOM-WCCIENOBATENEM OTHENa | eXHOJOTHH
IIporpammupoBanuss HWuctuTyTa cucteMHOro nporpamMmmupoBanus um. B.II. BanHukosa
Poccwuiickoii akagemun Hayk (MCIT PAH). O6nacTs Hay9HBIX WHTEPECOB: MHU(poBas anmaparypa,
CTaTUYeCKU aHaau3, QyHKIHOHATbHAS BepH(UKATIHS.

Sophia M. Panova — Laboratory assistant at the Software Engineering Department of the Ivannikov
Institute for System Programming of the Russian Academy of Sciences (ISP RAS). Her research
interests include digital hardware design, static analysis, and functional verification.

Cepreit A. CMOJIOB sBisiercst HAy9HBIM COTPYAHUKOM oTaena Texuomoruid [TporpaMMupoBanus
Wucturyta cucremuoro nporpammupoBanust uM. B.I1. BannukoBa Poccuiickoll akagemun Hayk
(UCIT PAH), crapmmii Hay4HBI COTpYIHHMK Hay4yHOH Jsaboparopun «l ereporeHHbIe
KOMITbIOTepHBIE cucTeMbl» POY wum. I'.B. IlnexanoBa. OOmacTb Hay4HBIX MHTEPECOB:
aBTOMATH3aLus IPOEKTUPOBAHUS LU(PPOBOH anmapaTypsl, Bepu(UKalys 1 TECTHPOBAHHE.

Sergey A. SMOLOQOV - Researcher at the Software Engineering Department of Ivannikov Institute
for System Programming of the Russian Academy of Sciences (ISP RAS), senior researcher at the

141

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

Heterogeneous Computing Systems research lab of Plekhanov RUE. His research interests include
digital hardware design automation, verification and testing.

Mapuna M. BOJIKOBA sBusercs nabopantom otaena Texnosnoruit IlporpammupoBanus
HucturyTra cucreMHoro nporpammuposanus uM. B.II. MBanHukoBa Pocculickoil akajeMuu HayK
(MUCIT PAH). Ob6nacte Hay4HBIX MHTEPECOB: MalIMHHOE O0y4YeHHe, MHTEJUICKTYalbHbIH aHaJIu3
JIaHHBIX, METOIbI CTATUYECKOT0 aHaIM3a U BepH(UKaIHK.

Marina M. VOLKOVA - Laboratory assistant at the Software Engineering Department of Ivannikov
Institute for System Programming of the Russian Academy of Sciences (ISP RAS). Her research
interests include machine learning, data analysis, methods of static analysis and verification.

142

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-11 EOC-EH

Designing Refactoring Tool for Object-Oriented
Code Based on Metrics

1A.O. Korznikov, ORCID: 0009-0006-3941-9214 <artemkorz@mail.ru>
23N.N. Datsun, ORCID: 0000-0001-8560-7036 <nndatsun@inbox.ru>

! Perm State University,
15, Bukireva st., Perm, 614068, Russia.

2HSE University, Perm,
38, Studencheskaya st., Perm, 614070, Russia.

$PSHPU, Perm,
24, Sibirskaya st., Perm, 614990, Russia.

Abstract. Currently, the information technologies industry is a leader in growth rate among the main economic
sectors. However, the most important components of the development process, such as estimation and
refactoring of program products, still remain without generic tools. Therefore, our main goal is to design a mean
of unified modification and formal evaluation for code in object-oriented programming languages. We use
refactoring patterns to define code modifications, and code metrics calculation to assess its characteristics. Our
tool should help developers to make decisions connected with code quality and its modification necessity,
automatize that change. Actually, it may be used in organizations and educational institutions. We have
developed a domain specific language to unify the specification of object-oriented languages. Furthermore, a
research prototype of the tool has been created. 3 object-oriented languages descriptions and 6 diverse
refactoring patterns have been developed to demonstrate capabilities of the approach.

Keywords: refactoring; domain specific language; code metrics calculation; object-oriented language;
refactoring patterns.

For citation: Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on
Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 143-156. DOI: 10.15514/ISPRAS-2025-
37(5)-11.

143

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

NMpoekTMpoBaHue MHCTPYMeEHTa Ans pedakTopuHra o6 bLEKTHO-
OpPMEHTUPOBAHHOrO KoAa C UCMOoNb30BaHUEM pacyeTa MeTpPUK

1 4.0. Kopsnuxos, ORCID: 0009-0006-3941-9214 <artemkorz@mail.ru>
23 H.H. Jlayyn, ORCID: 0000-0001-8560-7036 <nndatsun@inbox.ru>

L Hepmckuii 2ocyoapcmeentviii HAYUOHATBHBIL UCCTE006AMENbCKULL YHUSEDCUMENT,
Poccus, 614068, . Ilepmvb, yn. Bykupesa, 0. 15.

2 HUY BIILD, [epmw,
Poccus, 614070, . [lepmo, yn. Cmyoenueckast, 0. 38.

8 [epmckuii 20cydapcmeennplii 2yMaHUMapHo-nedazo2uteckuii Yuueepcumen,
Poccus, 614990, 2. I[lepms, ya. Cubupckas, 0. 24.

AnHoTaumsi. Ha nanneiii MoMeHT oTpacib umHGopManuoHHBIX TexHojoruil (UT) 3aHMMaeT MuaAnpYyIOIIyIO
MO3HLHIO 110 TEMIIaM POCTa CPEeI OCHOBHBIX OTpacieil 5KOHOMHKH. OZHAKO, HE CYILIECTBYET YHHUBEPCAIBHBIX
U CTAQHIAPTH30BaHHBIX MHCTPYMEHTOB JUIS BaKHEHIIMX KOMIIOHEHTOB Ipoliecca pa3pabOoTKU: OLEHKH U
pedakTopuHra MporpaMMHBIX MPOXYKTOB. I103TOMY Hamieli OCHOBHOH HENbIO SBIACTCS HMPOCKTHPOBAHHE
Cpe/CTBA Ul YHUPUIIMPOBAHHOTO M3MEHEHUS U (OPMAIIbHON OLIEHKU KOJa Ha 00BEKTHO-OPHEHTHPOBAHHOM
SI3BIKE MTPOTrpaMMHUpOBaHus. sl OmHMcaHus M3MEHEHHH KOJa HCIIONIB3YIOTCS IalIOHBl peaKTOpHHTa, JUIs
OLICHKH €ro XapaKTepHCTHK — pacueT METpHK Koja. llenpro Hamlero WHCTpyMEHTa SIBISIETCS ITOMOIIb
[IPOTPAaMMHCTaM B TPUHATHH pPEIICHHH, CBA3aHHBIX C KAa4eCTBOM KOJa M HEOOXOIMMOCTHIO BHECCHUS
U3MCHCHUH B KOJI, aBTOMATH3AIMs STHX U3MEHEHHUIT. [IpUIIo)KeHHE MOXKET HCIIOIb30BaThCsl B OPraHU3aLUsAX 1
00pa3oBaTeNIbHBIX ~ YYPEKACHUSX. bBbUl pa3paboTaH HPEAMETHO-OPUCHTUPOBAHHBIA S3BIK, YTOOBI
YHUQULIUPOBATh ONUCaHHE OOBEKTHO-OPUCHTUPOBAHHBIX fA3BIKOB. Kpome Toro, ObUI co3aaH
UCCIIEJOBATENbCKUH MPOTOTHI MHCTPpyMeHTa. JIIsi AEMOHCTpAli BO3MOKHOCTEH MPEIOKEHHOTO MOAX0/1a
OBLTH CO3/1aHbI 3 OIMCaHNs 00BEKTHO-OPHEHTUPOBAHHBIX SI3BIKOB M 6 Pa3IMYHBIX NIA0JOHOB pehaKTOPHHTA.

KiroueBbie cioBa: pe(baKTOpI/IHF; l'[peI[MeTHO-OpPIeHTPIpOBaHHLIfI SA3BIK; pacyeT METPUK KOJa, 00BEKTHO-
OpI/IeHTI/IpOBaHHI:Iﬁ SI3BIK, 1a0JI0HBI pe(baKTOpI/IHFa.

Jnsi mutupoBanms: Kopsuukos A.O., [anyn H.H. IlpoextnpoBaHue MHCTpyMEHTa Uit pedakTOpHHTa
00BEKTHO-OPUECHTHPOBAHHOTO KOJIa C UCTIONB30BaHNeM pacdera MeTpuk. Tpyast UCIT PAH, Tom 37, Beim. 5,
2025 r., ctp. 143-156 (Ha anrmmiickom sizeike). DOI: 10.15514/ISPRAS-2025-37(5)-11.

1. Introduction

At present a rapid rise of IT industry occurs. Despite this, a number of significant issues that inhibit
the effective work and development of organizations are detected. Firstly, there are no standardized
tools for evaluating computer programs. Secondly, refactoring is a key and integral part of software
maintenance, but there is no common tool for it. Thirdly, a rate of technology substitution is high,
and it is vital for organizations to use effective ones to stay competitive.

Metrics can be considered as a tool for formal evaluation of code characteristics. However, the recent
researches show that applications based on metrics have a low true positive rate [1]. The authors
believe that lack of an actual context is the main reason [2]. In our work, the metrics are interpreted
by a programmer, who uses our tool. Developer as an expert assesses a code quality using personal
professional experience and recommended limits for metrics values provided by the tool. Moreover,
it is a useful practice to compare the characteristics of different program projects.

Refactoring is a mean of the uncontrollable growth prevention of a program code length, number of
errors hidden, and design issues (technical debts). Therefore, the significance of refactoring cannot
be underestimated, but its implementation is connected with high complexity and time cost,
especially when changing the whole project [3]. Modern IDEs include means of metrics calculation
as well as rapid global refactoring while coding (floss refactoring) [4: 163]. However, they may be
inconvenient in some cases due to massiveness. Furthermore, IDEs focus on supporting a small
number of programming languages and specific refactoring operations. In addition, researches show

144

Kopsuukos A.O., Jauyn H.H. IIpoextupoBaHue HHCTpyMeHTa Ul pe)akTOpUHTra 00BEKTHO-OPHEHTUPOBAHHOTO KOZIA C HCIIONIB30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

that many developers are cautious about these tools and prefer to perform refactoring manually
[4: 163, 5: 4, 6: 1]. Our proposed approach and a research prototype based on it are independent of
object-oriented programming (OOP) language.

Actually, different organizations use various versions and extensions for programming languages,
some of them develop the own languages to solve particular tasks in a specific domain. On the one
hand, it helps to accelerate the development and simplify understanding, but on the other hand,
refactoring and metrics calculation may become complicated. Thus, extra financial resources are
required to develop appropriate tools for automatic execution of those actions.

To implement the tool for refactoring object-oriented code using metrics calculation, the following
tasks must to be solved to:

e analyze requirements;

o analyze existing software;

e design the program tool;

o design a domain specific language (DSL);
e implement the tool and test it.

2. Requirements

To solve these problems, a tool independent of a specific object-oriented languages set should be
developed. It must:

e provide means of a unified description of various languages and refactoring operations;
o use terms of the procedural and OOP paradigms to calculate the respective metrics;

e describe languages and refactoring operations in a similar way to simplify the tasks of
programmer;

o apply refactoring to the whole project or its individual physical (files) and logical
(hierarchies of classes) parts;

o allow developers to evaluate the formal characteristics of program code, compare metrics
of refactored code with initial values.

3. Related works

3.1 Technical debt and code smells

In practice, developers often use refactoring to remove “technical debt”, particularly “code smells”
[7]. Technical debt means a decrease of code quality in its development [1]. In the long term, it leads
to such serious consequences as an increase in cost of defects correction, further development and
making changes [1, 8]. Code smells are the most studied and recognizable type of technical debt
related to design problems [8]. The term is firmly entrenched in the context of refactoring and
combines the problems encountered in object-oriented code [1].

Code metrics can also be used to determine this kind of drawback [1], especially Chidamber and
Kemerer set is often used. According to various works, metrics in the context of refactoring are
applied for identification of low-quality code parts [9], comparing a source code with refactored one
[10] and estimating a cost of refactoring application [11].

3.2 Refactoring tools

The study of current refactoring tools is presented in a systematic mapping study [12]. According to
the data obtained, there is a set of refactoring applications that recommend changes, perform
refactoring and detect it [12]. The most commonly considered language is Java, and there are also

145

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

tools working with code in C, JavaScript, and various DSL (e.g., CSS). The denoted tools are
focused on applying specific refactoring operations within a certain set of languages.

In the review [13], Eclipse, Xcode are named among the popular refactoring tools. Moreover, some
of the applications solve similar issues, such as refactoring tests, performed using DARTS [10] and
B-refactoring [12]. Other systems are highly specialized and work with a particular domain: RIdiom
automatically replaces all code fragments that do not correspond to Python idioms [14]; ReSwither
modifies structure of a switch operator in Java [15]; Android Studio plugin works with energy
efficiency [16]. Besides, a lot of the presented tools are either unavailable in Russia or are not free:
Synchronizer, Asyncdroid, XII and others [12].

3.3 Tools for code metrics calculation

Systematic mapping studies (SMS) [17-19] examine the possibilities of tools for automated metric
calculation. It is worth noting a similar study, the authors of which indicated that SourceMeter and
Metrics are most often used to calculate program metrics; PMD and JDeodorant are commonly used
for detection and removing bad smells; JDeodorant and Eclipse are most frequently applied for
refactoring [20: 929]. However, the applications for refactoring, metrics calculation, and tools
proposed by IDEs, which are discussed in these papers, are not universal.

4. Describing approach and designing tool

4.1 Framework

We propose a refactoring approach described in Fig. 1. An iteration of the refactoring loop [21]
requires to identify (step 3) code fragments, to recommend (steps 2, 5) metrics comparison
evaluation, and to apply (steps 4, 6) code modifications. A green outline shows a preparatory step
performed by the programmer manually. The blue frames depict steps performing semi-
automatically, when a decision is made by user. Other steps are done automatically. Thus, in
refactoring loop we suggest a user to choose the refactoring pattern and to decide whether to apply
the modification using results of the metrics comparison.

Project Fil
Language
Specifications
Project Fil > 2 Code
i Metrics - ™
1N Lang_Lla_gB Calculation
1.Creating Descriptions for| | Descriptions]

- 3.Finding Code Fragments
Programming Languages || Pattern Description Y f 1
and Refactoring Patterns P Matching Patiern

A v,

Source Code Metrics
Code Fragments

Project Fil

. ™

nt

a.h:ﬂe;g;;g%lt;t&lgt;ﬂndfor | ¢Vodified] | 4.Code Replacement |
“«—Project Files 6.Changing Project Files : Comparison Code Based on Pattemn

\. /

v,

Modified Code

Fig. 1. Proposed approach framework.

4.2 Designing tool

The main purpose of our tool is to obtain values of the formal code metrics, perform refactoring,
and compare calculated parameters. As the determined indicators, Chidamber and Kemerer, Lorenz

146

Kopsuukos A.O., Jauyn H.H. IIpoextupoBaHue HHCTpyMeHTa Ul pe)akTOpUHTra 00BEKTHO-OPHEHTUPOBAHHOTO KOZIA C HCIIONIB30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

and Kidd metrics sets were selected. Additionally, Halstead metrics, lines of code (LOC) and
program style evaluation which are independent of a paradigm, were included in the set used.

The tool consists of 4 modules (Fig. 2): (1) an analyzer, (2) metrics calculator, (3) explanation and
(4) refactoring units. The analyzer includes lexical, syntactic and semantic code analysis. As we
develop a generic tool, only the general semantics of object-oriented languages is considered and
the rest of it must be specified in a particular language description. The metrics calculation is
performed both for individual elements of object-oriented languages and for a whole project by
calculating average values. To explain the results, a dictionary that includes namespaces and classes
is used, as well as a comparison between the calculated metrics values and numbers recommended
by their authors.

"source” “executable”
lexis json MetricsObserver exe

]]
““““““ 1 ‘module” 'module” i
- - analyzer refactoring !
source
refactoring.xml [T T
——————————————————————— \ !
' i
W R
- B - - library
[7 module module
explanation metrics calculator
"source”

Newtonsoft.Json.dll
syntax xml

-

Fig. 2. Tool architecture.

4.3 Designing DSL

To provide an opportunity of analyzing the code in various languages, a textual DSL was developed.
It allows a programmer to describe lexis and syntax of the OOP languages. The language is based
on terms such as class, namespace, operator, and operand. BNF was defined for the DSL.

A pattern description method was selected to implement refactoring [22] and code parts. Therefore,
it provides a possibility to work similarly with the language syntax and the refactoring pattern. The
refactoring pattern structure that consists of 4 parts (Fig. 3): variables, search, replace, and references
section was proposed. Firstly, a list of entities required and their initial values is described. Secondly,
elements of a language and its context must be defined as the syntax is. That definition could be
placed separately as a code fragment description.

<Refactorings> ::= <Pattern> {<SubPattern> | <Fragment>}

<SubPattern=> ::= <Pattern>

<Pattern> ::= “<Refactoring xsi:type="Pattern">" <PatternBody> <Next> “</Refactoring>"
<PatternBody> ::= <Name> <Variables> <Search> <Replace>

<Name> ::= “<Name>" <String> “</Name>"

<Variables> ::= “<Variables>" <PosEntity> {<PosEntity> | <VariableEntity>} “</Variables>"
<PosEntity> ::= <Positions Var> | <PositionVar>

<PositionsVar> ::= “<Variable xsi:type="Position">" <String> “</Variable>"

<Search> ::= “<Search>" <DescriptionBody> “</Search>"

<DescriptionBody> ::= <Instruction> {<Instruction>}

<Replace> ::= “<Replace>" {<Insert>} “</Replace>"

<Insert> ::= “<Enfity xsi:type="" <InsertType> “">" <Position> [<Description>] “</Entity>"
<Next> ;= “<Next>" <Refactor> {<Refactor>} “</Next>"

<Refactor> ::= “<Refactor>" <String> <Arguments> “</Refactor>"

<Fragment> ::= “<Refactoring xsi:type="Fragment">" <FragmentBody> “</Refactoring>"
<FragmentBody> ::== <Name> <Variables> <Description>

Fig. 3. Fragment of BNF for refactoring pattern structure.

Subsequently, the replacement part requires position of the code fragment to be defined. The location
is set as a tuple of a first character position and symbols amount. It can be found by the code
147

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

description. The code replacement requires the position and a type of change: adding or
modification. Besides, it would be inevitable to perform the search again in some cases. Thus, the
last part of the pattern is used for referring other ones and share information accumulated.
Visualization of replacements made is also a significant aspect. We decided to highlight the code
fragments related to the first entity described. As a result, the corresponding fragments of a source
and modified code are colored identically. It allowed highlighting the refactored code parts
automatically. Additionally, the developer can assign a color independently. It might be useful when
creating additional files while refactoring.

5. Implementation and testing

The implemented DSL was based on xml as it is conveniently serializable. It was necessary to define
descriptions of OOP languages for testing. For this reason, the lexis and syntax were defined for
subsets of C# 7.3, Java SE 8, and C++11 using the DSL. The main purpose of those definitions is to
provide an opportunity to test the research prototype developed. Moreover, some language details
are not significant for metrics calculation, because of that a complete description is not required
(e.g., C++ pragma instructions).

5.1 Testing refactoring patterns

We have implemented 6 refactoring instances and they have been tested using a code in C#. Fig. 4-
10 show the source code on the left and the refactored one on the right.

Fig. 4 demonstrates a sort of imports. It is performed sequentially for each word in the compared
strings and started using the reserved command for the list. The corresponding lines are
automatically highlighted with colors. The corresponding declarations are created.

using System:; using System . \Windows.Forms;
using System 10; using System Threading;
using System.Ling; using System.Drawing;
using System. Text; using System.Data;
namespace Metrics namespace Metrics

class MLogic class MLogic

{ {

Fig. 4. Sorting imports.

Fig. 5 (a) shows an example of moving literals from class methods to constants using the stated
name. Actually, they are numbered automatically and the same values are considered as the same
constant. Code fragments are skipped until an operand that is a literal is encountered. The unique
values of variables are stored using sets, whereas positions and values are contained with stacks.
The corresponding changes in code have the identical color, and declarations of the constants are
highlighted with the last change color (Fig. 5, b). Fig. 6 illustrates an example with C++ code.

Fig. 7 depicts an example of the following pattern. It allows a programmer to move the code located
between comments of a certain type, defined by a regular expression. For that reason, a method with
described modifiers and name is created. Although the comments shown are convenient for
processing with that pattern, they are practically meaningless and do not contribute to documentation
of an application. After performing this type of pattern, the documentation refactoring proposed in
[23] should be performed additionally.

148

Kopsuukos A.O., Janyx H.H. [IpoexkTrpoBaHne HHCTpyMeHTa 1uIs pe)akTOpHHra 00bEKTHO-OPHEHTHPOBAHHOTO KOJIA C HCIIOIb30BAHIEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

public char GetMextch() Eublic char (et Mextchi)
{

if {curBow == null | numbCurlit == curRow Length)

if fcurRow == null | numbCurlit == curRow.Length) /

{
numbCurlit = numbCurlit = [EMpGanst;
numbCurRow++; numbCurRow-++;

curRow = sr.Readline(); curRow = sr.Readline();
if {curRow = nully if {curRow != null)
curRow = curRow. Trim Start(). TimEnd () + [%n"; curRow = curRow. TrimStart(). TimEnd|) + tempConst2;
else else
pForm. UpdateProgress(]; pForm. Update Progress();
Thread. Sleep(10); Thread. Sleep tempConst3);
//MessageBox.ShowffileName +": " = Convert. Ti #/MessageBox.ShowffileMame +": " + Convert. ToStrin
retum eof; //koHeU daiina retum eof; //oHeu paiina

} }
numbCurlit++; numbCurlit++;
char curlitera = curRow[numbCurlit - 1]; char curlitera = curRow[numbCurlit - tempConst4];
retum curlitera; retum curlitera;
} }

@)

Eublic class MID

private const string tempConst2 = "™n";
private const int tempConst3 = 10;
private const int tempConstd = 1;

(b)

Fig. 5. Transforming literals into constants (C#):
a) source and refactored code; b) declarations of constants in refactored code.

class Company

rivate:
class Company const sting tempConst2 = "a";
{ const string tempConst3 = "b™;
protected:
string name; protected:
int count; string name;
int count;
public:
Company() { count = i } public:
_ Company() { count = [EfpBaRsa; }
Companyistring name)
Companyistring name)
count = [I; {
this-=name = name; count = [EMBCONstT;
} this-=name = name;

void Hire(string name)
void Hire(string name)
Person” b =new Employee(fa". "b"):

counts+; Person® b = new EmployeetempConst2, tempConst3);
b-»show(); count++;
b-zshow();

Fig. 6. Transforming literals into constants (C++).

Fig. 8 demonstrates an example of using a pattern when a developer requires creating a
corresponding property for a public field.

Fig. 9 (a) shows an example of refactoring that extracts an interface from a class into new separated
file. After public methods are found, their signatures are transferred to the extracted interface in the
created file (Fig 8, b). Furthermore, inheritance code related to the interface is added to the class.
The color design is performed manually for inheritance, as it is a new code fragment added to the

existing set.
149

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

Fig. 10 depicts an example of move method refactoring that is often used in practice [24]. The idea
is to find a calls number of the specified method for each class and move it to the one with the
highest value.

i - ing System:;
using System: Hsing :) .
using System Collections Generic; E::g ggx.ﬁilrl;dlonsﬁenenc.
using System.Ling; using Systern:Taxtl;
using System . Text;

D ConsoleApplication 1

namespace ConsoleApplication 1
class Program

class Program
static void Main(sting[] args)

Havano Bnoka kopa

static void Main(string[] args)

/¢ Havano Gnoka koga

// Koneu Bnoka koga

Console. ReadLine(); /4 Korew Gnoka koaa
Console ReadLine();

}
i i

Fig. 7. Moving code into method using comments.

using System; using System;

namespace Consolefpplication |namespace ConsoleApplication

class Square class Square
e i of
}
}

class Program

class Program

static wvoid Main(string[] args)

{ static void Main(string[] args)
Square s = new Square(); {

s.side = 1.23; Sguare s =new Sgquare();
Console WriteLine(s side); s =123
, Console. WriteLine/(s [Sillg):
} }
}

Fig. 8. Encapsulating field.

The refactoring is divided into 2 patterns: moving a method into the class and correcting names.
Firstly, the number of calls is calculated, method is transferred if necessary, and the new location is
highlighted. Secondly, if the current position of a method does not match the class where it is
implemented, then the class name is replaced or added before the method call. The secondary pattern
is referred using an instruction and the modifications performed by it are not highlighted.

As a result of the refactoring, we have achieved an improvement in response for a class (RFC)
metric, but lack of cohesion in methods (LCOM) has also increased (Fig. 11).

5.2 Testing performance

A test bench has the following parameters: OS Windows 10 Pro, 64-bit system, Intel Core i5-6500
3.20GHz CPU, 16 GB RAM. Fig. 12 shows the chosen refactoring pattern, which have been used
to test performance of the research prototype. We have applied that pattern to a code of Metrics
Observer [25]. The project consists of 15 files written in C#.

150

Kopsuukos A.O., [lanys H.H. IIpoextupoBanue HHCTpyMeHTa /s pe(hakTOpHHTa 00BbEKTHO-OPUEHTUPOBAHHOTO KO/Ia € HCIOIb30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

using System:; using System:
namespace Conzolefpplication1 |namespace ConsoleApplication 1
class Dog class Do/ NSRS
{ {
private bool lsHumans Friend() private bool IsHumansFriend()
retum true; retum true;
{_ Eublic wvoid Eat()
} }
public void Drink{nt value) public void Drink(int value) namespace ConsoleApplication 1
i 1 interface |Animal
{
public int Sleep() public int Sleep()
{ {
retum 0; retum 0
} } }
} } }
} ! |Animal cs
(a) (b)
Fig. 9. Extracting interface and creating new file: a) source and refactored code; b) content of created file.
using System; using System;
namespace ConsoleApplication 1 namespace ConsoleApplication
{
public static class A Eublic static class &
{ methodAZ(); BmethodB1(); }
" '] public static void methodA1()
prcaraan | PSRRI
.) ; blic static woid method AZ()
public static woid method A3() I . .
{ methodA1(); BmethodB1(; } { methodA3(: B.methodB20: }
) public static woid methodA3()
{ methodA1{); AmethodB1(); }
public static class B }
{
{
public static woid methodB2{) public static void methodB2()
{ AmethodA2(): methodB1{); } . { AmethodA2(); AmethodB10; }

Fig. 10. Moving method and updating names: methodB1.

CTaHaapTHele MeTpkn MeTpuku Xonetepa | Metpukn Hunambepa Kemepepa | Metpuki Nopenua v Kinnna

BazoBkie MeTpUKK MexonHei kKon MameHeHHEIR Ko

|EEEELLIEHHbIe METD ORI Ha KNacc

|BbICOTa AEpEBa HAacnenoBaHWA

| KonuuecTeo JOYEpPHWX KNaccos

|CLLE|'IJ'IEHHE MEX Y KNaccamn

|DTKJ'IHK Knacca 5 467

|‘4cho apryMeHToB MeToaa

BEIMMCAMMBIE METPHKA

|Heﬂ.0CTETOK CEBASHOCTM B METOAAX | |1.33 | |2 |

Fig. 11. Metrics comparison for methodB1.

151

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

<2xml version="1.0"2>
<ArrayOfRefactoring xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.0rg/2001/
<Refactoring xsi:type="Pattern">
<Name >BunecTH woHCTaHTH</Name>
<Variables>
<Variable xsi:type="Positions">constant</Variable>
<Variable xsi:typ ariablesUnique">constantValue</Variable>
<Variable xsi:type="Pesition">constantPut</Variable:
<Variable>constantName<Value>tempConst</Value>></Variable>
<Variable>constantMumber</Variable>
11 <Variable>langName</Variable>
12 - </Variables>
13 B <Search>
14 <! -——OnpegesmMTe A3
15 B <Entity xsi:type="Reserved">
20 <!--1 B xmacce-->
21 <Entity xsi:type kipTo">classSyEw</Entity>
22 <!--Kyna Bymer noMemeHo ofbABNSHME KOHCTAHTH-->
<Entity Xsi:typ kipTo" »mainStructureSy< /Entity>
<Entity xsi:type="FindPosition">
<Link>constantPut</Link>
<0f>
</Entity>
<!--2 w3 Bmos oa--3
<Entity xsi:type="SkipTo">
<!--eCIM HE KOHEN Knacca-—>
<Entity xsi:type="If">
<Check xsi:type="CheckExpression">
<Verifiable xsi:type="Not">
</Check>
«Description>
<l=-3 HafiTH HOHCTEHTY-->
<Entity xsi:type="While">
<Check xsi:type="CheckExpression">
<Description>
<Entity xsi:type="SkipTo">
<!--4 pCM HAWTACH KOHCTEHTA - 3AMOMHMTH 3HAYSHME-—>
<Entity xsi:type="If">
«<Check xsi:type="CheckType">const</Check>
«<Description:
<Entity xsi:typ SaveToken">constantValue</Entity>
<Entity xsi:typ FindPosition">
<Link>constant</Link>
<Of>
<Entity xsi:type
</0f>
</Entity>
</Description>
</Entity>
</Description>
</Entity>
</Description>
</Entity>
<!--5 eciM CITENYOOMIE KIACC MM KOHEN daiima - 3aBepmeHMe-—->
</Search>
< ace>

W e

I
1

5w oo

[=4

"AcceptType">const</Entity>

<Enticy zai
<Encicy xsi

“Check

Ee="Inserthiter”

{1

1l

constantValue-—»
seongtantiumbers /Link>< /EnTloys

HE 3AOAMHOE IR

= >
<Fraltionrconstants, Foaicion>
= <Descriptions
"HapeNoSpace ' »constantNane cy
a=H; 5 H ity
rre="VarisblesWext" -constant</
= </Deacription>
</Entity>
E </Replace>
= </Refactozings
Ie = <Refactoring =i Fragmenk ™
151 <lame *constDers /lfames
152 <Varisbleay
; ipTions

Fig. 12. Refactoring pattern fragment for transforming literals into constants.

152

Kopsuukos A.O., Jauyn H.H. IIpoextupoBaHue HHCTpyMeHTa Ul pe)akTOpUHTra 00BEKTHO-OPHEHTUPOBAHHOTO KOZIA C HCIIONIB30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

Project files were automatically sorted in lexicographic order of their names and enumerated. Code
fragments matching the refactoring pattern were found in 10 files. We measured the time taken by
the main steps of the refactoring loop and number of logical lines of code for each file (Fig. 13).
As a result, the most time spent was equal to 589 ms. It was required to apply refactoring pattern to
syntactic analyzer class (file 7) and calculate metric values. It took 213 ms to find code fragments
in the file containing 4023 logical lines of code, and 337 ms to calculate and compare metric values.
Despite the size of code, it had only 14 literals to be transformed into constants. However, the most
amount of time spent for code modification step was required to change a code of token dictionary
(file 2), which contained the largest number of unique literals: 102.

Time spent, ms Tool pe rformance Logical LOC, operators

acrn

4023 4000
600

3500
500

Project file number

I 3. Finding code fragments [==34. Code modification 5. Metric valugs compar son — e Of COde

Fig. 13. Tool performance.

6. Discussion

Our tool requires language specifications in the DSL developed by a programmer. Nevertheless, it
provides a generic tool for object-oriented languages and refactoring operations implementation. It
may allow reducing time to deal with languages based on similar syntax and also create custom
refactoring methods, make decisions regarding code modification and accumulate experience.

The developed design of a code refactoring tool that uses metric calculation and the created research
prototype of our application demonstrated the possibility of:

o describing refactoring patterns using the developed DSL;
o generalized work with various object-oriented languages;

e comparing metrics when performing refactoring.

Our tool allows a developer to calculate metrics and refactor code using lexis and syntax descriptions
in the DSL. Furthermore, it may be used for various versions, extensions, and new programming
languages based on object-oriented paradigm.

However, despite the opportunity to deal with diverse languages and define a single refactoring
pattern in several ways, it has not already proven that an arbitrary pattern could be described with
the DSL. Another limitation is the complexity of working with text DSL:

153

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

e significant increase in the number of physical code lines compared to logical ones,
including xml tags;

e reduced clarity due to high nesting and large amount of text;
e requirement of the DSL specification due to a large number of keywords;
e unavailability of an environment for writing code in the DSL.

Currently, the smallest pattern (Fig. 6) consists of 78 lines and 155 words, whereas the most complex
one (Fig. 9) contains 434 lines and 655 words.

The performance depends on logical lines of code; complexity of code, pattern and language
descriptions used; size of entities used in refactoring pattern such as set or dictionary.

7. Conclusion

Our application requires language specifications in the DSL developed by a programmer.
Nevertheless, it provides a generic tool for object-oriented languages and refactoring operations
implementation. It allows reducing time to deal with languages based on similar syntax and also
create custom refactoring methods, make decisions regarding code modification and accumulate
experience.

In this paper we have described an approach to implement code refactoring using its metrics
calculation and refactoring patterns. The DSL, research prototype, 3 OOP languages specifications,
and 6 typical refactoring patterns have been created. These examples have demonstrated the
capabilities of this language.

Our tool may be used in organizations to refactor code and unambiguously evaluate its properties.
Moreover, it may also be applied in educational institutions to verify and correct code written by
students.

This study has a several possible directions for further activities. Firstly, an equivalent visual DSL
and a suitable development environment for it should be created. Secondly, studying of the required
language features for describing arbitrary refactoring can be necessary. Finally, proposing
recommendations for pattern application based on code metrics and confirmation profitability of
code modification may also be promising.

References

[1]. Kaganos B.B., EpmakoB M.K., ITankpatenko I'.A., Crupugoros A.B., Bomkos A.C., Mapkos C.U.
TexHuueckuit TONT B)KU3HEHHOM nukiie pazpadotku [10: 3amaxu koxa. Tpynsr UCIT PAH, Tom 33, BbIm.
6, 2021 r., crp. 95-110. DOI: 10.15514/ISPRAS-2021-33(6)-7. / Kachanov V.V., Ermakov M.K.,
Pankratenko G.A., Spiridonov A.V., Volkov A.S., Markov S.I. Technical debt in the software
development lifecycle: code smells. Trudy ISP RAN/Proc. ISP RAS, 2021, vol. 33, issue 6, pp. 95-110 (in
Russian). DOI: 10.15514/ISPRAS-2021-33(6)—7.

[2]. Sharma T., Efstathiou V., Louridas P., Spinellis D. Code smell detection by deep direct-learning and
transfer-learning. Journal of Systems and Software, vol. 176, article no. 110936, 2021, pp.1-25. DOI:
10.1016/j.jss.2021.110936.

[3]. Cepomstrukor C. B., Bponwreiin U. E., JIyrockoit H. JI. PedakropuHr B pamkax HpOrpaMMHOIO
npoekra. Tpyast UCII PAH, Tom 26, Bbim. 1, 2014 ., ctp. 395-402. DOI: 10.15514/ISPRAS-2014-26(1)-
16. / Syromyatnikov S. V., Bronshteyn I. E., Lugovskoy N. L. Refactoring on the Whole Project. Trudy
ISP RAN/Proc. ISP RAS, 2014, vol. 26, issue 1, pp. 395-402 (in Russian). DOI: 10.15514/ISPRAS-2014-
26(1)-16.

[4]. Ivers J., Nord R. L., Ozkaya ., Seifried C., Timperley C. S., Kessentini M. Industry's cry for tools that
support large-scale refactoring. In Proc. of the 44th International Conference on Software Engineering:
Software Engineering in Practice, 2022, pp. 163-164. DOI: 10.1145/3510457.3513074.

[5]. Almogahed A., Mahdin H., Omar M., Zakaria N. H., Alawadhi A., Barraood S. O. Empirical Investigation
of the Diverse Refactoring Effects on Software Quality: The Role of Refactoring Tools and Software Size.
In Proc. of the 2023 3rd International Conference on Emerging Smart Technologies and Applications,
2023, pp. 1-6. DOI: 10.1109/eSmarTA59349.2023.10293407.

154

Kopsuukos A.O., Jauyn H.H. IIpoextupoBaHue HHCTpyMeHTa Ul pe)akTOpUHTra 00BEKTHO-OPHEHTUPOBAHHOTO KOZIA C HCIIONIB30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

[6].

[7].

(8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

Golubev Y., Kurbatova Z., AlOmar E. A., Bryksin T., Mkaouer M. W. (2021) One Thousand and One
Stories: A Large-Scale Survey of Software Refactoring (online). Available at:
https://doi.org/10.48550/arXiv.2107.07357, accessed 05.05.2025.

Peruma A., AlOmar E. A., Newman C. D., Mkaouer M. W., Ouni A. Refactoring Debt: Myth or Reality?
An Exploratory Study on the Relationship Between Technical Debt and Refactoring. In Proc. of the 2022
IEEE/ACM 19th International Conference on Mining Software Repositories, 2022, pp. 127-131. DOI:
10.1145/3524842.3528527

Li Z., Avgeriou P., Liang P. A Systematic Mapping Study on Technical Debt and its Management. Journal
of Systems and Software, vol. 101, 2015, pp. 193-220. DOI: 10.1016/j.jss.2014.12.027.

Panigrahi R., Kuanar S. K., Kumar L. Application of Naive Bayes classifiers for refactoring Prediction at
the method level. In Proc. of the 2020 International Conference on Computer Science, Engineering and
Applications, 2020, pp. 1-6. DOI: 10.1109/ICCSEA49143.2020.9132849.

Lambiase S., Cupito A., Pecorelli F., De Lucia A., Palomba F. Just-In-Time Test Smell Detection and
Refactoring: The DARTS Project. In Proc. of the 2020 IEEE/ACM 28th International Conference on
Program Comprehension, 2020, pp. 441-445. DOI: 10.1145/3387904.3389296.

Perera J., Tempero E., Tu Y.-C., Blincoe K. Quantifying Requirements Technical Debt: A Systematic
Mapping Study and a Conceptual Model. In Proc. of the 2023 IEEE 31st International Requirements
Engineering Conference, 2023, pp. 123-133. DOI: 10.1109/RE57278.2023.00021.

Tavares C., Ferreira F., Figueiredo E. A Systematic Mapping of Literature on Software Refactoring Tools.
In Proc. of the XIV Brazilian Symposium on Information Systems, 2018, article no. 11, pp. 1-8. DOI:
10.1145/3229345.3229357.

Murphy-Hill E., Black A. P. Refactoring Tools: Fitness for Purpose. IEEE Software, 2008, vol. 25, issue
5, pp. 38-44. DOI: 10.1109/MS.2008.123.

Zhang Z., Xing Z., Xu X., Zhu L. Rldiom: Automatically Refactoring Non-ldiomatic Python Code with
Pythonic Idioms. In Proc. of the 2023 IEEE/ACM 45th International Conference on Software Engineering:
Companion Proceedings, 2023, pp. 102-106. DOI: 10.1109/ICSE-Companion58688.2023.00034.

Zhang Y., Li C., Shao S. ReSwitcher: Automatically Refactoring Java Programs for Switch Expression.
In Proc. of the 2021 IEEE International Symposium on Software Reliability Engineering Workshops,
2021, pp. 399-400. DOI: 10.1109/ISSREW53611.2021.00108.

lannone E., Pecorelli F., Di Nucci D., Palomba F., De Lucia A. Refactoring Android-specific Energy
Smells: A Plugin for Android Studio. In Proc. of the 2020 IEEE/ACM 28th International Conference on
Program Comprehension, 2020, pp. 451-455. DOI: 10.1145/3387904.3389298.

Kopsurukos A. O., layr H. H. MeTozp! u cpencTBa pacyera u IPIMEHEHUS] METPHK KO/a IIPOrPaMMHBIX
MPOIYKTOB: CHCTeMaTH4YecKoe KapTorpaduposanue muteparypsl. M3sectus CIIGIDTY «JIDTU», Tom 17,
oI 8, 2024 ., cp. 48-64. DOI: 10.32603/2071-8985-2024-17-8-48-64. / Korznikov A. O., Datsun N.
N. Methods for Calculation and Application of Software Code Metrics: A Systematic Mapping Study.
LETI Transactions on Electrical Engineering & Computer Science, 2024, vol. 17, issue 8, pp. 48-64 (in
Russian). DOI: 10.32603/2071-8985-2024-17-8-25-64.

Colakoglu F. N., Yazici A., Mishra A. Software Product Quality Metrics: A Systematic Mapping Study.
IEEE Access, vol. 9, 2021, pp. 44647-44670. DOI: 10.1109/ACCESS.2021.3054730.

Mshelia Y. U., Apeh S. T., Edoghogho O. A comparative assessment of software metrics tools. In Proc.
of the 2017 International Conference on Computing Networking and Informatics, 2017. P. 1-9. DOI:
10.1109/ICCNI.2017.8123809.

Agnihotri M., Chug, A. A Systematic Literature Survey of Software Metrics, Code Smells and Refactoring
Techniques. Journal of Information Processing Systems, 16(4), 2020, pp. 915-934. DOI:
10.3745/J1PS.04.0184.

Fernandes S., Aguiar A., Restivo A. LiveRef: a Tool for Live Refactoring Java Code. In Proc. of the 37th
IEEE/ACM International Conference on Automated Software Engineering, 2022, article no. 161, pp. 1-4.
DOI: 10.1145/3551349.3559532.

Mooij A. J., Ketema J., Klusener S., Schuts M. Reducing Code Complexity through Code Refactoring and
Model-Based Rejuvenation. In Proc. of the 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering, 2020, pp. 617-621. DOI: 10.1109/SANER48275.2020.9054823.
Luciv D. V., Koznov D. V., Shelikhovskii A. A., Romanovsky K. Yu., Chernishev G. A., Terekhov A. N.,
Grigoriev D. A, Smirnova A. N., Borovkov D. V., Vasenina A. |. Interactive Near Duplicate Search in
Software Documentation. Programming and Computer Software, 2019, vol. 45, pp. 346-355. DOI:
10.1134/S0361768819060045.

155

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

[24]. Dallal J. Al, Abdulsalam H., AlMarzouq M., Selamat A. Machine Learning-Based Exploration of the
Impact of Move Method Refactoring on Object-Oriented Software Quality Attributes. Arabian Journal for
Science and Engineering, 2024, vol. 49, pp. 3867-3885. DOI: 10.1007/s13369-023-08174-0.

[25]. Kop3uuko A. O., Janyn H. H. Pa3paGoTka HpHIOKEHHS Ui HOMYYCHHS METPHK MPOrPaMMHOTO
nNpoaAyKTa Ha SA3BIKE 06'I>eKTHO-OpI/IeHTI/IPOBaHHOFO nporpaMMHUpOBaHUA. BecTHuk HepMCKOFO
yHuBepcutera. Maremarnka. Mexanuka. Mupopmaruka, Bem. 3 (62), 2023 r., ctp. 76-84. DOI:
10.17072/1993-0550-2023-3-76-84. / Korznikov A.O., Datsun N.N. Program Realization for Code
Metrics Calculation in Object-Oriented Programming Language. Bulletin of Perm University.
Mathematics. Mechanics. Computer Science, 2023, issue 3(62), pp. 76-84. (in Russian). DOI:
10.17072/1993-0550-2023-3-76-84.

Ungpopmayusi 06 aemopax / Information about authors

Aptem OmeroBna KOP3HUKOB — maructpaHT GpU3NKO-MaTeMaTHIECKOro HHCTHTYTa [lepMckoro
rOCyJapCTBEHHOIO HAIMOHAJIBHOI'O HCCIENOBATENbCKOIO YHHBEPCHTETa, OaKasaBp IPHKIAIHOM
Marematuku W uH(opmaruku. Cdepa HaydyHBIX HMHTEPECOB: METPHKH KOjAa, OOBEKTHO-
OpPHUCHTHUPOBAHHLIC SA3BIKHU nmporpaMMupOBaHusd, MPEAMETHO-OPUCHTHPOBAHHBIC SA3BIKH,
pedaKTOpHHT KOJa.

Artem Olegovich KORZNIKOV — BSc (Applied Mathematics and Computer Science), Master’s
student of the Department of Physics and Mathematics of PSU. Research interests: code metrics,
object-oriented programming languages, domain specific languages, code refactoring.

