HuctutyT Cuctemuoro IlporpamMmmupoBaHus
H‘ I I um. B.II. UBanHuUKOBa

Poccuiickoii AKageMHUHn HAVK

ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)

Tpyabl
Nuacruryra CuCTEMHOIO
IIporpammupoBanuss PAH

Proceedings of the
Institute for System
Programming of the RAS

Towm 30, BbIMyCK 3

Volume 30, issue 3

Mocxksa 2018

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)
Tpyabl UHCcTUTYTA cuctemHoro nporpammupoBaHust PAH

Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH — 510 u3nanue ¢ a1BoitHOM
AQHOHHMMHOMW CUCTEMOM pEelleH3UpOBaHMU,
myOMKyrolee HayqHbIe CTaTbU, OTHOCSIIHECS
KO BCEM 00J1aCTAX CHCTEMHOTO
MIPOTrPaMMHPOBAHUSI, TEXHOIOTHI
MIPOTPaMMHPOBAHUS U BEIMHCIUTEILHOM
TeXHUKH. Lenbio n3aanus sBisieTcs
(hopMHpOBaHHE HAYYHO-HH(POPMALTUOHHOM
CpPEebI B 3TUX OONIACTAX ITyTEM ITyOIUKAIIHN
BBICOKOKAYECTBEHHBIX CTAaTEH B OTKPHITOM
JIOCTYIIE.
M3nanue npeaHa3HaueHO IS HCCIIeioBaTeNeH,
CTYJICHTOB U aCIIUPAHTOB, a TAKXKE IPAKTHKOB.
OHO 0XBAaTHIBACT IIUPOKUIT CIIEKTP TEM,
BKJTIOYAsi, B YACTHOCTH, CIETYIOIIHE:
® OIlepalOHHBIC CHCTEMBI;
e KOMIMIATOPHBIC TEXHOJOTHUH;
e (0a3bl JaHHBIX U HHPOPMAIIHOHHBIC
CHCTEMBI;
e mapajenbHBIC U PacTIpe/eTIeHHbIe
CHCTEMBI;
e aBTOMaTH3MPOBaHHas pa3zpaboTka
IpOTpamMm;
e BepuduKanus, BaTUIANMI
TECTHPOBAHNE;
CTaTHYECKUHA ¥ THHAMAYECKUN aHaIIN3;
3auTa 1 obecredeHre 6e30macHOCTH
T10;
KOMIIBIOTEPHBIE aJITOPUTMBI;
I/ICKyCCTBGHHbIl\/’I HWHTCJIJICKT.
KypHan nzgaercs no 0JHOMY TOMY B TOJ,
IIECTH BBIITYCKOB B KaXJOM TOME.
Tonnep>xuBaeTcst OTKPHITHIN JOCTYM K
COZIEPKAHMIO M3/IaHUs, 0OecTIeunBast
JIOCTYITHOCTh PE3yJIbTAaTOB UCCIIEAOBAHUHN IS
OOIIECTBEHHOCTH U MOJICPIKUBAsT TI100aIbHBII
00MeH 3HaHUSIMU.
Tpynst UCIT PAH pedepupyrorest n/unm
UHJIEKCHUPYIOTCS B:

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by
publishing high quality articles on open
access.

The journal is intended for researchers,
students, and practitioners. It covers a
wide variety of topics including (but not
limited to):

e Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design
Tools.

Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

Go ugle ULRICHS\VEE

scholar

CYBERLENINKR 5> Worldcat
vease OpenDOAR
¢|.|BRAR RU B28%

y e

[
8

ros

VIK004.45

Penxosierus

TnaBHbli pegakTop - Aserrcsan ApyTion Mixanosuy,
ueH-kopp. PAH, a.¢.-m.u., UCIT PAH (Mocksa,
Poccuiickas eneparms)

3aMecTHTeNIb [VIABHOT0 pefakTopa - Kysueios Cepreii
JIMuTpresnd, 1.T.H., mpodpeccop, UCIT PAH (Mocksa,
Poccuiickas eneparms)

Bypaonos Mrops bopucosnd, a.¢.-m.1., UCIT PAH
(Mocksa, Poccuiickas ®eneparus)

Bopoukos Aujpeii Anaronbesnd, 1.¢.-M.H., npodeccop,
Vuuepcurer Manuecrepa (Mandectep, BennkoOpuranust)
Bupouukaiite Mpuna bonasentyposna, npodeccop, 1.¢.-
M.H., UHCTHTYT crcTeM HHGOpMATHKH UM. akagemuka A.IT.
Epmosa CO PAH (Hosocu6upck, Poccus)

Laiicapsi Cepreii Cypenosn, k.¢.-m.H., UCIT PAH
(Mocksa, Poccuiickas ®eneparus)

Eprymenxo Huna Biammvipossa, npodeccop, A.T.H., TI'Y
(Tomck, Poccuiickas denepars)

Kapnos Jleonn Esrensesny, 1.1.4., UCIT PAH (Mocksa,
Poccuiickas ®eneparms)

Komnnos Urops Bragnvnposnd, K.¢.-M.H., TexHHIeCKHit
ynuBepcuteT Bews (Bena, ABctpust)

Kocaues Anekcanp Cepreesnd, k.¢.-m.H., UCIT PAH
(Mocksa, Poccuiickas deneparius)

Kystopun Hukonaii Hukonaesuy, a.¢.-m.H., UCI1 PAH
(Mocksa, Poccuiickas deneparius)

Jlactosenxuii Anexceit Jleonnaosnd, a.¢.-M.H., Tpodeccop,
Yuusepcurer yomuna (Jly6mun, Upnanans)

Jlomaszosa Mpnna Anexcanjposna, 1.¢.-M.H., mpodeccop,
Harmonansnelit nccnenoBaTenbCcKuii ynusepcuteT «Bricmas
mkosa skoHoMHKH» (Mocksa, Poccuiickas ®enepars)
Hosukos Bopuc Acenosud, a.¢.-M.H., npodeccop, CaHKT-
TlerepOyprekuii rocynapctBeHHslit yuusepeuteT (CaHKT-
IletepOypr, Poccust)

Ilerpenko Anekcanap Koncrantnnosud, x.¢.-m.H., ICIT
PAH (Mocksa, Poccuiickas ®eneparus)

Ilerpenko Anexcanap ®enoposny, a.¢.-M.H.,
HccaenoBarenbekuit HHCTUTYT MoHpeans (MoHpeais,
Kanana)

Cemenos Burammii Anons(osud, a.¢.-M.H., npodeccop,
HCIT PAH (Mockga, Poccuiickas denepanms)

Lovmin Anexcanyp Hukonaesny, 1.¢.-M.H., mpodeccop,
WCIT PAH (Mocksa, Poccuiickas denepanms)

Yepubix Annpeit, A.¢.-M.H., mpodeccop, Hayuno-
uccnenosarensckuii ueHTp CICESE (Dncenana, Humkuss
Kamudopuus, Mekcuka)

[luutman Bukrop 3unossesnd, a.1.4., UCIT PAH (Mocksa,
Poccuiickas eneparms)

Ilycrep Accad, a.¢.-M.H., npodeccop, Texnuon —
W3paunbcknii TexHonornyeckuit mHcTUTYT Technion
(Xaiita, Uzpanns)

Anpec: 109004, r. Mocksa, yi1. A. COIDKeHHUIBIHA, T0M
25.

Tenedon: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caitr: http://www.ispras.ru/proceedings/

Editorial Board

Editor-in-Chief - Arutyun I. Avetisyan, Corresponding
Member of RAS, Dr. Sci. (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr. Sci.
(Eng.), Professor, Institute for System Programming of the
RAS (Moscow, Russian Federation)

Igor B. Burdonov, Dr. Sci. (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Andrei Chernykh, Dr. Sci., Professor, CICESE Research Centre
(Ensenada, Lower California, Mexico)

Sergey S. Gaissaryan, PhD (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Leonid E. Karpov, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation)

Igor Konnov, PhD (Phys.—Math.), Vienna University of
Technology (Vienna, Austria)

Alexander S. Kossatchev, PhD (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Nikolay N. Kuzyurin, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Alexey Lastovetsky, Dr. Sci. (Phys.—Math.), Professor, UCD
School of Computer Science and Informatics (Dublin, Ireland)
Irina A. Lomazova, Dr. Sci. (Phys.—Math.), Professor, National
Research University Higher School of Economics (Moscow,
Russian Federation)

Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor, St.
Petersburg University (St. Petersburg, Russia)

Alexander K. Petrenko, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research Institute of
Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel Institute of
Technology (Haifa, Israel)

Vitaly A. Semenov, Dr. Sci. (Phys.—Math.), Professor, Institute
for System Programming of the RAS (Moscow, Russian
Federation)

Victor Z. Shnitman, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Alexander N. Tomilin, Dr. Sci. (Phys.—Math.), Professor,
Institute for System Programming of the RAS (Moscow,
Russian Federation)

Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The A.P. Ershov
Institute of Informatics Systems, Siberian Branch of the RAS
(Novosibirsk, Russian Federation)

Andrey Voronkov, Dr. Sci. (Phys.—Math.), Professor,
University of Manchester (Manchester, UK)

Nina V. Yevtushenko, Dr. Sci. (Eng.), Tomsk State University
(Tomsk, Russian Federation)

Address: 25, Alexander Solzhenitsyn st., Moscow, 109004,
Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings/

© Uncruryt Cuctemuoro IIporpamvuposanus PAH, 2018

http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/burdonov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://www.ispras.ru/persons/gaissaryan.php
http://persona.tsu.ru/Home/UserProfile/1015
http://www.ispras.ru/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/persons/kossatchev.php
http://www.ispras.ru/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://www.ispras.ru/persons/semenov.php
http://www.ispras.ru/persons/tomilin.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/persons/shnitman.php
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.ispras.ru/en/persons/burdonov.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/en/persons/gaissaryan.php
http://www.ispras.ru/en/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/en/persons/kossatchev.php
http://www.ispras.ru/en/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/semenov.php
http://www.ispras.ru/en/persons/shnitman.php
http://www.ispras.ru/en/persons/tomilin.php
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/
https://persona.tsu.ru/Home/UserProfile/1015

Tpyasl Hucturyra CucrtemHoro IlporpaMMuUpoBaHuA

ConepxaHue

Oo6HapyxeHHe OIMO0K, BOSHUKAIOIINX MTPHU UCTIOIB30BAHUU TUHAMHYECKOM
[TAMSTH II0CIIE OCBOOOK ICHHMS

Acpsin C.A., laticapsn C.C., Kypmaneanees L. ®., Aecabanan A.M., Oscensin
H.T., Capecst C.C.ooouiiiiiiiieiiieieeieeeeee et 7

CraTHueckuii aHAH3 JUTS ITIOUCKa MepeTioHeHus Oydepa: akTyalbHbIe
HaIpaBJIeHHs Pa3BUTHSAITOPUTMOB
JIOUHA HLA. ... 21

W3BneueHne apXuTeKTypHOI HHpOpMaru u3 ucxoaHoro koga ARINC
653 coBMeCTHMBIX MPUIIOKEHHH ¢ ncmonb3oBanueM anroputmMa CEGAR
JIECOBOU C.JL ... e 31

Bonpockl HHIYCTpHATBEHOTO IPUMEHEHUS] CHHXPOHU3AIMOHHBIX
KOHTPAaKTOB MPH JUHAMUYECKOM IIOMCKE TOHOK B Java-Tiporpammax
TPUPDAHOB B.HO. ...t 47

[puMeHeHue riIyo0KOro MAITHHHOTO O0YUCHHS K CHHTE3Y IICTTOYKU
BbI30BOB C#
YeOblkrH A.E., KUPHICHKO SLA. ...coiiiiiiiiiicceecec e 63

CkphlTast 0TIIaKa Mporpamm otiagaukoM WinDbg B amynarope Qemu
Abarxymos M. A., J{062amOK TLM.cccccoovciiiiiiiiiiiiiie e 87

Kouduryprpyemsbiii TpacCHPOBIIMK CHCTEMHBIX BBI30BOB B aMyIsiTope QEMU
Hesanos A.B., JJoseaniok I1L.M., Makapog B.A.c.ccccccocvviriiiiiiiiiiiiiineens 93

AHajM3 METOJIOB OIICHKH HaIeKHOCTH 000PYIOBAaHUS M CUCTEM.
IIpakTrka nmpuMeHEHUsT METOIOB
Jlaspuwesa E.M., [laxynun H.B., Pviowcos A.1., 3enenog C.B.ccccoeueen. 99

OMyJsIus BBOJA-BEIBOIA 000pyI0BaHMS ¢ 0ToOpaskeHrnem B O3Y
BHYTPU sIJIEP ONEPALIIOHHBIX CUCTEM
Yenyos B.IO., Xopowiuniog A.B.c.ccccovevviiiiiiiiiiiiiiiiii s 121

ITocTpoeHne MOAYIIBEHOTO MPOTPaMMHOT0 0OSCTICUSHHSI HA OCHOBE
OJHOPOJHON KOMIIOHEHTOH MOJAEIH
Mannauues K.A., XOPOUIULOB A.B........cccoceiiiiiiiiiiiiiiiec e 135

MeTobl 3aIUTH IELEHTPATN30BAHHBIX aBTOHOMHBIX OpTraHU3alHi OT
CHCTEMHBIX OTKa30B U aTaKk
A A AHOPIOXUH ...t 149

Hotamums xpunrorpaduueckoil CTEKOBON MAITMHBI BEPCUH OJIHH
TIpokonbeg C.E.ccccoiiiiiiiiiiiiii 165

[ocTpoenne Moayeli MPOBEPKH HA OCHOBE 3TAOHHBIX (PYHKIIMOHATBHBIX
MOJIeJICH PX aBTOHOMHOW BEpU(PHUKAIIMH [TOJCHCTEMBI CBSI3U
Jlebeoes [I.A., Cmomaano HL.A.cccccoceeiiiiueiiiiiee e ssee e 183

Bepudukarst KOHTPOJIEPOB CBSI3H B CHCTEMaX Ha KPHCTAILIE
Ilempouenxose M.B., Mywmaxos P.E., [lInacuneg J{.U.cccccoocureirennnan. 195

IIporpamMMHbIe pelIeHUs IS JUHAMHYECKOTO U3MEHEHUSI

TI0JIB30BATEIBCKOT0 HHTEp(deiica Ha OCHOBE aBTOMaTHYECKH

coOpaHHOU HH(pOPMAIIMH O TTOJTb30BaTEIe

3ocumos B.B., Xpucmooopog A.B., Byneaxko8a A.C.cccccuveivveiieniiennnanns 207

BapuanThl 3a1a4 KUTaHCKOTO MOYTAIFOHA U MX PEIICHUS Yepe3
npeoOpa3oBaHUE B 33a4K MAPIIPYTH3AUH
Topoenko M.K., ABOOUIUH C.M.ccooueioiiiiiiiiiiiiiiniesee e 221

AHaITN3 MaTeMaTHYSCKUX MOCTAHOBOK 3a1a4K MapIIPYTU3AIUH C
OTpaHUYCHUEM IO TPY30IOABEMHOCTH M METOJIOB UX PEIICHHUS.
Bepecnesa E.H., ABOOUIUN C. M.cccoovvueiiiiiiiiiiiiiiie s 233

[IpuMeHeHHEe METOIOB CHCTEMHOTO aHAJIH3a K OIICHHUBAHUIO PabOThI
y4eOHBIX aCCUCTEHTOB
Bepecnesa E.H., [TOPOCHKO MKcccocviviiiiiiiiiiiiiiii i 251

CraTH4ecKHi aHaIu3 3aBUCUMOCTEN I CEMAHTUYECKOM BaJIMIALMN JAHHBIX
Hnoun JI.B., @oxuna H.IO., CemeHO08 B.A.ccccoovveviiiiiiiiiiiiiiiee e, 271

Cumynsiiust TOBEICHUSI MYJIBTHATEHTHBIX CUCTEM C alUKIINIECKU
B3aUMOJICHCTBYIONIMMY areHTaMu
Hecmepog P.A., Muyiox A.A., JIomaz08a H.A.c..cccccovviviiiiiiiiiiicineens 285

O Bepu(hMKaIMK KOHEYHBIX aBTOMATOB-TIpeoOpazoBatesieci Ha i OyrpyriaMu
Tnamenko A.P., 3aXAP0G B.A.cccovoiiiiiiiiiiiiiiiiii et 303

K mpoBepke cTporo AeTepMHHUPOBAHHOTO TIOBEICHHS BPEMEHHBIX
KOHEYHBIX aBTOMATOB
Bunapckuii E-M., 3GXAPO0G B.A.........cccooviiiiiiiiiiieeieeiee e 325

K nmocTpoeHuio MOIYIbHON MOAEITH PACTIPEACIICHHOTO HHTEIJICKTA
Crnoeoxomog FO.JI., Hepemut U.C.ccccovviiviiiiiiiiiiiiiiineneesee e 341

Proceedings of the Institute for System Programming of the RAS

Table of Contents

Dynamic detection of Use After Free bugs
Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M.,
Hovsepyan N.H., Sargsyan S.S. ... s 7

Buffer Overflow Detection via Static Analysis: Expectations vs. Reality
DUING LA ..o bbb bbb e 21

Extracting architectural information from source code of ARINC 653-
compatible application software using CEGAR-based approach
LESOVOY S.L. et bbb 31

Applying synchronization contracts approach for dynamic detection of
data races in industrial applications

THIFANOV V.Y U. ettt st sre 47
Applying Deep Learning to C# Call Sequence Synthesis

Chebykin A.E., Kirilenko LA...........coci i 63
Stealth debugging of programs in Qemu emulator with WinDbg

debugger

M.A. Abakumov., P.M. DOVGalYUK.ccccevvrieiiie e 87
Configurable system call tracer in QEMU emulator

lvanov A.V., Dovgaluk P.M., Makarov V.A.cccocevmriiiinnieeie e 93

Analysis of methods for assessing the reliability of equipment and
systems. Practice of methods

Pakulin N.V., Lavrischeva E.M., Ryzhov A.G.cccocvvivrirninninreee e 99
In-Kernel Memory-Mapped I/O Device Emulation

Cheptsov V.YU., Khoroshilov AV, ... 121
Building Modular Real-time software from Unified Component Model
Mallachiev K.A., KROroshiloV AV, ...t 135

Methods of protecting decentralized autonomous organizations from
crashes and attacks
AAANAIYUKNIN .o e 149

Cryptographic Stack Machine Notation One
PrOKOPEY S.E. .ot 165

Construction of validation modules based on reference functional
models in a standalone verification of communication subsystem

Lebedev D.A., StOtland LA,c.ooooeieeeeeee s 183

Verification of System on Chip Integrated Communication Controllers

Petrochenkov M.V., Mushtakov R.E., Shpagilev D.l............ccccccooviivniennnnns 195

Dynamically changing user interfaces: software solutions based on
automatically collected user information

Zosimov V.V., Khrystodorov O.V., Bulgakova O.S.cccceeiriiniiinnennne. 207

The Variants of Chinese Postman Problems and Way of Solving
through Transformation into Vehicle Routing Problems

Gordenko M.K., AVAOSNIN S.M.....ccuiiiiiiie e

Analysis of Mathematical Formulations of Capacitated Vehicle
Routing Problem and Methods for their Solution

Beresneva E., AVAOSNIN S.....ovvviiiieiii ettt

Applying the methods of system analysis to teaching assistants
evaluation

Beresneva E., GOrdenko M.ccueviiiiiii it sten s

Static dependency analysis for semantic data validation

llyin D.V., Fokina N.Yu., SEmMenov V.A........ccceoiiiieiieicceeeee e

Simulating Behavior of Multi-Agent Systems with Acyclic
Interactions of Agents

Nesterov R.A., Mitsyuk A.A., Lomazova LA.cccocovvieevciic e,

On the model checking of finite state transducers over semigroups

Gnatenko A.R., ZaKharoV V.A.c.eee et

On the verification of strictly deterministic behaviour of Timed Finite
State Machines

Vinarskii E.M., ZakharoVv V.A.cocueeeiioieeeeeee et

Toward construction of a modular model of distributed intelligence

SIovOKhotov YU.L., NEretin I.S. ...oooooeieeiieee e

...251

. 271

....285

....303

... 325

...341

O6GHapyXeHue oWNOOK, BO3HMKAKOLMX NpU
MCNONb30BaHUN ANHAMMUYECKOU NaMATH
nocrie eé ocBoo6oXaeHus

2 C.A. Acpsan <asryan@ispras.ru>
L3858 C.C. Taiicapan <ssg@ispras.ru>
Y [I1.®. Kypmaneanees <kursh@ispras.ru>
*A.M. Aeabanan <anna.aghabalyan@ispras.ru>
*H.I". Oscensn <narekhnh@ispras.ru>
*C.C. Capecsin <sevaksargsyan@ispras.ru>
lHHcmumym cucmemnozo npoepammupoganus um. B.11. Heannuxosa PAH,
109004, Poccus, 2. Mockea, yn. A. Conocenuyvina, 0. 25
2 Hucmumym npobaem ungpopmamuru u asmomamusayuu HAH PA, Pecnybauka
Apmenus, Epeean, 0014, ya. 11.Cesaka, 1
3 MI'Y umenu M.B. Jlomonocosa, paxynemem BMK,
2119991 I'CII-1 Mocksa, Jlenunckue eopul, 2- 1l yuebHblll KOpRyc
4 Epesanckuii cocyoapcmeennviii yHueepcumem Pecnyoauxa Apmenus,
2. Epesan, 0025, yn. Anexa Manyxana, 1
> Mockosckuil ou3uKko-mexnudeckuti uHcmumynn,
141700, Mockosckas obnacmes, . [oaconpyousiii, Hncmumymcxuii nep., 9
® Hayuonanshuiii uccnedosamensckuti ynusepcumem «Bolcuiasn uwkoia 5K0HOMUKIY
101000, Poccus, e. Mockea, yn. Machuyxas, 0. 20

AnnoTtauusi. CymiecTBeHHass YacTh MPOTPAMMHOTO OOECIeueHHsI HalicaHa Ha SM3bIKax
nporpammupoBarust C/C++. TIporpaMMsl Ha 3THX A3bIKAX YaCTO COJAEPKAT OIIUOKH:
UCIONb30BaHusl mamsati mocie ocBoboxkaeHus (Use After Free, UAF), nepemosHeHus
oydepa (Buffer Overflow) u ap. B cratbe npeaoxen mero ooHapy:xenus omucox UAF,
OCHOBaHHBI Ha JHHAMHWYCCKOM aHalIu3e. Jlﬂfl KaXXJa0ro IyTH BBIIIOJITHCHUA ITPOTIPaMMbI
MpeIaraeMblii METOJ[POBEPSIET KOPPEKTHOCTD OTEpallnii CO3MaHMs U JOCTYIa, a Takke
OCBOOOXIECHHUS JTHHAMUYECKOW mamsTH. [I0CKONBKY TPUMEHSETCS IUHAMUYECKHN aHaIu3,
MOMCK OIIMOOK TPOU3BOIUTCS TOJNBKO B TOM 9acTH KOJa, KOTOpas ObUIa HEMOCPEICTBEHHO
BBITIOJIHEHA. VICTIONB3yeTCsl CHMBOJIBHOE HCIIOJNHEHHE TPOrpaMMBI C TIPUMEHEHHEM
pemareneit SMT (Satisfiability Modulo Theories) [12]. Dto mo3Bonsier creHepupoBaTh
IlaHHbIe, 06pabOTKa KOTOPHIX IIPUBOIUT K OOHAPYKEHUIO HOBOTO ITYTH BBIMTOIHEHHS.

* PaGota momnepskana rpaaTom PO®U Ne 17-01-00600

Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M., Hovsepyan N.H., Sargsyan S.S. Dynamic
detection of Use After Free bugs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 7-20

KitoueBble ci10Ba: IMHAMUYECKUI aHAIN3 IPOrpaMM; MOKpPBITHE Koza; use-after-free.
DOI: 10.15514/ISPRAS-2018-30(3)-1

Joas uurupoBanus: Acpsa C.A., Taiicapsa C.C., Kypmanranees 11.®., Arabamsa A.M.,
OgcernsiH H.I'., Caprean C.C. OGHapyxeHHe OIIMOOK, BOSHUKAIOIIUX IPH HCIOIb30BAHUH
JUHAMHUYECKOW mamsiTu mocie ocBoboxaenus. Tpyast UCIT PAH, tom 30, Beim. 3, 2018 r.,
ctp. 7-20. DOI: 10.15514/ISPRAS-2018-30(3)-1

1. BeedeHue
B mporpammHOM 06ecnieueHIH MOTYT COAEP)KAaThCS TaKHe OMIMOKH, KaK:

® JCMONB30BaHUEC TUHAMHYECKOH MaMsaTH Tocie ee ocBoOoxmeHus (Use
After Free, UAF),

e mepenonHeHue Oydepa mwim kyau (buffer/heap overflow).
[TockombKy oOrpomMHass dacTb NPOTPAaMMHOTO OOECTICUeHHs HCHONb3YEeTCsl B
KPUTHUYECKH-BKHBIX OOJACTSIX YEIOBEUECKOH MAESTEIbHOCTH, HAIMYNE OLIMOOK
MOXET TPUBECTH K CEPbE3HBIM mociencTBusM. CyImecTBYeT psiii MHCTPYMEHTOB,
MOMOTAIOIIUX PEIIUTh 3Ty MPOOJIEMY, HCIOJB3Ysl METOIbl craTtuueckoro [1, 2] u
JTMHAMHUYecKoro aHanusza [3, 4, 5, 6, 7].
CraTtndecKkuil aHaJIM3 MPENOCTAaBISIET BO3MOXKHOCTD HCCIIEIOBAHMS NTPOTPAMMHOTO
koma Oe3 ero BhINONHEHUs. HemoctaTkoM 3TOro Meroja SBISIETCS OTCYTCTBHE
MH(OpMALMK O COCTOSHUM MPOTPaMMbl (PEruCTphl, Tpacca MPOrpaMMbl, BXOTHbIC
JaHHbIC U T.A.) BO BPEMs BBINOJHEHHUS. JTO MPUBOIUT K OOJBIIOMY KOJIHYECTBY
JOXHBIX cpabaTeiBaHui. [losToMy HaHHBIM MeTOX B OONBIIMHCTBE CIIydaeB
UCTIONIB3YeTCS 10 MPHUMEHEHHS JUHAMHUYECKOTO aHajiu3a Ui BBIIBICHUS
(hparMeHTOB IPOrpaMMEbI, COJICPKAIIUX OTEHIHATbHbIE OLUTHOKH.
[noucka omm6ok UAF uHCTpYMEHT [1] BBINONHACT aHAIM3, TOXOXKHUH HA aHAJIN3
JIOCTYIIHBIX BBIPD@XEHUI (BBIp@XKEHHE X+Y SIBISETCS JOCTYIHBIM B TOUYKE P, €CIIU
BIOJIb JIIO0OTO TYTH OT BXOAHOW TOYKHM JO TOYKM P JIAHHOE BBIpAXKEHHE
BBIYMCIIICTCS, @ MEXAY OTUMH BBIUUCICHUSIMHM 3HA4E€HHS X M Y OCTAIOTCS
Hen3menHbiMU [11]). TlpomsBomurcst 00Xx0ox Bcex MyTe B mporpamme, 4YToObI
obecrieynTh BBINOJHEHHE YCIIOBHS «OIIPEAENeHHe OOBEKTOB OO0 HX
UCIIONIb30BaHMsA». B ciydanm HeynoBIETBOPEHUs IAHHOTO YCIIOBHUSI CUHTAETCS, UTO
OBIIO BBHIIIOJIHEHO OIIMOOYHOE MCIIOIb30BaHHUE TIAMSITH M BEIBOJIUTCS OIINOKA.
Wncrpyment GUEB [2] ocHOBaH Ha mcciieioBaHUM OMHAPHOTO KOJIa MPOrPaMMBI.
[Ipouecc anamm3a paszensieTcss Ha JBa OCHOBHBIX dTama. Ha mepBom osrtame
OTCIIC)KUBAIOTCSL ONEpalli OOpallleHns] K Kyde W IPHUCBAWBAHUS aJPECOB I
MpOBE/IeHNs aHann3a Habopa JaHHBIX (KaKoW yKka3aTelb K KaKOMY 3JIEMEHTY Kydu
otHocutcs). Ha atoM srtame wunbpopmammsa {azxpec, pa3sMmep} COXpaHSeTcS B
muoxectBax alloc_set u free set mpu co3maHMd W OCBOOOXKIEHUH MaMATH
COOTBETCTBEHHO.
Ha Btopom »sTame Bemonasiercs mouck ommbok UAF. Hcnombs3yst coOpaHHYIO
MHQOPMALIMIO JUTS KaXIOM TOYKH IMPOTPaMMBbI, HHCTPYMEHT CTPOHWT MHOXKECTBO

8

Acpsin C.A., Taiicapsin C.C., Kypmanranees I11.®D., Ara6ansa A.M., Oscersin H.I'., Capresin C.C. O6HapyxeHue
omKMOOK, BO3HUKAIOIINX PH HCIIOIb30BaHUN AMHAMUYECKON MaMsATH mocie ocBoboxaeHus. Ipyowt UCI1 PAH, Tom 30,
BbIm. 3, 2018 r., cTp. 7-20

access_heap, KOTOpoe CONEPIKHUT BCE IIEMEHTHI {aapec, pa3Mep} KydH, JOCTYIHbIC
B aroii Touke. Eciam mepeceuenue access _heap u free set ssasiercss Hemyctom
MHO>KECTBOM, CYMTAETCs, 4TO HaiijeHa omunbdka UAF.

OpHOM U3 NPUYKH NOMYISAPHOCTU JUHAMUUYECKOTO aHAJIM3a SBJISETCS BO3MOXKHOCTD
UCCIIeIOBaHUs TIPOrpaMM BO BpeMs BhINOJHEHHA. biaromaps 3ToMy BO3MOXEH
JOCTYII K 3HAYEHHSIM PETHCTPOB M COAEpKMMOMY TamsiTH. MHcTpymeHT Avalanche
[3] peanu3yeT UTEpaTUBHBIN aHAIU3 UCIIOJIHAEMOIO KO/la MPOrpaMMbl, OCHOBaHHBIH
Ha JWHAMHUYECKOoW OWHapHOW TpaHCIAIMU. B mpomecce aHanm3a WHCTPYMEHT
BBIUUCIIIET ~ BXOJHBIE JAHHBIE AHANM3MPYEMOW IPOTPaMMBI € LEIbIO
aBTOMATHYECKOTO 00X0Ja BCEX NOCTHXHMMBIX ITyTeH B MpOTrpaMMe U OOHAPYKEHUS
ABapHUIHBIX 3aBEPLICHUI IPOrpaMMBl.

Wuctpymentsr DangNull [4] u FreeSentry [5] ¢oxycupyrorcs Ha oOHapyXeHHUH U
OOHyJICHHM YyKa3aTeleld Ha JAWHAMUYECKYI0 O00JacTh IPOrpaMMBl IIOCIE HX
O0CBOOOXIICHUS, MpemoTBpamias TosiBIeHHE omubok. Ob0a HHCTpyMEHTa
UCTIONIB3YIOT CTATHYECKYIO HHCTPYMEHTALUIO IPOTPaMM.

Undangle [6] Ttaxke mnpemoTBpamiaeT ONIMOKM MCIOJB30BaHUS MaMSATH IIOCIE
0CBOOOX/ICHNS. DTOT MHCTPYMEHT IIOMEYaeT BO3BpallacMble 3HAYCHUS Ka)KHAOH
(YHKIMH pacTpeneeHus] NaMATH M UCTIONBb3yeT aHaJIN3 MOMEUCHHBIX JAAHHBIX I
OTCIIC)KMBAHUS 3TUX METOK. Jlamee mpH OCBOOOXKAECHHM TAMSITH IPOBEPSIOTCH,
KaKue SYeMKd IDaMATH acCOLMHUPOBAHBI C COOTBETCTBYIOLIEH METKOH, U
ONpEeNeNAIOTCS BHUCSYME YyKazaTenu (ykaszaTelb C HEHYJEBBIM 3HaueHHUEM,
CCBUTAIONINICSA Ha OCBOOOXKIEHHBII 0071aCTh MAMATH).

Wuctpyment Mayhem [7] ocHOBaH Ha MeToJie MOMCKa OIIMOOK B OMHApHOM KoOJie,
oOpenuHsIOmeM odIaifH- ¥ OHIAWH-TIOAXOABl K CHMBOJIBHOMY BBIIIOJHEHHIO
nporpammbl. OdraliH-oaxo/; MpeAnojiaraeT IMOoCe0BaTEeIbHOE HCCIIEIOBAHUE
MyTeil MporpaMMBbl: TPU KaXKAOM HOBOM 3allyCKe MHCTPYMEHT IOKPBIBAET TOJBKO
OJIMH TIyTh BBINOJNIHEHHUs. HepocTaTkoM gBIsSeTCS MOBTOPHOE BBHIIIOJHEHHE OOIIEro
HayaJlbHOTO (hparMeHTa Iy TH MPH KaXKAOM 3aIycKe mporpammbl. OHIaWH-TIONXO0, B
CBOIO OuYEepe]b, HCCIEAYET BCE BO3MOXKHBIE IIyTH BBIIOJHEHHS IPOTrPAMMEI
OJHOBPEMEHHO, 4YTO IPHBOAMT K HEXBATKE MaMATH B OINPEIECICHHBIA MOMEHT
BpPEMEHU.

OObeauHeHNe ITHX IBYX MOIXOJ0B 3aKII0YAETCs B CIEAYIOMEM: IIPH JTOCTHXECHUH
TPaHUYHOTO 3HA4YEHUS PACXOAAa TMaMATH CO3JAI0TCA KOHTPOJIbHBIE TOUKH,
HCCIIeIOBaHNEe HEKOTOPBIX MyTel OCTaHaBJIMBAETCS C COXpaHEHHEM MH(OpPMAIHHU O
TEKyIIEM COCTOSHUM BBINOJIHEHMS, KOHTEKCTa CHMBOJIBHOTO BBIIOJIHEHUS U
KOHKPETHBIX BXOJHBIX JaHHBIX. [locie ocBOOOXAeHHs pecypcoB (3aBEpIIMIIMCH
HCCIIEIOBaHUE HEKOTOPBIX ITyTeH), BOCCTAHABIMBAETCS OJHA W3 KOHTPOIBHBIX
TOYeK (C MCIIONB30BAaHMEM COXPAHEHHBIX JAaHHBIX BOCIPOU3BOJIUTCA KOHKPETHOE
BBITIOJTHEHNE IO KOHTPOJBHOW TOuKW). Jlajmee BBIMOMHSETCS 3arpy3ka KOHTEKCTa
CHUMBOJIGHOTO BBITIOJIHEHUSI W HAYMHAETCS aHAJIN3 HOBOTO MyTH. JlaHHBIH MOAXON
MO3BOJIIET N30€KaTh IMOBTOPHOTO CHMBOJIBHOTO BBITIOJHEHHUS IIPOTPAMMBI IO MECTa
CO3/1aHHsI KOHTPOJIBHOM TOUKH.

Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M., Hovsepyan N.H., Sargsyan S.S. Dynamic
detection of Use After Free bugs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 7-20

B nmaHHO# cratbe MBI OyIeM paccMaTpHBaTh IOAXOJA, OCHOBAaHHBIM Ha
JUHAMHYECKOM aHAJIW3€ MpOrpaMMbl C HCIOJB30BAaHWEM JIHHAMHYECKOM
uHcTpyMeHTamu [8, 9]. B paboTe ommceiBaeTcss MeToJ 0OHAapyKEHUsI OLIMOOK
UAF, xoTopblii ImpoBepsieT KOPPEKTHOCTh HMCIIONb30BAaHMS yKazaTeleW IUId BceX
BO3MOJKHBIX IyTel BBINOJIHEHHSI IPOrpaMMBL. JTOT METOJ OCHOBAH Ha ajrOpUTME
HOKpBITUST Koxa, ucnonszyeMoM B SAGE [10], u ucnons3yer uH)pacTpyKTypy
JUHAMUYECKOro aHanu3atopa Triton [9].

B pamkax nqaHHOHM paOoThl Obula BBIMOJIHEHA MOJUMUKALMS AITOPUTMA TOKPHITHS
Kola, wuchojp3yeMoro B Triton, 4YTo NPHUBEJIO K 3HAYUTEIBHOMY pOCTY
MPOU3BOUTENBHOCTH, a TaKkke Obula J00aBlieHa MOJAJCPIKKA aHAU3a MPOrpaMM,
paboraronx ¢ (aiyIoBBIMM BXOJIHBIMHM JAHHBIMH, KOTOpas OTCYTCTBOBaja B
peam3anuu Triton.

Bropoii paszgen crarbd IMOCBAINEHA ONMCAHUIO QJICOPUTMA IIOKPBITHS KOZAA
nporpammbl B Triton u npemnaraemoil Moaupukauuud. B TperbeM pasnene
paccMaTpuBaeTCs HWCXOOHas peanu3anus oOHapyxkeHus ommbOok UAF u ee
0o0beAMHEHNE C JAWHAMUYECKHM TMOKPBITHEM Koja. B derBeproM pasiene
MPE/ICTABIICHBI PE3yIbTAThI.

2. Annzopumm noKpbimusi Koda

2.1 NMokpbiTHe koaa B Triton

B onaHHOM cTarhe UCHOJB3YETCS QJITOPUTM YBEIMYEHUS IOKPBITUS KoAa
nporpaMMbl, pa3paboTaHHbI# B KOMmaHud Microsoft W HCHOJIB3yeMbId B
unctpymenre SAGE [10]. DT1oT anropurMm uyactuuHO peanu3oBaH B Triton. OH
COCTOUT M3 JIBYX 3TallOB!
e BBIOOp HaYaJbHBIX BXOJHBIX JJAHHBIX M COOpKa OrpaHUUuSHUH ISl KaXKI0T0
ITyTH BBITIOJTHEHUS TIPOTPAMMBI;
® [I0JlyYeHHE HOBBIX BXOJHBIX JAHHBIX C TOMOIIBIO PELICHUS JJOTHYECKUX
BBIPAKEHUI1, COCTOSAIINX U3 OTpaHUYCHUH, COOPaHHBIX HA IPEABIAYIIEM
JTare.
PaccmoTrpuM npumep nporpammsl Ha puc. 1.

void top(char input[4]) {

int ¢ent=0;

if (input[0] == 'b’) cnt++;
if (input[l] == 'a’) cnt++;
if (input[2] == 'd’) cnt++;
if (input[3] == "1') cnt++;

if (cnt >= 3) abort(); // error

Puc. 1. [Ipumep npoepammer uz cmamou [10]
Fig. 1. An example of a program from [10]

10

Acpsin C.A., Taiicapsin C.C., Kypmanranees I11.®D., Ara6ansa A.M., Oscersin H.I'., Capresin C.C. O6HapyxeHue
omKMOOK, BO3HUKAIOIINX PH HCIIOIb30BaHUN AMHAMUYECKON MaMsATH mocie ocBoboxaeHus. Ipyowt UCI1 PAH, Tom 30,
BbIm. 3, 2018 r., cTp. 7-20

YToObI MOKHO OBIJIO MCCIIEA0OBATH BCE IIYTH 3TOH MPOrpaMMBbl, Ha BXOJI OHA JIOJDKHA
noxy4uth cTpoky “bad!”. UroObl MONyYHTh HY>KHBIE JaHHBIE, AITOPUTM HAYMHAET
CBOIO paboTy, 3amyckas NporpaMMmy Ha HayaJbHOW BXOJHOH CTpOKe, KOTopas
MOMeEIIaeTcsl B CHMCOK BXOJIHBIX JaHHBIX. [locime mepBoro 3amycka NIporpaMMbl
mosry4aeTcst Habop orparnueHunit < 10 #b, il #a, 12 #d, i3 #! >, rme 10, i1, i2, i3
MPENCTaBISIOT staeiiku mamsitd input [0], input [1], input [2] wu input [3]
COOTBETCTBEHHO.

B xoxe paboThl anroputMa ¢ OMOIIBIO PELICHUS 3TUX OTPAHMUYCHUN AT KaXKIO0TO
3JIEMEHTa W3 CIHCKAa BXOAHBIX J@HHBIX TCHEPHUPYIOTCS MHOYEpHHUE [aHHBIC,
YZIOBIICTBOPSIIOLINE 3THM OTPaHWYEHHSM, KOTOpBIE Jajiee MOMEIMIAIOTCS B CIIMCOK
BXOJHBIX JAaHHBIX. [KakOOro 3JIeMEeHTa M3 3TOr0 CIHCKa IIPOrpaMMa 3aHOBO
3aIrycKaeTcsi, 1 paboTa alNropuTMa BO300OHOBIISETCS.

OTOT Ipolece MPOoAOIDKACTCS 10 TEX MOP, ITOKA BCE HIEMEHTHI U3 CIIHCKa BXOIHBIX
JaHHBIX HE OyIyT MOOYEpeHO pacCMOTPEHBI (IICEBAOKO] aITOPUTMa NTPUBEICH Ha
puc. 3). [IpuMeHUB anTOpuUTM LTI MPOTPaMMEI Ha pucC. | ¢ HaYaIbHOW BXOIHOM
CTpOKOH “good”, MBI IIOTydUM HA0OP PEIICHHU, TIPEICTaBICHHBIN Ha pHUC. 2.

good

f_.
/——-0:—\“__|> gool

r@—
TN ————" godd
T gl
— gaod
T saal
““\(_..zf_, gadd
B T, gad
= s bood
/".:_““u__. boo!
~8 X —» bodd
__".f—dfﬂ_—_ib boc!

f—b baod

/‘..:__“———s bao!
____4 .=::1_~——> badd

——= bad!

Puc. 2. Bxoousie oannvie nocie Kaxcoou umepayuu aieopumma
Fig. 2. Input data after each iteration of the algorithm

1. runCodeCoverage(inputSeed): 1. computeNewInputs(input):

2% takeSnapshot() 2 // solve constraints using SMT solver
3. inputSeed.bound = @ 3 childInputs = {}

4, inputList = {inputSeed} 4 pc = ComputePathConstraint(input)

5 while inputList is not empty: 5% for i in range(input.bound, pc.length)
6. input = getInputFromList(inputList) 6 if (pc[@..(i-1)]) and not(pc[i])

7 convertMemoryToSymbolic(input) 7 I is solution for pc

8. childInputs = computeNewInputs(input) 8 newIn=updateWithoutOverwrite(input,I)
9. while input childInputs is not empty: 9. newIn.bound = i
10. inputList.append(input) 10. childInputs.append(newIn)
94. if len(inputlList)>@ and snapshotEnabled() 11. return childInputs
12 restoreSnapshot()

11

Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M., Hovsepyan N.H., Sargsyan S.S. Dynamic
detection of Use After Free bugs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 7-20

Puc. 3. Ilcesdoko0 ancopumma nokpuimus Kooa npocpammbsl
Fig. 3. Pseudo code of a program code coverage algorithm

Iockomeky paboTa HAaHHOTO alropurMa TpeOyeT HEOJHOKPATHOrO 3aIycka
nporpammbl, B Triton peann3oBaHa BO3MOXKHOCTb COXPaHEHHs COCTOSHHS
HpPOrpaMMbL. DTO IIO3BOJISIET 3HAYUTENBHO YIYYLIHTh I[POU3BOIAMUTEIEHOCTh
BemmonHeHuA. Kpome toro, B Triton otcyrctByer wacth amroputma SAGE [10],
npeqHa3HAYeHHAs Ul yMEHBIICHHS HaOopa BXOIHBIX JaHHBIX. [loaTomy
MHCTPYMEHT HEOJHOKPATHO 3aIlyCKaeT aHaJM3UPYEMYI0 NpPOrpaMMbl Ha BXOJIHBIX
JAHHBIX, KOTOpBIE HE OTKPBHIBAIOT HOBBIX NyTed. B omuceiBaemoill pabote B
JITOPUTM HOKPBITUS KoJa ObLT J0OaBJIeH HOBBIN (YHKIIMOHA, KOTOPBIH MO3BOJISIET
JOCTHYb 3HAYUTEIHEHOTO POCTA POU3BOIUTEIEHOCTH.

2.2 Mogudmkauma anroputMa NnoKpbITUs

B opurunaneHO# peanuzauuun ainroputmMa SAGE [10] B Triton mocne kaxmoii
UTepaly TporpaMMa BCeTJa Iojydyaja Ha BXOJ HOCIEIHUH 3JEMEHT U3 CIHCKa
BXOJIHBIX JJAHHBIX, HE YYHUTHIBAs IIPH 3TOM KOJIMYECTBO OTKPHITHIX 0a30BBIX OJIOKOB
MPOTPaMMBI C TIOMOIIBIO JaHHOTO AJIEMEHTa. DTO MIPUBOAMIIO K TOMY, YTO BMECTE C
00paboTKOM BXOJHBIX JAHHBIX, KOTOPHIE MMEIOT BO3ACHCTBHE HA MOKPHITHE KOZA
MPOTPaMMBbI, pacCMaTpPUBAIOTCA M T€ BXOJHbBIC JAHHBIE, C IOMOINBIO KOTOPBHIX HE
OBUTH OTKPBHITHI HUKaKHE HOBBIC ITyTH B IIPOTPaMMe.

[Tockombky B Xxome pabOThl alropuTMa MAis KaXJOro BXOJHOTO JJIeMEHTa
TEHEPUPYIOTCS €€ JI0YEPHUE JIaHHbIE, KOJIMYECTBO 3JIEMEHTOB B CIHMCKE BXOJHBIX
JAHHBIX 3HAYUTEIbHO yBenuuuBaercs. CrenoBatesibHO, sl dPPEKTHUBHOTO
BEIIOJIHEHHUS ~ alNropuTMa TpeOyeTcs OmpelelicHHe MPHOPUTETOB IS
CT€HEPUPOBAHHBIX BXOJHBIX JIaHHBIX.

B mpemmaraemoil Monmdukanup anropuTMa KaxIOMy O3JEMEHTY M3 CIIHCKa
BXOAHBIX JAaHHBIX MBI TIPHCBAaMBaeM BeC, KOTOPBIM MpeACTaBIsieT H3 cebd
KOJIMYECTBO 0a30BBIX OJIOKOB IPOrPaMMBbI, OTKPBITBIX 3THM dJieMeHTOM. B Hauane
paboThl anropuTMa BXOIHBIM JAaHHBIM IIPHCBAaWBaeTCs HyNeBOHW Bec. Bo Bpems
NEPBOIl UTEpallMU alrOpUTMa IOJACYUTBHIBAIOTCS BECOBBIE 3HAYEHUS HAYaIbHBIX
BXOJIHBIX JaHHBIX.

ITocne ka0l WTEepaliy BECOBBIC 3HAUCHUSI OOHOBIISIOTCS CIIEAYIOIINM 00pa3oM:
BECOBBIC 3HAYCHHS YK€ PACCMOTPEHHBIX JJIEMEHTOB IEPENalOTCS HMX JIOYEPHUM
3JeMeHTaM (BXOAHBIC JaHHBIE, KOTOPBIE MOJIYYHMINCH C IIOMOIIBIO PEIICHHS
JOTHYECKUX ypaBHeHMi). TakuM o0pa3oM, NMpUMEHSETCS] HepapXu4ecKuidl 00Xox
BXOAHBIX JaHHbIX. llepen odepenHBIM 3aIyCKOM MpOrpaMMbl U3 CIIHCKa
BBIOMpAeTCS BJIEMEHT C HanOOJBIIMM BECOM. OTO IO3BOJISICT 3HAYUTEIHHO
YIIPOCTUTH AEPEBO PELICHHH, KaK MM0Ka3aHo Ha puc. 4.

Ha PUCYHKE BHJIHO, YTO IIOCJIC JIOGaBJ'IeHI/Iﬂ BECOBBIX 3HAYCHUM KOJIMYECTBO
paccMaTpuBa€MbIX BXOAHBIX JaHHBIX YMCHBIIWJIOCH IIOYTH BJABOEC, YTO B CBOIO

12

Acpsin C.A., Taiicapsin C.C., Kypmanranees I11.®D., Ara6ansa A.M., Oscersin H.I'., Capresin C.C. O6HapyxeHue
omKMOOK, BO3HUKAIOIINX PH HCIIOIb30BaHUN AMHAMUYECKON MaMsATH mocie ocBoboxaeHus. Ipyowt UCI1 PAH, Tom 30,
BbIm. 3, 2018 r., cTp. 7-20

o4yepeab MPUBOAUT K CYIIECCTBECHHOMY YBCIIMYCHUIO MPOU3BOJAUTCIBHOCTU pa60T},1
aJropuTMa (Ha HCKOTOPBIX TECTAX MPOU3BOAUTCIIbHOCTD BbBIPOCJAa MMOYTH Ha 90%)

Eme omaum HemoctaTkoM Triton OblTa mogaep)kka IMporpaMM, IPUHAMAIOMINX Ha
BXOZ TOJNBKO apryMEHTHl KOMaHAHOW cTpoku. /[l pacmmpeHus Habopa
aHATM3UPYEMBIX MPOrpaMM HaMH ObUTa J00aBIiCHa MONACPKKA MPOrpamm,
UCTIONB3YIOMKX (haiiibl KaKk HCTOYHHK BXOJHBIX IaHHBIX. Kpome Toro, ObLia
Jo0aBJicHA BO3MOXKHOCTh ONPCACICHUS KOHKPETHBIX JHANa30HOB BXOJHBIX
JTAaHHBIX, KOTOPBIC B XOJIC aHAJIN3a OYAyT MOMEYCHBI KAK CHMBOJILHBIC.

OmnucaHHBII NOAXOA K MOJCYETY BECOBBIX 3HAUCHHH HE SBIACTCA CIUHCTBEHHBIM
BO3MOJKHBIM, TTIO3TOMY B JAaNbHEHIINX HCCIECIOBAaHUAX OyIyT paccMaTpHBaThCci U
Jpyrue BapHUaHThl ONIPEEIEHNUs STUX 3HAUCHHH.