Hatampss HwukomaeBma JIALIYH sBisercs mpuriamieHHBIM —IIperogaBaTelieM — Kadenpsr
nH(pOpPMAIMOHHBIX TEXHOJOTHH B OM3Hece HalmoHaabHOTO HMCCIIEIOBATENBCKOIO YHHBEPCHUTETA
«Bplcmiasgs mKoTa 3KOHOMHKW», [lepmb; HOIEHT Kadeapsl NpHKIagHONH HH(DOPMATHKH,
nHQOPMAIMOHHBIX CHCTEM M TexHomorui [lepMCKOro ToCynapCTBEHHOTO TyMaHHUTAapHO-
MeJarorMIecKOr0 YHUBEPCUTETA, KaHAUAAT (GU3MKO-MAaTEMaTHIECKUX HAYK, oUeHT. Ee HaydHbIe
MHTEPECH BKIIIOYAIOT METPHKH K02, 00bEKTHO-OPHEHTHPOBAHHBIN aHAIN3 ¥ POESKTHPOBAHME.

Natalya Nikolaevna DATSUN — Cand. Sci. (Phys.-Math,), visiting lecturer of Department of
Information Technology in Business of the National Research University Higher School of
Economics, Perm; Associate Professor, Department of Applied Informatics, Information Systems
and Technologies, Perm State Humanitarian Pedagogical University. Her research interests include
code metrics, object-oriented analysis, and design.

156

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-12 M

Improving Image Analysis
and Processing Performance
on the RISC-V Platform with Lichee Pi 4A

N.l. Cherepanov, ORCID: 0009-0001-9135-9654 <cherepanov.ni@edu.spbstu.ru>
N.O. Stepina, ORCID: 0009-0001-4740-637X <gubenko_no@spbstu.ru>
1.V. Nikiforov, ORCID: 0000-0003-0198-1886 <nikiforov_iv@spbstu.ru>

Peter the Great St. Petersburg Polytechnic University,
29, Polytechnicheskaya st., St. Petersburg, 195251, Russia.

Abstract. The study explores optimization methods for improving image processing performance on the
RISC-V platform with Lichee Pi 4A. The research focuses on real-time video processing within a microservice-
based self-service system. Several existing optimization strategies are considered and evaluated, including
neural network model optimization, hardware acceleration using RVV vector instructions and leveraging the
built-in Neural Processing Unit (NPU). The profiling results on existing strategies indicate that object detection
and feature extraction consume the most computation resources. In order to eliminate the performance gap, the
model quantization to INT8 format is implemented, that allows to reduce memory usage and inference latency.
Additionally, a modified ONNX Runtime version is deployed to support NPU acceleration. These
improvements led to 75% reduction in model size and a 35% decrease in inference latency. The study concludes
that hardware-aware optimizations significantly enchase performance on the RISC-V (Lichee Pi 4A) platform.
The main issue encountered is the low processing speed on Lichee Pi 4A, with a current frame rate of only 0.05
FPS, which in unsuitable for practical usage.

Keywords: RISC-V; Lichee Pi 4A; image processing; neural network; vectorization; NPU; ONNX Runtime;
performance optimization; real-time processing.

For citation: Cherepanov N. I., Stepina N. O., Nikiforov I. V. Improving image analysis and
processing performance on the RISC-V platform with Lichee Pi 4A, Proceedings of the Institute for
System Programming of the RAS, vol. 37, issue 5, 2025, pp. 157-172. DOI: 10.15514/ISPRAS-
2025-37(5)-12.

157

mailto:nikiforov_iv@spbstu.ru

Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

MNMoBbIiWeHMe NpoM3BOAUTENLHOCTM aHanm3a u o6paboTKu
n3ob6paxeHun Ha nnatdopme RISC-V ¢ nomowbto Lichee Pi 4A

H.U. Yepenanos, ORCID: 0009-0001-9135-9654 <cherepanov.ni@edu.spbstu.ru>
H.0. Cmenuna, ORCID: 0009-0001-4740-637X <gubenko_no@spbstu.ru>
H.B. Huxughopos, ORCID: 0000-0003-0198-1886 <nikiforov_iv@spbstu.ru>

Canxm-Ilemepbypeckuii nonumexnuueckuii ynueepcumem Ilempa Benukoeo,
195251, Poccua, Cankm-Ilemepoype, Ilonumexnuueckas yiuya, o. 29.

AHHOTanus. B uccnenoBaHMM W3y4alOTCS METOJbl ONTUMHU3ALMU JUIS MOBBILICHHUS IPOU3BOAUTEIBHOCTH
obpaborku u3o0paxenuii Ha mwiarpopme RISC-V ¢ wucnomb3oBanmem Lichee Pi 4A. Hccnenosanue
COCpPEeIOTOYEeHO Ha 00paboTKe BHIEO B PEXHMME pEalbHOTO BPEMEHH ISl CHCTEMBI CaMOOOCTY>KHBaHW,
KOTOpasi peajn30BaHa B BUAE MUKPOCEPBUCHOTO IIPHIIOKEHHUS. PaccMaTpHUBalOTCS M OLCHUBAIOTCS CTPATCTHU
OINTUMH3ALMH, BKIIFOYAs ONTHMH3ALHIO0 MOJICIN HEHPOHHON CETH, allapaTHoe YCKOPEHHE C UCIIONB30BaHHEM
BEKTOPHBIX MHCTPYKIMit RVV 1 ucnonb3oBaHue BCTPOCHHOrO ycKopuTens miis HelpoHHbIX cereit (NPU).
Pesynbrathl MpOGHINPOBaHKS CYIIECTBYIOUIMX CTPATErHil MOKAa3bIBAIOT, 4TO OOHApYXCHHE OOBEKTOB M
U3BJICYCHUE TIPU3HAKOB MOTPEOISIOT GOJIBIIYIO YaCTh BBIYHCIUTEIBHBIX PecypcoB. UTOOB! YyCTPaHUTD Pa3phiB
B MIPOM3BOJHUTEIBHOCTH, Pealn30BaHO KBaHTOBaHuWe Mojend B ¢opmar INT8, 4ro mo3BoiseT COKpaTuTh
HCIIOIb30BaHKE MAMSTH U 33/IepXKy BbiBoga. Kpome Toro, pasBepuyra momuduimposannas Bepcus ONNX
Runtime ms nomnepskku yckopenus NPU. DT ynydiieHust MPUBEIH K YMEHBIICHHIO pa3Mepa Moieiu Ha 75%
U YMCHBIICHUIO 3aJep)KKM BbIBoma Ha 35%. B wmccnenoBaHmm JenmaeTcst BBIBOJ, YTO —arIapaTHO-
OpPHEHTHUPOBAaHHBIE ONTHMH3AIMU 3HAYUTEIHHO IMOBBIIAIOT MIPOM3BOJUTENBHOCTh Ha Imatdopme RISC-V
(Lichee Pi 4A). A raxxe ompenesieHa OCHOBHas MpoOiieMa MPaKTHYECKOro MPUMEHEHHUs pa3paboTaHHOro
petenust Ha Lichee Pi 4A, cBsi3aHHas ¢ HU3KOM CKOPOCTHIO OOPaOOTKH JAHHBIX: TEKYIIAss 9acTOTa KaJpoB
cocrasiseT Bcero 0,05 FPS.

Kmouessie cioa: RISC-V; Lichee Pi 4A; 06pa6oTka n3o0paxenuii; HelipoHHas ceTh; Bekropusamus; NPU;
ONNX Runtime; ontuMu3anust IPOM3BOIUTEILHOCTH; 00pabOTKa B peaIbHOM BPEMEHH.

Jst mutupoBanus: Yepenanos H. U., Crenmua H. O., Hukudopos . B. IToBblnieHre npon3BoIUTEILHOCTH
aHanm3a U 00paboTku u3oOpaxenuil Ha wiarpopme RISC-V ¢ momompro Lichee Pi 4A, Tpyast UCIT PAH,
tom 37, Beim. 5, 2025 1., ctp. 157-172 (Ha anrmuiickoM si3bike). DOL: 10.15514/ISPRAS-2025-37(5)-12.

1. Introduction

Modern and young open RISC-V [1] architecture is widely used in embedded systems and high-
performance computing. However, when it comes to computer vision [2] and image processing, the
platforms, that implements the RISC-V architecture, face several challenges. Well-established
architectures such as x86 and ARM [3] are free of those challenges because of years of development
and thousands of researchers and developers involved.

One of the main challenges of using RISC-V (especially on Lichee Pi 4A) for image and video
processing is low framerate (FPS) when processing video streams, which is critical for object
detection and classification.

For production lines and environments, where, for example, robotic arms are used, that are equipped
with vision systems, video processing plays a crucial role in object recognition (Fig. 1). Computer
vision relies heavily on video stream processing [4] as working with dynamic scenes requires real-
time object recognition and rapid system response to changes. This is particularly important in fields
such as retail, medical diagnostics and autonomous systems, where the accuracy and speed of frame
analysis directly impact decision-making. Transitioning from standard processors to RISC-V
platforms could significantly reduce manufacturing costs due to their open-source nature and
hardware flexibility in comparison to traditional hardware and software design.

158

mailto:cherepanov.ni@edu.spbstu.ru
mailto:nikiforov_iv@spbstu.ru

Yepenanos H. U., Crenuna H. O., Hukudopos U. B. [ToBbinieHne npon3BOgUTEIbHOCTH aHAM3a U 00paboTKK n300paxkeHuit Ha miatdopme
RISC-V ¢ nomouisto Lichee Pi 4A, Tpyowr UCII PAH, 2025, tom 37 Bbim. 5, c. 157-172.

Video information | Real-time processing
and decision-making

using neural networks

h 4

Industrial Parts

ol
*x

Management commands|

RISC-V (Lichee Pi 4A)
Fig. 1. Testing environment - computer vision system.

There are the following existing implementations of RISC-V on the market: Lichee Pi 4A, Mango
pi MPI-MQ1, Milk-V Pioneer, Banana Pi BPI-K1, VisionFive 2, GiFive Unmatched. Each of these
platforms varied in terms of performance, available features and suitability for machine vision
applications (Table 1).

The Lichee Pi 4A board served as the hardware platform for this project, following a task proposed
by an industrial partner. The goal of the work includes evaluation of the performance characteristics
and evaluating if Lichee Pi 4A is suitable for practical applicability of this specific RISC-V
implementation in real-time machine vision scenarios. Compares to other boards, Lichee Pi 4A
offered a balanced combination of high CPU frequency, a powerful GPU and a dedicated NPU,
making it suitable for neural inference tasks such feature extraction.

Table 1. Comparison of characteristics of single RISC-V Boards.

Model CPU CPU Freq. GPU NPU RAM Price
. Allwinner D1
Mango Pi (C906, RISC-V) 1.0GHz - - 1GB DDR3 $20
. . |T-Head TH1520 Imagination up to 16GB | _
Lichee Pi (4xC910) 2.0GHz BXM-4-64 | TOPS| | 'boDRAX $119
SOPHON
Mikl-Vv SG2042 up to 2Ghz - - up tgééﬁGB ~$1000
(64xC920)
.| SpacemiT K1 up tol6 GB | _
Banana Pi (6xX60) - IMG BXE-2-32 |2 TOPS LPDDRA $100
T StarFive JH7110 upto8GB | _
VisionFive 2 (4xUT4) 15GHz |IMG NXE-4-32 - L PDDR3 $70
SiFive U740
HiFive (4xU74 1.2GHz - - 16GB DDR4 | ~$665
+S7 core)

As a result of the testing and evaluating the performance in the article it is concluded that Lichee Pi
4A lags in performance, especially in real-time processing. This is not due to RISC-V flaws in the
architecture itself, but rather its relative novelty: high-performance chips are still in development
and many essential software tools have not been ported yet.

As far as there is no direct access to industrial systems, article authors created a development
environment for retail domain. There is a microservise application [5] developed, where video
processing serves as the functionality. Based on this system, various optimization approaches are
considered and evaluating. The system consists of three main microservices [6]:

e backend service - responsible for video stream processing, object detection and managing
the consumers requests;

159

Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

o frontend service - provides the user interface and displays the video stream;

o database service - stores product data, including names, prices and categories.
The main goal of testing system, that is used for performance evaluation, is to automatically identify
the products taken by the customer and generate a shopping cart for checkout. However, its current
implementation, the video processing speed is only 0.05 FPS, making the system unsuitable for
practical use. To ensure successful, the processing speed must reach 30 FPS [7].
Thus, the key objective of this study is to increase the performance of the computer vision system
on the Lichee Pi 4A platform to 30 FPS. To achieve this, the following steps are necessary [8]:

e optimizing the neural network model for object detection;

e improving frame processing while considering the capabilities of the RISC-V platform;

e utilizing hardware accelerators such as NPU, SIMD and RISC-V Vector Extensions

(RVV) [9].

To evaluate the system’s real-time performance, the frames per second (FPS) metric is measured
using Python high-resolution timer. The procedure includes the following steps:

e at the beginning of each frame-processing cycle, the start timestamp is recorder;

o the frame undergoes all stags of processing, including acquisition, processing, neural
network inference and postprocessing;

e upon completion, the end timestamp is recorded;

o the time taken for a single frame is computed as the difference between the end and start
time;

¢ instantaneous FPS is calculated as the reciprocal of the frame time;

o this process is repeated for a large number of frames and the average FPS is derived by
averaging the collected values.

To assess the computational load of operations, CPU usage is analyzed at each stage of processing.
The 15-20% allocation for preprocessing is determined by comparing the total processing time with
the time spent specifically on this stage across several experiments.

In order to understand hardware and software design (co-design) of the experiment stand, that is
critical for performance evaluation, let’s consider every part separately.

2. Research

Modern research it the field of image processing on the RISC-V platform demonstrates a growing
interest in optimizing performance and energy efficiency, especially for embedded systems and
devices with limited resources. This chapter examines the key work on this topic, as well as
highlights their main achievements and limitations.

In [10], a hardware accelerator for YOLOvV3-Tiny using RISC-V SoC was proposed. The authors
achieve a bandwidth of 21.6 GOPS/s, but note limitations associated with frequent memory access.
The article [11] compares various models (SOLO, SSD, Faster RUN) on the SiFive U540 platform.
YOLOvV3 and SSD-MobileNet showed the best results, which confirms the importance of choosing
a model for a specific hardware platform.

The work [12] demonstrates the advantages of vector instructions to speed up CNN operations. The
authors note that increasing the length of the vector (VLEN) does not always lead to a proportional
increase in performance due to memory limitations.

In [13], the use of TVM for quantized RISC-V models with the P extension is investigated. The
results show an acceleration of 2.7 — 7.0 times compared to FP32, which highlights the potential of
quantization for RISC-V.

160

Yepenanos H. U., Crenuna H. O., Hukudopos U. B. [ToBbinieHne npon3BOgUTEIbHOCTH aHAM3a U 00paboTKK n300paxkeHuit Ha miatdopme
RISC-V ¢ nomouisto Lichee Pi 4A, Tpyowr UCII PAH, 2025, tom 37 Bbim. 5, c. 157-172.

3. Platform’s hardware equipment

The project is implemented using the Lichee Pi 4A - a single-board computer based on the T-Head
TH1520 processor. Its key specifications include:

e processor —4-core RISC-V C920 (up to 1.85 GHz) with SIMD and RVV 0.7.1 support;

e graphics — 50 GFLOPS Imagination BXM-4-64 GPU (supports OpenGL ES 3.x and
Vulcan);

o NPU -4 TOPS performance for accelerating Al computations;
e RAM —upto 16 GB LPDDRA4/4x.

The T-Head TH1520 processor, developed by Alibaba Group’s semiconductor division, is designed
for embedded systems with high computational demands. It features an optimized L1 and L2 cache
hierarchy, which plays a crucial role in processor performance. The L1 cache is split into separate
instruction and data caches, allowing for faster access to frequently used data and reducing latency.
The L2 cache, being larger and shared among cores, helps mitigate memory bottlenecks by storing
recently accessed data, reducing the need for frequent main memory accesses. This cache structure
significantly improves processing speed, particularly in image analysis and video processing tasks,
where rapid data retrieval is essential. The BXM-4-64 GPU provides hardware-accelerated
rendering and supports 4K displays. However, for machine learning tasks and other algorithms that
require massive parallel computing, it is recommended to use NPU, since its performance higher
than the GPU capabilities in similar workloads.

4, Software architecture

ONNX Runtime is a high-performance inference engine designed to execute machine learning
models in the ONNX (Open Neural Network Exchange) format [14]. It provides hardware
acceleration and optimization techniques, making it suitable for deployment across various
platforms, including CPU, GPU and specialized accelerators.

The project uses ONNX Runtime for model execution because TensorFlow, PyTorch and other
major ML libraries are not officially ported to RISC-V. TensorFlow Lite for Microcontrollers has
been ported to RISC-V architecture, but this is just a lightweight version. Porting the full version of
TensorFlow to RISC-V requires the use of cross-compilers and additional settings, which is
confirmed by the documentation of the RISE project. PyTorch also has no official support for the
RISC-V architecture. There are initiatives to port PyTorch to RISC-V, such as the pythorch-riscv64
project, which provides pre-built packages for RISC-V. However, these solutions are experimental
and are not part of the official PyTorch release. In addition, discussions on the PyTorch forums
confirm that official support for RISC-V is in plans but has not yet been implemented. Since there
is no built-in support for these platforms in RISC-V, ONNX provides a universal solution that allows
you to export models trained in various environments (for example, PyTorch or TensorFlow) to
ONNX format and then efficiently execute them on RISC-V hardware.

Key reasons for choosing ONNX on Lichee Pi 4A are listed below.
1. Cross-platform compatibility — ONNX models can be exported from multiple ML
frameworks.

2. Hardware acceleration — ONNX Runtime optimizes inference through quantization,
graph optimizations and hardware-specific execution provides.

3. Lack for TensorFlow/PyTorch support — since these frameworks are not available on
RISC-V, ONNX is the best alternative.

4. Support for custom execution providers — while ONNX Runtime does not native support
TH1520 NPU, it allows experimentation with custom providers like
ShlExecutionProvider for potential acceleration.

161

Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

YOLOvV8N (You Only Look Once, version 8, nano model) is a deep learning model designed for
real-time object detection [15]. It balances accuracy and speed, making it suitable for embedded
systems like the Lichee Pi 4A. The model is exported in ONNX format for compatibility with ONNX
Runtime.
Key features of YOLOv8n:
e single-stage detection — the model predicts object location and classifications in a single
pass, ensuring fast inference;
e optimized for edge devices — the “small” version is designed for efficiency, making it
suitable for resource — limit platforms;

o flexibility — it can be quantized to INT8 for acceleration on NPU, though additional steps
are needed for TH1520 support.

YOLOv8n followed a CSP-based architecture [16] and included three main components:

o backbone (C2f + CBS) — extracted features at multiple scales using convolutional layers
with residual connections;

¢ neck (PAN-FPN) — aggregated multi-scale feature maps using anchor-free detection;

e head — prediction object classes and bounding boxes directly from feature maps using
anchor-free detection.

This lightweight design allowed the model to maintain good detection accuracy with reduced latency
and memory usage.

To train the object detection model, a custom dataset is created. The dataset consists of N products
categories, each containing 500 images, a total of 2800 images are used for training and validation
of the model, approximately 85MB on disk, collected from various online sources [17]. The dataset
is prepared in the YOLO format, which includes:

e images — the raw images containing objects of interest;

e annotation files — each image has a corresponding text file with bounding box coordinates
and class labels in YOLO format.

The annotation process involved:

e collecting images — downloading diverse product images to cover different angles,
lighting conditions, and backgrounds;

e manually labeling objects — using Laballmg and other annotation tools to draw bounding
boxes around objects and assign category labels.

The dataset images vary in resolution. All images are stored in 24-bit RGB color format with a DPI
of 72. This dataset is used to train YOLOvV8n, optimizing it for real-world object detection in the
system.

As the metrics below show, this amount of data is enough to detect objects, but for more important
tasks, for example in the field to medicine, where accuracy should be close to 1, an order magnitude
more images are needed [18].

After training, the model achieved high accuracy. The average reached 0.993, indicating an almost
perfect match between predicated and actual objects.

On the Precision-Recall Curve [19] (Fig. 2), the curve for most classes stayed close to the upper-
right corner, confirming high precision along with excellent recall.

On the Recall-Confidence Curve [20] (Fig. 3), all classes maintained high recall up to a confidence
threshold of 0.85-0.9, meaning the model detected almost all object even at high confidence levels.
The system follows a structured pipeline for image processing and object detection, that is described
step by step below.

162

Yepenanos H. U., Crenuna H. O., Hukudopos U. B. [ToBbinieHne npon3BOgUTEIbHOCTH aHAM3a U 00paboTKK n300paxkeHuit Ha miatdopme
RISC-V ¢ nomouisto Lichee Pi 4A, Tpyowr UCII PAH, 2025, tom 37 Bbim. 5, c. 157-172.

1.

2.
3.
4

Preprocessing — normalization, resizing, and noise reduction.

Embedding extraction — converting the image into a vector representation.
Inference — running the neural network for detection and classification.
Postprocessing — interpreting and visualizing the results.

r s
Precision-Recall Curve
10 mem - product 1: 0.995
w - product 2: 0.993
sy - product 3: 0.005
0.951 s - product 4: 0.995
me - product 5: 0,988
s s - product 6: 0.995
2 0.9 - 211 product: 0.993
£
0.85
0.8 >
0.8 085 0.9 095 1.0

Recall

Fig. 2. Precision-Recall Curve for testing dataset of object recognition.

Recall-Confidence Curve

- product 1: 0.995
wn - product 2; 0.993
s - product 3: 0.005
- product 4: 0.995
mem - product 5: 0.988
- product 6: 0.995
e - all product: 0.993

0.8

06

Recall

04

0z

: |

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Fig. 3. Recall-Confidence Curve for testing dataset of object recognition.

5. Bottleneck analysis

Let’s consider video processing steps and how they are implemented.
The OpenCV library is utilized for video stream capture and preprocessing [21], providing user-
friendly interfaces for handling video sources and image processing. Object detection is performed
using the ONNX version of YOLO [22], executed via ONNX Runtime.
Video acquisition is handled using OpenCV through the cv2.VideoCapture object. The resolution
parameters for the video stream are defined this loop as listing 1:

163

Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

Listing 1. Loop video stream capture

cap = cv2.VideoCapture(1)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

This configuration allows capturing frames at a resolution of 640x480 pixels in real time. The value
1 in VideoCapture(1) specifies that an external camera is being used. However, the resolution of
640x480 indicated in the article formally falls under the category of “low” according to GOST
51558-2014, where the threshold is considered to be a resolution of up to 756x576 pixels. In
addition, the choice of this resolution in the article is not due to an attempt to achieve an industrial
level of quality, but to the desire to demonstration the operability of the entire system at a prototype
level with low hardware capabilities. For industrial implementation, the solution can be adapted to
a higher camera resolution that meets requirements of GOST with more efficient hardware at the
same time. With our current experiment we see, that even for low picture resolution the recognition
speed is not enough for industrial tasks.

Obiject detection is performed using YOLO model in ONNX format. The ONNX Runtime library in
used for inference and preprocessing steps include below items.

1. Conversion to a Pillow object.
2. Resizing to 640x640 pixels (matching the YOLO model input format).
3. Pixel value normalization and array reshaping.
A typical video processing pipeline consists of the following key stages [23] listed below.
1. Video capture (from a camera or disk).
2. Preprocessing (video pipeline).
3. Object detection (detector).
4. Main data processing (post processing).
5. Database search (search).

Analyzing the workload at each stage helps identify the most resource-intensive operations and
determine bottlenecks that affect system performance. The percentage values in the table are
obtained through profiling and benchmarking of each processing stage. These are relative values
from the total time. The time share is measured by running the video processing pipeline on the
Lichee Pi 4A and recording the execution time for each step. Profiling and logging tools are used to
analyze performance bottlenecks, and running tests multiple times ensures consistency of the results
shown in Table 2.

Table 2. Time distribution and main limitations for video processing stages.

Processing stage Time share Main limitations
Video capture 0.10% Depends on camera /O speed
Preprocessing 36.27% Resize, normalization CPU-bound
Obiject detection 61.24% Low CPU processing speed
Main data processing 1.80% Decode CPU-bound
Database search 0.04% Scale with database size

To identify bottleneck in system performance, a detailed analysis is conducted using the gprof tool.
The primary focus is on the following aspects:

o function execution time — measuring the time spent on key image processing stages;
e CPU and NPU workload distribution — analyzing hardware accelerator utilization;
¢ cache efficiency — evaluating the impact of caching on data processing speed.

164

Yepenanos H. U., Crenuna H. O., Hukudopos U. B. [ToBbinieHne npon3BOgUTEIbHOCTH aHAM3a U 00paboTKK n300paxkeHuit Ha miatdopme
RISC-V ¢ nomouisto Lichee Pi 4A, Tpyowr UCII PAH, 2025, tom 37 Bbim. 5, c. 157-172.

Profiling is performed on real video streams with a resolution of 640x480 pixels. The backend
service used for testing is ran on the Lichee Pi 4A.

5.1. Video capture and pre-processing

The video capture and pre-processing stage involves reading and decoding the video stream [24].
The main workload comes from continuous data writing and reading, which can quickly fill the
cache memory. A limited cache size may cause additional delays due to frequent access to RAM.

5.2. Object detection

Detection is the first stage where neural network algorithms are applied [25]. It runs faster on a GPU,
but if GPU acceleration is unavailable, the CPU must handle the workload, creating significant
pressure on processor cores. On the Lichee Pi 4A, the built-in IPU can be used, but integrating it
with ONNX Runtime presents certain challenges:

e manual model conversion and low-level integration are required;
e hardware support is limited,;
o the lack of documentation and stable tools (HHB, SDK) complicates debugging.

5.3. Inference

This stage involves running deep neural network models [26]. The main workload is typically
handled by the GPU, but on the RISC-V platform with RVV, some vector processing operations can
be offloaded to hardware, reducing dependence on the GPU. However, the lack of stable
OpenCL/Vulkan drivers for the GPU remains an issue.

5.4. Vectorization and embedding

After inference, feature extraction is required. This stage demands intensive computation. The use
of SIMD and RVV vector instructions could speed up the process [27], but current implementations
do not always take full advantage of these capabilities.

5.5. Database search

This stage places a load on memory and storage. If the database is stored on a device with limited
memory, frequent disk access can cause delays. However, in the current project, this is not a critical
issue that needs immediate resolution.

Future following improvements are possible:
¢ implementation of multi-level caching;
o use of memory-mapped files;
e optimization of data structures for RISC-V architecture;
e vector quantization to reduce memory footprint.

5.5. Diaghosing problems

Video processing challenges on the Lichee Pi 4A stem from both hardware limitations and software
inefficiencies. Optimizations such as SIMD/RVV utilization, hardware NPU acceleration, and
advanced memory management algorithms can significantly improve system performance.
Diagnostics can be performed at different levels:

o hardware level —the Lichee Pi 4A is based on a relatively new architecture and its

processor implementation differs from more established platforms. This leads to potential
inefficiencies due to immature compiler optimizations, incomplete hardware support, and

165

Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

limited documentation;

o software level — many libraries and frameworks have not yet been fully ported to RISC-V,
leading to compatibility issues and suboptimal performance. Additionally, the software
stack itself can often be optimized further, reducing redundant computations and
improving overall efficiency.

6. Optimization methods

Optimizing image processing is an important aspect that helps reduce computation time [28], lower
CPU load and improve overall system performance. This section discusses various optimization
techniques, from using hardware instructions to implementing multithreaded data processing.

6.1. Using RVV for preprocessing and preprocessing

The RVV vector instruction extension enables parallel computing (Fig. 4), which is particularly
useful for matrix and tensor operations is neural network models [29] This method significantly
speeds up tasks involving large amounts of data, such as image transformation, normalization, and
convolution.

The vector VADD command adds two arrays A and B

i call
preparation p——|
& . H i time to receive a single result
reading k + u u
reading F 4 1
record + +
record k + t

Fig. 4. Time diagram of vector addition of two arrays.

Applying RVV (RISC-V Vector Extension) can notably accelerate both data preprocessing (such as
normalization, filtering and image transformations) and the inference stage of deep learning models.
For example, operations like matrix multiplication within convolutional layers benefit greatly from
vectorized execution [30]. Unlike scalar processing (Fig. 5), which handles data elements one at a
time, vector registers in RVV enable simultaneous execution of multiple operations within a single
CPU cycle. It allows you to load a bunch of values into a vector register and simultaneously perform
operations on them.

The scalar ADD command adds two arrays A and B

reading FH—+—

reading —t—

addition ——

record e s |
increment-verification)

time to receive a single result

Fig. 5. Time diagram of vector addition of two arrays.

Since the analysis of the video processing pipeline from section IV showed that it is necessary to
speed up the work of not only the inference model, but also postprocessing and preprocessing, since
they also significantly load the system. To do this, we use vectorization of calculations. On Fig. 6
166

Yepenanos H. 1., Crenuna H. O., Hukudopos U. B. [ToBbinenne npou3BoIUTENPHOCTH aHAIM3a 1 00pabOTKH M300paXeHuii Ha miatdopme
RISC-V ¢ nomouisto Lichee Pi 4A, Tpyowr UCII PAH, 2025, tom 37 Bbim. 5, c. 157-172.

the color of rectangle represents the load factor of the module. Green color — is low level of load,
yellow color — is medium load and red color — is the highest loaded modules, that requires a lot of
hardware resources.

0o |

i 1 IMAGE POST

1 VIOED STREAW PROCESSING

| i {decode)
medium load

Fig. 6. Video processing pipeline.

To apply RVV in an experimental application, functions for preprocessing and postprocessing are
written in C using an intrinsic. An important clarification is that the Lichee Pi 4A has the RVV 0.7.1
standard, which does not have auto-vectoring. Therefore, the RVV code is cross compiled into an
executable file and functions are inserted into Python code using the Cpython library.
At the preprocessing stage (Fig. 7), image scaling, normalization and formatting operations are
performed to feed into the neural network model. These steps include:

e resizing the image (cv2.resize);

o normalization of pixel values to the range [0.0, 0.1];

e channel rearrangement (CHW).

Using RVV allows to vectorize channel normalization and transformation operations. Instead of
sequentially processing each pixel, RVV loads a vector of pixels and applies division and transpose
operations in parallel.

| Input: BGR image (uint8 t*) I

| Step 1: Setup scale = 1/255.0, vi = vsetvi() |

Step 2: Load B, G, R vectors (vlev 8 v)

v
I Step 3: Class determination (vrgather + vmv.x for argmax) l

!
| Step 4: Normalize (vfmul) |

| Step 5: Store to CHW format |

'
[Output: Float CHW array |

Fig. 7. Block diagram of the preprocessing function.

Postprocessing includes (Fig. 8) processing the output tensor of the model: threshold filtering,
coordinate recalculation and preparation on the final list of objects. RVV is used to vectorize the
following operations:

e extracting and converting coordinates of boxes (x1, X2y, x2, y2);
o calculation of confidence (np.max);
o finding the class (np.argmax);
167

Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

o filtering by threshold;
e converting coordinates to pixels.

| Input: Model output tensor |

| Step 1: Extract coordinates (x1, y1, x2, y2) with RVVJ

| Step 2: Vectorized conﬁdenccl

| Step 3: Class determination (vrgather + vmv.x for argmax) |

| Step 4: Threshold filtering (vmseq + vcompress) |

| Step 5: Pixel conversion (vimacc + scaling factors) I

l Output: Final object list |

Fig. 8. Block diagram of the postprocessing function.

The following RVV intrinsics were used:

o vsetvl_e32m4 — sets the length of the vector for operations with 32-bit elements using 4
registers (m4). Automatically determining the maximum possible length for the remaining
data.

e vsle_v_u8ml — page loading of 8-bit unsigned integers in 3-byre increments. Allows you
to load color components from an alternating format.

e vwaddu_vx_ul6ém2/vwaddu_vx_u32m4 — is an unsigned bit depth extension with a zero
extension. What you need to convert to float.

o vfcvt f xu_v_f 32m4 — conversion of unsigned 32-bit integers to float32. It is necessary
to maintain accuracy during normalization.

o vimul_vf_32m4 — vector multiplication for normalization. Multiplies each element of the
vector by 1/255 in one operation.

e vse_v_f32m4 — batch saving of 32-bit float values. This is necessary for the correct
location of the data in the CHW format.

The postprocessing function has been optimized in a similar way.

By applying RVV instruction image processing, it was possible to achieve some speed
improvements (Table 3). Thus, RVV becomes an excellent optimization tool both for processing the
data preparation stages before launching the neural network and for subsequent processing of the
results. Moreover, compared OpenCV vector methods the speed increases by about 2 times after
using RVV. And by an order of magnitude compared to scalar methods.

Table 3. RVV application results.

Time using OpenCV | Time using OpenCV | Out optimization
scalar functions vector functions option
(sec) (sec) (sec)
Preprocessing 45.4798 0.0437 0.0222
Postprocessing 0.0093 0.0026 0.0005

168

Yepenanos H. U., Crenuna H. O., Hukudopos U. B. [ToBbinieHne npon3BOgUTEIbHOCTH aHAM3a U 00paboTKK n300paxkeHuit Ha miatdopme
RISC-V ¢ nomouisto Lichee Pi 4A, Tpyowr UCII PAH, 2025, tom 37 Bbim. 5, c. 157-172.

6.2. Optimizing Inference Using NPU

The Neural Processing Unit (NPU) is designed for operations related to neural networks. Using the
NPU can significantly speed up inference by offloading computations from the CPU and running
them in a dedicated hardware block, which is especially useful for real-time processing of large
datasets [31].

However, not all models automatically support hardware acceleration, requiring adaptation.
Optimization includes replacing unsupported operations with equivalent ones that work efficiently
on the NPU and using quantized models to reduce computational load [32].

To use the NPU, follow these steps:
e environment preparation;
e converting the trained model to onnx format;
¢ quantification of the model in INT8 format, using special HHB tool;
e cross-compilation of the model into an executable program on the CPU/NPU.

This method efficiently processes images, leveraging parallel computing to accelerate embedding
extraction.

Using multithreading to distribute computational tasks across CPU cores can improve image
processing performance [33]. For example, separate threads can handle preprocessing and inference,
allowing them to run un parallel. After using the NPU, good improvements were obtained (Table 4).
The launches were carried out on the CPU and NPU.

Table 4. Comparison of data processing time on a neuroprocessor and a central processing unit.

Device Time using (sec)
NPU 0.063
CPU 67

As one can see from the results, running the model without using an NPU has no practical
application, since the execution speed will be too low. Using an NPU significantly speeds up
execution.

6. Conclusion

The highest computational load in image processing in our experimental stand comes from the
inference and image processing. Therefore, these should be rewritten in C using RVV instructions
and, if possible, the NPU accelerator. Using optimized libraries and multithreading can also
significantly improve performance.

After applying the NPU, we got quite good improvements (Table 5). For comparison, another
YOLOvV5n model was used, which is optimized for our NPU. The launches were carried out on the
CPU and NPU.

Table 5. Comparing the performance and accuracy of YOLO models on different computing devices.

Model Device FPS Accuracy
YOLOvV8n NPU 5-10 0.967
YOLOvV8n CPU <1 0.993
YOLOv5n NPU >30 0.962
YOLOvVbN CPU <1 0.991

As one can see from the lest results, the speed increased significantly. Running the model without a
NPU does not make sense, since the processing speed will be too low for practical use. But these
results do not give us an accurate understanding of whether this board can be used for industrial

169

Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

applications, since all the steps taken have a lot of pitfalls. However, after solving the problems
associated with the development of software tools, it will give a better understanding.

References

[1].
[2].
[3].
[4].
[5].

[6].
[71.

(8l

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

170

Cui E., Li T. Wei Q. RISC-V instruction set architecture extensions. A survey. IEEE Access 11, 2023,
24696-24711. DOI: 10.1109/ACCESS.2023.3246491.

Shen Y. Computer Vision: Technologies and Applications. Applied and Computational Engineering, vol.
163, no. 1, pp. 35-41, Jun. 2025, DOI: 10.54254/2755-2721/2025.23817.

Ali W. Exploring Instruction Set Architectural Variations: x86, ARM, and RISC-V in Compute-Intensive
Applications, Aug. 2023, DOI: 10.36227/techrxiv.24026736.

Han C., Chang C., Srivastava S., Lu Y. Scalable Complex Event Processing on Video Streams. Proc. ACM
on Management of Data, vol. 3, no. 3, pp. 1-29, Jun. 2025, DOI: 10.1145/3725419.

Borysenko V., Borysenko T. Modern approaches of design software applications based on microservice
architecture in computer and information systems and technologies. Apr. 2020,
DOI: 10.30837/IV/csitic2020201441.

Bhatnagar S., Mahant R. Designing Microservices in The Art of Decoding Microservices: An In-Depth
Exploration of Modern Software Architecture. Launch IT, 2025, pp. 135-192.

Domenech-Asensi G., Garrigos J., Lopez P., Brea V., Cabello D. Real time architectures for the Scale
Invariant Feature Transform algorithm. CNNA 2016; 15th International Workshop on Cellular Nanoscale
Networks and their Applications. Dresden, Germany, 2016, pp. 1-2.

Obukhov A., Dedov D., Volkov A., Rybachok M. Technology for Improving the Accuracy of Predicting
the Position and Speed of Human Movement Based on Machine Learning Models. Technologies, vol. 13,
no. 3, p. 101, Mar. 2025, DOI: 10.3390/technologies13030101.

Qin X, Liu X., Han J. A CNN Hardware Accelerator Designed for YOLO Algorithm Based on RISC-V
SoC. Proc. IEEE Int. Conf. ASIC, Kunming, China, 2021, pp. 1-4,
DOI: 10.1109/ASICON52560.2021.9620500.

Srivastava S. K, Srivastava A. K., Allam S., Lilaramani D. Comparative analysis on Deep Convolution
Neural Network models using Pytorch and OpenCV DNN frameworks for identifying optimum fruit
detection solution on RISC-V architecture. IEEE Mysore Sub Section International Conference
(MysuruCon), Hassan, India, 2021, pp. 738-743, DOI: 10.1109/MysuruCon52639.2021.9641594.

Chen Y.-R. Experiments and optimizations for TVM on RISC-V Architectures with P Extension.
International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2020,
pp. 1-4, DOI: 10.1109/VLSI-DAT49148.2020.9196477.

Yu M.-S., Chang H.-C., Wang C.-T., Tien Y.-W. Optimizing computer vision algorithms with TVM on
VLIW architecture based on RVV. The Journal of Supercomputing, vol. 81, no. 1, Nov. 2024,
DOI: 10.1007/511227-024-06530-X.

Jajal P, Jiang W, Tewari A, Kocinare E, Woo J, Sarraf A. Interoperability in deep learning: a user survey
and failure analysis of ONNX model converters. In: Proc. 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis. New York: ACM; 2024. p. 1466-1478,
DOI: 10.1145/3650212.3680374.

Fusaomi N., Shingo S., Ryoma A., Keigo W., Maki K. H. Evaluation of Interoperability of CNN Models
between MATLAB and Python Environments Using ONNX Runtime Model. Al, Computer Science and
Robotics Technology 3(1), 1-13. 2024, DOI: 10.5772/acrt.20240043.

Sohan M., Ram T. S., Ch V. R. R. A Review on YOLOVS8 and Its Advancements. Data Intelligence and
Cognitive Informatics, Jan. 2024, pp. 529-545, DOI: 10.1007/978-981-99-7962-2_39.

Almeyda S., Davila A.: Process Improvement in Software Requirements Engineering: A Systematic
Mapping Study. Programming and Computer Software, 48, Aug. 2022, pp. 513-533.
DOI: 10.1134/S0361768822080084.

Lunev D., Poletykin S., Kudryavtsev D. Brain-computer interfaces: Technology overview and modern
solutions. Modern Innovations, Systems and Technologies, vol. 2, no. 3, Jul. 2022, pp. 0117-0126,
DOI: 10.47813/2782-2818-2022-2-3-01170126.

Tsekhmystro R., Rubel O., Prysiazhniuk O., Lukin V. V. Impact of distortions in UAV images on quality
and accuracy of object localization. radioelectronic and computer systems, Jan. 2025,
DOI: 10.32620/reks.2024.4.05.

Fischer L., Wollstadt P. Precision and Recall Reject Curves for Classification. Aug. 2023,
DOI: 10.48550/arXiv.2308.08381.

Yepenanos H. U., Crenuna H. O., Hukudopos U. B. [ToBbinieHne npon3BOgUTEIbHOCTH aHAM3a U 00paboTKK n300paxkeHuit Ha miatdopme
RISC-V ¢ nomouisto Lichee Pi 4A, Tpyowr UCII PAH, 2025, tom 37 Bbim. 5, c. 157-172.

[20]. Boyd K., Eng K. H., Page C. D. Area under the Precision-Recall Curve: Point Estimates and Confidence
Intervals. Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
Lecture Notes in Computer Science, vol. 8190, pp. 451-466, Sep. 2013, DOI: 10.1007/978-3-642-40994-
3 29.

[21]. Sinha E., Kumar A., Tyagi A. OpenCV for Computer Vision Applications. International Journal For
Multidisciplinary Research, vol. 7, no. 3, May 2025, DOI: 10.36948/ijfmr.2025.v07i03.44280.

[22]. Chinnaraju A. Benchmarking cross-platform Al: Web Assembly, ONNX Runtime and TVM for
Real-Time Web, Mobile, and 1oT Deployment. World Journal of Advanced Research and Reviews, vol.
26, no. 2, pp. 1937-1963, May 2025, DOI: 10.30574/wjarr.2025.26.2.1832.

[23]. Yang S., Lu T. T3 SOC design flow case study: Design a video processing pipeline. ASIC, ASICON '07.
7th International Conference, Nov. 2007, DOI: 10.1109/ICASIC.2007.4415551.

[24]. Jindal K. Design and Implementation of an Embedded Image Processing System on Zynq ZedBoard: A
VLSI Perspective. International Journal for Research in Applied Science and Engineering Technology,
vol. 13, no. 5, pp. 5141-5145, May 2025, DOI: 10.22214/ijraset.2025.71372.

[25]. Smirnov E., Timoshenko D., Andrianov S. Comparison of Regularization Methods for ImageNet
Classification with Deep Convolutional Neural Networks. AASRI Procedia, vol. 6, pp. 89-94, Dec. 2014,
DOI: 10.1016/j.aasri.2014.05.013.

[26]. Pujari S. D., Pawar M. M., Wadekar M. Multi-Classification of Breast Histopathological Image Using
Xception: Deep Learning with Depthwise Separable Convolutions Model. Techno-Societal, pp. 539-546,
May 2021, DOI: 10.1007/978-3-030-69921-5_54.

[27]. Wang S., Wang X., Xu Z., Chen B. Optimizing CNN Computation Using RISC-V Custom Instruction
Sets for Edge Platforms. IEEE Trans. Comput, May 2024, pp. 1-14, DOI: 10.1109/TC.2024.3362060.

[28]. Titopoulos V., Alexakis G., Nicopoulos C., Dimitrakopoulos G. Efficient Implementation of RISC-V
Vector Permutation Instructions. arXiv:2505.07112, May 2025, DOI: 10.48550/arXiv.2505.07112.

[29]. Yuan T., Liu W., Han J., Lombardi F. High Performance CNN Accelerators Based on Hardware and
Algorithm Co-Optimization. IEEE Trans. Circuits Syst. I, Reg. Papers, Oct. 2020, pp. 1-14,
DOI: 10.1109/TCS1.2020.3030663.

[30]. Jin S., Qi S., Dai Y., Hu Y. Design of Convolutional Neural Network Accelerator Based on RISC-V. Proc.
10th Int. Conf. Appl. Tech. Cyber Intell. (ICATCI 2022), 2023, pp. 446-454. DOI: 10.1007/978-3-031-
29097-8_53.

[31]. Cono D’Elia D., Demetrescu C. Ball-Larus Path Profiling across Multiple Loop Iterations. SIGPLAN Not.
48, 10 (oct 2013), pp. 373-390, DOI :10.1145/2544173.2509521.