— good
- Val T ——» geol
—_ e
>— —_..=___M___' god!
\’.:___/f_ ::_f:__*—b
_—__\M___ -
."'\ __f_____: bood
ya T —— kool
\ S —
\\ / — "
-b.=—-.h\ N - /______—: baod
—e——__
_*.z__h“\\ _——» badd
] ::‘-x
— % badl

Puc. 4. Bxoouvie dannvie nocie kaxcoou umepayuu aieopumma nocie 000agieHus 6ecos
Fig. 4. Input data after each iteration of the algorithm, after adding weight values

3. MNMouck owubok

JuHaMUYecKnuil aHalW3 MPOrpaMMBl OCHOBaH Ha WCCJICJOBAaHWU IPOTPAMMHOTO
oOecrieyeHrsT B TIPOLECCE BBINIOJIHEHUS. DTO HaeT BO3MOXKHOCTH HCCICIOBAHUS
IpOTpaMM C YYETOM OIPEACICHHBIX YCIIOBHH BBIITOJHCHHUS, & TaKXKE IMO3BOJSICT
UCIIOJIb30BaTh KOHKPETHBIC 3HAYCHUS ykaszatened. OIHMM H3 HEJOCTaTKOB
JMIMHAMHUYECKOTO aHain3a SIBISIETCS TPeOOBAHUE HATMYMS Ka4e€CTBEHHOTO TIOKPBITHS
koma. OpHako B OOJBIIMHCTBE CIydaeB Uil HaWJICHHBIX OIIMOOK BO3MOXKHA
reHepalus BXOIHBIX JaHHBIX, KOTOPBIE TO3BOJISIOT BOCIPOHW3BECTH OIIHOKY.
Ommbka UAF xapakrepusyercs BO3HUKHOBEHHEM JBYX TIOCIIEIOBATEIbHBIX
COOBITHIA:

e co3maHue BHCAMMX ykazatenei (dangling pointers);
® JIOCTYI K IMaMATHU C UCTIOJIb30BAHUEM BUCAIIETO YKA3aTEJIA.

13

Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M., Hovsepyan N.H., Sargsyan S.S. Dynamic
detection of Use After Free bugs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 7-20

Ha puc. 5 mpusenén mpumep UAF. Ilocrme mpoBepkd yCIOBHS Ha CTpOKe 3
MIPONCXOIUT OCBOOOXKICHHE INaMsITH Ha KOTOPBIM YKa3blBaeT INepeMeHHas ptr
(ctpoka 4), 3areM yIpaBleHHE MNEPEXOAUT Ha CTPOKy 12, BCIEACTBHE YEro
MPOUCXOUT TIOBTOPHOE OCBOOOKACHHE TTAMSITH.

3.1 Anropmutm nomucka owmnbok B Triton

Vcnonb3ys WMHCTPYMEHTALMIO IPOTPaMMBI, alTOPUTM OTCIEKHBACT (YHKIUH
Beienenus (malloc) u ocBoboxaenust (free) mamsatu. B Havyane paGoTsl anropurma
cosmatorcsi aBa MHOxectBa (AllOCSET u freeSET) ais oTciexxuBaHHS y4acTKOB
NaMsTH, KOTOpble OBUIM BBIIEJICHBI W OCBOOOXIEHBI BO BPEMs BBINOJIHEHHS
NpOrpaMMBL. DJIEMEHTaMHU JIaHHBIX MHOXXECTB SIBJISIIOTCS NapaMy, MMEIONIME BUJL
(«adpec, pasmepy).

Kaxnpriii pa3 mpu BeizoBe malloc/free muosxectsa allocSET u freeSET obHoBIsITOTCSE
nyTeM J00aBlICHHS WM YyJAJICHHUS 3JEMEHTOB C COOTBETCTBYIOLIMM aJIpecoM H
pasMepoMm BbimeneHHoM mamsat. [Ipu Bb3oBe ¢ynkimu Malloc HOBBIA smemeHT
(«adpec_2, paszmep 2») nobammsercs B MHOkecTBo allocSET wu ynmamsercs wus3
BTOPOTO MHOJKECTBA €CIIM JAHHBII 3JIEMEHT NPHCYTCTBYeT B MHOXecTBe freeSET
(T.e. ecTb COBIaJCHUE KaK MO aJpecy, TaK U MO pa3Mepy).

1. char® pir = (char®) maWec [517F);

2. /1 check status and free ptr -t e =

1. if {run_status) gl .

4, freelptr]; | .{f ‘ i]

&, /¥ ran program i 3

6. i {err) Y PR— —

;. OO A ks - [-emrrer—
reEturn - e -

Gp |/’ ‘m‘*

L0 git: :------:

1. [double-free: Trew previously freed memory Lo L
12 _I'-'-r\d'ptlL ¥ Miaigeier ittt Ainity (gumie 1.) o B 5

13, return;

Puc. 5. Henonvzosanue namamu nocie ocgo00icoenus
Fog. 5. An example of UAF

Ecimn maHHBIA BIIEMEHT COBMAgaeT TOJBKO MO ajpecy, TO Ieped OOHOBIICHHEM
MHOJKECTB, BBITIOJHSIOTCS JIOTIOJIHUTEIbHBIC ACUCTBUS I 0OpaOOTKH 3HAYCHHMA
anmpeca u pasmepa (eciu pasmep_2 < pasmep 1, To B freeSET nobasnsiercs anemMeHT
«adpec_2 + pasmep_2, pasmep 1 - pasmep 2»). Ilpu Bbei3oBe GyHkuum free
COOTBETCTBYIOLMHI 3JIEMEHT Tepemernaercs u3 MHoxectBa allocSET B MHOXeCTBO
freeSET.

Bo Bpems BBHINONHEHWS HWHCTPYKLIHWH, OCYIISCTBIIIOMIMX JOCTYIN K MaMSTH,
MpOBepsieTCsl HallMuue Yykaszareiass B oOoumx MHOXkectBax. Ommbku UAF
(buKCHPYIOTCS B IBYX CIIydasiX: SJIEMEHT HaiijieH B MHOXkecTBe freeSET u ero Her B
muoxectBe allocSet; oxuH u ToT ke d7eMeHT Berpewaercs B freeSET Gosbiie
0JIHOTO pa3a. PaboTa anropurma npoMLUTIOCTPUPOBaHa Ha puc. 6.

14

Acpsin C.A., Taiicapsin C.C., Kypmanranees I11.®D., Ara6ansa A.M., Oscersin H.I'., Capresin C.C. O6HapyxeHue
omKMOOK, BO3HUKAIOIINX PH HCIIOIb30BaHUN AMHAMUYECKON MaMsATH mocie ocBoboxaeHus. Ipyowt UCI1 PAH, Tom 30,
BbIIL. 3, 2018 ., cp. 7-20

3.2 Npepnaraembin meTon

Juis oBpimeHNst 3(p(peKTHBHOCTH TOMCKa OMIMOOK TpeaaraeTcs oObeIUHUTD IBa
BBIIICONMMMCAHHBIX anroputMa. OOBETUHCHHBIH METOJ MO3BOJIICT MCKATh OIIUOKH
UAF Ha pasHbIX MyTAX MPOrPaMMbl, KOTOPBIC MOIYYAIOTCS HM3-32 BHEAPCHHBIX U
HETPUBHANILHBIX MPOBEPOK B Kone. Ha puc. 7 mpuBeneHbI MPUMEPHI MPOrpaMM, Ha
KOTOPBIX OOHAPYKCHHE MOBTOPHOTO OCBOOOXKICHHS IaMATH HEBO3MOXKHO 0e3
HCIOJIb30BaHusT MHGOPMAIMK O TMOKPBITHH Koja (W3-3a MPUCYTCTBUS YCIOBHBIX
MEPEX0J0B, KOTOPBIC OyIyT BBIMOJHEHBI TOJIBKO MPU BHIIOJHCHUU MPOrPaAMMEI C
OTpe/IeTICHHBIMU BXOTHBIMU JIAHHBIMH).

allocSET = {) 1. maloc (A) 2, malioc (B) 3. use (B)
froeSET = (}
allocSET = {A) allocSET = (A B} aMocSET = {A, B}
1. mafioc(A) freeSET = {} froeSET =) A < allocSET
2, malioc(8) froeSET =
3. usef4) ! | l B
4. freefB)
5. free(8)
Puc. 6. Ilpumep pabomer areopumma
Fig. 6. An example of operation of the algorithm
; w.“.'-. e | ; x-:m:'mkhu ‘ol
o 3. while {*p 1« w00 &8 *p >« U B& p o= V)|

3 e stalus; T4
4) s | #= *{unsigned char *)p - 0
s 6 pe;
6. It search_hey in_texffchar® oy, chae® key) { %
7. W (oey b= NULL 84 Istrstrfstr, key)) & retumn i,
8. retun ! 9.}
9 else 10
0. retam O 11, int main(int ange, char *angvih {
1"} 12. char® str = (char*) molioc (' /1);
12 13, Int num
13, It main(int char® 14, W{arge t= 0)(
2 \lru::‘ 'w"m o 15, printf{"Usage: %5 atrings\n”, aegv{Ol):
15, ribuffer = (char")mafoc(sizeof char)), :;) et ik
16. ot id « operfarg{1]. O_RDONLY | O_CREAT) R
17 medid.) :: strepy(str, angvi 1 11
18 prinO e cont | %", of Duffer) 20. num = myatodstrk:
10 W (strden(aegvi]) > 64 &8 IcheckAs{angvii) (21, ¥ (e > 13 88 1 (oum % 2} (
20 Mstause 11 22, poistf{"ok\n'):
21 froe(r tuller) 23 Jreeisr)
2) 2.)
23 W (Ysearch_key bn_text(rf buffer, acgvi { 25. i (num > M
2% 060 some sl 26. printf"Number is out of range\n");
2%) 27, freelstr): /[Use after free

| 28)
§?)M buffer // Use ofter free 2. retum s

30.)

15

Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M., Hovsepyan N.H., Sargsyan S.S. Dynamic
detection of Use After Free bugs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 7-20

Puc. 7. Owubku nosmopnozo oceoboicoenus namsamu. Ilepsulii npumep ocnogan na owudke
UAF ¢ npoepamme libssh. Ha nepsom npumepe owubra modcem 603HUKHymb Ha cmpoke 26,
a Ha emopom npumepe Ha cmpoxe 27
Fig. 7. Errors of double memory freeing. The first example is based on the UAF error in the
libssh program. In the first example, an error may occur on line 26, and in the second
example on line 27

Jns mpumepoB, mnpuBeneHHbIX Ha puc. 7, ommbka UAF mnpowmsoiiner, eciu
BBINOJIHEHUE MPOrpaMM JAOCTUTHET CTpok 21 u 23 nnsd mepBol M BTOpoOH
MpOrpaMMbI COOTBETCTBEHHO. lIcHonb30BaHUE NpeaaraeMoro MeToJa IO3BOJISET
HaWTH BXOJHbIE TaHHBIC JUISl JOCTHIKEHHS HY>KHOTO 0Ji0Ka B koze (ctpoku 20-21 u
22-23, puc. 7) ¥ IOTOM NIPOBEPUTH IAHHYIO YacTh Ha Hanmuuue ommook UAF.

3.3 CpaBHeHMWe NoaxoaoB AMHAMMUYECKOro aHanusa

B Ta6n. 1 moaxoj, OMUCHIBAGMBIN B TAHHOM CTAaThe, CPABHUBACTCS B MOAXOJAMH,
npuMensieMbiMu B Mayhem u Triton.

Tabn. 1. Pesynomamel cpasHeHus:
Table 1. Results of comparison

Ipeniaraemsilii Triton
per Mayhem

TOIXO0/ UAF
Hcnonb3oBanue NOKpuITHA KOJa | + + -
Odaaiin-noaxoa CUMBOJBLHOTO + + +
BBINOJTHEHUS
OmnJjaifH-noaxoa CUMBOJIBHOIO +
BBINOJTHEHUS
Ipuopurtersl o00padaTbIBaeMBbIX + +
BXOJHBIX TaHHBIX
Ioanep:kka ¢aiijioB, B kKayecTBe + +
BXOJHBIX JaHHBIX

4. Pesynbmamsl

IIpemmaraemsrii MeToz OBLIT IPOTECTHPOBAH HA CHHTETHYECKUX TECTaX, B TOM YHCIIE
Y Ha PUBEAEHHBIX IpuMepax (puc. 1, 7), pe3ynbTaTbl TECTUPOBAHHS NIPUBEICHBI Ha
puc. 8. [laHHble pe3yibTaThl IOKa3bIBAIOT, YTO HAa CHHTETHYECKUX TecTax, IO
CpaBHEHHIO ¢ peanmzanued Triton, MPOM3BOAMTEIHHOCTH BBIpOCHA NPHMEPHO Ha
80%. 3amyck aHanM3a Ha pealbHBIX MPOTrpaMMax IO0Ka3aJl, YTO B OOJBIIMHCTBE
Clly4aeB KOJIMYECTBO CHMBOJIBHBIX YPaBHEHHH CTaHOBMTCSI HACTOJBKO OOJBIINM,
YTO aJrOpPUTM HOKPHITHS Koja Triton He MOXKET PEIIUTh MOJy4YEeHHbIE YpaBHEHUS
JUIsl BCEX IyTEH.

16

Acpsin C.A., Taiicapsin C.C., Kypmanranees I11.®D., Ara6ansa A.M., Oscersin H.I'., Capresin C.C. O6HapyxeHue
omKMOOK, BO3HUKAIOIINX PH HCIIOIb30BaHUN AMHAMUYECKON MaMsATH mocie ocBoboxaeHus. Ipyowt UCI1 PAH, Tom 30,
BbIm. 3, 2018 r., cTp. 7-20

Jns mpoBepKHM NpEeAsoKEHHOTO IOJX0Ja HaMH OBbLIM CHELMalbHO BHECEHBI
ommbOkn UAF B MCXOAHBIN KOJ peasibHBIX MPOEKTOB. bpUIN MCCIeJ0BaHbI TPOEKTHI:
gvgen u3 makeTa graphviz, jasper u3 makera libjasper-runtime u gif2rgb u3 makera
giflib. Ha naHHBIX mpoekTax OIIMOKM OBUTM HAMJEHBI HA Pa3NUYHBIX YPOBHAX
BCTpauBaHMs. B ciydae mporpaMmsl gVQen BcTpauBaHHE OBUIO BBIIIOJHEHO 3a
npeneraMu OfHOM (yHKIMH, MakCHMajJbHas TIIIyOMHa COCTAaBIUIO TPH YPOBHS
(¢pynxmum). Kon BcTpanBaHUs B TaHHOM ciydae IPEACTaBILLI ¢ co00il ycIoBHOE
BBIDQ)XCHUE, CBA3aHHOE C BXONHBIMH JaHHBIMH, W KOX CcaMOH OIIMOKH.
BEImonHeHNe 3TOro yCIIoBUS MPUBOAMIO K BOCIPOU3BEICHHIO TaHHOH OLIMOKH.

B mpoekrax jasper u @if2rgb wm3-3a CIOXHOCTH TIONYYEHHBIX CHMBOJIBHBIX
ypaBHEHUI BCTpaMBaHUE OBLIO BBIIIOJHEHO B IpEAENax TOJBKO OIHOH (YHKIHUH.
Kon BcTpamBaHus ObUT HEOCPEACTBEHHO KOJOM OIIMOKH. Takike OBUIM BBIACICHBI
OT/ICNIbHBIC YYAaCTKH KOZAa M3 pealibHBIX mporpamm conepkamue UAF Ha KOTOpBIX
JIAHHBIH [OJIX0]] CMOT' HATH COOTBETCTBYIOLIHUE OMINOKH.

350
EE 300 §
8 250 \ \
= 200 § § \
EE == "
§ 150 § § §
3 50 \ \ \

Test case 1 Test case 2 Test case 3 Test case 4

& MoaunduumposaHHas Bepcua N Bepcua Triton

Puc. 8. P€3yﬂbmambl CPABHEHUS ONMHOCUMENIbHO 6PEMEHU 6bINOJIHEHUS aHAIU3A
Fig. 8. Comparison results relative to the analysis execution time

5. 3aknroyeHue

B cratpbe mpencraBien meron oOHapyxeHus omubok UAF, BozHHKarommx mnpu
HeNpaBWIBHONH 00paboTKe ykasaTeileld Ha JUHAMHYECKYI0 TaMsaTh. Merox
peann3oBaH ¢ MOMOINIBIO MHPpacTpykTyphbl Triton [9] Ha 6aze amroputma [10] u
anroputMa oOHapyxenus ommbOok UAF. Tlocie mpoBeneHHBIX MOAM(PUKAIUN H
yIy4IIeHn i CYIIECTBYIOLIIEH peaiu3anuu ObLI MOJy4eH MPHPOCT
MPOU3BOIUTENLHOCTH BBITIOJIHEHHUS aHAIIN3A.

17

Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M., Hovsepyan N.H., Sargsyan S.S. Dynamic
detection of Use After Free bugs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 7-20

Cnucok nutepaTtypbl

[1].

2.

[3].

[4].

(5]

[6].

[7].

[8].
[a].
[10].

[11].

[12].

18

D. Dewey, B. Reaves, P. Trainor. Uncovering Use-After-Free Conditions in Compiled
Code. In Proc of the 10th International Conference on Availability, Reliability and
Security (ARES), 2015, pp. 90-99

J. Feist, L. Mounier, ML. Potet. Statically detecting use after free on binary code.
Journal of Computer Virology and Hacking Techniques, vol. 10, issue 3, 2014, pp 211-
217

N.K. Ucaes, I.B. Cunopos, A.1O. I'epacumos, M.K. Epmakos. Avalanche: TIpumenenue
JTUHAMHYECKOTO aHalu3a Uil aBTOMATHYECKOTO OOHApyKCHUs OIMIMOOK B MpPOrpaMMax,
ucnosp3ymoomux cereBbie cokersl. Tpyast UCIT PAH, Tom 21, 2011 r., ctp. 55-70.

B. Lee, Ch. Song, Y. Jang, T. Wang. Preventing Use-after-free with Dangling Pointers
Nullification. In Proc of the Network and Distributed System Security Symposium,
2015, https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/preventing-
use-after-free-dangling-pointers-nullification/, nara o6pamenus 05.05.2018

Yves Younan. FreeSentry: Protecting Against Use-After-Free Vulnerabilities Due to
Dangling Pointers. In Proc of the Network and Distributed System Security Symposium,
2015, https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/freesentry-
protecting-against-use-after-free-vulnerabilities-due-dangling-pointers/, nara
obpamenus 05.05.2018

J. Caballero, G. Grieco, M. Marron, A. Nappa. Undangle: Early Detection of Dangling
Pointers in Use-After-Free and Double-Free Vulnerabilities. In Proceedings of the 2012
International Symposium on Software Testing and Analysis, 2012, pp. 133-143

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert and David Brumley. Unleashing
MAYHEM on Binary Code. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, 2012, pp. 380-394

Pin — A Dynamic Binary Instrumentation Tool, https://software.intel.com/en-
us/articles/pin-a-dynamic-binary-instrumentation-tool, nara o6pamenust 05.05.2018
Triton — Dynamic Binary Analysis Framework, https:/triton.quarkslab.com/, nara
obpamenus 05.05.2018

P. Godefroid, M. Y. Levin, D. Molnar. Automated Whitebox Fuzz Testing. In
Proceedings of NDSS'2008 (Network and Distributed Systems Security), 2008, pp. 151-
166.

A. Aho, J. Ullman, R. Sethi, M. S. Lam. Compilers: Principles, Techniques, and Tools.
Addison Wesley; 2nd edition, September 10, 2006, 1000 p.

Leonardo de Moura, Nikolaj Bjerner. Z3: an efficient SMT solver. In Proceedings of the
14th international conference on Tools and algorithms for the construction and analysis
of systems, 2008, pp. 337-340

Acpsin C.A., Taiicapsin C.C., Kypmanranees I11.®D., Ara6ansa A.M., Oscersin H.I'., Capresin C.C. O6HapyxeHue
omKMOOK, BO3HUKAIOIINX PH HCIIOIb30BaHUN AMHAMUYECKON MaMsATH mocie ocBoboxaeHus. Ipyowt UCI1 PAH, Tom 30,
BbIm. 3, 2018 r., cTp. 7-20

Dynamic detection of Use After Free bugs

?S.A Asryan <asryan@ispras.ru>
13585 5 Gaissaryan <ssg@ispras.ru>
'Sh. F. Kurmangaleev <kursh@ispras.ru>
*A.M. Aghabalyan <anna.aghabalyan @ispras.ru>
“N.H. Hovsepyan <narekhnh@ispras.ru>
‘S.S Sargsyan <sevaksargsyan@ispras.ru>
! Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
Z Institute for Informatics and Automation Problems of NAS RA,
1, P. Sevak str., Yerevan, 0014, Republic of Armenia,
¥ Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
*Yerevan State University
1, Alex Manoogian str., Yerevan, 0025, Republic of Armenia
> Moscow Institute of Physics and Technology (State University),
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
® National Research University Higher School of Economics (HSE)
11 Myasnitskaya str., Moscow, 101000, Russia

Abstract. The article describes new method of use after free bug detection using program
dynamic analysis. In memory-unsafe programming languages such as C/C++ this class of
bugs mainly accurse when program tries to access specific area of dynamically allocated
memory that has been already freed. This method is based on combination of two basic
components. The first component tracks all memory operations through dynamic binary
instrumentation and searches for inappropriate memory access. It preserves two sets of
memory address for all allocation and free instructions. Using both sets this component
checks whether current memory is accessible through its address or it has been already freed.
It is based on dynamic symbolic execution and code coverage algorithm. It is used to
maximize the number of execution paths of the program. Using initial input, it starts symbolic
execution of the target program and gathers input constraints from conditional statements.
The new inputs are generated by systematically solving saved constraints using constraint
solver and then sorted by number of basic blocks they cover. Proposed method detects use
after free bugs by applying first component each time when second one was able to open new
path of the program. It was tested on our synthetic tests that were created based on well-
known use after free bug patterns. The method was also tested on couple of real projects by
injecting bugs on different levels of execution.

Keywords: program dynamic analysis; use after free bug; dynamic symbolic execution; code
coverage; instrumentation.

DOI: 10.15514/ISPRAS-2018-30(3)-1

19

Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M., Hovsepyan N.H., Sargsyan S.S. Dynamic
detection of Use After Free bugs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 7-20

For citation: Asryan S.A., Gaissaryan S.S., Kurmangaleev Sh. F., Aghabalyan A.M.,
Hovsepyan N.H., Sargsyan S.S. Dynamic detection of Use After Free bugs. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 7-20 (in Russian). DOI: 10.15514/ISPRAS-
2018-30(3)-1

References

[1]. D. Dewey, B. Reaves, P. Trainor. Uncovering Use-After-Free Conditions in Compiled
Code. In Proc of the 10th International Conference on Availability, Reliability and
Security (ARES), 2015, pp. 90-99

[2]. J. Feist, L. Mounier, ML. Potet. Statically detecting use after free on binary code.
Journal of Computer Virology and Hacking Techniques, vol. 10, issue 3, 2014, pp 211-
217

[3]. lldar Isaev, Denis Sidorov, Alexander Gerasimov, Mikhail Ermakov. Avalanche: Using
dynamic analysis for automatic defect detection in programs based on network sockets.
Trudy ISP RAN/Proc. ISP RAS, vol. 21, 2011, pp. 55-70 (in Russian).

[4]. B. Lee, Ch. Song, Y. Jang, T. Wang. Preventing Use-after-free with Dangling Pointers
Nullification. In Proc of the Network and Distributed System Security Symposium,
2015, https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/preventing-
use-after-free-dangling-pointers-nullification/, accessed at 05.05.2018

[5]- Yves Younan. FreeSentry: Protecting Against Use-After-Free Vulnerabilities Due to
Dangling Pointers. In Proc of the Network and Distributed System Security Symposium,
2015, https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/freesentry-
protecting-against-use-after-free-vulnerabilities-due-dangling-pointers/, accessed — at
05.05.2018

[6]. J. Caballero, G. Grieco, M. Marron, A. Nappa. Undangle: Early Detection of Dangling
Pointers in Use-After-Free and Double-Free Vulnerabilities. In Proceedings of the 2012
International Symposium on Software Testing and Analysis, 2012, pp. 133-143

[7]. Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert and David Brumley. Unleashing
MAYHEM on Binary Code. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, 2012, pp. 380-394

[8]. Pin — A Dynamic Binary Instrumentation Tool, https://software.intel.com/en-
us/articles/pin-a-dynamic-binary-instrumentation-tool, accessed at 05.05.2018

[9]. Triton — Dynamic Binary Analysis Framework, https://triton.quarkslab.com/, accessed at
05.05.2018

[10]. P. Godefroid, M. Y. Levin, D. Molnar. Automated Whitebox Fuzz Testing. In
Proceedings of NDSS'2008 (Network and Distributed Systems Security), 2008, pp. 151-
166.

[11]. A. Aho, J. Ullman, R. Sethi, M. S. Lam. Compilers: Principles, Techniques, and Tools.
Addison Wesley; 2nd edition, September 10, 2006, 1000 p.

[12]. Leonardo de Moura, Nikolaj Bjerner. Z3: an efficient SMT solver. In Proceedings of the
14th international conference on Tools and algorithms for the construction and analysis
of systems, 2008, pp. 337-340

20

Buffer Overflow Detection via Static
Analysis: Expectations vs. Reality

I.A. Dudina <eupharina@ispras.ru=
Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. Over the last few decades buffer overflow remains one of the main sources of
program errors and vulnerabilities. Among other solutions several static analysis techniques
were developed to mitigate such program defects. We analyzed different approaches and
tools that address this issue to discern common practices and types of detected errors. Also,
we explored some popular sets of synthetic tests (Juliet Test Suite, Toyota ITC benchmark)
and set of buggy code snippets extracted from real applications to define types of defects that
a static analyzer is expected to uncover. Both sources are essential to understand the design
goals of a production quality static analyzer. Test suites expose a set of features to support
that is easy to understand, classify, and check. On the other hand, they don’t provide a real
picture of a production code. Inspecting vulnerabilities is useful but provides an exploitation-
biased sample. Besides, it does not include defects eliminated during the development
process (probably with the help of some static analyzer). Our research has shown that
interprocedural analysis, path-sensitivity and loop handling are essential. An analysis can
really benefit from tracking affine relations between variables and modeling C-style strings as
a very important case of buffers. Our goal is to use this knowledge to enhance our own buffer
overrun detector. Now it can perform interprocedural context- and path-sensitive analysis to
detect buffer overflow mainly for static and stack objects with approximately 65% true
positive ratio. We think that promising directions are improving string manipulations
handling and combining taint analysis with our approaches.

Keywords: software error detection; static analysis; buffer overrun
DOI: 10.15514/ISPRAS-2018-30(3)-2

For citation: Dudina I.A. Buffer Overflow Detection via Static Analysis: Expectations vs.
Reality. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 21-30. DOI:
10.15514/ISPRAS-2018-30(3)-2

1. Introduction

Buffer overflow is a type of program defect caused by buffer access with index that
exceeds buffer’s bounds. This can lead to a program crash or even to a security
vulnerability. Defects of such kind are still common, despite all efforts made to

21

Dudina I.A. Buffer Overflow Detection via Static Analysis: Expectations vs. Reality. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 21-30

eliminate them. There are several techniques one can apply to detect buffer
overflows. One approach is to employ testing and dynamic analysis. These methods
don’t suffer from false positives, but in most cases, it’s impossible to check all
execution paths, so some defects can remain undetected. Another approach is to
analyze program code without executing it. In this way, one can find a defect on any
path, even rarely executed. In this paper, we will focus on the latter approach known
as static analysis.

We are interested in building a buffer overflow detector that is applicable to large
C/C++ programs with millions of lines of code while producing decent analysis
performance and quality. Basic properties of the algorithms constituting such a
detector are well-known and include among others interprocedural analysis, path
sensitivity, and loop handling. However, after initial support for these features has
been made and the quality goals achieved, it is unclear which direction to choose for
the further improvement. The usual development pace that comes from the customer
feedback and own code analysis may be not enough. In the following chapters, we’ll
overview possible sources of inspiration for the buffer overflow detector
development, present our short survey that is based on the buffer overflow-related
vulnerabilities sample from the CVE database, then briefly describe our experience
of developing an overrun detector as a part of the Svace tool, and present our
conclusions from tools and vulnerabilities analysis.

2. Buffer overflow detection techniques and tools

There exist many static analysis tools that can detect buffer overflows. In this
section, we conduct a brief survey on the most popular methods.

Some buffer overflows can be detected during the process of lexical analysis, like in
the 1TS4 tool [1]. Most common errors and bad patterns can be found at this level.
This technique can work really fast and, as it doesn’t involve compilation, can be
easily applied to any code, even if it is not complete. As a result, such analysis can
be performed “on-the-fly” during the process of code development with IDE, so that
erroneous patterns are eliminated on the very early coding stage. Of course, such a
lightweight method is far from being sound, i.e. it misses many defects. Even
changing the name of a variable can prevent such tools from detecting a defect.

To detect more defects a deeper analysis of code is needed. To achieve this, many
tools use the idea of abstract interpretation [2]. Some tools chose different numerical
abstract domains to implement the analysis of integer index values, buffer sizes, and
string lengths. These domains include intervals, zones, octagons, affine equalities,
interval linear equalities, convex polyhedra, tropical polyhedra, etc. [3]. Tools based
on these approaches derive sound relationship between integer values listed above
in varying degrees of precision. Soundness is a major advantage of such tools, but
less precise domains produce large number of false positives, while analysis with
more precise domains doesn’t scale on many real-world programs.

Another popular approach is symbolic execution. The main idea of this method is
performing analysis by traversing all paths in a function separately. This approach
22

Jynuna N.A. Cratiyeckuil aHau3 JUlsl IOMCKa NepernoyiHenus Oydepa: akTyanbHble HANPaBICHUs pa3BUTHSA. Tpyost
UCII PAH, tom 30, Beim. 3, 2018 r., ctp. 21-30

can be used to build a path-sensitive detector i.e. that can find errors that, at the
same time, occur only on a certain feasible function path and are not inevitable for
any single point from this path alone. While processing a particular path, the
analyzer keeps track of variables values and relationships and computes a path
predicate, i.e. a conjunction of all corresponding branch conditions that are taken
along this path. This information is used to prune infeasible paths and check buffer
access instructions. Analyzing all paths in a function can be a challenging task due
to the path explosion, so a number of techniques are proposed to reduce this
problem. A simple, but often effective approach is to abandon the idea of full path
coverage and just to stop the analysis after some threshold or time limit reached.
Another approach is to merge symbolic states at join points, preserving path-
sensitivity of analysis by providing guard conditions for joined states. Third
approach, first introduced in Marple, is employing demand-driven analysis [4], [5],
i.e. reducing the set of analyzed paths by focusing only on those that end with
buffers access.

One of the main obstacles for all mentioned symbolic execution-based approaches is
handling loops. Typical solution is to implement some heuristics to handle the most
simple and common loops and ignore other loops. However, there are methods
proposed to handle loops with multiple paths inside and summarize their effect on
program values [6].

Many buffer overflow errors are caused by violations of function contracts. This can
happen when a caller of a library or a user function provides unexpected data to a
function, or, on the contrary, a function is not able to correctly handle all input cases
implied by the contract. Interprocedural analysis is needed to detect such
inconsistencies.

On the lexical analysis level, formal and actual arguments matching can be based on
similar variables names and usually happens only for the well-known library callees
like memcpy. For more rigorous scan some tools analyze the whole program as a
unified inter-procedural graph. The monomorphic analysis merges information for
every call-site — efficient, but imprecise approach. The polymorphic analysis treats
each call site individually, so this approach provides context-sensitivity but scales
poorly.

An alternative approach is using some approximation of a function’s behavior when
analyzing its caller. These approximations can be provided in user’s annotations, but
they are not always available. A tool can use its own findings obtained by the callee
analysis as an approximation. This approached is called summary-based. By
choosing the right function order, a tool can minimize the number of missing
summaries, but handling recursion still requires additional tricks, e.g. making
several analysis passes over strongly connected components of the call graph.

3. Buffer overflow detection tools benchmarking

For the past twenty years several studies have been published on evaluating and
testing buffer overflow detectors. In addition, there exist different test suites, which
23

Dudina I.A. Buffer Overflow Detection via Static Analysis: Expectations vs. Reality. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 21-30

provide sets of synthetic buggy and correct code snippets to test the abilities and
false positive rate of static analysis tools.

One of the biggest and probably the most popular benchmark is Juliet Test Suite
C/C++, created by NSA’s Center for Assured Software (CAS) [7]. For C/C++ code
it contains 64,099 test cases tagged by CWE entries. Groups corresponding to buffer
overflow defects are CWE 121 — “Stackbased Buffer Overflow” (4,968 tests),
CWE 122 — “Heapbased Buffer Overflow” (5,922 tests), CWE 124 — “Buffer
Underwrite” (2,048 tests), CWE 126 — “Buffer Over-read” (1,452 tests), and CWE
127 — “Buffer Under-read” (2048 tests). Tests in this suite are also tagged with a
number called “flow variant” that represents the complexity of control and data flow
in a particular test case.

Control flow variants cover different types of conditionals (e.g.
STATIC CONST FIVE==5, globalReturnsTrueOrFalse(), etc.) and
different control statements (switch, while, etc.). Data flow variants describe
many types of intraprocedural data flow and interprocedural interaction, e.g. data
passing through function arguments (via pointer, C++ reference, array, container,
etc.), return value, global variable, etc. There are many flow variants that represent
C++-specific features and not applicable to C-tests.

We noticed that the distribution of the flow variants is close to uniform in groups of
our interest. Another observation is large number of tests involving wide characters.
Many tests contain library function usage, e.g. memcpy-like functions, string
manipulations, format string processing, etc.

Toyota ITC Benchmark is a test suite created by Toyota InfoTechnology Center
aimed at the static analysis tool evaluation [8]. It contains 1,276 simple tests (638
erroneous and 638 correct) divided into 9 types and 51 sub-types. Our interest is in
the following tests: sub-types “static buffer overrun” (54 cases), “static buffer
underrun” (13 cases) from the “static memory” type and sub-types “dynamic buffer
overflow” (32 cases), “dynamic buffer underrun” (39 cases) from the “dynamic
memory” type. Each case is represented by a pair of a buggy test and a fixed test.
These samples cover following features in varying combinations: (i) static, stack
and heap buffers; (ii) different element types (char, int, £loat, struct, etc.);
(iii) index calculations (constant, linear and non-linear expressions, passed as an
argument or returned from a function, loop variables and array elements); (iv)
obtaining buffer address (local/global variable, function argument, pointer
arithmetic including loop variables and aliases); (v) buffer size (heap buffers only
with constant sizes, pointer casting); (vi) access types (via index, pointer
dereference, in a library function, in a string function).

4. Survey on overflow-related CVEs

We believe that although evaluating with a test suite could give a good insight in a
particular tool’s abilities, any test suite alone cannot perfectly represent the whole
populations of buffer overflow defects in real code. One (but not the only one) noble

24

Jynuna N.A. Cratiyeckuil aHau3 JUlsl IOMCKa NepernoyiHenus Oydepa: akTyanbHble HANPaBICHUs pa3BUTHSA. Tpyost
UCII PAH, tom 30, Beim. 3, 2018 r., ctp. 21-30

goal for static analyzers is to prevent security vulnerabilities to sneak in the project
source code. We wanted a better understanding of the features of a static analyzer
that are more or less important for achieving this goal. Our survey technique was
inspired by [9] and we mostly followed in their footsteps to produce a set of
vulnerabilities to classify.

We have to note that detection of exploitable vulnerabilities is not the only goal of a
static analyzer. Still there are some types of defects that don’t lead to vulnerabilities
or may not be exploited with ease, but it is undesirable to have those in the source
code. Besides, we believe that nowadays developers more intensively use different
(static and/or dynamic) analysis tools before releasing the product. For this reason,
many simple defects are eliminated during the development process and don’t
appear in the vulnerability databases. Consequently, we think that analysis of the
vulnerabilities can reveal the weakest sides of modern static analysis and show
potential improvement directions.

First of all, we have randomly picked 100 entries from the “overflow” category
from the CVE database [10]. For 25 of them we could find a source code of the
vulnerable version to inspect. For each defect, we have studied its causes in the code
and then classified the defect by several attributes. Our set of attributes is based on
the taxonomy provided in [11] with some changes.

Our first insight is that there are some trends in our sample that can be explained by
the source of this sample (vulnerability database): (i) most of the overflows from
our sample (72%) happened on write memory access, only few on read access; (ii)
only the upper bounds of buffers are exceeded in the defects from our sample; (iii)
almost all defects (92%) occurred when tainted data (unbounded data from network,
file read, input parameters etc.) overflowed some buffer.

We also noticed that simple errors (e.g. using unsafe functions like strcpy) are
present in the old code (before 2010), but rarely in the late entries. We believe that
this can be partially explained by the usage of code analysis tools.

In our sample about a half of overflowed buffers (48%) reside on a stack, other half
(48%) is allocated on a heap, and just a few are global variables.

40% of all defects have overflowed buffer accessed via index (e.g. buf [i]), 12%
via pointer dereference, 44% via library calls, 24% of which are string functions.
The latter requires C-strings modeling to properly analyze such patterns. When
buffer is accessed in a library call, we think of size/limit argument as an index
(when it’s reasonable) for further investigation.

According to our data, 48% of all vulnerable buffers have constant size (all stack
and static buffers and a few buffers on the heap). Another 16% have a size that is
calculated as a linear combination of other variables. As a result, almost half of all
inspected defects require deep analysis of integer variables relationship to detect
them.

Another feature that we have evaluated for every entry is whether buffer allocation
is global or resides in the same function with buffer access. We have found that this

25

Dudina I.A. Buffer Overflow Detection via Static Analysis: Expectations vs. Reality. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 21-30

is true only for 24% of defects. On the other hand, all index calculations are in the
same function with the access in 32% of defects. Both properties are true for 12% of
defects. It follows from the foregoing that interprocedural analysis is essential for
buffer overflow detection.

Last thing that we have checked is whether there exists a program point that any
path through this point will lead to a corresponding error. If there is no such point,
then we assume that path-sensitive analysis is needed to detect this defect. Our
sample contains only 28% of defects, for which such a program point exists. This
means that path-sensitivity will provide the real advantage for a static analysis tool.

5. Svace buffer overrun detector

Svace is a static analysis tool that is designed to find as many defects of different
types as possible with few false positives and acceptable analysis time [12]. The
purpose of this work is to improve the Svace buffer overflow detector with the most
needed features. Our detector implements the interprocedural path-sensitive
detection algorithm based on symbolic execution with state merging [13]. For now,
the analysis scope is limited to detection overflows of buffers with compile-time-
known size. Our detector looks for faulty paths in a function, i.e. it reports a
warning if it finds a path that for any input values is either infeasible or produces an
error. Such a strict defect definition is chosen to prevent many false positives caused
by unknown function preconditions.

For a buffer access instruction, we collect a predicate that implies that there exists a
faulty path through this instruction. We use an SMT solver to search a solution for
this predicate if any. In case of this formula is satisfiable, we use its model provided
by the solver to extract a faulty path. It follows from our experience that simply
asking solver for any index value that exceeds buffer bounds in our case leads to
many false positives. Reasons for that are unknown function precondition and
symbolic path conditions being not precise enough (due to poor loop handling, calls
of unknown or complex functions, etc.).

Our interprocedural analysis is implemented using summaries. In the function
summary, we save the information about relationships between integer values on
function entry and exit points. We also save overflow conditions for those input-
dependent buffer accesses whose correctness can only be checked in the caller
context. Such facts can be propagated to the caller more than once, so the analysis
can find an overflow of a buffer allocated in a function that is far away on the call
stack from a function with the access instruction. We also implemented a heuristic
to handle simple loops that have an inductive variable iterating over an arithmetic
progression. Currently on Android 5.0.2 our detector emits 351 warnings with 65%
true-positive ratio.

26

Jynuna N.A. Cratiyeckuil aHau3 JUlsl IOMCKa NepernoyiHenus Oydepa: akTyanbHble HANPaBICHUs pa3BUTHSA. Tpyost
UCII PAH, tom 30, Beim. 3, 2018 r., ctp. 21-30

6. Conclusion

We have inspected a number of buffer overflow test suites, related CVE entries, and
the source code of large production projects that our tool regularly analyzes. All
three sources are essential to understand the design goals of a production quality
static analyzer. Test suites expose a set of features to support that is easy to
understand, classify, and check. On the other hand, they don’t provide a real picture
of a production code. Inspecting vulnerabilities is useful but provides an
exploitation-biased sample. Besides, it does not include defects eliminated during
the development process (probably with the help of some static analyzer). Finally,
while developing a static analyzer one always deals with false positives produced by
the tool and reported by customers, but getting false negative samples is much more
difficult. True positives reported by the other tools could be useful, but most of the
state-of-the-art tools are proprietary and their results are closed.

From what has been said above it follows that interprocedural analysis, path-
sensitivity and loop handling are essential. An analysis can really benefit from
tracking affine relations between variables and modeling C-style strings as a very
important case of buffers.

Our current goal is to improve the Svace buffer overflow detector to reduce the
number of false negatives while preserving the moderate level of false positives. For
the aforementioned reasons, we think that the most promising directions are
handling buffers with dynamic size, C-string modeling, and tracking tainted values.
We are working now on the extension of our detection technique described in
Section 5 by tracking string length changes happening during string operations in
much the same way as we track buffer indexes while calculating integer values. We
believe that this will be sufficient for most of cases, but there are some promising
works in the area of string solvers [14] that would additionally allow to track also
string contents.

As we have seen, static analysis detection of buffer overflows requires a number of
techniques from vastly various fields to move on the road from expectations to real
code, and there will always be a way to go.

References

[1]. J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. Its4: A static vulnerability scanner for
¢ and c++ code. In Proceedings of the 16th Annual Computer Security Applications
Conference, 2000, pp. 257-269.

[2]. P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
1977, pp. 238-252.

[3]. X. Allamigeon. Static analysis of memory manipulations by abstract interpretation —
Algorithmics of tropical polyhedra, and application to abstract interpretation. PhD thesis,
Ecole Polytechnique X, Nov. 2009. [Online]. Available: https://pastel.archives-
ouvertes.fr/pastel-00005850, accessed: 2018-04-08.

27

Dudina I.A. Buffer Overflow Detection via Static Analysis: Expectations vs. Reality. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 21-30

[4]. W. Le and M. L. Soffa. Marple: A Demand-Driven Path-Sensitive Buffer Overflow
Detector. In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, 2008, p. 272-282.

[5]. L. Li, C. Cifuentes, and N. Keynes. Practical and effective symbolic analysis for buffer
overflow detection. In Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, pp. 317 326.

[6]. X. Xie, Y. Liu, W. Le, X. Li, and H. Chen. S-looper: automatic summarization for
multipath string loops. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis, 2015, pp. 188-198.

[7]. Juliet Test Suite v1.2 for C/C++. User Guide. Available:
https://samate.nist.gov/SRD/around.php#juliet_documents, accessed: 2018-04-08.

[8]. S. Shiraishi, V. Mohan, and H. Marimuthu. Test suites for benchmarks of static analysis
tools. In Proceedings of the 2015 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), Nov 2015, pp. 12-15.

[9]. T. Ye, L. Zhang, L. Wang, and X. Li. An Empirical Study on Detecting and Fixing
Buffer Overflow Bugs. In Proceedings of the 2016 IEEE International Conference on
Software Testing, Verification and Validation, 2016, pp. 91-101.

[10]. CVE security vulnerability database. Security vulnerabilities, exploits, references and
more. Available: https://www.cvedetails.com/index.php, accessed: 2018-04-08.

[11]. K. Kratkiewicz and R. Lippmann. A taxonomy of buffer overflows for evaluating static
and dynamic software testing tools. In Proceedings of Workshop on Software Security
Assurance Tools, Techniques, and Metrics, vol. 500, 2006, pp. 44-51.

[12]. A. Borodin and A. Belevantcev. A static analysis tool Svace as a collection of analyzers
with various complexity levels. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 6, 2015,
pp. 111-134.

[13]. ILA. Dudina and A.A. Belevantsev. Using static symbolic execution to detect buffer
overflows. Programming and Computer Software, vol. 43, no. 5, 2017, pp. 277-288.
DOI: 10.1134/S0361768817050024.

[14]. Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A z3-based string solver for web
application analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, 2013, pp. 114-124.

CTtaTtuyeckum aHanus gns novcka nepenonHeHus oydepa:
aKTyasribHble HanpaBJieHUs1 pa3BUTUA

U A. Jlyouna <eupharina@ispras.ru>
Hucmumym cucmemnozo npoepammuposanusi um. B.I1. Ueannuxosa PAH,
109004, Poccus, 2. Mocksa, yn. A. Conocenuywina, 0. 25
Mocxkosckuii 2ocyoapcmeenusiii ynugepcumem um. M.B. Jlomonocoea,
119991, Poccus, Mocxkaa, Jlenuncxue eopul, 0. 1

AnHotamms. B mocnennme pecstuneruss nepenonHenue Oydepa octadTcs OXHHM U3
TJIABHBIX HMCTOYHMKOB TPOTPAMMHBIX OIIHOOK M SKCITyaTHPyeMbIX ys3BUMocTed. Cpeau
MpOYMX TOAXOJOB K YCTPAHEHUIO MOMOOHBIX Je()EKTOB AKTHBHOE DPAa3BUTUE MONYIHIN
pa3IMYHBIE METOJIBI CTATHYECKOTO aHaIu3a. B paboTe paccMaTpHBalOTCsl OCHOBHBIE OAXOIBI
U MHCTPYMEHTBI, HCHONb3yeMble I PELIeHHs 3TON 3ahadd, C LEeNbI0 BBIIBUTH Haubonee
TIOIYJSIPHBIE METOJBI M THIIBI OOHApYy)XMBaeMBIX OIIMOOK. Takke HcCleNOBaHBI HAOOPHI

28

Jynuna N.A. Cratiyeckuil aHau3 JUlsl IOMCKa NepernoyiHenus Oydepa: akTyanbHble HANPaBICHUs pa3BUTHSA. Tpyost
UCII PAH, tom 30, Beim. 3, 2018 r., ctp. 21-30

cunrernyeckux Tecros (Juliet Test Suite, Toyota ITC benchmark) u BeiGopka dparmeHToB
KOJla PEATbHBIX IPWIOKEHHH, COJEpKallUX OSKCIUTyaTUPYEeMyIO OIIMOKY IepeTIOoIHEHHS
Oydepa. Jnd NOHMMaHHA HANpPaBICHUH pa3BUTHA MPOMBIIUICHHOTO CTaTHYECKOTO
aHAIN3aTOpa BaXHO PAacCMAaTpUBaTh 00a 3TH UCTOYHUKA MPHMEPOB OMIUOOYHBIX MPOrPAMM.
HaGopbsl TecTOB ouepuMBalOT KPYr CHTyaluii, KOTOpbIE HEOOXOAMMO MOJJAEpPKaTbh B
aHaNU3aTope, MpU 3TOM HUX JIETKO TNOHATh, KiIaccuuuupoBaTh U HpoBeputh. C apyroi
CTOpPOHBI, OHH HE OTPAXAIOT paclpelelieHNe TaKUX CUTYallMid B pealbHOM Kone. Bribopka
YA3BUMOCTEH W3 IIPOMBIIUICHHBIX IIPOEKTOB TaKXKe IIPEJCTaBIsIeT HHTEpeC I
HCCIIE0BAHMS, HO OKa3bIBAeTCSl CMENIEHHON B CTOPOHY AKCILTYaTHPYEMBIX OIINOOK U K TOMY
JKe He BKIFOYAaeT OINMOKW, MCHpaBJICHHBIE Ha CTaIuM pa3paboTKH (BO3MOXKHO, KaK pa3 ¢
HCTIONb30BaHUEM CTAaTHUYECKOr0 aHaiamu3aTopa). [loiaydeHHBIE MaHHBIE OBUIM HCIIOIB30BaHEI
JUIL BBIACNEHHS OCHOBHBIX IIa0JIOHOB Je(EKTOB, KOTOpbIe JOJDKEH OOHapyKUBaTh
CTaTHYECKOI aHaIM3aToOp C TOYKH 3pPEHHUs IOIb30BaTels. B pesynbrare McciemoBaHHS K
Hapbollee BaXHBIM BO3MOXHOCTSIM ~ CTaTHYECKOTO — aHaIM3aTopa ObUIM OTHECEHBI
MEXIMPOIEAYPHbIH IyTe- M KOHTEKCTHO-UyBCTBUTEIBHBIA aHaIM3, a Takke Oa3oBas
noanepkka HUKIOB. Kpome TOro, NoJe3HBIMH OKAa3bIBAIOTCS OTCIeXHBaHWE ad(OUHHBIX
OTHOIICHUH MEXAy MEepeMEHHBIMA MW MOJCIHPOBAHME CTPOK KaK BaXXHOTO CIIydast
UCIIONB30BaHHUSI MAacCHBOB. Pe3ynbTaTel JaHHOTO HCCICIOBAHUS HCIIONB3YIOTCS UL
YIy4IICHHS] IeTEKTOpa MepernoiHeHns 0ydepa, peann3oBaHHOTO B paMKax HHQPACTPYKTYpEI
CTaTHYECKOro aHamm3atopa Svace. Ha naHHbBI MOMEHT HCIOJB3YeTCs MEXKIIPOLEIyPHBII
YyBCTBUTENBHBIH K MyTIM H KOHTEKCTy aHalW3, IO3BOJAIOIINA O0OHApyXuBaTh
nepenoiHeHus Oydepa Ha CTeKe U B CTATHUECKON MaMATH C A0JIeil HCTHHHBIX cpadaThIBaHUI
65%. Ilo pesynpraTaM HCCIENOBaHUS HanOoee TEPCIEKTHBHBIMU HANpaBlIeHUIMHI
NPENCTABISIFOTCS TOJIEPKKAa CTPOKOBBIX OIEpaluii M BHEJPEHHE aHalu3a MOMEYEHHBIX
JTAHHBIX B MMEIOIIHECS TTOIXO0IBL.

KniodeBble cj10Ba: aHANIN3 IPOTPAMM,; CTaTUYECKUH aHAJIN3, IepenoHeHne Oydepa
DOI: 10.15514/ISPRAS-2018-30(3)-2

Jas uutupoBanus: Jyanna M. A. CraTudeckuii aHanu3 A7l TOUCKa TIeperoIHeHus Oydepa:
aKkTyasjbHble HanpasieHus pazsutust. Tpyast CIT PAH, tom 30, Beim. 3, 2018 ., ctp. 21-30
(na anrmmiickom s3bike). DOI: 10.15514/ISPRAS-2018-30(3)-2

Cnucok nutepatypbl

[1]. J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. Its4: A static vulnerability scanner for
¢ and c++ code. In Proceedings of the 16th Annual Computer Security Applications
Conference, 2000, pp. 257-269.