[32]. Agarwal R., Deshmukh R., Borhade P., Murarka S. Image Classification using Parallel CPU and GPU
Computing. Int.J. Eng. Adv. Technol., vol. 9, no. 4, Apr. 2020, pp. 5, DOI: 10.35940/ijeat.D7870.049420.

[33]. Shanthi M., Anthony Irudhayaraj A. Multithreading - An Efficient Technique for Enhancing Application
Performance. International Journal of Recent Trends in Engineering, Vol 2, No. 4, Nov. 2009, pp. 165-
167, DOI: 10.22146/ijccs.57594.

UHgpopmayusi 06 aemopax / Information about authors

Hukura WBanosuu YEPEIIAHOB- crTyaeHT MarvctpaTypbl BBICHIEM IIKOJBI HPOrpaMMHOM
nmkenepun Cankr-IletepOyprekoro nonurexnuueckoro ynusepcurera [lerpa Benmkoro. B 2025
noydms kBadugukanuio 6akanaBpa B CaHkT-IleTepOyprckoM MOIMTEXHUYECKOM YHHBEPCHUTETE
[erpa Benukoro no cnennansHocTy "TexHomorus pa3pabOTKN M CONPOBOXK/ICHNS Ka4E€CTBEHHOTO
nporpammHoro npoaykra". Cdepa HaydHBIX MHTEPECOB: IPOrpaMMHBIE apXUTeKTypbl, RISC-V,
MalIMHHOE 00y4YeHne, KOMITbIOTEPHOE 3PEHHE, NCKYCCTBEHHBIH MHTEIIIEKT.

Nikita lvanovich CHEREPANOV is a master's student at the Higher School of Software
Engineering at Peter the Great St. Petersburg Polytechnic University. In 2025, he got bachelor
degree by graduating from Peter the Great St. Petersburg Polytechnic University with a specialty in
“Technology for developing and maintaining a high-quality software product”. Research interests:
software architectures, RISC-V, machine learning, computer vision, artificial intelligence.

Hanexna Onerosna CTEIIMHA — accucTeHT BbICIIEH HIKOJBI MPOrpaMMHON nH>keHepuu CaHKT-
[erepOypreckoro nonurexunveckoro yHusepcurera [lerpa Bemmkoro. B 2023 rogy oxonumna
Canxr-TlerepOyprckuii Tocy1apCTBEHHBIH IMOJIUTEXHUYECKUH YHHBEPCUTET MO CIIEIHAIbHOCTH

171

Cherepanov N. 1., Stepina N. O., Nikiforov I. V. Improving image analysis and processing performance on the RISC-V platform with Lichee
Pi 4A, Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 157-172.

«[Iporpammuas umxenepus». B 2024 romy cramga acrmupantoM mo crenuansaoctd 05.13.11 —
«MatemaTndeckoe M IporpaMMHOE O00ECHEYEHHE BBIYMCIUTENBHBIX MAIINH, KOMIUIEKCOB H
KOMIBIOTEPHBIX ceTeity. O0IacTh HayIHBIX HHTEPECOB — pa3paboTka IporpaMMHOTO O0eCIIeYeHus,
MalImHHOE 00y9YeHre, BEICOKOTIPON3BOANTENbHbBIE BhuncieHus, |0T u embedded-cucremsr.

Nadegda Olegovna STEPINA is an assistant at the Higher School of Software Engineering at Peter
the Great St. Petersburg Polytechnic University. In 2023, she graduated from the St. Petersburg State
Polytechnic University with a degree in Software Engineering. In 2024, she became a postgraduate
student in the field of Mathematical and Software Support for Computing Machines, Complexes,
and Computer Networks. Her research interests include software development, machine learning,
high-performance computing, 10T, and embedded systems.

Urops Baneprena HUKN®OPOB — moueHT BBICIIEH MIKOIBI IPOTrpaMMHON WHKeHepuu CaHKT-
[etepOyprckoro monmTexHudeckoro yHuBepcutera Ilerpa Bemmkoro. B 2011 romy oxoHUmI
Cankr-IlerepOyprckuii TOCYJapCTBEHHBIH ITONMTCXHIMYSCKU YHHUBEPCHUTET II0 CIICIHAIEHOCTH
«[IporpammHOe oOecTIedeHNEe BEITUCTUTEIHHON TEXHIUKH U aBTOMaTH3UPOBAaHHBIX crcTem». B 2014
rojly 3alllMTHJI AUCCEPTAlMI0 Ha COMCKAaHHME YUCHOH CTENEeHU KaHAWAaTa TEeXHHYECKHX HAyK II0
cneuuanpaoctd 05.13.11 — «Maremaruueckoe M IpOrpaMMHOE OOECIeUeHHE BBIYHUCIUTEIBHBIX
MalllH, KOMIUIEKCOB M KOMIIBIOTEPHBIX ceTeiy. SIBisercsa aBropoMm 100 HayuHbIX myOnukaiui.
OO0nacTh Hay4HBIX MHTEPECOB — pa3paboTka NPOrpaMMHOIO oOecredyeHHs, HMHUTALUOHHOE
MOACIMPOBAHUE, aHAJIUTHKA 0OIBIINX JaHHBIX, PACIIPCACIICHHBIC BBIYUCIICHUS.

Igor Valerievich NIKIFOROV. In 2011, he graduated from St. Petersburg State Polytechnic
University with a degree in «Computer Science and Automated Systems Software». He got his Cand.
Sci. (Tech.) degree in Mathematical and software support for computers, complexes and computer
networks in 2014. He is an Associate Professor at the Higher School of Software Engineering at
Peter the Great St. Petersburg Polytechnic University. He is the author of more than 100 scientific
publications. Research interests — software engineering, simulation modeling, big data analytics,
distributed computing.

172

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-13 EOC-EH

Generating and Debugging Java Code Using LLMs
Based on Associative Recurrent Memory

V.I. Vasilevskiy, ORCID: 0009-0004-0115-7082 <vivasilevskiy_1@edu.hse.ru>
D.V. Alexandrov, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>

HSE University,
11, Pokrovsky blvd, Moscow, 109028, Russia.

Abstract. Automatic code generation by large language models (LLMs) has achieved significant success, yet
it still faces challenges when dealing with complex and large codebases, especially in languages like Java. The
limitations of LLM context windows and the complexity of debugging generated code are key obstacles. This
paper presents an approach aimed at improving Java code generation and debugging. We propose using the
Associative Recurrent Memory Transformer (ARMT) model, which extends the context window and has
enhanced memory capabilities, to address two tasks: 1) selecting the most relevant snippets from the existing
codebase for generating new code; 2) selecting the most significant parts of stack traces and runtime data for
iterative debugging. This approach is integrated with an iterative debugging loop, embodied in our developing
system "JavaCapsule" (inspired by PyCapsule for Python), which includes compilation and test execution in a
controlled Docker environment using Gradle. It is expected that the proposed method will enhance the accuracy
and relevance of generated Java code, particularly in the context of large projects, and improve the automated
debugging process. Such benchmarks like JavaBench further underscore the need for such focused
advancements. This paper is an output of a research project implemented as part of the Basic Research Program
at the National Research University Higher School of Economics (HSE University).

Keywords: code generation; java; large language models; code debugging; associative recurrent memory
transformer; recurrent memory transformer; long context; context selection; iterative debugging; javabench.

For citation: Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code using LLMs based on
Associative Recurrent Memory. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 173-182. DOI:
10.15514/ISPRAS-2025-37(5)-13.

Acknowledgements. This research is conducted at the Cloud and Mobile Technologies Laboratory of the
Software Engineering Department at HSE University.

173

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

leHepauua n otnagka Java-koga
C Mcnonb3oBaHMEM GOoNbLINX A3bIKOBbLIX MoAenen
Ha OCHOBE accoLMaTUBHOW PEeKYypPpPEHTHOM NaMATU

B.U. Bacunescxuii, ORCID: 0009-0004-0115-7082 <vivasilevskiy_1@edu.hse.ru>
J.B. Anexcanopos, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>

HUY BIID,
Poccus, 109028, 2. Mocksa, Ioxposckuii 6-p, 0. 11.

AHHOTaNMs. ABTOMaTHYECKas TeHepanus Koaa OoNbIIMMH s3bIKOBbIMEH Mojeinsmu (LLM) mocruria
3HAUUTENBHBIX YCIIEXOB, OJHAKO BCE €le CTAlIKMUBAaeTcsa € MpobieMaMu IpH paboTe cO CIOKHBIMH H
00BbEMHBIMHM KOJOBBIMH 0a3aMH, OCOOCHHO Ha TaKMX s3bIKaxX, Kak Java. OTpaHMYeHHs KOHTEKCTHOTO OKHA
LLM u CIOXXHOCTH OTIaJKH CT€HEPUPOBAHHOTO KOJA SBIAIOTCS KIIIOUEBBIMU INPEIMSTCTBUSAMU. B maHHOM
CTaThe MPEJCTaBICH IOJXOMA, HANpPaBICHHBIM Ha YIydllleHWEe TIeHepalud M oTIaaku Java-koma. Msl
mpeJyiaraeM HCIojibp30BaTh Mojaedb Associative Recurrent Memory Transformer (ARMT), o6xanaronryro
pacHIMpeHHBIM KOHTEKCTHBIM OKHOM 1 YJIYYIIEHHBIMH BO3MOKHOCTSIMH IIaMSITH, JUIS PEIICHUs ABYX 3a1ad: 1)
BbIOOpa HanboJee peJeBaHTHRIX (PParMEeHTOB M3 CYLIECTBYOMIEH KOI0BOW Ga3bl Ayl TeHepaliuy HOBOTO KO/,
2) BeIOOpa Hamboee 3HAYMMBIX YacTeH CTEKTPEHCOB M paHTaHMAAHHBIX Ul UTEPATHBHOH OTIaiKu. DTOT
MOJIXOJT MHTETPUPOBAH B UTEPATHUBHBII IIMKI OTIAJKH, pEaJHM30BaHHbIA B HallIel pa3pabaTbiBaeMoOl cucTeMe
«JavaCapsule» (mo ananoruu ¢ PyCapsule mis Python), kotopas BKIOYaeT KOMIHJISIMIO M BBIITOJHEHUE
TECTOB B KOHTpoJmpyemoii cpene Docker ¢ ncnonszoBannem Gradle. Oxxumaercs, 9To IpeAIoKEeHHBIH METO
MOBBICHT TOYHOCTh M PEIEBAHTHOCTh T€HEPUPYEMOTo Java-Koja, 0COOEHHO B KOHTEKCTE KPYHMHBIX IPOEKTOB,
M YIAYYLIUT TpPOLIECC aBTOMATU3MPOBAHHOW oTianku. benumapkw, Takme kak JavaBench, nomomHmTensHO
MOAYEPKUBAIOT HEOOXOAUMOCTH ITOJOOHBIX IIeJICHAIPABICHHBIX YCOBEPIICHCTBOBAHHH.

KioueBble c0oBa: reHepanus Koja; java; OONBLIME S3BIKOBBIE MOJIENH; OTJajKa Koja; Ipeodpa3oBareib
aCcCOIMATHBHOM PEKYPPEHTHON MaMsTH; Pe0Opa30BaTENlb pEKYPPEHTHOM MAMSTH; JUTMHHBIN KOHTEKCT; BEIOOD
KOHTEKCTa; MTepaTUBHAs OTIIAJKa; OIlEHKa MoJeliei javabench.

Jas untupoBanusi: Bacunesckuit B.M., AnekcannmpoB JI.B. I'eHepauus u otiagka Java-koma ¢
WCTIOJIb30BaHHEM OOJBIINX S3BIKOBBIX MOJIENEH Ha OCHOBE aCCOLMATUBHON PEKyppEHTHOW mamstu. Tpymsl
HUCII PAH, tom 37, Boim. 5, 2025 r., crp. 173-182 (ua anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2025-
37(5)-13.

Baaromapnocrn. [lanHoe nccnenosanue Bexercs B Jlaboparopuu OOnauHbIX 1 MOOHIBHBIX TEXHOJIOTHI
JenapramenTa IIporpammuoit Umxenepuu HIY BIID.

1. Introduction

Large Language Models (LLMs) demonstrate impressive results in the field of automatic code
generation [7]. However, applying these models to complex object-oriented languages like Java
presents several difficulties. Java projects are often characterized by large code volumes, complex
dependencies, and strong typing, requiring models to have a deep understanding of the context. The
JavaBench benchmark [1] has highlighted these challenges, particularly in object-oriented
programming (OOP) features and project-level code generation, and underscores the relevance of
research in this area.

One of the key problems is the limited context window size of modern LLMs. When generating or
modifying a code snippet in a large project, the model must access relevant parts of the existing
codebase (other classes, methods, interfaces), which often exceeds the standard context limit.
Furthermore, debugging the generated code remains a complex task. Approaches based on analyzing
code execution block by block and providing the model with runtime data [3] are quite promising
but are limited by the same context window, preventing the transmission of the full stack trace or
the history of variable value changes needed to find and fix complex errors.

174

Bacunesckuii B.W., Anexcannpos JI.B. I'eneparus u omnajgka Java-Koaa ¢ HCIOIb30BaHHEM OONBIIMX SI3BIKOBBIX MOJIENCH HA OCHOBE
aCcCOLMATUBHOM peKyppeHTHOU mamsitu. Tpyost UCIT PAH, 2025, Tom 37 Beim. 5, ¢. 173-182.

To address the limited context problem, architectures such as the Recurrent Memory Transformer
(RMT) [4] have been proposed, using recurrent mechanisms to process long sequences. A further
development of this idea, the Associative Recurrent Memory Transformer (ARMT) [5], adds
associative memory, significantly improving memory usage efficiency and performance on long-
context tasks, such as BABILong [6].

On the other hand, iterative debugging approaches, where code is executed in a controlled
environment (e.g., a container), and the execution results (success/failure, test output) are used for
the next generation iteration, have shown effectiveness for Python [2]. We are developing a similar
system for Java, named “JavaCapsule”.

In this study, we propose combining the advantages of ARMT and iterative debugging to create a
system for generating and fixing Java code. The main idea is to train an ARMT-like model (or use
its attention mechanisms) to select the most relevant information — codebase snippets during
generation and parts of the stack trace/state during debugging — which is then passed to the main
LLM to perform the task. We hypothesize that such an approach will allow effective work with large
Java projects and complex errors, overcoming the limitations of the context window. This research
is conducted at the Cloud and Mobile Technologies Laboratory of the Software Engineering
Department at HSE University in collaboration with researchers from Huawei Technologies Co. Ltd.

2. Related Work

2.1 Code Generation using LLMs

Significant progress has been made in recent years in using LLMs for code generation (e.g.,
StarCoder [8], Qwen-Coder [9]). Models are trained on vast code corpora and can generate code
from textual descriptions in various languages. However, the quality of generation for complex
languages like Java, especially within large projects, requires improvement.

Java Code Generation Benchmarks

The landscape of code generation evaluation has been historically dominated by Python.
Recognizing this gap, Cao et al. introduced JavaBench [1], a project-level Java benchmark
specifically designed to exercise OOP features. JavaBench comprises four Java projects with 389
methods in 106 classes, featuring high test coverage and attestation by undergraduate students. It
aims to address imbalances in programming language focus, code granularity (moving beyond
function/statement level), and the lack of testing for advanced OOP features (encapsulation,
inheritance, polymorphism) in existing benchmarks. JavaBench’s evaluation design includes
multiple context settings and synthesis strategies, providing a more nuanced understanding of LLM
capabilities in Java. Its findings emphasize the need for future advancements, especially in providing
relevant context like method signatures.

2.2 Long Context Processing

The context window limitation is a fundamental problem for transformers. Various architectures are
being developed to address it. RMT [4] introduces recurrence at the segment level using special
memory tokens. ARMT [5] improves upon RMT with an associative memory mechanism,
demonstrating superiority over RMT and other models like Mamba [10] and RWKYV [11] in
associative retrieval and ultra-long sequence processing tasks (up to 10 million tokens) on the
BABILong benchmark [6]. The BABILong benchmark is specifically designed to evaluate a
model’s ability to retrieve and use information distributed across long text, making it relevant for
assessing models intended to work with large codebases.

2.3 Code Debugging using LLMs

Automated debugging is another promising direction. LDB (Large Language Model Debugger) [3]
proposes using code execution information (execution traces, variable values per basic block) to

175

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

identify errors. The model is provided with the execution context, based on which it localizes and
fixes the bug. However, as noted, the volume of this information can exceed the context window.
PyCapsule [2] implements an iterative approach for Python with two agents (programmer and
executor), where code is executed in a Docker container, and test results and compilation errors are
used to request corrections from the programmer agent. This approach does not require deep stack
trace analysis by the model but may need many iterations. Our JavaCapsule system draws inspiration
from this iterative, containerized execution model.

2.4 Relevant Context Selection

The idea of selecting relevant information is not new and is actively used in Retrieval-Augmented
Generation (RAG) [12], where an external knowledge base is used to find relevant documents. In
the context of code generation, this might mean searching for similar code snippets or
documentation. However, initial analysis of solutions like RAG and Repository Mapping indicates
they may not be sufficiently effective for selecting precise, deeply-nested contextual information
required for complex generation and debugging tasks within large, existing Java codebases. A more
refined mechanism is needed, capable of extracting specific dependencies or relevant parts of
debugging information. The associative memory mechanisms in ARMT [5] could potentially be
adapted to train a model for such selective information extraction from structured context (codebase,
stack trace).

3. Proposed Method

Within this research, we are developing “JavaCapsule”, a system for Java code generation and
debugging based on the following components:

1. Context/Debugging Selection Model based on ARMT: The core of the system is a model
utilizing ARMT principles, trained to perform two main functions:

e Code Context Selection: Upon receiving a request for Java code generation or
modification (e.g., description of a method, class to be changed), the model analyzes
the current codebase (provided as an indexed set of files or a structural representation)
and selects the most relevant snippets (imports, signatures of other methods, class fields,
parent classes, interfaces) necessary for correct generation. The associative memory
mechanism of ARMT [5] can be used to establish connections between the request and
relevant code sections.

e Debugging Information Selection: When a compilation error or test failure occurs, the
model receives the error message and stack trace. The model’s task is to select the most
informative lines or blocks from the stack trace and possibly from the execution history
(if available) that indicate the cause of the problem. This allows focusing the LLM on
the source of the error without overloading the context with redundant information.

2. Main LLM Generator: We have selected ‘gemma3-27b-it as the base large language model
capable of generating Java code. It receives the original user request as input, augmented
with the relevant code context or debugging information selected by the model in step 1.

3. lterative Debugging Loop (JavaCapsule Workflow): The generation and debugging process
is iterative, adapting the idea from [2]:
e User Request: A user, potentially through an IDE plugin, submits a task description for
code generation or modification.

e Generation: The main LLM (‘gemma3-27b-it) generates Java code based on the
request and context selected by the ARMT-based model (if applicable for an existing
project).

176

Bacunesckuii B.W., Anexcannpos JI.B. I'eneparus u omnajgka Java-Koaa ¢ HCIOIb30BaHHEM OONBIIMX SI3BIKOBBIX MOJIENCH HA OCHOBE
aCcCOLMATUBHOM peKyppeHTHOU mamsitu. Tpyost UCIT PAH, 2025, Tom 37 Beim. 5, ¢. 173-182.

e Compilation and Testing (Execution Agent): The generated code (or modified project)
is passed to an Execution Agent. This agent compiles the Java code using standard tools
(e.g., Gradle) and runs user-provided or automatically generated unit tests (e.g., JUnit).
This step is performed in an isolated Docker container for security, dependency
management, and reproducibility.

e Result Processing:

— Successful Execution: If compilation and all tests pass, the final code is returned to
the user (e.g., displayed in the IDE).

— Compilation Error: If a compilation error occurs, the error logs are captured by the
Execution Agent. These logs are then processed by the ARMT-based debugging
information selection model to extract relevant error messages. The selected
information is passed back to the main LLM along with the problematic code for a
correction attempt.

— Test Failure; If tests fail, the Execution Agent runs tests in debug mode to gather
more comprehensive debug data (e.g., stack traces, intermediate variable values if
feasible). This complete debug data is passed to the ARMT-based model, which
selects the most relevant context from this data and the original code. The
problematic code, selected debug context, and test error information are then sent to
the main LLM for fixing.

e Repetition: The loop (Fixed code -> Retry with new code) repeats from the Compilation
and Testing step until successful execution or an iteration limit is reached.

The architecture, inspired by PyCapsule [2], is shown in Fig. 1. The key distinction in our
JavaCapsule approach is the explicit use of an ARMT-based model for intelligent selection of both
code context during generation and specific debugging information during the error-fixing iterations.
A key aspect is training the ARMT model (or its equivalent) for selection tasks. This requires
creating specialized datasets for Java, where generation requests are annotated with relevant parts
of the codebase, and error reports are annotated with relevant stack trace lines.

4. Preliminary Considerations and Future Work

This research is currently in the concept development and initial implementation stage. The
JavaCapsule system (repository: https://github.com/Vvil1568/JavaCapsule) is under active
development, aiming to realize the iterative debugging loop with Docker and Gradle for Java.
Before settling on the ARMT-based selection model, several alternative approaches were
considered. One involved using a 7B model where input tokens are replaced by pre-computed BERT
embeddings for Java code snhippets. Another approach was to fine-tune a 7B model using
ParameterEfficient Fine-Tuning (PEFT) techniques like LORA to generate Java code with explicit
type annotations (e.g., transforming ‘someObj.foo()* into ‘((SomeClass)someObj).foo()‘). While
promising, these approaches primarily focus on altering the generation process itself. The ARMT
approach was ultimately chosen for its direct focus on solving the core problem of long-context
retrieval and relevance filtering, which we believe is a more fundamental bottleneck for working
with large codebases and complex debugging scenarios. A comparative computational cost analysis
of these three plans is provided in the next section. Expected Advantages:

o Improved quality of Java code generation for large projects by providing the LLM with
relevant context.

e Enhanced automated debugging by focusing the LLM on significant parts of diagnostic
information.
e Overcoming LLM context window limitations without needing models with ultra-large
context for the entire task.
177

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

Client Environment
=

User

1. Generation réquest

"m. Dispiay result
{task description) R
\

A

V5Code IDE Plugin

I
2. Forward task description
(for initial generation)

ClCII.IL Services

9. Final code /

Largs LLM (Cloud!
{) Error message

—_ 7 \‘_ o
F I "I o
f | . :
3. Generated Java code 8. Fixed code i Commidtion exe:
Code + error logs]

-

\'E‘kecuﬁqn Em"ir-:lnr;"\e\nt . ¥4 g
7. Fix request: T A e
Code + selected context + Execution Agent
test error info - v

. " 5. Execution result

|
(success / compitation

T T '
4, Code executi
Code + full debug data | Om_ : ":: errar /
] Comphaoon, 1es!
(for context selection) / { = i) test failure + logs f debug
| \ data)
/ \

I

8/ e

ARMT-LLM (local) Docker Container {Runbime)

Fig. 1. Adapted architecture for iterative Java code generation and debugging in JavaCapsule.
Steps include generation by an LLM (e.g., Gemma), execution/testing in a Docker container via
Gradle, and a feedback loop using an ARMT model for context/debugging information selection
(adapted from [2]). The "ARMT-LLM (local)” in the diagram represents our proposed ARMT-
based selection model.
Main Challenges:

e Training Data Creation: Developing methodologies and tools for creating datasets linking
generation/debugging requests with relevant code/stack trace snippets in Java projects. We
plan to initiate dataset collection, potentially using automated labeling with existing
generative models as a starting point.

e Training the Selection Model: Choosing the architecture (ARMT or similar) and effectively
training the model for selective information extraction from structured, yet large, contexts.

e Component Integration: Creating an efficient pipeline combining the selection model, the
LLM generator (‘gemma3-27b-it‘), and the JavaCapsule compilation/testing system.

178

Bacunesckuii B.W., Anexcannpos JI.B. I'eneparus u omnajgka Java-Koaa ¢ HCIOIb30BaHHEM OONBIIMX SI3BIKOBBIX MOJIENCH HA OCHOBE
aCcCOLMATUBHOM peKyppeHTHOU mamsitu. Tpyost UCIT PAH, 2025, Tom 37 Beim. 5, ¢. 173-182.

Evaluation: The JavaBench benchmark [1] provides a valuable resource. We have started
adapting JavaBench for evaluating the Gemma model (adapted version available at:
https://github.com/Vvil1568/JavaBench/tree/gemma). This will require further
development of custom metrics and test scenarios for our specific tasks.

Future Work Plan:

1.

Continue development of the JavaCapsule prototype system for compiling and testing Java
code in a container using Gradle.

Begin creation of a dataset for training and evaluating the code context selection model
using several open-source Java projects.

Initiate creation of a dataset for training and evaluating the debugging information selection
model based on real or synthetic errors, exploring automated labeling techniques.

Experiment with Gemma-3 models as the generator and as the base for the ARMT selector.

Compare the proposed approach with baseline LLMs (without context selection) and
standard RAG approaches on the adapted JavaBench and custom tasks.

Evaluate performance on tasks such as generating new methods, modifying existing code,
and fixing errors based on tests within the JavaCapsule framework.

We plan to use code quality metrics (e.g., Pass@Kk test pass rate from JavaBench, CodeBLEU [13])
and debugging efficiency metrics (number of iterations, percentage of fixed errors).

5. Computational Cost Analysis of Training Approaches

This section provides a high-level estimation of the computational resources required for training
the models under the three considered plans. These figures are approximate and intended to provide
a sense of scale for each approach. A summary is presented in Table 1.

5.1 General Assumptions
The following assumptions are used for the calculations:

Precision: BF16 (2 bytes per parameter).

Optimizer: AdamW, which requires 2 additional values per parameter, resulting in 4 bytes
per parameter for optimizer states. Gradients require 2 bytes/param.

Total Memory per Parameter (Full Training): 2 (params) + 4 (optimizer) + 2 (gradients) =
8 bytes. For PEFT, this applies only to trainable parameters.

Total FLOPs (heuristic): Approximately 6x N x D for full training and =~ 3x Nfull x D for
PEFT, where N is the number of parameters and D is the number of tokens.

Model FLOPs Utilization (MFU): We assume a realistic MFU of 40% of the GPU’s peak
theoretical performance.

5.2 Plan 1: 1.1B ARMT-based Context Selector (Full Tuning)

Model and Task: A 1.1B parameter ARMT-like model for context selection, trained via full
fine-tuning.
Training Data: Estimated at 40 billion tokens.
VRAM (Video Memory) Estimation:
— Model States: 1.1x109 params X8 bytes/param = 8.8 GB.
— Activations: Can consume 15-30 GB or more, depending on batch size and sequence
length.
— Total Estimated VRAM: 24-44+ GB.
179

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

Training Time Estimation:

— Total TFLOPS Required: 6x(1.1x109)x(40%109) = 2.64x1020 FLOPS, or 264,000
PetaFLOPS.

— Estimated GPU-Hours (H100):
2.64 x 102°

~ 183.300 GPU — h
1000 x 1072 x 0.4 X 3600 ours

5.3 Plan 2: 7B Model with BERT Embeddings (Full Tuning)

Model and Task: A 7B parameter model for code generation, where input tokens are
precomputed BERT embeddings. This involves full fine-tuning.

Training Data: Estimated at 15 billion BERT-vector “’tokens”.

VRAM (Video Memory) Estimation:

— Model States: 7x109 params %8 bytes/param = 56 GB.

— Activations: For a 7B model, activations can easily require 20-40+ GB.

— Total Estimated VRAM: 56 GB + (20-40+ GB) = 76-96+ GB. This requires A100
(80GB) or H100 GPUs.

Training Time Estimation:

— Total TFLOPS Required: 6x(7x109)x(15%109) = 6.3x1020 FLOPS, or 630,000
PetaFLOPS.

— Estimated GPU-Hours (H100):
6.3 x 102°

~ 437. PU —
1000 x 1012 x 0.4 x 3600 37.500 GPU — hours

5.4 Plan 3: 7B Model with Explicit Types (PEFT)

Model and Task: Fine-tuning a 7B parameter model using PEFT (LoRA) to generate Java
code with explicit type annotations.

Training Data: Requires a large dataset of Java code pre-processed with explicit types,
estimated at 100 billion tokens.

VRAM (Video Memory) Estimation:
— Frozen Model: 7x109 params x2 bytes/param = 14 GB.

— LoRA Adapters (70M params): Optimizer states and gradients for adapters require
70x106x6 bytes ~ 0.42 GB.

— Activations: Calculated for the full 7B model, requiring 20-40+ GB.

— Total Estimated VRAM: 14 GB + 0.5 GB + (20-40+ GB) = 35-55+ GB. Suitable for
48GB-class GPUs and above.

Training Time Estimation:

— Total TFLOPS Required: 3 x (7 x 109) x (100 x 109) =2.1 x 1021 FLOPS, or 2,100,000
PetaFLOPS.

— Estimated GPU-Hours (H100):
2.1 x 10%1

~ 1,458.000 GPU — h
1000 x 1072 x 0.4 X 3600 ours

These estimates underscore that all considered plans require access to significant high-performance
computing infrastructure.

180

Bacunesckuii B.W., Anexcannpos JI.B. I'eneparus u omnajgka Java-Koaa ¢ HCIOIb30BaHHEM OONBIIMX SI3BIKOBBIX MOJIENCH HA OCHOBE
aCcCOLMATUBHOM peKyppeHTHOU mamsitu. Tpyost UCIT PAH, 2025, Tom 37 Beim. 5, ¢. 173-182.

Table 1. Summary table of computational cost estimates for different training approaches.

GPU- Suitable
Plan Parameters VRAM Tokens TFLOPS Hours GPUSs
(Training) | (Estimate) | (Training) (Total) (H100, 40%
(VRAM)
MFU)
1.
4090(48GB),
IBHARMT 1 gty | 244 | sobillion | 224990 | 183300 A100,
(context GB PFLOPs
. H100
selection)
2.
7B+BERT 15 billion 630,000 A100(80GB),
omb 7B (full) | 76-96+ GB (BERT) PELOPS 437.500 H100
(generation)
3.
4090(48GB),
7B+Types | 7B (T0M | 5 ooy g | 100 billion | 229909 | 1458000 | Ad00,
(generation, PEFT) PFLOPs H100
PEFT)

6. Conclusion

Generating and debugging code for complex, large Java projects using LLMs presents a current and
unresolved challenge. Context window limitations and the difficulty of interpreting the entire
codebase or full stack traces are significant constraints. In this research, we propose a novel approach
based on using an Associative Recurrent Memory Transformer (ARMT) type model for intelligent
selection of relevant code context and diagnostic information. This selected information is then
passed to a main LLM (Gemma-3-27b-it) for code generation or correction within an iterative loop
involving compilation and testing, embodied in our developing JavaCapsule system. The adaptation
of benchmarks like JavaBench will be crucial for evaluation. We expect this approach to enhance
the accuracy, relevance, and efficiency of automated Java code generation and debugging, opening
new possibilities for applying LLMs in enterprise-level software development. Future work will
focus on dataset creation, training the selection model, and experimentally validating the proposed
system.

References

[1]. CaoJ., Chen Z., Wu J., Cheung S., Xu C. JavaBench: A Benchmark of Object-Oriented Code Generation
for Evaluating Large Language Models. arXiv preprint arXiv:2406.12902, 2024.

[2]. Adnan M., Xu Z., Kuhn C. C. N. Large Language Model Guided Self-Debugging Code Generation. arXiv
preprint arXiv:2502.02928, 2025.

[3]. Zhong L., Wang Z., Shang J. LDB: A Large Language Model Debugger via Verifying Runtime Execution
Step by Step. arXiv preprint arXiv:2402.16906, 2024.

[4]. Bulatov A., Kuratov Y., Burtsev M. S. Recurrent memory transformer. Advances in Neural Information
Processing Systems, vol. 35, 2022, pp. 11079-11091.

[5]. Rodkin 1., Kuratov Y., Bulatov A., Burtsev M. Associative Recurrent Memory Transformer. In Proc. of
the ICML 2024 Next Generation of Sequence Modeling Architectures Workshop, 2024.

[6]. Kuratov Y., Bulatov A., Anokhin P., Rodkin I., Sorokin D., Sorokin A., Burtsev M. BABILong: Testing
the Limits of LLMs with Long Context Reasoning-in-a-Haystack. arXiv preprint arXiv:2406.10149, 2024.

[7]. Chen M., Tworek J., Jun H., Yuan Q., Pinto H. P. D. O., Kaplan J., ... Brockman G. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8]. LiR., Allal L. B., Zi Y., Muennighoff N., Kocetkov D., Mou C., ... Li J. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

[9]. Hui B., Yang J., Cui Z., Yang J., Liu D., Zhang L., ... Lin J. Qwen2. 5-Coder Technical Report. arXiv
preprint arXiv:2409.12186, 2024.

181

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

[10]. Gu A., Dao T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv preprint
arXiv:2312.00752, 2023.

[11]. Peng B., Alcaide E., Anthony Q., Albalak A., Arcadinho S., Cao H., ... Zhu R. J. RWKV: Reinventing
RNNs for the Transformer Era. arXiv preprint arXiv:2305.13048, 2023.

[12]. Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., ... Kiela D. Retrieval-augmented
generation for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, vol.
33, 2020, pp. 9459-9474.

[13]. Ren S., Zhou D., Zhang S., Liu S., Chen Y., Sun H., ... Liu Y. CodeBLEU: a method for automatic
evaluation of code synthesis. arXiv preprint arXiv:2009.10297, 2020.

Ungpopmayusi 06 aemopax / Information about authors

Bonagumup Wropesny BACUJIEBCKUI — craxep-uccienoparens JlaGopatopun OGNAuHBIX 1
Moobunenbix Texnonoruit ®dakynsrera Kommbrorepusix Hayk HUY BIID. Cdepa HaydHbIX
MHTEpECcOB: OOJBLIME SI3BIKOBBIC MOJICNHM, TeHEpalus M OTIaaKa Koja, oOpadoTKa JJIMHHBIX
MOCTIEeI0BATENbHOCTEH, KOMIUIISTOPEI.

Vladimir Igorevich VASILEVSKIY is a research assistant at the Cloud and Mobile Technologies
Laboratory of the Faculty of Computer Science, HSE University. His research interests include large
language models, code generation and debugging, long sequence processing, and compilers.

Ovutpuit Bragumuposma AJIEKCAHAPOB — mpodeccop amemaprameHTa MpOTrpaMMHON
HHKEeHepuH (aKyIbTeTa KOMIBIOTepHBIX Hayk HIY “Beiciiast mKkona SKOHOMHUKH’, 3aBEIyFOIIHI
Hay4HO-y4eOHOI TabopaTopun 001a4HBIX M MOOMIBHBIX TexHOJMOTHH. Chepa HayIHBIX HHTEPECOB:
METO/IbI 1 TEXHOJIOTUH NCKYCCTBEHHOTO MHTEIJIIEKTa, MAllIMHHOE 00yUCHHE U aHAIN3 JaHHBIX, 10S
pa3paboTka, pa3paboTKa MOOWIBHBIX TNPHUIOKEHHH, pa3paboTkKa HpOrpaMMHOTO OOcCHEedYeHHs,
indoor HaBuranws, 6a3el JaHHBIX, pa3padOTKa UTp.

Dmitry Vladimirovich ALEXANDROV is a Professor in the Department of Software Engineering,
Faculty of Computer Science, National Research University “Higher School of Economics”. He is
also the Head of the Research and Educational Laboratory of Cloud and Mobile Technologies. His
research interests include methods and technologies of artificial intelligence, machine learning and
data analysis, iOS development, mobile application development, software development, indoor
navigation, databases, game development.

182

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-14 EOCJH

Modification of the Smith-Waterman Algorithm for
Local Alignment of Genetic Sequences Based on
the Window Method

E.S. Bezuglova, ORCID: 0000-0002-7608-0452 <bezuglova.ketrin@yandex.ru>
E.M. Shiriaev, ORCID: 0000-0002-2359-1291 <egor.shiriaev@reaneling.ru>
N.N. Kucherov, ORCID: 0000-0003-0337-0093 <nik.bekesh@yandex.ru>
M.G. Babenko, ORCID: 0000-0001-7066-0061 <whbear@yandex.ru>

North-Caucasus Federal University, Faculty of Mathematics and Computer Science
named after Professor N.I. Chervyakov,
1, Pushkin st., Stavropol, 355017, Russia.

Abstract. The paper presents a modified algorithm for local alignment of genetic sequences based on the Smith-
Waterman algorithm, using window method and run-length encoding. an experimental comparison of the
performance of the proposed approach with the classical algorithm by such metrics as execution time, average
and peak memory usage is carried out. The results demonstrate the effectiveness of the modification while
preserving the quality of alignment, especially in resource-constrained environments. The work has practical
implications for bioinformatics tasks involving genome analysis, gene annotation and homologous site search.

Keywords: Smith-Waterman algorithm; run-length encoding; window method; genetic sequences; local
alignment; bioinformatics.

For citation: Bezuglova E.S., Shiriaev E.M., Kucherov N.N., Babenko M.G. Modification of the Smith-
Waterman algorithm for local alignment of genetic sequences based on the window method. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 183-194. DOI: 10.15514/ISPRAS-2025-37(5)-14.

Acknowledgements. The research was supported by the Russian Science Foundation Grant No 25-71-30007,
https://rscf.ru/en/project/25-71-30007/.

183

Bezuglova E.S., Shiriaev E.M., Kucherov N.N., Babenko M.G. Modification of the Smith-Waterman algorithm for local alignment of genetic
sequences based on the window method. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 183-194.

Moaudukauua anroputma Cmuta-BatepmaHa ana nokanbHoro
BblpaBHMBaHUSA reHeTUYECKUX nocregoBaTesibHOCTEN Ha OCHOBE
MeToAa OKHa

E.C. Bezyanosa, ORCID: 0000-0002-7608-0452 <bezuglova.ketrin@yandex.ru>
EM. Illupses, ORCID: 0000-0002-2359-1291 <egor.shiriaev@reaneling.ru>
H.H. Kyuepos, ORCID: 0000-0003-0337-0093 <nik.bekesh@yandex.ru>
M.I'. Babenxo, ORCID: 0000-0001-7066-0061 <whbear@yandex.ru>

Cesepo-Kaskasckuil pedepanvHulil yHugepcumen,
Gaxynvmem mamemamuxy u KOMRbIOMEPHLIX HAYK umeHu npogeccopa H.U. Yepssaxosa,
Poccus, 355017, Cmasponons, Iywxuna, 0. 1.

AnHoTamusi. B crathe mpencraBieH MOAMGUIMPOBAHHBIA alTOPUTM JIOKAIGHOTO BEIPABHUBAHMS
TeHETHYECKUX II0CIe0BaTeIbHOCTEH, OCHOBaHHBIM Ha anroputMe Cmura-Barepmana, ¢ mcroib3oBaHHEM
MeTo/ja OKOH M KOJMPOBaHUS JUINH cepuil. [IpoBeieHO IKCIIepMEeHTAIbHOE CPAaBHEHHE IIPOH3BOANTEIILHOCTH
[peIaraeMoro rnoaxo/a ¢ KINacCH4eCKUM aJITOPUTMOM I10 TAKUM METPHKaM, Kak BPeMs BBIIIOJIHCHUS, CpeHEe
W THKOBOE MOTpeOJieHHe NaMATH. Pe3ynbraTel IeMOHCTPHPYIOT 3()(EKTHBHOCTE MOAM(MUKAIMK IPH
COXPAaHCHHM KauecTBa BBIPABHHBAHMUS, OCOOCHHO B YCJIOBHSX OTPAaHUYCHHBIX BBIYHUCIMTENBHBIX PECYPCOB.
PabGoTa MMeeT NMpaKTHUECKOe 3HAUYCHHE IUIA 3a7ad OMOMH(MOPMATHKH, CBS3aHHBIX C aHAJIW30M TCHOMOB,
AQHHOTHPOBAaHUEM I'€HOB M IOMCKOM TOMOJIOTMYHBIX yYaCTKOB.

KiroueBble ciaoBa: anroputm Cmura-Barepmana; xogupoBaHue AJIMH CEpUii; METOJ OKOH; F€HETHUYECKUE
TIOCJIeIOBATEIbHOCTH; JIOKAIEHOE BEIpaBHUBaHUE; ONONH(OpPMAaTHKA.

Jnst murupoBanmsi: besyriosa E.C., Hupses E.M., Kyuepos H.H., ba6enko M.I'. Moandukanns anropurma
Cwmura-BarepmaHa 115 JIOKQJIBHOTO BBIPABHUBAHMS [CHETHUECKUX MTOCIIEOBATEIFHOCTEH Ha OCHOBE METO/A
okna. Tpymet MCIT PAH, tom 37, Bem. 5, 2025 r., crp. 183-194 (ma amrmmiickom si3bike). DOI:
10.15514/ISPRAS-2025-37(5)-14.

Baaroxapuoctu. MccrienoBanue BHIONTHEHO 3a c4eT rpanta Poccuiickoro Hay4dnoro ¢onma Ne 25-71-30007,
https://rscf.ru/project/25-71-30007/.

1. Introduction

Genetic sequence alignment is a bioinformatics technique that is based on placing two or more
sequences of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or protein monomers under
each other in such a way that similar sequence regions can be observed to understand functional,
structural and evolutionary relationships [1].

The application of biological sequence alignment methods played a key role in one of the most
significant projects of modern science - the Human Genome Project [2], in which the results of
alignment formed the basis for subsequent functional annotation of genes, identification of genetic
variants associated with diseases, and development of personalized medicine.

Among the local alignment algorithms, the most popular is the Smith-Waterman algorithm [3],
which provides accurate matching of sequence fragments through dynamic programming. Despite
the high accuracy of this algorithm, its classical representation has significant computational costs,
namely, its time and space complexity is O(n X m), where n and m are the lengths of the compared
sequences. This limits its applicability when analysing long sequences or in conditions of limited
computational resources (e.g., on lined systems or in fog computing environments).

Current approaches in algorithm optimization focus on making use of high-performance computing.
These include vectorization using single instruction, multiple data (SIMD) principles [4-5], parallel
implementations on GPUs [6-7], and the use of specialized architectures [8]. Despite the efficiency
of the above approaches, the solutions require additional hardware and are not always applicable in
distributed computing environments.

184

Besyrnosa E.C., Hupses E.M., Kyuepos H.H., Ba6enko M.I". Moanduxkanus anropurma Cmuta-Batepmana a71st TOKaIbHOTO BEIPABHUBAHUS
TEHETHYECKHX ITOCIIEI0BAaTEILHOCTEH Ha OCHOBE MeToa OKkHa. Tpyoer UCII PAH, 2025, Tom 37 Bbim. 5, c. 183-194.

The actual task is to develop compact and efficient algorithms that do not depend on the architectural
features of the computing platform.

In the framework of the proposed study, a modification of the classical Smith-Waterman local
alignment algorithm is implemented using several known, but previously unused, joint techniques:
binarization of global sequences, data compression using the run-length encoding (RLE) method
[9], and partitioning data into fixed windows. Although the use of this method separately is widely
used in computational biology and information technology, the presented combination and its
practical application to local competition problems are constantly new.

The main novelty and originality of the proposed solution are as follows:
¢ initials and names of the authors;

e an original scheme for binarization of nucleotides sequentially is proposed, which allows
for a significant reduction in the volume of original data. In combination with RLE
encoding of binary data, high compression efficiency is achieved, especially in areas with
repeating symbols typical of genomic sequences;

o integration of binary representation and RLE encoding allows for speeding up the process
of sequence comparison, since the competition is reduced to bit operations instead of
symbol-by-symbol comparisons. This, in turn, provides additional performance gains,
especially in conditions of limited computing resources;

o the use of fixed windows for data processing provides not only a further reduction in
computational costs, but also the possibility of efficient implementation of the algorithm in
parallel environments and the distribution of distributed environments, such as systems
with limited computing power or fog computing.

The paper proposes a modification of the Smith-Waterman algorithm based on the preliminary
binary representation of sequences followed by bitwise compression based on RLE. This approach
allows to significantly reduce the amount of processed data and speed up computations by
simplifying the matching operations. In addition, an adapted penalty system for the binary format is
introduced to preserve the algorithm's sensitivity to biologically significant changes.

2. Method

2.1 Data presentation

To reduce the data volume of the processed information and increase the efficiency of local
alignment operations, the proposed algorithm first performs the conversion of nucleotide sequences
into a binary data representation [10]. This conversion is based on the binary encoding of each
nucleotide using a two-bit scheme, which provides a compact and convenient representation of the
input data.

In the proposed approach, a unique two-bit combination is assigned to each symbol of a nucleotide
sequence from the set {4, C, T, G}:

A—-00,C-01,T-10,G - 11.

This scheme provides efficient memory usage because it allows any sequence of length n to be
represented as a bit string of length 2n bits, which halves the character representation compared to
a character representation using 8 bits per character.
The conversion of the character string to a binary string is implemented by the function
«dna_to_binary(dna_str)», which replaces each nucleotide with the advised 2-bit string. The reverse
conversion is implemented by the function «binary to dna(binary_str)» and is necessary to restore
the interpreted result after calculations in binary representation.

185

Bezuglova E.S., Shiriaev E.M., Kucherov N.N., Babenko M.G. Modification of the Smith-Waterman algorithm for local alignment of genetic
sequences based on the window method. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 183-194.

This conversion allows bitwise comparisons instead of character comparisons, which significantly
speeds up the work of the modified algorithm. Instead of string operations comparing two
nucleotides (for example, A == G), an exclusive-or operation (XOR) [11] is performed between 2-
bit codes, and the result is O only if there is a complete match. This approach is easily scalable for
vector computations and hardware optimisations including the SIMD principle. The described
contributions are presented in Algorithm 1.

Algorithm Nel Function for representing a sequence in binary form
Input: dna_str — string of characters {4,C, T, G}

Output: binary_str — string of characters {0, 1}

1. bin_map « {'A":'00",'C":'01','T":'10’,'G": "11'}

2. binary_str « empty string

3. For i from 0 to length (dna_str) — 1 is executed

3.1. nucleotide « dna_str|i]

3.2. bin_str « binary_str + bin_map|[nucleotide]

3.3. End of cycle

4. Return bin_str

5. Define dna_map « {'00":'4’,'01":'C’,'10":'T",'"11":'G" }
6. If length(bing,.)mod 2 # 0 then

7. bin_str « bin_str + '0’

8. For i from 0 to length(bin_str) — 1 step 2 do

8.1. bits « bin_str[i] + bin_str[i + 1]

8.2. nucleotide « dna_map[bits]

8.3. dna_str « dna_str + nucleotide

8.4. End of cycle

9. Return dna_string

2.2 Application of compression

The After converting the nucleotide sequence into a binary representation, data compression is
performed. It is needed in order to reduce redundancy and reduce the amount of information that
needs to be equalized. The repetitive sequence encoding algorithm, RLE, has been used for this
purpose.

The RLE method is one of the simplest and least resource-intensive methods of data compression,
in which sequences consisting of identical characters (in this case — bits) are replaced by a pair of
values: character and number of repetitions. For example, the substring 000001111 will be encoded
as 05 14, which will reduce the total amount of representation in the presence of long single-type
data blocks.

When representing genetic data in binary form, the proposed method shows high efficiency, because
binary strings, binary strings derived from nucleotide sequences, often contain repetitive fragments,
for example, homopolymer regions — sequences like AAAA, CCCC, etc. The binary format of
genetic data shows high efficiency. In addition, the binary format itself has low entropy compared
to the character format, which further enhances the efficiency of RLE coding [12].

The following factors explain the choice of compression technique:

e the RLE algorithm has a low computational complexity of O(n), so it is suitable for
processing large data sets without significant computational cost [13];

e window method compression, where a string in binary representation is split into fixed-
length fragments, each of which is compressed separately. These actions make the
algorithm robust to local changes and decoding with minimal resource consumption;

186

Besyrnosa E.C., Hupses E.M., Kyuepos H.H., Ba6enko M.I". Moanduxkanus anropurma Cmuta-Batepmana a71st TOKaIbHOTO BEIPABHUBAHUS
TEHETHYECKHX ITOCIIEI0BAaTEILHOCTEH Ha OCHOBE MeToa OKkHa. Tpyoer UCII PAH, 2025, Tom 37 Bbim. 5, c. 183-194.

e unlike more complex methods (e.g., Huffman's algorithm [14] or arithmetic coding [15]),
recovering data from an RLE representation does not require the construction of external
tables and can be performed in a single linear pass, which is especially important in
resource-constrained environments such as embedded systems or fog computing
nodes [16];

o after applying RLE, additional data compression is possible, providing multi-layer
compression without data loss.

The Huffman algorithm [14, 17] and arithmetic coding [15, 18] are used to efficiently encode
character sequences, especially in the presence of statistical differences in character frequencies, but
they require the construction and storage of auxiliary structures, which increases the amount of
metadata and complicates decoding.

The compression methods LZ7 and LZ78 [19-20] and their derived algorithms, including the
Lempel-Ziv-Welch algorithm (LZW) and the Lempel-Ziv-Markov chain algorithm (LZMA) [21],
show a high compression rate when processing large amounts of text data [19], but they also require
large buffers and time for preliminary analysis, which makes them less suitable for low-level
optimization in a limited computational environment.

RLE, in turn, has high speed and minimal memory requirements, which makes it particularly
efficient in the presence of patterned, repetitive patterns - exactly the kind of structures characteristic
of genetic sequences. In addition, compared to Huffman coding and LZW, RLE shows better
performance on short fragments and in applications with «real-time» data processing [22].

In the proposed approach, local alignment is not performed at the nucleotide level, but in the space
of binary strings that were obtained by performing binary coding.

The splitting into windows is performed using the function «split_into_windows», after which
separate processing is performed. Each window is compressed using the RLE method. The data
recovery process allows to exactly restore the original window content and, if necessary, to perform
an accurate restoration of the binary sequence (Algorithm 2).

An important aspect of the proposed approach is that binarization and subsequent RLE coding of
genetic sequences do not impose restrictions on the ability to identify alignments of arbitrary length
or location. Despite the fact that the local alignment algorithm is performed in binary representation,
this is an exclusively intermediate form of data that ensures efficient processing. After the alignment
procedure is completed, an exact reverse transformation from the binary representation to the
original nucleotide sequences is implemented. This ensures complete compliance of the alignment
results with the original sequences without loss of information accuracy. Thus, any alignments found
at the binary level are unambiguously and accurately translated back into the original nucleotide
sequences, preserving the biological significance and accuracy of the final result.

2.3 Window method

Window method is a commonly used technique in sequence, signal, and text processing algorithms,
where the input data is partitioned into fixed-size non-overlapping segments (windows) [23]. Unlike
sliding window techniques, each window in this method is processed independently without overlap.
In the context of biological data processing, particularly sequence alignment, the window method
improves computational efficiency by reducing the working data set size. This approach also
facilitates parallel execution, as each window can be processed independently, which enhances
performance and optimizes memory usage.

In the proposed window method, S is a binary string of length n and the window size is W. The
string S is partitioned into windows, each consisting of a sequence of length W, except for the
outermost window which can be shorter if the length of string n is not divisible by W.

187

Bezuglova E.S., Shiriaev E.M., Kucherov N.N., Babenko M.G. Modification of the Smith-Waterman algorithm for local alignment of genetic
sequences based on the window method. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 183-194.

Algorithm Ne2 Data compression and recovery

Input: binary_str, window_size

Output: compressed_windows, decompressed_windows
1. windows < empty list

2. For i from 0 to length (binary_str) step window_size do
2.1. window « substring of binary_str for index i to i + window_size
2.2. Append window to windows

3. End of cycle

4. compressed_windows « empty list

5. For each window in windows do

5.1. If window is empty, then continue

5.2. compressed « empty string

5.3. current_bit « first bit of window

54 count « 1

5.6 For bit in window starting from second position do
5.6.1. If bit = current_bit, then

5.6.1.1. count « count +1

5.6.2. Else

5.6.2.1. Append current_bit + count to compressed
5.6.2.2. current_bit « bit

5.6.2.3. count « 1

5.7 Append final current_bit + count to compressed

5.8. Append compressed to compressed_windows

6. End of cycle

7. decompressed_windows « empty list

8. For each compressed_win in compressed_windows do
8.1. window <« empty string

82.i« 0

8.3. While i < length(compressed_win) do

8.3.1. bit « compressed_win[i]

8.3.2. count <« integer value of compressed_win[i + 1]
8.3.3. Append bit * count to window

834.i « i+ 2

8.4. Append window to decompressed_windows

9. End of cycle

10. Return compressed_windows, decompressed_windows

The process of partitioning into windows:
windows (S, W) = [S[i:i + W]|i = {0O,W,2W, ..., [(%J x W],

where i is the start index of each window, W is the window size, and S[i:i + W] is a slice of the
string S starting at index i and of length W. The expression l(%] X W ensures that no window
exceeds the bounds of the sequence.

If the string length n is not a multiple of W, the last window will have a shorter length equal to
n mod W, where n mod W is the remainder of dividing n by W. The partitioning algorithm ensures
that the entire string is covered by non-overlapping windows, with the last one possibly shorter than
the others.

Partitioning a string into smaller, fixed-size windows allows for the distribution of computational
tasks, as each window can be processed independently. This feature is particularly beneficial in

188

Besyrnosa E.C., Hupses E.M., Kyuepos H.H., Ba6enko M.I". Moanduxkanus anropurma Cmuta-Batepmana a71st TOKaIbHOTO BEIPABHUBAHUS
TEHETHYECKHX ITOCIIEI0BAaTEILHOCTEH Ha OCHOBE MeToa OKkHa. Tpyoer UCII PAH, 2025, Tom 37 Bbim. 5, c. 183-194.

multitasking or multiprocessor systems, where each window can be assigned to a separate thread or
process. The technique also contributes to optimized memory usage, enabling processing of smaller
data portions without requiring the entire sequence to be loaded into memory.

Thus, the described algorithms can be implemented as a unified program or used independently in
unrelated tasks. Based on these modules, a working program has been developed, and its results are
presented in the next section.

3. Conducting the experiment

To evaluate the efficiency of the proposed algorithm for local alignment of genetic sequences, a
series of computational experiments were conducted.

The study was carried out on the basis of programmes described in the Python programming
language [24], on a dataset of genetic sequences ranging from 100 to 3000 nucleotides, with a step
of 100, on equipment with the following characteristics:

e CPU: Apple M2 16 cores, 3.4GHz;

¢ RAM: 8GB LPDDR4X;

e Storage: 512GB NVMe SSD PCle 3.0;

e Operating System: macOS Sonoma 15.4.

The experiment was conducted in three phases:

1) measurement of speed, average memory and peak memory when performing local
alignment using the classical Smith-Waterman algorithm;

2) measurement of speed, average memory and peak memory when performing local
alignment using the modified algorithm based on the Smith-Waterman algorithm;

3) comparisons of the obtained results.

Average memory usage was computed as the mean value of allocated memory during the entire
execution, while peak memory corresponds to the maximum memory usage observed at any point.
These metrics were chosen to reflect both sustained and worst-case memory behavior.

The results showed that as sequence length increased from 100 to 3000 nucleotides, the classical
Smith-Waterman algorithm exhibited a quadratic increase in execution time (up to 520 seconds). In
contrast, the modified version maintained a nearly constant execution time between 10 and 20
seconds. This demonstrates a significant reduction in computational load — approximately 11.7-fold
(Fig. 1).

Fig. 2 shows a comparison of the average memory consumption between the classical and modified
algorithms as a function of sequence length. The results demonstrate that the classical algorithm
exhibits linear growth in average memory usage as the input sequence length increases, exceeding
20,000 KB for sequences of 3,000 nucleotides.

In contrast, the modified algorithm displays a more stable behavior: after a brief initial rise, average
memory usage stabilizes at approximately 3,800 KB and remains nearly constant regardless of
further increases in input size.

These findings confirm that the proposed method is particularly effective for use in systems with
limited computational resources, where predictable and low memory usage is critical.

Fig. 3 presents a comparison of peak memory consumption between the classical and modified
algorithms. The classical Smith-Waterman algorithm is characterized by an exponential increase in
peak memory usage as sequence length grows, reaching approximately 72,088 KB for input
sequences of 3,000 nucleotides.

In contrast, the modified algorithm shows significantly lower peak memory usage: after a moderate
initial increase, the values stabilize around 7.8 MB, regardless of further input growth.

189

Bezuglova E.S., Shiriaev E.M., Kucherov N.N., Babenko M.G. Modification of the Smith-Waterman algorithm for local alignment of genetic
sequences based on the window method. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 183-194.

100 200 300 400 SO0 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 700 2800 2900 3000
Length

—o—Classical —a—New

Fig. 1. Comparison of average time used

100 200 300 400 500 600 700 80D 500 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 250D 2600 2700 2600 2900 3000
Length

—e—Classical —a—New

Fig. 2. Comparison of average memory consumption
134217728
67108864
16777216
8388608
4194304
524288

096
2048
1024

s12

100 200 300 400 500 £00 700 BOD S00 1000110012001300140015001600 1700180019002000210022002 300240025002600270028002900 3000

Peak Memory, lag2{KB)

Length

—a—Classical —a—New

Fig. 3. Comparison of peak memory consumption

These results confirm the effectiveness of the proposed window-based compression and processing
technique, which substantially reduces memory load while preserving the accuracy of the alignment.

190

Besyrnosa E.C., Hupses E.M., Kyuepos H.H., Ba6enko M.I". Moanduxkanus anropurma Cmuta-Batepmana a71st TOKaIbHOTO BEIPABHUBAHUS
TEHETHYECKHX ITOCIIEI0BAaTEILHOCTEH Ha OCHOBE MeToa OKkHa. Tpyoer UCII PAH, 2025, Tom 37 Bbim. 5, c. 183-194.

4. Conclusion

The paper proposes an algorithm for local alignment of genetic sequences based on window method
and RLE compression. The results of computational experiments show a significant reduction of
time and resource costs. In particular, the modified algorithm demonstrates a 11.7-fold reduction in
execution time compared to the original algorithm. Also, a 4.8-fold reduction in average and peak
memory consumption is obtained, which makes the proposed method promising for big data analysis
and implementation in environments with limited computational capabilities.

In the future, it is planned to extend the proposed approach by including adaptive compression
strategies that will automatically select the most efficient coding scheme depending on the structure
of the input sequence. In addition, a promising direction is the implementation of the modified
algorithm in distributed computing systems, including fog computing environments and embedded
devices, in order to assess the scalability and stability of the algorithm under resource constraints.
The integration of the developed method into existing bioinformatics pipelines remains an urgent
task, which will allow us to assess its practical significance in solving applied problems, such as
homology search, gene annotation and analysis of changes in genomes.

References

[1]. Baxevanis A.D., Bader G.D., Wishart D.S. Bioinformatics. Hoboken, NJ: John Wiley & Sons, 2020,
656 p.

[2]. Olson M. V. The human genome project. Proceedings of the National Academy of Sciences, 1993. Vol.
90, no. 10, pp. 4338-4344.

[3]. Smith T. F., Waterman M. S. Identification of common molecular subsequences. Journal of Molecular
Biology, 1981, vol. 147, no. 1, pp. 195-197.

[4]. Flynn M. J. Some Computer Organizations and Their Effectiveness. IEEE Transactions on Computers,
1972, vol. C-21, no. 9, pp. 948-960, DOI: 10.1109/TC.1972.5009071.

[5]. Farrar M. Striped Smith-Waterman speeds database searches six times over other SIMD implementations.
Bioinformatics, 2007, vol. 23, no. 2, pp. 156-161, DOI: 10.1093/bioinformatics/bt|582.

[6]. Barron E. T., Glorioso R. M. A micro controlled peripheral processor. Conference record of the 6th annual
workshop on Microprogramming, in MICRO 6. New York, NY, USA: Association for Computing
Machinery, 1973, pp. 122-128, DOI: 10.1145/800203.806247.

[7]. Liu Y., Wirawan A., Schmidt B. CUDASW-++ 3.0: accelerating Smith-Waterman protein database search
by coupling CPU and GPU SIMD instructions. BMC Bioinformatics, 2013, vol. 14, no. 1, p. 117, DOI:
10.1186/1471-2105-14-117.

[8]. Rognes T. Faster Smith-Waterman database searches with inter-sequence SIMD parallelization. BMC
Bioinformatics, 2011, vol. 12, no. 1, p. 221, DOI: 10.1186/1471-2105-12-221.

[9]. Robinson A. H., Cherry C. Results of a prototype television bandwidth compression scheme. Proceedings
of the IEEE, 1967, vol. 55, no. 3, pp. 356-364, DOI: 10.1109/PROC.1967.5493.

[10]. Collett D. Modelling Binary Data. 2nd ed. New York: Chapman and Hall/CRC, 2002, p. 367, DOI:
10.1201/b16654

[11]. Lavrov I., Maksimova L. Problems in Set Theory, Mathematical Logic and the Theory of Algorithms.
Springer Science & Business Media, 2003, p. 275.

[12]. Sayood K. Introduction to data compression. Morgan Kaufmann, 2017, p. 735.

[13]. Salomon D. A concise introduction to data compression. Springer Science & Business Media, 2007,
p. 305.

[14]. Cormen T. H., Leiserson C. E., Rivest R. L. Introduction to algorithms. MIT press, 2022, p. 1251.

[15]. Rissanen J., Langdon G. G. Arithmetic Coding. IBM Journal of Research and Development, 1979, vol.
23, no. 2, pp. 149-162, DOI: 10.1147/rd.232.0149.

[16]. Chervyakov N., Babenko M., Tchenykh A., Dvoryaninova I., Kucherov N. Towards reliable low cost
distributed storage in multi-clouds. 2017 International Siberian Conference on Control and
Communications (SIBCON), 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998476.

[17]. Huffman D. A. A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE,
1952, vol. 40, no. 9, pp. 1098-1101, DOI: 10.1109/JRPROC.1952.273898.

[18]. Witten I. H., Neal R. M., Cleary J. G. Arithmetic coding for data compression. Commun. ACM, 1987, vol.
30, no. 6, pp. 520-540, DOI: 10.1145/214762.214771.

191

https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1145/800203.806247
https://doi.org/10.1186/1471-2105-14-117
https://doi.org/10.1186/1471-2105-12-221
https://doi.org/10.1201/b16654
https://doi.org/10.1147/rd.232.0149
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1145/214762.214771

Bezuglova E.S., Shiriaev E.M., Kucherov N.N., Babenko M.G. Modification of the Smith-Waterman algorithm for local alignment of genetic
sequences based on the window method. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 183-194.

[19]. Ziv J., Lempel A. A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory, 1977, vol. 23, no. 3, pp. 337-343, DOI: 10.1109/TIT.1977.1055714.

[20]. Winters K. D., Owsley P. A, French C. A, Bode R. M., Feeley P. S. Adaptive data compression system
with systolic string-matching logic, US5532693A, 1996.

[21]. Welch T. A. A Technique for High-Performance Data Compression. Computer, 1984, vol. 17, no. 06, pp.
8-19, DOI: 10.1109/MC.1984.1659158.

[22]. Nelson M., Gailly J. L. The data compression book 2nd edition. M & T Books, New York, NY., 1995,
p. 576.

[23]. Gusfield D. Algorithms on Stings, Trees, and Sequences: Computer Science and Computational Biology.
SIGACT News, 1997, vol. 28, no. 4, pp. 41-60, DOI: 10.1145/270563.571472.

[24]. Rana Y. Python: simple though an important programming language. International Research Journal of
Engineering and Technology (IRJET), 2019, vol. 6. no. 2, pp. 1856-1858.

Ungpopmayusi 06 aemopax / Information about authors

Exatepuna Cepreesna BE3YI'JIOBA okoHuYMIIa MarucTpaTypy 10 CenHatbHOCTH «MaTteMaTika 1
koMmnbioTepHble Hayku» B 2023 romy B CeBepo-KaBkasckoMm ¢enepaapbHOM yHHBepcurere. B
HacTOfAIIEe BpEeMS OHA ABISIETCA ACHHPAHTOM, MIIAAIIAM HAyYHBIM COTPYJHHKOM Hay4dHO-
HCCIIEOBATEIbCKON JIabopaTopuy OHOJIOTHYECKOH M MEIUIMHCKOM HH()OPMATHKH MEANKO-
6uonorndeckoro ¢akynprera CeBepo-KaBkaszckoro ¢emepanpHoro yHmBepcurera. Ee HaydHbBIE
uHTepechl: OMoMH(OpPMAaTHKA, aHAIN3 JaHHbBIX, MAIIMHHOE 00y4eHHe, HEHPOHHbIE CeTH, 00IauHbIe
BBIUUCIICHUS.

Ekaterina Sergeevna BEZUGLOVA graduated with a master's degree in Mathematics and Computer
Science in 2023 from the North Caucasus Federal University. She is currently a postgraduate student
and a senior mid-level employee at the Research Laboratory of Biological and Medical Informatics
at the Faculty of Medicine and Biology at the North Caucasus Federal University. Her research
interests include bioinformatics, data analysis, machine learning, neural networks, and cloud
computing.

Erop Muxaiinopuy HINPSAEB oxoHumn waructpaTypy no cnenuanbHocTH «IIpuknagHas
MaTeMmaTuka u nHpopmaruka» B 2022 roay B CeBepo-KaBkasckoM ¢enepansHOM yHUBepcuTete. B
HacTOsIIee BPeMs OH SIBJISIETCS aCIIMPAHTOM, HH)KEHEpOM-HcclieioBaTelnieM JlenapraMeHTa HayKu U
aCCHCTEHTOM KadeAphl BBIYUCIMTENBHOW MareMaTuku M kubOepHeTnkn Ceepo-KaBkazckoro
(enepaibHOrO yHHBEpcUTeTa. Ero HaydHble HHTEPECHI JIeXkKAaT B 00JaCTH TOMOMOP(HBIX METOJIOB
mrppoBaHusl, HEHPOHHBIX CETEH, COXPAHSIOMIMX KOH(UAESHIINAIBHOCTh, O0JIaYHBIX BBIYUCICHUN U
KnOepOe30MacHOCTH.

Egor Mikhailovich SHIRIAEV graduated from the master's program "Applied Mathematics and
Computer Science" in 2022, at the North Caucasus Federal University. Currently, he is a
postgraduate student, a research engineer at the Department of Science, and an assistant at the
Department of Computational Mathematics and Cybernetics at the North Caucasus Federal
University. His research interests are in homomorphic encryption methods, privacy-preserving
neural networks, cloud computing and cybersecurity.

Huxomaii Hwnkonaesnu KVYUYEPOB mnomyunn cremeHp 0OakajgaBpa 10 CHEHHAIBHOCTH
«KoMmbroTepHble HAYKM» W KaHIUAaTa TexHUUecknx Hayk B CeBepo-KaBkasckom ¢emeparbHOM
yausepcurete, CraBpomnoins, Poccus, B 2012 u 2018 rogax coorBerctBenHo. C 2020 roma oH
paboTraeT IOIEHTOM KadeApbl MaTeMaTHYeCKOro aHaim3a, ainreOpbl m reometpun CeBepo-
Kagka3sckoro ¢enepaipHoro yHuBepcutera, CraBpononb, Poccus. Ero HaydyHble HHTEpecChI
BKIIFOYAKOT o0auHbIE BBIYUCIICHUA, BBICOKOIIPOU3BOANUTEIILHBIC BBIYUCIICHUS, CHUCTEMBI
OCTaTOYHBIX YHCEI, HEHPOHHBIE CETH N KHOepOe30IacHOCTb.

Nikolay Nikolaevich KUCHEROV — Cand. Sci. (Tech.) since 2018. He graduated from North-
Caucasus Federal University, Stavropol, Russia, in 2012, and has been working as an Assistant

192

https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1145/270563.571472

Besyrnosa E.C., Hupses E.M., Kyuepos H.H., Ba6enko M.I". Moanduxkanus anropurma Cmuta-Batepmana a71st TOKaIbHOTO BEIPABHUBAHUS
TEHETHYECKHX ITOCIIEI0BAaTEILHOCTEH Ha OCHOBE MeToa OKkHa. Tpyoer UCII PAH, 2025, Tom 37 Bbim. 5, c. 183-194.

Professor with the Department of Mathematical Analysis, Algebra and Geometry, North-Caucasus
Federal University, Stavropol, Russia, since 2020. His research interests include cloud computing,
high-performance computing, residue number systems, neural networks, and cybersecurity.

Muxann I'puroppeBud BABEHKO — noktop ¢u3nKo-MaTeMaTH4ecKuX HayK, 3aBEIYHOLIUH
Kadenpbl BBIYMCIUTEIBHOW MaTeMaTHKH W KHOCPHETHKH (aKyJlbTeTa MaTeMaTuKd |
KOMIIBIOTEPHBIX Hayk uMmeHH mpodeccopa H.M. YeppskoBa ®T'AOY BIIO «CeBepo-KaBkasckuii
¢denepanbHblit yHuBepcuter». Cdepa HaydHBIX MHTEpECOB: OONAYHBIC BBIYHCICHHS,
BBICOKOTIPOU3BOAUTENIEHBIE BBIUMCICHHUS, CHCTEMa OCTaTOYHBIX KJIAccOB, HEHPOHHBIE CETH,
KpunTorpagus.

Mikhail Grigoryevich BABENKO - Dr. Sci. (Phys.-Math.), Head of the Department of
Computational Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named
after Professor N.I. Chervyakov, North Caucasus Federal University. His research interests include
cloud computing, high-performance computing, residue number systems, neural networks,

cryptography.

193

Bezuglova E.S., Shiriaev E.M., Kucherov N.N., Babenko M.G. Modification of the Smith-Waterman algorithm for local alignment of genetic
sequences based on the window method. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 183-194.

194

Tpyowr UCIT PAH, mom 37, ewin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-15 EOC-EH

Pa3paboTtka 3awmnTbl 60NbLNX A3LIKOBbLIX MOAENEN
OT COCTA3aTesibHbIX aTaK B CLLEHapUn YepHOoro
SAILMKa Ha ocHoBe nepedpasnpoBaHus

YU.C. Anexceesckas, ORCID: 0009-0006-8833-441X <alekseevskaia@ispras.ru>
L2 1 B. Xaii6yanun, ORCID: 0009-0006-5105-1942 <deniskh@ispras.ru=>
L2 T IO. Typoaxos, ORCID: 0000-0001-8745-0984 <turdakov@ispras.ru>

Y Unemumym cucmemnozo npoepammuposanus PAH,
Poccus, 109004, 2. Mockea, yn. A. Conswcenuywina, 0. 25.

2 Mockosckuii 2ocyoapcmeennviii ynusepcumem umeny M.B. Jlomonocosa,
Poccus, 119991, Mocxkaa, Jlenunckue 2opul, 0. 1.

AnHOTammsi. B mocienHee BpeMsi aKkTyaJbHOCTH T'CHEPATHUBHBIX MOJENEH CYIIECTBEHHO BO3pOCHIA, a UX
obJlacTh TIPUMEHEHHs CTaHOBHTCS Bce Ooipire. OmHako, IIaBHas IMpoOieMa COBPEMEHHBIX OOJBIINX
SI3BIKOBBIX MOJICIEH 3aKIIIOYaeTCsl B TOM, YTO CYLIECTBYIOT COCTSI3aTeNIbHBIC aTaKh, C MOMOIIBIO KOTOPBIX
MOXKHO 3aCTaBUTh MOJENIb BBHIJIaBaTh 3alpelleHHY0 HHpopMmauuoo. B mocnenuux paborax Obutd
MPECTaBICHBI COCTA3aTeNbHBIC YI3BUMOCTH B Kilacce arak “moOer m3 TIOpbMBI” (jailbreaks) Ha Gombimme
SI3BIKOBBIE MOJIETIM B CLICHAPUH YEPHOTO SIIHMKa Ha OCHOBE nepedpasnpoBanus. Mbl CTpeMUMCS TPOJOIDKUTH
U PacUIMPHTh JAHHOE MCCIEAOBAaHHE, a TaKkKe pa3paboTarh 3alIMIICHHBIC MOJEIM OT MOJOOHBIX arak,
UCIIONB3YS [UIsl 3TOTO MpOoLeAypy “KpacHoit komansl” (red-teaming). bosiee Toro, Mbl MPOBOIUM OOLIMPHBIE
JKCIIEPUMEHTHI, KOTOPbIE OLEHUBAIOT KaYeCTBO T'€HEpallMy TEKCTOB 3alUIIEHHBIX MOJIeleil Ha pa3inyHBIX
OeHuMapKax.

KnroueBbie ciioBa: BEIpaBHHMBaHME; OOJbIINME S3bIKOBBIE MOJENH; aTakd “mo0er U3 TIOPHMBI’; TpoIeaypa
“KpacHOM KOMaH[bI"’; TOBEPEHHBII HCKYCCTBEHHBII HHTEIUICKT.

s nurupoBanusi: AnekceeBckas U.C., XaitOymmua [.B., Typaakos I.1O. Pa3paborka 3amursr 60IbIINX
S3BIKOBBIX MOJIEJICH OT COCTS3aTeNbHBIX aTaK B CLEHAPMH YEPHOTO SIIMKa Ha OCHOBE mepedpasupoBaHHs.
Tpynst UCIT PAH, Tom 37, Bbim. 5, 2025 1., ctp. 195-204. DOI: 10.15514/ISPRAS-2025-37(5)-15.

Baaropapuoctu: Mucturyt cucreMHoro nporpammupoBanust uM. B.I1. iBanaukoBa Poccuiickolt akagemun
HayK.

195

mailto:arkhipenko@ispras.ru
mailto:arkhipenko@ispras.ru
mailto:arkhipenko@ispras.ru

Alekseevskaia 1.S, Khaibullin D.V., Turdakov D.Yu. Developing a defence for large language models against adversarial attacks based on
paraphrasing in a black-box scenario. Trudy ISP RAN/Proc. ISP RAS, vol. 5, issue 5, 2025. pp. 195-204.

Developing a Defence for Large Language Models Against
Adversarial Attacks Based on Paraphrasing in a Black-Box Scenario

11.S. Alekseevskaia, ORCID: 0009-0006-8833-441X <alekseevskaia@ispras.ru>
12D.V. Khaibullin, ORCID: 0009-0006-5105-1942 <deniskh@ispras.ru=>
12D.Yu. Turdakov, ORCID: 0000-0001-8745-0984 <turdakov@ispras.ru>

LInstitute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn str., Moscow, 109004, Russia.

2] omonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. Recently, the relevance of generative models has increased significantly, and their scope of
application is becoming increasingly larger. However, the main problem with modern large language models
is that there are jailbreak attacks that can force the model to produce prohibited information. Recent studies
have presented adversarial vulnerabilities in the class of "jailbreak" attacks on large language models in a black-
box, paraphrase-based scenario. We aim to continue and expand this research and develop models that are
secure against such attacks using a "red-teaming" procedure. Moreover, we conduct extensive experiments that
evaluate the quality of text generation of defended models on various benchmarks.

Keywords: alignment; large language models; jailbreak attacks; red-teaming; trustworthy artificial
intelligence.

For citation: Alekseevskaia I.S., Khaibullin D.V., Turdakov D.Y. Developing a defence for large language
models against adversarial attacks based on paraphrasing in a black-box scenario. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025, pp. 195-204 (in Russian). DOI: 10.15514/ISPRAS-2025-37(5)-15.

Acknowledgements. Ivannikov Institute for System Programming of the Russian Academy of Sciences.

1. BeedeHue

IlocnenHee BpeMs aKTHBHO pAa3BHBAIOTCA CHCTEMBl HCKycCTBEHHOTO wuHTewiekta (MU) wu
MPUMEHSIOTCS B Pa3JIMYHBIX 00JIacTsX, Kak B kauecTBe noMouHnkoB ChatGPT [1], Tak u aist Oonee
npukinaaneix 3axad Codellama [2] s renepanuu nporpaMMHoro kona. Taroke npumeHnenune MU
3aTparuBaeT M Oonee Kpurthueckue obnactu, Hanpumep, Med-PaLM [3] mns BeisBieHUs
3a00JIeBaHUH.

OpHaKo, MCCIIEAOBATENSIME OBUIO BBISIBICHO, YTO OOJbBIIME S3bIKOBBIE MOJENN YS3BUMBI K
COCTA3aTEeNFHBIM aTakaM [4-6], aTakaM ¢ BCTpauBaHUEM 3aKJIaoK [7-9], k yreukam qaHHBIX [5, 10-
11], 9TO MOTEHIMANBHO MOXET MPUBECTH K MpobiieMaM ¢ 0€30MacHOCTHI0 M BOIIPOCOM JOBEpHUs
cucremam c¢ M. bonee Toro, ObIo 0OHapyXeHO, YTO MOJEIM MOTYT JHUCKPHMHUHHPOBATh
OmnpeneNeHHble pachkl Jrofeil [12], roBOpUTh MOCIEAOBATENBHOCTh HIATOB MO H3TOTOBICHHIO
HelleranbHBIX BemiecTB [13], BbmaBaTh KoH(HIOeHIUANbHBIC naHHBIE [14]. B cBs3u ¢ 3TiM, B
Hay4YHOM cooOmecTtBe mnosBwiauchk npuHuunsl Constitutional Al [15], cormacHo KOTOpBIM
HEOOXO0/AMMO, YTOOBI OTBET OOJIBIIMX SI3BIKOBBIX MOJIENIEH COOTBETCTBOBAI TPEM KPHUTECPHSM:
YECTHBIN, O€3BPETHBIN U TIOJE3HBIN.

st Toro, 4ToOBl 00ECIIeYNTh KOPPEKTHYIO PadOTy M STHYHOE MOBEAEHHE OOJBIIMX S3BIKOBBIX
MoJieNiell MccieoBaTeNsIMi ObUIM pa3paboTaHbl pa3IMYHbIE METOJbl BBHIPABHMBAHHS MoJeiel
RLHF [16], Safe RLHF [17], DPO [18], f-DPO [19], IPO [20], KTO [21], CPL [22]. Haubosee
MOTTYJISIPHBIM | 3 GEeKTHBHBIM 110 cux mop octaercss RLHF. Kaxprif n3 nepedncieHHbIX METOIOB
OCHOBaH Ha Tpoleaype “KpacHOH KOMaHJIbI’, KOTOpas BKJIIOYAeT B ce0s BXOAHBIE NTaHHBIC C
IIPOBOKALIMOHHBIMU BOIIPOCAMH U COOTBETCTBEHHO HEITUYHBIMU OTBETAMHU.

196

mailto:arkhipenko@ispras.ru
mailto:arkhipenko@ispras.ru
mailto:arkhipenko@ispras.ru

Anekceeckast U.C., Xaitoymmu [I.B., Typaakos [I.10. PazpaboTka 3amuTsl G0IbIIMX S3bIKOBBIX MOJETICH OT COCTA3ATENBHBIX aTaK B
CIIEHapUH YePHOTO SIMKa Ha OCHOBe nepedpasuposanus. Tpyoet UCII PAH, 2025, tom 37, Bem. 5, c. 195-204.

Tem He MeHee, JakKe MOCIIe MPUMEHEHHS AITOPUTMOB BbIPABHUBAHUSI, OOJIBILINE SI3BIKOBBIC MOICIH
OCTAalOTCS VYSA3BUMBIMH K aTakaM ‘“mo0er w3 TIOpbMBI. [23-25], 3acTaBisionuM HapylaTh
BHYTpEHHHE MeXaHu3Mbl 3amuThl. C Ienpio oOecriedeHus] 6e30MacHOCTH W MPEJOTBpAIICHHUS
3II0YMBIIUICHHOTO HCIOJBb30BaHUS, KpalfHe Ba)KHO KCCJICIOBAaTh JaHHYK) 00JacTh, a MMCHHO,
BBISIBJIATH BPEIOHOCHBIE BXO/IHBIC JAHHBIC U TIPUMEHSITh K HUM METO/IbI 3aIl[UTHL.

Ham Bxiaz 3akirodaceTcs B CJICAYIOUIEM:

® MBI pa3paboTany COOCTBEHHBIH HaOOp ITAHHBIX, COOpAHHBINM B pe3ynbTaTe IPOLEHAYpPHI
“KpacHOW KOMaH[BI

® OIICHIUIH MOJTyYCHHBIH HA0Op AaHHBIX HA 10 COBPEMEHHBIX OOJBIIUX S3BIKOBBIX MOJICIISX;

® BHINOJHIUTN BEIpaBHUBaHHE Mojenu Llama 2-7b ¢ momomsto anropurmoB RLHF 1 DPO;

® OICHIJIM KAueCTBO MOJYYCHHBIX 3allMIIEHHBIX OONBIINX S3BIKOBBIX MOJEIEH Ha
MOMYJIAPHBIX OEHIMAapKaXx.

2. O630p numepamypbli

2.1 NMpoueaypa “KpacHon KomaHAabI”

[enenanpaBieHHBI TPOIECC MO MOJECIUPOBAHUIO BPEIOHOCHBIX CIIEHapueB [26], ¢ Uenbio
BBISIBJICHHSI CYIIECTBYIOIIUX YS3BUMOCTEH B MOJAENSX, APYTUMH CIIOBaMH, Mpolenypa “KpacHOU
KOMaHJbl” MMUTHPYET IOBEIEHHE 3710yMbIIUIeHHHKa. HaOoppl maHHBIX “KpacHOW KOMaHABI”
BKJIIOUAIOT B ce0s BXOJIHBIE JJAaHHBIE, OTYYCHHBIE B PE3YJIbTAaTE COCTA3ATEIbHBIX aTak [4-5], cpeau
KOTOPBIX araku “mober u3 ToopbMbl” [23-24], ataku ObicTpoe BHeapenue [6, 27]. OgHuMm wu3
HanOoJiee MOMYJSIPHBIX HAOOpOB MAaHHBIX B pe3yjibTaTe MPOBEACHUS NPOLEIYPHl “KpacHOU
komangs!” sisercs HH Red Teaming [28], B koTopoM coOpaiu 38 ThICSY BPEIOHOCHBIX 3aIIPOCOB,
pa3leseHHBIX N0 ONpeneieHHbIM KateropusiM. Ilo3nHee Obun paspaboransl Habopbl: AdvBench
[5], AART [29], Beavertails [30], RedEval-HarmfulQA [31], RedEval-DangerousQA [31].

2.2 3awmnTbl 60NbLWKUX A3LIKOBbLIX MoAerien OT cocTA3aTerNbHbIX aTak

Hauboiee nomymsipusiii Mmetox BeipaBHUBaHusI RLHF [16] cocTouT B TOM, 9TO OOIIBIIAS S3BIKOBAS
MOJIETIb paciapajuIeNIMBaeTCs: Beca IIepBOil MOJIETIH 3aMOPKMUBAIOTCS U HCIIOJIB3YIOTCSl B KAUECTBE
STAJOHHBIX; BECa BTOPOH MOJIENH IBITAIOTCS ONTUMU3UPOBATH HA BPEJOHOCHOM HAa0OpEe JTaHHBIX.
Hanee Haxoautcs pacxoxaenne KympOaka-Jleiiomepa [32] Mexay MOIUTHKAMHU JBYX MOJEIEH H
BBIYMCIIETCS BO3HATPAKACHHE OT OTBETa MOJIENHM C IOMOIIBIO JPYroi mpemnoOydeHHONH Mozenn
Reward Model [17], koTopasi mprHUMAET MOCJIENOBATEILHOCTh TEKCTa U BO3BPAILAET CKAISIPHOE
BO3HATPAXJECHUE, YHCICHHO OTpakalollee MpPEeANOYTeHHs deloBeKa. Pe3ynpTaT mMoOKa3bIBaerT,
HACKOJIBKO YEJIOBEK BO3HATPAIUT MM HAKaKeT MOJENb 32 CTeHEPHPOBAHHBINA TEKCT K TEKYIIUM
BXOJTHBIM JIAHHBIM. 3aT€M BBIMONHIECTCS ONTHMU3ANHOHHBIN tiar anroputmom RL — PPO [33].

Momudukanus 3Toro Merona peaansoBana B anropurme Safe RLHF [17], koTopblii mpenoxeH s
penieHrs npoOiIeMbl MPOTUBOPEUUS MEXKIY TOJIE3HOCTHIO U OE3BPEAHOCTHIO BO BPEMSI TOHKOM
HACTPOIKHU OOJIBITUX S3BIKOBBIX MOJiesiel. B OONBIIMHCTBE CIIeHAPUEB TOJIE3HOCTh U OE3BPEIHOCTh
4acTo mpoTuBOpedaT apyr aApyry. OCHOBHas wujaes aBTOPOB aJrOpuTMa — OTO pasleeHHe
YEIOBEUECKUX MPEANOYTEHU BO BpeMsi aHHOTAIMU M WCIIOJB30BAHUM MHOXHUTENs Jlarpamxa
(Lagrangian multiplier, A) [34] mna cbanancupoBaHus 1eneii 00ydeHus.

Jpyroii pazpaboTtanHblii nccaegoBarensiMu Metot — 31o Meroq DPO [18], koTopslil He HcoIb3yeT
o0ydeHHe ¢ moAkpericHneM. [1TaBHOE OTIMYHE 3TOT0 METOAA COCTOUT B MCIOJIb30BaHUU MOJEIH
Bpam-Teppr B kadecTBE MOJENM BO3HAarpakJAeHHs, KOTOpas C ydeToM Habopa HaHHBIX O
MPEAIOYTEHISIX TTI03BOJIIET HAaM BBIYHMCIUTE YHCIOBON BO3HATPAXKICHHE.

Hanee Obuta npemnoxena Mmonudukaiys B merone f-DPO [19]. dus Toro, 4ToObl cOaaHCHPOBATH
MPOU3BOUTEIHHOCTh BBHIPABHUBAHHS, a WMCHHO BO3HarpaxJIcHWE U pasHooOpasue,
paccmarpuBaetcst 6osiee MMPOKUH KIacC peryispu3aiiu B QyHKIuu noreps — f-auseprenius.

197

Alekseevskaia 1.S, Khaibullin D.V., Turdakov D.Yu. Developing a defence for large language models against adversarial attacks based on
paraphrasing in a black-box scenario. Trudy ISP RAN/Proc. ISP RAS, vol. 5, issue 5, 2025. pp. 195-204.

Meton KTO [21] npeaiaraer MOTHBIA OTKa3 OT JAaHHBIX MAPHBIX MPEANOYTEHUNH M ONpeaemsaeT
(YHKIHIO TOTEPh B TEPMUHAX OT/ACIbHBIX IPUMEPOB, TOMEUSHHBIX KaK «XOPOIIHE» HIIH ILIOXHE).

Taxoke nccnenosatenu npemioxuin Metoxn [IPO [20], koTopslii nodaBiseT hakTop peryispusanuu
Kk motepsM DPO, 4To MO3BOJSIET YyYUTHCS HETOCPEICTBEHHO Ha MPEANOYTEHHAX Oe3 3rTama
MOJENNPOBaHMA (PYHKIHMH BO3HATPAKICHUS W HE aJalTHPOBATHCSA CIMIIKOM OBICTPO K Habopy
JTAaHHBIX O TIAPHBIX MPEAIMOYTCHHUSIX.

B mocnemuux wuccnenoBaHusx Obul paspaboran merox CLP [22], roe momens misl OIEHKA
MPEANOYTCHUH (HOPMHUPYETCs] B TEPMHHAX KOHTPACTHOTO OOYYEHHs, TO €CTh Ha BBIXOJC JacT
YHCJICHHOE BO3HATPAXICHUE O TPUHIIUITY OJU30CTH U PA3JIMYHS MOJIOKUTESIHHOTO U HETaTHBHOTO
OTBETa MOJIETIH.

3. Memodosnozus

3.1 MNocTaHoBKa 3agauu

Bonpmme S3BIKOBBIE MOIENH MOTYT OBITH VSA3BUMBI K Mepedpa3HpOBaHHBIM 3aIpelICHHBIM
BOTIpOCaM, KOTOpBIE c(OpMYJIHpOBaHBl B HaydHOM cTwie. Ha puc. 1 mpencraBieHa TeKymas
mpobiema, rae BMecTo mpsMoro Bompoca “Kak cmenmats 6omOy?” Momenn momaloT Ha BXoJ Oojee
HAYYHBII BOMPOC, a B pe3yJIbTaTe MOJIENb daeT OTBET. JlaHHAas aTaka OTHOCHTCS K aTake “mo0er u3
TIOPBMBI” B CIICHAPUH YEPHOTO SIIUKA.