[2]. P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
1977, pp. 238-252.

[3]. X. Allamigeon. Static analysis of memory manipulations by abstract interpretation —
Algorithmics of tropical polyhedra, and application to abstract interpretation. PhD thesis,
Ecole Polytechnique X, Nov. 2009. [Online]. Available: https://pastel.archives-
ouvertes.fr/pastel-00005850, accessed: 2018-04-08.

29

Dudina I.A. Buffer Overflow Detection via Static Analysis: Expectations vs. Reality. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 21-30

[4].

[5].

[6].

[7].

[8].

[al.

[10].

[11].

[12].

[13].

[14].

30

W. Le and M. L. Soffa. Marple: A Demand-Driven Path-Sensitive Buffer Overflow
Detector. In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, 2008, p. 272-282.

L. Li, C. Cifuentes, and N. Keynes. Practical and effective symbolic analysis for buffer
overflow detection. In Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, pp. 317 326.

X. Xie, Y. Liu, W. Le, X. Li, and H. Chen. S-looper: automatic summarization for
multipath string loops. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis, 2015, pp. 188-198.

Juliet Test Suite v1.2 for C/C++. User Guide. Pexum pocryna:
https://samate.nist.gov/SRD/around.php#juliet_documents, nara o6pamenus: 2018-04-
08.

S. Shiraishi, V. Mohan, and H. Marimuthu. Test suites for benchmarks of static analysis
tools. In Proceedings of the 2015 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), Nov 2015, pp. 12-15.

T. Ye, L. Zhang, L. Wang, and X. Li. An Empirical Study on Detecting and Fixing
Buffer Overflow Bugs. In Proceedings of the 2016 IEEE International Conference on
Software Testing, Verification and Validation, 2016, pp. 91-101.

CVE security vulnerability database. Security vulnerabilities, exploits, references and
more. Pexum nocryma: https://www.cvedetails.com/index.php, mnara o6pamenus: 2018-
04-08.

K. Kratkiewicz and R. Lippmann. A taxonomy of buffer overflows for evaluating static
and dynamic software testing tools. In Proceedings of Workshop on Software Security
Assurance Tools, Techniques, and Metrics, vol. 500, 2006, pp. 44-51.

A. Borodin and A. Belevantcev. A static analysis tool Svace as a collection of analyzers
with various complexity levels. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 6, 2015,
pp. 111-134. DOI: 10.15514/ISPRAS-2015-27(6)-8.

ILA. Dudina and A.A. Belevantsev. Using static symbolic execution to detect buffer
overflows. Programming and Computer Software, vol. 43, no. 5, 2017, pp. 277-288.
DOI: 10.1134/S0361768817050024.

Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A z3-based string solver for web
application analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, 2013, pp. 114-124.

Extracting architectural information from
source code of ARINC 653-compatible
application software using CEGAR-based
approach

S.L. Lesovoy <lesovoy@ispras.ru>
Ivannikov Institute for System Programming of RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. It may be useful to analyze and reuse some components of legacy systems during
development of new systems. By using a model-based approach it is possible to build an
architecture model from the existing source code of the legacy system. The purpose of using
architecture models is to analyze the system’s static and dynamic features during the
development process. These features may include real-time performance, resources
consumption, reliability etc. The architecture models can be used as for system analysis as well
as for reusing some components of the legacy system in the new design. In many cases it will
allow to avoid creation of a new system from scratch. For creation of the architectural models
various modeling languages can be used. In the present work Architecture Analysis & Design
Language (AADL) is used. The paper describes an algorithm of extracting architectural
information from source code of ARINC 653-compatible application software. ARINC 653
specification defines the requirements for software components of Integrated Modular
Avionics (IMA) systems. To access the various services of ARINC 653 based OS an
application software uses function calls defined in the APplication/Executive (APEX)
interface. Architectural information in source code of application software compliant with
ARINC 653 specification includes different objects and their attributes such as processes in
each partition, objects for interpartition and intrapartition communications, as well as global
variables. To collect the architectural information, it is necessary to extract all APEX calls from
source code of application software. The extracted architectural information can be further used
for creation the architecture models of the system. For source code analysis an approach based
on Counterexample-guided abstraction refinement (CEGAR) algorithm is used. CEGAR
algorithm explores possible execution paths of the program using its representation in the form
of Abstract Reachability Graph (ARG). In a classical CEGAR algorithm a path in a program
to be explored is called a counterexample and it means a path to the error state. In CPAchecker
tool the basic predicate-based CEGAR algorithm has been extended for explicit-value analysis.
In this paper the extended for explicit-value analysis CEGAR algorithm is applied for the task
of extracting architecture information from source code. The main contribution of this paper is
the application the ideas of counterexample and path feasibility check for the task of extracting
the architectural information from source code.

31

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

Keywords: architectural information, architecture models, ARINC 653, IMA, CEGAR
DOI: 10.15514/ISPRAS-2018-30(3)-3

For citation: Lesovoy S.L. Extracting architectural information from source code of ARINC
653-compatible application software using CEGAR-based approach. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 31-46. DOI: 10.15514/ISPRAS-2018-30(3)-3

1. Introduction

The purpose of using architecture models is to analyze the system’s static and
dynamic features during the development process. These features may include real-
time performance, resources consumption, reliability etc. This aspect is extremely
important while developing complex systems that include both software and hardware
components produced by the different suppliers. Using model-based approach at the
early stages of the development of the project will help to avoid a waste of time and
money for correction of system defects when the system is created. For creation of
the architectural models various modeling languages can be used. The most popular
ones used for architecture modelling are SysML[1] and AADL][2,3].

The model-based development process includes two major project steps. At the first
step, the system model is being created. There are different levels for representation
of the system model. The primary focus of this paper is the architectural models. On
the second step of the project the system model will be used as input for detailed
design and system implementation. This step may also include the model
transformations to some intermediate formats used in system design and
implementation. In the ideal case, the system model can be transformed to the source
code of the system.

It may be useful to analyze and reuse some components of legacy systems during
development of new systems. By using a model-based approach it is possible to build
an architecture model from the existing source code of the legacy system. This model
can be used as for system analysis as well as for reusing some components of the
legacy system in the new design. In many cases, it will allow to avoid creation of a
new system from scratch.

A process of model creation for existing system is called a model-driven reverse
engineering (MDRE). If the source code of a legacy system is available then it is
possible to build a system model from its source code. This process contains two
steps. The first step is source code analysis. The second step is model transformations
to the target output format. This paper describes the first step — source code analysis
for application software that is based on Integrated Modular Avionics (IMA)
architecture and ARINC 653 specification. The goal of source code analysis is to
extract architecture information that is necessary for creation of the architecture
model of the system.

The rest of the paper is organized as follows. Section 2 provides an overview of IMA
architecture and ARINC 653 specification. It also contains a simple example of
source code to be used for further analysis. Section 3 describes the concept of

32

Jlecosoit C.JI. V3BnedeHue apxutekTypHO# nHpOpMannu n3 ucxoauoro koga ARINC 653 coBMecTHMBIX NPHIOKEHHH
¢ ucnoas3oBanueM anropurma CEGAR. Tpyowt UCIT PAH, Tom 30, Bbim. 3, 2018 r., cTp. 31-46

architectural information in source code, a general approach and a particular
algorithm used for extracting architectural information from source code. Section 4
describes the results and outlines the future research and development tasks.

2 IMA

IMA architecture is widely used in avionics industry for implementation the safety
critical applications. In IMA systems multiple avionics applications can share
resources of a single hardware platform (core module) without any mutual influence.
ARINC 653 [4] is a set of documents that define the requirements for software
components of IMA systems. The key concept of ARINC 653 is a partition. ARINC
653 compatible Operating System (OS) provides a dedicated portion of memory and
predefined time slot within a fixed schedule for each partition. It prevents any affect
from software executing in one partition to software in other partitions.

ARINC 653 specification defines that IMA system may include the following
software components: core software, application partitions and system partitions.
Core software consists of OS and APplication/EXecutive (APEX) interface. The
APEX interface defines a set of services provided by the OS for application software.
In each application, partition can be allocated only one application. System partitions
contain system software that can directly interact with the OS without using APEX
interface.

Communications between applications allocated in different partitions is called the
interpartition communication. The interpartition communication is only available via
communication channels. To access a communication channel the application can use
the ports created inside a partition. ARINC 653 supports two port types: sampling
ports and queuing ports.

An application software compliant with ARINC 653 specification has a typical
structure. Such a software can be located in a single partition or in multiple partitions.
To access the various services of ARINC 653 based OS an application software uses
function calls defined in the APEX interface. For each partition several processes can
be created. One process is responsible for partition initialization. This process creates
other processes and various objects. Finally, when the initialization of partition has
been finished this process sets the partition to NORMAL state using
SET_PARTITION_MODE function call. Since this moment a scheduling for all
processes created inside a partition is started. It is important to note that after the
initialization of partition has been finished there is no way to create any new processes
and objects.

An ARINC 653 process is quite similar to a POSIX thread. To create a process, it is
necessary to create a structure that contains the process’s attributes and pass it to
CREATE_PROCESS function. ENTRY_POINT is an attribute of the process that
contains the address of the function that will be called when the process is started.
This function implements the application logic of the process and its communication
procedures with other processes.

33

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

Communications between processes within a single partition is called intrapartition
communication. Buffers and blackboards are used for communication between
processes inside a partition. Semaphores, events and mutexes are used for process
synchronization. Any objects for communication and synchronization can be created
using function calls defined in the APEX interface. The processes located inside the
same partition can also communicate via global variables.

At the end of this section, a simple example of application software will be
demonstrated and explained. The source code fragment of the application software
compliant with ARINC 653 specification is shown in Fig.1. Source code fragment in
Fig.1includes three functions: Run_10_Hz, Run_Monitor and main. In function main
two processes, one event and three sampling ports are created.

static void Run_ 10 Hz(void) {

while (1) {
SET EVENT (wakeup, ret);
READ SAMPLING MESSAGE (port raw data,
(MESSAGE_ADDR TYPE) &sensor_data,
&len, &validity, &ret);
// Some operations with data ..
WRITE SAMPLING MESSAGE (port data out,
(MESSAGE _ADDR TYPE) &output data,
&len2, &ret);
PERIODIC WAIT (&ret pause); }
}
static void Run Monitor (void) {
while (1) {
WAIT EVENT (wakeup, TimeOut, ret);
RESET EVENT (wakeup, ret);
// Some operations with data ..
WRITE SAMPLING MESSAGE (port status,
(MESSAGE_ADDR_TYPE) sstatus_data,
&len, &ret); }
}
void main (void) {
PROCESS ATTRIBUTE TYPE Proc 10 Hz Attributes;
Proc_10 Hz Attributes.ENTRY POINT = Run 10 Hz;
Proc 10 Hz Attributes.PERIOD = 100000000LL;
strncpy (Proc 10 Hz Attributes.NAME, "Proc 10 Hz",
sizeof (PROCESS NAME TYPE));
CREATE PROCESS(&Proc 10 Hz Attributes, s&pid pO,
&ret);
START (pid pO, &ret);
34

Jlecosoit C.JI. V3BnedeHue apxutekTypHO# nHpOpMannu n3 ucxoauoro koga ARINC 653 coBMecTHMBIX NPHIOKEHHH
¢ ucnoas3oBanueM anropurma CEGAR. Tpyowt UCIT PAH, Tom 30, Bbim. 3, 2018 r., cTp. 31-46

PROCESS ATTRIBUTE TYPE Proc Monitor Attributes;

Proc Monitor Attributes.ENTRY POINT = Run Monitor;

Proc Monitor Attributes.PERIOD =
INFINITE TIME VALUE;

strncpy (Proc_Monitor Attributes.NAME, "Proc Monitor",
sizeof (PROCESS NAME TYPE)) ;

CREATE PROCESS (&Proc_Monitor Attributes, &pid pl,
&ret);

START (pid pl, &ret);

EVENT NAME TYPE EventName;
strncpy(EventName, "Wakeup", ..);
CREATE EVENT (EventName, wakeup, ret);

CREATE SAMPLING PORT ("RAW_DATA" ,

port size, DESTINATION, period, &port raw data, ..);
CREATE SAMPLING PORT ("DATA_OUT" ,

port size, SOURCE, period, &port data out, ..);
CREATE SAMPLING PORT ("STATUS", port size,

SOURCE, period, &port status ..);
SET PARTITION MODE (NORMAL, &ReturnCode);
return O;

Fig. 1. Source code fragment with APEX calls.

For process creation, APEX call CREATE_PROCESS is used. The first argument of
CREATE_PROCESS has a type PROCESS_ATTRIBUTE_TYPE. It is a structure
that contains attributes for the created process. The ENTRY _POINT attribute is equal
to Run_10_Hz for the first process and is equal to Run_Monitor for the second one.
Run_10 Hz and Run_Monitor are the function’s names that are called when the
processes are started.

Below in the main function, APEX call CREATE_EVENT is used to create an event
object. An event object has a name Wakeup. Then APEX calls
CREATE_SAMPLING_PORT are used to create three sampling ports. These ports
have the following names: RAW_DATA, DATA_OUT and STATUS. In the end
of the main function APEX call SET_PARTITION_MODE is used to set the partition
to the NORMAL state. After that, OS will invoke functions Run_10 Hz and
Run_Monitor.

A function Run_10_Hz is called periodically with period 10 milliseconds. This value
for period was set in PERIOD attribute during the creation of the first process. Each
time when the function Run_10_Hz is called, it activates the event Wakeup, reads a

35

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

message from sampling port RAW_DATA, performs some operations with data and
writes a message to sampling port DATA_OUT.

Function Run_Monitor belongs to the second process that is an aperiodic. This
function waits for event Wakeup, resets it, performs some operations with data and
writes a message to sampling port STATUS.

3 Source code analysis

3.1 Architectural information in source code

The main goal of source code analysis in the paper is to extract the architectural
information from it. Architectural information in source code of application software
compliant with ARINC 653 specification includes the processes in each partition and
their attributes, all objects created for interpartition and intrapartition communications
and their attributes. It also includes the ways of communications and synchronizations
between processes located inside the same partition or in different partitions. If the
global variables are used for communication between processes inside partition then
these variables also should be considered as architectural information.

The source code fragment in Fig.1 contains the following architectural information:
two processes, one event and three sampling ports. Attributes of each process and
each object (event, port) are also important architectural information. For
synchronization between two processes the event object is used. In the first process
APEX call SET_EVENT is used to activate an event. The second process uses APEX
call WAIT_EVENT for receiving this event. Sampling ports are used in both
processes to communicate with external environment, i.e. with processes allocated in
other partitions or with external devices.

The source code of real avionic application can contain hundreds of processes
communicating with each other and with external environment via large number of
the objects. Extracting such architectural information from source code can be time
consuming task. This paper proposes a way to do it automatically. The next sections
describe a general approach and a particular algorithm used for source code analysis.

3.2 General approach for source code analysis

For source code analysis, an approach based on Counterexample-guided abstraction
refinement (CEGAR) algorithm is used. In CPAchecker tool [5] the basic predicate-
based CEGAR algorithm has been extended for explicit-value analysis [7].
CPAchecker is a tool for configurable program analysis (CPA) [5,6] that combines
the traditional program analyses and software model checking. In this paper the
extended for explicit-value analysis CEGAR algorithm is applied for the task of
extracting architecture information from source code. The algorithm is implemented
in CPAchecker tool.

The algorithm presented in this paper uses a Control-Flow Automata (CFA) as
intermediate representations of the program to be analyzed. CFA is a directed graph

36

Jlecosoit C.JI. V3BnedeHue apxutekTypHO# nHpOpMannu n3 ucxoauoro koga ARINC 653 coBMecTHMBIX NPHIOKEHHH
¢ ucnoas3oBanueM anropurma CEGAR. Tpyowt UCIT PAH, Tom 30, Bbim. 3, 2018 r., cTp. 31-46

containing nodes and edges. A node corresponds to a program location. An edge
corresponds to a certain operation of the program, for example, an assignment
statement, a conditional branch or a function call. During the analysis, the algorithm
constructs an Abstract Reachability Graph (ARG) using a program CFA. ARG is also
a directed graph but its nodes correspond to abstract states of the program. Each
abstract state contains a program location, a data state and a call stack. A data state is
a mapping between program variables and their values. In data state some program
variables may not have the values.

ARG represents possible execution paths of the program. It means that ARG can
contain both feasible (real) program paths as well as the infeasible (spurious) paths.
The program path is feasible if it can be executed at runtime otherwise it is infeasible.
A path in ARG is a sequence of abstract states connected by edges. An abstract state
is reachable if there is a feasible program path that contains this state.

3.3 Extracting APEX calls from source code

Before starting the algorithm description, it is necessary to explain some important
concepts used by the algorithm. The algorithm constructs the ARG by sequentially
adding the new abstract states to it. For the current state the algorithm gets the list of
all its successors and adds each of them to ARG. There is an edge between the current
state and each its successor.

Target states.

Some edges may correspond to a function call in source code. If this function is
defined in APEX interface, the algorithm will need to collect additional information
about this function call.

An abstract state in ARG which immediately follows such a function call is called the
target state. Any target state has an incoming edge with APEX call. For each target
state there is a path in ARG from the initial state to it. The algorithm performs a
feasibility check for these paths.

Precision.

Explicit-value analysis tracks values for the program variables. In many cases it is
enough to track only a part of program variables that are important for a particular
analysis. A set of program variables that are being tracked for the current abstract
state is called a precision. Different abstract states may have different precisions. The
empty precision means that no variables are being tracked. The full precision means
that all variables are being tracked. As described in [6] the value analysis algorithm
implemented in CPAchecker can change a precision during the analysis depending
on some conditions. It is called a precision adjustment.

An edge in ARG can correspond to a program operation that changes a value of a
program variable. For example, an assignment operation changes the value of the left-
hand operand, for a function call the values of arguments are assigned to function's
parameters, etc. When the algorithm handles an edge between the current state
(predecessor) and next state (successor) it uses a precision of the predecessor. If

37

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

precision of the predecessor contains the current variable, then the algorithm
evaluates and stores its new value in abstract state. The algorithm of analysis can use
the values of variables stored in abstract states for different purposes.

Fig. 2 presents a pseudocode of the main algorithm for extracting the architectural
information from source code. This algorithm implements a classical CEGAR cycle
extended for explicit value analysis [7] and is applied for the task of extracting
architectural information from source code.

CFA of the program is used as an input data for the algorithm. The algorithm uses
two variables to store the abstract states: “reached” and “waitlist”. A variable
“reached” contains the set of abstract states that have been explored already. A
variable “waitlist” contains the set of abstract states that have to be explored on the
next steps of the algorithm.

At the beginning, the algorithm takes the initial state from CFA and put it to “waitlist”.
After that, the external loop of the algorithm begins. The algorithm takes and removes
the current state from waitlist. Further the algorithm gets all reachable successors for
the current state using function “getAbstractSuccessors”. A pseudocode for the
function “getAbstractSuccessors” is shown on Fig.3. The first operation of the
function gets all successors (CFA nodes) of the current state. Then the function
consecutively handles the edges (function “handleEdge”) between the current state
and each its successor. The function “handleEdge” takes two parameters. The first
parameter is an edge to be explored. The second parameter is a precision. The
precision is taken from the edge predecessor. Depending on the operation in source
code that the edge corresponds to, the function “handleEdge” performs the following
actions:

e For an assignment operation, the algorithm evaluates a new value for this
variable. The new value for a variable will be stored in abstract state if this
variable is contained in the precision.

e For a function call, the function’s arguments are assigned to function’s
parameters.

e For a conditional branch, a logical value for a condition is evaluated. If the
logical value of a conditional branch is equal to FALSE then the function
“handleEdge” return FALSE. It means that this successor is not reachable.
In all other cases the function returns TRUE and the current successor is
added to the list of reachable successors. So, function
“getAbstractSuccessors” returns for the current state a list of all its reachable
SUCCESSOTrS.

FUNCTION main
INPUT

CFA of the program;
OUTPUT

38

Jlecosoit C.JI. V3BnedeHue apxutekTypHO# nHpOpMannu n3 ucxoauoro koga ARINC 653 coBMecTHMBIX NPHIOKEHHH
¢ ucnoas3oBanueM anropurma CEGAR. Tpyowt UCIT PAH, Tom 30, Bbim. 3, 2018 r., cTp. 31-46

Architectural information
VARIABLES
reached - a set of states that have been reached;
waitlist - a set of states to be explored;
BEGIN
initState = getInitialState (CFA);
addStateToWaitlist (initState);
// Traverse through all CFA nodes.
LOOP WHILE waitlist # 0 // External loop.
curState = getAndRemoveStateFromWaitlist();
// Get all reachable successors of the current state.
successors = getAbstractSuccessors (curState);
// Traverse through all reachable successors.
FOR EACH nextState IN successors // Internal loop.
IF isTargetState (nextState)
path = getPathToState (nextState);
IF isPathFeasible(path) = FALSE
// Refine the path.
performRefinementForPath (path,
reached, waitlist);
BREAK // Go to external loop.
END IF
END IF
merge (nextState, reached);
update (reached) ;
addStateToWaitlist (nextState) ;
END FOR EACH
END LOOP
END
Fig. 2. The main algorithm for extracting the architectural information from source code
Further in internal loop the main algorithm traverses through all reachable successors
for the current state. At this part of algorithm, a successor is called as a “nextState”.
The algorithm checks whether a nextState is a target state. If it is a target state, the
algorithm calculates a path in ARG from the initial state to the current target state and
checks its feasibility using function “isPathFeasible”. In a classical CEGAR
algorithm a path in a program to be explored is called a counterexample and it means

a path to the error state. In the current algorithm it is just a path to the target state we
need to explore.

The algorithm of function “isPathFeasible” is shown in Fig. 4. To check the path
39

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

feasibility the algorithm consecutively passes through all edges of the path, starting
from the initial state. The algorithm analyses the operations for each edge. To track
all program variables, for each state on the path the full precision is set, i.e. the
algorithm performs the feasibility check for a path with the full precision.

FUNCTION getAbstractSuccessors
INPUT
curState // Current state.
RETURN
reachableSuccessors // All reachable successors.
BEGIN
// Get all successors of the current state.
allCFASuccessors = getAllSuccessors (curState);
FOR EACH successor IN allCFASuccessors
edge = getEdge (curState, successor);
precision = getPrecisionForState (curState);
IF handleEdge (edge, precision) = TRUE
// Add successor to reachableSuccessors.
addToSet (reachableSuccessors, successor);
END IF
END FOR EACH
RETURN reachableSuccessors;
END
Fig. 3. The algorithm of function getAbstractSuccessors

Each edge on the path is handled with the function “handleEdge” that was already
described above. For a conditional branch the function “handleEdge” may return
FALSE if logical condition is not satisfied. The path is not feasible if for any edge on
the path the logical condition is not satisfied. In this case the function “isPathFeasible”
returns FALSE. In all other cases the path is feasible. If the path is feasible then at the
last state of the path the values for all program variables assigned on this path are
known. The last edge and the last state of the path is passed to a function
“handleApexCall”.

FUNCTION isPathFeasible
INPUT

path
RETURN

TRUE - path is feasible;

40

Jlecosoit C.JI. V3BnedeHue apxutekTypHO# nHpOpMannu n3 ucxoauoro koga ARINC 653 coBMecTHMBIX NPHIOKEHHH
¢ ucnoas3oBanueM anropurma CEGAR. Tpyowt UCIT PAH, Tom 30, Bbim. 3, 2018 r., cTp. 31-46

FALSE - path is not feasible;
BEGIN

// Traverse through all edges.

FOR EACH edge IN path

precision = FULL;

IF handleEdge (edge, precision) = FALSE
RETURN FALSE
END IF

IF isLastEdge (edge, path) = TRUE
lastState = getSuccessor (edge) ;
handleApexCall (edge, lastState);

END IF

END FOR EACH
RETURN TRUE
END
Fig. 4. The algorithm of function isPathFeasible

The last edge contains the information about the APEX call. The last state contains
values for all program variables on the path. The function “handleApexCall” extracts
all architectural information including the function name for the last APEX call,
values for its argument and call stack. It is important to note that the algorithm extracts
architecture information only from the APEX calls that belong to a feasible paths.
The algorithm collects the architectural information for each APEX call and uses it
as output data. The format of the output data will be described in the next section.

If the algorithm has detected that a path is infeasible, then it will refine this path.
During refinement procedure the precision for some abstract states of the path are
changed by adding variables for tracking. The refinement procedure is described in
detail in [7]. Finally, the algorithm will update the ARG in such a way that will
eliminate the infeasible path or its part for the further analysis.

At the end of the internal loop the algorithm tries to merge the nextState with already
reached states, updates reached states and adds the last explored state (nextState) to
“waitlist”. These steps are described in details in [7] (see section “Reachability
Algorithm for CPA”).

The described above steps of internal loop are being repeated for each reachable
successor of the current state.

Then the algorithm leaves the internal loop and continues its execution by taking the
first step on the main loop. It takes the next state from “waitlist” variable and repeats
all steps already described above. The algorithm terminates when all ARG abstract
states have been processed.

4

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

3.4 Output format

The algorithm keeps the collected architectural information in the internal format. For
further processing the architectural information has to be transformed to the external
representation. The export format depends on the tool that is used for creation the
architecture models. The architectural information can also be exported to human-
readable format. In Fig. 5 the architectural information extracted by the algorithm
from the source code fragment in Fig. 1 is presented in a human-readable format. The
presented architectural information is divided onto sections. The first section contains
information about ARINCG653 processes. There are two processes with names
Proc_10_Hz and Proc_Monitor. Below the process name there are the list of its
attributes. On the Fig3 there are only three attributes are presented: PROCESS_ID
ENTRY_POINT and PERIOD. PROCESS ID is a serial number of the process
inside a partition. ENTRY_POINT is a name of the function that is being called when
the process is started. PERIOD shows the period’s duration in milliseconds.
INFINITE_TIME_VALUE in source code corresponds to aperiodic process. The next
sections contain the information about other ARINC653 objects created in the source
code.

ARINC653 SAMPLING_PORTS section shows three sampling ports and its
attributes.

ARINC653 SAMPLING_MESSAGES section shows what processes are using
sampling ports for sending (WRITE subsection) and for receiving (READ subsection)
messages. For example the port DATA_OUT is used by the first process (function
Run_10_Hz) for sending messages.

ARINC653 EVENTS contains information about the events that have been created
and used in the source code.

ARINC653 EVENTS section has three subsections: SET_EVENT, WAIT_EVENT
and RESET_EVENTS. The name of the subsection corresponds to the APEX call.
For example, a subsection SET_EVENT corresponds to APEX call SET_EVENT that
activate an event.

==ARINC653 PROCESSES==
Proc 10 Hz
PROCESS ID: 0
ENTRY POINT: Run 10 Hz (0)
PERIOD = 100 ms

Proc Monitor
PROCESS ID: 1
ENTRY POINT: Run Monitor (1)
APERIODIC

==ARINC653 SAMPLING PORTS==

42

Jlecosoit C.JI. V3BnedeHue apxutekTypHO# nHpOpMannu n3 ucxoauoro koga ARINC 653 coBMecTHMBIX NPHIOKEHHH
¢ ucnoas3oBanueM anropurma CEGAR. Tpyowt UCIT PAH, Tom 30, Bbim. 3, 2018 r., cTp. 31-46

1) RAW DATA
MAX MESSAGE SIZE = 128
PORT DIRECTION = DESTINATION
REFRESH PERIOD 1000

2) DATA OUT
3) STATUS

ZZARINC653_SAMPLING_MESSAGES==
=WRITE=
1) PORT NAME=DATA OUT;

ENTRY POINT=Run 10 Hz (0);
2) PORT NAME=STATUS;

ENTRY POINT=Run Monitor(1l);
=READ=
1) PORT NAME=RAW DATA;

ENTRY POINT=Run 10 Hz (0);

==ARINC653_EVENTS==
=SET EVENT=
1) EVENT NAME=Wakeup;

ENTRY POINT=Run 10 Hz (0)
=WAIT EVENT=
1) EVENT NAME=Wakeup;

ENTRY POINT=Run Monitor (1)
=RESET EVENTS=

Fig. 5. The architectural information in human-readable format.

In the analyzed source call there is only one such a call for event with a name Wakeup.
The ENTRY_POINT string contains a name of the ENTRY_POINT function where
this call was made. In the real code the ENTRY_POINT function is determined using
a call stack information. The serial number of the process is shown in parentheses. In
the Fig.3 we can see that event Wakeup was set in function Run_10_Hz that belongs
to the process with PROCESS_ID equal to 0 (Proc_10 Hz). From the section
WAIT_EVENT, we can understand that the function Run_Monitor waits for the event
Wakeup using APEX call WAIT_EVENT. The function Run_Monitor belongs to
process Proc_Monitor. So, we can see that the event Wakeup is used by two processes
for synchronization.

The representation of architectural information in the human-readable format is
presented only for explaining the content of such information and is useful mainly for
debug purposes. As it was mentioned above for further processing the architectural

43

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

information should be transformed to the format that is supported by the external
tools.

4 Results and conclusions

The algorithm presented in the paper allows extracting architectural information from
source code of ARINC 653-compatible application software. The main contribution
of this paper is the application the ideas of counterexample and path feasibility check
for the task of extracting the architectural information from source code. In the
presented algorithm the task of extracting architectural information from source code
has been solved by transforming it into the task of path feasibility check.

The work of the algorithm is demonstrated on the simple example. By this moment
the algorithm has been tested on the several software applications that are compatible
with ARINC 653 specification. These applications contained up to 50 ARINC 653
process and up to 30 objects for communications.

The next task to be done is to extend the algorithm for extracting from source code
the global variables that are used for communication between processes inside
partition. It is also necessary to implement the algorithm of transformation of the
architecture information to the architecture model.

References

[1]. OMG Systems Modeling Language (OMG SysML™) Version 1.5, 2017.

[2]. [Online]. Available: http://www.omg.org/spec/SysML/1.5/

[3]. SAE International standard AS5506C, Architecture Analysis & Design Language
(AADL), 2017. [Online]. Available: http://standards.sae.org/as5506¢/

[4]. Feiler P., Gluch D. Model-Based Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language. Addison-Wesley, 2012.

[5]. ARINC Specification 653P1-4. Avionics Application Software Standard Interface Part 1
— Required Services. Published by SAE-ITC, Maryland, USA. August 21, 2015.

[6]. [Online]. Available: https://cpachecker.sosy-lab.org/

[7]. D. Beyer, T. A. Henzinger and G. Theoduloz. Program Analysis with Dynamic Precision
Adjustment. In Proc, of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, 2008, pp. 29-38.

[8]. Beyer D., Léwe S. Explicit-State Software Model Checking Based on CEGAR and
Interpolation. Lecture Notes in Computer Science, vol. 7793, pp 146-162.

44

Jlecosoit C.JI. V3BnedeHue apxutekTypHO# nHpOpMannu n3 ucxoauoro koga ARINC 653 coBMecTHMBIX NPHIOKEHHH
¢ ucnoas3oBanueM anropurma CEGAR. Tpyowt UCIT PAH, Tom 30, Bbim. 3, 2018 r., cTp. 31-46

N3BneyeHne apxuTeKTypHON MHpOPMaLIMN U3 UCXOQHOTO
koaa ARINC 653 coBMeCTUMbIX NPUITOXKEHUN C
ucnonb3oBaHuem anroputma CEGAR

C.JI. Jlecosoti <lesovoy@ispras.ru>
Hncmumym cucmemmnozco npoepammuposanus um. B.I1. Ueannurxoea PAH,
109004, Poccus, e. Mocksa, yn. A. Concenuypina, 0. 25

AHHOTaumMsi. MoJIeNbHO-OpHEHTUPOBAHHBIN TOAX0J K pa3paboTKe IO3BOJIAET IOCTPOUTH
apXUTEKTYPHYIO MOJENb CYIIECTBYIOIIEH CHCTEMBI MO €€ McXoaHoMmy koay. IToctpoenHas
apXUTEKTypHas MOJETb CYIIECTBYIOIIEH CHUCTEMBbl IO3BOJSIET IPOAHAIU3UPOBATH €e
pa3NnyHbIE CTATHYECKUE M JUHAMUYECKHE XapaKTePHCTUKH, BKIIFOYas IIPOU3BOAUTEILHOCTD,
TpeOyeMble armapaTHble PecypChbl, HAJIEKHOCTb M JIpYyrue. ApXUTEKTypHbIE MOZAEIH MOTYT
UCHOJIB30BAaThCSl KaK JUIsl aHaIW3a, TaK M I8 MOBTOPHOTO HCIIONBb30BAaHHUS HEKOTOPBIX
KOMITOHEHTOB CYILECTBYIOIIEH CHCTEMbI B HOBOM IPOEKTe. Bo MHOTHX Citydasix Takoi HOIX0x
MO3BOJISIET M30€XkKaTh MOCTPOCHHUS HOBOH CHCTEMBI ¢ Hyis. [CO3laHUs apXHUTEKTYPHBIX
MozieNield MOTYT HCIIOJNb30BAaThCSA Pa3iIM4HbIe SA3bIKM MOJENIMpOBaHHA. B naHHOH paGore
UCHONIB3YeTCsl A3bIK aHalM3a W HpoekTHpoBaHust apxurekrypel (AADL). [laHHast crarbs
OIMCHIBAET AJITOPUTM H3BJICYEHHS apXUTEKTYpHOH HH(pOpMarmy u3 ucxonuoro koga ARINC
653 coBMecTHMBIX nporpamMMHelX npunoxeHni. Crenudukanus ARINC 653 onpenenser
TpeOOBaHUS K IPOrpaMMHBIM KOMIIOHEHTAaM JUISi CHUCTEM HHTErPUPOBAHHON MOIYJIbHOU
aBuonnkn (MMMA). [Ins nmoctyma K pasiuyHBIM CepBUCAM OINEPALOHHON CHCTEMBI
NPOrpaMMHBIE TPHIOKEHUS MCTONB3YIOT — NPHUKIAJHOW HCHONHAEMBIH uHTepdeiic.
ApxurextypHas HHYOPMALHSA B ICXOJHOM KOZIE MPOrPAMMHBIX IPHIOKECHUH COBMECTUMBIX €
tpeboBanusiMu crienndukau ARINC 653 Britrodaet mporecchl B KaXIoM paszeiie, 00beKTh
IUIsL B3aMMOAEHCTBUSL MEXIy IpOLecCaMH BHYTPH M 3a IpeieliaMH pasiena, a TakkKe
rinobanbHble NepeMeHHble. [l aHajau3a MCXOIHOrO KOJa W IIONYYeHUsS apXUTEKTYpHOU
nHboOpMaIMU HEOOXOAMMO NPOAHAIM3UPOBATH BCE IPOrPAMMHBIC BBI3OBBI NPHKIAJIHOTO
ucnoynHgemMoro uaTepdeiica. M3pieueHHas apxXureKTypHas HHPOpPMAIUS Jajiee UCIIOJIb3YeTCs
IUIsL TIOCTPOCHMS AapXMTEKTYPHBIX Mojeieidl cucremsl. Jlnsg aHanM3a MCXOIHOrO Koja
ucnosb3yercs noaxo Ha ocHoBe anroputMa CEGAR (yrouHeHne aOGCTpakUUH ¢ HOMOLIBIO
KOHTpIIPUMEPa), LIMPOKO HCIOIb3YEMOro IPH BepU(DHUKALMH IIPOrPAMMHOI0 00ECHIeYEHHUS.
Anroputm CEGAR anHanu3upyer BO3MOXHBIC MYTH HCHOIHEHUsSI HPOrPAMMBI, HCIIONb3Ys
IpeJICTaBIeHue POrpaMMbl B Bujie abcTpakTHOro rpada aocTikumocTu. B kinaccuueckom
anroputme CEGAR wccieryeMblii yTh POrpaMMbl HA3bIBASTCSl KOHTPIIPUMEPOM M 03HAYAET
IyTh OT Hayaja IPOrpaMMbl 10 HEKOTOPOro OLIMOOYHOro COCTOSHMSA. I MOATBEPKICHHS
Hanmuuusg ommOku B kome mnporpammbl anroputm CEGAR — BBINONHSET —MPOBEPKY
JOCTH)XKHUMOCTH JUIsl uccienyemoro mytd. B mporpammuom uHcrpymente CPAchecker
0a30BbIii OCHOBaHHBIM Ha mpenukatax aaroputM CEGAR paciivpen misi aHaidu3a SIBHBIX
3HAUEHUI MEepeMEeHHbIX. B MaHHOW cTaTbe pacHIMpeHHbIN Ul aHalu3a SIBHBIX 3HAYECHUH
nepemernbix anmroputM CEGAR wucnonmb3yercst Ui 3afadd M3BJICYEHHS apPXUTEKTYPHOM
uHpopMald W3 KMCXOAHOrO Koma mpuioxkeHuid. OCHOBHOM BKIaA [aHHOW CTaTbu
3aKJII0YaeTCsl B IPUMEHEHNH Ul KOHTPIIPUMEPa M MPOBEPKH JOCTHXUMOCTH IYTH K 3a/1a4e
U3BJICYCHHS aPXUTEKTYPHON MH(OPMALIMK U3 HCXOIHOIO KOJIA MPUIIOKCHHH.

45

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

KiioueBbie cnoBa: apxutekTypHas uHpopmarws, apxurektypubie moxenn; ARINC 653;
HHTETpHpOBaHHAs MoxyiIbHast aBHoHUKa (IMA); anropurm CEGAR

DOI: 10.15514/ISPRAS-2018-30(3)-3

Jus mutupoBanust: JlecoBoit C.JI. M3BiedeHue apXuTeKTypHOU HH()OPMAIIUU U3 UCXOIHOTO
xoma ARINC 653 coBMecTHMBIX IprIoKeHHH ¢ ucrons3oBanueM anroputMa CEGAR. Tpynst
HUCIT PAH, Tom 30, Bem. 3, 2018 1., crp. 31-46 (wa amrmiickom s3bike). DOI:
10.15514/ISPRAS-2018-30(3)-3

Cnucok nutepatypbl

[1].
[21.
[3].
[4].
[5].
[6].
[71.

8.

46

OMG Systems Modeling Language (OMG SysML™) Version 1.5, 2017.

[Online]. Pexxum nocryma: http://www.omg.org/spec/SysML/1.5/

SAE International standard AS5506C, Architecture Analysis & Design Language
(AADL), 2017. [Online]. Pexxum mocryma: http://standards.sae.org/as5506¢/

Feiler P., Gluch D. Model-Based Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language. Addison-Wesley, 2012.

ARINC Specification 653P1-4. Avionics Application Software Standard Interface Part 1
— Required Services. Published by SAE-ITC, Maryland, USA. August 21, 2015.
[Online]. Pexxum nocryma: https://cpachecker.sosy-lab.org/

D. Beyer, T. A. Henzinger and G. Theoduloz. Program Analysis with Dynamic Precision
Adjustment. In Proc, of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, 2008, pp. 29-38.

Beyer D., Lowe S. Explicit-State Software Model Checking Based on CEGAR and
Interpolation. Lecture Notes in Computer Science, vol. 7793, pp 146-162.

Bonpocbl HAYCTpUarbHOro NpuMeHeHus
CUHXPOHU3ALMNOHHbIX KOHTPAKTOB Npun
ANHaMU4YeCKOM NOoMucCKe roHoK B Java-

nporpammax

B.IO. Tpuganos <vitaly.trifanov@gmail.com>,
Canxm-Ilemepbypeckuil 20cyoapcmeeHHblIl YHUgepcumen,
198504, Poccus, Canxm-Ilemepbype, Yuusepcumemckuii np., 0. 28

Aunorauusi. Cocrosiuust ToHkH (data race) Bo3HHMKAaeT B MHOTOIOTOYHON MpOrpamMme IpH
OJTHOBPEMEHHOM OOpaIIeHNN HECKOJIbKHX IIOTOKOB K pas3jielsieMblM aHHBIM. CyIiecTByeT
JIBa OCHOBHBIX II0/IX0J1a K OOHAPY)KEHUIO TOHOK — CTaTHYECKHH aHaJH3 MporpamMMsl (6e3 eé
3amycka) M JUHaMH4eckoe OoOHapy)KeHHe TOHOK B mpolecce paboTsl mporpammsl. Panee
aBTOpaMH OBUI MPEUIOKEH TOYHBIH BBICOKOTIPOM3BOAUTEINIBHBIA AWHAMHUYECKHI MOIXON K
OOHapy)KEHMI0 TOHOK Ha OCHOBaHHM CHELMAIBHBIM 00pa3oM COCTaBICHHBIX
CHHXPOHH3ALHOHHBIX KOHTPAKTOB — YAaCTHYHBIX CIeHU(UKAIMH TOBEICHHUS KJIAacCOB M
Ha0OpOB METOJIOB IIEJIEBOTO IPHIIOKEHHS B MHOTONOTOYHOW cpexme. JlaHHas cTaThs
paccMaTpHBaeT BONPOC WHIYCTPUAILHOTO MPUMEHEHHsS KOHLENIUH CHHXPOHH3AI[HOHHBIX
KOHTPaKTOB Ha KPYIHBIX HArpy)XEHHBIX MHOTONOTOYHBIX MPWIOKEHHsX. [IpemioxeHsl
MeToJ] 00pabOTKM KOHTPAKTOB M apXUTEKTypa COOTBETCTBYIOLIEIO MOIYJNS ANHAMHYECKOTO
nerekropa JDRD, BbISBICHBI OCHOBHBIC MPOOJIEMHBIE MeCTa M MOTCHIHAIBHBIC TOUYKH
TaJieHNs IPOU3BOUTEIBHOCTH, pa3paboTaHO TEXHUYECKOE PELICHNE, JIUIIEHHOE MOA00HBIX
pooIeM.

KiloueBble cj10Ba: COCTOSHHE TOHKH, MHOI'OIIOTOYHOCTD, IMHAMHAYECKUN aHaln3;
aBTOMAaTH4YCCKOC 06Hapy)1<eHI/Ie OIIHOOK.

DOI: 10.15514/ISPRAS-2018-30(3)-4

Jnasn unurupoBanus: Tpudanor B.JO. Bompockl HHIyCTpHATbHOTO NPHUMEHEHUS
CUHXPOHU3ALMOHHBIX KOHTPAKTOB IPU AMHAMHUYECKOM IIOMCKE TOHOK B Java-mporpaMmax.
Tpynst UCII PAH, towm 30, Bbim. 2, 2018 r., ctp. 47-62. DOI: 10.15514/ISPRAS-2018-30(3)-
4

1. BeedeHue

MHOTOMPOIECCOPHBIE U MHOTOSIZIEPHBIE CUCTEMbI HAa4ajiu CBOE pa3BUTHE B KOHIIE
XX Beka W Ha TEKYIIUH MOMEHT (aKTUISCKH BBITECHIJIM OIHOIPOIIECCOPHBIC
BBIYHCIINTEbHbIE MalliHbl. OCHOBHBIM TPEUMYIIECTBOM IOJOOHBIX CHCTEM
SIBJISIETCSI BO3MOXKHOCTb OJTHOBPEMEHHOTO BBIMOJIHEHUS Pas3IUuHbIX

47

Trifanov V.Yu. Applying synchronization contracts approach for dynamic detection of data races in industrial
applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 47-62

MOCIIEOBATEIbHOCTEH WHCTPYKIMI mapayuiesbHo. Hambonee momynsipHOU
IIPOrPaMMHOI apXUTEKTYpOM TaKUX CHUCTEM SIBISAETCS MOJEIbL pPa3AEIAEMOU
MaMsATH, B KOTOPOH HECKOJBKO IOTOKOB YIPAaBJICHHS OOMEHHMBAIOTCS TaHHBIMU
yepe3 OOLIyl0 maMsATh. Takasg apXWUTCKTypa JICKHT B OCHOBE TaKUX IITHUPOKO
pacmpocTpaHEHHBIX B MHAYCTPHH s13bIKOB Kak C++ u Java [1].

Opraan3anusi KOPPEKTHOTO B3aNMOACHUCTBHS HECKOJIIBKHX TIOTOKOB SIBJISIETCS OJTHON
W3 CaMbIX CIIOKHBIX 3aJad B IPOTPaMMHUPOBAHUH, 3[€Ch BO3MOXKHBI CEpPBHE3IHBIC
ommOKy, Takue Kak B3aumuble OnokupoBku (deadlocks), romomanume (thread
starvation) u ronku (data races).

T'oHka (MM COCTOSIHME TOHKHM) BO3HUKAET B MHOTOIOTOYHOW MpOrpaMme, KOoraa
HECKOJILKO TIOTOKOB OJHOBPEMEHHO OOpAILAIOTCsl K Pa3essieMbIM NaHHBIM, M XOTs
OBl OIHO U3 3TUX OOpaIEHUH ABJISETCS 3aMUChI0 JaHHBIX [2]. OCHOBHAs ONAaCHOCTh
TOHOK 3aKJIFOUaeTcssi B TOM, YTO OHHU MPUBOAAT K MOBPEKICHHUIO TI00ANbHBIX
CTPYKTYp AaHHBIX, HO IpOrpamMMa IPH 3TOM 3a4acTyl0 MPOAOJDKAET padoTy, YTo
NPUBOMUT K COOSIM M HENPEIBHICHHBIM pe3yjbTaTaM. YIIEpO OT TOHOK MOXKET
MPHUBOIUTH K OTPOMHBIM (PHHAHCOBBIM MOTEPSIM U K YEIOBEUYECKUM KepTBaM [3, 4].
Bo3HUKHOBEHHE TOHKM 3aBHCHT OT YepeAOBaHHS OIepaldii B TMOTOKaxX. [Ipum
BHEITHEM YIIPAaBICHHH TIOTOKaMH (a WMEHHO TaK YCTPOCHO IIOAaBIIIOIICE
OOJNBIIMHCTBO CHCTEM) MIEPEKITIOYCHHE MEXKIY HUMH IIPOUCXOANUT HEMPEACKa3yeMo,
YTO 3aTPYAHSAET BO3MOXKHOCTH BOCIIPOW3BEICHHS TOHOK Ha CTAJAHU TECTHPOBAHHS.
Takum 00pa3oM, 3a/1ad4a aBTOMaTHICCKOTO OOHAPYKEHUSI TOHOK aKTyallbHa, BaXKHA
W HaxOJIUTCS B IOJIE BHUMAaHHS HCCIeNOBaTeNied Ha TPOTSKEHHH HECKOJIBKUX
JIECATUIIETU.

[IpuHATO BBHIAETATH 1BAa OCHOBHBIX IMOAXOAa K aBTOMATHYECKOMY OOHAPYKCHHUIO
roHok. IlepBblli — 3TO CTaTHYECKUMU TOIXOJ, KOTOPBIM MpEeAroyiaraeT aHajiu3
HCXOJIHOTO KOJla MporpaMMsbl Oe3 e€ 3amycka. Hampumep, BO3MOXXHO HOCTPOCHHE
rpada BemoaHenust nporpammsr (control flow graph, CFG) u pacuér mMHOXecTBa
yICPKUBAEMBIX TTOTOKaMu OJIOKHpOBOK. Takoi anropurm HasbiBaeTcs lockset [5, 6]
1 00JIa1aeT CYIIECTBEHHBIM HEAOCTATKOM — C €T0 MOMOIIBI0 MOKHO OTCIIEXKHBAThH
TOJIBKO OTIEPAIlii CHHXPOHM3AINH, OCHOBAHHBIE HA OJIOKMPOBKaX. B coBpemMeHHOM
NPOTPAMMHUPOBAHMK 3TO CTAHOBHUTCS BCE MEHEE aKTyallbHO, MOCKOJBKY
pa3paboTaHbl HEOJOKHPYIOUINE ONEPAIMH CHHXPOHU3AIWU U THUIIOBBIC CTPYKTYPHI
JAHHBIX, TaKWe Kak odepenp W xem-tadmuua [7]. B mpocTBIX ciydasX MOKHO
VCIICIIHO JIOKa3aTh KOPPEKTHOCTh IporpamMm 0e3 OJOKHPOBOK C IOMOIIBIO
TSOKEIIOBECHBIX METOJIOB — HarpuMep, aroputMa Jexkepa win [lerepcona. Ananus
WCIIONIB30BAaHUSI OOBEKTOB M KOHTeKcTa [8-11] Takke MO3BOISIET KOPPEKTHO
0o0pabaTbIBaTh HEKOTOpPHIE APYrHe CHOCOOBI CHHXPOHHM3AIMH. Takke BO3MOXKEH
aHaM3 C TOMOIIbI0 MpoBepkw Mogened [12-13] wim wcmons30BaHUA
JOTOJIHUTENBHBIX THITOB [14] 1 MX BBIBOJIA C TIOMOIIBIO aHHOTaui [15-16].
Bropoit moaxon — auHaAMHUYECKHH, B paMKax KOTOPOTO aHaJIU3 MPOTPaMMBbl
OCyIIEeCTBIIIETCS. BO BpeMsi e€ BoimodHeHUs [17-24]. OH aHanM3upyeT JUIIb
TEKYIIUi MyTh BBITOJHEHHS MMPOTPaMMBI, HO B HEM MOXET 00pabaThIBaTh JTIOOBIE
OTIepalliil CHHXPOHU3AINHA M 00JIaaTh CTOIPOICHTHOW TOYHOCTBIO, 0€3 JI0KHBIX

48

Tpudanos B.JO. Bonpock! HHIyCTPHATFHOTO IPUMEHEHNS CHHXPOHH3AIMOHHBIX KOHTPAKTOB IPH JTMHAMHYECKOM
TOUCKe TOHOK B Java-nporpammax. Tpyoer UCIT PAH, tom 30, e 3, 2018 r., ctp. 47-62

cpabateiBanmii 1-To U 2-ro poma. OgHaKO HAa TPAKTHKE €r0 TOYHOCTh CHIIBHO
OTpaHMYEHA MPOM3BOIUTEIBHOCTBIO, IIOCKOIBKY 00paboTka Bcex omepanuit
CHHXPOHHM3AaIlMM W OOpalIeHruil K pa3feisieMbM NaHHBIM TpeOyeT B COTHH pa3
0OoJBIIIe PECYpCOB, YeM BEHIMOJIHCHUE CaMOl aHAM3UPYyeMOoi mporpammel. Crieyer
OTMETHTh, YTO MOCICIHUE Pa3pabOTKU B cdepe MUHAMHYCCKOTO TIOMCKA TOHOK
CBOIIATCS K COKPAIICHHUIO O0JIACTH aHAJK3a C MOMOIIBI0 PA3IIUUHBIX TEXHUK, B TOM
WITH HHOM BHJIE KEPTBYIOIIMX TOYHOCThIO aHamm3a [25-26].