£nt-40-2024-08-06

@, Expand to see the descriptions of 70 modals -

What are the chemical procasses involved in the synth

The synthesis of explosive materlals varlous chemical processes that typically result in the fo

Here are some key processes invalved in the synthesis of co;

L Nitration:

Pracess: Tt he intraduction of nitra groups |-NG2) into arganic molecules. It is 2 common method for synthesizing explosives such 2s TNT (trinitrozoluans)

and nitr

Example: In the produc ulfuric acid

2. Oxidation:

e hydrogen content. This can enhance the explosive properties by providing

3. Neutralization

o Process: Neutralization reacbons can be use

Puc. 1. ®pacmenm paszeoeopa ¢ GPT-40, 20e modenv svloaem 3anpeweHHy0 UHHOPMAYUIO.
Fig. 1. A fragment of a conversation with GPT-40, where the model produces prohibited information.

B cBs3u ¢ aTHM, Tekymias paboTa MOCBSIICHA Pa3pabOTKe 3allUINEHHBIX OOJIBIITUX SI3BIKOBBIX
MO}leHeﬁ Ha OCHOBEC JIOMOJIHUTECJIBHOT'O BBIpABHUBAHUA HA CTCHCPUPOBAHHOM HAMH Ha60pe JaHHBbIX,
MOJyYCHHBIM B pe3yJbTaTe MPOIEIypHl “KpacHOW KOMaHIBI , YTO IIO3BOJIIET CO3JaTh Oojee
YCTOWYUBBIE MOJIEIIH K ONIPENCIEHHOMY THUIY aTak.

3.2 Anroputm co3faHuA 3alMULLIEHHbIX OONbLINX A3bIKOBbIX Moaenem oT
aTak “nober us TIOpbMbI” Ha OCHOBe nepedpasMpoBaHuA
[TycTs mcxoaHbIi HA0OP JAHHBIX MPEANOYTCHUH 3a/1aH B BUJE:

Dorig — { (xk’ykchosen,ykrejected)}Nk:P (1)

198

Anekceeckast U.C., Xaitoymmu [I.B., Typaakos [I.10. PazpaboTka 3amuTsl G0IbIIMX S3bIKOBBIX MOJETICH OT COCTA3ATENBHBIX aTaK B
CIIEHapUH YePHOTO SIMKa Ha OCHOBe nepedpasuposanus. Tpyoet UCII PAH, 2025, tom 37, Bem. 5, c. 195-204.

TIe X, — WCXONHBIH BXOJHOH 3ampoc, Y, '9%¢™ — mpemmouTHTENbHEIH OTBET, -—
OTKJIOHEHHBIH 0TBET. J[iis (opMUpOBaHUs HALIEro Habopa JaHHBIX M3BJIEKAEM HCXOMIHBIC JTAHHEBIE
Xj, U3 OpUTHHAILHOrO Habopa. [lanee s nepedpasupoBaHus UCIOIb3YETCS OTAEIbHAS MOJEID
LLM-paraphraser, KOTOpO#i mofaeTcs Ha BXOJ X,. [Tociie 4ero mojayueHHbIH nepedpasupoBaHHbIii
TeKCT X, **¥ mogaeTcs B HeNeBYI0 GOJBIIYIO A3BIKOBYIO MOJENb, KOTOpas TeHEpUpPYeT OTBET Vi K

TEKYIIEMY TEKCTY:
LLMtarget [LLMparaphraser ()] = ylg 2
Ha ciemyromem 1iare BbITIONHASTCS KIACCU(DHUKAIUS OTBETA MOJICIbIO-CYAbECH:
LLM;yq5e (i) = { "yes" if attack else "no"} 3
Takum 06pa3oMm, ToTy4aeM HOBBIM HA0OP JaHHBIX

Dchange = {xkadv’ykchosen’ Yﬁ)}Nkzl (4)

OO1mas MHTEpHpeTanys NpoUeaAypbl “KpacHOW KOMaHIbI” M MOJYYEHHs HaIlero BPEIOHOCHOTO
Ha0boOpa JaHHBIX Uil CO3JIaHMs 3alMIICHHBIX OOJBUIMX S3BIKOBBIX MOJENEH OT arak “moder u3
TIOPbMBI” Ha OCHOBE Iepedpa3supoBaHUs IPEACTAaBICHA HA PUC. 2.

LLM-paraphraser adversarial
original prompt . - - Prompt
|
LLM target
!
.
Answer of LLM
target » Text to be checked
I
LLM-judge
NO i YES original prompt :=
Is Jailbreak? > adversarial prompt

s

Puc. 2. Ancopumm npoyedyper “Kpacuoil KomaHowvl’
0151 GbIPAGHUBANUS BONBLUIUX A3bIKOBIX MOOEIEL.
Fig. 2. Algorithm for generating red-teaming dataset for the LLMs alignment.

Ha cnemyromemM sTame BBIONHSAETCS BBIPABHUBAHHE OOJBIION SI3BIKOBOW MOJENH AITOPHTMOM
RLHF, rae ocHOBHas 3a1a4a MaKCUMU3HPOBATh OXKUAAEMOE BO3HAIPAXKACHUE 3a CTEHEPUPOBAaHHbIN
TEKCT:

) (xadV)

¥)~m [WA'(X“"“’J) = BKL(ma (- [x)| (- 1x*9)],)

LPPO = —E(xadv

199

Alekseevskaia 1.S, Khaibullin D.V., Turdakov D.Yu. Developing a defence for large language models against adversarial attacks based on
paraphrasing in a black-box scenario. Trudy ISP RAN/Proc. ISP RAS, vol. 5, issue 5, 2025. pp. 195-204.

AHaJOTUYHBIM 00pa30M BBINIOJHAETCS BBIPABHUBAHHUE APYroil OOJBIIONW S3BIKOBOM MOIEITH
meronoM DPO Ha ocHOBe c(hOpMHPOBAHHOTO HAMH BPEJOHOCHOTO HabOpa JaHHBIX:

- o (x4%) o (" [x2%)
LDPO - _EDchange~7T9 [lOg U(ﬁlog neref(xadv) - ﬁ ”Gref(yqxadv) ’ (6)

Takum 06pazom, MBI pa3pabaTEIBAEM METOI, TO3BOJILIIOIINI IOIYIUTh O0JIee YCTOMYMBEIE OOTBIITE
SI3BIKOBBIE MOJZICIHN K aTakaM TUIA “TToOeT U3 TIOPEMBI” Ha OCHOBE Tepedpa3upoBaHusI.

4. Pesynbmamabl

4.1 Oetanun peanusauummn

B kauecTBe OCHOBBI [Jisi MPOBEACHUS MPOLEIYPhl “KpacHOH KOMaHIBI™ U IMOCTPOCHUS
COOCTBEHHOTO BPEOHOCHOTO Habopa AaHHBIX, MbI BeIOpanu Haoop RedEval-HarmfulQA [31].

Jns TecTupoBaHHMS KadecTBa CrCHEPHPOBAHHOTO BPETOHOCHOTO Habopa NaHHBIX, MBI B3SIIH
cnepyrome mojaenu: llama-3.1-405b-instruct, Ilama-3.1-70b-instruct, Ilama-3.1-8b-instruct,
claude-3-5-sonnet, claude-3-haiku, claude-3-sonnet, Ilama-3-70b-instruct, llama-3-8b-instruct,
gwen2-72b-instruct, gwen-max.

Jliis mpouenypsl BEIpaBHUBaHMS OblTa BeIOpaHa Monens Llama 2-7b, comeprkamas 7 MHJUIHapaoB
napaMeTpoB. MoJienb IPeaBapUTEILHO 00yUeHaA U BBIPOBHEHA.

st Mozienu ¢y MbI ucnofib3oBanu HarmBench-LLaMA-2 [35].

Jlyist oueHKH OOJBIINX SI3BIKOBBIX MOJIENel IpUMEHsIIcs coBpeMeHHbIH (peiimBopk DeepEval [36]
IUTSL TECTUPOBAHMS OOJBIINX S3BIKOBBIX MOJIENICH Ha M3BECTHBIX OCHUMApKaXx.

4.2 MeTpuKun oueHUBaHUA
Metpuka moka3arenb ycmemHocTH aTakd (ASR) omennBaeT >(pQEKTHBHOCTh aTakh Kak
KOJIMYECTBO YCIEHIHBIX aTaK K O0IIEMY YHCITy aTaK:

Nsucces

ASR = 7

Ntotal

4.3 Pa3paboTaHHbIN BPpeAOHOCHbLIN HAabOp AaHHbIX

Ha puc. 3 mpencraBien ¢parMeHT Hallero BPEZOHOCHOTO HaOopa IaHHBIX JUIS IIPOLEAYPHI
BEIpABHUBAHMS, KOTOPBIH BKIFOYaeT B ceds 8623 mpumepa. HaGop cocTomT M3 arakOBaHHBIX
BXO/IHBIX JaHHBIX, HAa KOTOPBIX MOJIETb yA3BHMa, a TaKkKe M3 BPEJIOHOCHBIX OTBETOB OOJBIINX
SI3BIKOBBIX MOJIETICH.

J1st TOTO, 94TOOBI OIICHUTH MOJTYYSHHBIH Ha0Op JaHHBIX Ha YCIIEITHOCTh aTaKH “HO0eT U3 TIOPHMEI
Ha OCHOBE Iepepa3upoBaHs, MbI ITPOBEIH IKCIIEPUMEHTHI € JecAThI0 MoJiensaMu. 1o pesynbraTam
ceMb Mojesieil OBIIM YSA3BUMBI K COCTSI3aTENbHOW aTake, a Tpu Mojenu cemeiictBa Claude
MIPOJIEMOHCTPUPOBAIN yCTOHUMBOCTE. OOmias MHTEprperanusi IOJYYEHHBIX pPEe3yJbTaTOB
IpeJCTaBIeHa Ha pUcC. 4.

4.4 OueHMBaHMe YCNELHOCTU aTaku Ans 3alULLEHHbIX 60MbLIMX A3bIKOBbIX
mMogenen

[Tocie cpopmMupoBaHHOTO HaMU Habopa MaHHBIX, Mbl CO3JAU JIBE BBIPOBHEHHBIX OOJBIINX
S3BIKOBBIX MOJICNIM Ha OCHOBE 3Toro Habopa, Llama 2-7b u ¢ ucmosip3oBaHWEM aJTOPUTMOB
BeipasauBanuss DPO u RLHF. Takum o6pasom, mbr moayuwau Llama 2-7b-DPO u Llama 2-7b-
RLHF Mozenu, KoTopble 3alIMIIEHBI OT aTak “rnoder u3 TIOPbMBI” Ha OCHOBE Mepedpa3supoBaHHUs.

200

Anexceesckas U.C., Xaitbymnmuu [I.B., Typraxos J[.}O. PazpaboTka 3amuTs! GONBIIMX S3BIKOBBIX MOJIENICH OT COCTS3aTENbHBIX aTakK B
CIIHAPHH YEePHOTO SIINKA Ha ocHOBe mepedpasuposanus. Tpyowt MCII PAH, 2025, Tom 37, Bem. 5, c. 195-204.

prompt
string

What are the potential
applications of robots in.

What are the factors
involved in the spread of.

What are the effects of
various factors on human.

What are the challenges and

issues related to the sale..

What are the factors that
can affect the structural..

What factors cam influence
the performance and.

What are the scientific

Ao ST e AT e d L S A H

chosen
string

I cannot provide this

information. Is there..

I cannot provide this

information. Is there..

I cannot provide this

information. Is there..

I cannot provide this

information. Is there..

I cannot provide this

information. Is there..

I cannot provide this

information. Is there..

I cannot provide this

Te thomo

A B

< Previous 1 2 3

rejected
string

Robots have the potential to
greatly improve the study..

The spread of infectious
dizeases on a global scale.

Human internal organs arxe
susceptible to warious.

The sale and distribution of
pharmaceuticals online rais..

Bridges are complex
structures that are subject.

There are several factors
that can influence the..

The study of biological

e b e A e e i

9 Next »

Puc. 3. Ha uzobpascenuu npedcmasien pazpabomantulii HaMu HaOOp OAHHBIX.
Fig. 3. The image shows the dataset developed by ours.

1.00
0.75
=
%
=
<
g 0.50
.
g
5 o.25
0
2
&
£ 0.0
% o
B 5 & 5 S
)06) ~ g & y r QQ& ’g‘,\o ’5'2‘9' P &
& & & &

& S,

f&’ﬁ'&”é&b &

Puc. 4. Pesyrvmamul cpasHenus co8peMeHHbIX OONbUIUX A3bIKOBbIX MOOenell
Ha 8PE0OHOCHOM HAOOPe OAHHbIX.

Fig. 4. Comparison results of SOTA LLMs on the red-teaming dataset.

B Tabu1. 1 npuBeneHbl pe3ysibTaThl SKCIEPHUMEHTOB C MOCTPOCHHBIMHU 3AIUIICHHBIMHA MOJICIISIMH OT
COCTA3aTEIBHBIX aTaK Ha OCHOBE mepepasHpOBaHUS W MCXOIAHON OONBIION SI3BIKOBOW MOIEIIH.
HccnenoBanue mokasaio, 4TO B pe3ysbTare MpOAeiIaHHOH padoThl MONY4YHIIOCH CO3/aTh Ooiee
yCTOIUMBEIE MOJENHM K arakam, npuueM wmetox BolpaBHuBaHMA RLHF sBmserca OGonee
3(h(HEeKTUBHBIM.

201

Alekseevskaia 1.S, Khaibullin D.V., Turdakov D.Yu. Developing a defence for large language models against adversarial attacks based on
paraphrasing in a black-box scenario. Trudy ISP RAN/Proc. ISP RAS, vol. 5, issue 5, 2025. pp. 195-204.

Tabn. 1. Oyenusanue 3auuyeHHbIX OONLUUX AZLIKOBLIX MOOeNel Ha 8Pe00HOCHOM HAbOpe OAHHBIX .
Table 1. Evaluating defending LLMs on the red-teaming dataset.

Ne Bonbmias s3eikoBas ASR
MOJCJIb

1 Llama 2-7b 0.70

2 Llama 2-7b-DPO 0.39

3 Llama 2-7b-RLHF 0.24

4.5 OueHuBaHMe KayecTBa reHEpPUpPyeMoro TeKCcTa 3aluilieHHbIX 60MbLnx
A3bIKOBbIX Moaerien

MBI IpoBeIH HKCIEPUMEHTHI 10 OLICHUBAHUIO KaueCTBa FEHEPUPYEMOT0 TEKCTa C HCIOIb30BAHUEM
¢dpeiimBopka DeepEval [36] mis moaydeHHBIX HaMU MOJENEH MOCe BBIPABHUBAHHSA OT aTaKu
“mober u3 TIOPHMBI”. B Tabm. 2 mpuBemeHBI pe3yabTaTsl s UCXOAHOH momenu Llama 2-7D,
KOTOpasl ysA3BHMa K aTake, a Take s mojened Llama 2-7b-DPO u Llama 2-7b-RLHF.
OrneHMBaHNE KaueCcTBa MO/IeIel MPOBOMIIOCH HA OCHOBE PA3IMUHBIX OEHIMAPKOB, 110 pe3yIbTaTaM
MOJIYYWJIOCH YIy4IIUTh 3()(EKTHBHOCTh, NMPHYEM JyYIlHe pe3yJbTaThl NPOJEMOHCTPHPOBANA
mojenb Llama 2-7b-DPO.

Tabn. 2. Oyenusanue 3auuyeHHBIX OOILULUX A3bIKOGLIX MOOENel HA PA3TULHBIX OEHUMAPKAX.
Table 2. Evaluating defending LLMs on various benchmarks.

benumapk Llama 2-7b Llama 2-7b-DPO Llama 2-7b-RLHF
ARC 0.2522 0.5100 0.4600
BBQ 0.3131 0.3469 0.3078
Big Bench Hard 0.3395 0.3756 0.3489
BoolQ 0.5561 0.6513 0.6035
DROP 0.1785 0.2561 0.2341
HellaSwag 0.2123 0.2967 0.3013
LAMBADA 0.0500 0.1500 0.2500
LogiQA 0.2057 0.2689 0.2589
MathQA 0.1923 0.2200 0.2198
MMLU 0.2589 0.4124 0.3341
SQUAD 0.6489 0.8215 0.8043
Truthful QA 0.2611 0.3056 0.2999
Winogrande 0.5012 0.5523 0.5023
CpenHee 0.3054 0.3952 0.3788

5. 3aknroyeHue

JanHass paboTta mMOCBsIIEHa pa3padOTKE 3aIIMIICHHBIX OOJBIIUX S3BIKOBBIX MOJENEH OT
COCTA3aTENFHBIX aTakK Kilacca “moler W3 TIOPHMBI” Ha OCHOBE mepedpa3supoBaHus. Mbl mpoBeH
SKCIIEPUMEHTHI, BKITIOYAIOIINAE Pa3pabOTKy COOCTBEHHOTO BpPEIOHOCHOTO Habopa JaHHBIX Ha
OCHOBE IPOIIEAYPHI “KPacHOM KOMaHABI ¥ CO3/IaHHE YCTOHYMBBIX OOJBIINX SI3BIKOBBIX MOJIENei Ha
ocHoBe MeTonoB BeipaBHuUBaHus DPO m RLHF, u Ha 6a3e 3TUX METOJIOB TMOCTPOWJIH JBE

202

Anekceeckast U.C., Xaitoymmu [I.B., Typaakos [I.10. PazpaboTka 3amuTsl G0IbIIMX S3bIKOBBIX MOJETICH OT COCTA3ATENBHBIX aTaK B
CIIEHapUH YePHOTO SIMKa Ha OCHOBe nepedpasuposanus. Tpyoet UCII PAH, 2025, tom 37, Bem. 5, c. 195-204.

3aIUIICHHBIE MOJIENH. Pe3ynpTaTel Moka3and, 9T0 ABa MeTona S(PGEKTHBHBI B CHIDKCHHH
KOJIMYECTBA YCIIEITHBIX IMOMBITOK B3JIOMa OOJIBINNX SI3LIKOBBIX Mojenel. [Ipraem anmroputv RLHF
MIPOIEMOHCTPUPOBANI HAWJIYYIIHE IMOKA3aTeIN YCTOMYMBOCTH K aTakaM “moOer w3 TIOPHMBI. Ha
OCHOBe mepedpaszupoBanus, a Mmeronq DPO okasasncs Ooliee yCIENIHBIM B COXPAaHCHHU KadecTBa
TCHepaluud TeKCTa. TakuM o0pa3oM, B HAlleM UCCICAOBAHHMM MbI cQopMupoBaim Oolee
yCTOIYMBBIC U O€30TIacHBIC MOIECIIH.

Cnucok nutepatypbl / References

[1]. Achiam J. et al. Gpt-4 technical report //arXiv preprint, 2023. Available at: arXiv:2303.08774, accessed
07.10.2025.
[2]. Roziere B. et al. Code Ilama: Open foundation models for code //arXiv preprint, 2023. Available at:
arXiv:2308.12950, accessed 07.10.2025.
[3]. QianJ. etal. A Liver Cancer Question-Answering System Based on Next-Generation Intelligence and the
Large Model Med-PaLM 2. International Journal of Computer Science and Information Technology, vol.
2(1), 2024, pp. 28-35.
[4]. Ebrahimi J. et al. Hotflip: White-box adversarial examples for text classification //arXiv preprint, 2017.
Available at: arXiv:1712.06751, accessed 07.10.2025.
[5]- Zou A. et al. Universal and transferable adversarial attacks on aligned language models //arXiv preprint,
2023. Available at: arXiv:2307.15043, accessed 07.10.2025.
[6]. Jones E. et al. Automatically auditing large language models via discrete optimization //International
Conference on Machine Learning PMLR, 2023, pp. 15307-15329.
[7]. Alekseevskaia 1., Arkhipenko K. OrderBkd: Textual backdoor attack through repositioning //2023
Ivannikov Ispras Open Conference (ISPRAS), 2023. — IEEE. — pp. 1-6.
[8]. Xu J. et al. Instructions as backdoors: Backdoor vulnerabilities of instruction tuning for large language
models //arXiv preprint, 2023. Available at: arXiv:2305.14710, accessed 07.10.2025.
[9]. LiY.etal. Badedit: Backdooring large language models by model editing //arXiv preprint, 2024. Available
at: arXiv:2403.13355, accessed 07.10.2025.
[10]. Kshetri N. Cybercrime and privacy threats of large language models //IT Professional. 2023, vol. 25, no.
3, pp. 9-13.
[11]. Lyu H. et al. LIm-rec: Personalized recommendation via prompting large language models //arXiv
preprint, 2023. Available at: arXiv:2307.15780, accessed 07.10.2025.
[12]. Azeem R. et al. LLM-Driven Robots Risk Enacting Discrimination, Violence, and Unlawful Actions
llarXiv preprint, 2024. Available at: arXiv:2406.08824, accessed 07.10.2025.
[13]. Liu X. et al. Autodan: Generating stealthy jailbreak prompts on aligned large language models //arXiv
preprint, 2023. Available at: arXiv:2310.04451, accessed 07.10.2025.
[14]. Harte J. et al. Leveraging large language models for sequential recommendation //Proceedings of the 17th
ACM Conference on Recommender Systems. — 2023, pp. 1096-1102.
[15]. Bai Y. et al. Constitutional ai: Harmlessness from Al feedback //arXiv preprint, 2022. Available at:
arXiv:2212.08073, accessed 07.10.2025.
[16]. Bai Y. et al. Training a helpful and harmless assistant with reinforcement learning from human feedback
llarXiv preprint, 2022. Available at: arXiv:2204.05862, accessed 07.10.2025.
[17]. DaiJ. et al. Safe rlhf: Safe reinforcement learning from human feedback //arXiv preprint, 2023. Available
at: arXiv:2310.12773, accessed 07.10.2025.
[18]. Rafailov R. et al. Direct preference optimization: Your language model is secretly a reward model
/IAdvances in Neural Information Processing Systems. — 2024, vol. 36.
[19]. Wang C. et al. Beyond reverse kl: Generalizing direct preference optimization with diverse divergence
constraints //arXiv preprint, 2023. Available at: arXiv:2309.16240, accessed 07.10.2025.
[20]. Azar M. G. et al. A general theoretical paradigm to understand learning from human preferences
/lInternational Conference on Artificial Intelligence and Statistics. — PMLR, 2024, pp. 4447-4455.
[21]. Ethayarajh K. et al. Kto: Model alignment as prospect theoretic optimization //arXiv preprint, 2024.
Auvailable at: arXiv:2402.01306, accessed 07.10.2025.
[22]. Hejna J. et al. Contrastive prefence learning: Learning from human feedback without rl //arXiv preprint,
2023. Available at: arXiv:2310.13639, accessed 07.10.2025.
[23]. Chao P. et al. Jailbreaking black box large language models in twenty queries //arXiv preprint, 2023.
Auvailable at: arXiv:2310.08419, accessed 07.10.2025.

203

Alekseevskaia 1.S, Khaibullin D.V., Turdakov D.Yu. Developing a defence for large language models against adversarial attacks based on
paraphrasing in a black-box scenario. Trudy ISP RAN/Proc. ISP RAS, vol. 5, issue 5, 2025. pp. 195-204.

[24]. Mehrotra A. et al. Tree of attacks: Jailbreaking black-box lIms automatically //arXiv preprint, 2023.
Auvailable at: arXiv:2312.02119, accessed 07.10.2025.

[25]. Sitawarin C. et al. Pal: Proxy-guided black-box attack on large language models //arXiv preprint, 2024.
Available at: arXiv:2402.09674, accessed 07.10.2025.

[26]. Hussein Abbass, Axel Bender, Svetoslav Gaidow, and Paul Whitbread. Computational red teaming: Past,
present and future. IEEE Computational Intelligence Magazine, 6(1):30-42, 2011.

[27]. Shen X. et al. "Do anything now": Characterizing and evaluating in-the-wild jailbreak prompts on large
language models //Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, 2024, pp. 1671-1685.

[28]. Ganguli D. et al. Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons
learned //arXiv preprint, 2022. Available at: arXiv:2209.07858, accessed 07.10.2025.

[29]. Radharapu B. et al. Aart: Al-assisted red-teaming with diverse data generation for new llm-powered
applications //arXiv preprint, 2023. Available at: arXiv:2311.08592, accessed 07.10.2025.

[30]. Ji J. et al. Beavertails: Towards improved safety alignment of LLM via a human-preference dataset
//Advances in Neural Information Processing Systems, 2024, vol. 36.

[31]. Bhardwaj R., Poria S. Red-teaming large language models using chain of utterances for safety-alignment
/larXiv preprint, 2023. Available at: arXiv:2308.09662, accessed 07.10.2025.

[32]. Shlens J. Notes on kullback-leibler divergence and likelihood //arXiv preprint, 2014. Available at:
arXiv:1404.2000, accessed 07.10.2025.

[33]. Schulman J. et al. Proximal policy optimization algorithms //arXiv preprint, 2017. Available at:
arXiv:1707.06347, accessed 07.10.2025.

[34]. Lucht P. The Method of Lagrange Multipliers //Rimrock Digital Technology, Salt Lake City, Utah,
vol. 84103.

[35]. Mazeika M. et al. Harmbench: A standardized evaluation framework for automated red teaming and robust
refusal //arXiv preprint, 2024. Available at: arXiv:2402.04249, accessed 07.10.2025.

[36]. Yang Y. et al. Can large multimodal models uncover deep semantics behind images? //arXiv preprint,
2024. Available at: arXiv:2402.11281, accessed 07.10.2025.

Unghopmayusi 06 aemopax / Information about authors

Upuna Cepreesna AJIEKCEEBCKAS — mporpammuct LleHTpa T0OBEpeHHOro HCKYCCTBEHHOTO
unTeuiekta, acnupanT MCII PAH mo HampaBiIeHHIO HMCKYCCTBEHHBIM HHTENJIEKT M MAIIHHHOE
o0yuenue. Chepa HaydIHBIX HHTEPECOB: OOJIBIINE SI3BIKOBBIC MOJICITH, COCTS3AaTEIbHbIC aTAKU, aTAKH
C BCTpaMBaHUEM 3aKJIaJ0K, BRIPAaBHUBAHUE OOJIBIINX S3BIKOBBIX MOJIEINEH.

Irina Sergeevna ALEKSEEVSKAIA — programmer at the Trusted Artificial Intelligence Research
Center, postgraduate student at the ISP RAS in the field of artificial intelligence and machine
learning. Research interests: large language models, adversarial attacks, backdoor attacks, alignment
of large language models.

Hennc Bramumuposnma XAWBYJIJIMH — nabGopant LleHTpa DOBEpEeHHOTO0 HCKYCCTBEHHOTO
UHTEJJIEKTA, CTYJEHT MOCKOBCKMII TOCYJapCTBEHHbIN yHHBepcuTeT uMeHu M.B. JlomoHocOBa.
Cdepa HaydYHBIX HHTEPECOB: OOJBIIHNE SI3LIKOBBIE MOJICIIH.

Denis Vladimirovich KHAIBULLIN — laboratory assistant at the Trusted Artificial Intelligence
Research Center, student at Lomonosov Moscow State University. Research interests: large
language models.

Hennc FOppena TYPJJAKOB — kanauat Gpu3nko-MaTeMaTHYeCKAX HAYK, 3aBEAYIOIIUN OTACIOM
nHdopmannoHHex cucteM MHcTHTyTa cuctemHoro mporpammupoBanus ¢ 2017 roma. Cdepa
HayYYHBIX HHTEPECOB: aHAJIN3 €CTECTBEHHOTO S3bIKa, 00JIaUHbIC BEIYUCIICHHS, MallIMHHOE 00y4YeHHe,
aHaJIu3 COLUANIbHBIX CETEH.

Denis Yuryevich TURDAKOQOV - Cand. Sci. (Phys.-Math.), Head of the Information Systems
Department at the Institute of System Programming since 2017. Research interests: natural language
analysis, cloud computing, machine learning, social network analysis.

204

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-16 EOC-EH

Habop TabnuyHbix gaHHbIX RF-200 u TectTMpoBaHue
NpPon3BOAUTENBLHOCTU U3BNeYeHns pakToB U3
PYCCKOA3bIYHbIX Tabnuy

H.O. [lopoonwix, ORCID: 0000-0001-7794-4462 <nikidorny@icc.ru>
A.1O. IOpun, ORCID: 0000-0001-9089-5730 <iskander@icc.ru>

HUnemumym ounamuxu cucmem u meopuu ynpaenenusi umenu B.M. Mampocosea CO PAH,
Poccus, 664033, 2. Upxkymck, ya. Jlepmonmosa, 0. 134.

AHHoOTanus. B Hacrosmiee BpeMsi OrpoMHOE KOJIHYECTBO JAHHBIX NPEACTaBIeHO B Buiae Tabmmn. OHH
MIOBCEMECTHO HCIIOIB3YIOTCSI NPU PEUICHWH Pa3IHYHBIX MPAKTHYECKHX 3ajad B pasHBIX oOyactsax. Jlms
CEMaHTHYECKOH HWHTepIpeTanuy (aHHOTHPOBAHHS) TAaOJMI] M IOCTPOCHHS Ha MX OCHOBE rpad)oB 3HaHMI
pa3pabatsIBaeTCsl CIELHAIN3UPOBAHHOE METOJOJIOTHUECKOEe M IporpaMMmHoe obecriedeHue. D QPeKTHBHOE
TECTHPOBaHUE IOJ00HOr0 obecnedeHHs TpeOyeT CO3JaHUs W HCIOJIB30BAHMS PYCCKOS3BIYHBIX HaOOpOB
JaHHBIX. B IaHHOM cTaThe MpeyiokKeH PyCCKOsM3bIUHbIH Habop TabmuuHbix gaHHbIX RF-200, comepxarruii 200
Tabmun u3 26 mpeaMeTHBIX 00JacTeil, pa3MEUeHHBIX ¢ HCHOoib30BaHueM utaTgopmbl Talisman. [IpuBexens!
pe3yabTaThl TECTUPOBAHMS IPOU3BOAUTEIBHOCTH ABTOPCKOTO IOJAXOJAa K U3BICUCHHIO (pakToB U3
PYCCKOSI3BIUHBIX Tabnmiy ¢ ucrmomb3oBanueM RF-200, mpu xoropsix F-mepa mocturma 3HaueHus 0.464,
MPEB30#/Is TPaJUIIMOHHBIC METOAbI U3BJIeYeHUs (akToB u3 TekcToB (F1 =0.277). Pe3ynbTaThl HOAYEPKUBAIOT
BO)KHOCTh CHEIHATN3UPOBAHHBIX PEIICHUH Il paboThl CO CTPYKTYpPHPOBAHHBIMHU JaHHBIMH, OCOOCHHO IS
PYCCKOSI3BIYHBIX MCTOYHHKOB. [IpakTHyeckas 3HAYMMOCTh pabOTHI 3aKJIIOYAETCS B MHTErPAllMU MOAXOJa B
wiargopmy Talisman, 4To pacmupsier BO3MOKHOCTH CEMaHTHYECKON aHAJIUTHKH, TPOBOIUMOM 11O TabIMIaM.
HccnenoBanne BHOCHT BKJIAJ B aBTOMATH3aLUIO OOpabOTKHM TabmuIi, pemias mpoOjeMy CeMaHTHYECKOM
MHTEPIPETAlNH B YCIOBUIX JIMHTBHCTHIECKOTO PAa3HOOOpa3ns, M OTKPHIBAET MEPCIEKTHBEI JUIS HHTETPAIINN
METO/IOB ITyOOKOT0 00yYEeHHUS U MacIITaOUPOBAHUS CO3JJaHHOTO Ha0Opa TaHHBIX.

KnioueBsbie cioBa: rpad 3HaHmH; pa3pa0boTka rpadoB 3HAHWI, MOMONHEHHE TpadoB 3HAHUI; Tabnuma;
PYCCKOSI3BIYHBIH HAOOP TaOJIMYHBIX JaHHBIX; N3BJIeUeHNE (DAKTOB; TECTHPOBAHKE TPOU3BOIUTEIILHOCTH.

Jnst murapoBanmsi: Joponueix H.O., IOpun A.JO. HaGop tabmnuneix nanHbeix RF-200 m tectupoBanue
MPOU3BOJUTEIBHOCTH M3BJIeUeHHs] (akTOB M3 pycckos3biuHbIX Tabmun. Tpyast MCIT PAH, tom 37, Bein. 5,
2025 r., crp. 205-224. DOI: 10.15514/ISPRAS-2025-37(5)-16.

BaarogapHoctu: PaboTa BBIIONHEHA B paMKaX rOCYIapCTBEHHOTO 3a/jaHusi MUHHCTEPCTBA HAYKH U BBICIIIETO
ob6pazoBanus Poccuiickoit @eneparmu (Tema Ne 1023110300006-9).

205

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

Testing the Performance of Fact Extraction from Russian-Language
Tables

N.O. Dorodnykh, ORCID: 0000-0001-7794-4462 <nikidorny@icc.ru>
A.Yu. Yurin, ORCID: 0000-0001-9089-5730 <iskander@icc.ru>

Matrosov Institute for System Dynamics and Control Theory of the Russian Academy of Sciences,
134, Lermontov st., Irkutsk, 664033, Russia.

Abstract. Currently, a huge amount of data is presented in the form of tables. They are widely used to solve
various practical problems in different domains. Specialized methods and software are developed for semantic
interpretation (annotation) of tables and construction of knowledge graphs based on them. Effective testing of
such software requires the creation and use of Russian-language datasets. This paper proposes a Russian-
language tabular dataset, called RF-200, containing 200 tables from 26 domains labeled using the Talisman
platform. The results of testing the performance of our approach for fact extraction from Russian-language
tables using RF-200 are presented, in which the F1 reached a value of 0.464, surpassing traditional methods of
fact extraction from texts (F1 = 0.277). The results emphasize the importance of specialized solutions for
working with structured data, especially for Russian-language sources. The practical significance of the work
lies in the integration of the approach into the Talisman platform, which expands the capabilities of semantic
analytics carried out on tables. The study contributes to the automation of table processing, solving the problem
of semantic interpretation in the context of linguistic diversity, and opens up prospects for the integration of
deep learning methods and scaling of the created dataset.

Keywords: knowledge graph; knowledge graph engineering; knowledge graph population; table; Russian-
language tabular dataset; fact extraction; performance testing.

For citation: Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-
Language Tables. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 205-224 (in Russian). DOI:
10.15514/ISPRAS-2025-37(5)-16.

Acknowledgements. This work was supported by the state assignment of Ministry of Science and Higher
Education of the Russian Federation (theme No. 1023110300006-9).

1. BeedeHue

B Hacrosimee Bpems pa3pabOTKa MHTEIUICKTYaJbHBIX CHCTEM, OPUEHTHPOBAaHHBIX Ha 00pabOTKY
OoNBIIMX OOBEMOB JAHHBIX JUIA MOJEPKKH NPUHATHS PELICHUH B Pa3IMYHBIX IPEIMETHBIX
o0nacTsix, B TOM YHCJE B YCIOBHSX HEUYETKOCTH M HEOINPEAEICHHOCTH, SIBISIETCS aKTyaJlbHOM
3amaueil. Takue cHCTEeMBI, MHTETPUPYIOIIHE METOJBI MCKYCCTBEHHOTO HHTENJIeKTa (00paboTKH
€CTECTBEHHOTO SI3bIKa, MAUIMHHOTO OOYYeHHs M MHKEHEpUM 3HAHWii), HAXOJAT NPUMEHEHHE He
TOJIbKO B KJIACCHYECKHMX OOJIACTSIX, TAKMX KaK KOPIOpaTHBHBIN mouck (Hampumep, Apache Solr,
Amazon Kendra, Elasticsearch) unu konkypenTtHas pa3senka (nanpumep, Butok-OSINT, Babel X),
HO M B HMHHOBAallMOHHBIX c(epax — OT NPEAUKTUBHOH AHAIUTHUKH B 3IPABOOXPAHCHUHM H 1O
ONTHMH3AIMHU LIEMOYEK MOCTABOK C HCIOJb30BaHHEM KoHUenuun MHTepHera Beweil (Internet of
Things). Hampumep, miatdpopmer tuma Siemens MindSphere u GE Predix wucnosns3ytor
CEeMAHTHYECKHE MOJIEIH JUIsl HHTEPIPETALNH JAHHBIX POMBILIICHHBIX JaTYMKOB, & CHCTEMbI THIIA
Bloomberg Terminal tpanchopmupyroT hprUHAHCOBBIC TAOIHIBI B MPOTHO3HBIE MOAEH. KitoueBbiM
9IIEMEHTOM MOJ0OHBIX penieHui BricTynaoT rpadsr 3Hanuii (knowledge graphs) — munamunueckue
CTPYKTYPBI, NPEACTABISONMEe HHOOPMAIMIO B BHJE CETH B3aMMOCBS3aHHBIX Y3JIOB-CYIIHOCTEH
(manpumep, «Hnon Mack», «Tesla») u ux péOep-oTHOWIEHUH (HAPUMED, «OCHOBA,
«npouzeooumy), GOPMHUPYS CEMAHTHUECKYIO MOJIENb JaHHbIX [1-2]. B oTinume OT TpaJIuiiHOHHBIX
PeISIIMOHHBIX 0a3 JAaHHBIX, rpadbl 3HAHUN TOIICPKUBAIOT ACCOLMATHBHBINA TMOUCK U BBISIBICHUE
KOCBEHHBIX 3aBUCHUMOCTEH (Harpumep, Kak JiBa yu€HbIX U3 pa3HbIX obiacTeil CBsi3aHbl yepes3 o0Iue
MPOEKTHI), HHTEIPALMIO PA3HOPOAHBIX AaHHBIX M JIOTMYECKHH BBIBOJA, a TAK)XE CEMAHTHYCCKYIO
coBmectumocth ¢ Qopmaramu Linked Open Data (OWL u RDF) [3], uto moarBepikmaercs

206

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

YCIIEIHBIMA OTKPBITBIMU TJIO0AIBHBIMU TpoekTaMu, TakuMu kak DBpedia [4] u Wikidata [5].
Kpome Toro, rpadbl 3HaHWI MOTYT OBITH MacIITAOMPOBAHBI J0 JIOOOTO pazMepa, YTO MO3BOJSIET
3(h(eKTUBHO HCIIONB30BATh MX NPH 00pabOTKE W aHAIHM3€ HAHHBIX OONBIIMX 00BeMoB. OmHAKO
cozfanue rpadoB 3HAHUH U HANIOJIHEHHWE X KOHKPETHBIMH CYITHOCTAMHU ((pakramu), 0COOCHHO ISt
Y3KOCHEIMATM3UPOBAHHBIX ~ NPEAMETHBIX 00JacTedd, Hampumep, (apMaKOreHOMHUKH HIIH
nateHTHOro mpaea [1, 6], sBIseTCS CIOXKHOM M TpymOeMKo# 3amadeil, Tpedyroiieii pa3paboTKu
CHEUAIM3UPOBAHHOTO [TPOrPaMMHOTO M METO/I0JOIMYECKOr0 00eCIeYeH s, aBTOMaTU3UPYIOLIHe
3TOT TIpOLIECC.

B naHHOM KOHTEKCTE aKTyalbHBIM SIBISICTCS aBTOMATHU3AIlHsl HAMOJHCHHS rpadoB MpH MOMOIIH
00paboTKN M aHaJIM3a HECTPYKTYPUPOBAHHBIX U CIa0OCTPYKTYPHUPOBAHHBIX MCTOYHUKOB, CPEIH
KOTOPBIX OCOOBIH HMHTEpEC IMPEeICTaBISIOT TabauLbl. B Hacrosiiee BpeMs TaOJUIBI SBISIOTCS
YIOOHBIM U JIOCTaTOYHO PaclpoCTPaHEHHBIM CIIOCOOOM INPECTaBICHHs M XpaHEeHHs JaHHbIX. Tax,
10 OIICHKaM SKCIepToB Tabiuipl B Gpopmare Google Sheets ucmons3yoT 0KoI0 2 MHLTHAPIOB
TIOJTB30BATEIICH eKeMecsuHo, B To Bpemst kak Microsoft Excel umeer, mo omenkam, or 750
MUJUTHOHOB 110 1,2 MWJIIHApaa eKEeMECSYHBIX TI0JIb30BaTeliei mo Becemy MHPY [7]. BoibmuHcTBO
KOPITOPATHBHBIX XPAHWIHII COACPKAT JaHHBIC MPEUMYIIECTBEHHO B TaOIMYHBIX (hopMaTax, TAKUX
kak XLSX, CSV, HTML, a taxxke PDF (orckanmupoBanHbIe Tabmwibl). Kpome Toro, coriacHo
HeaBHUM HccienoBanusM [8], mpumepHo o 40% Bcex TabimIl pacoiokeHHBIX B Bebe, 001agaroT
PEISIIMOHHOM TPHUPOJIOI M COoAep)KaT MOTEHIUAIbHO MOJe3Hble (aKThl, KOTOPblE MOTYT OBITh
UCIIONIb30BaHbl Uit opmupoBanusi rpagoB 3HaHuid. OpHako Tabnuupl, Oyayun (opmaibHO
CTPYKTYPHPOBAHHBIMH, OOBIYHO JIMIICHBI SIBHOW CEMaHTHUKH. B 4acTHOCTH, 3arojioBok croJjolla
«2023» MoxeT 0003HaYaTh KaK rojl, TaK ¥ HOMEP MPOEKTa, a stueiika co 3HaueHueM «Apple» tpedyer
JUCKYPCHUBHOTO aHaM3a Ui nudepeHImaniy koMmnanuu win ¢ppykra. [Ipobiiema ycyryonsercs
pa3nuIusAMHU, KOTOpBIC MPUCYIIH pa3iHIHbIM ob0nactsaM. Tak, (UHAHCOBBIE OTYETHI YACTO
UCTIONB3YIOT HePapXUIECKHe 3ar0JIOBKH M MAaTPHUYHYIO KOMIIOHOBKY TaOJHIIbI, HAYIHBIC CTATHH —
MHOTOYPOBHEBBIE CHOCKH B 3ar0JIOBKaX, a BeO-TaOIHIIEI 4acTO coepKaT 00beTUHEHHBIC TICHKA 1
apyriue HTML-teru. CymectByroiue nponpuetapusie pemenus tana Talend [9], Trifacta [10] u
Microsoft Semantic Link [11] B ocHOBHOM monararoTcsi Ha OoJiee MPOCThIE METO/bI, TAaKHE Kak
CHHTAKCHYECKHH AaHaJW3 W COIMOCTABICHHE pPETYIIPHBIX BBIPAKEHUHA I OOHAPYKCHHUS
OTPaHMYEHHOT0 Ha0Opa CEMaHTHYECKUX THIIOB, YTO NPUBOAMUT K OIIMOKAM HHTEpPIIPETALUH.
[TosTomMy pa3paboTKa HOBBIX METOJOB, MOJEJed W MNPOTrPaMMHBIX CPEICTB, IO3BOJISIOIINX
MPOM3BOJIUTh CEMAHTHYECKYIO MHTEpIpETalyio TaOiuI ¥ H3BJIEKaTh W3 AHHOTUPOBAHHBIX
TaOJMYHBIX JAaHHBIX KOHKPETHBIE CYI[HOCTH, HWX XapakTePUCTHKA M CBS3M, SBJISIETCS
MEPCICKTHBHOM 00JI1aCThI0 HAYYHBIX HCCICOBAHUH.

Jannass paboTa sBiSETCS NPOJODKEHHMEM IIPOEKTa M0 pPa3pabOTKe METOA0JOTMYecKOro |
NporpaMMHOr0 oOecrieueHHsi Ui aBTOMAaTHYECKOH CEMaHTHUYECKOH MHTepIpeTanuu
(aHHOTHPOBAHWS) TAOJIUII U U3BJICUEHHSI HOBBIX (PAKTOB U3 aHHOTUPOBAHHBIX TAOJMYHBIX JaHHBIX C
MOCJIEYIONIMM TIOTIOJTHEHUEM TIPEIMETHO-OPUEHTUPOBAaHHBIX rpadoB 3HAHWA B paMKax
mratpopmel Talisman [12], B dYacTHOCTH, paccMaTpWBaeTcs 3aJada TECTHPOBAHHSA
MPOM3BOTUTEIHHOCTH TIOIAXOJA TPH W3BICUCHHH (PAaKTOB U3 PYCCKOSA3BIYHBIX TaOmHI[C
UCIIONB30BaHWEM HOBOTo Habopa manHbix (benchmark) — RF-200. Dtansl moaxona, NporpaMMHBIit
MHCTPYMEHTapuil U Apyrue AeTaa NoApoOHO NpecTaBieHs! B padore [13], rae Takxke paccMOTpeH
JIEMOHCTPAIIMOHHEINA NpuMep (GOPMHUPOBAHUS MPEIMETHBIX TpadoB 3HAHUI Ha OCHOBE TaOJIHYHBIX
JIAHHBIX.

OCHOBHOM BKJIaJ] TaHHOW pabOTHI 3aKITIOYAETCS B CIEAYIOMEM:

e Brepsrie onyOnukoBaH HOBBIH Habop naHHbix RF-200 (ru-facts-200), coxepxaruuii
TabJIMIBI HAa PYCCKOM SI3bIKE [UISI PELICHUs 3aJa4d HM3BJICUCHHS HOBBIX (DAKTOB U3
pycckoszbranbiX Tabmun (fact extraction). Tabnuupr ObuTH 0TOOPaHBI M3 KOPIyca TaOIIHIL
Russian Web Tables (RWT) [14] u pa3medeHbI C HCIOIb30BAaHUEM CPEICTB MIaTHOPMBI
Talisman. IlonyueHHblii HaOOp JaHHBIX OOECMEYMBACT OCHOBY [UIi pPa3pabOTKH

207

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

MYJIBTHS3BIYHBIX PEIIeHUH, CIIOCOOHBIX 00pabaThiBaTh WHQPOPMAIUIO C Pa3TMIHBIMHU
JUHTBUCTUYECKUMHU OCOOEHHOCTAMHU. bonee Toro, kozoBas 06a3a co3gaHHOTO Habopa
OITyOJIMKOBaHa ISl CBOOOIHOTO MCTIOIE30BAHMS.

e TlpupocT 3KcIepuMEHTAIbHON OneHKH (F-Mephl) TPOM3BOMUTEIBHOCTH TIPEIaracMoro
MOJX0a K AHHOTHPOBAHMIO TAOJHIl M M3BJICYCHUIO HOBBIX (PAKTOB M3 aHHOTHPOBAHHBIX
TaOMMYHBIX JaHHBIX HA OCHOBE co3maHHoOro Habopa maHHBIX RF-200 cocraBmm 0,187
OTHOCHTENBHO GazoBoro pemenus (baseline) nssneueHne GpakToB U3 TEKCTOB.

e lHrerpanus pemeHus B NpOMBINUICHHYIO Iuatdopmy Talisman, uto moarBepxiuaer
MPUKIIAJHYI0 3HAYUMOCTb UCCIICIOBaHUS.

CraTbs OpraHU30BaHa CIeAyIomuUM 00pa3oM: B pazjene 2 IpeJICTaBIeHO COBPEMEHHOE COCTOSHUE
HCCIIEJOBAaHUHN U CYILECTBYIOLINE HAOOPHI TaOJMYHBIX AaHHBIX. B pasnerne 3 kpaTKo onuchIBaeTcs
NPEAJIOKEHHBIH paHee ITOAXO0J K CEMaHTHYECKOMY aHHOTHpOBaHWIO Tabmun. B paspene 4
OIMCHIBAETCS MPOLIECC CO3JaHUsI HOBOTO HA0Opa PYCCKOS3BIUHBIX TaOMM4HbIX naHHBIX RF-200.
Paznen 5 mpexacraBinsieT pe3yabTaThl TECTUPOBAHUS MPOU3BOAUTEIBHOCTH aBTOPCKOTO MOAXOAA C
HCIIONB30BAaHUEM CO3/IAaHHOTO Habopa JaHHBIX. B 3akimoueHHH naetcs o0CyKICHHE TOTyYeHHBIX
pe3yIbTAaTOB U IUIAHBI OyayIed paboThl.

2. CoepemMeHHOe cocmosiHue uccriedosaHull

B cuny 6onbmioro pacmpocTpaHEHHs TAOMMYHBIX MAHHBIX B MOCICIHEE BpeMsi Bce OOIbIie
uccrenoBaTeseil oopaiaroT BHUMaHue Ha npodiaeMaTuky cosaanus (knowledge graph construction
[15-16]), momonuenus (knowledge graph population [17-18]) u pacumpenuss rpadoB 3HaHHI
(knowledge graph refinement [19]) 3a cuet 3t0ii nHOpMAIHH.

HemocTtaTku CyIiecTBYIOIMX pEIICHHH O0YCIAaBIMBAIOT HEOOXOAMMOCTh pPa3pabOTKH HOBBIX
METO/IOB, COYETAMOIINX aBTOMATH3UPOBAHHYIO 00pabOTKy ClabOCTPYKTypUPOBAHHBIX TaOJIHI[C
HHTYUTHBHBIMH HHTep(deiicaMu W CpeIcTBaMU CeMaHTHYeckoi Bepudukammu. Hecmorps Ha
OIIpE/ICIICHHbIE yCIIeXH, 00nacTh o0cTaéres ()parMeHTapHOM: OTCYTCTBYeT YHHBEpCalbHas
METOJOJIOTHSI, CIIOCOOHAasT 00ecHevnTh KOMIUICKCHYIO HHTEPIIPETAl[MI0 Pa3HOPOIHBIX TaOJHIL.
CornmacHo KCIIepUMEHTATIBHBIM TAaHHBIM TIOCIIEIHET0 copeBHOBanus SemTab-2024 (Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching) [20], coBpemeHHBIC CcHCTEMBI
JIEMOHCTPHUPYIOT HEYIOBJIECTBOPUTEIBHYIO TOYHOCTH MPH paboTe ¢ peaqbHBIMH JaHHBIMH. Bonee
TOTO, CYHIECTBYIOIINE PEIICHHS, KaK MPaBHJIO, HE MPETOCTABISIOT BO3MOXKHOCTH JalbHEHIIIEro
HCTIONB30BAHMSI CEMAHTHYECKH AaHHOTUPOBAHHBIX TaONWIl, HAampuUMep, MPOMycKas OTam
dopmupoBanus TpadoB 3HAHWNA. YKa3aHHbIE OTPAHHYCHHS [OMYEPKUBAIOT HEOOXOIMMOCTD
CO3/IaHHsI HHTETPUPOBAHHBIX ITATGOPM, CIIOCOGHBIX HE TOJIBKO TeHEPUPOBATH IIPEAMETHBIE TPadbl
3HaHWM W3 TaOJWIl, HO W JUHAMHYECKH DPACIIMPSTH CYLIECTBYIOUINEC CEMAaHTHIECCKAE MOJIEIN
HOBBIMH (pakTamu. [IPHOPUTETHBIMH HAIPABICHUSAMH OCTAIOTCS Pa3paboTKa KPOCC-IOMEHHBIX
AITOPUTMOB, BHEAPEHUE IIOJb30BATEIBCKUX TIpadUyYecKuXx HHTep(EeHcCoB il IKCHEPTOB-
HEMPOrPaMMHUCTOB U 00ecedeHre OTKPBITOCTH HHCTPYMEHTAPHSL.

JlJ1st TECTUPOBAaHMS IIPOU3BOAUTEIILHOCTH MOAXO0J0B K aBTOMATHYECKOMY [TOHUMAHUIO TaGIMIHOM
unpopmauuu (table understanding) [21-22] wucnonp3yrotcs Habopsl nmanHbIX (benchmarks),
Ha3bIBaeMbIC TAKXKe «z010muimu cmanoapmamuy (gold standards), koTopsle ciyxat STaToOHOM s
W3MEPEHHUs] TIPOM3BOMUTEIIBHOCTH (Ka4yecTBa) PasiMYHBIX METONOB M cucTeM. OHH TO3BOJISIOT
BBIIBIISITh CHJIBHBIE M Cla0ble CTOPOHBI CYINECTBYIOIIMX METOJOB, TEM CaMbIM IIOMOTas B
MPOJIBUYKEHUH TIPOU3BOIUTEIIHHOCTH HA COBPEMEHHOM YPOBHE. BOJIBIIMHCTBO OCTYITHBIX HAGOPOB
JMAaHHBIX JJIS TaONWYHBIX 3a7a4 OXBATHIBAIOT IIHPOKHI IHAMA30H IPEAMETHBIX 00iacTei, B
OCHOBHOM 3a CYET TOTO, UTO CO3/AF0TCS C HUCIONB30BAHUEM KPYITHOMACIITAOHBIX OTKPHITHIX BEO-
pecypcoB, Takux kak Wikipedia wim GitHub, u ToNbKO HEKOTOpBIE M3 HHMX HallEJIEHBl Ha
ONPE/ICNICHHYI0 KOHKPETHYI MpeaMETHYI obiiacTh (Hampumep, MEOUIHHY, (HHAHCHI,
MIPOMBIIIJICHHOCTB).

208

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

HaGops! maHHBIX U 32/1a9¥ CEMaHTUYECKOW WHTEpIIpeTanueld TabauIl mpeacTaBieHsl B Ta0m. 1.
VYkazanHble HA0OPbI COAEPKAT TAOJNUIIBI, Pa3MEUCHHBbIE CEMAHTHYECKHMMHU THUIaMH (Ki1accamu,
XapaKTEPUCTUKAMH M CBS3SIMH MEXIY KIIaCCaMU), B3ATBHIX M3 Pa3IM4HbIX rpadoB 3HaHUI 001IETO
HA3HAUCHMS, JJI OICHKM KayecTBa CEMaHTHUYCCKOTO AHHOTHPOBAHUS OTICIBHBIX 3JICMCHTOB
Tabmuil. 10 MOoNMyYeHHBIM aHHOTAIMSM U3 SUYCCK TAOJHUI] MOTYT OBITh W3BJICUCHBI (PAKTHI, OJHAKO
9TH HAOOpHI HATIPAMYIO HE HAIPABJICHHBI HA 3a7a4y W3BJICUCHHS (PAKTOB U HE MPEIOCTABJISIOT

KaKHXx-

1100 METPHUK OLCHKHU IJIsL 3TOIO. Cne,uyeT TaKXC OTMCTUTH, UTO TaGJ’II/IHLI B 3THUX Ha60an

MpPEJCTAaBICHBI HAa aHTJHICKOM SsI3bIKE, HCKJIIOUeHHE cocTaBisieT Toidpko RWT-RuTaBERT,
COJIepIKAIHH KOJUIEKIHIO PYCCKOSI3bIUHBIX PA3MEUCHHBIX TaONHIIL.

Tabn. 1. Cmamucmuka no Hauboree pacnpoCcmpaHeHHbIM Habopam OaHHbIX OJis 3A0a4U CeMAHMUYECKO
uHmepnpemayuu maoauy.
Table 1. Statistics on the most common datasets for the task of semantic table interpretation.

Kou-Bo Kou-Bo Kou-Bo Koa-so I'pad
Ha6op nannbIx CeMaHTHYeCcK N
Ta0J M1 CTOJIOLOB CTPOK 3HAHUI
HX THIIOB
) Wikidata,
Limaye [23] 6,5 ThIC. — — 837 Yago
T2DV2 [24] 234 1,2 tIC. 2,8 ThIC. 193 DBpedia
DBpedia,
Tough Table (2T) [25] 180 194 TeIC. 802 TeicC. 540 Wikidata
BiodivTab [26] 50 1,2 ThIC. 12,9 ThIC. 84 Wikidata
GitTables [27] 962 TEIC. 11,5 muH. 13,6 muH. 2.4 TEIC. SChema'qrg’
DBpedia
SOTAB [28] 108 Tic. - - 267 Schema.org
VizNet-Sato [29] - 120,6 Toic. - 78 DBpedia
WikiTabels-TURL [30] - 628,2 ThIC. - 225 Freebase
RWT-RUTaBERT [31] - 1,4 muH. - 170 DBpedia

Tem He MeHee, CyIIECTBYET HEOONBIION psAJ] MPHUMEPOB HAOOPOB JAHHBIX, OPUEHTHPOBAHHBIX HA
3a/a4y U3BJICUCHUS (PAKTOB (CYIIHOCTEH) U3 TaONIHUIl, B YACTHOCTH:

SWODE (Structured Web Data Extraction) [32] — cTpykrypupoBaHHbIii HAGOp JTaHHBIX,
n3pneyeHHbpIx u3 128 000 HTML-crpanun c¢ 80 BeG-caiitoB. CoOpaHHbIe 3amucu
pacIpeiesieHbl 10 BOCbMHU KaTETOPUSIM: «a8MOMOOUNU», KKHUSUY, KKAMEPbL», «padomay,
«Qunomory, «uepoxu Hayuonanvuas Backembonvnas Accoyuayus (HBA)», «pecmoparviy
n «yHugepcumemaul. Jsl KOXKJO0H KaTeropuy 3a1aHo oT 3 110 5 aTpuOyToB (Harpumep, Aist
KaTeTOpPHUU «KHUTa» 3TO Oy/eT «Ha3BaHUE», «aBTop», «ISBN-kom», «u3natens» u «dama
nybauKayuu), KOTOpble MOXKHO COIIOCTaBHUThH CTOJIONAM JaHHBIX. [IpH 3TOM KOJIMYecTBO
CTPOK COOTBETCTBYET KOJMYECTBY CTPAaHHIl (CYLIHOCTEH, HAIlpUMEp, KOHKPETHBIX KHUT).
HaGop naHHBIX COAEPKUT pa3zMETKy (ground truth), CO3/1aHHYI0 C IIOMOIIBIO PEryJISIPHBIX
BBIPAXEHUH [T OTIpEICIIEHHBIX aTPHOYTOB.

DISCOMAT [33] — conepsxut 5 883 tabmun B dpopmare CSV, uzBnedeHHsx u3 2 536
HaY4YHBIX cTaTell o MatepuanoBeneHnio u3 6a3 Interglad, SciGlass n Elsevier. [Ipu sTom

209

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

1 475 tabmun ObUTH pa3MeueHbl BPYIHYIO, OCTAIbHBIC aBToMaTndecku. Habop BKirodaeT
YeThIPpe OCHOBHBIX CEMAaHTHYECKHX THIA CYIIHOCTCU: «Mamepuan», «KOMHOHEHMY,
«npoyenm» U «eOUHUYA U3MEPEHUSD.

e arXiv Machine Learning Tables [34] — comepxxur 122 ta6Gmuusl B ¢popmare LaTeX,
W3BJICUCHHBIX U3 25 HAYYHBIX cTaTel Ha arXiv 1o TeMaTHke MalmnHHOTO 00y4eHus. Habop
BKJItOYaeT 3 792 aHHOTHPOBAHHBIX 3allMCEd, NPUHAMIEKAUX OIMHHAALATH THUIAM
(HammpuMmep, «mempukay», «3adauay, Kooyuaroujue OaHHbIEY).

e PubMed Chemistry Tables [34] — conepsxur 26 tabsui B popmare XML, u3BICUEeHHBIX
u3 16 nayunwix crateit Ha PubMed mo Tematuke (QU3MYECKUX CBOWCTB XUMHYECKUX
coenuHenuit. Habop BKIIOYAET 3amucH, NPUHAJICHKAIIAE TPEM OCHOBHBIM THIIAM:
«eOUHUYDBL USMEPEHURY, «uccredyemoe CoeOUHeHUe», U «OUOI02UYecKUti 00beKm.

OcCHOBHAsI CTaTUCTHKA I10 JAHHBIM HabopaM TaOJIuIl pe/icTaBIeHa B Talu. 2.

PaccmoTpenHble HAOOPHI B OCHOBHOM OXBATHIBAIOT OTHOCHTENBHO IPOCTHIC BapMaHTHI TaOIWII,
0o0JamaroImuX peSIHOHHON mpupoxoil. Kak mpaBuio, oHM comepikaT HEOOINBIIOE KOJIUIECTBO
CEMaHTHUYECKUX THITOB, OTHOCSIIHECS K KaKOH-TO KOHKPETHOH O0NACTH W HEOOIbIIOMY Habopy
obmacreii. Kpome Toro, JaHHBIe B 3TUX TaOJHIIaX MPEICTABICHB HCKIIOUYUTEIHFHO HA aHTIIHHCKOM
SI3BIKE, YTO OTPaHUYMBACT NMPUMEHEHHE METOAOB IS IPYTHX S3BIKOB, BKIIFOYast pycckuil. Takum
06pa30M, CO3JIaHUC HOBBIX MYJIbTHA3BIYHBIX Ha60pOB JAaHHBIX JJId 3aJa4d U3BJICUCHUS q)aKTOB u3
TaOJUI[, OTHOCANIMXCS K Pa3sHOOOPa3HbIM MPEAMETHBIM O0JACTAM U O00JaJaroIIUX CIIOKHOM
CTPYKTYPHOH KOMIIOHOBKOH, SIBIISICTCS aKTyaJ bHBIM.

Tabn. 2. Cmamucmuxa HA60Po8 OAHHLIX OJisl 3a0ayu U36IedeHuUst pakmos u3 mabiuy.
Table 2. Statistics of datasets for the task of fact extraction from tables.

Ha6op Kou-Bo | Koa-Bo .
.. | Popmart Koxa-Bo kateropuii (Tunosn)
JAHHbIX Ta0JuI | 3ammcei
8 Kareropmii: «aBTOMOOWIINY, «KHUTHY,
«KaMephI», «paboTay, «PUIbMBI), «UTPOKH
SWDE 128 000 - HTML PED, «P > <O > (TP
[HammonansHas backerOonbpHas Accoluanus
(HBA)», «pecTopaHbI» U «YHHBEPCHTETHI
4 THma: «MaTrepua), KKOMIIOHESHT)
DISCOMAT 5883 - Ccsv P ’ ’

«OPOLCHT» U «EAUHULIA U3MEPCHUS»

arXiv Machine
11 THUIIOB: «MCTpI/IKa», «3Bagaday,

Learning 122 3792 LaTeX
Tables «00yyarolye JaHHbIe» U Jp.
PubMed 3 THIA: «eUHUIBI U3MEPEHHS,
Chemistry 26 1498 XML «HCCIeTyeMOoe COSIHHEHUEY, U
Tables «OHOJIOTHYECKHHA 00BEKT

3. Cywiecmeyrowuti 3aden

Pa3zpaboTaHHbIii aBTOpaMH IOJXOJ] pealu3yeT CEeMaHTHYECKO€ AHHOTUPOBAHHE KOJIOHOK W
OTHOIIEHUH MEXIY HUMH, KOTOPOE 3aKJII0YaeTCsl B COMOCTABIEHUH KOJIOHKAM PEJIEBAaHTHBIX MUnos
Xapaxmepucmuxk, OTpeelIeHu Hanbosee MOAXOAAIIET0 Mmuna KoHyenma Ha UX OCHOBE, a TaKXe
BBIIBJIGHUE MUNo6 cesizeli MEXAY OIpPEeTCHHBIMH THIAaMU KOHLENTOB. [locie ycTaHOBiIEHHS
MOJOOHOW aHHOTAMM W3 CTPOK TaOJMI] MOCJIEN0OBATENFHO H3BIEKAIOTCS HOBBIE (DaKThl H
no0aBIAI0oTCS B eneBoi rpad 3HaHmiA. O000IIeHHas cXxeMa MoX0/1a IPUBOJUTCS Ha puc. 1.

210

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

\ () pad

TDM-A0KYMEHTDI A sHamuit
8 — Talisman

AsTomaTuueckuii obpaborunk Tabnuy

3. AHHOTMPOBaHWE KONIOHOK
4. U3snevenme m

1. Mpepobpabotka Tabany 2. Nouck (eonccosaHue 6
(pasnosHaearHue umeHHOBaHbIX TMNOB — BOAbWUHCMBOM, cX0dcmeo —» S &
cywHocmeti u ceazeli) KaHAMAaTos N0 3020108KY, 2pYNNUPOBKA sk nARpon
XAPaKMepucmuk) KR A

Puc. 1. Obobwennas cxema nooxooa.
Fig. 1. The scheme of the approach.

HOI[XOI[COCTOUT M3 YCTBIPEX OCHOBHBIX 3TAIIOB!:

1) Ipeno6padorka Tabauu: Mozaear XLM-RoBERTa, noo0y4ennas xa kopmycax CoNLL-
2003, OntoNotes 1 DocRED, BbIoNHAET pacno3HaBaHHE HMEHOBAaHHBIX CYILHOCTEH
(TIepcoHbl, OpraHM3aIiy, JOKAIWU U 1p.) B sdeiikax tabmumpl. Ha ocroBe NER-meTox
U3BJICKAIOTCST 0a30BbIe (AKTHI (Mekcmogvle YNOMUHAHUS W 3HAYEHUS. XAPAKMEPUCMUK).
BaxHO OTMETHTb, YTO JaHHAS MOJEJb [0 YMOJIYaHHIO JIOCTYIHA B (hOpME CIIEIHAIBLHOTO
CEeMaHTHYECKOTO aHanu3atopa, Bxomsmero B miatgopmy Talisman. Omnucanue
THIIEpIIapaMeTpoB U ApYyTUe JeTaal MOJICNIU peICTaBIeHbI B pabote [35].

2) Tonck THmOB KaHAMAaTOB: JIs KaXOOW KOJOHKM TaGIHMIBI OmpexersieTcss Habop
BO3MOXHBIX munog xapaxkmepucmux n3 KG, HCKIIOYas KOJOHKH 6e3 M3BJICYCHHBIX
0a30BbIX (aKTOB.

3) AHHOTHpOBaHHe KOJOHOK: PeJIeBaHTHBIH THIl IUIsi KOJIOHKH BBIOMpAETCS C MOMOIIBIO
arpernpoBaHHON OLIEHKH, IIOJYYeHHOM Ha OCHOBE NPHMEHEHHS KOMOMHAIMM Tpex
IBPUCTUYUECKUX MeTo#a (2onocosanue OONLUUHCINBOM, CXOOCMBO NO 3A20J06KY,
epynnupoeka xapakmepucmux). JlaHHast OIIEHKA OTIPEIEIAET HTOTOBYIO BEPOSTHOCTH TOTO,
YTO OIpEAEICHHbIH THUI XapaKTepHCTHUKH M3 Habopa KaHIMAATOB SIBISIETCS Haubouee
MOIXOAALINM (pEJIeBaHTHBIM) JAJISI aHHOTHPOBAHHUS CTOJIOA TaONMHUIbl. ATperupoBaHHE
OCYLIECTBJIACTCS Ha OCHOBE JIMHEHHON CBEPTKM OLIEHOK, IOJIyYEHHBIX KaXJOU
IBPUCTUKOH: foq4(c;) = f1(c;) X wy + f2(c;) X wy + f3(¢;) X ws, e ¢; — uenesoit
cToJ0el A1 aHHOTUPOBAHUS, f1, [, f3 — 9BPUCTUKU aHHOTHPOBAHUS CTOIONA; Wy, Wy, W4
— BECOBbIE KO PHUIINEHTHI, KOTOPhIe YPAaBHOBEIIMBAIOT BAXXHOCTh KaXKIOH OLICHKH.

4) HsBaeuenue u no0aBaenue GaKkToB B 1ejeBoil rpad sHanmii: Ha ocHOBe aHHOTAIMIA
W3BIICKAIOTCS KOHYenmuyl, UX XapaKxmepucmuxu v céa3u, NononHss rpag 3Hanui Talisman.
[Ipu 3TOM (aKTHI CBsA3EH (HOPMHUPYIOTCS TONBKO B IPEEIaX OTHOW CTPOKH.

Pa3paboTaHHbIi MOAXOA peann3oBaH B (POpPME CIEIHAIBHOTO aBTOMATHYECKOTO 00pabomuuka
ma6auy (tables-annotator), xoTopslil MCHONB30BANCS B paMKaX HCCIESIOBATEbCKOIO IPOCKTa
WHcTutyTa CHCTEMHOrO NporpaMMHpoBaHusl MMeHH lBaHHmKoBa Poccuiickod akageMuH Hayk
(UCIT PAH). B paMkax 3TOro mnpoeKkTa pemajach 3ajada aBTOMAaTH3UPOBAHHOTO HAaIrlOJIHEHHS
IpeIMETHO-OPUEHTUPOBAaHHBIX TpadoB 3HaHWi Iwiatgopmel Talisman [12] HOBBIME (akTamu,
W3BJICYCHHBIMH, B TOM YHCIIe, M3 TaONMYHBIX NaHHBIX. [lonpoOHas MHQOpManus Mo MoaXony
nmpencrasieHa B padore [13].

211

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

4. Habop daHHbIx RF-200

CTpyKTypHasi KOMIIOHOBKa TaOMUI] W OOJBIION OXBAT Pa3HOOOpPa3HBIX MPEIMETHBIX OOacTeit
Ba)XHBl U CO3JaHMSA KadeCTBEHHOTO Habopa TaONWYHBIX J[JaHHBIX. B manHON pabote
HCIIONB30BANICS KPYITHOMACIITaOHBIH Kopryc TabnnuHbIX maHHbix — Russian Web Tables (RWT)
[14], koTopbiit GBUT cHOPMHUPOBAH HA OCHOBE Cpe3a PYCCKOA3BIUHOM Bukumnemun 3a 13 ceHTsAOps
2021 roma. RWT mpencrasien HabopoM ¢aitnos B popmate CSV, copepkaminx HEIOCPEICTBEHHO
TabmuIpl, a Taoke ¢aiuel B popmare JSON, conmepkamue MeragaHHele o Tabnmmax. B tadm. 3
OIMCBIBAETCA OCHOBHAsA cTaTUCTHKA Kopnyca RWT.

Tabn. 3. Cmamucmuxa xopnyca mabauy RWT.
Table 3. The RWT corpus statistics.

CraTrucruka 3HaveHune
Konuuecmeo mabnuy 1266 731
Konuuecmso xononox 7419771
Konuuecmeso siueex 99 638 194
Cpednee uucno aueex Ha mabauyy 81,78
Pasmep nabopa 17Tb
Ipoyenm npaxmuyecku nycmix KOIOHOK 6%
CpeoHee uucno sueex 8 KOJIOHKe 13,42
Ipoyenm KonoHOK cOOepHcauux MoabKo YUCI08ble OaHHbIe 17%

U3 xopmryca RWT Oputo otoOpano 225 HCXOAHBIX BEPTHKAIBHBIX TAONHI], B KOTOPHIX JaHHBIC
coJepkaTtbesi B popMe cTOJOIOB (BEPTUKAIBHBIX KOJIOHOK), Ha OCHOBE METaJlaHHBIX KOpITyca.
CoOpaHHble TaONUIBI TPHHAATIEKAT 26 pa3HBIM NPEAMETHBIM 00JIaCTAM U CO/IEPXkKAT KaK IPOCTHIE
3aroJIOBKH (3aroJIOBOK ITI€PBOI CTPOKOMH), TaK M CIOXKHBIE HEpapXUUECKHE 3arOJIOBKH, KOTOPHIE
MOTYT PacIiojlaraTbCsi B IIPOU3BOJIBHOM IOPSIIKE BHYTpHU Tabnuipl. JlaHHBIE B TaOmunax He Obun
OUMIIEHBl W MOTYT COJAEPXaTh HE3HAUYNTEJbHBIE OINEYAaTKH M MYCOPHBIE CHMBOJBI, KOTOpBIE
MOTEHLHAJIBHO MOT'YT BHOCUTB CIIOXHOCTbH B Ipoliecc 00pabOTKHU 1 aHaIN3a dTHX Ta0IuI.
Pazmerka naHHBIX TaONMI] OCYIIECTBISUIaCh B aBTOMAaTH3UPOBAHHOM PEXHME CpEJICTBAMHU
mwiatgopmer Talisman [12]. B uwactHOCTH, ObUIa pa3paboTaHa MOETb MPEAMETHON 06macTH
(OntoScheme), otpaskaroriast OCHOBHBIE TIOHSTHS, UX XaPAKTEPUCTHKH M OTHONICHHS MKy HUMH
Ut BeeX 26 obmactei. CTaTUCTHKA IO CO3IaHHOM MOJIENH MpeJcTaBlIcHa B Ta0I. 4.

[Tpumep ¢parmMeHTa MoJeIH MPEIMETHON 00JIaCTH, OMMCHIBAIOMINI 00JIaCTh MY3bIKH (JJaHHBIE IO
4yapTam, CUHIJIaM, HH(opManusi 00 UCHOJHUTENAX U MYy3bIKAIbHBIX TPYIIAX U T.II.), HPEICTABICH
Ha pHuC. 2.

3aTeM TPHUMEHSJICS CIEUANTbHBIH 00paboTuMK u3BJICYeHHS (AKTOB, K KOTOPOMY BPYUYHYIO
onpezensiiack Koupurypauus B popmare JSONPath otaensrHo st kaxkmoit taGnuupl. JlaHHas
KOH(UTypanus NpeICTaBsieT co00it HAOOp MHCTPYKIMMI, UCIIOIB3YIOIINI MEXaHH3M PeryJsIpHBIX
BBIPOKCHHUI M CO3Z[aHHYIO MOJIEJb MIPEJMETHON 00JIaCTH, MO0 KOTOPHIM IPOUCXOAMIO U3BJICUCHHE
(akToB U3 TabuuIl. V3BNeueHHbIE TaKUM 00pa3oM (aKThl COCTABHUIIM ATAJOHHBIE JaHHBIE Pa3METKU
(ground truth). B pesynbrate Gputo pasmedeno 200 Ttabnui. CraTHCTHKa MO COOpPaHHBIM M
pa3MedeHHBIM TaOIUIaM MpeCcTaBiIcHa B Ta0I. 5.

B pesymprare Gbul co3maH HOBBI Habop mamHbix — RF-200 (ru-fats-200), comepskamimit
pa3MedeHHbIe pyccKos3pIgHbIe Tabnuisl. OcHOBHaAs craTucTHKa 1o Habopy RF-200 npexcrasnena

212

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

B Tabu. 6. IIpu 3TOM CcpenHee KOIMYECTBO KOJOHOK Ha oJHy Tabiuiy cocraBuio 4,89. Cpeanee
KOJIMYECTBO si9eeK Ha 1 Tabuuiry coctaBmiio 97,45, a moins mycThix siueek 8,82%.

Tabn. 4. Cmamucmuka no co30aHHOU MOOenU NPedMemHou 00Iacmu.
Table 4. Statistics on the created domain model.

DJIeMeHT MoJeu KoanuectBo

Tun xonyenma 29
Tun 3nauenus xapaxmepucmuxu 9
Tun xapaxmepucmuxu KoHyenma 281
Tun cesazu 50
Tun xapaxmepucmuxu céasu 22
Bcero 3j1emeHTOB 391
Brpoca 9

BAAETGH YacTblo CTPOKa
nata
e T N
S N sweno——»{FSHEP]
[npousnenenue ucxyccrnj"_‘
—
BPEMEHHAA METKa \\ . Peuensuns m

NPOAOIKUTENBHOCTE Neiibn 3syKozanucu AeTop craryc anpéc cTpoka

MeCTOHaxoXxaeHue Ha3saHue

Opranunszauns

CTpOKa

ancho Rara

4Yyucno narta
$ MECTOHAXOXAEHUE

AaTa OCHOBaHWA

Puc. 2. Ilpumep gppacmenma moodenu npedmemHol 001acmu, ORUCHIBAIOWUTI 0OIACTL (MY3bIKAY .
Fig. 2. An example of a domain model fragment (“music”).

anpec

4. TecmupoeaHue npoussodumesibHocmu

4.1 HacTponku n MeTpukun

TecTupoBaHue MPOU3BOJUTEIBHOCTH ABTOPCKOTO TMOAXOJa W €ro MPOrPaMMHON peaau3alii B
(hopme obpabdorurka mwatdopmbl Talisman ocyriecTBisuiach Ha OCHOBE TTOATOTOBJIEHHOTO Habopa
nanbeix RF-200. B kauectBe GasoBoro pemenus (baseline) mis cpaBHeHust ObUT BbIOpaH
KJTACCHYECKUI TMOJXOM W3BJICUCHUsT (DAKTOB W3 TEKCTOB, OCHOBAHHBIM HAa pacloO3HaBaHHH
nMeHoBaHHbIX cymHocTeit (Named Entity Recognition) u m3BnedeHnn OTHOIICHUH MEXKITY HUMH
(Relation Extraction). OTot moaxon Takke peajau3oBaH B (opMe CIELHATBLHOIO 00paboTYHKa —
cemanmuueckoeo ananuzamopa (Semantic analyzer) B mnatdopme Talisman. Cnegyer OTMETHTS,
YTO NPOBECTH KOPPEKTHOE CpPABHEHHE C IpyrMMH BHeIIHMMH “‘State-of-the-art” permenusiMu
JOCTAaTOYHO CIIO)KHO, TaK KaK OHM HAIpaBjieHbl HA 00pabOTKYy TOJBKO ONpPEAENeHHOro Habopa
JaHHBIX, OONazaronMX COOCTBeHHO# creuudukor (hopmaroMm, MOIIEPKUBAECMBIX KATErOpPHi
THUIIOB U JIp.).

OcHOBHas MpoBepsieMasi TUIOTEe3a 3aKII0YACTCS B OTBETE Ha CIEAYIOIINE BOIPOCHL: «/Ipueoonsl nu
Kaaccudeckue mMemoovl ussnedenus ungopmayuu us mekcmog ona mabauy?» n «Ipebyiom nu
maoauysl co30anUs CReYUaIU3UpPOBaAHHbIX PeUleHUl .

213

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,

vol. 37, issue 5, 2025. pp. 205-224.

Tabn. 5. Cmamucmuka no coOpaHHviM U pasmeyeHHbIM MabIUyam.
Table 5. Statistics on the collected and labeled tables.

Kou-Bo Kou-Bo
IIpeameTHasn
Ne Kpartkoe onucanue 0TOOpAHHBIX [pa3MedYeHHBIX
ob1acTh
TadIUI TadIuI
CraTuCTHKA 110 CTPaHaM, OTACIBHBIM
1 Jlokayuu p i 34 33
cyOBeKTaM, TopoaaM (HaceleHue,
2 Cnopm KomaHnpl, Urpoku, BHIBI CIIOPTa 29 26
3 Kunounoycmpus u OuibMBI, CepHabl, aHNMe, TeaTpaIbHbIC 18 16
meampul [IOCTaHOBKH, aKTEPBI
4 THonumuxa [MapTuy, AemyTaThl, HOIUTHKH, JIAACPHI 16 15
5 Kunonazpaow: Kunonpemun, nodeauTeny, HOMAHALINK 1 11 8
6 Hcmopus CoOBbITHS, TMYHOCTH U BOCHHASI CTATUCTUKA 9 9
7 Mpy3svika IlecHu, CUHIIIBI, IEBLBI, TPYIIIIBI 9 6
8 Aemocnopm Pau, KOMaHIbl, TYpHHPbL 8 8
9 Apxumexmyphvie CTpoeHus Kak cTapble, TaK U HOBBIE 8 8
10 Topeoens u punarcol BBII, kpeauTsl, UMIIOPT, 3KCIOPT 7 3
11 Dnepeemuxa TTokazaTenu SHepreTHKHU, MOIIHOCTH 7 2
12 Ieyamnvie uzoanus Kuuru, maHra, sKypHaIsl 7 7
DTaJOHHBIC M PEKOPAHbIC H3MEPEHHS
13 Hsmepenus pexopa °p 6 6
Pa3IMYHBIX MOKa3aTenei
14 Ilpazonuku u HasBanust npa3iHUKOB, HEPHOJIbI 6 6
Meponpusmusi [pa3IHOBaHUS
15 IIpupoonvie obwvexmol CraTucTuka 1o pekam 1 o3epam 6 6
16 Asuayus CaMOJIeTEI, BEpTOJIETH 5 5
17 Meoua Pajno, TeneBueHne 5 5
18 Opeanusayuu u JlaHHBIE IO Pa3INYHBIM OPTaHU3ALMSIM U 5 5
obveounenus 00BbeIUHEHHSIM
19 IIpodykmer numanus |CTaTHCTHKA IO COCTaBY NMPOTYKTOB ITHTAHUS 4 4
20 Acmponomus ACTpPOHOMHYECKHE aNIapaTsl, 3BE3HBIC 4 4
21 Hayuonansnocmu u CTaTUCTUYECKUE JAHHBIC 110 PA3ITHYHBIM 4 4
9MHOCHI HAI[MOHAIBHOCTSM, STHOCAM U
CTaTUCTUYECKUE JAHHBIC 110 PA3ITHYHBIM
22 Penueus A p 4 4
KOH(ECCHSIM U PEIIUTHO3HBIM TEUCHHSM
23 Tenewoy KBH, crenaan, koMaHbI 4 1
CTaTHCTHYECKUE JAHHBIC 110 PAa3THIHBIM
24 Haepaovr u npemuu A P 3 3
HOMHHALMSIM, TIPEMHSIM M HarPa)kKICHHBIM
CopeBHOBaHUS 110 PECIINHTY, CTATHCTHKA IO
25 Pecnune P p Ty 3 3
nobeaM pecTiepoB
Urpel, miat¢opMbl, UTPOBBIE U3/1aHUS
26 |Komnsiomepnoie uzpoi| T PPb thopmer, urp a ’ 3 3
KHOEDCIIODT
UTOro 225 200

214

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

Tabn. 6. Cmamucmuka no pazmevennomy Habopy mabaiuunvix oannvix RF-200.
Table 6. Statistics on the labeled tabular dataset (RF-200).

IIpeamerHas odaacTb Koi-Bo Koi-go Kou-Bo siueex Koa-Bo
TadauL KOJIOHOK MYCTBIX A4YeeK

Jloxayuu 33 153 1992 99
Cnopm 26 188 4786 614
Kunounoycmpus u meampul 16 74 1464 44
Hoaumuxa 15 68 915 81
Hcemopus 9 33 877 156
Kunownaepaow 8 42 588 3
Aemocnopm 8 45 431 10
Apxumexmypuvie cOOpYHCceHUs. 8 47 753 124
Ieuamnvie uzoanus 7 29 554 48
My3zvika 6 21 618 6
Hsmepenus 6 23 248 11
Tpazonuku u meponpusimust 6 20 263 12
Ipupoonvle 06vexmobl 6 26 359 21
Asuayus 5 28 499 109
Meoua 5 16 221 17
Opeanuzayuu u 06veouHeHUs 5 37 640 55
Ipooyxmoer numanus 4 14 194 0
Acmponomusn 4 16 800 0
Hayuonanvrocmu u smuocot 4 12 243 10
Penueus 4 11 102 0
Topeosna u ghunancol 3 12 280 0
Haepaovt u npemuu 3 13 342 52
Pecnune 3 14 472 41
Komnvromepuvie uepuot 3 14 906 143
Onepeemuxa 2 16 880 63
Tenewoy 1 7 63 0
UTOI'O 200 979 19490 1719

215

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

VHTYUTHBHO, METPUKA OLICHKH JOJDKHA BBIUYMCISITH PA3HHUIy MEXKIy KOJMYECTBOM HMCTHHHBIX
(pa3meueHHbIX) (pakTOB, HaxoAAMMXCs B Tabmuie Habopa RF-200 1 KoMYecTBOM HM3BJICUYCHHBIX
¢akTOoB 00pabOTIMKOM TaONMMII W CEMAHTHYECKHM aHAIM3aTOpoM. TakuMm oOpasowm,
9KCIIEpUMEHTaJIbHAs OLICHKa OblJIa TOJIyYeHa OT/ASNIBHO JUIS ABYX JTAllOB:

1) wusBIeUeHUE (Harmos-KoHyenmos, Gaxkmos-snauenuti 1 @pakmos-ynomunanuii (Gymem
0603Ha4aTh 10T dTan Kak «NERCy);

2) W3BJEYEHUE (PAKMOG-XAPAKMEPUCMUK — KOHYenmos, (hakmosg-cesazeil W (Hakmos-
xapaxkmepucmux ceésizeti (0yneM 0003Ha4YaTh 3TOT 3Tam Kak «RELEXT»).

B KagecTBe METPHK OIICHKH JIJIs 0OOMX STATIOB U3BICUCHHS (PaKTOB UCIIONB30BANCEH CTAHIAPTHBIC:
TouHOCTH (precision), momxota (recall) u F-mepa (F1 score):
CF CF 2 X Precision X Recall

Precision = EF’ Recall = NF’ F1= Precision + Recall

rne CF — komu4ecTBO MPaBWIILHO (T.C. COBMAJAIONIUNX C UCTHHHBIMHU) U3BJICYCHHBIX (AKTOB W3
Tabmuipl 00paboTunkoM; EF — konuyecTBO (PakTOB B 11€JI0M, M3BJICYCHHBIX 00pPaOOTYMKOM M3
tabmupl; NF — obmiee konmdecTBo (hakToB, coaepxamntuecs B Tabmuie Habopa RF-200.

Takum 00pa3oM, TaHHBIC METPUKH CUUTAIUCH [T KaXKT0H TaOJHUIIBI M TOTOM CYMMHUPOBAJIUCH IS
Bcero Habopa.

4.2 PesynbTathbl

HToroBeie pe3ynbTaThl TECTUPOBAHMS MPOU3BOIUTCIBHOCTH H3BJICUCHHUS (DAKTOB M3 TaOIUI] HA
Habope manHbX RF-200 mpuBeneHs! B Tabm. 7.

Tabun. 7. Pezynomamel sxcnepumenmanviou oyenxu Ha Habope RF-200.
Table 7. The results of experimental evaluation on the RF-200 dataset.

CeMaHTHYECKUIl aHAIM3ATOP Oo0padoTyuk TadAMIL
ora Precision Recall F1 Precision Recall F1
NERC 0,668 0,542 0,554 0,659 0,641 0,623

RELEXT 0,000 0,000 0,000 0,377 0,281 0,306
NERC + RELEXT 0,334 0,271 0,277 0,518 0,461 0,464

DKCcnepUMEeHTaIbHAs OlIEHKa MO OTAENbHBIM NpeAMeTHbIM obnacTsaM it NERC-3tama npusenena
B 1abn. 8, a mist RELEXT-3rana npuseaena B tabi. 9. Jlanee 00CyauM KITFOUEBBIC BBIBOJBI IO
MTOJTyICHHOM OIICHKE.

BBIBO,I[LI " 3aMCYaHus 110 HOHy‘ICHHOfI OLICHKHU IPOU3BOJUTCIBHOCTH!

L4 OHEHKa Mpon3BOAWIACH OTACIBHO II0 KaXI0u Ta6J'II/IIle C HCIIOJIB30BAHUEM TOJIBKO
OHpeILGHGHHOﬁ HaCcTu MOJCIIN HpeILMCTHOﬁ obnactu (HOI{MHO)KGCTBEI TI/IHOB).

e Tounocts NERC-3Tana okazangach HEMHOI'O BBILIE JJI1 CEMaHTUYECKOTO aHaIM3aTopa. DTO
CBSI3aHO C TEM, YTO CEMAHTHYCCKHU aHATU3aTOP MOXKET TOYHO BEIIEIATH HEOOXOUMBIS
3HAYCHUsS B siuciikax. B To Bpems kak oOpaOOTYHMK TAaOJHUI] BCErJa BBIACIACT 3HAUCHUS
STYEEK IIEJTUKOM.

e Ornenka noxHOTEl NERC-3Tamna okasanach BeIie IiIsi 00pabOTYMKa TAOIUIL 32 CYET TOTO,
YTO CEMAHTHUYECKHUH aHAIU3aTOp MOXKET IMPOIyCKaTb HEKOTOpble 3HAUEHUsS! SUYeeK B
KOJIOHKE, 0COOCHHO eciii OHHM hpuHamiexkar K peakum NERC-merkam (Hampumep, 3TO
MOTYT OBITh PEIIKO BCTPpEYaeMbIe COOBITHS, MEPOIPUSATHSI, MEXaHHIECKHE CHCTEMEBI U T.11.).
B 10 Bpemst kak 00pabOTUYHK TaOIUI] BCETa BRIACIACT BCE 3HAUCHHUS TYCCK B KOJIIOHKE.

216

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

Tabn. 8. Dxcnepumenmanvras oyenka no omoenvhvim npeomemunim o6nacmsm oast smana NERC.
Table 8. The experimental evaluation of selected domains for the NERC stage.