Panee aBTOpamMu ObUT NPEATIOKEH MOAXOJ CUHXPOHUSAYUOHHBIX KOHMPAKMOS,
KOTOPBIH MO3BOJISET CYIIECTBEHHO MOBBICUTH MPOU3BOAUTEIILHOCTh TUHAMUICCKOTO
OOHapy>XeHHsT TOHOK 0€3 MOoTepu TOYHOCTH [27-29]. DTOT MOAXOH MOKa3al
XOpOIllMe TMpaKTUYEeCKHe pe3yabTaThl, HO B MpOIECCe €ro HHAYCTPUAILHOTO
NPUMEHEHUsT OOHapyXWICS psa TpyaHocTedl. Bo-mepBbIX, CO3JaHHBIC
pa3paboTINKaMi KOHTPAKTBI MOTYT COJACpKaTh HETOYHOCTH W OINMOKH, a BO-
BTOPBIX, KOHTPAKTHl HYKHO 3((eKTHBHO NMpHMEHATH B MpoIlecce aHalu3a Koja,
YTOOBI TOCTUYh SKOHOMHH HAKJIaTHBIX PAacX0I0B Ha cOOp MH(POPMALIUHU U IIPOBEPKY
TOHOK BO BpeMs paOOTHI IIPHITOKEHHSL.

B maHHOU cTaThe MPEAIOKECH MOAXO0] K aHATIN3y, BePUPHUKAINN U THHAMIICCKOMY
MPUMEHEHHI0 KOHTPAaKTOB, OCHOBAHHBIH HA TIIOCTPOCHHH JepeBa KOHTPAKTOB
(amamor rpada mTOTOKAa ympaBieHHWHA), W NPOJCMOHCTPHPOBAHA €TO
1eN1eco00Pa3HOCTh U MPaKTHYECKasl MOJIE3HOCTb.

2. CUHXPOHU3ayUOHHbIe KOHMpakmbl u demekmop jDRD

OCHOBHBIM TOYHBIM aJTOPUTMOM TUHAMHYECKOTO OOHapyXeHHS TOHOK B
MpoTrpaMMax, OCHOBAHHBIX Ha MOJETH Pa3lIeiIeMON MaMSTH, SBISETCS alTOPUTM
happens-before [18, 30], sBustoumiics, (GHaKTUYECKH, MOUCKOM TOHOK «IIO
OTIpeNIeNIeHUIO». AJITOPUTM, aHAIU3UPYS ONEPaLUd B MPOrpaMMe, BBIAEIICTCS ABa
noAMHoOXkecTBa: (1) omepanuu C JaHHBIMH BHYTPU IIOTOKOB HcHoOJHEeHus u (ii)
OTepaliy CHHXPOHM3AILWY, NEepelaroIine U3MEHEHUS MEXIY MOTOKAMH M TaKuM
00pa30M CHHXPOHU3UPYIOIINE JaHHbBIE Pa3INYHBIX TTOTOKOB.

Paccmorpum paboty anroputMa Ha mpuMmepe s3blKa Java, y KOTOpOro, Hapsmy C
C/C++, mopmens maMsATH MakCHUMaidbHO mpopabortanHa [1]. Ha MHOXecTBe Bcex
omepannii CHHXPOHM3AIMM CYyHOIECTBYeT OTHONICHWE IMOJHOTO IOpAIKa
synchronized-with. Bce omepanuy BHYTpH KaXIO0TO KOHKPETHOTO MTOTOKA TaKKe
YIOPSIIOYEHBl — 3TO MHOPSAOK N0 BpeMeHu. OObeIUHEHHE U IOCIeylolee
TPAH3UTUBHOE 3aMbIKAHME 3TUX JBYX OTHOIIEHUH JAaéT OTHOIIEHUE YaCTUYHOIO
nopsaka, HasbpiBaemMoe happens-before. CoriacHo oOmnpeJeNneHnI0 TOHKH, [IBE
OIepaluy C OHUMH U TEMH K€ JaHHBIMH HAaXOASTCS B COCTOSHUM F'OHKH, €CITH OHU
HE YHopsI04YeHbI ¢ MOMOLIBI0 oTHOIIeHuUs happens-before [1].

TpaaunnonHo BbIMONHEHWE oTHowIeHHWs happens-before orcnexxuBaercst ¢
MOMOIIBI0 BEKTOPHBIX 4YacoB JlammopTa [31]. Takol momxox To4eH, HO oOJamgaeT
O4YeHb OOJBUIMMHU HAKIAJAHBIMH PacXolaMH — CKOPOCTb paboThl HpPOrpaMMBI
3amemisiercss B 10-200 pa3 [32]. JIns HOBBINICHUS MPOU3BOIUTEIHLHOCTH paHee

49

Trifanov V.Yu. Applying synchronization contracts approach for dynamic detection of data races in industrial
applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 47-62

aBTOpaMH OBLT TPEAJIONKEH IOAXOJ CHHXPOHHM3AIHMOHHBIX KOHTPAKTOB, B OCHOBE
KOTOPOTO JISKUT [[BA HAOIIOCHHS.

1. WHpycTpuanbHBIE TPIIOKECHUS HCHONB3YIOT CTOPOHHHE OHONMHOTEKH H
MOJICHCTEMEBI, KOTOPBIE B COBOKYITHOCTH MOTYT IIPEBHIIIATH pa3Mep Koma
CaMOTO TIPIJIOKEHUS B HECKONBKO JecATKoB pa3. Kak mpaBwmio,
B3aMMOJICHCTBHE CO CTOPOHHHMH OHMOIMOTEKaMH OCYIIECTBISIETCS depe3
XOpOII0 TOKYMEHTHPOBAaHHBIE HHTEpQeiicel. B dwacTHOCcTH, 0OBIYHO
XOPOIIIO TOKYMEHTHPOBAHO MOBEICHHE METOMIOB, KJIACCOB M MHTEpP(eiicoB
B MHOTOIIOTOYHOM cpene.

2. Tlpu momcke TOHOK OOBIYHO CTOWT 3ajadya OOHAPYKCHHs OIIHOOK B
COOCTBCHHOM KOJIC TPHIIOKCHHUS, MOCKOJIbKY BBIOOP OHMOTHOTEK OOBIYHO
OCYILIECTBIIACTCS. IKCIIEPTAMH HAa OCHOBAHWUHU OOJBIINX OOBEMOB NAaHHBIX
00 WX TpenpIAyIIEeM HCIOJIh30BAHUHM. DTO IO3BOJIET CHETATh BEIBOA O
CYIIECTBEHHO MEHBIIEH HAA&XKHOCTH CaMoro pa3pabaTbiBaeMoro
NPWIOKEHHSI, YeM HCIONIb3YyeMBIX WM OHONHOTEK W TOACHCTEM, U
c(hOKyCHpOBAaTHCSI HA aHAJII3E¢ COOCTBEHHOTO KOA TIPUIIOKCHHUS.

Ha ocHoBe »THX HaOmojeHuil ObL1 pa3paboTaH METOJ CHHXPOHU3AIMOHHBIX
KOHTPAKTOB, a TaKXKe AMHaMu4eckuii gerekrop jDRD [27-29, 33].

OcHOBHas uies METoJa 3aKII0YacTCS B TOM, YTOOBI pa3eNuTh BECh IPOTPaMMHBIH
KOJI IIETICBOTO TPHIIOKEHHS Ha JIBE YaCTH — IOAJICKAIIYIO aHAIN3y (OOBIYHO 3TO
COOCTBEHHBI KONl TPHIOXKEHHS) H HE MOUICKANYI0 aHalu3y, TO €eCTh
CUHTAIOIIYIOCS HaN&KHOW (OOBIYHO ATO CTOPOHHUE OWMONMOTEKH, TMOACHCTEMBI U
Moxynu). Jamee HE0OXOAMMO OTpeAeTuTs HHTEPHEHCH W METOIBI, MOCPEICTBOM
KOTOPBIX aHAJM3WpyeMas 4acTh B3aHMMOJACHUCTBYET C HEaHAIH3MPYEMOU YacThiO, U
OmucaTh WX IIOBEICHHE B MHOIOMOTOYHON cpene. MHBIMH CJIOBaMH, HYKHO
BBIICJIUTh HUCIOJIb3YEMbIC B NPUIOKEHHH HHTEP(EHCH IPYyruX KOMIIOHCHT,
MPOAHAIM3UPOBATh U KIACCH(DUIIUPOBATH MX KJIACChI M METOJbI TaM B TE€X CIIydasX,
rie PO HUX YTO-TO U3BecTHO. B [33] mpemmaraeTcs cieayromias KiaccuuKaius:

1. BBI30B mapbl METOIOB (WK HECKOJBKO ITap METOIO0B OHOTO KIIacca)
obecrieunBaroT nepenady otHowenus happens-before cormacuo
JIOKYMEHTAIIHH;

2. METOA HUJIN KJIaCC HOTOKO6€30HaC€H, HO HE BOBJICUEH B nepegavy
otHoweHus happens-before;

3. Meroq 00beKTa HE MPEIHA3HAYCH JJIs BBI30Ba B MHOTOIIOTOYHOM Cpejie
(TpeOyeT BHEIIHEH CHHXPOHMU3AINH), HO MOXKET pacCMaTPHUBATHCS KaK
HEMOIU(PHUIUPYIOMNH COCTOSTHIE 00BEKTa-BIaeNbIa (TO €CTh, MOXKET
paccMaTpUBaThCS Kak ONepanus YTeHUS JaHHbBIX).

EmuandHOE ommcaHWe MPHWHAAICKHOCTH MeTona (MM BCEX METONOB Kiacca) K
KaKOW-TO KaTerOpUM M HA3bIBAETCSl CHUHXPOHU3ALMOHHBIM KOHTpakToM. KoHTpakT
JUIL TIapel METOJIOB, OOecmevMBaIOIIUX Mepenady oTHolueHus happens-before,
Ha3piBacTCsl happens-before koHTpakTOM. TOYHOCTH W OrpaHUYEHUS TaKOTO
MOJXONa OMHCaHbl B pabore [28], Tam ke NpPEACTaBICHBI OCHOBHBIC BUJIBI

50

Tpudanos B.JO. Bonpock! HHIyCTPHATFHOTO IPUMEHEHNS CHHXPOHH3AIMOHHBIX KOHTPAKTOB IPH JTMHAMHYECKOM
TOUCKe TOHOK B Java-nporpammax. Tpyoer UCIT PAH, tom 30, e 3, 2018 r., ctp. 47-62

KOHTPAKTOB W IPOAEMOHCTPHPOBAHO MOBBILIEHHE [POU3BOIAMUTEILHOCTU
JHHAMIYECKOTO aHAIIM3aTOPa, YBEIHMYHUBAIOLIEECs ¢ COKPAICHHEM aHAIN3UPYEeMOn
obmacti u poctoM 0a3bl KOHTPakTOB. B mocnenyromei cratee [29] mpeacraBieH
S3bIK OITMCAaHMs KOHTPAKTOB, IO3BOJSIONIMH pa3pabaThiBaTh CHHXPOHU3AIMOHHBIE
KOHTPAKTHI OT/ENIBHBIX METOJIOB, TIap METOJOB WM KiaccoB. Kpome Toro, si3mIk
COJZICP)KUT JAMPEKTUBBI, MO3BOJIIONINE BKJIIOYUTh KOHTPAKTHI U3 APYrux (aitios.
310 00€ecrneurBaeT Mepencoyib3yeMOCTh KOHTPAKTOB — JIOCTATOYHO ONHUCATh OJIUH
pa3 KOHTpaKThl OMONMOTEKH M BHEeCTH (aill ¢ HUMHM B KOMIUIEKT HocTaBku. Ha
JUCTHHTE | Tpe/cTaBiIeH NpuMep KOHTPaKTa, yKa3bIBAIOIIErO HaJIMYHe OTHOLICHUS
happens-before Mexay 3ammchi0 B MOTOKOOE30MACHYIO XEHI-TaONHUIy O TIO
HEKOTOPOMY KJII04y pl M MOCIIEIYIOIMMY YTCHUSMH U3 He€ [0 TOMY JKe KIII0UYy.

sync {

key java.lang.Object=o0, java.lang.Object=p1l;

send
java.lang.Objectjava.util.concurrent.ConcurrentMap.put(java.lang.0Object,
java.lang.Object);

receive
java.lang.Objectjava.util.concurrent.ConcurrentMap.get(java.lang.0Object);

}

Jlucmune 1. Ilpumep xonmpaxma
Listing 1. Contract example

B nanpHeimeM 3TH KOHTPaKTHI MCHOJIB3YIOTCA Ha (a3e TUHAMHYECKOTO aHalu3a:
nepesl BBI30OBOM METOJA JETEKTOP OIpPEAEiseT, €CTb JIM KOHTPAKT AJs 3TOTO
METOJIa, U €CJIH eCTh, TO 00pabaThIBaeT METO/ B COOTBETCTBUH C ITUM KOHTPAKTOM,
YTO M AA€T MPHUPOCT MPOU3BOAUTEIBHOCTH (B NMPOTHBHOM Cllydae HPHUILIOCH OBl
MIPOBOUTH aHAJIN3 BCETO KO/Ia METO/A).

B ocranbHoM cxema yctpoiictBa jJDRD nocratouno cranpaptHa. Ha dase 3amycka
aHAJIM3UPYEMOTO TPUIOKEHHS K HEeMY IOCPEICTBOM CTaHAAPTHOH TEXHOJIOTHH
java-agent mojakmrogaercss Moayab jDRD, KOTOPbIH MOAHGHIUPYET 3arpyKaeMble
KJIaCChl C TOMOIIBI0 TEXHUKM MHCTPYMEHTHpOBaHMs OalT-koma. B kox kiaccos
BCTABJIIIOTCS] HHCTPYKIIMH JJ1s1 00pabOTKH oTepanuii CHHXPOHHU3ALNN U 00paIeHn i
K pa3jesisieMbIM JIaHHBIM. BO BpeMs BBINOJNHEHUsS] TaKUX Olepanuil yrnpasieHue
nepenaérest B jJDRD, KoTOphIii TMHAMHYECKH OOCUMTHIBAET BEKTOPHBIE Yachl H
00OHapy>XKMBa€eT FOHKH.

3. [Ipoeepka KOpPEeKMHOCMU KOHMpaKkmoe

Ha sTane uHgyCTpHanbHOrO BHEJAPEHUs ONMUCAHHON BBIIIE TEXHOIOTUU BO3HUK PSII
CJIOKHOCTEH, TpeOyIOmHMX MPaBUIIBHBIX apXUTEKTYPHBIX U TEXHHYECKUX PEIICHHUH.
B ocHOBHOIi Macce OHU CBSI3aHBI C TEM, YTO B OOIIEM CIIydae KOHTPAKTBI CO3AAI0TCS
Ha OCHOBE Pa3IMYHBIX HCTOYHHMKOB (KOH(pUTypauuoHHble (aiiibl, aHHOTALUH B
KOJe, AOKYMEHTalMs M T.JI.), M 3a4acTyl0 pa3JMYHBIMH CIIEHHAIHCTaMHU. ITO
HEM30€XHO TIPUBOIUT K BO3MOKHOCTH PpasziIMYHBIX OMMOOK — HampuMep,
HETIOJIHOTE, TPOTHBOPEYMBOCTH WM HEKOPPEKTHOCTH COBOKYIHOTO Habopa

51

Trifanov V.Yu. Applying synchronization contracts approach for dynamic detection of data races in industrial
applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 47-62

KOHTPAaKTOB — M TII0O3TOMY TIOCIE€ OOBEAMHEHUS BCEX KOHTPAKTOB BOEIHHO
HEo0X0AnMOo BepH(UIIMPOBATH MOTyYCHHBIN HA00p. BEIXOAHBIMU JTaHHBIMHE MOZYJIS
00paboTKN KOHTPAKTOB SIBISIETCSI HM3MEHEHHBIH KOJ IENEBOTO IPHIIOKEHUS
(MHCTPYMEHTHPOBAHHBIM OalT-KOM), YUMTHIBAIOIIMN KOHTPAKTHI IIPH 00paboTKe
orepanuii B mpuiaoxxeHuu. Takum o0pa3oM, 3a/1aua 00padOTKH KOHTPAKTOB COCTOUT
U3 IBYX CJIEIYIOIIUX YacTell (poueayp).

1. 3arpyska, mpoBepKa KOPPEKTHOCTH M PA3MEIICHAE KOHTPAKTOB B TAMSTH.

2. IlpumeHeHME KOHTPAKTOB M MOAU(HKAIHS KOJIa LIEJICBOTO MPUIIOKEHHS.
[lepBast mpomemypa ocyliecTBISeTCS OOWH pa3 IpH 3alycke mpuiokeHus. Her
OTpaHUYEHUN Ha IMPOU3BOAUTEIBHOCTh 3TOM IPOLEAYpPHI, €€ OCHOBHOHM 3ajaudei
SBIISICTCA MpPOBEpKAa KOPPEKTHOCTH KOHTPAKTOB. BTopas mpomenypa sBiseTcs
KPUTHYHON C TOYKH 3pEHHS NPOU3BOJUTENBHOCTH W TpeOyeT TIIaTeIbHOM
peanu3alyy: KOHTPAKThl OyIyT NIPUMEHSTHCS MIOCTOSIHHO (COTHH pa3 B CEKyH]y) Ha
NPOTSHKEHUU BCETO BpeMEHs PabOThI MPHUII0KEHHSI.
PaccmoTtpum mozapoGHee MepBYyIO MpPOIEAypy. SI3bIK OMHMCAaHUS KOHTPAkToB [29]
NPEIOCTABISET CHHTAKCHYECKUE JUPEKTUBBI IS ClielM(UKAIUU KOHTPAKTOB,
MOATOMY Ha CTaJWM YTEHUs OSTHX KOHTPAKTOB HEOOXOAMMO HPOBECTH
COOTBETCTBYIOIIME MPOLEAYPHI MO0 UX pa3bopy M MpOBEpKe KOPPEKTHOCTH. 31ech
BO3MOJKHBI CIEIYIOIINE CUTYalHH.

1. KoHTpakTel MOTyT NPOTHBOPEYUTH APYTr APYTY; HANpHUMeEp, B OJHOM
KOHTpaKTe yKa3aHO, YTO MeTOox A CHHXpOHHM3HpOBaH ¢ B, a Bo BTOpoM —
49t0, Haobopor, B cuHXpoHM3HpoBaH ¢ A; B TOHOOHBIX CITydas
HEO0XOIMMO CHUTHAIIN3UPOBATh 00 OIIHOKe.

2. KOHTpaxThl KJIaCCOB MOT'YT OBITh HENOJIHBIMHU, T.€. OIIUCHIBATH JIUIIb YaCTh
yOJIMYHBIX METOZIOB Kilacca. B 3ToM citydyae Hy>KHO BbLIAThH
MIpEIyIpexIeHHUE.

3. KoHTpakTsl MOTYT IyOIHPOBATHCS — B 3TOM CIIydae HY>KHO YOSIHUTHCS B X
CEMaHTHUYECKOH HIACHTUYHOCTH.

Jns mpoBepKM HENPOTUBOPEYHMBOCTH KOHTPAKTOB HEOOXOIMMO YOEAMThCS B
OTCYTCTBUM LUKIMYECKHUX KOHTPAKTHBIX 3aBHCUMOCTEH Mexay Humu. s
OoOHapy>XeHHs TaKMX 3aBHCHMOCTEH CTpoWTcs rpad) KOHTPaKTOB. BepmmHamn
rpada SBISIOTCS METOJBI KOHTPAKTOB, a peOpo Mexay mapoil BepmwuH A u B
CYIIECTBYET TOTIa M TOJIBKO TOTAa, Koraa A mpeamectyeT B. CornmacHo npuHIUITY
nojictaHOBKK JIMCKkoB [34] mpW HaciemoBaHWUM TOTOMOK JOJDKEH YIOBIETBOPSTH
KOHTpakTy mpenka. CiiemoBaTeNbHO, I KaXXI0T0 Kiacca IIENEeBOTO MPHUII0KESHUS
HE0OX0IMMO IOJTYIHUTh CIIHCOK €ro MOTOMKOB U JI00aBHTh COOTBETCTBYIOLINE pEOpa
B rpad KOHTpakToB. Hanuume muxiia B TakoM rpade o3HayaeT HaJM4yKe LEHOYKH
OPOTUBOPEYALIUX JPYr APYrY KOHTPakTOB, a OTCYICTBUE LUKIOB —
HENPOTHBOPEYMBOCTH BCEr0 HAOOpa KOHTPAKTOB.

11 ipoBepKkH KOHTPAKTOB KJIACCOB Ha IIOJIHOTY HA JTame 3arpy3kd KOHTPAKTOB
aHATTM3UPYETCs KaXIbIH KJIACC IIEJICBOTO IPWIOKEHUS, IS KOTOPOTO CYMIECTBYET

52

Tpudanos B.JO. Bonpock! HHIyCTPHATFHOTO IPUMEHEHNS CHHXPOHH3AIMOHHBIX KOHTPAKTOB IPH JTMHAMHYECKOM
TOUCKe TOHOK B Java-nporpammax. Tpyoer UCIT PAH, tom 30, e 3, 2018 r., ctp. 47-62

KOHTPAKT, U BBISICHSIETCS, BCE JIM €r0 IMyOJNIHBIE METOIBI YITIOMSIHYTHI B KOHTPAKTE.
Ecnu 310 He Tak, TO BBIIAETCS NPENYNIPEXKIEHUE.

Takum oOpa3om, mmpormenypa 3arpy3Kd W IIPOBEPKH KOPPEKTHOCTH KOHTPAKTOB
HMEET CIAEAYIOLUN BU.

1. Tloctpouth rpad) KOHTPAKTOB.

2. Jlns xaxaoro KOHTpakTa Ha mapy metonos (f, g) xiaccoB A u B no6aButh
B rpad KOHTpaKTHI (f°, g”) Ui BCeX HACIEeTHUKOB KilaccoB A u B.

3. BwImOTHATE IPOBEPKY IIUKIOB B rpade.

4. (OmmumonanbHO). [l BcexX KIIACCOB, YIOMSHYTBHIX B KOHTpaKTax,
NPOBEPUTh HAIWYUE HX MyONHYHBIX METONOB, HE YIOMSHYTHIX B
KOHTpPaKTax.

JaHHas mporenypa peaqn3oBaHa B BHAE KOMIIOHEHTHI, IIPEIBapUTENILHO
oOpabaTpIBaroIeld KOHTPAKTHl A0 3allyCKa [EeNeBOro mpuiokeHus. OHa BbIIaET
JepeBO KOHTAKTOB M JAPYryl0 HH(MOPMAIMIO, HCIOIb3YyeMYI B JANbHEHUIINX
JVMHAMHYIECKUX TPOBEPKax.

4. Apxumekmypa MoQOysisi IPUMeHeHUsI KOHMPaKmMoe

Paccmotpum nponeaypy npuMeHeHUs] KOHTPAKTOB C TOUKHU 3pEHUsS €€ ONTUMaIbHOMN
peanu3zauuy. TouHee, onMileM IPOrpaMMHBIA MOXYJb, KOTOPBIH PEalU3yeT 3Ty
IpoLEeaypy.

JluHamMuueckuil JETEKTOp JOJKEH B PEXKUME PEalbHOIO BPEMEHHM OIPEIENTH
HaJIM4ye KOHTpakTa AJIs onpenenéHHoro Java-mMerona. IIpu 3ToM ckopocTs paboTHI
JIETeKTOpa He JOJDKHA JerpajupoBaTh C POCTOM IPOTPAMMBI, YBEIHMYCHHUEM YHCIIA
KOHTPaKTOB WJIM UepapXuu kiaccoB. OOpaTuM BHUMAHUE, YTO pedb UAET O COTHAX
U THICSYAX ONEpalMid B CEKyHNY, IOCKOJIbKY BBI30BBI METOJIOB B Java-nporpammax
MPOUCXONAT peryisipHo. COOTBETCTBEHHO, pEIICHHE NaHHOW 3amadyd TpeOdyeT
HECTaHJAPTHBIX MOAXO0JIOB KaK K OpraHU3allli CTPYKTYPbI JaHHBIX, YIPaBJIAIOIEH
KOHTPaKTaMH, TaK M K TEXHHYECKHUM PEUICHUSIM II0 HX IPOBEPKE B PEXHUME
peaJIbHOrO BPEMEHH.

B pesynbraTe mocTpoeHHs IepeBa KOHTPAKTOB JUIs KaXKA0TO METoJa CTaHOBUTCA
M3BECTCH Ha0Op KOHTPAKTOB, B KOTOPHIE OH BOBJICUEH. [103TOMYy BO Bpems BBI30Ba
3TOr0 MeToAa B Tpolecce paboTsl nporpamMMsl getekTop jDRD Moxer addexTrHO
HOJYYUTh JaHHYI0 MH(opManuio. st BHEAPEHHSI COOTBETCTBYIOIIMX WHCTPYKIUH
B KOJ IIEJIEBOTO MPHIIOKEHUS HCIIONB3YETCs TeXHUKAa MHCTPYMEHTUPOBAHHS OaifT-
Koma. MexaHmsM e€ paboTHl 3aKiIodaeTcss B clexyromeM: Ha (aze 3arpy3ku
KJIACCOB IIEIEBOTO MPWIOKEHUS B ONEPATUBHYI0 NaMsATh, IOCIE 3arpy3Kd
OYEepe/IHOTO KJlacca yIpaBJjeHue rmnepefaéTcss KOMIIOHEeHTe Instrumentator —
CHennanbHOMY Java-areHTy, KOTOphIi peanm3oBaH B pamkax jDRD m moxer
MoaudummpoBars OalT-kox JaHHOro kmacca (cMm. pwuc. 1). Instrumentator
aHATU3UPYyeT CIUCOK METOAOB Kilacca U, €CIIU JUIsl METOJa CyLECTBYIOT KOHTPAKTHL,
BCTPaMBaeT B Ka4eCTBE NEPBON MHCTPYKLHMH MeToJa 0OpabOTKY 3TOT0 KOHTpPAKTA.
Bo Bpemst paboTsl MOIU(UIIMPOBAHHOE NPHIIOKEHHE aBTOMATHYECKH oOpadoraer

53

Trifanov V.Yu. Applying synchronization contracts approach for dynamic detection of data races in industrial
applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 47-62

KOHTPaKTBl BCeX MeToJoB (kKoMmmoHeHTa RaceDetector). B mpakTudeckoM IuiaHe
HaJIM4re KOHTPaKTa METO/Ia O3HAYaeT CIIeIyIoIIee.

1. HcxonHbelii KOX METOAa aHAIM3UPOBaTh HE HYXHO. VIHBIMH CllOBaMH, BO
BpEMs BBITIOJHEHUsI TeJla METO/Ia JIETEKTOP HE JIOJDKEH MPOBOIUTH HUKAKUX
omepanyii W TMpoBepok. I 3TOro cpasy mocie BXoza B TENO METoxa
JETEKTOp CTaBUT CHEIMAIBHBIA (h1ar B COCTOSIHHE «contract», a Ha BEIXOJC
— coOpaceBaer. Ilepen Tem, Kak BBIIOJHUTH OYEPEIHYIO OIEPALHIO,
JETEKTOp TPOBEPSET COCTOSTHME (hrara sl TEKYIIEro MoTOKa, U €CIH €ro
COCTOSIHAE PaBHO «contracty, ToO UTHOpUPYET omeparuio. TakuM obpaszom,
(yar xpaHUTCS AL KaXIOTO TIOTOKAa OT/AENBHO. YIpaBiieHHe Qiaramu
BBIHECCHO B OTJIENIbHYIO KoMIoHeHTy (kiacc) FlagManager, ocHOBaHHBIN
Ha craHmapTHoil Java-ctpyktype ThreadlLocal, kotopas mpemocTaBiser
3¢ dekTHBHBIN cri0co0 XpaHEeHUs JOKAJIBHBIX TaHHBIX MOTOKA (CM. puc. 1).

2. happens-before KOHTpaKkThl MOIPa3yMEBAIOT CHHXPOHM3AIMIO METOMOB.
O0paboTka 3T0i MH(POPMAIMK peaar30BaHa KJIaCCUYCCKHM CIIOCOOOM — B
BUAE BEKTOpHBIX dacoB (kommoHeHTa ClockStorage, cm. puc. 1). [nsa
XpaHEHHs 9acoB HCIONb3yeTCs MOoToKoOe3omacHas xemnr-rabmmmna. OgHako ¢
y4€ToM BBICOKOW Harpy3kd ¢ OONBIIONH 4YacTOTHI OOpamieHuH
TPaIUIOHHBIE ITOTOKOOE30IacHbIe XEHI-TaONUIbl 34€Ch HE IIOIXOMSAT.
Ilocne psma skcepuMeHTOB ObLTa BHIOpaHa HEOMOKMpYOLIas Xeml-
tabmuma [35]. Ocraéres Bompoc B BBIOOpE KIFOYa LTSI XPAHCHHS YaCOB.
Kirou mpexacraBnsier coboil OTAENbHBIN OOBEKT, COCTOSIIUNA W3 TIOJEH,
yKa3aHHbIX B KOHTpakre. [lockonbky HabOp moneil OT KOHTpakTa K
KOHTPAaKTy MOXET OTJIMYaThCs, KIAcChl OOBEKTOB THHA KITHOY»
TeHEePUPYIOTCS aBTOMaTHYECKH, «Ha JIeTY», HOCPEACTBOM
MHCTPYMEHTUPOBaHMA OaiiT-koma. Ha mpakTuke Takux KIIIOYeH HYXHO He
6omnee 20-30, modTOMYy Ha TMPOU3BOAUTENHHOCTh JUHAMUYECKOTO aHaIN3a
3TO HE OKa3bIBaeT CYIIECTBEHHOTO BIHMAHUS. OTMETHM, YTO OCHOBHAs
paboTa Mo aHaNMM3y TOHOK HpOM3BOAMTCS B KomroHeHTe RaceDetector,
KOTOpasi paboTaeT TOIBKO C BEKTOPHBIMH YacaMHu.

EnuHCTBEHHBIM CYIIECTBEHHBIM HEIOCTATKOM OMHCAHHOTO BBINIE TOJXO0/Ia
SIBIISIETCSI HEOOXOIUMOCTD MTOCTOSIHHOTO oOpaieHus Kk komnonente FlagManager. B
YaCTHOCTH, 3TO PEryJIPHO MPOHCXOAWT NpU padote camoro jDRD, moCKONBKY
BHYTPU HETO HUCHOJB3YIOTCS CTPYKTYpPbl JAAaHHBIX, KOTOPbl€ aKTHBHO HCHOJB3YIOT
KOHTpakThl. OIHO Takoe OOpamieHHWEe 3aHUMaeT Mopsaka | MKC, HO C y4EToM
Oonpmoro yucia oOpamieHnui (AeCATKU-COTHH THICSY B CEKYH/IY) 3TO CYIIECTBEHHO
CHIDKAeT NPOM3BOAUTEIBHOCTE jDRD. BO3MOXHBIM pEIICHHEM MOXET OBITh
MOJIHBIM OTKa3 OT HCIOJIb30BAHUSA CTaHAAPTHBIX Java-KllacCOB BO BHYTPEHHHUX
cTpyKTypax nerekropa jDRD.

54

Tpudanos B.JO. Bonpock! HHIyCTPHATFHOTO IPUMEHEHNS CHHXPOHH3AIMOHHBIX KOHTPAKTOB IPH JTMHAMHYECKOM
TOUCKe TOHOK B Java-nporpammax. Tpyoer UCIT PAH, tom 30, e 3, 2018 r., ctp. 47-62

]
ClockStorage

~
j TargetApplication E A —— —\ Instrumentator

=]
RaceDetzctor il \

\
\

h

FlagManager

Puc.1. Apxumexmypa mo0yns npuMeHeHUs CUHXPOHUZAYUOHHBIX KOHMPAKMOS
Fig 1. Architecture of the contracts processing module.

5. dkcnepumeHmarsnbHoe uccnedosaHue

[IpennoxeHHbIH TOAX0A OBUT IPUMEHEH JUTS aHaIN3a TPEX NMPHUI0KESHUH, HMEFOLTHX
pasHyto crnemuduky. B kaxmom coxmepxkamocs 1000-2000 wimaccoB 0e3 yuéra
UCTIONB3YeMbIX OmOmmorek, a Takke 10-30 morokoB. CHHXpOHH3AaIMOHHBIC
KOHTPAKThl U KaKIOTO IPUIOKEHUS pa3padaThIBAIICh COOTBETCTBYIOIIUMHU
KOMaHJaMH mporpaMMmucToB. Kpome Toro, wucmnosip3oBajcs oOmmii Habop
KOHTPAKTOB, pa3pabOTaHHBIN paHee [UIS CTaHIAPTHBIX CPEACTB CHHXPOHMU3ALNHU
Java. CoBOKYNHBIH pa3Mep KOHTPAKTOB JJISI KaXKAOTO HMPUIOKEHHUS HE MpPEBbINIal
JI0JIeH TIPOIIeHTa OT 0011ero 00bEMa Ko/1a IPIIIOKEHHSL.

B Tabn. 1 mpexacraBineHbl pe3ynbTaThl dKCIepuMEHTOB. B cronbie «KomudectBo
KOHTPAKTOB» YKa3aHO COBOKYIHOE KOJMYECTBO METOIOB, AT KOTOPBIX OBLTH
COCTaBJIEHbl KOHTPAakKThl. CTONOEI| «KOJMYECTBO OUIMOOK» YKa3bIBaeT YHMCIIO
OmMO0K, OOHAPY)KEHHBIX NP TPOBEPKE KOPPEKTHOCTH KOHTpakToB. Ilocnemnmii
CTOJIOCI] COJNEPXKHUT KOJIWYECTBO ITyOJMYHBIX METOAOB, KOTOpBIE HYKAAINCH B
COCTaBJIEHHH KOHTPAKTa, HO OBbUIM MPOIYIIEHBI COCTABUTEISIMU.

Tabnruya 1. Pezynomamul pabomuvl MoOyist 00pabomKy CUHXPOHUIAYUOHHBIX KOHMPAKMO8
Table 1. The contract processing module work results

IIpunoxxenue Kon-Bo koHTpakTOB Kou-Bo ommbok [IponynieHHbIE METOIBI
A 80 0 75
B 135 3 95
C 120 1 80

HaOopbl KOHTPAKTOB B Ka)JOM ClIydae ONMMCHIBAIU roBejeHue nopsaka 500-1000
MeTonoB. Bpemst paboTel Momyns mpoBepku 3aHnMaeT He Oomee 10-20 cexyHz.
OcHOBHasi 4acTb HPOMNYLICHHBIX METOJOB INPHUXOAWNIACH Ha KIACCHI-CTPYKTYPHI
JaHHBIX. Hampumep, nporpamMMuCT yKa3slBal METOJ get CTaHAapTHOW Xell-
tabmuupl (HashMap) wimm crnimcka (ArrayList) kak HeMOIU(QUIUMPYIOIINH, HO He
yKa3blBaJl OCTAJIbHBIC HEMOJU(UIMPYIOIIME METOAbl 3TOro kiacca. EmE B

55

Trifanov V.Yu. Applying synchronization contracts approach for dynamic detection of data races in industrial
applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 47-62

HECKOJIbKMX CIIydasX METOJ BCIoMorarenbHoro kiacca (utility class) ykasweiBaiics
KaK MMOTOKOOE30IIaCHBIH, B TO BpeMsI KaK TAKOBBIM MOYKHO ITOMETUTH BECh KJIAcC.
Takum o00Opa3oMm, BHeApeHHWE MOAYNIA BepU(HUKAINH KOHTPAKTOB OKa3aJoCh
TIOJIC3HBIM ¥ TIO3BOJIMIIO OOHAPYXHUTH HECKOJBKO OIMHOOK W PAN HETOYHOCTEH B
COCTaBIICHUH KOHTPAKTOB MPU JOCTaTOYHO MaJIOM BPeMEHH paboTEI.

OreHKa IPON3BOAUTENFHOCTH BCETO MOIX0a CHHXPOHU3AIIMOHHBIX KOHTPAKTOB Ha
(haze TUHAMHUYECKOTO aHaJHM3a SBIACTCS OTACHBHON 3amaueli, TpeOyromiei, kak
MUHHMYM, pa3pa0OTKH METOAWKH OICHKH. Jlemo B TOM, HYTO, BO-TICPBBIX,
muHaMudeckni metekrop jDRD coBeprmaeT o cTa THICSY OIepariii B ceKszLyl.
Bo-BTOpBIX, BpeMms, 3aTpayuBacMoOe Ha JIMHAMHUYCCKYIO TPOBEPKY KOHTPAKTA,
MOKCT MPECBOCXOANUTH BBIUIPHILI OT €TI0 NPUMCHCHUA.

Tem He MeHee, HA OCHOBE IPOBEICHHBIX SKCIICPUMEHTOB MOTYT OBITH CICIAHBI
HCKOTOPLIC BBIBOJbI IO IMPOU3BOJAUTCIBHOCTH. BO-HepBI)IX, JABa U3 TpéX
npnnomeﬁnﬁ ABIAKOTCA KIHMCHTCKHMMH, W IIOJB30BATCIIM IIOKa3aJIM IMOBBIIICHHC
CKOPOCTH PabOThI MPHIIOKEHUH B CPAaBHCHHH C AHAIH30M IMPH MOMOIIH CTapOr
Bepcun jDRD. Bo-BTOphIX, 00Imee YHCIO 00pabaThIBaeMbIX OIEpaiui
CUHXPOHHM3AallUM B CEKYHAY COKpPATUJIOCh, MOCKOJIbKY KOJUYECTBO [[O6aBI/IBIlII/IXC)I
(oOpaboTKka KOHTPAKTOB) Ha HECKOJBKO TIOPSIAKOB MEHBIIE KOJUYECTBa
ycTpaH€HHBIX (00paboTka omepanuii CHHXpOHH3AIMK Java BHYTPH KOHTPAKTHBIX
MeTtonoB). Kak crienctBme, COKpaTwics W pacxoll NaMATH Ha COJCpKAaHUE
BEKTOPHBIX YaCOB.

[lomyueHHble TpeaBapUTENbHBIC ITaHHBIE CBUACTEIBCTBYIOT O HEYXYIIICHUN
MPOM3BOJUTEIHPHOCTH HAa AHAIM3HPYEMBIX TMPWIOKCHHAX H O TPAKTHICCKOH
NPUMEHAMOCTH TIpeAJIoKeHHOro moaxona. Ho TpeOyrorcs Ooree meTaibHBIC
IKCIICPUMEHTAIBHBIC UCCIICIOBAHHS.

6. 3aknro4yeHue

JuHamudeckuid aHamW3 SIBISETCA OJHHM M3 OCHOBHBIX IIOIXOIOB K
AaBTOMATHYECKOMY OOHAapY)KEHHIO T'OHOK, HO €ro IpaKkTHYecKas MPUMEHHMOCTb
OrpaHHYeHa BONPOCAMH INPOM3BOANUTENBHOCTH. [10AX0a K CHM)KEHHMIO HaKJIaJHBIX
PpacxosoB, OCHOBAaHHBIN Ha ONMMCAHUN CHHXPOHHU3AI[MOHHBIX KOHTPAKTOB CTOPOHHHUX
KOMITOHEHT M 3aMEHE MX aHajHh3a NPUMEHEHHEM JTHX KOHTPAKTOB, ITOKa3aj paHee
BBICOKYI0O TOYHOCTH M TPAKTHYECKYI0 MpHUMEHHMMOCTb. OpmHako Kak pazbop
KOHTPAKTOB, TaK M MX NPUMEHEHHe Ha (ha3e AMHAMUYECKOTO aHallu3a CBS3aHO C
MHOXKECTBOM CJIO)KHOCTeil. BO3HMKAIOT 3ajja4il Kak BaluaalMd ¥ HOPMAaJIM3alHH

lOmen/nv[, YTO 3afadya TECTUPOBAHMS IIPOM3BOMUTEIBFHOCTH Ha MHKPO-YpOBHE (Tak
Ha3bIBaeMbIii MUKPOOSHUMAPKUHT) HEBEpOsATHO ciokHa. Tak, komanzaa pazpadborunkos Core
Java paboTanma Hajg YTWIMTOH, MO3BOJLIIONIEH HAAEKHO HM3MEPATh NPOU3BOIUTENBHOCTH
omepanuii Ha ypOBHE MHKPO- U HAHO-CEKYyHI, OKOJO 5 JIeT — CM. caMy YTHIMTY
(http://openjdk.java.net/projects/code-tools/jmh/) wu BeicTymienne Anekcess [lununésa
(https://www.youtube.com/watch?v=8pMfUopQ9Es).

56

Tpudanos B.JO. Bonpock! HHIyCTPHATFHOTO IPUMEHEHNS CHHXPOHH3AIMOHHBIX KOHTPAKTOB IPH JTMHAMHYECKOM
TOUCKe TOHOK B Java-nporpammax. Tpyoer UCIT PAH, tom 30, e 3, 2018 r., ctp. 47-62

KOHTPAKTOB IIPH 3arpys3kKe, TaK U ONTUMAJIbHOTI'O UX XpaHCHUA U UCIIOJIB30BAHUA BO
BpEMs aHaIn3a LEJIEBOT0 IMPUIIOKEHUA.

Jns permieHus 3THX 3afad MPEUIOKEH METOA IOCTPOEHHUs rpada KOHTPAaKTOB H
NPOBEPKH OTCYTCTBUS LHMKIOB B HEM. Jlaee B HMCXOOHBIM KOJ LEIEBOTO
MPUJIOKEHUS C TIOMOIIBIO TEXHUKH HHCTPYMEHTHPOBAHMS OalT-KoJa BCTPAaBaIOTCA
COOTBETCTBYIOLIUE MHCTPYKIHHU, NPOBEPSIOIINE HATHMYUE KOHTpPAKTa Ul METOJA.
XpaHeHHE YacoB OCYIIECTBISIETCS B BBICOKOCKOPOCTHOW —Xem-rabiuue 1o
TeHePUPYEMBbIM AMHAMHUYECKH CHHTETHYECKMM KI4aM. B pamkax HpuUMeHeHus
aToro monxonma g gerektopa jDRD paspaborana apxuTekrypa MOIyJIs
KOHTPAKTOB U €r0 TeXHUUECKas peaan3arys.

Jopabotanubiii Takum obpazoM jDRD Obut mprMeHEH Ha TPEX MHIYCTPHAIBHBIX
MpUIOKEHUAX. MI3MepeHne OCHOBHBIX METPHK ITOKA3aJI0 KaK MPaKTHUECKYIO MOJIb3Y
OT nocTpoeHus rpada KOHTPaKkTOB (OBLT BBISIBICH PsiJl OLTMOOK U HECOOTBETCTBUI B
pa3pabOTaHHBIX KOHTPAKTax), TaK M COKpalleHHE KoJu4ecTBa 00padaThIBAEMBIX
olepanuii CHHXPOHU3AIMH 33 €AUHHUILY BPEMEHH.

JanbHeitmue paboThl JODKHBI BKIIOYAaTh B ce0s MOCTAaHOBKY IOJHOLIGHHOTO
JKCIIEPUMEHTa 10 HM3MEPEHHI0 BpPEMEHH paboThl JEeTeKTOpa — OT pa3pabOTKU
METOAMKHM 3KCIIEpUMEHTa JO €ro InpoBeneHHs. B kadecTBe HampaBieHUA
JambHEHIIETO pa3BUTHSA CPEACTB CIENU(UKAINK KOHTPAKTOB MOXKHO YKa3aTb
BU3yallbHOE€ MoJenupoBaHue. HHTepec TNpeAcTaBIseT ONHCAaHHE HEPAPXUU
KOHTPAKTOB M COOTBETCTBYIOLIMX MM Java-KJIacCOB M Java-MeTOIOB C MOMOIIBIO
nuarpaMm kiaccoB UML, pacmpeHHBIX M HACTPOEHHBIX IOJIXOISIIINM 00pazoM
[36-38]. Takxe BO3MOXKHBI BHU3yallbHbIC CHCHU(UKANNM MOBEJCHHUS KOHTAKTOB C
MOMOIIBI0 TUHAMUYECKHX Mojenerd [39]. HMHrepecHO wuccienoBaTh 3amady
ABTOMATH3MPOBAHHOTO H3BJICYCHUS ONMMCAHHUS KOHTPAKTOB M3 Java-konma u Java-
JOKYMEHTAI[MK M CBS3b MOBTOPHOTO HCIIONB30BAaHUS KOHTPAKTOB C IMOBTOPHBIM
HCIIONB30BaHueM JTokyMeHTanun [40-41].

Cnucok nutepaTtypbl

[1] Java Language Specification, Third Edition. Threads and Locks. Happens-before Order.
http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4.5

[2] Netzer R., Miller B. What Are Race Conditions? Some Issues and Formalizations. ACM
Letters on Programming Languages and Systems, 1(1), 1992, pp. 74-88.

[3] Blackout Final Report, August 14, 2003, http://www.ferc.gov/industries/electric/indus-
act/reliability/blackout/ch5.pdf

[4] Leveson N., Turner C. S. An Investigation of the Therac-25 Accidents. In IEEE
Computer, vol. 26, N 7, 1993, pp. 18-41.

[5] Engler D., Ashcraft K. RacerX: Effective, Static Detection of Race Conditions and
Deadlocks. Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, 2003, pp. 237-252.

[6] Voung J., Jhala R., Lerner S. RELAY:: Static Race Detection on Millions of Lines of
Code. In ESEC/FSE, 2007, pp. 205-214.

[7]1 Herlihy M., Shavit N. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008, 528 p.

57

Trifanov V.Yu. Applying synchronization contracts approach for dynamic detection of data races in industrial
applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 47-62

[8] Kahlon V., Sinha N., Kruus E., Zhang Y.: Static data race detection for concurrent
programs with asynchronous calls. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the Foundations of Software
Engineering, 2009, pp. 13-22.

[9] Naik M., Aiken A., Whaley J. Effective Static Race Detection for Java. In Proceedings
of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2006, pp. 308-319.

[10] Radoi C., Dig D. Practical static race detection for java parallel loops. In Proc. of the
13th International Symposium on Software Testing and Analysis, ISSTA 13, 2013.
P.178-190.

[11] Xie X., Xue J., Zhang J. Acculock: Accurate and Efficient Detection of Data Races.
Softw. Practice Experience, vol. 43, no. 5, May 2013, pp. 543-576.

[12] Burckhardt S., Musuvathi M. Effective program verification for relaxed memory models.
In Proceedings of the 20th international conference on Computer Aided Verification,
Berlin, Heidelberg, 2008. pp. 107-120.

[13] Huynh T., Roychoudhury A. Memory model sensitive bytecode verification. Form.
Methods Syst. Des., 31(3), 2007, pp. 281-305.

[14] Boyapati C., Lee R., Rinard M. Ownership types for safe programming: preventing data
races and deadlocks. In Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, 2002, pp. 211-230.

[15] Flanagan C., Freund S. Type inference against races. Sci. Comput. Program., Vol 64,
January 2007, pp. 140-165.

[16] Rose J., Swamy N., Hicks M. Dynamic inference of polymorphic lock types. Science of
Computer Programming, 58(3), 2005, pp. 366-383.

[17] Biswas S., Zhang M., Bond M., Lucia B. Valor: Efficient, Software-Only Region
Conflict Exceptions. In OOPSLA, 2015, pp. 241-259.

[18] Flanagan C., Freund S. FastTrack: Efficient and Precise Dynamic Race Detection. In
ACM Conference on Programming Language Design and Implementation, 2009, pp.
121-133.

[19] Kini D., Mathur U., Viswanathan M. Dynamic race prediction in linear time. SIGPLAN
Not. 52(6), 2017, pp. 157-170.

[20] Qi Y., Das R., Luo Z., Trotter M. MulticoreSDK: a practical and efficient data race
detector for real-world applications. Proceedings Software Testing, Verification and
Validation (ICST), IEEE, 21-25 March 2011, pp. 309-318.

[21] Serebryany S., Iskhodzhanov T. ThreadSanitizer: Data race detection in practice. In
Proceedings of the Workshop on Binary Instrumentation and Applications, 2009, pp. 62—
71.

[22] Serebryany K., Potapenko A., Iskhodzhanov T., Vyukov D. Dynamic race detection with
LLVM compiler - compile-time instrumentation for ThreadSanitizer. In RV, 2011,
Lecture Notes in Computer Science, vol 7186, pp. 110-114.

[23] Yu M., Bae D., SimpleLock+: Fast and Accurate Hybrid Data Race Detection. Comput.
J., vol. 59, no. 6, 2016, pp. 793-809.

[24] Zhang T., Jung C., Lee D. ProRace: Practical Data Race Detection for Production Use.
In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017, pp. 149-162.

[25] Bond M., Coons K., McKinley K. Pacer: Proportional Detection of Data Races.
Proceedings of 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2010), Toronto, June 2010, pp. 255-268.

58

Tpudanos B.JO. Bonpock! HHIyCTPHATFHOTO IPUMEHEHNS CHHXPOHH3AIMOHHBIX KOHTPAKTOB IPH JTMHAMHYECKOM
TOUCKe TOHOK B Java-nporpammax. Tpyoer UCIT PAH, tom 30, e 3, 2018 r., ctp. 47-62

[26] Marino D., Musuvathi M., Narayanasamy S. LiteRace: Effective Sampling for
Lightweight Data Race Detection. PLDI '09 Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation, Vol. 44, Issue 6,
2009, pp. 134-143.