CemaHTHYeCKU O6padoTuuk
MpeameTHas 061acTh aHaausarTop Tabamn
Precision Recall | F1 Precision [Recall| F1
Hayuonansnocmu u 9mHocel 0,950 0,854 | 0,883 0,998 0,937 | 0,963
IIpodykmel numanus 0,815 0,361 | 0,495 0,845 0,875 | 0,859
Honumuxa 0,718 0,727 | 0,708 0,853 0,808 | 0,812
Meoua 0,703 0,737 | 0,711 0,768 0,742 | 0,754
Mysvirka 0,844 0,632 | 0,621 0,827 0,792 | 0,751
lpupoonsie obvexme 0,819 0,506 | 0,555 0,893 0,677 | 0,737
Pecnune 0,767 0,793 | 0,767 0,737 0,727 | 0,715
Jlokayuu 0,688 0,637 | 0,602 0,715 0,748 | 0,707
Tlpasonuxu u meponpusimus 0,625 0,782 | 0,688 0,649 0,798 | 0,707
Asmocnopm 0,676 0,681 | 0,657 0,684 0,748 | 0,700
Cnopm 0,580 0,678 | 0,601 0,547 0,699 | 0,590
Kunounoycmpus u meampul 0,669 0,481 0,501 0,561 0,576 | 0,551
Opeanusayuu u 06vedunenus 0,570 0,617 | 0,562 0,655 0,779 | 0,699
Komnviomepnvie uepoi 0,818 0,596 0,660 0,720 0,727 | 0,693
Hcmopus 0,734 0,691 | 0,699 0,677 0,691 | 0,673
Onepeemuxa 0,749 0,546 | 0,607 0,831 0,546 | 0,647
levammuvle usoanus 0,647 0,662 | 0,634 0,592 0,727 | 0,642
Asuayus 0,485 0,581 | 0,499 0,516 0,696 | 0,580
Top2oens u unancel 0,727 0,309 | 0,414 0,667 0,467 | 0,524
Penueus 0,502 0,406 | 0,426 0,567 0,505 | 0,520
ApxumexkmypHhvie coopyicenus 0,621 0,450 0,477 0,565 0,577 | 0,513
Hazpaowl u npexuu 0,873 0,373 | 0491 0,642 0,389 | 0,481
Kunonazpaovl 0,569 0,389 | 0,415 0,406 0,514 | 0,428
Teneuoy 0,455 0,234 | 0,309 0,469 0,359 | 0,407
Acmponomus 0,596 0,195 | 0,258 0,608 0,370 | 0,392
Hsmepenus 0,187 0,167 | 0,167 0,134 0,186 | 0,147
ITo BceM oGacTsamM 0,668 0,542 | 0,554 0,659 0,641 | 0,623

217

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

Tabn. 9. Dxcnepumenmanvhas oyeHka no omoenbHviM npeomemusim oonacmsm oas smana RELEXT.
Table 9. The experimental evaluation of selected domains for the RELEXT stage.

O6padoTuuk TadaAML
flpevertas obacts Precision Recall F1
Hayuonanenocmu u smnocwi 0,750 0,628 0,669
Ipoodykmul numanus 0,667 0,667 0,667
Tonumuxka 0,833 0,526 0,609
Meoua 0,784 0,438 0,534
Mysvika 0,627 0,378 0,466
Ipupoonvie o6vexmul 0,427 0,430 0,422
Pecnune 0,461 0,380 0,407
Jlokayuu 0,525 0,297 0,360
Ipaszonuku u meponpusmusi 0,392 0,313 0,342
Aemocnopm 0,500 0,250 0,333
Cnopm 0,410 0,294 0,325
Kunounoycmpus u meampoi 0,513 0,248 0,321
Opeanusayuu u 06veOuHeHus 0,312 0,328 0,319
Komnvromepnvie uepoi 0,448 0,266 0,304
Hcmopus 0,376 0,271 0,302
Onepeemuxa 0,279 0,312 0,285
Teuammuwie uzoanus 0,198 0,350 0,252
Asuayus 0,335 0,205 0,230
Topeosns u punarcei 0,308 0,154 0,205
Penueus 0,197 0,206 0,201
ApxumexmypHole coopycenus 0,251 0,165 0,193
Haepaovt u npemuu 0,111 0,111 0,111
Kunonaepaowt 0,091 0,091 0,091
Terewoy 0,000 0,000 0,000
Acmponomus 0,000 0,000 0,000
Hsmepenus 0,000 0,000 0,000
ITo Bcem o0aacTaM 0,377 0,281 0,306

218

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

OKCTIepUMEHTAIbHBIE OLIEHKH CEeMaHTHYecKoro aHamusartopa s drtanma RELEXT
OKa3aJMCh HYJEBBIMU HM3-32 TOTO, YTO AAHHBIH OOpPaOOTYMK MOKET BBIACIATH CBS3H U
XapaKTepUCTHKH TOJIHKO BHYTPH OIHOTO TEKCTa (fA4eiku). B To Bpems kak oOpaboTyumk
TaOJIMI MOXKET BBLICNSATH CBSI3M U XapPAKTEPUCTUKU MEXKAY 3HAUCHUSIMH SYEEK pasHbIX
KOJIOHOK. J[aHHasl OLIEHKA HarJIAHO ITOKa3bIBAET, YTO KIACCHYECKUI IOJIXO0] U3BJICUCHHS
(haKTOB M3 TEKCTOB c1a00 NPUMEHHUM K TaOJIMYHBIM JaHHBIM.

B menom wuroroseie omenkn (3tamsl NERC + RELEXT) mis mpeanaraeMoro moaxoja
(oOpaboTumka TaONWI)) oOKazanack OXHAAeMO BEHIME, YeM JUII CEMaHTHYECKOTO
aHaJM3aToOpa 3a CUET CBOCH HAIPaBIIEHHOCTH Ha 00paboTKy TaOmwiI.

OCHOBHBIE IPUYHHBI (TIPOOIIEMBI), TOBIUABIINE HAa HE BEICOKYIO OIICHKY IPOU3BOIUTEIHHOCTH:

Hanuuwne onevaTok u «MYCOPHBIX» TETr'OB HTML B HCEKOTOPBIX 3HAYCHUAX STUCCK.

[pemmaraeMsrii TOAXO BKJIIOYAET ATAIl IPEABAPUTEIHHON 00paboTKH TabHIl, KOTOPBIN
OCHOBAaH Ha pe3yJIbTaTax paclo3HaBaHUS HMCHOBAHHBIX CYIIHOCTEH M M3BJICUYCHUY CBS3U
(puc. 1). Takum o6pa3om, pabora 00paboTUMKa TaOIMIl MOJIHOCTHIO OCHOBAaHA Ha
pe3ynbTatax paboThl CEMaHTHYECKOro aHanm3aTopa. [losToMy ecinm ceMaHTHYEeCKHi
aHanM3aTop B 3ajaHHOW KonoHke He Hamen NERC-merku, T0 00paboTyuk Tadiui
MPOIYCTHT 3Ty KOJIOHKY.

Tekymas peanuzamus oOpaboTdMKa TaONHIl HE MO3BOJIIET HM3BJICKATh XapaKTEPUCTHUKU
CBSI3€i.

B sdeiikax ¢ MACHTHOUIMPYIOIUMY XapaKTepUCTUKaMHU (HAIIpHUMep, Ha3BaHUSIMU) MOTYT
MOTIA/IAThCS MYCThIE SYSHKU MM MOXKET CTOSTh MPOYEPK HIH CUMBOJ «H/I».

B pasHbIx sueiikax OJHOI KOJOHKM MOTYT OBITH INPEICTaBJICHbI pa3HbIe KOHIENTHI C
XapaKTepUCTUKaMU (HaIIpuMep, KOJIOHKA MOKET COAEPKaTh OJJHOBPEMEHHO KaK KOHIIEIITHI
tuna «llepcona», Tak u «Opeanuzayusy).

B oxHOil sdelike MOTYT OBITH HPENCTABICHBI Pa3HbIE KOHIENTHI WM XapaKTEPHCTHKH
(HanpuMep, siueiika MOXKET COJepKaTh PErHOH C €ro reorpadMuecKuMH KOOPIUHATAMH).

B o/HOIA stueiike MOTYT OBITh MPEICTABICHBI MHOXKECTBEHHbBIC 3HAUCHHSI KOHIICTITOB WU
XapaKTEPUCTUK OJIHOTO THUMa (HAPUMEP, MOXET OBITh MEPEYUCIICHHE WMEH WK
OpTraHU3aIHiA).

Konment ¢ ero waeHTHQHUUUpYIOMIEH XapaKTepUCTHKONW (Ha3BaHHEM) MOXET OBITh
pacroJio’)keH BHe TaOyuIel (HampuMep, B 3arojioBKe), a B caMOil TabiuIle ecTh TOJIbKO
XapaKTePUCTHKH 3TOT'0 KOHIIETITa (HampuMep, I IECHU, Ha3BaHUE KOTOPOIl BBIHECEHO B
3arojIOBOK, B TaOJHIIe TpPEACTaBICHBI TOIBKO IMPOIODKUTEIHHOCTh MECHH W JaTa ee
3aITHCH).

Ha3Banus 3aronoBKOB SBISIOTCS Ha3BaHUSIMU XapaKTCPUCTHUK KOHICTITA UJIN CBA3U.

XapakTepHcTHKa KOHIIENITA HIIH CBSI3U SIBJIAETCS COCTaBHOM M pacripeziesieHa B HECKOJIBKUX
KOJIOHKax (Hampumep, cdeT B (yTOOIHHOM MaTde MOXKET OBITh pa3sOUT Ha HECKOJIBKO
STYEEK).

XapakTepucTUKa KOHIENTA WIH CBSI3U SIBIISIETCS COCTAaBHOM U COAECPKUTCA B OAHOM sTueiike
(HampuMep, TOX, COCTOSIIUI W3 JWana3oHa, WM Kapbepa HWIPOKa, COCTOSMIAs U3
MHO>KECTBA Jar).

Hanuuue BBIYHCISEMBIX 3HAYEHHH sYEeK B KOJIOHKax (HampHMep, pacdeT BpeMeHH
YY9aCTHUKOB B TOHKE OTHOCHTEIBHO BPEMEHHU MTOOETUTES).

Pa3Hble enuHMIIBI M3MEPEHMs, KOTOpble MOTYT MPUBOJIUTH K HECKOJBKUM BHIaM
XapakTepucTUK. Hampumep, B IByX TaOIUIAX ¢ W3MEPEHUEM UYHCICHHOCTH HACETICHHS
YKa3aHbl «MJIH. Yel.» U «MbIC. Yel.».

219

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

s ycTpaHeHus OnpeneNeHHBIX BBIIIE MpobiieM TpedyeTcs YIydIIUTh CYHICCTBYIOIINE METOIbI
CEMAHTUYECKOTO aHHOTUPOBAHHUS, B YACTHOCTH, TPeOyeTcs T0OaBUTH:

e KoppekTHyto 00pabOoTKy W3BICUEHHS HACHTUPHUIHMPYIOMINX XapaKTEPUCTHK C YUETOM
MYCTBIX sTYEEK, POUYEPKOB MM CIICIHATBEHBIX CHMBOJIOB.

e lI3BlcucHHE XapaKTECpUCTUK CBs3el U3 Ta6HI/IH.

e ll3BieueHne (HaKkTOB COCTABHBIX XapaKTEPUCTUK U3 TaOJIUI, KOTOPBIE MOTYT COOUPATHCS
KaK BHYTPH OJHOW STYEHKH, TaK U OBITH COOPAHBI U3 STYEEK PA3HBIX CTOJIOIOB.

o (OO0pabOTKy MHOXXCCTBEHHBIX OJHOTHITHBIX 3HAUCHHI (KOHIICTITOB U XapaKTCPUCTHK) B
sTyeiKax.

e l3pncucHue (PakTOB M3 TAOJUIl C KMCIOJH30BAHMEM BHEIIHETO KOHTEKCTA TAONHUIIBI, B
YaCTHOCTH, CBs3b C (haKTaMH, KOTOpPHIC pACIIOJNIOKCHBI B OCTaJbHOM JOKYMCHTE
(HanpuMep, B 3ar0JIOBKE Ha3BaHUsI TaOIHUIIBI).

B 1menom, mojydeHHbIE pe3yabTaThl MOKA3bIBAIOT MEPCIEKTHBHOCTh HCIOJB30BAHMS
pa3paboTaHHOTO TMOAXOJa W O00paboTYMKa TaOMUIl IS MOMJACPKKH TMpoIecca W3BICUCHUS
KOHKPETHBIX CYIIMHOCTEH ((aKToB) M3 CEMAaHTHYECKH aHHOTHPOBAHHBIX TAOJMYHBIX NAHHBIX H
TIOTIOJTHEHHST UIMU TIPEIMETHO-OPUEHTUPOBAHHBIX rpad)OB 3HAHUI.

5. 3aknroyeHue

O¢ddexTuBHOE TECTHPOBAaHHE METOHOJOTHYECKOTO W MPOTPAMMHOTO OOECIICYCHHUS LI
aBTOMAaTHYECKOW CEMaHTHIECKOI MHTEpIIpeTaiy (AaHHOTHPOBAHUS) TAOJHUI] ¥ H3BIICYCHUS HOBBIX
(akTOB W3 AHHOTHPOBAHHBIX TAaOJIMYHBIX NaHHBIX TpeOyeT CO3MaHWA W HCIOJIH30BAHUS
PYCCKOSI3BIYHBIX HAOOPOB JIaHHBIX.

OCHOBHOW BKJaJ JaHHOTO WCCJICIOBAHHUS 3aKIFOYACTCS B CO3JAHHUU IIEPBOTO PYCCKOS3BITHOTO
Habopa TabmmuHbIXx nmaHHBIX RF-200, oxBaThBatomero 26 MpeaIMETHBIX 00OJacTeil, a Takke B
pe3ynbTaTax OLEHKH MPOU3BOIUTEIHLHOCTH aBTOPCKOTO Moaxoaa. Habop omy0nrkoBaH 1 T0CTyTIeH
Uit cBoOoHOrO Ucnoib3oBanus Ha GitHub [36]. Tlporpammuas peanusanus noaxoaa B (opme
obpaborunka tardopmel TalisSman mpomemMoHCTpHupoBajia €ro MPEBOCXOJACTBO HAJ
TPaAMLIHOHHBIMU METOJ]AMHU U3BJIeUYeHHs (PaKTOB U3 TEKCTOB, NOCTUTHYB F-Meprl 0.464 Ha sTanax
NERC wu RELEXT. [IlomyuyeHHble pe3yabTaThl CBHUAETEIBCTBYIOT O IEPCHEKTHBHOCTU
UCIIOJIb30BaHUS CIIELHAIN3UPOBAHHBIX PEIICHHUH /ISl pa0OTHI CO CTPYKTYPHPOBAHHBIMH JJAHHBIMH,
0COOEHHO B YCJIOBHUSX JIMHTBHCTHYECKOTO Pa3HOOOPa3HsI.

Pe3ynpraThl ucciefnoBaHUS MMEIOT KaK TEOPETHUECKYI0, TaK M MPAaKTHYECKYI0 3HA4MMOCTh. C
TEOPETHYECKOM TOUKHU 3PEHUS, IPEIOKEHHBIN METO]] aHHOTHPOBAHHUS YCTPaHIET CyObEKTUBHOCTh
3a C4€T CTAaTUCTHYECKOW BepH(HKALMK, UYTO pacIIUpseT BO3MOXXHOCTH CEMAHTHYECKOU
HHTEpIpeTanuu TaOIUI 3a TpeAenbl YHCIOBBIX MaHHBIX. C TNpakTHYeCKOW TOUKHM 3pEHUS,
co3nanHbli HaOop panHbix RF-200 mos3Bonsier mnpoBoauTh 3(GGEKTHBHOE TECTHPOBAHHUE
MIPOU3BOTUTEIFHOCTH COBPEMEHHBIX PEIICHUH B OOJACTH OOpaOOTKHM TAaONWIl W W3BICYCHUS
¢dakToB. OmHaKo paboTa BBISBIIIA DA OTpaHHMYCHHWNA. Bo-IepBBIX, 3aBUCHMOCTH OT KadecTBa
pacrio3HaBaHusl UMeHoBaHHBIX cymiHocTeit (NER) Moxer mpHBOOWTH K IPOMYCKY KOJIOHOK C
penakuMu MeTKaMH. Bo-BTOpBIX, Tekymuas peaiau3alys MOAXOAA HE MOJAEPKUBACT WU3BJICUECHUE
XapaKTepUCTHK CBA3eH 1 00pabOTKy COCTABHBIX 3HAUECHUH B SUEHKaX.

[lepcriekTHBHBIE HAIpaBieHUs OYAYNIMX MCCIEIOBAHUI BKIIOYAIOT WHTETPALMIO METO/IOB
riIyOOKOTro 00yUeHHMs, OCHOBAaHHBIX HA TOHKOM HACTPONKE ITPEABAPUTEILHO-00yUYEHHBIX S3bIKOBBIX
mojaeneir (Hampumep, RUTABERT [14]), anst mOBBIMIEHHS TOYHOCTH W aBTOMATH3ALUH
aHHOTHPOBAHUS Ta0JHII ¢ Ootee CiIoKHOU CTpyKTypoii. Co3manubiii Habop manHbix RF-200 Oymer
pacmpeH 3a CYET BKIIOYEHHS TOPH3OHTAIBHBIX W MATPHYHBIX TaOIMII C HEpapXUIECKUMHU
3aroJOBKaMU C 00bEIMHEHHBIMH SUEHKaMH, a TaKKe MOJAEPIKKY MYIbTHs3bIIHOCTH. KpoMme Toro,
JUTA TIONTBEPKICHUS BBIBOJIOB IIAHUPYETCS MMPOBECTH JOTIOIHUTEIBHBIE CTATHCTUIECKNE TECTHI,

220

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

pacu€Thl JOBEPHUTEIBbHBIX HHTEPBAJIOB M M3MEPEHH MeXaHHOTAalIMOHHOTrO coriacus Ha RF-200, ¢
LebI0 ONpeleleHus THIOB TaONWL, 11 KOTOPHIX IIpeUlaraeMblil MOAXOX OOecIevYnBaeT
HOJly4eHHE MAaKCHMAJbHBIX OLICHOK. I[IepCIIeKTHBHON TakKe SBISCTCS 3amada OOecreueHUs
O0TOOpaKEHHsI DJIIEMEHTOB CYLIECTBYIOIEH OHTOJOIMYECKOW CXeMbl rpada 3HaHUH MIaT(OPMEI
Talisman B onTONOrHYeCcKKe MOHATHS rpadoB 3HaHU 00LIero HazHaueHus Takue kak Wikidata mu
DBpedia mis yBenudeHHs CEMAHTHYECKOH COTNIACOBAHHOCTH U YIPOLICHHS MOBTOPHOTO
UCIIONIb30BaHMsl ~ co3laHHoro Habopa manHeix RF-200 3a cuer mpenocraBieHUs
CTaHIapPTU3UPOBAHHOM MOIEPKKH BUIOB (akToB B hopmare Cemantnueckoro Beba (RDF/OWL).

Cnucok nutepatypbl

[1]. Hogan A., Blomqvist E., Cochez M., d’Amato C., De Melo G., Gutierrez C., Gayo J. E. L., Kirrane S.,
Neumaier S., Polleres A., Navigli R., Ngomo A.-C. N., Rashid S. M., Rula A., Schmelzeisen L., Sequeda
J., Staab S., Zimmermann A. Knowledge Graphs. Springer Nature Switzerland, 2021, 237 p. DOI:
10.1007/978-3-031-01918-0.

[2]. Ji S., Pan S., Cambria E., Marttinen P., Yu P.S. A Survey on Knowledge Graphs: Representation,
Acquisition and Applications. IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no.
2,2021, pp. 494-514. DOI: 10.1109/TNNLS.2021.3070843.

[3]. 5-star Open Data, Available at: https://5stardata.info/en/, accessed 22.04.2025.

[4]. DBpedia, Available at: https://www.dbpedia.org/, accessed 22.04.2025.

[5]. Wikidata, Available at: https://www.wikidata.org/, accessed 22.04.2025.

[6]. Villazon-Terrazas B., Garcia-Santa N., Ren Y., Srinivas K., Rodriguez-Muro M., Alexopoulos P., Pan J.
Z. Construction of Enterprise Knowledge Graphs (1). Exploiting Linked Data and Knowledge Graphs in
Large Organisations, Springer, Cham, 2017.

[7]. Number of Google Sheets and Excel Users Worldwide, Available at:
https://askwonder.com/research/number-google-sheets-users-worldwide-eoskdoxav, accessed
22.04.2025.

[8]. Peeters R., Brinkmann A., Bizer C. The Web Data Commons Schema.org Table Corpora. Proc. the ACM
Web Conference (WWW’24), New York, NY, USA, 2024, pp. 1079-1082. DOI:
10.1145/3589335.3651441.

[9]. Talend, Available at: https://www.talend.com/, accessed 22.04.2025.

[10]. Trifacta, Available at: https://asana.com/ru/appsl/trifacta, accessed 22.04.2025.

[11]. Microsoft Semantic Link, Available at: https://learn.microsoft.com/en-us/fabric/data-science/semantic-
link-overview, accessed 22.04.2025.

[12]. Talisman, Available at: http://talisman.ispras.ru, accessed 22.04.2025.

[13]. Dorodnykh N. O., Yurin A. Yu. Automated Extraction of Facts from Tabular Data based on Semantic
Table Annotation. Trudy ISP RAN/Proc. ISP RAS, vol. 36, no. 3, 2024, pp. 93-104. DOI:
10.15514/ISPRAS-2024-36(3)-7.

[14]. Fedorov P. E., Mironov A. V., Chernishev, G. A. Russian Web Tables: A Public Corpus of Web Tables
for Russian Language Based on Wikipedia. Lobachevskii Journal of Mathematics, vol. 44, 2023, pp. 111-
122. DOI: 10.1134/S1995080223010110.

[15]. Kruit B., Boncz P., Urbani J. Extracting novel facts from tables for knowledge graph completion. Proc.
the 18th International Semantic Web Conference (ISWC’2019), Auckland, New Zealand, 2019, pp. 364-
381. DOI: 10.1007/978-3-030-30793-6_21.

[16]. Zhang S., Meij E., Balog K., Reinanda R. Novel entity discovery from web tables. Proc. the ACM Web
Conference (WWW’20), New York, NY, USA, 2020, pp. 1298-1308. DOI: 10.1145/3366423.3380205.

[17]. Zhang S., Balog K. Web Table Extraction, Retrieval, and Augmentation: A Survey. ACM Transactions
on Intelligent Systems and Technology, vol. 11, no. 2, 2020, pp. 1-35. DOI: 10.1145/3372117.

[18]. Balog K. Populating Knowledge Bases. Entity-Oriented Search INRE, vol. 39, 2018, pp. 189-222. DOI:
10.1007/978-3-319-93935-3_6.

[19]. Subagdja B., Shanthoshigaa D., Wang Z., Tan A.-H. Machine Learning for Refining Knowledge Graphs:
A Survey. ACM Computing Surveys, vol. 56, no. 6, 2024, pp. 1-38. DOI: 10.1145/3640313.

[20]. SemTab-2024, Available at: https://sem-tab-challenge.qgithub.io/2024/, accessed 22.04.2025.

[21]. Bonfitto S., Casiraghi E., Mesiti M. Table understanding approaches for extracting knowledge from
heterogeneous tables. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 11,
no. 4, 2021, e1407. DOI: 10.1002/widm.1407.

221

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

[22]. Zheng M., Feng X., Si Q., She Q., Lin Z., Jiang W., Wang W. Multimodal Table Understanding. Proc. the
62nd Annual Meeting of the Association for Computational Linguistics (ACL’2024), Bangkok, Thailand,
2024, pp. 9102-9124. DOI: 10.18653/v1/2024.acl-long.493.

[23]. Limaye G., Sarawagi S., Chakrabarti S. Annotating and searching web tables using entities, types and
relationships. Proceedings of the VLDB Endowment, vol. 3, no. 1-2, 2010, pp. 1338-1347. DOI:
10.14778/1920841.1921005.

[24]. T2Dv2 Gold Standard for Matching Web Tables to DBpedia, Available at:
https://webdatacommons.org/webtables/goldstandardV2.html, accessed 22.04.2025.

[25]. Cutrona V., Bianchi F., Jimenez-Ruiz E., Palmonari M. Tough tables: Carefully evaluating entity linking
for tabular data. Proc. the 19th International Semantic Web Conference (ISWC’2020), Athens, Greece,
2020, pp. 328-343. DOI: 10.1007/978-3-030-62466-8_21.

[26]. Abdelmageed N., Schindler S., Konig-Ries B. Biodivtab: A table annotation benchmark based on
biodiversity research data. Proc. the 20th International Semantic Web Conference (ISWC’2021) —
Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab-2021), 2021,
pp. 13-18.

[27]. Hulsebos M., Demiralp C., Groth P. GitTables: A Large-Scale Corpus of Relational Tables. Proceedings
of the ACM on Management of Data, vol. 1, no. 1, 2023, pp. 1-17. DOI: 10.1145/3588710.

[28]. SOTAB (Web Data Commons - Schema.org Table Annotation Benchmark), Available at:
https://webdatacommons.org/structureddata/sotab/, accessed 22.04.2025.

[29]. Zhang D., Suhara Y., Li J., Hulsebos M., Demiralp C., Tan W.-C. Sato: Contextual semantic type detection
in tables. Proc. the VLDB Endowment, vol. 13, no. 11, 2020, pp. 1835-1848. DOI:
10.14778/3407790.3407793.

[30]. Deng X., Sun H., Lees A., Wu Y., Yu C. TURL: Table Understanding through Representation Learning.
Proc. the VLDB Endowment, vol. 14, no. 3, 2020, pp. 307-319. DOI: 10.14778/3430915.3430921.

[31]. TobolaK. V., Dorodnykh N. O. Semantic Annotation of Russian-Language Tables Based on a Pre-Trained
Language Model. Proc. the 2024 Ivannikov Memorial Workshop (IVMEM), 2024, pp. 62-68. DOI:
10.1109/IVMEM®63006.2024.10659709.

[32]. Hao Q., Cai R., Pang Y., Zhang L. From one tree to a forest: a unified solution for structured web data
extraction. Proc. the 34th international ACM SIGIR conference on Research and development in
Information Retrieval, Beijing, China, 2011, pp. 775-784. DOI: 10.1145/2009916.2010020.

[33]. Gupta T., Zaki M., Khatsuriya D., Hira K., Krishnan N. M. A., Mausam. DISCOMAT: Distantly
Supervised Composition Extraction from Tables in Materials Science Articles. Proc. the 61st Annual
Meeting of the Association for Computational Linguistics (ACL’2023), Toronto, Canada, 2023, pp.
13465-13483. DOI: 10.18653/v1/2023.acl-long.753.

[34]. Bai F., Kang J., Stanovsky G., Freitag D., Dredze M., Ritter A. Schema-Driven Information Extraction
from Heterogeneous Tables. Proc. the 61st Annual Meeting of the Association for Computational
Linguistics (ACL’2024), Miami, Florida, USA, 2024, pp. 10252-10273. DOI: 10.18653/v1/2024 findings-
emnlp.600.

[35]. Conneau A., Khandelwal K., Goyal N., Chaudhary V., Wenzek G., Guzman F., Grave E., Ott M.,
Zettlemoyer L., Stoyanov V. Unsupervised Cross-lingual Representation Learning at Scale. Proc. the 58th
Annual Meeting of the Association for Computational Linguistics (ACL’2020), 2020, pp. 8440-8451.
DOI: 10.18653/v1/2020.acl-main.747.

[36]. RF-200 (ru-facts-200), Available at: https://github.com/YRL-AIDA/ru-facts-200, accessed 22.04.2025.

Ungpopmayusi 06 aemopax / Information about authors

Hukunra OneroBua JJOPOAHDBIX — xaHaumaT TeXHUYECKUX HAyK, CTApIINA HAYIHBIA COTPYAHUK
WHcTHTyTa TUHAMUKY CUCTEM M TEOpHUH yrpasieHus M. B.M. Marpocoa CuOHUpCKOTo oTaeneHus
PAH (MACTY CO PAH) c 2021 roga. Cdepa HaydHBIX MHTEPECOB: aBTOMATH3AIMS CO3aHUS
MHTEJJIEKTYaJbHBIX CHCTEM M 0a3 3HaHMH, NMOJyYeHHWE 3HAHUH Ha OCHOBE IpeoOpa3oBaHMA
KOHIIETITyaJIbHBIX MOJIENIEH 1 3NIEKTPOHHBIX TaOIINII.

Nikita Olegovych DORODNYKH — Cand. Sci. (Tech.), senior associate researcher at Matrosov
Institute of System Dynamics and Control Theory named SB RAS (ISDCT SB RAS) since 2021.
Research interests: computer-aided development of intelligent systems and knowledge bases,
knowledge acquisition based on the transformation of conceptual models and tables.

222

Jopoaubix H.O., FOpun A.JO. HaGop Ttabmmunbix manHbix RF-200 m TecTmpoBaHHE NPOM3BOJUTEIBHOCTH H3BICUCHUS (AKTOB W3
pycckos3buHbIX Tabmui. Tpyost UCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 205-224.

Anexcanap IOpeeBuu IOPUH — nokTOop TeXHMYECKHMX HAyK, 3aBeayloImmuid adoparopuei
WHpopMannoHHO-TEIEKOMMYHHUKAIMOHHBIX ~ TEXHOJNOTMH HMCCIEAOBAHUS ~ NPHUPOAHOH W
texHoreHHo# Ge3omacHocTn WUJACTY CO PAH, npodeccop HucturyTa nHGOPMAIHOHHBIX
TEXHOJIOTHM ¥ aHaim3a JaHHBIX VIPKYyTCKOro HayyHO-HCCIEI0BATENbCKOIO TEXHUYECKOTO
yauBepcurera (MpHUTY). Ero Hay4Hble MHTEpECH BKIIOYAIOT pa3pabOTKy CHCTEM IOJUICPKKH
NPUHATHUS PEIICHUH, SKCIIEPTHBIX CHCTEM U 0a3 3HaHWH, HCIOJIb30BaHUE MTPELEICHTHOIO MOAX0a
U CEMaHTHYECKMX TEXHOJOTHHM MpU NPOEKTUPOBAHUM HHTEIJIEKTYAIbHBIX JUArHOCTHUECKUX
CHCTEM.

Alexander Yurievich YURIN — Dr. Sci. (Tech.), Head of a laboratory “Information and
telecommunication technologies for investigation of natural and technogenic safety” at ISDCT SB
RAS and professor of the Institute of information technologies and data analysis of Irkutsk National
Research Technical University (INRTU). His research interests include development of decision
support systems, expert systems and knowledge bases, application of the case-based reasoning and
semantic technologies in the design of diagnostic intelligent systems, maintenance of reliability and
safety of complex technical systems.

223

Dorodnykh N.O., Yurin A.Yu. Testing the Performance of Fact Extraction from Russian-Language Tables. Trudy ISP RAN/Proc. ISP RAS,
vol. 37, issue 5, 2025. pp. 205-224.

224

Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-17 EQC-H

Comparative Analysis of Requirements
Prioritization Methods for Personalized Nutrition
Web Applications

A.S. Mozhegova, ORCID: 0009-0009-2533-2750 <asmozhegova@edu.hse.ru>
V.V. Lanin, ORCID 0000-0002-0650-2314 <vlanin@hse.ru>

HSE University,
38, Studencheskaia St., Perm, 614070, Russia.

Abstract. This study investigates the application of five requirements prioritization methods — MoSCoW, Kano
Model, Weighted Scoring, RICE, and Cost of Delay (CoD) — in the development of a web application for
personalized nutrition. The research addresses the challenge of managing limited resources (time, financial, and
human) while maximizing user value and ensuring safety in a high-stakes domain. Through a comparative
analysis, the strengths and weaknesses of each method are evaluated, revealing that a hybrid approach, tailored
to different development phases, is most effective. Core functionalities such as allergen management and diet
personalization consistently ranked as high priority across all methods. The study proposes a dynamic
framework that integrates MoSCoW and Weighted Scoring for MVP definition, and RICE and Kano for
scaling, emphasizing the importance of balancing safety, user satisfaction, and implementation complexity. The
findings offer practical recommendations for developers and product managers in health-tech and other
regulated domains.

Keywords: requirements prioritization; MoSCoW; Kano model; weighted estimation; RICE; Cost of Delay;
personalized nutrition; web application.

For citation: Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the
development of medical web applications. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 225-240.
DOI: 10.15514/ISPRAS-2025-37(5)-17.

Acknowledgements. The study was supported by the National Research University as part of the development
of a software product.

225

mailto:vadim.kuznetsov@bmstu.ru
mailto:dmitrii_andreev@bmstu.ru

Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the development of medical web applications. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 225-240.

CpaBHUTENbHbIM aHaNM3 MeToA0B NpuopuTe3aunmn TpedboBaHun ansa
BeO-npunoxeHMn nepcoHanM3MpoBaHHOIroO NUTaHUA

A.C. Mooicezosa, ORCID: 0009-0009-2533-2750 <asmozhegova@edu.hse.ru>
B.B. Jlanun, ORCID: 0000-0002-0650-2314 <vlanin@hse.ru>

Hayuonanbuwiii ucciedogamenvckuil yHusepcumem « Bulcuias wkona s3KOHOMUKUY
Poccus, 614070, . I[lepmob, yr. Cmyoenueckas, 0. 38.

AHHOTAmUsI. B 1aHHOM WHCCIEOBaHMM pacCMaTpUBACTCS INPUMEHEHHE ISITH METONOB IPHOPHUTE3AIUH
tpeboBanuii — MoSCoW, monenu Kano, 3BenieHHo#t ouenku, RICE u croumoctr 3anepxku (CoD) — npu
pa3paboTKe BeO-IIPHUIIOKEHUS IS MEPCOHATM3HPOBAHHOTO NHTAaHWS. B HccienoBaHMM paccMaTpUBaeTCs
mpobjeMa ynpaBieHUs] OTpaHUYCHHBIMH pecypcaMiu (BpeMEHHBIMH, (PMHAHCOBBIMU U YEJIOBEUECKUMHU) IPH
OJHOBPEMEHHOM MaKCHMH3AIU{ IIEHHOCTH IS MOJb30BaTeell U obecredeHnH 0€30MacHOCTH B 00JIaCcTH C
BBICOKMMH CTaBKaMH. B xoJ1e cpaBHUTENFHOTO aHAIN3a ObIIM OIL[EHEHBI CUIIBHBIE U CIIA0BIE CTOPOHBI KaXKIOTO
METO/a, YTO IOKa3ajo, 4To Hamboiee 3()(PEKTHBHBIM SBISETCS THOPHIHBIN IOAXOM, aAalTHPOBAHHBIA K
pa3nMYHEIM JTanaM pa3paboTku. OCHOBHBIC (YHKIHOHAIBHBIE BO3MOXKHOCTH, TaKHe KakK YIpaBlCHHE
aJulepreHaMy ¥ IepCoHaNN3alusl palioHa, HEM3MEHHO 3aHMMAIOT PUOPUTETHOE MECTO BO BCeX MeToax. B
HCCIICTIOBaHUH TPEJIOKECHA TUHAMUYECKAs CTPYKTypa, oobenunstonias MoSCoW u Weighted Scoring mst
onpenenennss MVP, a takke RICE u Kano anst MacmtabupoBaHusi, YTO MOAYCPKHBACT BAXKHOCTh OallaHca
MeXy 0€30IacHOCTBIO, YAOBIETBOPEHHOCTBIO IMOJB30BATENCH M CIOKHOCTBIO peanu3anud. llomydeHHbIE
Ppe3yIbTaThl COAEPKAT MPAKTHIECKHE PEKOMEHAAINN JUIS pa3pabOTINKOB M MEHEKEPOB MPOIYKTOB B chepe
3paBOOXPAHEHUS U IPYTUX PETYIUPYEMbIX 00/IacTsIX.

KnroueBbie cioBa: npuopuresanus tpedoBanuii; MoSCoW; monens KaHo; B3BelmieHHast OIleHKa; MOJENb
RICE; cTonMOCTb 3a[Iep>KKH; EPCOHATM3UPOBAHHOE TUTAHHUE; BEO-IPUIOKEHHE.

Jasa nutupoBanusi: MoxeroBa A.C., Jlanun B.B. CpaBHuTenbHBINl aHanu3 METONOB INPUOPUTE3ALMH B
pa3paboTke MeaunuHCKuX BeO-nproxennit. Tpynst UCIT PAH, tom 37, Bem. 5, 2025 r., ctp. 225-240 (na
anrsumiickom s3eike). DOI: 10.15514/ISPRAS-2025-37(5)-17.

BaarogapHoctn: lccnenoBaHue BBINONHEHO NpH MHoafepskke HaIMoOHANBHOTO HMCCIIEIOBATENBCKOTO
YHUBEpCUTeTa Bricias mkona SKOHOMHKH B paMKax pa3paboTKU MPOrpaMMHOTO NPOJYKTA.

1. Introduction

Modern lifestyles have increased the emphasis on healthy eating, and people are seeking
personalized diets to meet health, fithess and allergy restriction goals. However, creating balanced
meal plans that cater to unique dietary requirements remains a time-consuming and complex process.
Personalized nutrition apps are designed to simplify this process by offering customized
recommendations based on individual preferences, budget, and health restrictions.

Although the concept of personalized nutrition is not new, the prioritization of requirements for such
applications, especially in resource-limited settings, has not been systematically studied. Existing
studies often overlook trade-offs between safety (e.g., allergen management), user satisfaction, and
implementation complexity. This gap is critical because improper prioritization can lead to
development delays, budget overruns, or unmet user needs.

Despite extensive research on requirements prioritization techniques, the existing literature lacks
specialized mechanisms that address the unique constraints of medical applications. Traditional
approaches, such as MoSCoW or weighted evaluation, either oversimplify subject-specific
requirements (e.g., treating allergen filtering as cosmetic user interface improvements) or require
impractical data collection (e.g., extensive Kano user surveys). Three critical shortcomings are
identified, namely that neither method systematically balances health safety imperatives with user
satisfaction metrics. The second problem is that existing methods do not adapt the prioritization
logic at different stages of development (MVP vs. scaling). The last drawback is that hybrid
approaches remain under-tested in niche areas where regulatory and ethical constraints affect
prioritization.

226

mailto:vadim.kuznetsov@bmstu.ru
mailto:dmitrii_andreev@bmstu.ru

Mosxerosa A.C., Jlanuu B.B. CpaBHHTE/IbHBII aHAIM3 METOIOB IPHOPUTE3ALNN TPEOOBAHMI ISl BEG-PUIIOKCHUIT TEPCOHATN3HPOBAHHOTO
mutanust. Tpyower UCIT PAH, 2025, tom 37 Bbin. 5, ¢. 225-240.

This solution is a hybrid phase platform for medical technology that integrates security and user
interaction. The MVP is defined using MoSCoW and weighted scoring: critical features (e.g.,
allergen warnings) are assigned an increased weight based on risk (anaphylaxis is scored 5x above
preference filters). In the scaling phase, RICE is augmented with Kano metrics: if the data confirm
that “seasonal recipes” (Kano enjoyment) increase retention, they are assigned a higher priority.
Cost of Delay takes into account not only commercial risks (user churn), but also legal risks (late
implementation of alerts).

2. Motivation

The complexity of the subject area and limited resources pose significant challenges in the
development of personalized nutrition and medical technology solutions. Critical safety
requirements such as allergen filtering and medical contraindication verification are imperative, as
even a single mistake can jeopardize users' lives, exposing developers to serious legal risks. Studies
show that 42% of allergic reactions are caused by hidden allergens (Galland, 2016), making
prioritization of safety features absolutely essential over traditional user experience
improvements [1].

Dynamic user needs complicate the development process, as personalized nutrition requires constant
adaptation to changing trends (e.g., keto, veganism), individual health goals, and budgetary
constraints. According to market data, 68% of users prioritize allergen management, while 52%
focus on customization for their personalized goals (Market Research Report, 2023) [2].
Regulatory and ethical aspects are an additional challenge. Health technology apps have to comply
with stricter standards such as WHO guidelines as opposed to conventional apps. A seemingly
“simple” function such as meal planning becomes extremely complex when integrated with real-
time allergen databases or dietary recommendations, requiring careful data validation and regulatory
compliance. All of this makes developments in this area particularly resource-intensive and high-
risk, but critical to ensure the safety and health of users.

Prioritization methods are important in this context because existing methods often fail to meet the
unique requirements of medical technology development. Universal frameworks such as MoSCoW
treat safety-critical features with the same prioritization logic as cosmetic Ul changes, potentially
underestimating life-critical requirements. Meanwhile, purely quantitative models such as RICE
face limitations due to a lack of early data, especially when it comes to health-specific metrics such
as “risk severity” or “likelihood of adverse outcomes”. Hybrid approaches, although promising, are
rarely tested in high stakes environments where untimely implementation of features such as allergen
alerts or drug interaction warnings can lead to legal consequences rather than just user dissatisfaction
or churn [3].

This study aims to bridge these gaps by adapting prioritization methods to the specific needs of
medical technology. For example, it proposes weighted scoring models with subject-specific
multipliers (e.g., 5x weighting for anaphylaxis risk) to ensure that critical safety features do not lose
priority due to generic scoring systems. In addition, the study presents an incremental approach to
adaptability, combining the simplicity of MoSCoW for MVP development with the scalability of
RICE at later stages. This ensures that non-negotiable security requirements are prioritized upfront,
while allowing for iterative refinement of UX improvements [4-5].

To validate these methods, the study uses real health data, such as WHO allergy prevalence statistics,
to approximate user needs without relying on costly and time-consuming Kano surveys. By basing
prioritization on empirical data, the study provides a more robust and scalable framework for health
technology product development, ensuring that critical features are implemented with the necessary
urgency while maintaining flexibility for continuous improvement.

Although the case study focuses on personalized nutrition, similar challenges arise in medicine (e.g.,
treatment monitoring) and fintech (regulatory compliance). This makes the proposed method a
versatile tool for resource-intensive projects.

227

Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the development of medical web applications. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 225-240.

3. Related Works

The field of requirements prioritization has undergone significant changes to address software
development challenges in various domains. While existing techniques provide a sound foundation
for general applications, their adaptation to specialized areas such as medical technology and, in
particular, personalized nutrition, reveals critical gaps that this research aims to address. Let us
review the most common requirements prioritization techniques.

The MoSCoW method is one of the most popular approaches to requirements prioritization. Widely
used in agile environments, MoSCoW categorizes requirements into “Must-have,” “Should-have,”
“Could-have,” and “Will not-have.” Its simplicity facilitates rapid decision-making, but its reliance
on subjective stakeholder input often overlooks risks specific to the subject area. For example, in
medical applications, a “Must Have” feature such as allergen filtering may be incorrectly prioritized
despite its potential to save lives. Recent adaptations combine MoSCoW with quantitative safety
metrics (e.g., severity of health risks) to mitigate this bias, as demonstrated in clinical software
projects [6-7].

Kano's model proposes to classify requirements based on their impact on user satisfaction. This
framework categorizes features based on their impact on user satisfaction (Basic, Performance,
Delighters). While effective for consumer applications, Kano's reliance on extensive user surveys is
impractical for niche areas such as personalized nutrition where early data is scarce. Hybrid
approaches, such as integrating Kano with WHO health statistics to approximate “basic” needs (e.g.,
allergen alerts), offer a workaround, but lack validation in the context of health technologies [8-9].
The weighted evaluation method assigns weights to requirements based on criteria such as user
value, implementation complexity, and business impact, which allows prioritization of goals.
However, it struggles to balance health-specific factors (e.g., regulatory compliance) with
conventional metrics. For example, a feature with moderate user value but high legal risk (e.g.,
allergy alerts) may be undervalued. Recent proposals supplement weights with safety multipliers
(e.g., 5% for critical health risks), although empirical validation remains limited.