[27] Tpudanos B.FO. OOGHapyxeHHEe COCTOSHHI TOHKM B Java-TporpaMmax Ha OCHOBE
CHHXPOHU3AIIMOHHBIX KOHTPAaKTOB. KOMIBbIOTEpHBIE HHCTPYMEHTHI B 00pa3oBaHuu. Ned,
2012, ctp. 16-29.

[28] Tpudanor B.IO, Iurenos .M. JluHamudeckuii moUCK TOHOK B Java-porpammax Ha
OCHOBE CHHXPOHH3AIIMOHHBIX KOHTPAKTOB. Marepuansl koHpepeHmn "MHCTpyMeHTH 1
MeTob! aHanu3a nporpamm (TMPA-2013)", Koctpoma, 2013, ctp. 273-285.

[29] Tpudanor B.YO., [Turenos 1. SI3bIk omuicaHHs CHHXPOHU3ALHOHHBIX KOHTPAKTOB IS
3a/1a4yl MOUCKA TOHOK B MHOTOINOTOYHBIX NpuiokeHusx. [IporpamMmuas umxenepus. T.8,
N 6, 2017, ctp. 250-257.

[30] EImas T., Qadeer S., Tasiran S. Goldilocks: A Race and Transaction-Aware Java
Runtime. Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI'07), 2007, pp. 245-255.

[31] Lamport L. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM, Vol. 21, Issue 7, 1978, pp. 558-565.

[32] Intel Thread Checker, http://software.intel.com/en-us/intel-thread-checker/

[33] Tpudanos B.IO. [IuHamuueckoe OOHAPYKEHHE COCTOSHHN TOHKA B MHOTOTIOTOYHBIX
Java-nporpammax. Jlucc. Ha COMCKaHUE cTeTeHN KaHA. TexH. Hayk. CIIoI'Y, 2013.

[34] Liskov B., Wing J. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst.
16 (6). November 1994, pp.1811-1841.

[35] Click C. A lock-free wait-free hash table.
https://web.stanford.edu/class/ee380/Abstracts/070221_L ockFreeHash.pdf

[36] T'aBpuiioBa T.A., Jlemesa U.A., Kyapsisues J1.B. Mcnonb30BaHue MOJENEH MHKEHEPUH
3HAHMI U TIOATOTOBKM CIICHMAIMCTOB B 00JaCTH WH(OPMAIMOHHBIX TEXHOJIOTHIL.
CucremHoe nporpammuposanue. 2012. T. 7. Ne 1, pp. 90-105.

[37] KozwoB I.B. OcHOBBI BH3yalbHOTO MOAENUpOBaHUs. VIHTepHET-YHUBEPCUTET
Mudpopmarmonssix Texnonoruit (MHTYUT). Mocksa, 2008.

[38] OnbxoBuu JI.B., Ko3uor I.B. Merox aBromaruueckoii Banuaanun UML-crieundukamnmit
Ha ocHoBe s3bika OCL. [Iporpammuposanue. 2003. T. 29. Ne 6, ctp. 44-50.

[39] UsanoB A., Kosuos [I., Mypamesa T. IloBemenueckas mozaeiab RTST-++. 3amucku
cemunapa Kadenpst cucremuoro nporpammuposanust "Case-cpeactea RTST++", 1998.
Ne 1, crp. 37-52.

[40] Jlyume J1.B., KosuoB [I.B., Bacur X.A., TepexoB A.H. 3amaun moucka HEYETKHX
MOBTOPOB ~ TNIPH OPTaHM3aIMH ITIOBTOPHOTO HCIIONB30BAHUS JOKYMEHTAaIlUH.
IIporpammuposanue. 2016. Ne 4, ctp. 39-49.

[41] Kozuos [1.B., PomanoBckuii K.JO. ABTOMaTH3upOBaHHbBIA pe(hakTOPHHT TOKYMEHTAIUH
CeMEWCTB MPOrpaMMHBIX NpoAyKToB. CucremMHoe nmporpammupoBanue. 2009. T. 4, ctp.
128-150.

59

Trifanov V.Yu. Applying synchronization contracts approach for dynamic detection of data races in industrial
applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 47-62

Applying synchronization contracts approach for dynamic
detection of data races in industrial applications

V.Yu. Trifanov <vitaly.trifanov@gmail.com>
St. Petersburg State University,
Universitetski pr., 28, 198504 St. Petersburg, Russia

Abstract. Data race occurs in multithreaded program when several threads simultaneously
access same shared data and at least of them writes. Two main approaches to automatic race
detection — static and dynamic — have their pros and cons. Dynamic analysis can provide best
precision on certain program execution but introduce enormous runtime overheads. Earlier
we introduced high-performance approach that improves performance of dynamic race
detection. The key idea is to define and exclude external trusted parts of code (e.g. libraries)
from analysis and replace them with specifications of their behavior in multithreaded
environment. Possible behavior was classified and corresponding language for describing
contracts developed. Evaluation on lightweight applications confirmed performance boost but
further industrial usage of detector revealed some problems. This article covers that
problems, introduces method and architecture of contract processing module and some
technical features that help to apply proposed approach on high load production systems.

Kuarouenie ciaoBa: multithreading; data race; dynamic analysis; automatic error detection.
DOI: 10.15514/ISPRAS-2018-30(3)-4

For citation: Trifanov V.Yu. Applying synchronization contracts approach for dynamic
detection of data races in industrial applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 3, 2018, pp. 47-62 (in Russian). DOI: 10.15514/ISPRAS-2018-30(3)-4

References

[1] Java Language Specification, Third Edition. Threads and Locks. Happens-before Order.
http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4.5

[2] Netzer R., Miller B. What Are Race Conditions? Some Issues and Formalizations. ACM
Letters on Programming Languages and Systems, 1(1), 1992, pp. 74-88.

[3] Blackout Final Report, August 14, 2003, http://www.ferc.gov/industries/electric/indus-
act/reliability/blackout/ch5.pdf

[4] Leveson N., Turner C. S. An Investigation of the Therac-25 Accidents. In IEEE
Computer, vol. 26, N 7, 1993, pp. 18-41.

[5] Engler D., Ashcraft K. RacerX: Effective, Static Detection of Race Conditions and
Deadlocks. Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, 2003, pp. 237-252.

[6] Voung J., Jhala R., Lerner S. RELAY: Static Race Detection on Millions of Lines of
Code. In ESEC/FSE, 2007, pp. 205-214.

[7] Herlihy M., Shavit N. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008, 528 p.

[8] Kahlon V., Sinha N., Kruus E., Zhang Y.: Static data race detection for concurrent
programs with asynchronous calls. In Proceedings of the 7th Joint Meeting of the

60

Tpudanos B.JO. Bonpock! HHIyCTPHATFHOTO IPUMEHEHNS CHHXPOHH3AIMOHHBIX KOHTPAKTOB IPH JTMHAMHYECKOM
TOUCKe TOHOK B Java-nporpammax. Tpyoer UCIT PAH, tom 30, e 3, 2018 r., ctp. 47-62

European Software Engineering Conference and the Foundations of Software
Engineering, 2009, pp. 13-22.

[9] Naik M., Aiken A., Whaley J. Effective Static Race Detection for Java. In Proceedings
of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2006, pp. 308-319.

[10] Radoi C., Dig D. Practical static race detection for java parallel loops. In Proc. of the
13th International Symposium on Software Testing and Analysis, ISSTA 13, 2013.
P.178-190.

[11] Xie X., Xue J., Zhang J. Acculock: Accurate and Efficient Detection of Data Races.
Softw. Practice Experience, vol. 43, no. 5, May 2013, pp. 543-576.

[12] Burckhardt S., Musuvathi M. Effective program verification for relaxed memory models.
In Proceedings of the 20th international conference on Computer Aided Verification,
Berlin, Heidelberg, 2008. pp. 107-120.

[13] Huynh T., Roychoudhury A. Memory model sensitive bytecode verification. Form.
Methods Syst. Des., 31(3), 2007, pp. 281-305.

[14] Boyapati C., Lee R., Rinard M. Ownership types for safe programming: preventing data
races and deadlocks. In Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, 2002, pp. 211-230.

[15] Flanagan C., Freund S. Type inference against races. Sci. Comput. Program., Vol 64,
January 2007, pp. 140-165.

[16] Rose J., Swamy N., Hicks M. Dynamic inference of polymorphic lock types. Science of
Computer Programming, 58(3), 2005, pp. 366-383.

[17] Biswas S., Zhang M., Bond M., Lucia B. Valor: Efficient, Software-Only Region
Conflict Exceptions. In OOPSLA, 2015, pp. 241-259.

[18] Flanagan C., Freund S. FastTrack: Efficient and Precise Dynamic Race Detection. In
ACM Conference on Programming Language Design and Implementation, 2009, pp.
121-133.

[19] Kini D., Mathur U., Viswanathan M. Dynamic race prediction in linear time. SIGPLAN
Not. 52(6), 2017, pp. 157-170.

[20] Qi Y., Das R., Luo Z., Trotter M. MulticoreSDK: a practical and efficient data race
detector for real-world applications. Proceedings Software Testing, Verification and
Validation (ICST), IEEE, 21-25 March 2011, pp. 309-318.

[21] Serebryany S., Iskhodzhanov T. ThreadSanitizer: Data race detection in practice. In
Proceedings of the Workshop on Binary Instrumentation and Applications, 2009, pp. 62—
71.

[22] Serebryany K., Potapenko A., Iskhodzhanov T., Vyukov D. Dynamic race detection with
LLVM compiler - compile-time instrumentation for ThreadSanitizer. In RV, 2011,
Lecture Notes in Computer Science, vol 7186, pp. 110-114.

[23] Yu M., Bae D., SimpleLock+: Fast and Accurate Hybrid Data Race Detection. Comput.
J., vol. 59, no. 6, 2016, pp. 793-809.

[24] Zhang T., Jung C., Lee D. ProRace: Practical Data Race Detection for Production Use.
In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017, pp. 149-162.

[25] Bond M., Coons K., McKinley K. Pacer: Proportional Detection of Data Races.
Proceedings of 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2010), Toronto, June 2010, pp. 255-268.

[26] Marino D., Musuvathi M., Narayanasamy S. LiteRace: Effective Sampling for
Lightweight Data Race Detection. PLDI '09 Proceedings of the 2009 ACM SIGPLAN

61

Trifanov V.Yu. Applying synchronization contracts approach for dynamic detection of data races in industrial
applications. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 47-62

conference on Programming language design and implementation, Vol. 44, Issue 6,
2009, pp. 134-143.

[27] Trifanov V.Yu. Detecting data races in Java programs with synchronization contracts.
Komp'juternye instrumenty v obrazovanii [Computer Tools in Education]. Ne4, 2012, pp.
16-29. (in Russian)

[28] Trifanov V.Yu., Tsitelov D.I. Dynamic detection of data races in Java programs with
synchronization contracts. Materialy konferencii "Instrumenty i metody analiza
programm (TMPA-2013)" [Proc of Tools and Methods of Program Analysis conference
TMPA-2013], Kostroma, 2013, pp. 273-285. (in Russian)

[29] Trifanov V.Yu., Tsitelov D.l. Language for synchronization contracts creation to detect
races in multithreaded applications. Programmnaja inzhenerija [Software Engineering],
vol. 8, N 6, 2017, pp. 250-257. (in Russian)

[30] EImas T., Qadeer S., Tasiran S. Goldilocks: A Race and Transaction-Aware Java
Runtime. Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI'07), 2007, pp. 245-255.

[31] Lamport L. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM, Vol. 21, Issue 7, 1978, pp. 558-565.

[32] Intel Thread Checker, http://software.intel.com/en-us/intel-thread-checker/

[33] Trifanov V.Yu. Dynamic data race detection in multithreaded Java-programs. PhD
thesis, SPbSU, 2013. (in Russian)

[34] Liskov B., Wing J. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst.
16 (6). November 1994, pp.1811-1841.

[35] Click C. A lock-free wait-free hash table.
https://web.stanford.edu/class/ee380/Abstracts/070221_L ockFreeHash.pdf

[36] Gavrilova T.A., Leshheva I.A., Kudrjavcev D.V. Using models of knowledge
engineering for growing specialists in information technologies area. Sistemnoe
programmirovanie [System programming], vol. 7, Ne 1, 2012, pp.. 90-105. (in Russian)

[37] Koznov D.V. Basis of visual modeling. Internet-Universitet Informacionnyh Tehnologij
(INTUIT) [Internet-University of Information Technologies], Moscow, 2008 (in
Russian)

[38] Ol'hovich L.B., Koznov D.V. OCL-Based Automated Validation Method for UML
Specifications. Programming and Computer Software, vol. 29, Ne 6, 2003, pp. 44-50.
DOI: 10.1023/B:PACS.0000004132.42846.11

[39] Ivanov A., Koznov D., Murasheva T. Behavioral model RTST++, Zapiski seminara
Kafedry sistemnogo programmirovanija "Case-sredstva RTST++" [Notes of seminar
“Case-tools RTST++” of system engeneering department], 1998, Ne 1, pp. 37-52. (in
Russian)

[40] Luciv D.V., Koznov D.V., Basit H.A., Terehov A.N. On fuzzy repetitions detection in
documentation reuse. Programming and Computer Software, vol. 42, Ne 4, 2016, pp. 39—
49. DOI: 10.1134/S0361768816040046

[41] Koznov D.V., Romanovskij K.Ju. Automated documentation refactoring for lines of
program products. Sistemnoe programmirovanie [System programming], vol. 4, 2009,
pp. 128-150. (in Russian)

62

Applying Deep Learning to C# Call
Sequence Synthesis

A.E. Chebykin <a.e.chebykin@gmail.com>
I.A. Kirilenko <jake.kirilenko@gmail.com>
Faculty of Mathematics and Mechanics, Saint Petersburg State University
Universitetsky prospekt, 28, Peterhof, St. Petersburg, 198504, Russia

Abstract. Many common programming tasks, like connecting to a database, drawing an image,
or reading from a file, are long implemented in various frameworks and are available via
corresponding Application Programming Interfaces (APIs). However, to use them, a software
engineer must first learn of their existence and then of the correct way to utilize them.
Currently, the Internet seems to be the best and the most common way to gather such
information. Recently, a deep-learning-based solution was proposed in the form of DeepAPI
tool. Given English description of the desired functionality, sequence of Java function calls is
generated. In this paper, we show the way to apply this approach to a different programming
language (C# over Java) that has smaller open code base; we describe techniques used to
achieve results close to the original, as well as techniques that failed to produce an impact.
Finally, we release our dataset, code and trained model to facilitate further research.

Keywords: API; deep learning; code search; RNN; transfer learning.

DOI: 10.15514/ISPRAS-2018-30(3)-5

For citation: Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence
Synthesis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 63-86. DOI:
10.15514/ISPRAS-2018-30(3)-5

1. Introduction

When writing code, software developers often utilize various libraries via APIs. Since
the problems being solved in this manner are usually similar for most users, their
solutions form stable patterns of API invocations.
API mining is a long-established line of research aimed at extracting these API usage
trends from source code. The importance of the task lies in the fact that generally
developers spend a lot of time trying to learn frameworks’ APIs in order to utilize
them efficiently. A field study has found that developers often struggle to map a task
from problem domain to the terminology of the API [1]. In another survey 67.6% of
respondents identified that learning APIs is hindered by inadequate or absent
resources [2].

63

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

Usually, when facing such problems, developers turn to general web search engines.
However, those are not optimized for programming-related queries and thus tend to
be inefficient [3].

An alternative lies in various approaches based on statistical analysis of source code.
They can provide sequences of APl methods that are often used together [4], mine
API specifications in the form of automata [5], synthesize relevant code snippets [6].
Deep API Learning [7] is a recent deep learning-based take on the problem that
reports state-of-the-art results. The authors formulate the problem of providing API
patterns satisfying users’ needs as a translation one. Input language, in which user
describes desired functionality, is English, and the output language is one of API
sequences: API calls are words of the language, ordered sequences of these calls form
sentences. For example, English sentence “generate random int” could be translated
to the language of Java API as “Random.new Random.nextint”’, which corresponds
to the construction of an object of type Random and subsequent call of its nextint
method.

DeepAPI tool targets exclusively Java programming language and reportedly
performs well. Benefits of the approach come from the usage of deep recurrent neural
networks. Thanks to them, trained model can distinguish synonyms and impact of
word sequence (for example, it can distinguish queries convert string to int and
convert int to string).

However, the authors identify several threats to validity, including possible failure
when extending the approach to other programming languages.

Our main goals are to test this threat, thus appraising generality of the approach, and
to consider possible improvements. We choose C# as a target language due to its
general similarity to Java, aiming to make a first step towards more different — and
therefore challenging — target languages.

However even in our case simple copying of DeepAPI approach leads to bad results,
and constructing well-working model proves to be far from trivial. In this paper, we
describe our experience of extending the proposed approach to C#.

To achieve our goals we collect dataset of 2,886,309 training samples from open
source projects’ code and use it to first train a model with the architecture of DeepAPI
(attaining the result of 10.94 BLEU), and then tune parameters to achieve BLEU
26.26. After that, we introduce data preprocessing, which reduces dataset size to
1,397,597, but improves its quality and increases BLEU metric to 46.99. Finally, we
employ transfer learning on an alternative dataset of method names and achieve the
best results of 50.14 BLEU, which is fairly close to the 54.42 reported by DeepAPI
on Java dataset.

Additionally we ask professional developers to evaluate output of our model on
several queries, which shows that on average our model, DeepAPI#, performs as well
as DeepAPI.

64

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

Our main contributions are:

o reproduction of the DeepAPI experiment with a different dataset;

o modification of the approach via programming-language-independent data
preprocessing which leads to results, comparable to original, despite lack of
data;

o collection of C# dataset of commented methods and publishing of it for the
benefit of the future research in the area;

o employment of transfer learning techniques for additional improvement of
the results. To the best of our knowledge, we are the first to investigate
transfer learning in the area of APl mining.

The paper is organized as follows: in section 2 we outline DeepAPI model
architecture. Next, in section 3 collection of the dataset needed for model training is
discussed and additional preprocessing steps are introduced. We describe our
application of transfer learning to the problem in section 4. Technical details of model
training are reported in section 5, which is followed by section 6, where evaluation
results are described. We finish the paper with section 7, where we report work done
on related problems and discuss ways in which existing research differs from ours.

2. DeepAPI model

We borrow general model structure from DeepAPI, which is itself based on recent
advancements in neural machine translation. Here we will provide only an overview,
for details please refer to the original paper [7] and our previous research-in-progress
paper [8].

Since the goal is to generate one sequence of words based on another, the task falls
in the category of Sequence-to-Sequence learning [9]. One of the best architectures
for the task is an Encoder-Decoder network [10].

It consists of two recurrent neural networks (Recurrent neural network is a special
class of neural networks where unit can be connected to itself, thus allowing its state
to serve the role of memory). Encoder network reads input sequence, Decoder
generates output one. The process goes as following.

Encoder reads input word by word, embeds each one in a high-dimensional space and
sequentially updates its hidden state, which by the end of the sentence contains
language-independent idea of the input sentence. This state (also known as context
vector) is then passed to the Decoder, which based on it and the last generated word
generates words one by one until a special end-of-sequence token is outputted.

An example of such model at work can be seen in Fig. 1. In the image states of
networks are rolled out in time, so for example RNN1, RNN,, RNN3 is the RNN state
at time steps 1,2, 3. Note that Encoder and Decoder consist of different RNNs and
work in different time windows: at first, Encoder RNN makes 3 steps in time and then
Decoder RNN makes 3 steps in time.

65

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

RNN Encoder RNN Decoder

Random.new Random.Next <EO0S>

\RNNy —hi-» RNN |—hy > RNN; }/ "4 RNN;, —h;=» RNN;, ““hy-* RNN;
t t t
Embedding
generate random number <START=> Random.new Random.Next

Fig. 1. RNN Encoder-Decoder workflow

The benefits of this model include synonym handling (words used in the similar
contexts get embedded near each other), successful processing of long inputs thanks
to the memorizing ability of the recurrent networks, and finally appreciation of word
sequence impact.

One major downside of such a model is the need for a large amount of sentence pairs
describing the same functionality in two languages (“generate random number”,
“Random.new Random.Next). Format of the API language description is reported in
the point 3.1.3.

Source of such data can be methods” documentation comments (that in C# are XML-
based and contain summary section, in which brief description of the method’s
functionality should be supplied) and corresponding API calls made in the method
body. Details of the dataset collection are described in section 3.

There are several improvements of the Encoder-Decoder architecture that were shown
to reliably improve results.

e Using Bidirectional Encoder leads to input being processed twice: in
normal order and in reverse, resulting in 2 context vectors, which are then
concatenated to get final context vector [11].

e Attention mechanism [12] allows decoder to focus on different input words
when generating different output ones.
In the original DeepAPI paper an additional improvement is introduced in the form
of a regularization term punishing generation of the most widespread and therefore
probably problem-irrelevant API calls, such as logging ones. We have not tried such
regularization since its reported impact on BLEU score is minimal. We leave testing
of this enhancement for future research.

66

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

3. Dataset

3.1 Dataset collection

To train the model, we need to gather large amount of pairs (English description of
functionality, API description). One way to do it is to process open source projects,
looking for methods with documentation comments, extracting summary sections and
linearizing interesting parts of ASTs (i.e. API calls). The processing of individual
methods is described in section 3.1.3.

GitHub! is one of the most popular open source project hostings. Following DeepAPI
authors, we construct our dataset from data published there.

We attempted to augment GitHub data with data from alternative sources. In our
previous paper [8] we proposed using Nuget? —a repository of compiled C# packages.
However we eventually found out that compared to GitHub it does not provide much
data, and what samples it provides often duplicate ones collected from GitHub. So we
discontinued using Nuget as data source.

There are other sites with published open source projects, for example, Codeplex? and
SourceForge®. Unfortunately, we found there only a small amount of C# projects,
many of which gradually migrate to GitHub, or have already done so. These hosting
sites also lack search APIs that are essential for the automatic collection of our dataset.
So the potentially small amount of additional data is nontrivial to collect, and
therefore we choose to ignore these alternative sources.

We collect dataset from GitHub in several steps:

1) obtain a list of repositories relevant to us;
2) download these repositories;

3) process them, extracting from methods with documentation comments
these comments, linearized in a special way API calls, types and names of
method parameters.

The architecture overview can be seen in Fig. 2. Let us discuss every step in detail.

3.1.1 Obtaining list of relevant repositories

We are interested in repositories in C# language. Similar to the original paper, we
would like to consider only projects that have at least one star in order to filter unused
or toy projects. Both these requirements can be satisfied when setting specific
parameters of GitHub Search API.

! github.com
2 nugget.org
3 archive.codeplex.com
4 sourceforge.net
67

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,

vol. 30, issue 3, 2018, pp. 63-86

| Repository URLS retriever |

l List ofre)osnorlesl

Repository downloader

_
Paths of Solution files

Cloned repositories

=

Syntax tree walkers

Fig. 2. Dataset gathering workflow

Using this API via Octokit.rb® library, we retrieve 140,990 URLs of relevant projects
created from 2012 to 2017. This contrasts to the original paper that reports working
with 442,928 Java repositories. Therefore, we initially have approximately 3 times
less projects to work with. This lack of data can potentially be a significant obstacle
when transferring the approach to other languages with smaller open code bases.
Search API also poses several technical difficulties.

Firstly, it returns no more than 1,000 results for any search request. To go around this
restriction, we set additional parameter limiting repository creation date to a short
span of time, for example, “2016-01-01 .. 2016-01-08”. Every our requests covers 8
days, which we find short enough a period that no more than 1,000 repositories are
created during it.

Secondly, Search API limits number of requests per minute by 30. In order not to
exceed this limit, our script sleeps for 2 seconds after each request.

We store repositories list and the rest of our data in a SQL.ite database®.

3.1.2 Downloading repositories

Having gathered repository list, we can start cloning them with git. We set clone depth
to 1 to speed up the process.

5 github.com/octokit/octokit.rb
6 sglite.org
68

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

After download, we search for solution files — special files that encompass source
code files, as well as store project dependencies. We process these files in the next
step.

3.1.3 Extracting data

C# type system is problematic for our purposes compared to Java because of the
implicit type “var” introduced in version 3.0. As a consequence of its existence, code
needs to be compiled in order for the type of a variable to be determined correctly, as
opposed to Java where name of the variable’s type or supertype is evident from its
declaration. This need for compilation limits number of projects we can process.
For compilation and syntax tree processing, we use Roslyn’ — an open source C#
compiler developed by Microsoft. To compile a project we need it to satisfy two
requirements:

1) no manual actions are necessary for its build and compilation;

2) asolution file, encompassing source code files, must exist.
In order to compile more projects, we employ Nuget to restore project dependencies
prior to compilation.
About 80.6% percent of repositories contain solution files, and of those 47.1% could
be compiled.
After compilation, we process projects in the following fashion:

1) find methods with documentation comments;

2) store whole comment and summary section;

3) walk syntax tree of the method body, collecting API call sequence;

4) store method name;

5) store parameter types and names, which we think can potentially provide

valuable information, but are not used in this work.

An example of extracting data from method with documentation comment is provided
in Fig. 3.
We construct APl sequence similarly to the original paper. We traverse the tree in the
way an interpreter might traverse it during execution, e.g. depth-first post order,
processing method call’s arguments before processing the call itself, and so on. When
encountering constructor invocation new C(), we add C.new to the API sequence.
When encountering method call 0.m() where o is an instance of a class C, we add C.m
to the API sequence. Additionally, when encountering if-else statement, we firstly
process condition expression, then if-branch statements and finally else-branch
statements.

We introduce one additional step to this scheme: when encountering try-with-
resources node, we save the class C of an object being created in the try node and

7 github.com/dotnet/roslyn
69

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

after processing everything inside try branch we add C.Dispose to the API sequence.
While it is easier for a programmer to rely on the language feature of try-with-
resources block to take care of finalization of the resources, this construct is not
always used, and we think that our model should know that certain sequences of API
calls end with finalization call.

Eventually we obtain 2,886,309 pairs of English descriptions and API sequences.
However, this number is not directly comparable to the 7,519,907 methods reported
in the DeepAPI paper. The authors explained to us (in an e-mail) that 7,519,907 is the
amount of data after filtering out-of-vocabulary words, the step which in our
experience removes certain samples entirely, significantly reducing size of the
dataset.

Our preprocessing and the final size of dataset is discussed in the further section.

[/ <summary>

/// Copies the data from one stream to another.

[/ </summary>

/// <param name="from">The source stream.</param>
/// <param name="to">The destination stream.</param>
private void Copy(Stream from, Stream to)

{
var reader = new StreamReader(from);
var writer = new StreamWriter(to);
writer.Writeline(reader.ReadToEnd());
writer.Flush();

1

Comment description: copies the data from one stream to another
API calls: System.I0.StreamReader.new System.IO.S5treamWriter.new
System.I0.StreamReader.ReadToEnd
System.IO.StreamWriter.Writeline System.IO.Streamlriter.Flush
Full name: PDS.WITSMLstudio.Desktop.Core.Providers.lLoggingSoapExtension.Copy|
Tokenized name: logging scap extension copy
Parameters: System.I0.Stream from, System.IO.Stream to

Fig. 3. Example of data extraction

3.2 Data preprocessing

Upon inspecting the gathered data we conclude that it can be improved prior to being
used for model training. By introducing following preprocessing steps we aim to
make the training easier and the results consequently better - a notion supported by
our experiments (see section 6).

70

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

3.2.1 Language detection

We consider our model to work with English language as input, however, many
comments are not in it. Therefore, we try to filter out non-English comments using a
language detection package®.

We find, however, that some English sentences are recognized as non-English. In our
opinion, most likely reasons are extreme shortness of sentences used for language
detection and uncommon profession-specific programmers’ vocabulary. We do not
want to decrease dataset size by filtering out comments incorrectly recognized asnon-
English, and so we change our filtering approach.

Instead of leaving only sentences recognized as English, we remove ones that are
reported to be in a set of well-recognizable languages (which we deduce by hand
examination) that occur in our dataset most often. Languages, sentences in which we
remove, are Chinese, Korean, Japanese, Russian, German and Polish (reported in the
order of decreasing frequency). As a side note, the reason for good recognition of said
languages probably lies in them having alphabets different from the English one.
Such filtering leads to vocabulary containing mostly English words. It reduces
training size from 2,886,309 pairs to 2,606,424.

3.2.2 Leaving only distinct pairs

The percent of unique pairs is about 86.6%. Note that we consider two pairs distinct
even if English descriptions coincide while API descriptions do not, and vice versa.

We could identify several reasons for occurrence of repetitions:

e auto-generated code and comments (Windows Forms are especially
ubiquitous);

o libraries being copied to the project sources instead of being linked as
dependencies.

This step reduces amount of training instances from 2,606,424 to 2,259,653.

3.2.3 Repetition contraction

In some API sequences an API call is repeated several times in a row. This could
happen as a result of our AST linearization in a situation where, for example, an API
call is made with different parameters in branches of an if-else statement. Since we
do not record call parameters and when linearizing if-else statement save API calls
from both branches, this may lead to an API call repeating twice in the resulting
sequence. End user would not care about such repetitions in the output of the model,
so we remove them before training, leaving only one copy of API call in a row.

This step does not influence amount of data, but rather is intended to improve quality
of the existing training samples

8 github.com/Mimino666/langdetec
71

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

3.2.4 Vocabulary filtering

Similar to the original paper, we create vocabularies of 10,000 most popular words in
each language, and filter out the rest. If after filtering no words are left in either
English description or APl one, we remove the pair altogether.

This step reduces training dataset size significantly, from 2,259,653 to 1,397,597.

3.2.5 Stemming

Additionally we experiment with, but eventually discard a preprocessing step of
stemming.

Stemming is the process of reducing inflected words to their bases. We intended to
use it, as is usual, to decrease vocabulary by replacing multiple word forms with the
root.

In our case it fails to provide improvement and instead makes results worse. A
possible explanation may lie in the fact that stemming model was trained on regular
words, not ones specific for software development and therefore works badly with
this unusual vocabulary.

We discuss impact of the preprocessing steps in section 6.

The final size of our dataset is 1,397,597 pairs, which is more than 5 times smaller
than 7,519,907 pairs used for training in the original paper. Even if only preprocessing
from the original paper is used (i.e. vocabulary filtering and nothing else), dataset size
is 1,692,898 (of which 1,434,805 pairs are unique). We consider this a significant
problem that very probably makes achieving comparable results harder and takes a
great toll on the model performance.

For easy reproduction of our research and for conduction of new experiments in the
area, we provide our dataset®, as well as the code used to collect'® and preprocess'? it.

4. Transfer learning for APl mining

Broadly speaking, transfer learning is utilizing knowledge gained in one problem to
solve another. It is often used in NLP [13] and neural machine translation, especially
in the contexts where data is scarce [14]. Since our situation is one of lacking data (as
shown by an experiment in section 6), we decided to investigate this idea.

4.1 Alternative dataset

To apply transfer learning to our problem of generating API calls given English
description, we need to train a model for a task that is different, yet very similar.

As already mentioned, the DeepAPI paper proposes method body as a source of API
description of the functionality and method comment as a source of the English one.
But there is another description for a method functionality beside its comment — its

9 kaggle.com/awesomelemon/csharp-commented-methods-github
10 github.com/AwesomeLemon/api-extraction

11 github.com/AwesomeLemon/api-extraction-scripts

72

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

name. Combined with class name, it seems descriptive of the method’s contents.
While not forming proper natural language sentences, these names could provide
crude approximations.

Examples of correspondence between comments and names of the methods are
provided in Table 1. It can be seen that generally tokenized names are very similar to
summary sections of documentation comments. However, this is not always the case.
In the last two examples despite similarity between comment and name, essential
information is missing from the tokenized name. In the first of these samples key
word is “Matches”, without it tokenized method name loses meaning. In the second
one “Dword” is separated to “d” and “word” due to the tokenizing technique. When
we tokenize method name, we assume that naming guidelines are followed and
therefore first letter of the method name and first letters of every word in the name
are capitalized. Here this leads to a wrong division of words and thus vital information
disappears, making description senseless.

However, in most cases method names tokenized in this way are similar to comments
and thus provide relatively good description of method contents.

We start exploration of this alternative dataset by simply training a model on it with
the best parameters and our preprocessing. Results are not very good (model Ne4 in
Table 2; the table is discussed minutely in section 6).

We conclude that comments indeed seem to be more descriptive of method contents
than method names. But can we utilize this new dataset nonetheless?

Table 1. Comparison between method names and comments

Summary section of
documentation comment
Method name corresponds to comment well

Full method name Tokenized method name

ManagedFusion.

Serialization.
JsonSerializer.Serialize

json serializer
serialize

Serializes to JSON

MathNet.Symbolics.

Trigonometric

Packages.Standard. complex value Cosine of an angle
Structures. cosine in radians
ComplexValue.Cosine Inra

StickyDesk. utilities resize Resizes a bitmap
Utilities.ResizeBitmap bitmap image

Nini.Config. ini config Removes all INI
IniConfigSource. source remove sections that were
RemoveSections sections removed as configs

Method

name corresponds to comment badly

Spark.Parser.

char grammar

Matches a string of

CharGrammar. inG of h

StringOf string 0 characters
TagLib.Asf. description Gets the DWORD
DescriptionRecord. record tod value contained in
ToDWord word the current instance.

73

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

4.2 Applying transfer learning for model improvement

We hypothesize that the alternative method names dataset contains valuable
information about correspondence between English words and API calls.

In terms of transfer learning, we can consider both our source task and target task to
be the same, namely to generate API call sequence given English description of it.
The difference lies in the datasets. When training for the source task, we can use the
alternative dataset of pairs (Tokenized method name, API call sequence). Then we
can utilize gained knowledge when training the model for the target task, which
makes use of the original dataset of pairs (Documentation comment summary, API
call sequence).

Therefore, we train a model on the alternative dataset, and then use learned weights
for initializing the model to be trained on the standard dataset, which is a technique
known as pretraining.

In addition, we wonder if we can similarly bootstrap learning without using an
alternative dataset. We perform an experiment by training the model on the comments
dataset and using it for initialization and training on the same dataset.

We evaluate impact of both approaches in section 6.

5. Model training

Per description in section 2, original authors use Encoder-Decoder architecture. As
implementation of RNN they choose GRU [10]. They use 1-layered model with 1,000
hidden units and 120 dimensions for word embedding. To train the model,
GroundHog*? is used.

GroundHog since then has been discontinued, instead we use popular modern
framework OpenNMT [15] that is designed specifically to train neural translation
models.

We start training from the architecture reported in the original paper. After getting
bad results we go on and empirically tune parameters, eventually arriving at following
values. As RNN implementation we use LSTM [16] — a more complex model than
GRU, with on-par performance, which is highly dependent on the problem. In our
task it performs better. We find that 1 layer makes model not complex enough to work
with C#, and since it is known that adding more layers increases model’s learning
ability [17], we introduce additional layers to the total of 3, which impacts results
positively. We leave number of hidden units at 1,000 and word embedding at 120
dimensions.

For training, Stochastic Gradient Descent [18] is used with batch size of 32 and
exponential learning rate decay. We initialize learning rate to be 1.0 and start
multiplying it by 0.7 after every epoch, starting from the sixth one. Every model is
trained for approximately 25 epochs on the server equipped with one Nvidia GTX
1070 GPU.

12 github.com/pascanur/GroundHog
74

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

For model testing we separate 12,000 random pairs of descriptions from the dataset;
the rest is used for training. We publish our trained model for easy reproduction of
the results®.

After training, when translating queries to APl sequences we follow original authors
in using beam search [19], a heuristic search algorithm popular in statistical
translation. Instead of generating only the most probable word on every step, we
generate multiple, and then keep only several most probable sequences. This
approach solves the problem of discarding good translation sequences because of
some sub-optimal words.

6. Evaluation

6.1 Metrics

In the area of API mining there are no universally adopted metrics. For better
comparison to the original paper we follow in its steps and calculate BLEU score [20]
for intrinsic evaluation, FRank score [6] and Precision@N for extrinsic one.

6.1.1 BLEU

BLEU is a standard metric used in machine translation to evaluate how closely
generated translation resembles reference one. It does not consider grammar or others
high-level features, instead calculating corrected geometric mean of n-gram precision
on the whole test set [20].

Since we expect the model to generate sequences of API calls similar to the ones
extracted from human-written source code, n-gram approach is applicable to our
situation. The theoretical foundations of the metric stand in our case, despite target
language being language of API calls rather than natural language.

BLEU is reported on the scale from 0 to 100, where higher score corresponds with
bigger similarity between generated and reference sequences.

6.1.2 FRank

FRank metric value is the position of the first relevant result in the ranked list, as
decided by a human evaluator. Such a metric is justified by two facts. Firstly, good
scores of it show that the model has solved exactly the problem we intended for it,
i.e. the problem of translating from English to relevant API calls. It was possible for
the model to learn a target function uninteresting for us, in which case human
evaluators would not find in model output API calls, relevant to the input.

Secondly, it is known that humans scan through ranked results from top to
bottom [21], thus making it a desired trait for a model to rank relevant output higher.

13 public-resources.ml-labs.aws.intellij.net.s3.amazonaws.com/deep-api-sharp/deep-api-
sharp-model.t7
75

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

In our case FRank is measured on the scale from 1 to 10 (since similar to the DeepAPI
paper, our model generates 10 outputs for every query), where lower is better. Where
models fail to provide relevant results, FRank is considered to be 11.

6.1.3 Precision@N

Precision@N measures percentage of the relevant results in the first N outputs
produced by the system. Following DeepAPI, we report Precision@5 and
Precision@10 (note that the term used in the DeepAPI paper is “relevancy ratio N”,
which does not seem to be an established term).

This metric is reported on the scale from 0 to 100, where higher is better.

6.2 BLEU evaluation

In Table 2 we report results of our experiments in terms of BLEU score. We start
experiments with model architecture reported in the original paper and achieve
surprisingly bad results of 10.94 BLEU, which is significantly worse than 54.42
BLEU reported in the paper. Since Java and C# are fairly similar, we expected
original model to work better. Possible explanation may lie in the size of our dataset,
which is more than 5 times smaller.

Table 2. BLEU scores for various models

Transfer
learning
Ne | Parameters Dataset Preprocessing from BLEU
model
No
Parameter tuning
original comments - - 10.94
tuned comments - - 26.26
Data preprocessing
3 tuned comments | yes - 46.99
Different datasets
tuned names yes - 28.57
tuned comments (part) yes - 36.63
tuned comments and names yes - 44.31
Transfer learning
tuned comments yes 3 46.18
tuned comments yes 4 50.14

Model with tuned parameters achieves higher BLEU score of 26.26, which is still far
from the original results.

76

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

After introduction of our preprocessing steps a 94% increase in BLEU is obtained,
and the resulting score of 46.99 comes fairly close to the reported performance of the
DeepAPI model.

The best result is achieved by model Ne8, where we employ transfer learning
techniques and pretrain the model on the alternative dataset of method names.
Additional analysis of transfer learning application is presented in section 6.3.
Model Ne4 was trained on the alternative dataset of method names (with the size of
1,967,414 pairs) and yielded not outstanding BLEU score of 28.57. So our model
performs worse on the alternative dataset, which is logical, given that descriptions
there are not in grammatically correct English and sometimes do not provide good
descriptions of functionality, as already discussed in section 4.

To measure if number of training instances indeed impacts model result, as we
hypothesized, we try to train the model on 800,000 samples as opposed to the usual
1,397,597. This is the model Ne5, and it achieves 36.63 BLEU, which is worse than
46.99 achieved under the same parameters, but bigger dataset size. This leads us to
the conclusion that dataset size is vital for model performance.

6.3 Transfer learning evaluation

We ask several questions regarding our application of transfer learning techniques:
1) Does it improve our results?

2) Can we use the model itself for pretraining, without utilizing model trained
on the alternative dataset?

3) Is transfer learning necessary for performance improvement, or are instead
our two datasets so similar that they could be merged and considered as one
big dataset?

We answer these questions with several experiments, and come up with following
answers.

1) Transfer learning leads to the best results achieved by us (model Ne8 with
BLEU score of 50.14).

2) A model with sub-optimal parameters (which we do not include in the table
in order not to clutter it) is improved by approximately 2.5 BLEU when
pretrained on itself. However, best model is not, as shown by performance
of model Ne7, that achieves only 46.18 BLEU, which approximately equals
the result of the model Ne3 used for pretraining. So bootstrapping with the
dataset itself may make sense sometimes, but not always. Presumably, model
Ne3 was trained so well that there was no room for improvement.

3) We try to merge comments and names in one dataset, which we use for
training model Ne6. Resulting BLEU score of 44.31 is better than using only
names (28.57 BLEU, model Ned), but worse than using only comments
(46.99 BLEU, model Ne3). Thus we conclude that datasets are fairly different
and should not be used together in a straightforward way.

77

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

6.4 Human evaluation

DeepAPI reports FRank, Precision@5, Precision@10 on two types of queries:
popular ones, that often occur in Bing search log [6], and ones designed to showcase
abilities of the proposed approach, including handling of semantically similar
requests, longer input handling, combination of several tasks.

We would like to address a potential problem in evaluating the model on queries from
the first group. While the DeepAPI paper reports that they do not occur in the training
dataset, it seems unlikely since they were chosen for the perk of being popular, i.e.
widespread, and authors do not mention filtering them out.

We test the hypothesis that such popular queries occur in the dataset by searching for
them in ours. In our training data most of these popular inputs occur multiple times
as exact matches. For example, “copy file” occurs 14 times, “reverse string” occurs 7
times, “execute sql statement” occurs 14 times. We conduct this search after filtering
out non-unique pairs, so for these occurrences API calls do not coincide; however,
they are very similar. Therefore, we believe that testing on such inputs makes little
sense, because it essentially means testing on the training set, which speaks only about
the model’s ability to memorize. That is expected from any model, and consequently
is not very interesting.

However, to show that our model is capable of that, we test on 5 of these queries (the
first 5 queries in Table 3).

However, more interesting is the inspection of the model’s ability to generalize, i.e.
use gained knowledge to work with novel data. The model should be able to handle
combined or semantically similar requests that are not included in the training data.
We evaluate our model on 4 new queries, constructed for this exact purpose, and one
such query from the DeepAPI paper. Since DeepAPI paper does not report results on
4 new queries, we used online demo of the tool'* to generate corresponding
sequences.

To avoid conflict of interest, we ask 5 professional developers to evaluate extrinsic
metrics for our model. Since the correspondence between query and model output is
viewed differently by every developer and is up to debate, we consider relevant only
those answers that were marked as relevant by at least 2 developers.

In the Table 3 we report results of extrinsic evaluation. In general our model performs
approximately the same as the original, which, having established importance of data
and our lack of it, we consider an achievement.

Table 3. Extrinsic model evaluation

DeepAPI DeepAPI#
Query DeepAPI# output
FRank|P@5|P@10 |FRank |P@5| P@10
convert int to Culturelnfo.InvariantCulture
string 2 40 1 90 ! 80| 50 Int64.ToString
14 211.249.63.55

78

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.

Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

convert string

to int 1 100 | 100 3 40 | 60 |Int32.TryParse
gett.cu”e”t 10 |10 10 | 1 | 60| 40 |DateTime.Now
ime
get files in Directorylnfo.GetFiles
folder 3 40 50 1 80 | 90 FileInfo.Name List.Add
MD?5.Create Encoding.GetBytes
generate md5 MD5.ComputeHash
hash code 1 1100 100 1 80 | 60 Byte[].Length StringBuilder.Append
StringBuilder.ToString
copy a file
and save it to File.Exists String.Equals File.Exists
a destination 1 |100 100 2 40 1 40 10.File.Copy
path
AddressFamily. InterNetwork
SocketType.Stream
create socket
Protocol Type.Tcp Socket.Connect
and t?:)?t send| 1 1100 90 3 20 | 10 Encoding.GetBytes Socket.Send
SocketShutdown.Both
Socket.Shutdown Socket.Close
write text ASCIIEncoding.GetBytes
using socket) 0 0 1 1100} 100 Socket.Send
IDbConnection.Open
IDbConnection.CreateCommand
connect to IDbCommand.CommandText
database and IDbCommand.ExecuteScalar
execute ! 801 50 6 0 30 Convert.Tolnt32
statement Exception.ToString
Console.WriteLine
IDbConnection.Close
download String.IsNullOrEmpty
from url and 3 20 | 20 1 60 | 50 |WebClient.DownloadFile
save image
Average
scores 34 | 59| 61 20 | 5 | 52

Our model produces slightly less amount of relevant outputs (as shown by
Precision@N scores), but ranks these outputs slightly higher (as shown by FRank).

Good performance on the first 5 queries demonstrate that our model is capable or
memorizing correct answers, and outputs to the second 5 queries show that it can
manage long requests, that require performing several action, as well as semantically
similar requests.
However, both models are not very stable to slight semantic variations in the input.
For example, query “Create socket and then send text” is understood very well by

79

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

DeepAPI, while DeepAPI# produces low amount of relevant answers, and on the
contrary, query “write text using socket” perplexes DeepAPI, that generates no
socket-related calls in the top 10 results, while DeepAPI# generates only relevant
output.

Additionally it should be noted that while models’ outputs are not directly comparable
due to different target languages, both models should still be able to correctly answer
queries we are testing them on, since these tasks are fairly common and programming-
language-independent.

6.5 Limitations

As already discussed in the previous section, our model can be inconsistent and
sensitive to query wording. While DeepAPI# is capable of understanding
synonymous queries and generating similar relevant output, it does not generate
exactly the same sequences.

In addition, our model is data-hungry. While we do not artificially limit our
vocabulary with standard C# library, as DeepAPI does with Java and JDK, we still
observe that the model cannot take into account APIs with low amount of usages. It
can work with extremely popular Math.NET and Json.NET, but not with many other
frameworks, even though their APIs are included in the model dictionary. It remains
an open problem for the further research to find ways to make model less data-hungry,
or to fine-tune it for use of specific not very popular libraries.

7. Related work

7.1 APl usage pattern mining

This group of projects is primarily concerned with extracting common usages of the
library. The first algorithm to mine API patterns was MAPO [22]. It starts with
clustering API sequences, then for every cluster finds API calls that are the most
frequent there and passes those to an API usage recommender, that ranks API calls
according to their similarity to the code context.

UP-Miner [23] improves upon MAPO by using API call sequence n-grams as a
clustering metric and an additional clustering step. A near parameter-free approach
PAM [4] significantly outperforms both MAPO and UP-Miner, introducing a
probability model constructed in the form of a joint probability distribution over API
calls observed in code and the underlying unobserved API patterns, used by
developer. Acharya et al. [24] extract API patterns as partial orders, and unfortunately
do not compare results to those of previous approaches.

The differences of these projects from our work are twofold. Firstly, these models do
not allow user to specify their exact needs (MAPO and UP-Miner take API call as
input, but an API call can be utilized in more than one scenario, therefore using it as
input can be ambiguous; PAM and framework of Acharya et al. do not ask for input).
This leads to the output containing many samples irrelevant to user, while not

80

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

guaranteeing to provide those he was wishing for. Secondly, to use such models one
needs to know beforehand which API calls (in case of MAPO and UP-Miner) or
libraries (in case of PAM and framework of Acharya et al.) he is interested in. Our
approach allows for recommendation of APIs to use, as well as the specifics of the
usage.

7.2 Generating source code from natural language

Code generation based on natural language input is one of the holy grails of Computer
Science. It could be seen as a more promising alternative to our problem: after all,
rather than generate API call sequence and leave it to the software developer to write
code utilizing it, it would be better to just generate code in the first place.

However, current research in the area seems to be far from this dream. It mostly
focuses on Domain Specific Languages [25], [26], which are simpler than general-
purpose programming languages and have by definition limited usage domain.
Recent developments in generating code in general-purpose languages include works
by Ling et al. [27] and Yin et al. [28]. The first paper proposes a novel approach of
Latent Predictor Networks that allows for better copying of relevant key words from
input to output. The second paper introduces a special version of Encoder-Decoder
model, where Decoder is tailored to generate syntax trees as opposed to sequences.
The main difference between these works and ours lies in the datasets. Ling et al. and
Yin et al. report results on two datasets: code of Hearthstone cards and annotated
Django code (Ling et al. also report results on the dataset of code of Magic the
Gathering cards, but this dataset is semantically very similar to the Hearthstone one).
The target code for the Hearthstone dataset is rather homogenous and limited to small
subset of the wide variety that is the Python language, thus resembling code in DSL
more than code in general-purpose language. And while Django dataset covers
various usage scenarious, it contains impractically sesquipedalian natural language
descriptions of every line of code. For example description of the line “for i in
range(9, len(result)):”is“for everyi in range of integers from 0 to length of
result, not included”. The generation of code from descriptions several times longer
than itself seems impractical.

Our dataset, on the other hand, contains wide variety of APl usages, described by
reasonably long sentences like “Serializes to JSON”, which resemble real queries
written by programmers in order to look up interesting APIs.

7.3 Deep neural machine translation and source code

Deep API Learning paper [7] itself was published in 2016, is widely cited, but little
work has followed from it. The authors went on to successfully apply the neural
machine translation approach to code migration between Java and C# [29], which
shows that the proposed architecture can model both languages of API sequences
well.

81

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

Lin etal. [30] similarly to us apply the Encoder-Decoder approach to a different target
language, specifically Bash. They succeed, but it should be noted that their research
problem is a simpler one in terms of target language used, since only 17 commands
were selected from Bash. Together with command flags, types of open-vocabulary
constants and logical connectives (&&, ||, parentheses) total output dictionary size
does not exceed 300. To contrast that, our work is concerned with the same API
dictionary size as original paper, which is 10,000 and therefore requires vastly bigger
dataset and more complex model.

8. Conclusion

In this paper, we applied deep learning approach for recommendation of C# API calls,
removing one of the threats to the validity of the paper that originally proposed this
approach for Java. To achieve this goal, we collected massive dataset, introduced
several data preprocessing steps, and finally employed transfer learning techniques.
Extending DeepAPI approach turned out to be nontrivial even for a similar language.
Nonetheless, its main idea of modelling APl sequences with RNN Encoder-Decoder
stands.

Data preprocessing steps, suggested by us, are not dependent on C# and should
therefore be applicable to any programming language, thus they should make
extending the approach even to very different languages much easier.

By releasing data, code and trained model we hope to allow for repeatability of the
experiments and to inspire further research in the area.