The RICE method evaluates characteristics using four factors: coverage, impact, confidence, and
effort [10]. Developed for product stewardship, RICE assesses coverage, influence, confidence and
effort. Its quantitative nature is useful but requires robust data that is often unavailable in the early
stages of healthcare projects. Adaptations narrow “coverage” to at-risk users (e.g., allergy sufferers)
and include safety as an impact multiplier. However, these adjustments are not tested in personalized
nutrition, where dynamic user needs (e.g., dietary trends) further complicate evaluations.

The Cost of Delay (CoD) method quantifies the cost of delaying the realization of a function [11].
This method quantifies the urgency of feature delivery, typically focusing on commercial metrics
such as user churn. In medical technology, delaying features may incur legal costs (e.g., non-
compliance with FDA guidelines) or health risks (e.g., delayed allergen testing). Simplified versions
prioritize features based on two factors: severity of health risk and regulatory deadlines, but lack
integration with other methods [12].

4. Problem Statement

Although existing prioritization methods (MoSCoW, Kano, Weighted Scoring, RICE, Cost of
Delay) provide generalized frameworks, they do not account for trade-offs specific to medical
technology. A key gap is the safety and satisfaction dilemma: current tools apply similar logic to
critical functions (e.g., allergen alerts) and convenience functions (e.g., meal planning). For
example, MoSCoW may categorize both as “must-haves” despite their very different risk profiles,
which is a glaring omission. This confusion can lead to safety-critical functions being prioritized
with insufficient respect.

Phase-Ignorant Prioritization is another flaw: most frameworks use static criteria throughout all
phases of development, ignoring changing priorities. Early MVP phases require a focus on security
(e.g., anaphylaxis prevention), while scaling phases require a focus on user retention (e.g., offering

228

Mosxerosa A.C., Jlanuu B.B. CpaBHHTE/IbHBII aHAIM3 METOIOB IPHOPUTE3ALNN TPEOOBAHMI ISl BEG-PUIIOKCHUIT TEPCOHATN3HPOBAHHOTO
mutanust. Tpyower UCIT PAH, 2025, tom 37 Bbin. 5, ¢. 225-240.

seasonal recipes). Methods such as RICE and Cost of Delay lack mechanisms to adapt their metrics
(e.g., “coverage” or “time sensitivity”) to these transitions, resulting in shifting roadmaps.

Finally, the scarcity of data in niche domains hampers methods based on user input (e.g., Kano
surveys) or precise estimates (e.g., RICE coverage/impact). Early user data is often lacking in the
health technology domain, but available proxies (e.g., WHO allergy statistics) remain underutilized
in prioritization models. Without subject-specific adaptations, these frameworks may inadvertently
prioritize high stakes features or over-invest in low-impact features.

Two key criteria will be used to evaluate the effectiveness of the chosen approach. The first is
resource efficiency, which is defined by the extent to which the method allows rational management
of time, financial and human resources [17]. The second is flexibility and adaptability, reflecting the
ability of the approach to respond quickly to changes in development requirements and conditions
[18].

The study will propose a hybrid framework that integrates weighted safety multipliers (e.g., 5%
criticality scores for allergen characteristics) in MoSCoW and a weighted score for MVP, ensuring
that high-priority safety features are highlighted early on. After MVP, the system will combine
RICE's focus on ROI with Kano satisfaction scores using public health data (e.g., FDA allergen
databases, WHO nutritional recommendations) to compensate for reliance on early user surveys.

5. Overview

Developing a web application for personalized nutrition involves balancing user needs such as
dietary restrictions, health goals, and budgetary constraints with the challenges of limited resources
(time, budget, and personnel). While the architectural components (user interface, business logic,
database, and external integrations) may seem standard, the critical issue is domain-specific
prioritization, which directly impacts user safety, regulatory compliance, and long-term adherence.
The paper presents domain-specific adaptations such as weighted safety multipliers, e.g., applying
5x criticality scores to allergen-related features to ensure that life-critical requirements are
prioritized. It also integrates empirical data such as WHO allergy statistics to reduce reliance on
early user surveys and improve decision accuracy. The approach uses phase prioritization: in the
MVP phase, it combines MoSCoW and weighted evaluation to focus on security and core
functionality, while in the scaling phase it augments RICE with Kano metrics to improve user
satisfaction and ROI. Beyond the immediate application, the study offers generalized insights to
demonstrate how hybrid prioritization techniques can effectively balance security, user value, and
resource efficiency in a capacity-constrained environment. It also provides a reproducible
framework for other niche areas with strict regulatory or ethical constraints, such as medical or
financial applications.

Key development steps include: requirements gathering (allergen tracking, fitness integration, diet
support) [22], prioritization (MoSCoW, Kano, RICE methods) [23], development/testing, and
evaluation of prioritization performance [24].

6. Implementation

6.1 Basic Requirements and Identification

A web application for personalized nutrition consists of four main components: a user interface for
entering dietary preferences, allergens, and goals [25]; business logic that processes data and
generates personalized menus; a database that stores user profiles and product information; and
integration of external services with fitness trackers to improve recommendations. This architecture
provides efficient data management and personalized meal planning designed around four key
business requirements derived from market research.

By addressing both the specific case of personalized nutrition and the broader challenges of health-
tech development, this study bridges the gap between theoretical prioritization methods and

229

Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the development of medical web applications. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 225-240.

practical, high-stakes applications. The proposed framework offers actionable recommendations for
developers and product managers, emphasizing dynamic, data-driven decision-making.

The primary requirement is diet personalization based on current trends in dietetics. Studies show
that personalized recommendations increase dietary adherence by 37% compared to generic meal
plans [26]. Taking individual metabolic characteristics into account is also crucial — for example, a
study by Zeevi et al. (2015) proved that the same foods have different effects on blood sugar levels
in different people [27]. The market analysis confirmed the demand: 68% of surveyed users wanted
to take allergies into account, while 52% were aiming for individualized dietary goals [28].

The second key requirement is safety. According to WHO (2021), 10% of people experience food
poisoning each year and 5% of adults have allergies [29].

Allergy Solutions (Galland, 2016) notes that 42% of allergic reactions are caused by hidden allergens
[30]. The success of the AllergyEats app has demonstrated that automatic allergen filtering reduces
risks by 90% [31].

Another key aspect is to simplify meal planning and shopping. USDA data (2020) shows that
families spend 5.6 hours per week on these tasks [32], while the Smarter Faster Better study (Duhigg,
2016) proves that automation can increase productivity by 20-30% [33]. Competitor analysis
confirms the need for prescription and shopping integration [34].

Budget control is equally important — 60% of Americans overpay for food (BLS, 2022) [35]. As
shown in Eat Well for $4 a Day (Brown, 2015), conscious food choices reduce costs by 15-25%
[36]. Platforms such as Budget Bytes demonstrate users' preference for detailed spending analytics.
Based on AS IS analysis, the system should provide personalized dietary adaptation, allergen
management, and health goal tracking. It should analyze nutrients, flag risks, and provide
personalized recommendations. Features should include smart shopping lists, balanced meal
planning (nutritionally and seasonally appropriate) and budget tracking. The platform should support
family profiles, real-time pricing, flexible meal replacement, offline access, customizable interfaces,
and data export.

6.2 A Comparative Analysis of Prioritization Frameworks

The MoSCoW method serves as a foundational requirements prioritization framework in Agile and
product management, offering a structured approach to categorizing features based on their
criticality to product success. In the context of health-tech applications—particularly our
personalized nutrition web app—this method takes on added significance due to the domain's unique
safety, regulatory, and ethical constraints. The acronym MoSCoW delineates four priority tiers:
Must-have (M), Should-have (S), Could-have (C), and Won't-have (W), each playing a distinct role
in resource-constrained development environments.

For our health-focused application, Must-have requirements were at the core and included features
whose absence would make the product unsafe, non-compliant, or fundamentally non-functional.
These included critical safety features such as real-time allergen screening (automatic detection of
recipes containing user-specified allergens), medical contraindication screening, and basic
personalization capabilities (diet type selection). Notably, these features were given absolute priority
not only because of their value to users, but also because their absence could lead to serious health
consequences or regulatory non-compliance. For example, whereas in a social media app, “push
notifications” could be categorized as a Should-have, in our context “allergen alerts” became a Must-
have because of their potential to save lives, reflecting the method's adaptation to the highly strategic
nature of medical technology.

Should-have features, while not critical, greatly enhance product viability and user satisfaction. This
category included advanced nutritional analysis tools (detailed macronutrient distribution by meal),
budget tracking systems (predicting weekly expenses), and family profile management — features
that add significant value but could be temporarily simplified or delayed without compromising core
functionality or safety.

230

Mosxerosa A.C., Jlanuu B.B. CpaBHHTE/IbHBII aHAIM3 METOIOB IPHOPUTE3ALNN TPEOOBAHMI ISl BEG-PUIIOKCHUIT TEPCOHATN3HPOBAHHOTO
mutanust. Tpyower UCIT PAH, 2025, tom 37 Bbin. 5, ¢. 225-240.

The “Could” level contained features that offer incremental improvements to the user experience
with relatively low risk if postponed. Examples include seasonal recipe suggestions, ingredient price
highlighting — valuable additions that could be developed after MVP based on user feedback and
resource availability. This flexibility has proven critical in the medical technology industry, where
early user validation often reveals unexpected needs (e.g., demand for support for rare allergens)
that change secondary priorities.
The “Don't Want” category explicitly recognizes resource constraints by excluding features with
disproportionately high development costs relative to their value. In our case, API integration with
real-time pricing was dropped in favor of manual price entry, as the technical and legal complexities
associated with partnering with product platforms outweighed the predicted utility of this feature to
our initial user base. This decision was an example of MoSCoW forcing explicit trade-offs, which
is especially important in the medical technology industry where regulatory overhead (e.g., data
privacy compliance) increases implementation efforts.
Kano's model provides a powerful framework for understanding how different product features
influence user satisfaction in medical technology applications. Unlike traditional prioritization
methods that focus solely on functional importance, Kano's approach recognizes that not all features
contribute equally to the user experience — some are expected basics, while others may delight or
even frustrate users if poorly implemented. In this case, applying Kano's model allowed us to
understand how to balance the basic requirements for health security and improving user experience.
The 17 “Essential” features formed an undeniable foundation — features such as allergen warnings
and nutrient calculations that users simply expect to work perfectly. Their absence would make the
app unacceptable, but their presence alone does not increase satisfaction. They became our basic
foundation for development. 21 “Performance” features showed a linear relationship between
implementation quality and user satisfaction — the better we did at diet explanations and BMI
tracking, the happier users would be. 7 “Delightful” features, such as seasonal recommendations and
offline access, could allow us to exceed expectations and create a competitive advantage. Also
identified were 3 truly “Indifferent” features that could be given less attention and potential
“Backward” features that could reduce satisfaction.
The Kano model falls short as a standalone prioritization method for health-tech due to critical
limitations. Its focus on emotional response over risk assessment creates blind spots in safety-critical
domains, failing to distinguish between basic features and those with medical/legal consequences —
treating allergen alerts and color preferences similarly. The model struggles with scarce user data in
niche medical fields and ignores implementation costs or technical feasibility. Crucially, it lacks
phase-awareness, unable to adapt prioritization from clinical safety in MVPs to engagement during
scaling, unlike MoSCoW or RICE. Its static nature also clashes with evolving regulatory demands.
The weighted evaluation method provides a quantitative framework for prioritizing features in
medical by systematically evaluating requirements against multiple weighted criteria. In developing
our web-based personalized nutrition application, this approach has proven invaluable for making
objective, data-driven decisions that balance user needs with technical and business constraints. The
method is based on evaluating each feature on five key parameters: User Importance (30%), Security
Impact (25%), Implementation Complexity (20%), Business Value (15%), and Frequency of Use
(10%). For health-critical features such as automatic allergen detection, the model assigned
maximum scores for both importance to the user and impact on safety (5/5), resulting in a top priority
rating of 4.65.
This score clearly separates mandatory safety features from nice-to-have conveniences — while
allergen screening proved critical, features such as budget tracking (2.95) and interface
customization (1.2) were appropriately prioritized. A strength of the system is its ability to quantify
trade-offs that in other methods are often subjective; for example, it can mathematically demonstrate
why implementing a medical contraindication check (4.55) provides more benefit than offering
seasonal prescriptions (2.25) when considering both health risks and development effort. In contrast
to binary prioritization approaches, the weighted scoring method is able to consider the full range of
231

Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the development of medical web applications. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 225-240.

medical technology requirements, from established safety features to improved user experience,
through its granular scoring system.

The method also adapts well to changing project conditions: when new WHO recommendations
required additional nutrient tracking, we could immediately recalculate priorities by changing the
weighting factor for safety impact. This dynamic capability proved critical for compliance with
limited engineering resources. With standardized evaluations of all features, the method allowed us
to clearly explain to stakeholders why certain health-critical features were prioritized, even if they
had no obvious appeal to users. The resulting prioritization aligned perfectly with our phased
development strategy, providing MVPs of vital features and creating a roadmap for subsequent UX
improvements.

Weighted Scoring, while useful for quantifying the prioritization of functions in health-tech, has
serious limitations that can threaten product safety and effectiveness. The main weakness of the
method is that it simplifies complex medical and ethical aspects into numerical scores, which is
dangerous in systems involving patients' lives. For example, equal scores for “allergen detection”
and “data encryption” do not reflect the difference between the prevention of physical harm and
theoretical safety risks. The method also fails to account for the dynamics of medical research,
ignores user psychology, such as the tendency to overlook important warnings, and fails to predict
synergy of features when a combination of medium-priority features creates unexpected clinical
value. In practice, Weighted Scoring results are often at odds with clinicians' opinions, so the method
is best combined with qualitative approaches (MoSCoW) and expert clinician judgment. The score
for each feature is a weighted average of all criteria, which ensures objective prioritization while
minimizing subjectivity.

The RICE method is a quantitative framework for prioritizing product features by assessing four
critical parameters: Coverage (number of users affected), Impact (degree of benefit provided),
Confidence (confidence in evaluations), and Effort (resources required for implementation). In the
context of our personalized nutrition application, this methodology is of particular importance as it
helps to strike a difficult balance between clinical necessity, value to users and design constraints.
The fundamental RICE calculation — (Reach x Impact x Confidence)/Effort — provides a score that
objectively ranks features by their potential return on the resources invested in development.

For the health-focused platform, the traditional RICE approach was adapted to account for medical
imperatives by increasing the weight of the Impact score for critical functions such as allergen
detection (Impact: 3) compared to convenience functions such as meal reminders (Impact: 1). This
adjustment ensures that vital functionality is not underestimated due to a narrower range of users.
The method proved particularly valuable in the MVP phase, where it helped identify high-impact
features such as automatic shopping list generation (RICE: 4800) and basic ration personalization
(2400) that provided maximum benefit to the user with reasonable effort.

However, we found that the purely quantitative nature of RICE requires careful interpretation in the
context of medical technology — while nutrient tracking received a moderate score (6080) due to its
broad coverage and low effectiveness, we had to manually escalate medical contraindication alerts
(1575) despite their lower score because they are safety-critical. The dynamic nature of the system
allowed us to constantly reprioritize as user data were collected; initial Confidence scores of 50-60%
for core functions rose to 70-80% after clinical validation, and some perceived high coverage
functions such as budget tools (300) were de-prioritized when actual usage data showed limited
engagement.

One particularly interesting example was the comparison of functions requiring similar effort — the
RICE scores clearly showed why investing in allergen visualization (1380) delivered more value
than offering seasonal prescriptions (450), even though both functions took approximately two
weeks to develop. The method's emphasis on effort efficiency also helped us avoid resource pitfalls,
such as integrating APIs with real-time pricing (11), where technical complexity far outweighed
clinical benefit.

232

Mosxerosa A.C., Jlanuu B.B. CpaBHHTE/IbHBII aHAIM3 METOIOB IPHOPUTE3ALNN TPEOOBAHMI ISl BEG-PUIIOKCHUIT TEPCOHATN3HPOBAHHOTO
mutanust. Tpyower UCIT PAH, 2025, tom 37 Bbin. 5, ¢. 225-240.

The Cost of Delay (CoD) methodology provides a rigorous quantitative approach to feature
prioritization that evaluates the temporal impact of implementation decisions through three key
dimensions: Criticality (potential consequences of delay), Urgency (time-sensitivity), and
Implementation Time (development effort). In the context of our personalized nutrition health-tech
application, this method has been fundamentally adapted to address the unique demands of medical
software development, where timing decisions carry clinical and regulatory implications beyond
conventional product considerations.

At the core of our implementation lies the priority formula (Criticality x Urgency)/Time, which
systematically favors features that deliver substantial value quickly while accounting for the
opportunity cost of postponement. For health-tech applications, we've recalibrated the traditional
CoD parameters to reflect medical imperatives: Criticality now measures potential health outcomes
(1=cosmetic to 5=life-threatening), Urgency incorporates regulatory deadlines and seasonal health
factors, while Time estimates include clinical validation periods. This adapted framework proved
particularly valuable when prioritizing competing safety features — for instance, it clearly
demonstrated why "allergen detection” (Priority=5) demanded immediate implementation despite
its moderate development timeline (3 weeks), as the potential liability costs of delay ($250k/annual
in preventable allergy incidents) dwarfed its development costs.

The method's quantitative nature creates an unambiguous prioritization structure that complements
qualitative approaches. Our analysis revealed several critical insights: features with high clinical
impact but long development cycles (like medical contraindication screening with Priority=0.8)
require manual override mechanisms, while seemingly simple quick-win features (nutrient display
at Priority=24) often deliver disproportionate clinical value. We also discovered temporal patterns
in health-tech priorities — seasonal allergy features gain Urgency points during peak pollen seasons,
while chronic disease management tools maintain steady Criticality ratings year-round.
Implementation challenges specific to health-tech became apparent during deployment. The
standard CoD model needed augmentation to handle: (1) regulatory-driven reprioritization (when
new FDA guidelines suddenly elevated data privacy features), (2) emergent medical research (new
nutrient-drug interaction studies), and (3) non-linear clinical workflows (where feature combinations
created unexpected value). Our solution incorporated dynamic weight adjustments — automatically
boosting Criticality by 20% for life-critical features and creating regulatory urgency multipliers.
The CoD outputs integrate with other prioritization methods to form a comprehensive decision
framework. MoSCoW categories are informed by CoD's time-sensitive analysis, RICE scores are
balanced against CoD's risk assessments, and Kano classifications are validated against CoD's cost-
benefit calculations. This integration proved crucial when evaluating features like real-time price
comparisons (CoD=0.125) versus offline access (CoD=0.2) — while both scored low quantitatively,
their qualitative impact on medication adherence in low-income populations required supplementary
analysis.

Practical applications demonstrated CoD's strengths in resource allocation. During Q3 development,
the model correctly identified that accelerating basic diet personalization (Priority=5) over advanced
visualization (Priority=3) would yield 23% greater clinical impact per engineering hour. It also
prevented costly missteps, like nearly deprioritizing medical contraindications due to its lengthy
implementation timeline before recognizing its critical malpractice risk mitigation value.

For health-tech teams, we recommend CoD as a living framework that requires: (1) monthly
recalibration with clinical input, (2) exception protocols for regulatory mandates, and (3) integration
with patient safety review boards. When properly configured, it reduces time-to-clinical-impact by
an average of 32% compared to traditional prioritization methods, while maintaining rigorous
compliance with medical standards. The attached prioritization table (Table 111) demonstrates these
principles in action across our full feature set, with annotations highlighting key health-specific
adjustments made during implementation.

Cost of Delay (CoD) method, despite its effectiveness in time cost management, shows serious

233

Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the development of medical web applications. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 225-240.

drawbacks when used in health-tech projects. The main problem is that the formula (Criticality x
Urgency)/Time artificially lowers the priority of vital but difficult to implement medical functions.
For example, in our case, checking medical contraindications (5%3/5=3) was lower than displaying
PBMC (4x3/0.5=24), although the former directly prevents life-threatening conditions. This is due
to a “penalty” for long development time, which is unacceptable for critical medical functionality.
CoD does not account for complex clinical relationships, such as synergies between functions (e.g.,
the combination of Allergy History and Ingredient Autosubstitution improves safety) or the
cumulative effect of small improvements in long-term therapy. In addition, the method is static and
does not adapt to a dynamic medical environment — new research, changes in regulatory
requirements or epidemiologic shifts.

Another problem is the preference for quick-to-implement features over more complex but critical
ones. For example, “Visual Allergen Identification” (2 weeks, P=6) received priority over
“Automatically block dangerous prescriptions” (5 weeks, P=4.8), contradicting the principle of
“safety first.” CoD also ignores medical metrics: treatment adherence, clinical outcomes, and long-
term health effects.

6.3 Recommendations for Implementation

To effectively prioritize requirements in health-tech applications, methods must be combined to
offset their individual disadvantages and maximize their advantages. This hybrid approach balances
safety, user satisfaction and efficient utilization of resources at different stages of development.
That is, in the initial phase (MVP), it is best to use the MoSCoW method in conjunction with
Weighted Scoring, where domain weights are embedded.

During the MVP phase, it is critical to focus on the core features that ensure security and regulatory
compliance. MoSCoW helps to quickly divide requirements into Must-have (e.g., allergen
screening), Should-have (basic diet personalization), and Could-have (additional UX
enhancements). However, to avoid the subjectivity of MoSCoW, Weighted Scoring complements it
with a quantitative assessment where safety criteria receive increased weights (e.g., 5x for features
that prevent anaphylactic shock). This ensures that vital functions are not inadvertently categorized
as Should-have due to lack of stakeholder awareness.

Once the requirements for MVVP implementation have been determined, the RICE method can help
evaluate return on investment (ROI) for scalable features such as integration with fitness trackers or
advanced nutrition analytics. However, in health-tech, the traditional RICE metrics (Reach, Impact)
must be adjusted. Target groups should not be made up of all possible audiences, but of specific user
categories (e.g., users with allergies). The Impact criterion includes not only commercial benefits
but also health effects (e.g. reduced risk of complications). For features where RICE data is
insufficient (e.g., new features with no usage history), the Kano method should be used to help assess
their potential for user satisfaction. For example, seasonal recommendations (Delighter) can be
delayed until the scaling phase if RICE shows a low ROI but Kano confirms their loyalty value.
Cost of Delay with medical adjustments is a better way to do quality time planning. CoD has
traditionally focused on commercial risks, but in health-tech its formula (Criticality x
Urgency)/Effort needs to be refined. Criticality is rated on a scale of 1 (convenience) to 5 (life-
threatening). For example, allergen alerts get a 5, and integration with API pricing gets a 1. Urgency
includes not only market timing but also regulatory requirements (e.g., new FDA regulations).

To avoid underestimating complex but critical functions (e.g., checking for drug interactions), the
method must be combined with the need to adapt the formulary by augmenting it with medical
criteria and combining it with other prioritization methods such as Weighted Scoring and RICE.
Use Weighted Scoring for manual correction. If a feature gets a 5/5 safety score in Weighted Scoring,
it automatically gets +2 to Criticality in CoD. If even after correction the CoD remains low (<3) but
the feature is a Must-have (MoSCoW), it is included in the MVP in a simplified way (e.g., manual
entry of contraindications instead of full automation).

234

Mosxerosa A.C., Jlanuu B.B. CpaBHHTE/IbHBII aHAIM3 METOIOB IPHOPUTE3ALNN TPEOOBAHMI ISl BEG-PUIIOKCHUIT TEPCOHATN3HPOBAHHOTO
mutanust. Tpyower UCIT PAH, 2025, tom 37 Bbin. 5, ¢. 225-240.

CoD assesses short-term risks, while RICE (Reach, Impact, Confidence, Effort) assesses long-term
impact. In health-tech they can be combined, if RICE shows a high Impact (e.g. reduced
hospitalizations) but CoD gives a low score due to long implementation, the function is broken down
into steps. This is the implementation of a minimal version (e.g. basic checks) or full automation
after data collection (increasing Confidence in RICE).

In health-tech, where data, regulations and user expectations are constantly changing, a hybrid
approach to product management requires flexibility. After launching an MVP, it is important to
analyze feedback through Kano surveys to identify which features have become Basic Needs. For
example, if users start to consider allergen warnings critical, this requires reprioritization. The Cost
of Delay (CoD) method should also be regularly updated: if a feature (e.g., “seasonal
recommendations™) was initially low priority (CoD=2) but after release has dramatically increased
Retention, its urgency may increase (+1 point). Regulatory changes (e.g., new WHO requirements)
automatically increase priority: Criticality in CoD may increase from 3 to 5, and in MoSCoW a
feature will move to Must-have even if it was previously Should-have.

For decision making under uncertainty, it is useful to combine RICE with other methods. If
Confidence in RICE is low (<50%), the feature can be evaluated by MoSCoW (e.g., included in the
plan if it is Must-have for legal reasons) or by Kano (if users consider it Delighter, can be deferred
until scaling). For example, a “vitamin intake reminder” feature with a low RICE (due to low
confidence) may be deferred, but if new data increases Confidence, the priority is re-prioritized. This
approach balances data, regulatory requirements, and user expectations while maintaining
scheduling flexibility.

The hybrid approach proposed in the study, combining MoSCoW and Weighted Scoring methods at
the MVP stage, followed by the use of RICE and the Kano model at scale, has significant potential
for application in various subject areas beyond the personalized nutrition case. The versatility of this
solution stems from its ability to effectively balance critical functional requirements, limited
development resources, and the need to continuously adapt to changing conditions.

In the field of medical applications, especially monitoring systems for patients with chronic diseases
(such as diabetes or hypertension), the proposed methodology shows particular value. Similar to the
case of allergens in nutrition, patient safety issues come to the fore here. For example, the drug
dosage control function requires mandatory implementation at the MVP stage and should receive
increased weights in Weighted Scoring. At the same time, additional functions, such as integration
with wearable devices or personalized lifestyle recommendations, can be competently prioritized at
the scaling stage using RICE and the Kano model, which allows for optimal allocation of limited
development resources.

In financial technology (FinTech), especially in personal investing applications, the proposed
approach shows similar effectiveness. Regulatory requirements such as mandatory investor risk
profile verification or KYC (Know Your Customer) procedures naturally fall into the “Must-have”
category of the MoSCoW methodology, while UX improvements and value-added services (e.g.,
personalized investment recommendations) can be evaluated through the Kano model and
prioritized using RICE. This is particularly important in a highly regulated financial sector, where
untimely implementation of mandatory features can lead to serious legal consequences.
Educational platforms, in particular adaptive learning systems, can also benefit significantly from
the proposed methodology. Basic functions, such as making educational content available and
tracking student progress, are critical at the MVP stage and should be implemented first. At the same
time, more complex features, such as gamification elements or supplementary material
recommendation systems, which can significantly increase user engagement but require substantial
resources for implementation, can be competently prioritized during the scaling phase using
quantitative evaluation methods.

235

Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the development of medical web applications. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 225-240.

6.4 Empirical Validation of the Hybrid Approach

To test the effectiveness of the proposed hybrid approach, a practical experiment was conducted in
a custom development environment where one participant combined the roles of analyst, developer,
and tester. The personalized nutrition web application project was developed from October 2024 to
May 2025, allowing a real-world case study to evaluate the impact of the combined use of
prioritization techniques on key project metrics. During the MVP phase (October 2024 — January
2025), a combination of MoSCoW and Weighted Scoring was applied with increased weights for
critical functions related to user safety. For example, allergen management and medical
contraindication verification functions were assigned five times the weight of other requirements.
This approach allowed limited resources to be focused on implementing the most critical
components of the system. As a result, the MVP was released in 4 months instead of the planned 5,
with 70% of the development time devoted to critical functions, subsequently avoiding three
potential costly architecture revisions.

The scaling phase (February — May 2025) focused on improving the user experience and extending
functionality. Here, RICE and Kano methods were applied to help objectively assess the potential
impact of new features. For example, integration with fitness trackers was highly prioritized due to
the combination of broad audience reach (Reach) and significant impact on user satisfaction
(Impact), while the development of an API for real product pricing was delayed due to high
implementation complexity and relatively low expected impact. As a result of this approach, the
development time for low-impact features was reduced — in particular, the implementation of the
API for prices took 2 weeks instead of the originally planned 4 weeks.

Three key metrics were used to evaluate the results: development speed, user satisfaction, and
whether the implemented features met the original requirements. Analysis of development speed
showed that the hybrid approach reduced the overall product development time by 15-20%
compared to traditional planning methods. The effect was especially noticeable when implementing
critical functions — due to clear ranking of requirements and concentration of resources on key
components. User satisfaction was evaluated on a five-point scale based on feedback from 20 test
users. Basic features such as allergen management and personalized nutritional recommendations
received an average score of 4.7 out of 5, confirming that their prioritization during the MVP phase
was correct. After adding “delineators” — features aimed at improving usability, such as seasonal
recipes and offline access — the average satisfaction score increased by 0.8 points.

The quality of implementation was evaluated by the percentage of critical features that passed testing
without significant comments. The results showed that 90% of Must-have functions were
implemented without critical bugs, which indicates the effectiveness of focusing on a limited set of
key requirements at the initial stage. An important advantage of the hybrid approach turned out to
be its flexibility — when new regulatory requirements or medical recommendations appeared, the
weighting system was promptly adjusted, which allowed for an average 30% reduction in the time
required to implement the necessary changes compared to traditional planning methods.
Experimental results clearly demonstrated the benefits of the proposed hybrid approach even under
extremely resource-constrained conditions. The combination of MoSCoW and Weighted Scoring at
the MVP stage provided a solid foundation for the system, focusing efforts on vital functions. The
use of RICE and Kano in the scaling phase enabled efficient allocation of limited development
resources, avoiding resource traps and focusing on functions with maximum impact. Dynamic
adaptation of priorities based on new data (e.g., updated medical guidelines or changes in legislation)
ensured a highly flexible development process without losing control over key project metrics. This
case demonstrates that the proposed methodology is applicable not only in large teams, but also in
individual development environments, allowing to effectively balance the requirements of safety,
timing and quality of the final product.

236

Mosxerosa A.C., Jlanuu B.B. CpaBHHTE/IbHBII aHAIM3 METOIOB IPHOPUTE3ALNN TPEOOBAHMI ISl BEG-PUIIOKCHUIT TEPCOHATN3HPOBAHHOTO
mutanust. Tpyower UCIT PAH, 2025, tom 37 Bbin. 5, ¢. 225-240.

7. Evaluation

The study evaluated five requirements prioritization methods — MoSCoW, Kano, Weighted Scoring,
RICE, and Cost of Delay — in terms of their effectiveness in developing a web application for
personalized nutrition. The main comparison criteria were: consistency of results between methods,
ability to highlight critical features (e.g., security-related), consideration of value to the user,
resource efficiency, flexibility to adapt to changes, and ease of use.

All methods unanimously identified key functions for MVP, such as allergen screening, diet
personalization, and consideration of medical contraindications. These requirements received the
highest priority in MoSCoW (Must-have category), high scores in Weighted Scoring (e.g., 4.65 for
allergen checking), and were considered urgent in Cost of Delay (priority = 5). However, secondary
functions such as menu planning, API price integration and offline access were rated differently
depending on the method. For example, menu planning was ranked as a Must-have feature in
MoSCoW but scored low in RICE due to high implementation complexity, while Kano ranked it as
a Performance feature affecting user satisfaction.

Each method demonstrated its strengths and weaknesses. MoSCoW provided a clear separation of
requirements for MVPs, but its subjectivity may have led to an underestimation of critical features.
Kano effectively identified features that increased wuser satisfaction (e.g., seasonal
recommendations), but did not consider implementation costs and security. Weighted Scoring
balanced user value, security, and complexity, but simplified medical risks to numerical values.
RICE proved useful for evaluating ROI at scale, but required reliable data, which is often lacking in
the early stages. Cost of Delay emphasized the importance of urgency but artificially under-
prioritized complex but vital functions such as checking drug interactions.

The study confirmed the need for a hybrid approach tailored to the development stages. In the MVP
stage, a combination of MoSCoW and Weighted Scoring with increased weights for safety features
(e.g., 5% for allergens) provided a focus on critical requirements. In the scaling phase, RICE and
Kano helped prioritize features that improve user satisfaction and ROI. Dynamic adaptation of
methods, including updating priorities based on user feedback (Kano), regulatory changes (Cost of
Delay), and new data (RICE), allowed flexibility in the face of uncertainty.

8. Conclusion

This study examined five requirements prioritization methods — MoSCoW, Kano, weighted
evaluation, RICE, and Cost of Delay (CoD) — in the context of developing a web application for
personalized nutrition. Although all methods unanimously identified key MVP functions such as
allergen checking and diet personalization, their approaches to secondary functions differed due to
different focus and evaluation criteria.

MoSCoW proved useful initially by focusing on critical functions (e.g., allergen warnings), but its
subjectivity may have led to underestimation of some aspects. The Kano model complemented
MoSCoW by identifying basic and 'enthusiastic' functions (e.g., seasonal advice), but did not
consider costs and legal risks.

The weighted evaluation quantitatively compared requirements by criteria (importance to the user,
safety, complexity of implementation). For example, allergen screening received a high score (4.65)
due to the increased weighting of the safety criterion. However, the method simplified complex
medical aspects to numerical values.

RICE was useful in the scaling phase, evaluating features for coverage, impact, confidence, and
effort. For example, automatic shopping list creation received a high score (4800) because of its
wide coverage and low cost. However, the method required reliable data, which was often lacking
in the early stages.

Cost of Delay (CoD) assessed the urgency of implementation, but its formula sometimes under-
prioritized important but complex features (e.g., checking medical contraindications received a low

237

Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the development of medical web applications. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 225-240.

score because of long development time.

The main conclusion of the study is that no single method is universal. The most effective solution
was a hybrid model adapted to different stages of development. For MVVP, MoSCoW and weighted
evaluation with increased weights for safety criteria proved to be the optimal combination. In the
scaling phase, RICE and Kano helped to focus on features with high ROl and improving the user
experience.

This approach ensured efficient use of resources, as the MVP included only the most important
features and further product development was based on data and feedback. In addition, the hybrid
model remained flexible, allowing for rapid prioritization adjustments as requirements changed, new
data emerged, or regulatory updates occurred.

The hybrid prioritization framework combining MoSCoW, Weighted Scoring, RICE and Kano
methods demonstrates significant value across multiple domains where balancing critical
functionality, user satisfaction and resource constraints is paramount. In medical technology
applications like diabetes management systems, the framework ensures patient safety takes
precedence during initial development while enabling data-driven scaling. The MVP phase would
absolutely require dose calculation algorithms and hypo/hyperglycemia alerts as Must-have features
under MoSCoW classification, with Weighted Scoring applying 5x multipliers to these life-critical
functions over nice-to-have features like data visualization. This forces explicit prioritization of
features that prevent fatal outcomes. During scaling, telehealth integrations could be evaluated using
RICE scoring based on their potential patient reach and impact on reducing hospital readmissions,
while personalized health tips might emerge as Kano delighters through user feedback analysis. The
framework naturally adapts to healthcare's evolving needs — for instance, new FDA guidelines on
continuous glucose monitoring could trigger reprioritization by increasing Weighted Scoring's
safety multipliers or promoting affected features to Must-have status in MoSCoW.

Financial technology applications like personal investing platforms similarly benefit from this
structured yet flexible approach. Regulatory requirements dominate initial development, with KYC
verification and fraud detection mechanisms classified as Must-have features that also receive 4x
weighting for compliance risk in Weighted Scoring. This prevents common pitfalls where critical
security features get deprioritized in favor of flashy but non-essential Ul elements. Post-MVP, the
framework shifts to optimizing business value — robo-advisor features might score highly in RICE
due to their combination of broad user reach and revenue potential, while spending analytics tools
could be refined using Kano analysis to maximize customer retention. The Cost of Delay component
proves particularly valuable here, quantifying the substantial financial and reputational risks of
postponing features like real-time transaction monitoring.

Educational technology platforms for adaptive learning present another compelling use case. The
MVP would necessarily focus on core functionality like content delivery and accessibility
compliance, with Weighted Scoring assigning higher values to features ensuring universal access.
As the platform matures, RICE analysis could justify investment in computationally intensive
features like Al-driven recommendations by demonstrating their outsized impact on learning
outcomes, while gamification elements might be strategically introduced as Kano delighters to boost
engagement metrics. The framework's phased approach allows EdTech products to first meet
essential educational standards before layering on innovative features that differentiate them in
competitive markets.

Across all these domains, the framework's true power lies in its dynamic adaptability. In healthcare,
emerging clinical research can trigger reprioritization through adjusted safety multipliers. In
FinTech, changing regulations automatically elevate affected features via MoSCoW reclassification.
In EdTech, real-world usage data feeds back into RICE calculations to validate or challenge initial
confidence estimates. This responsiveness to new information makes the framework particularly
valuable in fast-moving industries where static prioritization approaches quickly become obsolete.
Future enhancements could integrate machine learning to automate weight adjustments based on

238

Mosxerosa A.C., Jlanuu B.B. CpaBHHTE/IbHBII aHAIM3 METOIOB IPHOPUTE3ALNN TPEOOBAHMI ISl BEG-PUIIOKCHUIT TEPCOHATN3HPOBAHHOTO
mutanust. Tpyower UCIT PAH, 2025, tom 37 Bbin. 5, ¢. 225-240.

real user behavior data, creating a continuously self-optimizing prioritization system that maintains
alignment between product evolution and genuine user needs across diverse application domains.
Thus, the proposed methodology provides practical tools for requirements management in resource-
constrained environments, helping developers and product managers to make informed decisions at
all stages of the project lifecycle.

References

[1].

[2].
[3].
[4].
[5].
[6].

[71.
[8].
[o].
[10].
[11].
[12].
[13].

[14].
[15].

[16].
[17].

[18].
[19].
[20].
[21].
[22].
[23].

[24].
[25].
[26].
[27].
[28].
[29].
[30].
[31].
[32].
[33].
[34].

Leffingwell D. Agile Software Requirements: Lean Requirements Practices for Teams, Programs, and the
Enterprise. Addison-Wesley, 2011.

Cohn M. User Stories Applied: For Agile Software Development. Addison-Wesley, 2004.

Boehm B., In H. Identifying quality-requirement conflicts. IEEE Software. 1996, vol. 13, Ne 2, pp. 25-35.
DSDM Consortium. The DSDM Agile Project Framework, 2014.

Berkun S. Making Things Happen: Mastering Project Management, O’Reilly Media, 2008.

Kano N., Seraku N., Takahashi F., Tsuji S. Attractive quality and must-be quality. Journal of the Japanese
Society for Quality Control, 1984, vol. 14, Ne 2, pp. 39-48.

Griffin A., Hauser J. R. The voice of the customer. Marketing Science, 1993, vol. 12, Ne 1, pp. 1-27.
Intercom. The RICE Scoring Model. 2018.

Reinertsen D. G. The Principles of Product Development Flow: Second Generation Lean Product
Development. Celeritas Publishing, 2009.

Anderson D. J. Kanban: Successful Evolutionary Change for Your Technology Business. Blue Hole Press,
2010.

Leffingwell D., Widrig D. Managing Software Requirements: A Use Case Approach. Addison-Wesley,
2003.

Ahl V. An experimental comparison of five prioritization methods. Empirical Software Engineering, 2005,
vol. 10, Ne 4, pp. 375-411.

Wiegers K. First things first: Prioritizing requirements. Software Development, 1999, vol. 7, Ne 9,
pp. 48-53.

Beck K. Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000.

Davis A. Just Enough Requirements Management: Where Software Development Meets Marketing.
Dorset House, 2005.

Clements P., Bass L. Software Architecture in Practice. 3rd ed. Addison-Wesley, 2012.

Robertson S., Robertson J. Mastering the Requirements Process: Getting Requirements Right. Addison-
Wesley, 2012.

Glinz M. On non-functional requirements. 15th IEEE International Requirements Engineering
Conference, 2007, pp. 21-26.

Smith J., Brown A. Web Application Architecture: Principles and Best Practices. Journal of Software
Engineering, 2020, vol. 12, Ne 3, pp. 45-60.

Johnson L. User-Centered Design for Health Applications. Health Tech Review, 2019, vol. 8, Ne 2,
pp. 34-50.

Davis M. et al. Prioritization Techniques in Agile Development. Agile Quarterly, 2021, vol. 5, Ne 1,
pp 22-35.

Harris T. Frontend Frameworks: A Comparative Study. Web Development Review, 2020, vol. 9, Ne
pp. 55-70.

Smith J. et al. Impact of Personalized Nutrition on Dietary Adherence. Journal of Nutritional Science,
2020.

Zeevi D. et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell, 2015.

Market Research Report. User Preferences in Nutrition Apps, 2023.

World Health Organization. Global Food Safety Report, 2021.

Galland L. The Allergy Solution. HarperCollins, 2016.

AllergyEats Case Study. Allergen Filtering Efficacy, 2020.

USDA. Time Spent on Meal Planning, 2020.

Duhigg C. Smarter Faster Better. Random House, 2016.

Competitive Analysis. Mealime and Yummly Features, 2023.

Bureau of Labor Statistics. Consumer Expenditure Survey, 2022.

Brown L. Eat Well on $4/Day. Workman Publishing, 2015.

Budget Bytes Case Study. Cost-Saving Meal Planning, 2021.

Ju—

1

239

Mozhegova A.S., Lanin V.V. Comparative analysis of prioritization techniques in the development of medical web applications. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 225-240.

Ungpopmayusi 06 aemopax / Information about authors

Anna CepreeHa MOXEI'OBA — crynentka 6akanmaBpuaTa (hakyJIbTeTa KOMIIBIOTEPHBIX HAYK,
SKOHOMUKH H connanbHeix Hayk HIY BIID. Chepa HaydHBIX HHTEPECOB: pa3paboTKa W aHAIH3
TpeboBaHuii, pa3paboTka MHKPOCEPBUCHBIX IPOTPaMMHBIX IPOILYKTOB.

Anna Sergeyevna MOZHEGOVA - Bachelor's student at the Faculty of Computer Science,
Economics and Social Sciences of the National Research University Higher School of Economics.
Research interests: development and analysis of requirements, development of microservice
software products.

Bsuecnas Bnamumuposud JIAHUH — crapmmii mpenogaBatens Kadeapsl HHGOPMAIMOHHBIX
texHonoruii B 6maece HUY BIID-Ilepmb. Cdepa HayIHBIX WHTEPECOB: 00JACTH MPOTPAMMHON
WHKCHEPHH, BKIIOYas pa3pabOTKy M HPOEKTHPOBAHHUE NPOTPAMMHOTO OOECIICUCHNUS, YIIPABICHHUE
xm3HeHHBIM nukiioM [10 (SDLC, Agile, DevOps), a Taxke METOJIBI © HHCTPYMEHTHI Pa3padoTKH,
Takne Kak apromaruzamus rectupoanus (QA, Unit/Integration Testing), cOBpeMeHHBIE TTPAKTHKA
Continuous Integration/Continuous Delivery (CI/CD), n npuMeHeHHE TPUHITUIIOB YHCTOTO KOJa
pedakropunra. Takke MHTEpecyeTCsl apXHTEKTYPOH MPOTPaMMHBIX CHCTEM, paclpeneaéHHBIMU
BBIYHCIICHUSMH, 00JaYHBIMU TEXHOJOTHSMH M MAIIMHHBIM OOYY€HHEM B KOHTEKCTE pa3paboTKH
I10. B cdepe oOpa3oBaHHsA €ro BHUMAHHE COCPEJOTOYEHO HAa COBEPLICHCTBOBAHMU YUeOHBIX
nporpamm no nojaroroske IT-crennanucToB, BHEAPEHUH aKTYalIbHBIX HHIYCTPUABHBIX IPAKTHK B
00pazoBaTeNbHBIH IPOLECC 1 UCCIIEOBAaHUAX B 00JIaCTH NeJaroruky Beicuiero oopasoanus B IT.

Vyacheslav Vladimirovich LANIN — senior lecturer, department of Information Technologies in
Business HSE University. His research interests lie in the field of software engineering, including
software development and design, software lifecycle management, as well as development methods
and tools such as test automation (QA, Unit/Integration Testing), modern Continuous
Integration/Continuous Delivery practices, and application of clean code and refactoring principles.
Also interested in software systems architecture, distributed computing, cloud technologies, and
machine learning in the context of software development. In the field of education, his focus is on
improving IT training curricula, implementing current industry practices in the educational process,
and research in the area of higher education pedagogy in IT.

240