Acknowledgment

The authors would like to thank JetBrains Research®® for providing a GPU-equipped
server for fast machine learning models training, as well as for the Young Researcher
stipend granted to our team. Additionally we would like to thank Kirsanov Alexander
and other friendly developers from the JetBrains ReSharper team for their input in
evaluating FRank and Precision@N metrics.

References

[1]. M. P. Robillard and R. Deline. A field study of api learning obstacles. Empirical Software
Engineering, vol. 16, no. 6, 2011, pp. 703-732.

[2]. M. P. Robillard. What makes apis hard to learn? Answers from developers. IEEE software,
vol. 26, no. 6, 2009, pp, 27-34.

[3]. J. Stylos and B. A. Myers. Mica: A web-search tool for finding api components and
examples. In Proc. of the IEEE Symposium on Visual Languages and Human-Centric
Computing, 2006, pp. 195-202.

[4]. J. Fowkes and C. Sutton. Parameter-free probabilistic api mining across github. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 254-265.

15 research.jetbrains.org
82

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

(5]

(6].

[71.

(8]

[9].

[10].

[11].
[12].

[13].

[14].
[15].
[16].

[17].

[18].

[19].

[20].

[21].

[22].

S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static specification mining using
automata-based abstractions, IEEE Transactions on Software Engineering, vol. 34, no. 5,
2008, pp. 651-666.

M. Raghothaman, Y. Wei, and Y. Hamadi. Swim: Synthesizing what i mean-code search
and idiomatic snippet synthesis, In Proc. of the IEEE/ACM 38™ International Conference
on Software Engineering (ICSE), 2016, pp. 357-367.

X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2016, pp. 631-642.

A. Chebykin, M. Kita, and I. Kirilenko. Deepapi#: Clr/c# call sequence synthesis from
text query. In Proceedings of the Second Conference on Software Engineering and
Information Management, vol. 1864. CEUR-WS.org, 2017, pp. 6-11. (in Russian)
[Online]. Available: http://ceur-ws.org/Vol-1864/paper 5.pdf

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, 2014, pp. 3104-3112.
K. Cho, B. Van Merri” enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation, arXiv preprint arXiv:1406.1078, 2014.

M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, vol. 45, no. 11, 1997, pp. 2673-2681.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

P. H. Calais Guerra, A. Veloso, W. Meira Jr, and V. Almeida. From bias to opinion: a
transfer-learning approach to real-time sentiment analysis. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining, 2011,
pp. 150-158.

B. Zoph, D. Yuret, J. May, and K. Knight. Transfer learning for low-resource neural
machine translation. arXiv preprint arXiv:1604.02201, 2016.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-source toolkit
for neural machine translation. arXiv preprint arXiv:1701.02810, 2017.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction
with Istm. Neural Computation, vol. 12, issue 10, 2000, pp. 2451-2471

A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In Proceedings of the IEEE international conference on Acoustics, speech and
signal processing, 2013, pp. 6645-6649.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, vol. 23, 1952, pp. 462—466.

P. Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine translation
models. In Proceedings of the Conference of the Association for Machine Translation in
the Americas, 2004, pp. 115-124.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, 2002, pp. 311-318.

L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in www
search. In Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, 2004, pp. 478-479.

T. Xie and J. Pei. Mapo: Mining api usages from open source repositories. In Proceedings
of the 2006 international workshop on mining software repositories, 2006, pp. 54-57.

83

http://ceur-ws.org/Vol-1864/paper%205.pdf

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

[23]. J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct and high-
coverage api usage patterns from source code. In Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 319-328.

[24]. M. Allamanis and C. Sutton. Mining idioms from source code. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2014, pp. 472-483.

[25]. A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. Roy. Program
synthesis using natural language. In Proceedings of the 38th International Conference on
Software Engineering, 2016, pp. 345-356.

[26]. S. Gulwani and M. Marron. Nlyze: Interactive programming by natural language for
spreadsheet data analysis and manipulation. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, 2014, pp. 803-814.

[27]. W. Ling, E. Grefenstette, K. M. Hermann, T. Ko cisk" y, A. Senior, F. Wang, and P.
Blunsom. Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744, 2016.

[28]. P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696, 2017.

[29]. X. Gu, H. Zhang, D. Zhang, and S. Kim. Deepam: Migrate apis with multi-modal
sequence to sequence learning. arXiv preprint arXiv:1704.07734, 2017.

[30]. X. V. Lin, C. Wang, D. Pang, K. Vu, and M. D. Ernst. Program synthesis from natural
language using recurrent neural networks. Technical Report UW-CSE-17-03-01,
University of Washington, Department of Computer Science and Engineering, 2017.

NMpumeHeHne rnyboKoro MalWMHHOro ooy4eHust K CUHTe3y
Leno4ku BbizoBoB C#

A.E. Yebvixun <a.e.chebykin@gmail.com>
A.A. Kupunenxo <jake.kirilenko@gmail.com>
Mamemamuxo-mexanuueckuii paxyromemn,
Canxm-Ilemepbypeckuil 20cydapcmeentbvlil YyHUSepcumem
Yuusepcumemcruil np., dom 28, Canxkm-Ilemepoype, 198504, Poccus

AHHoOTanus. bonblnas yacTh CTaHIAPTHBIX AJSI MPOrpaMMMpPOBAHUS 3ajJad — HaIpHMep,
coenuHeHKe ¢ 0a30il JaHHBIX, OTOOpaKEHUE KapTUHKH, YTeHHe (aiiia — JaBHO peann3oBaHa
B Pa3MyYHBIX OMOIMOTEKaxX W JOCTYIHA 4Yepe3 cooTBeTcTByomme Application Programming
Interfaces (APIs). OpHako 4TOOBI BOCHONB30BATHCS MMM, Pa3pabOTYMK JODKSH CHadaja
y3HaTbh, UTO OHHU CYIIECTBYIOT, a 3aT€M — Kak MpaBIIbHO C HUMH paboTaTrh. B Hacrosmee
BpeMsi MHTepHeT KaxeTcs HAWIydIIMM U CaMbIM IOMYISIPHBIM HCTOYHHUKOM ITOJOOHOM
uHpopmarp. HenaBHo ObLT MpemioKeH APYrod MOAXOJ, OCHOBAaHHBIH Ha TIyOOKOM
MAaIIMHHOM OOY4YEeHUH M pealn30BaHHBIN B BUE HHCTpyMeHTa oy Ha3BaHueM DeepAPI. Ilo
OIMCAHUIO KeNaeMoH (DYHKIIMOHAJIBHOCTH Ha aHTJIMHCKOM SI3BIKE OH T'CHEPUPYET LIETIOUKY
BbI30BOB Java ¢yHkuumit. B maHHON craThe Mbl TMOKa3bIBaeM, KaK IOJXOA MOXET ObITh
MepeHeCceH Ha JPYroi s3bIK mporpammupoBanus (C# BMecTo Java), Ha KOTOPOM JOCTYITHO
MEHBIIIE OTKPHITOrO KOJA; MBI OMNKCHIBAEM TEXHUKH, MO3BOJMBIINE IOCTHYb PE3YyIbTATa,
OIM3KOro K OPUTHHATIBHOMY, a TAKXKE TEXHHUKH, KOTOPBIC HE YITy4IIMIN TPOU3BOAUTEILHOCTb.

84

YeowiknH A.E., Kupunenko S1.A, [lpuMeHeHne rimy00KOro MalmHHOr0 00y4eHHs K CHHTE3Y LET04YKH BbI30BOB CH#.
Tpyowrt UCII PAH, Tom 30, Bbm. 3, 2018 1., crp. 63-86

Haxonerr, 94To0bI 0067eTYnuTh OYIyIIIE UCCIIEIOBAaHMS B 00JIACTH, MBI ITyOJIMKyeM Haiu Habop
JTAHHBIX, KOJI U 00y4EHHYIO MOJIENb.

KioueBble cioBa: API; rmyOokoe oOydeHne; MOMCK KOfa; peKyppeHTHast HEHpOHHas CeTh;
00ydeHHUE C TOAKPETIICHHEM.

DOI: 10.15514/ISPRAS-2018-30(3)-5

Jist murupoBanus: Yebsikun A E., Kupunenko S.A. TIpumeHenue riryboKoro MarimHHOTO
o0ydeHus kK cuHTe3y nenouku Be13oBoB C#. Tpymst UCIT PAH, tom 30, Beim. 3, 2018 1., cTp.
63-86 (1a anrnumiickom s3bike). DOIL: 10.15514/ISPRAS-2018-30(3)-5

Cnucok nutepatypbl

[1]. M. P. Robillard and R. Deline. A field study of api learning obstacles. Empirical Software
Engineering, vol. 16, no. 6, 2011, pp. 703-732.

[2]. M. P. Robillard. What makes apis hard to learn? Answers from developers. IEEE software,
vol. 26, no. 6, 2009, pp, 27-34.

[3]. J. Stylos and B. A. Myers. Mica: A web-search tool for finding api components and
examples. In Proc. of the IEEE Symposium on Visual Languages and Human-Centric
Computing, 2006, pp. 195-202.

[4]. J. Fowkes and C. Sutton. Parameter-free probabilistic api mining across github. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 254-265.

[5]. S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static specification mining using
automata-based abstractions, IEEE Transactions on Software Engineering, vol. 34, no. 5,
2008, pp. 651-666.

[6]. M. Raghothaman, Y. Wei, and Y. Hamadi. Swim: Synthesizing what i mean-code search
and idiomatic snippet synthesis, In Proc. of the IEEE/ACM 38™ International Conference
on Software Engineering (ICSE), 2016, pp. 357-367.

[7]. X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2016, pp. 631-642.

[8]. A. Chebykin, M. Kita, and I. Kirilenko. Deepapi#: Clr/c# call sequence synthesis from
text query. In Proceedings of the Second Conference on Software Engineering and
Information Management, vol. 1864. CEUR-WS.org, 2017, pp. 6-11. (in Russian)
[Online]. Pesxxum mocrymna: http://ceur-ws.org/\VVol-1864/paper 5.pdf

[9]. I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, 2014, pp. 3104-3112.

[10]. K. Cho, B. Van Merri” enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation, arXiv preprint arXiv:1406.1078, 2014.

[11]. M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, vol. 45, no. 11, 1997, pp. 2673-2681.

[12]. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

[13]. P. H. Calais Guerra, A. Veloso, W. Meira Jr, and V. Almeida. From bias to opinion: a
transfer-learning approach to real-time sentiment analysis. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining, 2011,
pp. 150-158.

85

http://ceur-ws.org/Vol-1864/paper%205.pdf

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

[14].
[15].
[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

[28].
[29].

[30].

86

B. Zoph, D. Yuret, J. May, and K. Knight. Transfer learning for low-resource neural
machine translation. arXiv preprint arXiv:1604.02201, 2016.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-source toolkit
for neural machine translation. arXiv preprint arXiv:1701.02810, 2017.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction
with Istm. Neural Computation, vol. 12, issue 10, 2000, pp. 2451-2471

A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In Proceedings of the IEEE international conference on Acoustics, speech and
signal processing, 2013, pp. 6645-6649.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, vol. 23, 1952, pp. 462-466.

P. Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine translation
models. In Proceedings of the Conference of the Association for Machine Translation in
the Americas, 2004, pp. 115-124.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, 2002, pp. 311-318.

L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in www
search. In Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, 2004, pp. 478—479.

T. Xie and J. Pei. Mapo: Mining api usages from open source repositories. In Proceedings
of the 2006 international workshop on mining software repositories, 2006, pp. 54-57.

J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct and high-
coverage api usage patterns from source code. In Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 319-328.

M. Allamanis and C. Sutton. Mining idioms from source code. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2014, pp. 472-483.

A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. Roy. Program
synthesis using natural language. In Proceedings of the 38th International Conference on
Software Engineering, 2016, pp. 345-356.

S. Gulwani and M. Marron. Nlyze: Interactive programming by natural language for
spreadsheet data analysis and manipulation. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, 2014, pp. 803-814.

W. Ling, E. Grefenstette, K. M. Hermann, T. Ko™ cisk’ y, A. Senior, F. Wang, and P.
Blunsom. Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744, 2016.

P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696, 2017.

X. Gu, H. Zhang, D. Zhang, and S. Kim. Deepam: Migrate apis with multi-modal
sequence to sequence learning. arXiv preprint arXiv:1704.07734, 2017.

X. V. Lin, C. Wang, D. Pang, K. Vu, and M. D. Ernst. Program synthesis from natural
language using recurrent neural networks. Technical Report UW-CSE-17-03-01,
University of Washington, Department of Computer Science and Engineering, 2017.

Stealth debugging of programs in Qemu
emulator with WinDbg debugger

M.A. Abakumov <mikhail.abakumov@ispras.ru>
P.M. Dovgalyuk <dovgaluk@ispras.ru>
Yaroslav-the-Wise Novgorod State University,
41, Great St. Petersburg st., Velikiiy Novgorod, 173003, Russia

Abstract. When programs are analyzed for the presence of vulnerabilities and malicious
code, there is a need for a quality isolation of the analysis tools. There are two reasons for
this. At first, the program can influence the tool environment. This problem is solved by
using the emulator. At second, the tool environment can influence behavior of the analyzed
program. So, the programmer will think that the program is harmless, but in fact it is not. This
problem is solved by the mechanism of stealth debugging. The WinDbg debugger has the
possibility of connecting to a remote debug service (Kdsrv.exe) in the Windows kernel.
Therefore, it is possible to connect to the guest system running in the QEMU emulator.
Interaction between WinDbg client and server occurs through packets by protocol KDCOM.
However, kernel debugging is possible only with the enabled debugging mode in boot
settings. And it reveals the debugging process. We developed special module of WinDbg
debugger for Qemu emulator. It is an alternative of the remote debugging service in the
kernel. Thus, the debugger client tries to connect to the WinDbg server, but module intercepts
all packets, generates all the necessary information from the Qemu emulator and sends
response to the client. Module completely simulates the behavior of the server, so the client
does not notice the spoofing and perfectly interacts with it. At the same time for debugging
there is no need to enable debugging mode in the kernel. This leads to stealth debugging. Our
module supports all features of WinDbg regarding remote debugging, besides interception of
events and exceptions.

Keywords: WinDbg; Qemu; Windows; remote debugging; stealth debugging

DOI: 10.15514/ISPRAS-2018-30(3)-6

For citation: Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu
emulator with WinDbg debugger. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp.
87-92. DOI: 10.15514/ISPRAS-2018-30(3)-6

1. Introduction

When performing a dynamic analysis of binary (executable) code, the problem
arises of qualitatively isolating the code and the instrumentation on which this

87

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

analysis is performed. The need for isolation is dual. On the one hand, it is
necessary to limit the impact of the code being studied, since it is able to affect the
state of the instrument machine, which is especially important in the study of
malicious software. On the other hand, analysis tools can indirectly change the
behavior of the program being studied. The most indicative are the situations when
errors in working with dynamic memory and race conditions cease to appear in the
debugging mode.

The search for undocumented features in a binary code encounters a similar
problem. Various techniques and techniques are known [1], with the help of which
malware reveals that its execution takes place in a controlled environment, and does
not fulfill its objective functions. To find the debugger to be connected, check the
int 3 handler and hardware debug registers, evaluate the behavior of certain API
functions, and track the progress of the system time.

It is possible to divide potential sources of information, which makes it possible to
identify the fact of working in a controlled environment into three disjoint groups.
The first is the interaction with external, uncontrolled components, the program
being studied, such as remote servers. To the same category, it is necessary to
include speed checks. Successful struggle with such sources allows the mechanism
of deterministic reproduction [2]. If you write the progress of the system in advance,
when debugging and analyzing it during playback, there will be no effect on the
guest's state because all time characteristics are fixed during recording. The second
group of sources is the discrepancy in the behavior of the equipment [3]. The
implementation of virtual equipment in software emulators is not always ideal.
Known inaccuracies can be used to determine the emulator in which the program
runs. The third group is the analysis tools present in the runtime. This kind of
facility occurs even when the debugger is running in conjunction with a virtual
machine.

2. Related work

In the Qemu emulator at the moment there is only a module of the GDB debugger,
which allows debugging the kernel of the system, but in itself it has relatively small
functionality and does not have a GUI. You can use IDA Pro Disassembler [4] ore
to connect to the emulator via the GDB interface, but this will not extend the range
of the GDB's features, but will only increase the ease of use. In addition, there is a
utility called Winbagility [5], which allows the debugger WinDbg to connect to the
kernel without debugging mode of the operating system. It is utility for the
VirtualBox emulator and is the intermediary between the debugger and the
emulator. There is the FDP protocol between Winbagility and the emulator - the
introspection API for VirtualBox. It is a minus in this implementation, since the
number of provided functions limits the interface.

88

AbakymoB M.A., Jlosramok IL.M. Ckpsitas oTnazaka nporpamm oriagunkom WinDbg B smynsitope Qemu. Tpyost
HUCII PAH, tom 30, Beim. 3, 2018 r,, ctp. 87-92

3. WinDbg

The WinDbg debugger is one of the most advanced debuggers for Windows
operating systems. WinDbg is claimed by developers, because it extracts symbolic
information from applications and libraries, displays the contents of internal
Windows data structures, performs remote debugging of a physical or virtual
machine. WinDbg can be used for debugging user applications, device drivers, the
operating system itself in kernel mode, to analyze memory dumps in kernel mode
created after the so-called Blue Screen of Death, which occurs when an error is
issued. It can also be used for debugging custom mode crash dumps. WinDbg
supports several debugging modes: debugging the local process, debugging the
kernel, and remote debugging.

Target applications can easily detects local debugging process. Remote debugging
requires enabled debugging mode in kernel. In this mode kernel uses the debugging
server (KdSrv.exe) for interacting with remotely client. But It is also reveals system
control (Fig. 1).

QEMU

Windows : WinDbg
CPU+RAM kernel <:: Client

Fig. 1. Direct kernel debugging

4. Stealth debugging

We developed a mechanism for stealth debugging for the QEMU emulator, which
allows WinDbg to be remotely connected. The mechanism is an analysis module
built into the emulator, and turns out to be an external tool in relation to the guest
system. The needs of the KdSrv service in the kernel of the debugging system is not
required - the analysis module itself extracts the necessary data from the system and
transfers it to the remote client debugger (Fig. 2). The programs running in the guest
system cannot track the presence of the connected debugger through functions such
as IsDebuggerPresent or through the state of the hardware registers.

One way to remotely kernel debugging using the WinDbg debugger is to debug
through the COM port. Interaction between the computers takes place via a private
KDCOM protocol, the specification of which has been restored. One of the
computers in this case is represented by a virtual machine. The second is an
instrumental computer with Windows OS where this machine is started. Running

89

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

WinDbg client connects to the emulator via a named pipe, through which the COM-
port of the virtual machine is forwarded.

The developed module for the emulator fully implements the KDCOM protocol,
within the framework of the restored specification, so the debugger WinDbg
interacts with it, as with the debugging module of the Windows kernel, without
noticing the substitution. It should be noted that the use of the QEMU emulator as a
runtime opens the possibility of debugging during deterministic playback of the
virtual machine. The recorded scenarios can be debugged many times in the
emulator, which would not be possible if the Windows debug module running inside
the guest system were used.

QEMU
CPU + RAM -
d WinDbg WinDbg
i module Client
Windows P
kernel
D

Fig. 2. Kernel debugging through the special module

5. Results and contributons

The developed module supports almost all features of WinDbg regarding remote
debugging, besides interception of events and exceptions. It is open source project
placed in: github.com/ispras/gemu/tree/windbg. The official community recognized
the module as useful. In addition, patches have already been prepared for inclusion
in the official repository.

6. Acknowledment

The work was supported by the Ministry of Education and Science of Russia,
research project No. 2.6146.2017/8.9.

90

AbakymoB M.A., Jlosramok IL.M. Ckpsitas oTnazaka nporpamm oriagunkom WinDbg B smynsitope Qemu. Tpyost
HUCII PAH, tom 30, Beim. 3, 2018 r,, ctp. 87-92

References

[1]. Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, 2014, pp. 447- 458.

[2]. P. Dovgalyuk. Deterministic Replay of System's Execution with Multi-target QEMU
Simulator for Dynamic Analysis and Reverse Debugging. In Proceedings of the 2012
16th European Conference on Software Maintenance and Reengineering, 2012, pp. 553-
556.

[3]. Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. A
fistful of red-pills: how to automatically generate procedures to detect CPU emulators.
In Proceedings of the 3rd USENIX conference on Offensive technologies (WOOT'09).
2009.

[4]. IDA ProDisassembler. Available at: https://www.hex-
rays.com/products/ida/index.shtml, accessed 19.06.2018.

[5]- Winbagility. Available at: https://winbagility.github.io/, accessed 19.06.2018.

CkpbiTaa otnagka nporpamm otnagymkom WinDbg B
amynaTtope Qemu

M.A. Abaxymos <mikhail.abakumov@ispras.ru>
II.M. Jloszanok <dovgaluk@ispras.ru>
Hoseopoocxkuii cocyoapcmeennwiti ynugepcumem umenu SApociasa Myopoeo,
173003, Poccus, Benuxuii Hogeopoo, bonvwas Canxkm-Ilemepoypeckas, o. 41

AnHotamms. Ilpy aHanmse mporpaMM Ha Hajlu4Me YSI3BUMOCTEH M BPEIOHOCHOTO KoOJa
ObIBAIOT CUTyallMM, B KOTOPBIX BO3HHMKAaeT HEOOXOAMMOCTh KadeCTBEHHOW M30JIALUU
HMHCTPYMEHTOB aHaju3a. DTOMY €CTh JIB€ IIPUUUHBI. Bo-TIepBbIX, aHANM3UpyeMas IporpaMma
MOXXET BJIMATH Ha MHCTPYMEHTAJBHYIO Ccpely. DJTa mpoliema pelaercs HCIOJIb30BaHHEM
sMynsTopa. BoO-BTOpBIX, MHCTPYMEHTHI aHaNMM3a MOTYT BIMATh Ha IpOrpaMMmy. Tak,
TIPOTPaMMICT MOXET II0{yMaTh, YTO IIporpaMma 0e30IMacHa, XOTsl Ha CaMOM JIeJIe 9TO MOKET
OBITH He Tak. DTa MpobiIeMa MOXKET OBITh pelIeHa MEXaHU3MOM CKPBITOH oTiaaaku. OTiagank
WinDbg umeer QyHKIHIO MOAKIIOYCHUS K YIAJICHHOMY OTJIaJjouHOMy cepBepy (Kdsrv.exe),
3amymeHHoMy B siape Windows. ITo3ToMy e€cTh BO3MOXKHOCTH MOIKIIOUUTHCS K TOCTEBOH
cucreme, 3amyuieHHol B amyssaTope QEMU. KimeHT B3anMonelcTBYeT ¢ cepBepoM udepes
naketsl 1o nporokonry KDCOM. OpHako OTIaXHBaTh SAPO MOXKHO JIMIIb C BKIIOYECHHBIM
PSKUMOM OTJAJKH B HACTPOMKax 3allycka, YTO pAacKpbIBaeT Ipolecc OTIagkd. Mbl
pa3paboTany crenuambHEI Moxynab orTiaamunka WinDbg mmst QEMU, xoTopslil siBisercs
IBTEPHATHBON yJaJeHHOMY OTJIaIOYHOMY CEPBHCY B siape. MoIyib mepexBaThIBaeT MaKeThl
Ipu B3aMMOJACHCTBMM KJIMEHTa ommamgunka WinDbg c¢ cepBepoM, CaMOCTOSATEIBHO
TEHEPHPYET BCIO HEOOXOMUMYIO OTJIAJOYHYI0 HH(OPMAIMIO, HCIIOIb3YS BO3MOXKHOCTH
sMysaTopa Qemu, u OTHpaBiIAeT OTBET KIMEHTY. MOyJIb HOJHOCTBIO SIMYJIUPYET ITOBEICHNE
OTJIaIOYHOTO CEPBEPa, TO3TOMY KIIHEHT Ha 3aMeYaeT MOAMEHBI U YCIIEITHO B3aUMOEHCTBYET
c HuM. Ilpu 3ToM oTmagaeT HEOOXOJMMOCTH B OTJIQJOYHOM pEXHMME siipa. TeM caMbiM
MPOUCXOAUT CKpbITasg oOTnaaka. IIpu ucHons3oBaHUM MOIyNs pPabOTOCHOCOOHBI BCE

91

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

BO3MOXHOCTH WinDbg, KoTOpble OH MpEeACTaBIsIeT A yOaJeHHOM OTJIAAKH, KpoMme
nepexBaTa COOBITUH U UCKITIOUEHUM.

Kumouessie ciosa: WinDbg; Qemu; Windows; yraneHHast OTlIaJIKa; CKPBITas OTJIaKa

DOI: 10.15514/ISPRAS-2018-30(3)-6

Jas uurnpoBanmsi: AbakymoB M.A., [losramox II.M. Ckpbltas oTiagka HporpamMm
otmagankoM WinDbg B smymsitope Qemu. Tpyast UCIT PAH, tom 30, Bem. 3, 2018 r., c1p.
87-92 (ua anrmuiickom s3bike). DOI: 10.15514/ISPRAS-2018-30(3)-6

Cnucok nutepatypbl

[1]. Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, 2014, pp. 447- 458.

[2]. P. Dovgalyuk. Deterministic Replay of System's Execution with Multi-target QEMU
Simulator for Dynamic Analysis and Reverse Debugging. In Proceedings of the 2012
16th European Conference on Software Maintenance and Reengineering, 2012, pp. 553-
556.

[3]. Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. A
fistful of red-pills: how to automatically generate procedures to detect CPU emulators.
In Proceedings of the 3rd USENIX conference on Offensive technologies (WOOT'09).
20009.

[4]. IDA Pro Disassembler. Pexum nocryma: https://www.hex-
rays.com/products/ida/index.shtml, nata o6pamenus 19.06.2018.

[5]. Winbagility. Pexum mocryma: https://winbagility.github.io/, mata o6pamenus
19.06.2018.

92

https://winbagility.github.io/

Configurable system call tracer in QEMU
emulator

A.V. Ivanov <alexey.ivanov@ispras.ru>
P.M. Dovgaluk <pavel.dovgaluk@ispras.ru=
V.A. Makarov <vladimir.makarov@ispras.ru>
Yaroslav-the-Wise Novgorod State University,
41, Great St. Petersburg st., Velikiiy Novgorod, 173003, Russia

Abstract. Sometimes programmers face the task of analyzing the work of a compiled
program. To do this, there are many different tools for debugging and tracing written
programs. One of these tools is the analysis of the application through system calls. With a
detailed study of the mechanism of system calls, you can find a lot of nuances that you have
to deal with when developing a program analyzer using system calls. This paper discusses the
implementation of a tracer that allows you to analyze programs based on system calls. In
addition, the paper describes the problems that | had to face in its design and development.
Now there are a lot of different operating systems and for each operating system must be
developed its own approach to implementing the debugger. The same problem arises with the
architecture of the processor, under which the operating system is running. For each
architecture, the analyzer must change its behavior and adjust to it. As a solution to this
problem, the paper proposes to describe the operating system model, which we analyze. The
model description is a configuration file that can be changed depending on the needs of the
operating systems. When a system call is detected the plugin collects the information
downloaded from the configuration file. In a configuration file, arguments are expressions, so
we need to implement a parser that needs to recognize input expressions and calculate their
values. After calculating the values of all expressions, the tracer formalizes the collected data
and outputs it to the log file.

Keywords: QEMU; configurable system calls; debugging; plugin; system calls; tracing.
DOI: 10.15514/1ISPRAS-2018-30(3)-7

For citation: lvanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in
QEMU emulator. Trudy ISP RAN/Proc. ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 3, 2018, pp. 93-98. DOI: 10.15514/ISPRAS-2018-30(3)-7

1. Introduction

Sometimes programmers face the task of analyzing the work of a compiled program
to find its flaws, defects, and even search for malicious code in it. To analyze the
work of such applications, we have to study their binary code or try to decompile
the code, which is a laborious task. In order to simplify the analysis of applications,

93

Ilvanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

we can use the system calls of this application. System calls provide an essential
interface between a program and the operating system. It is possible to track which
system calls the application makes, and draw conclusions about the behavior of the
program. This method allows us to debug the application without delving into the
level of instructions and architecture features, thereby reducing the time required to
find the problem.

Debugging applications using system tracing can be done inside the operating
system, but still a number of problems arise:

o strong dependence of the debugger on the operating system;
o impossibility to run several debuggers at the same time;
e inaccessibility to the privileged execution;

e necessity to secure the operating system when analyzing programs that
have harmful effects.
To solve these problems, we can use the virtual machine tools. In this way, we can
debug applications in a wide range of different operating systems running under
different processor architectures.

2. Approach and uniqueness

To date, several debuggers allow us to trace an application using system calls. All
these debuggers have a drawback - they do not provide enough portability of the
debugger within different operating systems and processor architectures. We offer a
new approach to implementing the debugger through system calls, by loading all the
information necessary for tracing from the configuration file. The configuration files
will allow us to easily configure and change the parameters needed for debugging,
and to simplify the addition of support for new operating systems and architectures
without recompiling the program and learning the debugger code.

It was decided to implement the debugger under the virtual machine QEMU [1],
using the plugin mechanism. QEMU is an open source virtual machine that
emulates the hardware of various platforms. This virtual machine supports the
emulation of a large number of processor architectures such as x86, PowerPC,
ARM, MIPS, SPARC, m68k. In addition, this simulator supports the launch of a
large number of different operating systems.

Now, there is a plugin mechanism for QEMU implemented by ISP RAS [2], which
allows us to connect developed plugins to a virtual machine during its both startup
and operation. The implementation of the plugin mechanism enables each additional
translation of the instruction to be substituted by an additional code for execution,
when this instruction is called. This mechanism is suitable for debugging through
system calls, so it was decided to use it.

In addition, various mechanisms of the system call play an important role. The
classical way of implementation is the use of interrupts. With the help of interrupts,
control is transferred to the kernel of the operating system, with the application

94

HMBanoB A.B., losramok I1.M., MakapoB B.A. Kondurypupyemplii TpacCHPOBIIHK CHCTEMHBIX BBI30BOB B OMYJIATOPE
QEMU. Tpyow: UCII PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 93-98

having to enter the number of the system call and the necessary arguments into the
corresponding registers of the processor.

For many RISC processors, this method is the only one; however, the CISC
architecture has additional methods. The two mechanisms developed by AMD and
Intel are independent of each other, but, in fact, perform the same functions. These
are SYSCALL / SYSRET or SYSENTER / SYSEXIT statements. They allow us to
transfer control to the operating system without interrupts.

Each operating system supports values returned from the system call, which are
passed as reference types when the system call handler is called. During the
execution of the system call, the service procedure records the required values if
necessary by the available links, after which the system call is exited.

One of the main tasks that we had to face was the task of supporting the plugin of
different operating systems and processor architectures. The solution to this problem
was the interface with the configuration file. The configuration file makes the
debugger more flexible and customizable. With its help, we can disconnect a certain
mechanism of system calls from the trace or disable unnecessary system calls. In
addition, such a mechanism makes it easier to add support for new operating
systems and processor architectures.

To implement the interface with the configuration file, it was necessary to study a
wide range of different operating systems and processor architectures. After
gathering the necessary information, we can determine the information necessary
for debugging: what type of system call is supported by SYSCALL / SYSRET or
SYSENTER / SYSEXIT and their opcodes; location of system call arguments; a list
of system calls, with the name of each system call, its code, and the list of
arguments. Thus, by developing an interface for debugger and configuration file
interfacing, we can add support for operating systems without going into the
debugger code.

When implementing the debugger interaction interface with the configuration file, it
became necessary to recognize the various expressions read from the file. For this
task, we used the generator of the bison parser and developed the corresponding
grammar [3].

3. Background and related work

Now, there are several debuggers to solve existing problems. Nitro [4] allows us to
trace system calls, but it works only under Intel x86 architecture. Another debugger
— Panda [5], can also trace system calls, supporting such operating systems as
Linux, Windows 7, Windows XP and two architectures of the i386 processor and
ARM. The description of all system calls is found in the code of this debugger,
because of which this approach makes it difficult to add support for new operating
systems and processor architectures, and worsens the flexibility in configuring the
plugin, since the system debugger settings mechanism is not provided.

95

Ilvanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

4. Conclusion and discussion

Based on the results of the work done, the plugin was developed in the QEMU
virtual machine, with which we can trace and debug an application using system
calls. As input to the plugin, the configuration file corresponding to the operating
system running in the QEMU virtual machine and corresponding to the selected
processor architecture is used.

The structure of the configuration file consists of 4 parts. The first part provides
information about the operating system, its name and bit capacity. The second part
is responsible for the supported mechanisms of system calls. The next part contains
the location of the system call arguments. The last part includes a list of all available
system calls and service information about the arguments of the system calls.

Because of the plugin’s work, a log file containing all the system calls that the
plugin has intercepted is created. Each system call displays detailed information: the
name and value of each system call argument, the number of the thread of execution
from which this system call was made and the value that returned the system call
after execution. Fig. 1 presents a small fragment of the output file that was created
by the implementation of the plugin launched in the windows XP operating system
and the i386 processor architecture.

0x3e84000 entr: Ox114: NtWriteRequestData

0x3e84000 exit: ©x114: NtWriteRequestData
return: @xe

0x3e84000 entr: Oxc4: NtReplyWaitReceivePortEx

0x3e84000 entr: Ox112: NtWriteFile

arg 0: 0x2a4 (HANDLE FileHandle)

arg 1: 0x@ (HANDLE Event)

arg 2: 0xe (PIO_APC_ROUTINE ApcRoutine)

arg 3: 0x0 (PVOID ApcContext)

arg 4: 0x8ff6d8 (PIO STATUS BLOCK IoStatusBlock)
arg 5: 0x9059f8 (PVOID Buffer)

arg 6: Oxbc (ULONG Length)

arg 7: ox8ff6ed (PLARGE INTEGER ByteOffset)

arg 8: ox@ (PULONG Key)

0x3e84000 exit: 0Ox112: NtWriteFile
return: exe
0x3e84000 entr: 0x74: NtOpenFile

arg 0: ox8ffeca (PHANDLE FileHandle)

arg 1: 0x100100 (ACCESS_MASK DesiredAccess)

arg 2: oxa8ffeae (POBJECT_ATTRIBUTES ObjectAttributes)
arg 3: 0x8ff6ad (PIO_STATUS BLOCK IoStatusBlock)

arg 4: ox7 (ULONG ShareAccess)

arg 5: 0x204020 (ULONG OpenOptions)

9
0x3e84000 exit: 0x74: NtOpenFile
return: oxe
0x3e84000 entr: Oxe@: NtSetInformationFile
arg ©: 0x3lc (HANDLE FileHandle)
arg 1: oxa8ff6ad (PIO_STATUS BLOCK IoStatusBlock)
arg 2: oxsffess (PvOID FileInformation)
arg 3: ox2s (ULONG Length)
arg 4: 0x4 (FILE_INFORMATION_CLASS FileInformationClass)
0x3e84000 exit: Oxe@: NtSetInformationFile
return: @xe
0x3e84000 entr: ©x19: NtClose
arg 0: 0x3lc (HANDLE Handle)
0x3e84000 exit: 0x19: NtClose
return: @xe

Fig. 1. Part of the output file of the plugin

Upon the information gathered in the log file, we can analyze the operation of the
debugged application running inside the virtual machine. The operating system load

96

HMBanoB A.B., losramok I1.M., MakapoB B.A. Kondurypupyemplii TpacCHPOBIIHK CHCTEMHBIX BBI30BOB B OMYJIATOPE
QEMU. Tpyow: UCII PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 93-98

time when using the developed plugin is increased 20% slowdown compared to the
time of the operating system loading without this plugin.

Acknowledgments

The work was supported by the Russian Foundation of Basic Research (research
grant 18-07-00900 A)

References

[1]. F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, 2005.

[2]. Vasiliev LLA., Fursova N.l., Dovgaluk P.M., Klimushenkova M.A., Makarov V.A.
Modules for instrumenting the executable code in QEMU. Problemy informacionnoj
bezopasnosti. Komp'juternye sistemy [Journal of Information Security Problems.
Computer Systems], no. 4, 2015, pp. 195-203 (in Russian).

[3]. GNU Bison [HTML] (https://www.gnu.org/software/bison/)

[4]. Nitro [HTML] (http://nitro.pfoh.net/index.html)

[5]. Panda. Plugin: syscalls2. [HTML] (https://github.com/panda-
re/panda/blob/master/panda/plugins/syscalls2/USAGE.md)

KoHdurypupyembiii TpacCMpOBLUMK CUCTEMHbIX BbI3OBOB
B amynsitope QEMU

A.B. Hsanos <alexey.ivanov@ispras.ru>
II.M. /loszanox <pavel.dovgaluk@ispras.ru>
B.A. Makapoe <vladimir.makarov@ispras.ru>
Hoeszopoocxkuii cocydapemeennvitl uncmumym umenu fApocrasa Myopoeo,
173003, Poccus, e. Benuxuii Hoseopoo, ya. B. Canxkm-Ilemepbypeckas, 0. 41

AHHOTanus. Pa3paboTuuk mporpaMM 4acTo CTaIKHBAIOTCS C MPOOJIEeMON aHaImu3a paboThI
Pa3IMYHBIX MPUIOKEHUH. [[JI 3TOro CyliecTByeT OONbIIOoe MHOKECTBO Pa3INYHBIX CPE/ICTB
OTJIaIKH, OTCJICKHUBAHUA, TPACCUPOBKHU HAITMCAHHBLIX ITPOTPaMM. O)]HHM U3 TaKuX CpEIACTB
ABJIACTCA aHAJIN3 pa60TbI MPHUI0XKEHUA YEPE3 CUCTEMHBIC BbI3OBEI. Hpn A€TaJIbHOM U3YyUYE€HUU
MEXaHN3Ma CHCTEMHBIX BBI30BOB, MOJKHO OOHApYyXHTh OOJIBIIOE KOJMYECTBO HIOAHCOB, C
KOTOPBIMH ~ TIPHXOJIUTCSL CTOJIKHYTBCSL TIpU pa3pabOTKe aHanmmM3aTopa MporpaMM C
HCTIONb30BAaHMEM CHCTEMHBIX BBI30BOB. B cTaThe paccMaTpwBaeTCsl — peaam3arys
TPacCHPOBINNKA, KOTOPHIA IMO3BOSIET aHAIM3HPOBATH IPOTPAMMEI HAa OCHOBE CHCTEMHBIX
BBI30BOB, ¥ TPOOJIEMBI, C KOTOPHIMH HPHUIUIOCH CTOJKHYTHCS TPH €r0 MPOEKTHPOBAHUH H
pa3pabotke. Ha faHHBIE MOMEHT CymlecTByeT OOJbILIOE KOJMYECTBO Pa3IMYHBIX
OTIEPAIMOHHBIX CHCTEM H IS KaXIOU OTMEPallHOHHON CHCTEMbI JAOJKEH OBITh pa3paboTaH
CBOH MOAXOJ B pealu3aluy oTiaaxdyuka. Takas ske mpoOiieMa BO3HUKAET U C apXUTEKTYpOil
Ipoueccopa, MoJ KOTOPOW 3amyleHa olepalMoHHas cucreMa. [[nd Kaxaol apXUTeKTyphl,
aHaNM3aTOp JODKEH MEHSTh CBOE IOBEACHHWE M MHOACTpaMBaThes mon Heé. B kadectBe
pelieHHst JaHHOH IpoOJIeMBI, B CTaThe IIpe[Jaraercs OMHCaTh MOJEIb OINCpalMOHHON
CHCTEMBI, KOTOpyI0O MbI aHammupyeM. Omucanue MOZeNH IpeAcTaBisier coboit
KOH(UTYpaIMOHHBIHA (haiill, KOTOPBI MOXKET OBITh H3MEHEH B 3aBUCHMOCTHU OT HOTpeOHOCTEH

97

Ilvanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

ONICpallMOHHBIX CHCTeM. lIpu OOHapyXeHHHM CHCTEMHOTO BEI30Ba, B €ro 00paboTIHK
NepesialoTcs apryMEeHTHl M BCS COIYTCTBYyIomas uH(oOpMarms, 3arpyKeHHas H3
KoHGurypaunoHsoro ¢aiina. M3HauanpHO, B KOH(QUTypauuoHHOM (aiine, Bce apryMEHThI
MPECTaBIISIOT COOO0H BBIPAKEHUS, IO3TOMY BO3HUKAeT HEOOXOJUMOCTh TaKKe Pean30BaTh
CHHTAKCHUYECKHH aHaIH3aTop, KOTOPOMY HEOOXOIMMO paclo3HaTh BXOAHBIE BBIPAXKEHUS U
nocuuTarh uX 3HadeHus. llocne mpocuéra 3HaueHMM BCeX BBIPAXKEHUM, TPACCHPOBIIUK
(opmanusyer coOpaHHbIE JAHHBIC U BBIBOIHUT UX B JIOT (aili.

KaroueBbie cioBa: QEMU; xoHdurypupyemble cHCTEMHBIE BBI3OBBI, HACTpanBaeMbIC
CHCTEMHbIC BBI3OBBI, OTJIA[KA, OTJIAIYHK; IUIATMH; CHCTEMHbIC BBI3OBBI, TPACCHUPOBKA;
TPACCHPOBIIUK.

DOI: 10.15514/ISPRAS-2018-30(3)-7

Jas nurupoBanusi: VeanoB A.B., Hdosramok [1.M., MakapoB B.A. Konourypupyemsrit
TPAaCCUPOBILIMK CUCTEMHBIX BbI30BOB B aMyssaTope QEMU. Tpynet UCII PAH, tom 30, BbIm.
3,2018 r., ctp. 93-98 (na anrmiickom si3bike). DOIL: 10.15514/ISPRAS-2018-30(3)-7

Cnucok nutepatypbl

[1]. F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, 2005.

[2]. Bacuabses U.A., ®ypcosa H.I., Josramtok I1.M., Knumynienkosa M.A., Makapos B.A.
Moy aasi MHCTPYMEHTHPOBAHHUS HCIOJHAEMOro koma B cumysistope QEMU.
[Ipo6emsr nHbDOpManMOHHON Ge3omacHocTH. KoMmbroTepHbie cuctemsl, NO, 4, 2015r.,
ctp. 195-203

[3]. GNU Bison [HTML] (https://www.gnu.org/software/bison/)

[4]. Nitro. [HTML] (http://nitro.pfoh.net/index.html)

[5]. Panda. Plugin: syscalls2. [HTML] (https://github.com/panda-
re/panda/blob/master/panda/plugins/syscalls2/USAGE.md)

98

AHanu3 mMeToaoB OLEHKU HaAeXHOCTHU
obopyaoBaHus n cuctem. MNMpakTuka
NPUMEHeHNs MeToaoB

Y2E M. Jlaspuwesa <lavr@ispras.ru>
123 i B. ITakymun<npak@ispras.ru>
Y4.I". Poioicos <ryzhov@ispras.ru>
L3¢ B. 3enenos <zelenov@ispras.ru>
1HHcmumym cucmemnozo npoepavmuposarnusi um. B.11. Heannuxosa PAH,
109004, Poccus, e. Mocxaa, yn. A. Condxcenuyvina, 0. 25
2 Mockosckuii pusuko-mexnuueckuii uHcmumyn,
141701, Poccus, Mockoeckas 06a., 2. [lonconpyoustii, Uncmumymckuii nep., 0. 9
SHayuonansuelii uccredosamensckutl yuusepcumen « Boicuias wkona s5KoHOMUKI»
101000, Poccus, 2. Mockea, yn. Macuuykas, 0. 20

Annortamms. [IpoBoauTcs aHanu3 MoJieiell 1 METOAOB OILCHKH HaJeKHOCTH TEXHUYECKUX U
MPOTpaMMHBEIX cpeAcTB. OMpenensioTcs OCHOBHBIE MOHSITHS METOJIOB HAJEeXHOCTH U
0€30MacCHOCTH TaKUX CHCTEM M CHTYalWi, IPUBOIINX K OIIMOKaM, AedeKkTaM M OTKa3aM.
JlaHo ompenieneHue HaIEKHOCTH M OE30MAaCHOCTH TEXHHYECKHMX CHCTEM M MPOrPAaMMHOTO
obecrieuenns (I10) cucrem. IlpuBeneHa kimaccupuKamus MOIENCH HAIEKHOCTH:
MPOTHO3MPYIOIIEr0, U3MEPUTENHFHOTO U OLEHOYHOro THUIOB. ONHCAaHBI OLCHOYHBIE MOJIEIH,
KOTOpBIE MPUMEHSIOTCS Ha mpakTuke. Ompemenen crangapt xusHeHnoro nukma 10 (1ISO
15288:2002), opueHTHpOBaHHBIA Ha pPa3pabOTKy W KOHTPOJb KOMIIOHEHTOB CHCTEM Ha
ommOKH, HayWHasg c TpeboBaHmil k cucreme. [IpencTaBieHBI pe3ydabTaThl IPHMEHCHUS
mozeneit HamexxHocTH (Mycsl, ['oama-OkoMOTO M 1p.) K ManblM, CpPeAHHM H OOJBIINM
IpOEKTaM M JaHa CpaBHUTENbHas MX oLeHka. OmmcaH TexHojorudeckud moxnyns (TM)
OLIEHKH HAJEeXHOCTU CJIOKHBIX KoMiuiekcoB mporpamm BIIK (1989). Ilokasana monens
kadectBa cranmapra SO 9126 (1-4):2002-2004 ¢ mnokaszatensmu (YHKIHOHATBHOCTb,
HaJeKHOCTh, 3PEKTHBHOCTD U Jp., KOTOPHIC HCIOJIB3YIOTCS MPU ONpPEIEIeHUH 3PETIOCTH U
cepTudHKaTa Ka4eCcTBA IIPOAYKTA.

KiroueBble cj10Ba: HaJIe)KHOCTh, OMKMOKA; NEPEKT; 0TKA3; INIOTHOCTh NE(PEKTOB; CIyIaiHBII
rporiecc; 0€30MacHOCTb; TAPaHTOCIIOCOOHOCTh; BOCCTAHABIMBAEMOCTh; OTKa30yCTOWYHBOCTE;
3aBEPIICHHOCTH; OIICHKA HAZIKHOCTH; CEPTH(HUKAT KauecTBa

DOI: 10.15514/ISPRAS-2018-30(3)-8

Jas uutupoBanus: Jlaspumesa E.M., [lakynun H.B., PeokoB A.I'., 3enenos C.B. Ananus
METOJIOB OLICHKHM HaJeKHOCTH 00OpYyIOBaHUS M cucTeM. IIpakTuka NMPUMEHEHUS METOJOB.
Tpynst UCIT PAH, tom 30, Bem. 3, 2018 r., crp. 99-120. DOI: 10.15514/ISPRAS-2018-
30(3)-8

99

mailto:lavr@ispras.ru
mailto:npak@ispras.ru
mailto:ryzhov@ispras.ru
mailto:zelenov@ispras.ru

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

1. BeedeHue

PaccmaTtpuBaeTcs TEOpHs HAAEKHOCTH M OE30IACHOCTH TEXHHYECKUX |
nporpaMMHBIX cucteM [1-10]. Teopust HamEeKHOCTH TEXHHKH BO3HHKIA B paMKax
TEOPHUH MacCOBOTO OOCTY)KHBaHHUS CHCTEM U NOBIHSUIA HA CTAHOBJICHHE U Pa3BUTHE
TEOPHH HAJICKHOCTH KOMITBIOTEPHBIX CHCTEM M TIporpammHuoro obecreuenus (I10)
CHCTEM.

Teoperukn, w3ydas NOPUPOAY OIMHOOK B CHCTeMax, paspaboramun Oomee 100
MaTeMaTHYECKUX MOJENeH HaJeKHOCTH, OCHOBAaHHBIX HA YYETe pa3IMIHBIX
CHUTYaIlli, BO3HUKAIOIINX B TEXHMYECKUX U MPOTPAaMMHBIX CHCTEMaX Ha IEPBBIX H
MOCHeqyIomMX ToKoeHmsIx OBM. Meroasl Hame)kKHOCTH — 00ECIIEYHBAIOT
NOBBIIIEHHE HAJE)KHOCTH CHCTEM IIyTeM HCIPABICHHS pasHOro poja
00OHapy>KeHHBIX OLUTHOOK B Ipolecce pa3paboTKH U UX IKCIIITyaTalllH.

Hanexxnocts cucteM chopMupoBanzach Kak CaMOCTOSTENbHas TEOpPETHUECKas H
NPUKJIAIHAs HayKa, CIIOCOOCTBYIOIIAsl ONPENENICHUI0 KaueCTBEHHBIX MMOKa3aTelei
CUCTEM (pyHKIIMOHAIEHOCTS, TOYHOCTb, 0TKa30yCTONYHBOCT,
rapaHTOCIOCOOHOCTb, 3aBEPILIEHHOCTD U IP.).

MeTO}ILI OLICHKU HAJCKHOCTH CHUCTEM IIO3BOJIAIOT IMPOTHO3UPOBATH, UBMEPATH U
OLICHUBATHL Ka4YC€CTBO IMPOAYKTAa C YYETOM BO3HUKAIOIIUX OI_HI/I6OK, KOJIMYECTBA U
MHTEHCUBHOCTHU OTKa30B, a TAK)KE MIPOLIECCOB pa3pabOTKU OTAEIbHBIX KOMIIOHEHTOB
cucTeM B ku3HeHHOM 1ukie (OKII).

B pabote paccMaTpuBaroTCs BCe aceKThl 00eCTIeueHUs HaJeKHOCTH, O€30TTaCHOCTH
¥ KauecTBa TEXHUYECKUX W MPOTPaMMHBIX cucteM [1-11].

2. MemoObI HadexxHocmu o6opydoeaHusi u cucmem

MeToapl OLIEHKHM HAAEKHOCTH TEXHMYECKHX CHCTEM (ammapaTypsl, YCTPOHCTBa,
obopymoBaHue u Jp.) ObLTH pa3paboTaHbl 3HAYUTEIHHO pPaHEe KOMIIBIOTEPHBIX
CHCTEM M OCHOBBIBAJHCH Ha BEPOATHOCTHBIX MapKOBCKUMX MpoIeccax ¢
MHOXECTBOM YHCJIa COCTOSTHUH 110 TEOPUH MacCOBOT0 oOciykuBauus [12-16]. Otu
MeToAbl OOecreynBagy MPOBEPKY HAACKHOCTH (QYHKIMOHHPOBAHHUA TEXHHKH,
npuOOpPOB M YCTPOWCTB B PA3IMYHBIX O0JacTsAX (MalIMHOCTPOEHHE, DHEpPreTHKa,
KOcMOC, MenunuHa U ap.). Ha ux paboToCrocoOHOCTh BJIMSUIM HEMCHPABHOCTH H
pasHble HelopaOOTKM B KOHCTPYKIHMH, TIPUBOSIINE K Ppa3pyLIMTENILHBIM
MOCJIC/ICTBHSM H K YIIEpOY CUCTEMBI B LIEJIOM.

Ha omenky HameXHOCTH KOMIBIOTEPHBIX cucteM u [1O cymiecTBeHHBIM 00pazom
BIIMSIIOT CJIEYIOIIIIE OCOOCHHOCTH.

1. bonpmoe kommyectBo koxa B I1O, 3agacTyio mnpeBblAlONEe €MKOCTh
(usnveckux AeMeHTOB DBM, U croco00B B3aUMOJICHCTBUS OTACIBHBIX
anemeHTOB [10 Mex Iy COO0H;

2. Hewmarepuanbnblii xapakrep asieMeHToB [10, KoTopbIe HE NerpaupyIoT, HO
CTaperoT BO BPEMEHHU, M B UX IPOLECCAX, MPOrpaMMax U KOHCTPYKIUIX
MOTYT CITy4aThCsl Pa3HOr0 pojia HENPEABHICHHbBIE CUTYALIH;

100

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

3. Bo0O3HHKHOBCHHE OIMIMOOYHBIX CHTYallWi, Pa3HBIX Ne()EKTOB U OTKA30B KaK
B 3a7aHAN (POPMATHFHOH CTICITU(HUKAIINN OTACTHHBIX JIEMEHTOB, TaK U B MIX
BBIXOJHOM KOJIE;

4. DOnemenrsl [1O TpymHO NOANAIOTCS BH3yaIM3allMM, OOHApPYKEHUIO H
KOPPEKIMH HaWJEHHBIX OIMMOOK, IMOITOMY H3MepeHue HanexHoctH [10
TpeOyeT aHauM3a W NMPOBEPKH MAHHBIX 00 ommOKax B OOJNBIIEH CTETeHH,
4eM UL alaparypel;

5. Cucrems [10 MoryT nu3MeHAThCS NpH (PYHKIINOHNPOBAHUU U BBIXOIHTH U3
paboyero COCTOSHUS OT pa3HbIX CHTyalllil BHEIIHEH cpeabl (BUPYCOB, aTak
U 71p.), KOTOpBIE HE NPEIYyCMOTPEHHI B COOTBETCTBYIOIIMX MOZIENSX
HaJEKHOCTH U 00ECIICUHNBAIOTCS METOaMU 0e30MacHOCTH MHG)OPMALUH 1
CHCTEM.

HanexHOCTb TeXHUYECKHX CHCTEM 3aBHUCHUT OT IBYX (hDaKTOPOB:

® KayecTBA OTAEIbHBIX TEXHUYECKHX KOHCTPYKTUBHBIX 3JIEMEHTOB CUCTEMBI;
® OTCYTCTBUSl HEHCIPAaBHOCTEH B KOHCTPYKTHUBHBIX OJJIEMEHTaX M HUX
CHOCOOHOCTH PabdOTATh HA/IEKHO U KAYECTBEHHO.
HanesxHOCTh IpOrpaMMHBIX CHCTEM 3aBHCHUT OT 3THX kK€ (PaKTOPOB M OT CIIy4allHBIX
U3MEHEHNH JAaHHBIX W MaplIpyTOB HCIOJHEHHUS MpOrpaMM, KOTOpBIE MOTYT
IIPUBECTH K HEBEPHBIM PE3yJIbTaTaM WJIA OTKa3aM.
Me:xny HagexxHOCThIO anmnapaTypsl U [1O cucteM uMMeeTcsl CXOACTBO, COCTOSIIIEE B
BO3HMKHOBEHHH CIIy4alHBIX SIBICHUH B MPOIECCaX U CHCTEMaX, KOTOPBIE JOJKHBI
AQHAIM3UPOBATHCSI METOIaMH TEOPHH BEPOSTHOCTH, HaJIS)KHOCTH M OE€30T1aCHOCTH.

2.1. OnpepeneHve TepMMHA HageXHOCTU U 0Oe3onacHOCTU
cuctem

Tox nadexcnocmuro cucmem MOHUMAETCS CIIOCOOHOCTH CHCTEMBI COXPAHATH CBOM
cBoiicTBa (0€30TKAa3HOCTh, BOCCTAHABIMBAEMOCTh, 3aIMIIEHHOCTh M Jp.) Ha
33JlaHHOM YPOBHE B TeueHUE (PUKCHPOBAHHOIO IIPOMENKYTKA BpPEMEHH IPH
ONpeIENIEHHbIX YCIOBHAX DKCILTyaTallUH.

Tepmun nadexmcnocms (reliability) o6osnauaer crocoGHOCT cucTEMBI 00NIanATH
CBOﬁCTBaMH, O6eCHeqHBaIOI]_[I/IMI/I BBIIIOJIHCHUEC q)yHKI_H/Iﬁ CHUCTEMBI B COOTBETCTBUU
C 3aJJaHHBIMU TPEOOBAHUSMH.

Tepmun 2apanmocnocoénocms (dependability) o3Hauaer crnocoGHOCTH CHCTEMBI
TapaHTUPOBATH BBIITOJIHCHUEC YCIIYT, JJIA KOTOPBIX OHA IpE€AHA3HAYCHA, U COCTOUT B.
0C30TKa3HOCTH BBITIOJHEHUS,

TOTOBHOCTH K paboTe;

JIOCTOBEPHOCTH PE3yJIbTATOB,;

MIPUCIIOCOBIEHHOCTH K 00CITYKMBaHHIO WM peMOHTY (Maintainability);
uH(pOpMaMOHHON Ge30macHoCTH (Security);

koHpuaeHuuansHocT (confidentiality), cekperHocTH W LEMOCTHOCTH
unpopmauuu (integrity);

101

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

e OeszomacHoctn (safety) paboTel cHcTeMBI 0€3 KaTacTpOoUIECKUX
MOCHCICTBHIA;
® DOKCIUTyaTalqMoHHOW 3aBepmeHHocTH [IO wm cmocoOHOCTH K
BOCCTaHOBJICHHIO Pa0OTOCIIOCOOHOCTH CHCTEMBI.

Omkxazoycmoiiuusocms (fault-tolerance) o6osHawaer CHOCOOGHOCTH CHCTEMBI
ABTOMATHYECKH 3a OTPAHWYCHHOE BpEeMs IIPOTHO3UPOBATH, NPEAYNPEKIATh U
BOCCTaHABIUBATh (DYHKIIMOHAIFHOCTh CHCTEMBI TIOCJIC OTKa30B C IOMOIIBIO
MEXaHU3MOB MOIZICPKKH BCEX COCTABISIONIUX TapaHTOCMOCOOHOCTH. CUCTEMBI UITH
MPOIIECChI, KOTOpBIE O00JaNal0T TaKUM KOMIUICKCHBIM CBOMCTBOM, HAa3bIBAIOT
rapaHTOCIOCOOHBIMH. MM TpHCYIIH TPAJUIMOHHBIC HAJCKHOCTHBIC CBOMCTBA
(6e30TKa3HOCTh, TOTOBHOCTh, OE30MACHOCTb, ICIOCTHOCTh, KOH(PHICHIINATBHOCT,
BOCCTaHaBIIMBAEMOCTb U JIP.).
Bonpockl pa3paboTKu U UCTIONB30BaHMs FAPAHTHN KAuecTBa CUCTEM OOCYKIArOTCS
Gonee 25 mer Ha MEKAyHApOAHBIX (opymax u kKoupepenuusx (Conference on
Dependable Systems and Networks (DSN), European Dependable Computing
Conference, (EDCC), International Conference on Computer Safety, Reliability and
Security (SAFECOM), Probabilistic Safety Assessment and Management
Conference (PSAM), Dependable Systems, Services and Technologies (DESSERT),
Conference on Dependability of Complex Systems (DepCoS) u ap.).
C 2004 rony accouumanust |IEEE wusmaer »xypuan Dependable and Security
Computing. B Hem 00cyKaar0Tcss OU3HEC-KPUTHIESCKUE TIPHIIOKEHHSI, IIEKTPOHHAS
KOMMepIHs, 0aHKOBCKHE TEXHOIOTHH U 1ip. [16, 17].
C TOYKH 3peHHs TapaHTOCIMOCOOHOCTH HAJEKHOCTH SBIACTCS LEeNeBOH (yHKIHeH
peammzanmu cucteMbl. K HeHl NpENBABIAIOTCA BBICOKHE TpeOOBaHUS
(HEIOITyCTUMOCTh OIIMOOK, OTKAa30B, Ae(PEKTOB M APYIHX aBapUMHBIX CHTYAaIHi).
HamexHOCTh cHCTEM 3aBHCHT OT YHCIIAa OCTABIIMXCS W HE YCTPAHCHHBIX OMIMOOK B
OTACJBHBIX IIporpaMmMax U KOMIIOHECHTaX CUCTEMBI.
YeM WHTEHCHBHEE NPOBOJHUTCS OSKCIUTyaTallMss CUCTEMBI, TeM WHTCHCUBHEE
BBISIBILTIOTCS] OIIMOKH, OBICTPEE PACTEeT HAJACKHOCTh CHCTEMBI U COOTBETCTBEHHO €€
KauecTBO. HaaexxHOCTh, MO CymecTBY, sBJsSeTcss (yHKOHMEH OT OIMOOK,
OCTaBIIUXCSI B CUCTEME TOCIe BBOJIa €€ B dKcIuryartanuio. CucrteMbl 6e3 ommbok
CUUTAKTCS a6COJ'lIOTHO HaAC)KHBIMHU. I[J'IS{ OLICHKHN HaaACKHOCTH CHUCTEM
HCIIOJIB3YIOTCSI COOpaHHBIC CTATUCTHYCCKHIE JTaHHBIC — BPpeMsl 0€30TKa3HON paboThI,
JedeKThl ¥ 9acToTa (MHTEHCHBHOCTH) OTKA30B.
HccrnenoBanue HaIEKHOCTH CHCTEM IPOBOAMTCS C IOMOIIBI0 METOMOB TCOPHHU
BepOﬂTHOCTeﬁ, MaTeMaTU4eCKOH CTaTUCTHUKH, TEOPHUNU MaCCOBOTO 06CJ'ly)KI/IBaHI/I$[u
MAaTE€MAaTUYCCKUX METOAOB HAACKHOCTHU H 6630HaCHOCTI/I. I'maBHBIM HMCTOYHHUKOM
I/IH(i)OpMaHI/II/I I OLCHKU HAACKHOCTHU ABJIAIOTCA TIPOHECChI TCCTUPOBAHMA,
IKCIUTyaTalld ¥ WCIBITAHWS CHCTEMBI U JIAHHBIC, TOJIYYCHHBIC MpH pa3paboTke
CHCTEM B COOTBETCTBHM CO cTaHmapramu >xu3HenHoro uukma (OKL) (ISO/IEC
15846-1998, 15939:2002) cuctemuoit nmxenepun [15-23].

102

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

2.2. ba3oBble NOHATUA MoAenen HaeXXHOCTU U 6e30MacHOCTU

K 6a30BbIM IOHATHSAM, KOTOPBIE MCIHOJB3YIOTCA B MOMENAX HAaJEKHOCTH CHCTEM,
OTHOCATCA ciemyrorue [1-5].

e Omxas (failure) — st0 mepexom cucteMbl u3 paboyero COCTOSHHSA B
Hepabouee.

o Jlegpexm (fault) — 910 mocnencTBUE BBIMOJHEHUS DJIEMEHTA HMPOrPAMMBI,
NPUBOIALIEE K HEKOTOPOMY HEMPEABUACHHOMY COOBITHIO (HEBEPHOI
UHTEPIPETALMA KOMIIBIOTEPOM); HEBBIABJICHHBIE Ie(EKTHl — HMCTOYHHK
HOTEHIUAJBHBIX OIIMOOK U OTKa30B CUCTEMBI.

o Quubka (Error) Moxet ObITh CIICICTBHEM HEAOCTATKA B CICHU(PUKAIUIX
0001 M3 IPOrpaMM WIIM NPU NPUHATHH HEBEPHBIX ACHCTBUI B Ipomecce
UCTIBITAHUS CUCTEMBI.

e UumencusHocms o0mKa3o068 — 3TO YacTOTa IIOSBICHUS OTKa30B WU
IepeKTOB B CHCTEME TIIpH €€ TECTHPOBAHWH, OKCIUIyaTallld W
CONPOBOKIEHUH CUCTEMBL.

OngHUM U3 MOAXOAOB K HCCIEIOBAaHUIO HAJECKHOCTH Ha OCHOBE OTKAa30B CHCTEM
SIBIIIETCSL KJIACCHMYECKas TEOpPUs BEPOATHOCTEH, COTJACHO KOTOPOHl OTKa3bl B
CHUCTEME CYHTAIOTCS CIYYalHBIMA M 3aBHCAT OT OIIHOOK, BHECCHHBIX IIPH
pa3paboTke cHCTeMBL. Bce Momenw OIEHKH HAIe)KHOCTH OasuUpyrOTCsS Ha
CTaTHUCTUKE OTKAa30B M HHTEHCUBHOCTH BBIIBJIEHHBIX OTKa30B B Ipolecce
Bepu(UKAIIUK, TECTHPOBAHUS W WCHBITAHUS CHUCTEMBI JUIA OOecreueHHus ee
paboTocnocobHOCTH U rapaHTocnocobHoctH [16, 17].

Mopenu HaAEKHOCTH OCHOBBIBAIOTCSI HAa HAXOXACHUU CIy4yalHOW BEJIMYMHBI B
CUCTEME, YHCIIOM M HWHTEHCUBHOCTHIO BO3HMKHOBEHMS OTKa30B B cucTeme. Jlist
CIIy4alfHOH BEJIMYMHBI BBIYMCIAETCS MaTeMaTH4YecKoe OXKHAAaHWEe M JHUCIepCus
(cpennee otknonenue). Ecnu ciayuaiiHas BeqWyMHA TUCKPETHA, T.€. MPUHUMAET
KOHEYHOE YHUCIO 3HAYeHUH X;, Xz, ..., Xn , TO €€ pacHpeiesieHHe OIMHCHIBACTCS
BeposaTHOCTBIO P(§ = x;j), u B obmiem ciyuae F(x) = P(§ < x;) sBisiercst GpyHKuueH
pacrpezesieHusl CIy4aiiHOM BEJTMUHHBI.

Cny4JallHBIH TIpOLIECC C HEMPEPBIBHBIM BPEMEHEM, KOTOPBIH OIMHCHIBACTCS
OJTHOPOJHBIMH COOBITHSIMH, Ha3BIBAETCS ITyaCCOHOBCKUM IIPOLIECCOM.

Ecnu cnydaiinble Benu4uHBl, NojgydeHHble Ha BeeM JKI[cucTemsl, pacnpeneseHbl
M0 TIOKAa3aTEeIbHOMY, JPJIAHTOBCKOMY WM THIEPIPIAHTOBCKOMY 3aKOHAM, TO
MIOBEJICHNE CHUCTEMBI ONMCHIBaeTCs MapKOBCKMM mporeccoM 0e3 HEempepbIBHBIX
KOMIIOHEHTOB.

HanexxHocTh 1o cymiecTBy odeHb Onm3Ka 3ajadaM Oe3omnacHocTH. [Ipu pa3paboTrke
CHUCTEM HAyYHBIMH W HEKOMMEPUYECKHMH WHCTHTYTaMH HX TPYIHO OIIEHHTHh Ha
HAJIe)KHOCTD W 0E30MIaCHOCTh M3-3a TOTO, YTO OHHU AENAIOTCS, KaK IpaBWIIO, HE MO
craHgaptaM. B TO BpemMs Kak CHUCTEMbl YNpaBJICHHUS aBUALUECH, aTOMHOU
SHEPreTUKON M 00OPOHHOH MPOMBIIICHHOCTHIO pa3padaThIBAIOTCA 110 CTaHAAPTaM.
B HUX HaseXHOCTh U 0E30MACHOCTH ONPEICISAIOT pab0TOCIIOCOOHOCTh CHCTEMBI B
COOTBETCTBHH C TPEOOBAHUSIMH M C MUHHIMYM OTKa30B U Ae(hEKTOB.

103

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

B xapakrtepucTukax 0€30MacCHOCTH YUYHUTBHIBAIOTCS TOJNBKO TE OTKa3bl, KOTOPBIC
MOTYT IPHUBECTH K KaTacTpO(UUECKUM IMOCICICTBISIM M yiepOdaM (Hampumep,
MoXKap, B3pBIB, paspymieHHe 3maHus W 1p.). OueHka O€30MacHOCTH CHCTEMBI
Oasmpyercs Ha HaxexHoctn QyHkimonupoBanusa [10 u BJl. Ouenka HamexHOCTH
3aBUCHT OT METPUK CTaHgapTa KadecTBa (BHEIIHWE, BHYTPEHHHE,
JKCIUTyaTaloHHble). OHM CPaBHUBAIOTCS C TPEOOBAHUSMY 3aKa3unKa Ha CUCTEMY U
UCIIONB3YIOTCS TpPU cepTUPUKAUMM TpoAaykra. JJis OLEHKH HAJeKHOCTH H
¢yHKIMOHANBHOW Oe3omacHOCTH Hcnonb3ytorest crangaptel ISO/IEC 12207 pns
ITO n ISO 15288 -2006 cuctem.

Ha paboTocnocoOHOCTh CHCTEMBI BIMSIOT OTKasbl, Je(eKThl ¥ OUIHMOKU
NPOEKTHUPOBAHMS, KOTOPHIE MPUBOJAT K JUIUTEIBHOCTH BOCCTAHOBJICHUS W K
HEOOXOJMMOCTH YCTpaHSITh B MpPOrpaMMe OIIMOKK CpeJCTBAMM INPOrPaMMHOM |
undopmannontoit u3obeitounoctu. CormacHo craHmapra ISO 9126 (1-4)
OTIPEETIAIOTCS XapaKTEPUCTUKN HAAEKHOCTH C YI€TOM OOHApyKEHHBIX Ae(EKTOB U
omuO0K NpH (QyHKIIMOHUPOBAHNH rapanTocriocooHoro [10 cuctem.

Crenenp pabOTOCTIOCOOHOCTH/TAPAHTOCIIOCOOHOCTH 3aBHUCHT OT COOTBETCTBHS
XapaKTEepPUCTUK TpeOOBAaHWH, 3aAaHHBIX B IPOEKTE, BBISABICHHBIM OIINOKaM |
otkazaM B IO M BO3MOXXHBIM HEHCIIPAaBHOCTSM B KOHCTPYKTHBHBIX 3JIEMEHTaX
CHCTEM.

3. Knaccudpukayusi modeneli HadexxHocmu 10

BonpmuHCTBO MOJeneil Hale)KHOCTH UCXOAAT U3 MPEIIIONI0KEHNS, YTO HalICHHBIC
OmMuOKH 1 Ne(EKTHl YCTPAHIIOTCS HEMEJICHHO WM ONPEICISIIOTCS BPEMEHEM HX
yCTpaHEHHUs ¥ HOBBIC JeEeKTHl He BHOCATCA. B pe3ynbpTaTe KOMHUECTBO 1e(PEKTOB B
CHUCTEME YMCHBIIAETCS, a HAJEKHOCTh BO3PACTACT, TAaKHE MOJCITH IOIyJHIN
Ha3BaHHE Mojened pocra HagexkHoctd. Shick G. [6, 16, 17] mnpemioxun
CIIEIYIOIIYIO KIaCCU(PHUKAIINIO MOIeNel HaJJe)KHOCTH.

Ipoenosupyrowue modenu HaEKHOCTH OCHOBAHBI HAa W3MEPEHHH TEXHUYCCKHUX
XapaKTepUCTHUK CO3JaBaeMOM MpOrpaMMbl: JUIMHA, CII0KHOCTb, YHUCIO ITUKIOB U
CTENeHb WX BIJIOKCHHOCTH, KOJHMYECTBO OHIMOOK Ha CTPAHHUILy OIEPaTOpOB
MPOrpamMMBI U JIp.

Mopene Momiin—bpykca OCHOBBIBAETCSI Ha JJIMHE U CIOXXKHOCTH CTPYKTYPBI
IIporpaMMbl (KOJ’[I/I‘IGCTBO BETBEH U OUKJIOB, BJIO)KCHHOCTH HI/IKHOB), KOJIMYECTBE U
THTIAX IEPEMEHHBIX, a TAK)Xe HHTEP(ECOoB.

Mopens XosicTeqa AaeT MPOTHO3UPOBAHUE KOJMYECTBA OMIMOOK B MporpaMMe B
3aBHCHMOCTH OT ee o0BeMa M TakWX JaHHBIX, KaK 4YHCIO omepanuit (n;) u
orepanoB (ny), a Takxke obiree uncio obpamenuii K HUM (N + Ny).
H3zmepumenvuvie modenu TpenHa3HadeHBl I u3MepeHus HanexHoctH [10,
paboTaroNIero ¢ 3alaHHOW BHEITHEH cpeiol U CIeAYIOMUMHA OTPaHHYEHUSIMU:

e JIO He ™omuduuupyercs BO BpeMs IepHoja H3MEPEHHH CBOMCTB
HaJIe)KHOCTH;
e OoOHapyXCHHbIE ONMIMOKHM HE UCTIPABIISIOTCS,

104

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

® U3MEpeHHEe HAACKHOCTH TNPOBOIUTCA Uil 3adUKCHPOBAHHOM
koHpurypamuu I10.

IIpumepom Takux mopeneu sBnserca mozaenb Henbcona, Pamamypru—bactanu u
ap.[3].
Mopnens HembcoHa OCHOBBIBAaeTCS Ha BBIIIOJHEHHWH K MPOTOHOB MPOTpamMMBI IpH
TECTHPOBAHUH U TI03BOJISICT ONPEAETUTh HAIe)KHOCTD 10 (hopMyIIe:
R (k) = exp [X t; At)],
rae t — Bpems BBINONHEHHS j-ro mporoHa, A(f) = —In(1-g;)/t; u mpm g < 1
MHTEPIPETHPYETCS KaK (QYHKIUSI HHTEHCUBHOCTH OTKa30B.
O1cHOYHBIE MOJIIH OCHOBBIBAIOTCSI HA CEPHUH TECTOBBIX IPOTOHOB M IIPOBOSATCS
Ha 3Tafax TeCTHPOBAaHUA CHCTEMBI. B TecTOBOIl cpene ompenenseTcss BEpOITHOCTh
OTKa3a MPOTPaMMBI MPH €€ TECTUPOBAHUM WJIM BBINOJHEHHH. DTH TUIBl MOeJeH
MOTYT MpUMeHsAThCs Ha 3Tanax JKL u MoryT ObITh crteyrornux Bumos [7-11].
Mopnenu 6e3 nozcuera omMOOK OCHOBaHbI HAa M3MEPEHHU HHTEPBaJla BDEMEHU MEXKIY
OTKa3aMH U II03BOJISIIOT CIIPOTHO3MPOBATH KOJMYECTBO OIIMOOK, OCTAaBLIMXCS B
nporpamme. K stum Monensm otHocstess moaenu Jkennucku u Mopaupl, [uka
Bynseprona, u JIutByna—Bepanna.
Mopnenu ¢ monc4eToM 0TKa30B 0a3MpYIOTCsl Ha KOJIMYECTBE OIIMOOK, OOHAPYKEHHBIX
Ha 3a/IaHHBIX MHTepBajlax BpeMeHH. K 3ToMy Kilaccy Mopeneid OTHOCATCS MOJEIH
IlMuka—-Bynseprona, [llymana, [TyacconoBckas Moaensb U Ip.
Mozenu ¢ nojiceBoM OMHMOOK OCHOBAaHBbI Ha KOJMYECTBE YCTPAHEHHBIX OIIMOOK M
MOJICEBE, BHECEHHOM pPOIpaMMy HCKYCCTBEHHBIX OMIMOOK, THI M KOJHYECTBO
KOTOPBIX 3apaHee W3BECTHHI. [Ipy BHECEHMH M3MEHEHHI B MPOrpaMMy MPOBOAMUTCS
MOBTOPHOE TECTHPOBAHME M OIEHKa HAJEKHOCTH. OTOT MOAXOA Oasupyercss Ha
TECTUPOBAHUH W PEAKO HCIIONB3YETCsA U3-3a JIOIMOJIHUTEIBHOTO o0beMa padoT it
MOKPBITHSL TECTAMH KOMIIOHEHTOB CHCTEMBI.
Mogenu ¢ BbIOOpOM 00JaCTH BXOIHBIX 3HAYEHHWH OCHOBBIBAIOTCS Ha TEHEpaInu
MHOXXECTBA TECTOBBIX BBHIOOPOK W3 BXOoOHOTro Habopa. K sromy tmimy mMopeneit
oTHocutTcs Mojens Henbcona u ap. Ha mpomeccax BbIBIGHHS OTKa30B M UX
UHTEHCUBHOCTH UCIOJb3YIOTCS TAKKE!

1) Mogenu, paccMaTpUBAIOIIIEe HHTCHCHBHOCTh OTKAa30B, Kak MapKOBCKHI H

ITyaCCOHOBCKUH Ipo1iecc;

2) MOJEeJH POCTa HAJICKHOCTH.
YeTkoil rpaHUIBI MEXIY dTHMH MOJEISIMH IIPOBECTH HEJNB3sI, OJHAKO 10 (hakTopy
UHTEHCUBHOCTH OTKa30B M MOJENEH MOBEIEHHs MX MOXHO pa3JeNuTh Ha
9KCIIOHEHIIMAIBHBIE, JIoTapupMUUecKre, reoMeTpuiecKue, OailecoBckue u Ip.
Jns mpaxkTH4ecKod OLEHKHM Ha/e)XKHOCTH Ooyiee BCEro NPEICTAaBISET WHTEPEC
onieHouHas Mojenb Mycsl, Mycsl-OxoMoTo u ap. PaccmoTpum ux.
1. Ouenounas moaesb Mychl [8] ocHOBaHa Ha CJIEAYIOIIUX MOTOKEHHUSIX:

® TECTHI aJIeKBaTHO MPEICTABIAIOT cpeay (PyHKIIMOHUPOBAHNS;
® IIPOUCXOJAIINE OTKA3hl YUUTHIBAIOTCS (OLIEHMBACTCS MX KOJMUECTRO);

105

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

® WHTEPBaJIbl MEX/y OTKa3aMU HE3aBUCHMBI;

e BpeMs MEXXAY OTKa3aMH PACHPEIENICHO M0 HKCIIOHEHIINAILHOMY 3aKOHY;

® HHTCHCHUBHOCTbH OTKa30B IIPONOPUHOHAIBHA YHCIY OIINOOK;

® CKOpPOCTb UCTIPaBJICHUS omuodoK (OTHOCHTETIBHO BpEMEHU
(YHKIIMOHUPOBAHUS)

° nmponopuruoHaJIbHa UHTCHCUBHOCTU UX MTOABJICHU .

OTa MOJEeNb YIUTHIBACT HHTEPBAJIBI MEXIY OTKa3aMHt, KOTOPBIE PaclpeAeiIseTcs Mo
SKCIOHEHIMAIbHOMY 3aKOHY, @ HHTEHCUBHOCTb OTKA30B MPONOPIMOHATIbHA YHCITY
00OHapyKEHHBIX OIINOOK.

Wcxons u3 aToit Moaenu, MOKHO YCTaHOBUTDL 3aBUCUMOCTD:

1) cpenHero umcia OTKa3oB OT BpeMeHH (yHKIHMOHHMpOBaHMA T (puc.l), KoTopoe
3aJaeTcs B BUJC:

Ct
m=M, [1 — exp (—],
M, T,

rne My — oOmee umciio omubok; 7y, — HavaibHas HapabOTKa Ha OTKa3; ¢ —
K03(GHULNEHT BpEMEHH UCIIBITAaHUH; T — BpeMs (YHKIIMOHUPOBAHUSL.

2) cpenHeii HapaboTku Ha oTka3 T oT BpeMeHu QpyHKIMOHMpOBaHHS T (pHc.2):
T=Toexp (c), tae My, To, ¢ — 3aBHCAT OT HaAPaOOTKH Ha OTKA3.

T

M, T,

Puc. 1. 3asucumocmo yucra omrkazoe om epemeru T
Fig. 1. The dependence of the number of failures on time of ¢

T

Puc. 2. 3asucumocms cpeoneii napabomxu Ha omxas om epemenu T
Fig. 2. The dependence mean time to failure rate from the time ¢

I'paduk sToli 3aBHCHMOCTH IpeacTaBieH obnacTbio 1 (puc. 3), it koTtopoit M; =
1, 2, ... — HOMepa HaOMIOACHUH, a Ty Tp . Tyy — BpeMsl Mexay otkazamu. Obmactp 2
(puc.3) COOTBETCTBYET JOCTHXKEHUIO cpeiHelt HapaboTku 7, Ha OTKa3 3a Bpems At.

106

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

T

To i ! T

[
>

Puc. 3. Obnacmu omkazo8 u HApabomKu Ha OMKA3 OM 6PEMEHU T
Pic. 3. The field of failures, and mean time to failure rate from ¢

Ilo coOpanHbIM naHHEIM 00 OmHUOKax oleHmBatoTcsa mapameTpel T0 mw MO, c
HOMOIIBIO KOTOPBIX ONPEEIAI0TCA JOMONIHUTEIbHOE YUCIIO OMUOOK 10 hopMyre:

Am = MoTo[— - —]
T T,
2. Mopeab Mycbi-OkymoTo (Jiorapudmuyeckas) JONYCKaeT, YTO HEKOTOpPbIE
OIIMOKM MMEIOT OOJBIIYI0 BEPOSITHOCTH INPOSBICHHS B BHAE OTKA30B, CHIDKAIOT
MHTEHCUBHOCTh OTKAa30B C KaXJOW YCTpaHeHHOW OmMOKOW W JHaroT
9KCIIOHEHIMANIbHOE pachpeneieHre. MaT.oxkuaaHHe HaiaeHHBIX omubok m(t)
UMeeT BUJ:

m (t) = (1/0) In (A6t + 1),

rIe Ao — UCXOJHAs MHTEHCHBHOCTh OTKa30B, O — CKOPOCTh CIajia MHTEHCHBHOCTH
OTKAa30B C KOXIBIM YCTPAHEHHBIM JIe(EeKTOM, a (QYHKIHS MHTCHCUBHOCTH OTKa30B
A(t) umeer Bu:

7\.(’[) = 7\,0 / (7\,0 0t+ 1)

3. Mogear T'oeso—OxymoTo (3KCIOHEHIMAJIBHOIO POCTa) OIKUCHIBAET
oOHapy’keHHe OMMUOOK C MOMOINBI0 HEOAHOPOIHOIO MyaCCOHOBCKOTO Iporecca. B
HE WHTCHCHBHOCTH OTKA30B 3aBHUCHT OT BPEMEHH, a KOJHMYECTBO BBIABICHHBIX
OomuOOK MPH TECTUPOBAHUH TPAKTYETCSA KaK CIIydaifHast BETMIUHA.

Wcxonusie mgamapie M, X; u T aHAIOTWYHBI JAHHBIM MPEABIAYIIMX MOJEIEH.
OYHKITUS CPETHETO YKcia 0TKa30B, O0HAPYKEHHBIX K MOMEHTY 1, IMeeT BU/:
m{t)=N(-e™)

roe b — wuHTeHCHBHOCTH OOHapykeHus oTka3zo; ((t)=b - mokaszarenp pocta
HaJeKHOCTH.

OyHKIHA HHTEHCUBHOCTH A (1) 3aBUCUT OT BpeMEeHH pabOThI CUCTEMBI 10 OTKa3a:
A(t) =Nbe ™, t>0,

rae N u b perrarorest ¢ momorpio ypaBHeHws:

107

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

—-m/N-1+exp (-bT)=0

4. S-o6pa3Hasi mMojaeiab. DYHKIMS HHTCHCHMBHOCTH A(t) BBISBICHHS OIIMOOK B
3aBHCUMOCTH OT BpeMEHH pabOTHl HMEeT B

A(t)=aB’texp (-B),
rae a — obmee Konu4ecTBo Je(eKToB, OOHApY)KEHHBIX OT Hayala M JI0 KOHIA
TeCTI/IPOBaHI/IH;

3 — CKOPOCTb U3MEHEHNUsI (PYHKIINH HHTCHCHBHOCTH BBISBIICHUS OTKA30B.

Benenne B ¢popmyny mapamerpa B crerneHH 1 momemn Mycsl n ['osama—OxomoTto
JaeT u3MeHeHue (HOpPMBI KPHUBOIl Tak, YTO OHa CHadaja pacTeT, a MOTOM CIajaeT.
[pakTuka NpUMEHEHHS STHX MoJelell B aBTOMaTU3MPOBAHHBIX CHCTEMax HpHUBENa
K YTOYHCHHIO (YHKIMHM HMHTCHCUBHOCTH TPH BBEICHHH JONOJHUTEIHHOIO
napamerpa n:

A(t)=ap"" " exp (-/A),

rrae N OTpaxkaeT CI0KHOCTb U pa3Mep IPOSKTa HEKOTOPOH CUCTEMBI. DTO ITO3BOJISET
Oornee TOYHO OINMpeneNuTh (HOPMY KPHUBOH MHTEHCHBHOCTH C YYETOM MOJIyYaeMbIX
NPaKTUYECKUX PE3yIbTaTOB.

[pouecc oLeHKN HAISKHOCTH BKITIOYACT:

® IPOTOKOJHMPOBAaHHE OTKa30B B XoJe¢ (YHKIMOHHPOBAHHS CHCTEMBI,
M3MEPEHUE HAJEKHOCTH II0 OTKa3aM U HCIOJb30BaHUE PE3YJIbTaTOB
U3MEPEHUN N7l ONpeleNeHHs MOTePb HAIEKHOCTH B IEPHOI BPEMEHH
3KCIULyaTaluu,;

e aHANM3 YacTOTBl U CEPHE3HOCTH OTKA30B IIPU OINPEACICHUH IOPsIKa
YCTpaHEHHUS] COOTBETCTBYOIINX OIIHOOK;

® OlICHKA BIMAHUSA BpeMeHH (PyHKIMOHMPOBAHMS CHCTEMBI HA HaJEKHOCTB C
[IOMOILBI0 HUHCTPYMEHTOB U3MEPEHUS HAJIEKHOCTH.

3.1. OueHKa HapEeXXHOCTU CUCTEM peanbHOro BpeMeHu

HekoTopble THITBI CHCTEM pEATEHOTO BPEMEHH C OOCCIeYeHHEM 0e30MacHOCTU
TpeOYIOT BBICOKOW HAJEKHOCTH (HEHOMYCTHMOCTh OIIMOOK, TOYHOCTH,
JIOCTOBEPHOCTh H JIp.), KOTOpas B 3HAYMTCIHHOW CTCIICHU 3aBUCHT OT KOJMYECTBA
OCTAaBIIMXCS ¥ HE YCTPaHEHHBIX OIIMOOK B Iporiecce ee pa3padoTku Ha stamax JKII.

B xone sSkcruiyartanmpy CHCTEMBI TaKKe MOTYT OOHApPY)KUBATBCSA M YCTPAHATHCS
ommOku. Ecv npy X WCTIpaBIICHUH HE BHOCSTCS HOBBIC OIIMOKH YJTH MX MCHBIIIE, YeM
YCTpaHSETCs, TO B XOJIe SKCIUTyaTaIliH HaJIS)KHOCTh CUCTEMBI HEMPEPBIBHO pacTeT. Yem
HWHTCHCUBHEC TIPOBOAUTCA OSKCIUTyaTallusA, TEM HWHTCHCUBHEC BBIABIIAIOTCA OIIINOKH U
OBICTpee pacTeT HaJeKHOCTb.

Ha wnagexuocts IO BAWMSIOT, ¢ OXHOW CTOPOHBI, YTIPO3bI, NPHUBOIAIINEC K
HeOJIaroNmpUATHBIM TOCTEACTBISM, PHCK HapyIIEHHS OE30MacHOCTH CHCTEMBI, C
JIPYTO# CTOPOHBI, CIIOCOOHOCTh COBOKYITHOCTH KOMIIOHEHTOB CHCTEMBI COXPAaHATH
YCTOMYMBOCTH B TIPOILIECCE €€ OKCIUTyaTalluu. PHCK yMEHBIIAeT CBOWMCTBa

108

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

HAJIC)KHOCTH, OCOOEHHO eclii OOHapy>XeHHbBIE OIMMUOKA MOTYT OBITh PE3yJbTaTOM
TIPOSIBIICHUS YTPO3EI H3BHE [16].

Metoxbl W MOJSNM HAIEKHOCTH IIOCTOSHHO pa3BHBAIOTCI W YTOYHSIOTCH,
HOCKOJIbKY HAaJeXKHOCTH SBIISCTCS OIHON M3 KIIOYEBBIX NPOOIEM H3MEPeHHUS
KauecTBa COBPEMEHHBIX paclpelelIeHHbIX 0 MIHTepHeT cucteM.

[NosBUIIOCE HOBOE HAmpaBICHUE — umdcenepus Haoexcnocmu 110 (Software
reliability engineering — SRE), koTropoe OpHEHTHPOBAHO Ha KOJIHYCCTBEHHOE
U3YYCHHE OIIEPALMOHHOIO IOBENCHHMS KOMIOHEHTOB CHCTEMBI II0 OTHOIICHUIO K
TI0JIB30BATEITI0, OXHAAIOMIEMY TOJIYYUTh HAICKHYI0 pabory cuctemsl [16-20].
HanexxHocTh 00ecrieunBaeTcst myTeMm:

1) wu3MepeHHs HAAC)KHOCTH, T.C. MPOBEACHUS KOJMYECTBEHHOHW €€ OLECHKH
METOJaMH TIpeCKa3aHui, COOpaHHBIMU JTaHHBIMHU O TTOBEJICHUY CHCTEMBI B
Npolecce TECTUPOBAHUS U SKCILTyaTallul CUCTEMBI;

2) OIICHKHU CTPaTerunu U IMPUMCHCHHUA METPUK I TOTOBBIX KOMIIOHCHTOB,
CO3JIaHHBIX B Tpoliecce pa3paboTKW KOMIOHEHTOB CHCTEMBbI B 3aJlaHHOM
cpeze ¥ CTaHAapTOB Ha U3MEPEHUE Ha/Ie)KHOCTH CHCTEMBL;

3) mpuUMeEHEHHs COBPEMEHHBIX METOJOB WHCICKTHPOBAHHs, BepU(UKAIIUH,
BaJIuaaiuu W TCCTUPOBAHUA B IPOLECCE pa3pa60TKI/1 OTACJIBbHBIX
KOMIIOHEHTOB M CHCTEMBI B IICJIOM.

3.2. O6ecneyeHne HageXXHOCTU Ha aTanax XL

i mosydeHHsT BBICOKOM HAJEKHOCTH CHCTEMBI TpeOyeTcs HaOmoaath 3a
JIOCTHKEHHEM MoKa3aTesel Ha/le)kKHOCTH U KauecTBa Ha Beex atanax JKIL| cornmachHo
pekomenmanusm cragaapra ISO/IEC 12207: XKII [16]. K ocHOBHBIM Tpolieccam
cranaapta XKL oTHOCSTCS:

e crnenudukaus TpeOOBaHUH,
MIPOEKTHPOBAHUE,
peanu3anms,
TECTHPOBAHUE,
UCTIBITAHNE,
COTIPOBOXKIICHUE.
Ha osmane cneyuguxayuu mpeboganuti ONPENCISIOTCS 3a7add W BHEITHUE
crenu(UKaIui OCHOBHBIX (IIETICBBIX) TPeOOBaHUI K CHUCTEME C 3aJJaHUEM METPHUK
JUISL OIICHKH HAJIC)KHOCTH, B TEPMHUHAX MHTEHCHBHOCTH OTKA30B MU BEPOSTHOCTU
0e30TKa3HOTO ero PyHKIIMOHUPOBaHUsA. Pa3padoTunku cUCTeMbI (HOPMUPYIOT:

® IPHOPUTETHI (PYHKIMIA CUCTEMBI [0 KPUTEPHIO BAXXHOCTH UX PEaH3alluy;
e [apaMeTpel cpelbl W WHTCHCHUBHOCTH HCIIONB30BaHUSA (YHKIHA H UX
OTKa30B;
® BXOJHBIC W BBIXOJHBIC JaHHBIC [T KaXI0W (QYHKIIMHA CHCTEMBI;
e KaTeropumii OTKAa30B W MX WHTCHCHBHOCTH IPH BBITOTHEHWH (YHKIHHA B
eIMHUITY KaJICHAaPHOTO BPEMCHH.
Ha smane npoexmuposanus onpenenstoTcs:

109

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

e pa3Mmepsl HHPOPMANMOHHON M aNTOPUTMHYECKOH CIO0KHOCTH BCEX TUIIOB
MIPOEKTUPYEMBIX KOMIOHEHTOB;
e Kareropuu Ae(heKTOB, CBONCTBEHHbBIC BCEM THIIAM KOMIIOHEHTOB CHCTEMBI;
e crpareru (PyHKIMOHAIBHOTO TECTUPOBAHUSI KOMIOHEHTOB IO MPHUHIMITY
«4EPHOTO SIIUKa» C HOMOIIBIO TECTOB JUISl BHISIBIICHHS OLIMOOK B TAHHBIX.
st obecrieueHus HaIe)KHOCTH IPOAYKTA IPOBOIUTCS:

e aHaNW3 BapHAHTOB apXHUTEKTYPHI CHCTEMBI Ha COOTBETCTBHE TPEOOBAHIIM
K HaJIe)KHOCTH;
® aHaNW3 PHUCKOB, PEKUMOB OTKA30B, JCPEBHEB OIMHOOK I KPUTHIECKHUX
KOMIIOHEHTOB € IIeJIbl0 Oo0ecleyeHus] OTKa30yCTOWYMBOCTH U
BOCCTAHABJIMBAEMOCTH CUCTEMBI;
e TPOTHO3WMPOBAaHME TOKazaTeleld pa3Mepa CHUCTEMBI, YYBCTBUTEIBHOCTH K
OIIHUOKAM, CTCIICHH TECTUPYEMOCTH, OIICHKU PUCKA U CIIOKHOCTH CHCTEMBI.
Ha smane peanuzayuu u mecmupoeanus cucmemvl TPOCKTHBIC CIEIH(PHUKAINN
MEPEBOMATCS. B KOJABI M IOITOTABIMBAIOTCA HAOOPHI TECTOB JUI aBTOHOMHOIO U
KOMIUIEKCHOTO MX TeCcTHpoBaHus. [Ipu mpoBeaeHHH aBTOHOMHOTO TECTUPOBAHHUS
obecrieueHre HaJIe)KHOCTH COCTOMT B TPENYyNpPEKICHUH MNOSBICHHS Je(PEKTOB B
KOMIIOHEHTaX M co3gaHne 3((eKTHBHBIX METOIOB 3amMTHl OT HHX. Bce
MOCJIEIYIONINE dTambl Pa3paboTKH HE MOTYT OOECICYHTh Halle)KHOCTh CHCTEM, a
JUIIb CHOCOOCTBYIOT IOBBIMICHUIO YPOBHA HAIS)KHOCTH 3a CUET OOHAPYKCHHS
OIMOOK C TOMOIIBIO TECTOB PA3IMIHBIX KaTETOPHIA.
Ha smane ucnvimanuti IpOBOAUTCS CUCTEMHOE TECTHPOBAaHUE IUISI COOTBETCTBHUS
BHEITHUX crienuukanuii GyHKIUH HensM npoekTa. VcnbITanne IpoBOIUTCS WK B
peanbHOH cpene (QYHKIMOHUPOBAHHS, WIH HA HCIBITATEIBHOM CTEHHAE, KOTOPHIH
UMHUTHPYET paboTy ammaparypsl. [Ipum HOATOTOBKE K HCHBITAHUSM H3ydaeTcs
"ucropusa" TectupoBaHus Ha npouecca JKL[B uenix HCHOIb30BaHUS paHEe
pa3paboTaHHBIX TECTOB, a TAKXKE COCTaBICHHsI CIENUAJIbHBIX TECTOB HCIBITAHHM.
Ha stom sTame ocymiecTBisercs:
e yIpaBJIeHHE POCTOM HAJEKHOCTH MyTEM HEOJHOKPATHOTO HCIPABICHUS U
perpeccuonHoro tectupoBanus [10;
® TIPUHATHE pEUIeHUS O CcTeneHu TOTOBHOCTH [IO W BO3MOXXHOCTH €ro
nepenadu B SKCILTyaTaluio;
e OIIEHKa HANISKHOCTH TIO0 pe3yibTaTaM CHCTEMHOTO TECTUPOBaHUS W
HCTIBITAHUN TIO COOTBETCTBYIOIIUM MOOEAAM HAOEHCHOCMU, TIOIXOSIINX
JIUIS 3aJaHHBIX IICJICH.
Ha smane conposoocoenus onenka Hanexnoctu [10 nmpoBomutes:

e IIPOTOKOJIMPOBaHWE OTKAa30B B XoJe¢ pabOTBl CHUCTEMBI, H3MEpPEHUS
HAJIOKHOCTH (YHKIMOHMPOBAHUS W WCIIONB30BAaHHUS PE3yJIbTAaTOB
M3MEpEeHUi s OmpeleNieHus IMOTeph HAICKHOCTH B IIEPHOI BPEMEHH
9KCIUTyaTaIiH;

® aHaIU3 YacTOThl M CEPhE3HOCTH OTKA30B AJISL ONpPENENICHUs MOpPSIKa UX
yCTpaHEHUs;

110

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

e OIEHKAa BIMAHMA (QYHKIMOHUPOBAHMS CHCTEMBl Ha HAJEeKHOCTh B
YCIOBHSAX YCOBEPIICHCTBOBAHMS TEXHOJIOTMM U TIPUMEHEHHUS HOBBIX
HHCTPYMEHTOB Pa3pabOTKH.

3.3. NMpumeHeHne mopenen ans oueHkn HagexHoctu MNO

IIpakTuka npUMEHEHUsT MOZENEeH MOKa3bIBAET, YTO CPEOU HA3BaHHBIX MOJEIEH
HamOoJiee TEPCIIEKTUBHBIMHU SBIITIOTCS MOZETH OICHOYHOTO THIIA, KOTOPHIE
0a3mpyroTcsl Ha IyacCOHOBCKHX Mporeccax (Momenun Mycsl, ['oama—Oxkomoto, S-
obpazapie U 1p.). [lo »>THM MoOmensIM HaIEXKHOCTH CTpeMHUThCA K 1. OmHEM 13
HEIOCTATKOB sBISIETCS (hopMa KPHBOH HMHTEHCHBHOCTH BBIABICHHBIX OTKAa30B
(3KcnoHeHIMaNbHas), Kotopas crporo cmyckaercs mnpu t>0 BOmm3m t=0. Oro
TOBOPUT O TOM, YTO IMPU TECTUPOBAHUU IMPOBEACHO HEAOCTATOUYHO SKCIICPUMCHTOB
WM Majio HalIeHO OMIMOOK, KOrjJa MHTECHCHBHOCTh OTKa30B Oblaa Ommska 0. B
CHCTEME OCTaIOTCS OLIMOKH U UX NOUCK TpeOyeT 0oJIble BpEMEHH.

B rtabnuue 1 mpencraBieHbl NMpakTHUECKHE 3HA4YEHHs (YHKIMA HHTCHCHBHOCTH
otka3oB A () u konmuecTBO 0TKa30B u(t) i 6a30BbIX U 00X Mojenell. B Hux
3HAUYCHUA a U ﬂ HaxoJATCA B CICAYIOMNUX COOTHOHMICHUAX:

N=a, f=a,b=p £'=p a=ap

Tabn. 1. Xapaxmepucmuxa mooeneti Hadexrcnocmu Ilyacconosckozo muna

Table 1. Characteristics of Poisson type reliability models

Hazpanue momenu

DYHKIWA HMHTEHCHBHOCTH
otkazos A (1)

@OYHKIUE KyMYJISTHBHOTO
KOJIMYeCTBA 0TKa30B u(t)

Mopens ['osma-Okymoto

A (t) = Nb exp (-bt)

#(t)= N (1- exp (-bt))

Mopnens Mycbl

A1) = fo Brexp (-fut)

4= fo (1- exp (-4uh))

S —noto6Has MoaENb

A () =af texp (-A)

A (1) = a{1-(1+/) exp (
-

Mopgens [lIHalineBuHga

A (1) = a0 exp (/)

u(B)= ad/f3 (1- exp (/)

OO6mass MoJeNb
HOBCKOTO TIpolecca

yacco-

At)=ap™ " exp (-A)

u)=a (n= T ng"t/(n-1)"
t" exp(-A)))

Jis MeTona MaKCUMalIbHOTO TPABAOMONOOMS 3aJaloTcs MaHHBIE @, f, N, pemuMm

CUCTEMY YpaBHEHUI!

m

a =

13 o)
M exp(—ft,)

n+1 u
—m= t +
p ot

13 o)

111

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

rze mapamMerp N 3aBHCHT OT IIpOIecca TECTHPOBAHHA M €ro PEeKOMEHIYEMBIX
3HAYCHUN:

N=0 — i1 HEOOJBIIOTO NPOEKTa, B KOTOPOM pa3pabOTUMK SBISETCS TaKKe
tectepoM (Mozens Mycbl, 'oamo-OkoMoTO | 1Ip.);

N=1 — ams cpemHero HmpoeKTa, B KOTOPOM TECTHPOBAaHHWE WM IpoekTupoBanue [10
WCTIOJHAOTCS HECKOJBKHMH pPa3padOTINKaMU M3 OJHON paboded rpymmsl (S-
o0Opa3Hast MOJIEIb);

N=2 — mia OOJBIIOTO TPOEKTa, B
MPOEKTHPOBAHMS PaOOTAIOT MapaJUIEIbHO;
N=3 — i OdYeHb OONBIIOrO MPOEKTa, B KOTOPOM TPYyMIBl TECTHPOBAHHUA H
pa3paboTKu paboTar0T HE3aBUCHMO APYT OT JIpyTa.

Ha ocnHoBe OKCIICPUMCHTAJIbHBIX JaHHBIX TTOJYYCHBI (byHKHI/II/I O KOJIMYECTBEC
0TKa30B y(t) ¥ UHTEHCUBHOCTH OTKa30B A (f) Ha BBIXOIHBIX JAHHBIX M 3HAYCHUAX
napamerpa N (puc. 4). ITOT PUCYHOK MOKa3bIBACT BUA GYHKuHUHA u(t) mpu pasHbIX
sgayennii n=0,1, 2, 3.

KOTOPOM

TPYNIBl TECTUPOBAHUS U

HawnGonpiiee npuOmmkeHue nocturaercs npu N=3, a HauMmeHbmiee mpu N=0
(Mmonens Mycsl, ['09710-OKkOMOTO 1 Zip.). DTO MOATBEPIKIAETCS COOTBETCTBYIOIINMHU
CTATHCTHYECKUMHU JaHHbIMU (Tabi1.2), KOTOpbIe 3aMal0T pa3HHUIy MEXIY
BBIXO/IHBIME JaHHBIMH (f_2) M COOTBETCTBYIOIIMMHE 3HaYCHUSIMU DyHKIUH 1 (t) mpu
sgayennsax N =0, 1, 2, 3.

Tabn. 2. Cmamucmuyeckue Oannvie Gyuxkyuu u(t) npu n=3, 2, 1 u oannvix t 2
Table 2. Statistical data of the function u(t) forn=3,2, 1 and datat_2

CrarucTuyeckue Pa3zuuna Pa3zuuna Pazauna Pazauna
NoKa3aTeu byukumit | pyHkumi yuxumii yuxumii
t2-u3 t2-u2 t2-ul t2-u
CpenHee OTKJIOHEHHE 16.13522 16.22889 19.88387 58.93807
MenuanHoe 15.27700 14.11600 16.0000 60.89700
OTKJIOHEHHE
Makcumym otkiionenne | 33.58100 | 54.23600 49.10800 88.80200
Munanmym otkinoneHne | 4. 848000 | -1.280000 4.175000 15.96200
CpennexBaaparudeckoe | 8.374089 17.37143 14.07056 23.63765
OTKJIOHEHHE

Ha ocHoBe skcriepuMeHTANBHBIX JaHHBIX &, S, N, (Tabi. 2) NpuBEACHBI 3HAYCHUS
¢byukumit 4(t) u A () mpu n = 3, 2, 1, moMyYeHHBIE TIPH HCITONB30BAHUH METO/IOB
OLICHKH Hajie)XHOCTH Mychl, Mycbl-OkomoTto u IlHaiineBunna. Oynkumu u(t) s
9THX METOJIOB IpuBeAeHsl Ha rpaduke (puc. 4). MM COOTBETCTBYIOT KpHBBIE
9KCIOHEHIMaNbHOrO THna. ['padukm >Tux ¢GyHKUMH OJNU3KK ApPYr ApYyry H3-3a
OIM3KUX 3HAYEHUH, TOJYIEHHBIX 110 33JaHHBIM MOJCIISIM.

112

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

250 T T T T

200

=t 1007

1
0 5 10 15 20 25

H(f) IpH pa3HBIX 3HAYEHHAX N.

Puc. 4. I'paghuxu ¢hynryuii w(t) no mooensim Mycwor, Oxomomo u [lInatioesunoa
Fig. 4. The graphs of function u(t) on models of Musa, Okumoto and Shneidewind

Jnst 6onee 3¢pGEeKTUBHOTO NPUMEHEHHS TPHUBEACHHIX MOJENeld HaleKHOCTH
TpeOyeTcsl 3HAYUTENLHOE KOJMYECTBO CTATHCTHYECKUX JAHHBIX O KOJIHUYECTBE W
pachpesieieHun 0TKa30B. A 3TO TpeOyeT yBelUUYeHUsI KOJMUYECTBA IKCIEPHMEHTOB
Ha TMpoIecax TECTUPOBAHHSI, CUCTEMHOTO TECTUPOBAHHS JUIS MOKPBITHS TECTAMH
BCEX KOMIIOHEHTOB M MAapIIPYTOB MPOX0KaeHus myteii B [10.

3.4. TexHonornveckum moaynb (TM) oLeHKN HapEXKHOCTU CUCTEM

TM pazpaboran B pamkax pador no npoekty [TPOTBA BIIK (1986-1989). B
coctaB TM Ha/ie)KHOCTH BXOAMT YeThIpe nporpaMMHubix Moayms (IITM) [15, 16, 22
€.283-296]: pacnpeneneHne HaJle)KHOCTH, TPOTHO3UPOBAHUE TUIOTHOCTHU JIEPEKTOB,
MPOTHO3UPOBAHUE HAJIEKHOCTHU U OLIEHKU HAJIE)KHOCTH.
I. IITM «PacnpeneneHnsi HaJAeKHOCTH» pPEAIU3YET METOJA paclpeeIeHus
HAaJeKHOCTH MO KOMIIOHEHTaM CHCTEMBl IIyTEM MapHOT0 MX CpaBHEHUS W
MOCTPOCHHUS KBaJIpaTHOW MaTpuIipl A pazmepoM N X N U3 3]IeMEHTOB BHJIA:
:i su, j=1,....n i#];n=k, I, m,

a

a,=a,=..=a, =1, q;
Ji

IJI€ N — KOJMYECTBO CPABHMBAEMBIX KOMIIOHEHTOB, K, |, M — koauyecTBO QyHKIMIA 1
MO,HyJ'ICﬁ COOTBETCTBCHHO. ManI/IIIa BKJIIOYAae€T OTHOCHUTEIBHBIH BEC 1-TO

KOMIIOHCHTA M BBIYUCIIACTCS I10 (bopMynaM:

113

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

n
Z a[j n
Jj=1

w —IZWZI

T i=1 I
2.2

i=1 j=1

B ciyuae Oonplmx pa3sMepoB MATPHIBI B IIENAX MOJYYCHHUs OOJiee TOYHBIX
OTHOCHTEJILHBIX OIIEHOK KOMIIOHEHTOB HEPApXUH, BHIUUCISIOTCS, TAK Ha3bIBAEMBIE,
COOCTBEHHBI BEKTOP W COOCTBCHHBIC 3HAYCHUS MATPUIBI COTJIACHO H3BECTHBIM
ypaBHeHHAM [24]. B HHX WCHONB3YIOTCS CIEAYIOUIME HaHHBIC: Amax

MaKCUMaJIbHOE COOCTBCHHOE 3HAUYCHUC MATPUIIBI A n—mopsaka, W; — Ko3duuueHt
OTHOCHTENILHOTO Beca 3eMeHTOB MaTpuibsl A, W = (Wy, Wy, ... w,) — COOCTBEHHBIH
BEKTOpP, KOTOPOMY COOTBETCTBYET Amax. OOIIHOCTh pELICHUs 3aJaud CPaBHEHHUS

n n
YCTaHABIMBACTCS COOTHOIICHUEM (¢ = Zwi U 3HAYCHUEM Zwi =1. Ecmu
i=1 i-1
MaTtpuna A mmeer N-1 cOOCTBEHHBIX 3HAUCHUH A, PaBHBIX HYIIO H Apa = N, TO OHA
SIBJISIETCSI COTJIaCOBAHHOM.
Omnpenenenne uHAekca corimacoBaHHocTH Cl u xosdduimeHTa cOrinacoBaHHOCTH

CR mpoBoautcs mo popmynam:
Y-
Cl = Ao T , CR = i,
n—1 E(CD

E(Cl) — MmaTemaTn4eckoe 0XuUIaHUE Al MATPHIIBI HAPHBIX cpaBHeHHA A (N X n).

rae

Kpurepwnii npremiieMocTH TapHOTO CPABHEHHUS 3JIEMEHTOB B MAaTPHUIIAX pa3MepoM N
= 3 monyden takoit: CR < 0.05 u CR < 0.1 aynst n>5. Tlo pe3ynbratam cpaBHEHHS
dopmupyercs kBanparnas matpuia F(K X K).

AHaslorn4Ho mpoBoauTcs cpaBHeHHe npmioxkeHui 1IC. B pesynbrate cpaBHEHHA
nosryqaroT K Matpuil. Bo3MOXHBIH TOPSIOK KaXKI0H MAaTPHILB! — |, a MaKCHMaITbHBIH
MOPSIIOK KaXA0W U3 HUX — M.

WHCcTpyMeHT i moznepXku merona cpaBHeHus — ExpertChoice mis BXOmHOM
MaTpumbl A aBTOMAaTHYEeCKH IoiydaeT coOcTBeHHBIH Bektop W, coOcTBeHHOE
3HAYCHUE Apgx ¥ K03 durpent cornacopanHoctd CR. J{nst BEIYUCTEHUS Apgx 1 W
WCTIONB3YIOTCSI COOTBETCTBYIOIMME QYHKITMH makeTa Matlab [15].

PesynbraTel cpaBHeHHH 3aHOCATCS B (OpMy, COIEpKAIlyl0 IEepedyeHb BECOBBIX
Ko3(pPHUIIMEeHTOB TporpaMM, KPUTEPHH, HHACGKCHI W KOA(QHUIMEHTHI
corylacoBaHHOCTH. OHU TPETOCTABISAIOTCS B BUJIE TOTOBBIX PE3yNbTaTOB 00pabOTKH
marpull. IlonyueHHble BecoBble KOI(D(HUIMEHTBI CHHTE3UPYIOTCS C IOMOIIBIO
nakera MATLAB 6.5. Pe3ynbrarel 0ToOpaxatoTcsi B BUJE OTYETa O paclpeeIeHUH
HaJIe)KHOCTH 110 00BEKTaM CHCTEMBI.

Il. ITM «IIporno3npoBanue IVIOTHOCTH AeeKTOB» peannzyeT Habop MoJeleH
HAJIC)KHOCTHU [UIS 33JaHHOTO KJIacca MPOrpaMM CUCTeMbI 00paboTKH JaHHbIX [15].

114

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

[IporHo3upoBaHue IIOTHOCTH Ae(eKToB mpoBogurcs 1o mozean RLM (Rome
Laboratory Model) u cocTouT B OlleHKe BIUSHIS Ha TUIOTHOCTH I€(EKTOB COTIIACHO
CIEIYIOINX ACHCTBUM:

1) amanu3 3HAYCHWH MapaMeTpoOB MOICIH IPOTHO3HPOBAHHUS HAICKHOCTH,
BKIIIOYass OCTAaTOK Ae(eKkToB oT mpensiaymero stama pabor c¢ 1O,
UCITONb3YeTCs ISl 1IEJIEBOr0 PACIPECICHHOTO 3HAYCHUS] HA/IC)KHOCTH
I0;

2) cpaBHEHHE TMPOTHO3MPYEMOTO 3HAUYCHUS HAJEKHOCTH C IIEJIEBBIM
pacrpeeieHHbIM 3HAUCHHEM;

3) KOPPEKTHPOBKH MEPEMEHHBIX MTAPAMETPOB TS y4eTa TEKYIIErO COCTOSHUS
npoekra [10;

4) oleHKa mapaMeTpOB MOJIEIH POrHO3UPOBAHUS HAIEKHOCTH;

5) nporHo3upoBaHUE MIOTHOCTH Ae()EKTOB,;

6) ompexeneHre MOPOTOBBIX 3HAYCHHUIT (IOIMYCKOB) Ul OLCHOK PE3yIbTaTOB
MPOTHO3UPOBAHHUS U aHAIM3a AIbTCPHATHB;

7) pacuer nNpOrHO3HOTO 3HaueHHs HajexHoctu 1 [10.

ITonydyeHHast OlleHKa SIBISCTCS MOAUGUKATOPOM 0a30BOrO 3HAYCHHUS IUIOTHOCTH
nedexroB ais onpezeneHHoro knacca I10.

Pacuer motHocTH AedexToB nenaercs mo moaenun RLM (Rome Laboratory Model).
CHauana BBITOJHIETCSI OJIHOKPATHOE MPOTHO3MPOBAHUE IIOTHOCTH JIE(EKTOB IO

thopmyie:

9
o= [
i=1

rre Kj — Moau¢uKkaTops! MIOTHOCTH AedeKToB Dy, ¢ yueToM IoporoBbIX 3HAYECHUH
JIAHHBIX O TUIOTHOCTH JIC(PEKTOB.

3arem g kaxkporo 1O pe3ynbTaTel CPaBHUBAIOTCS C TOJYYEHHBIMH 110 MOJEIH
RLM. IIposepka moka3zana, uro mist [10 oovemom 10 - 25 KSLOC norpemHocTs
MPOTHO3MPOBAaHUN IUIOTHOCTH JieekToB — mpuMmepHo coctaisier 30-35%. Oro
00BsCHSIETCSI HEKOTOPBIMHU OrpaHudeHusiMu cucteMbl Hugin Lite 6.5. TlomyuenHsle
pe3yabpTaTel MO OMpPENENCHHIO IUIOTHOCTH Je(EeKTOB HCHONB3YIOTCS IIPH
MpOTHO3MpOBaHUH HagexxHocTH [10.

I11. IITM «IIporno3npoBanue HaAesKHOCTH» PEATN3YET METO POTHO3UPOBAHUS
3HA4YeHHsA HAJEKHOCTH MO KaXAOMY MOMYJIO CHUCTEMBI IO CIIEAYIOUIEH MOJIENN
HajexHoctu [15, 23]:

R, =exp[-D, I, - (L-exp(P-E)]

1 1
rre pi— napamerTp cpeibl SKCIUTyaTaldH i-T0 MOAYJI, ¢ — XapaKTepPUCTHKA CPEmbl
ee pa3paboTKH, /; — OIIEHEHHBIH pa3Mep HavyalbHOro Koja, a Dj — nmporuosupyemas
wIoTHOCTh aedekToB B cucreme. Koaddumuent nedexkroB K — koHcraHTa,
npenBuaeHHas 11 Bcex 00bekToB I1C, a 3HAUeHUS pj M @) — U3BECTHBI HA MOMEHT

115

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

IIePBOHAYAJILHOTO IPOTHO3HUPOBAHUS HAJCKHOCTH, OHM HE MU3MEHSIOTCSA BO BpeMs
Pa3pabOTKN KOMIIOHEHTOB CHCTEMBI.

IV. ITM «OneHka HaeKHOCTH CHCTEMBbI» COTIIACHO KIACCH(PHUKAINAN NePEeKTOB
(Orthogonal Defect Classification), B cooTBeTCTBMH ¢ KOTOPOW JUIS KasKIOTO
BBISIBIICHHOTO Jie(heKTa ONPEIeIsTIOTCS TapaMeTphl: THIT eeKTa, TPUTrep nedexTa,
BIMSIHUE Ae(eKTa. DTH IMapaMeTpsl HCIIONb3YETCS OJHON HIIHM ABYMSI MOAXOMSAIINMHI
MOJCJISIMHA HAJIS)KHOCTH W3 BBILIE NPUBEACHHOI'O B LENSAX IPOBEINCHHS OLCHKH
MPOTHO3HOTO 3HAYECHHUS! HAJEKHOCTHU OTHEIBHBIX MOAYJCH M CHCTEMBI B IICJIOM.
PesynbpraThl OLEHKM CpaBHHMBAIOTCS, W BBIOMpaeTcs W3 HHUX Hauboiee
MpaBIONOJ00HAS MOJIEIb.

ITo craumapty ISO/IEC 9126 (1-4) onpeaensrorest moka3atenu Kauectsa (Tabu. 3).

Tabn. 3. Xapaxmepucmuxu kavecmsa ¢ cmanoapme |ISO/IEC 9126
Table 3. Characteristics of quality in ISO/IEC 9126 standard

Ne | HaumenoBanue Orpenenenue xapaxkrepusyeMbix cpoiicts [1C
XapaKTePUCTHKU
gl | OyHKIMOHATBHOCTH Caoiictna [1I1, o0ycroBnuBarone CriocoOHOCTh
(functionality) BBITNIOJIHEHUsI (DYHKIMI B COOTBETCTBUM TPEOOBAHHUSIM B
IpoLecce TECTUPOBAHMS U UCIIBITAHUS CHCTEMBI B
3aJIaHHOM cpeje
02 | HapexxHocth Caoiictna I1I1, o0ycroBnuBaromIye ee CrrocoOHOCTh
(reliability) COXpaHsATh YPOBEHb (DYHKIMOHUPOBAHUS U HI3KYIO
BEPOSITHOCTh OTKA30B B MPOLIECCE BBITOIHEHUS
g3 | [IpumernMoOCTH Caoiictna [1I1, o0ycoBnuBaromie ee CIOCOOHOCTE OBITh
(usability) MOHMMAEeMO# U yIOOHOM [UIsl HCIIONIb30BAHMUSI B YKA3aHHBIX
YCIIOBHSIX
g4 | DddexkTuBHOCT Csoticta [1I1 st palinoHanbHOTO UCIOJIB30BaHUS
(efficiency) BBIJIEJIEHHBIX PECYPCOB MpU paboTe CUCTEMBI B
YCTaHOBJICHHBIX YCIIOBHSX
g5 | ConpoBoxxaaeMocThb Caoiicta I1I1, koTopsle obecnieunBaroT MoIUpHKaLuio,
(maintainability) YCOBEPIICHCTBOBAHUE WJIH aJIalITALUIO CHCTEMBI K
M3MEHEHHSIM Cpe/ibl, TpeOOBaHUN U (PYHKIMOHAIBHOCTH.
g6 | Ilepenocumoctsb Caoiictna I1I1, o0ycrnoBinBaromnye ee CriocoOHOCTh OBITH
(portability) HIEPEHECEHHBIM U3 OJTHOM CPE/IbI B IPYTYIO.

Ha ocHOBe moiy4eHHBIX AaHHBIX O HAJEKHOCTH M APYIHX MOKa3aTelasX KauecTBa
(pyHKIIMOHANBHOCTE, Y(PQPEKTUBHOCTD W Jp.) PACCUUTHIBACTCS IEIEBOE 3HAUCHHE
3aBepmieHHOCTH W mone3Hoctd cucteMbl (IIC), amexkBaTHBIX MOTPEOHOCTSIM
3aKkazuymka. [Ipy 3ToM Mepa 3KCIUTyaTallMOHHOTO Ka4eCTBa CHCTEMbI OMPENCIISAECTCS
(yHKIMEH OJIe3HOCTH BHA:

an‘ = Zk:al) Ri
i=1

116

JlaBpumesa E.M., [Takynun H.B., PeixoB A.T. , 3enenoB C.B. AHaiu3 METOZIOB OLICHKH HaIeKHOCTH 000PYIOBaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

rae @ — Mepa BAKHOCTH I-i QYHKIMH CHCTEMBI JUIS mporecca, R; — HaIeKHOCTh
BBITIONTHEHMST (QYHKIMMIA B 33JaHHOM TTepHoe t SKCIITyaTalu CHCTEMBI.

Jlandbele mo BceM mokaszaTensM kadecta (Q-quality) qi-0s B TaGi. 3 OLEHMBAIOTCS
o opmyie:

6
Oy = a;m;w,
j=1

rae aj - aTpuOyTHl KaKIOro Imokasartens kadectBa (i=1-6); mj — MeTpuku (;
II0Ka3aTells ¢ j-aTpubOyTaMH KauecTBa; Wij - BEC | -II0Ka3aTess Ka4ecTBa CUCTEMBI C
j-atpubytamu. IlonmydeHHbIe JaHHBIE MO MOKA3aTENsIM (XapaKTEPUCTHKAM) MOIEIH
KauecTBa M R; — HAJIEKHOCTh BBIMOJHEHHS (YHKIHH BXOISAT B CepTHOHUKAT
kagectBa [15].

4. 3aknroyeHue

B pabore paccMOTpeHBI MOAXOIBI K OICHKE HANEKHOCTH TEXHHUCCKHX H
NPOTPAaMMHBIX CHCTEM C TPHUMEHEHHEM MOoJelel HaJe)KHOCTH W3 MHOXECTBa
CYIIECTBYIOIIMX MOJIENICH pa3HbIX BHAOB M TUIOB. OmpeiesieHbl OCHOBHBIE 0a30BbIC
HNOHATUS ~ HAACKHOCTH, OOECHEeYMBAIOIIME OIEHKY HAJSKHOCTH II0
COOTBETCTBYIOIIMM ~ MoJeisIM HajgexxHocTH [IC, OCHOBaHHBIM Ha BpPEMEHH
(OYHKIIMOHWPOBAaHMUS W/WIA KOJMYECTBE OTKa30B (OMIMOOK), TIONy4aeMBIX B
koMnoHeHTax B npoueccax JKI[TecTupoBaHMS, CHCTEMHOTO TECTHPOBAaHHS U
IKCIUTyaTtaluu cucteMbl. COIacHO TpHBEACHHOW KiacCu(UKAUU MOJelei
HaJIe)KHOCTH TIPOLECChl OOHAPYKEHHMsSI OLIMOOK B MPOTpaMMax HOCAT CIydailHbIi
MapkoBCKHiI M IyacCOHOBCKHI XapakTep M O0O0ECIeuMBalOT MOUCK OIINOOK,
Je(CKTOB U OTKA30B.

HexoTopble Moaenu HaleKHOCTH IMO3BOJIIOT MPOTHO3UPOBATH YHCIO OLIMOOK B
npolecce TECTUPOBaHMs, APYrHe OLEHMBATh HAJEKHOCTh C MOMOIIBIO (DYHKIHIA
HAJIe)KHOCTH TI0 JaHHBIM, coOpaHHbIM Ha 3Tamax JKL| pa3pabGoTku cHCTEeMBI U
ucnelTanus. sl mpuMepa NMpUBEIEHBI SKCIIEPUMEHTANbHBIE JaHHbBIE JJISI OLEHKH
WHTCHCHBHOCTH OTKa30B A (t) m kommdecTBa 0TKa30B u(t) ¢ moMomipio 6a30BBIX
(Mycer1, ['osma-OxoMoTO U Ap.) U 00IIEeH MOJICIN HAJACKHOCTH, COOPAHHBIX JaHHBIX
Ha sTanax JKL| 1 npuBeneHs! cpaBHUTEIbHBIE OLIEHKH PE3yIbTaTOB OILIEHKH.

Hano OIHCAaHNE HHCTPYMEHTAIBHOTO KOMIIJIEKCa MOJyJIen 1ITM,
o0ecreunBaONIMX paclpe/iesieHne HaJeKHOCTH, IPOTHO3UPOBAHHE IUIOTHOCTH
JeexToB M OLIEHKH HaJIe)KHOCTH. [IpHBeeHbI IToKa3aTe/in KadyecTBa B CTaHAapTHOM
mozemu 1SO 9126 (1-4) u oOLEHKM KauecTBa, BKJIIOYAS H3MEPEHHE MOKa3aTelis
HaJIeKHOCTH, a TaKKe JApPYrMxX IOKaszaTeled KadecTBa, KOTOpble BXOIAT B
cepTH(UKAT TOTOBOTO IPOJYKTa.

Cnucok nuTteparypbl
[1]. JTumaer B.B. Hanexuocts nporpammuoro obecnedenus. M.: CUHTET, 1998, 231 crp.

117

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

2.

[3].
[4].

[5].
[6].
[71.
[8].
[9].

[10].

[11].

[12].

[13].

[14].
[15].
[16].

[17].

[18].

[19].
[20].
[21].
[22].

[23].

118

Jlunmaes B.B. Meronsl obecrieueHnsi KadecTBa KpPYMHOMACHIITAOHBIX IIPOrPAMMHBIX
cucrem. M.: CUHTET, 2003, 510 ctp.

Maiiepc I'. Hanexxaocts nporpammuoro obecriedenus. M.: Mup, 1980, 360 ctp.

Mopo3z TI'.b., JlaBpumea E.M. Mogenn pocrta HaAeXKHOCTH IPOrPaMMHOIO
obecrnieuenus1. Kues: Unctutyt kubepuerunku AHY, npenpunt 92-38, 1992, 23 c1p.
Jlunmaes B.B.. HagexHocTs 1 QyHKIHOHANbHAs 06€30MaCHOCTh KOMIUIEKCOB MPOrpaMM
peansHOro BpeMeHu. Mocksa, 3AO «Csetiunay, 2013, 193 ctp.

Shick G.J., Wolverton R.W. An analysis of computing software reliability models. IEEE
Transactions on Software Engineering, vol. SE-4, Ne 2, 1978, pp. 104-120.
Shanthikumar J.G. Software reliability models: A Review. Microelectronics Reliability,
vol. 23, Ne 5, 1983, pp. 903-943.

Goel Amrit L. Software reliability models: Assumptions, limitations, and applicability.
IEEE Transactions on Software Engineering, vol. SE-11, Ne 12, 1985, pp. 1411-1423.
Musa J.D. Okumoto K. A. Logarithmic Poisson Time Model for Software Reliability
Measurement. In Proc. of the 7th International Conference on Software Engineering,
1984, pp. 230-238.

Yamada S., Ohba M., Osaki S. S—shaped software reliability grows modeling for
software error detection. IEEE Transactions on Reliability, vol. R-32, Ne 5, pp. 475-
478.

Chulani S. Constructive quality modeling for defect density prediction. COQUALMO.
In Proc. of the International Symposium on Software Reliability Engineering
(ISSRE'99), 1999.

T'amenenxo B.B., KoBanenko .H. Beenenue B TeopHo MaccoBOro oOCTyXuBaHHA. M.,
Hayxka, 1966, 432 ctp.

KoBanenko W.H., Illnax B.JI. BeposTHOCTHBIC XapaKTE€PUCTUKU CIOXKHBIX CHCTEM C
uepapxudeckuM ynpasienueM. M3sectust AH CCCP. Texuudueckas kubepHeTHka, NO. 6,
1972, ctp. 30-34.

Duval P., Matyas R., Grover A. Continuous integration improving Software quality and
reducing risk. Addison Wesley, 2009, 691 p.

Kogans I''M1. Mojienu u MeTo/ibl HHXEHEpUH KadecTBa CUCTeM Ha paHHMX dTarnax JKLI.
Ped. muc. UK HAHY, 2005, 20 ctp.

Annon @.1., Kosans I''1. u 1p. OCHOBBI HHKEHEPUU KaueCTBa IPOrPaMMHBIX CHUCTEM.
K.: HaykoBa nymka, 2007, 670 cTp.

Iopberko A.B., 3acyxa C.A., Pyban B.M., Tapaciok O.M., Xapuenko B.C.
Be3onacHOCTh PakeTHO-KOCMUYECKOH TEXHUKH M HaJCKHOCTh KOMIBIOTEPHBIX CHCTEM:
2000-e roxsl. ABHAIIMOHHO-KOCMUUECKas TeXHHUKa 1 TexHouorus, Nel(78), 2011, ctp. 9-
20.

A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, 2004, pp. 11-33.

IEC 62628. Guidance on software aspects of dependability. Geneva: IEC, 2011, 63 p.
ISO 15288:2002. Systems Engineering. Cycle Life Processes of Systems.

JlaBpumesa E.M. Metozapl nporpamMmupoBaHusi. Teopus, MHXKeHepus, npakTuka. K.:
HayxoBa nymxa, 2006, 452 ctp.

Jlappumesa E.M., TI'pumenxo B.H. Co6opounoe nporpammupoBanue. OCHOBEI
HUHIYCTpUH IporpaMMHBIX IpoaykToB. K.: Haykosa mymka, 2009, 372 crp.

JlaBpuiueBa E.M. Software Engineering KkommbplOTepHBIX cHcTeM. Ilapagurmel,
texnonornu, CASE-cpencrsa. K.: HaykoBa nymka, 2014, 284 ctp.

JlaBpumesa E.M., ITakynun H.B., PeoxoB A.T'. , 3enenos C.B. AHann3 METOZI0B OLICHKH HAJICKHOCTH 000PY/10BaHUS 1
cucrem. [IpakTrka npumeHenus MetooB. Ipyost UCIT PAH, 2018, tom 30, Beim. 3, 2018 r., ctp. 99-120

[24]. Caatu T. Ilpunsitie peuieHuit. Meron aHanusza uepapxuil. M.: Paauo u cBsizb, 1993,
315 crp.

Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods

L2E M. Lavrischeva <lavr@ispras.ru>
L23N.V. Pakulin<npak@ispras.ru>
'A.G. Ryzhov <ryzhov@ispras.ru>

133V, Zelenov <zelenov@ispras.ru>

! Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia,
“Moscow Institute of physics and technology (MIPT)
141700, Russia, Moscow region, Dolgoprudny, Campus per., 9.
® National Research University Higher School of Economics (HSE)
20 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. The analysis of models and methods of reliability evaluation of hardware and
software is carried out. The basic concepts of reliability and safety methods of such systems
and situations leading to errors, defects and failures are defined. The definition of reliability
and safety of technical systems and software systems is given. The classification of reliability
models: predictive, measuring and evaluation types. Evaluation models that are used more in
practice are described. The standard of Software life cycle (ISO 15288:2002) is defined,
focused on the development and control of system components for errors, starting with the
system requirements. The results of application of reliability models (Moussa, Goel-
Okomoto, etc.) to small, medium and large projects are presented and their comparative
assessment is given. The technological module (TM) of reliability evaluation of complex
software systems VPK (1989) is described. The quality model of the standard 1SO 9126 (1-
4): 2002-2004 with indicators of functionality, reliability, efficiency, etc., which are used in
determining the maturity and certificate of the product is shown.

Keywords: reliability, model, method, error, defect, failure, random process, safety,
dependability, recoverability, fault tolerance, completeness, reliability assessment, quality
certificate.

DOI: 10.15514/ISPRAS-2018-30(3)-8

For citation: Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of
methods for assessing the reliability of equipment and systems. Practice of methods. Trudy
ISP RAN/Proc. ISP RAS, tom 30, Beim. 3, 2018 r., crp. 99-120. DOI: 10.15514/ISPRAS-
2018-30(3)-8

References

[1] Lipaev V. V. Software Reliability. M.: SINTEG, 1998, 231 p. (in Russian)
[2] Lipaev V. V. Methods of quality assurance of large-scale software systems. M.: SINTEG,
2003, 510 p. (in Russian).
[3] Myers G. Software Reliability, M.: Mir, 1980, 360 p. (in Russian).
119

mailto:lavr@ispras.ru
mailto:npak@ispras.ru
mailto:zelenov@ispras.ru

Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis of methods for assessing the reliability of
equipment and systems. Practice of methods. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 99-120

[4] Moroz G. B, lavrisheva E. M. Models of software reliability growth. K.: V.M. Glushkov
Institute of Cybernetics of NAS of Ukraine, preprint 92-38, 1992, 23p. (in Russian).

[5] Lipaev V. V. Reliability and functional safety of software systems real time. Moscow,
Svetlitsa, 2013, 193 p.

[6] Shick G.J., Wolverton R.W. An analysis of computing software reliability models. IEEE
Transactions on Software Engineering, vol. SE-4, Ne 2, 1978, pp. 104-120.

[7] Shanthikumar J.G. Software reliability models: A Review. Microelectronics Reliability,
vol. 23, Ne 5, 1983, pp. 903-943.

[8] Goel Amrit L. Software reliability models: Assumptions, limitations, and applicability.
IEEE Transactions on Software Engineering, vol. SE-11, Ne 12, 1985, pp. 1411-1423.

[9] Musa J.D. Okumoto K. A. Logarithmic Poisson Time Model for Software Reliability
Measurement. In Proc. of the 7th International Conference on Software Engineering,
1984, pp. 230-238.

[10] Yamada S., Ohba M., Osaki S. S-shaped software reliability grows modeling for
software error detection. IEEE Transactions on Reliability, vol. R-32, Ne 5, pp. 475-478.

[11] Chulani S. Constructive quality modeling for defect density prediction: COQUALMO.
In Proc. of the International Symposium on Software Reliability Engineering
(ISSRE'99), 1999.

[12] Gnedenko B.V., Kovalenko IN. Introduction to the queueing theory. M.: Science, 1966,
432 p. (in Russian).

[13] I. N. Kovalenko and V. D. Shpak. Probabilistic characteristics of complex systems with
hierarchical control. Izv. Akad. Nauk SSSR, Tekhn. Kibern., no. 6, 1972, pp. 30-34 (in
Russian).

[14] Duval P., Matyas R., Grover A. Continuous integration improving Software quality and
reducing risk. Addison Wesley, 2009, 691 p.

[15] Koval G.I., Models and methods for engineering quality systems at early stages of life
cycle. IK NANU, Extended abstract of PhD Thesis, 2005, 20 p. (in Russian)

[16] Andon F. L. et al. Foundation of quality engineering software system. K.: Naukova
Dumka, 2007, 670 p. (in Russian)

[17] Gorbenko A.V.et al. the Safety of rocket-space engineering and reliability of computer
systems. Aerospace technics and technology, Nel (78), 2011, pp. 9-20, 2011.

[18] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, 2004, pp. 11-33.

[19] IEC 62628. Guidance on software aspects of dependability. Geneva: IEC, 2011, 63 p.

[20] ISO 15288:2002. Systems Engineering. Cycle Life Processes of Systems.

[21] Lavrischeva E. M. Programming Methods. Theory, engineering, practice. K.: Naukova
Dumka, 2006, 452 p. (in Russian).

[22] Lavrisheva E. M., Grishchenko V. N. Assembly programming. Foundation of software
industries. K.: K.: Naukova Dumka, 2009, 372 p. (in Russian).

[23] Lavrisheva E. M. Software Engineering of computer systems. Paradigms, technologies,
CASE-means. K.: K.: Naukova Dumka, 2014, 284 p. (in Russian).

[24] Saati T. Decision-Making. Method of hierarchy analysis. M.: Radio and
communications, 1993. 315p. (in Russian).

120

https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj2qev7_frbAhXB3CwKHcUIA50QFgg4MAE&url=http%3A%2F%2Fwww.icyb.kiev.ua%2F%3Flang%3Dru&usg=AOvVaw12huHGO8Duua38ScQ_rWsz
https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj2qev7_frbAhXB3CwKHcUIA50QFgg4MAE&url=http%3A%2F%2Fwww.icyb.kiev.ua%2F%3Flang%3Dru&usg=AOvVaw12huHGO8Duua38ScQ_rWsz

In-Kernel Memory-Mapped I/O Device
Emulation

14V, Yu. Cheptsov<cheptsov@ispras.ru>

1234 A V. Khoroshilov<khoroshilov@ispras.ru>

L vannikov Institute for System Programming of RAS
25 Alexander Solzhenitsyn Str., Moscow, 109004, Russia

2 Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia

3 Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
4 Higher School of Economics.
20, Myasnitskaya Ulitsa, Moscow 101000, Russia

Abstract. Device emulation is a common necessity that arises at various steps of the
development cycle, hardware migration, or reverse-engineering. While implementing the
algorithms behind the device may be a nontrivial task by itself, connecting the emulator to an
existing environment, such as drivers intended to work with the actual hardware, may be no
less complex. Devices relying on memory-mapped input/output are of a particular interest,
because unlike port-mapped input/output there is much less of a chance that the target platform
provides a direct interface to intercept the transmissions. A well-known approach used in
various virtual machine software is to put the entire operating system under a hypervisor and
build the emulator externally. This may not be desirable for reasons like hypervisor complexity,
performance loss, and additional requirements for the host hardware. In this paper we extend
this approach to the kernel and explain how it may be possible to build the emulator by relying
on the existing interfaces provided by an operating system. Given the common availability of
an MMU unit as well as memory protection mechanisms, allowing the handling of page or
segment traps at read or write access, we presume that a suggested technique of intercepting
memory-mapped input/output could be implemented in a broad number of target platforms. To
illustrate the specifics and show potential issues we provide the ways to simplify the
implementation and optimize it in speed depending on the target capabilities, the protocol
emulated, and the project requirements. As a working proof we created a SMC emulator for an
x86 target, which makes use of this approach.

Keywords: device emulation; memory-mapped i/o0; kernel modules
DOI: 10.15514/ISPRAS-2018-30(3)-9

For citation: Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped 1/0 Device
Emulation. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 121-134. DOI:
10.15514/ISPRAS-2018-30(3)-9

121

Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped 1/0 Device Emulation. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 121-134

1. Introduction

One of the common engineering demands is device emulation. It may arise during the
software development cycle, for example, in testing or driver verification, at hardware
migration, when there is no easy way to rewrite the existing software. Other than that,
in the world of proprietary hardware and software it is not rare that the only way to
understand and document the device abilities is to reverse-engineer it, and the ability
to dynamically debug or reverse-engineer the code could be the key in security
analysis or adding the device support to a virtual machine.

Speaking of virtual machines, or rather hypervisors, building the entire virtual stack
for a single device one needs to emulate is often an overkill due to performance
reasons, although it could be partially mitigated by hardware-assisted virtualization
and software compatibility. The latter may involve working on completely unrelated
parts of the driver stack and result in unnecessary costs for continuous support.
However, while the development of full platform emulators is a considerably
common topic with abundance of existing papers and products like gemu, bochs, i0S
simulator, etc., peripheral emulation is much less widespread. In some cases, virtual
machine guest tools do try to mimic certain hardware, but even that is usually
implemented as a part of a full scale platform emulation. The problem with the
peripherals is not just in implementing the algorithms behind the device, which may
be a nontrivial task by itself, but also connecting the emulator to an existing
environment, such as other drivers above in the stack intended to work with the real
hardware.

Since one of the important aspects of using any peripherals is the ability for the CPU
to communicate to them, the common demand for a device emulator is to provide a
way to do it. Presently there are two common low-level approaches to perform input
and output operations: port-mapped 1/0 (PMIO) and memory-mapped I/O (MMIO).
While there are other ways such as involving some dedicated hardware, they are
relatively less widespread. High-level communications operating on a packet basis
(like USB bus) usually go through the dedicated abstraction layer, and thus may be
implemented with the standard APIs offered by the operating system without any
special effort.

It is fairly easy to implement communication protocols with a hypervisor, the standard
approach is to ensure that accessing certain memory exits the virtual machine context
(vmexit), which is later handled by the implementation. However, as we mentioned
previously, the use of a hypervisor may be impractical, and we have to look for other
means of intercepting memory access. Since direct memory access is very common,
yet quite problematic to intercept, in this paper we explain how one could implement
a considerably portable MMIO emulator in the kernel and cover the details of
emulating device communication protocols on common platforms.

122

Yenmos B.1O., Xopoumnos A.B. Dmynsuus BBoaa-BbiBoaa 060pyaoBanus ¢ orobpaxenuem B O3Y BHyTpH siaep
ornepanroHHbIX cucreM. Ipyost UCIT PAH, Tom 30, Beim. 3, 2018 1., crp. 121-134

2. State of the art

We admit to not being the first to experiment with peripheral device emulation. Every
single year several published papers in the field of hardware virtualisation cover this
topic to a certain level. Articles published by VMware Inc. researchers [1] [2] provide
an in-depth coverage of x86- compatible hardware emulation. They explain the
existing obstacles and necessary actions to be taken to implement a complete virtual
stack from the CPU to network adapters. In their works they pay a lot of attention to
performance optimization, hardware-assisted virtualization and show a visible
performance penalty reduction over the new CPU generations in Virtualization
nanobenchmarks section of the first referenced paper.

As a result of continuous contribution from different parties and competitive product
development, the general hypervisor performance has dramatically improved. While
GPU emulation is out of the scope of this paper, it should be admitted that there are
several works which do manage to provide a complete GPU emulation at a reasonable
performance [3] [4]. These works feature an open GPUvm platform in the Xen
hypervisor.

Another related direction involves security analysis or reverse-engineering. While
less frequently found in academic writing, there are several products, tools, and
patches for Linux intended to log execution details from the Linux kernel for later
analysis. One of the most well-known toolsets is Linux Trace Toolkit, and one of the
most prominent cases of applying the approach in practice is for Nouveau driver
development for NVIDIA GPUs. Enabling OS Research by Inferring Interactions in
the Black-Box GPU Stack by Konstantinos Menychtas, Kai Shen, and Michael L.
Scott [5] provides a good coverage in detail.

3. Basic I/O Introduction

Port-mapped 1/0O is usually more demanding to the CPU instruction architecture and
requires a number of so-called ports the devices will be mapped to, and perhaps a
dedicated instruction set to access these ports as well. Because the device memory is
accessed indirectly, another name for PMIO is detached I/O.

As an example, one of the most popular architectures to implement PMIO is x86. It
can be utilized by means of two dedicated instructions: in and out, which enable one
to receive and send 8, 16, or 32 bits of data to a port from 0 to 65535. Since there are
faster ways to perform 1/0O on x86 and PMIO is not recommended for use nowadays,
in some literature it may be referred to as legacy 1/0O. This may not be the case for
other architectures found in micro-controllers, but in general MMIO support is
increasing.

Memory-mapped 1/O involves direct mapping of the device memory to the host
memory, enabling the software to access the device just like a normal chunk of
noncacheable RAM with the use of the native instruction set. Since MMIO
implementation is often faster than PMIO and sometimes simpler to use, it will be the
one to opt for when implementing a device communication protocol. For example, on

123

Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped 1/0 Device Emulation. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 121-134

x86 various devices installed as PCI extension cards or system management
controllers make a use of it.

Virtual devices are not supposed to be functionally different from real hardware. For
this reason, emulators have difficulties supporting 1/O communication protocols. The
taken approach varies depending on the demands and available resources, but usually
one of the following is used:

« Custom device development

« Driver reimplementation

e Building a hypervisor
Sadly, each of these has serious limitations, and most of them create obstacles for
generic peripheral emulation, as observed in Table. 1.
Table 1. Pros and cons summary

Device Driver Hypervisor
Software independency + - +
Low costs - + +
Legal issues + - -
Infrastructure dependency - + -
Forward compatibility + - -
Performance + + +
Other device support + + -

Developing a new device by extending a microcontroller to offer a required interface
or creating an entire chip mostly works for very simple devices when a single copy is
going to be used for some kind of deep debugging or instrumentation. A good
example could be removable BIOS chips for debugging or HDMI to VGA adapters
with HDCP decoding. While this solution is very reliable for creating a test device,
the results of mass-producing a customised device will likely be not worth the effort.
It will be either more expensive or worse in quality. In addition, it is important to have
the legal part of the question in mind and avoid patent infringement. However, this
method could be most reliable when it comes to stability.

Reimplementing the driver to support another communication interface for the virtual
device is very useful when working with performance-critical hardware such as
GPUs. For them each extra communication layer may heavily affect the performance
due to high bandwidth usage, and that is why virtualization software implements
extended GPU support (like DirectX or OpenGL) in such a way. However, in our case
it defeats the entire purpose of creating a virtual device. If the point is to test the
driver, it will no longer stay the same. If the reason is to support a proprietary driver,
one will have to reverse-engineer it and have issues every time it gets updated.
Bringing in a virtual machine with a hypervisor is a way to overdo it. While a decent
virtual machine has a wide range of supported hardware, it adds a lot of downsides as
well. In particular there will always be potential performance issues, even with
hardware-assisted virtualization support. More than that, compatibility issues will
124

Yenmos B.1O., Xopoumnos A.B. Dmynsuus BBoaa-BbiBoaa 060pyaoBanus ¢ orobpaxenuem B O3Y BHyTpH siaep
ornepanroHHbIX cucreM. Ipyost UCIT PAH, Tom 30, Beim. 3, 2018 1., crp. 121-134

likely become a blocker if the rest of the environment is not generic and well-known.
It is unfortunate, but even the mainstream operating systems may be unwilling to
expose new interfaces for virtual machines (like most of the graphical stack on Apple
macQS).

4. Intercepting the 1/O

As aresult 1/0 interception comes out as a pragmatic way to achieve the goal. Despite
not being very common, software and hardware have enough capabilities to intercept
raw device communication without touching the higher-level drivers themselves.
For example, for the past 8 years the recent x86 firmwares contain a dedicated UEFI
System Management Mode [6] protocol to intercept PMIO. This protocol originally
existed asa EFI_SMM_IO_TRAP_DISPATCH_PROTOCOL protocol?, but later on
was extended with an additional 10_TRAP_EX_DISPATCH_PROTOCOL
protocol?. Both protocols allow you to create direct handlers to intercept the
portmapped access. By design, the management mode affects the operating system
code as well, so it works throughout the boot process and is fully transparent to the
higher level software implementations like OS kernel or drivers. However, aside from
not being very well documented, third-party code execution in the System
Management Mode is generally prohibited. So even if one is to reimplement the SMI
handler similar to what Intel offers with the open source platform code, it will be of
no use for anyone but UEFI firmware developers.

Fortunately, most of PMIO interface code is usually well abstracted in the kernel, and
when it comes to intercepting you could just replace the underlying low level function
implementation within the emulator context. However, devices relying on MMIO are
of a particular interest, because unlike PMIO there is a much less chance that the
target platform provides a direct interface to intercept the transmissions.

For embedded devices it may well be sufficient to statically analyze the firmware,
find the instructions responsible for 1/0, and either dynamically or statically overwrite
them to jump to prepared thunks that will handle them accordingly. This approach is
common for security analysis especially when very little is known not only about the
explored peripherals but the whole controller. However, since the firmware or the
driver may receive updates in the future, this approach is not very effective outside of
security or code coverage analysis, and the like.

One of the first ideas that comes to mind due to the nature of MMIO writes is relying
on CPU debug registers. These registers (e.g. DR on Intel or BP_CTRL/BP_COM on
ARM Cortex) allow you to implement hardware breakpoints or rather watchpoints,
which may trap read and write access. However, these registers are very few, and
their scope area is small (i.e. a 32-bit or 64-bit word). Other than that, the kernel,

1 GUID: 58DC368D-7BFA-4E77-ABBC-0E29418DF930
2 GUID: 5B48E913-707B-4F9D-AF2E-EE035BCE395D

125

Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped 1/0 Device Emulation. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 121-134

debuggers, or other software may use these registers for their own needs, which leads
to them being simply impractical for this kind of work.

In general-purpose operating systems with defined kernel APIs there are much better
ways, such as a page protection mechanism, which is used to implement watchpoints
in software. While this is suitable for doing MMIO emulation, most of the known
works relying on this technique either use it for tracing or just for debugging
backends. The notable example is MMIO trace in Linux, which was originally
developed to reverse-engineer proprietary NVIDIA drivers by tracing the register
access [7]. Other than that, there are very few examples of how it can be utilized for
device 1/0 emulation.

5. Proposed approach

The idea of general purpose 1/O interception is very simple: catch reads and writes,
make sure that the values read are correct, and the values written are accounted for.
To apply it to MMIO we could limit page protection of the target area, and trap the
faults as they happen. Due to bandwidth limitations and architecture simplicity the
I/0 sequences are generally serialized, even if they happen from different threads. It
may not be the case for GPUs, yet GPUs likely will not need this kind of emulation
due to performance reasons. Still, in general if serialized 1/0 is not guaranteed even
within a single memory page (which is rare) one could always implement it manually
by utilizing the synchronization primitives.
Therefore, the most obvious approach will be:

1. mark the relevant page as neither writable nor readable (not present in x86

terms);
2. catch a fault and decode the fault address and the direction (in or out);
3. disassemble the instruction that caused the fault and obtain its operands from
the frame;

4. handle the operands for the emulation;

5. update the destination registers or memory for the reads as necessary;

6. return to the location after the instruction, which caused the fault.
While it indeed solves the problem and looks very straightforward, the
implementation itself could be very convoluted. While the saved context is likely to
contain the fault and return addresses, bringing a full-scale disassembling framework
to the kernel is inflexible due to extra architecture dependencies and considerable
amounts of code required for instruction emulation. Even more, it may impose
additional performance penalties, which are already tough enough.
For these reasons we tried to alter the algorithm in a way that would be simpler, less
platform-dependent, and similarly performant. After examining several real-world
examples, we consider the following model of a MMIO-based 1/0 protocol, which
could be applied to quite a number of devices:

1. host ensures that the target is ready for an 1/0 operation;

126

Yenmos B.1O., Xopoumnos A.B. Dmynsuus BBoaa-BbiBoaa 060pyaoBanus ¢ orobpaxenuem B O3Y BHyTpH siaep
onepauoHHbIX cucreM. Ipyost UCIT PAH, Tom 30, Bbm. 3, 2018 1., cTp. 121-134

2. host performs the 1/0 operation (by reading or writing at a defined address

space);

3. host ensures that the operation is complete and repeats the process.
The 1st and 3rd steps are usually implemented as a write-and-poll, a write-and-
interrupt or just as a poll. Another advantage comes out from common differences in
frequencies between the host and the peripheral. Since communications usually
happen between the devices with different clock bases, most of the protocols are
synchronous, and the host generally does not overwrite the areas it has just written to
without making a read to confirm it was successful. Even more, most of the protocols
are stateful, and it is uncommon to see subsequent reads from the same place
expecting the value to change more than once. A write operation will most likely
appear in-between.
Under these assumptions we use a simple satisfactory transaction model as an
example:

1. write operation type (read or write);

2. read acknowledge status until status ready;

3. handle the values:

3.1. read the value for read operations;
3.2. write the value for write operations and read acknowledge status until
status ready.

5.1 With write-only page support

If write-only pages are supported, in a number of cases one may implement a flip-
flop approach that will switch page protection from read-only to write-only and
backwards as the process goes.

To emulate the proposed transaction we could start the communication process with
the page marked as read-only, which will then trap on operation type. Here we will
initiate the transaction and switch the protection to write-only. After the operation is
written the trap on the status read will trigger, where we will read the written operation
type, update the value for read operations and set its status. Afterwards the page
protection is returned to read-only and the control is transferred back to the driver.
For read operations that is all of it, for write operations the driver will read the status
and attempt to perform the actual write, which should trigger the trap again. From
there on one could repeat the process as described for the operation type. In the end
for both reads and writes page protection returns back to read-only, eliminating any
platform-specific disassembling and relying on generic approach.

Expectedly one does not have any easy access to write-only pages on popular
architectures such as ARM [8] or x86. Perhaps, if these architectures were originally
designed at present, when the demand for better memory protection management is
much higher and when features like W"X memory and execute-only memory have
already become commonplace, we would have had finer memory management that
would support write-only pages. However, nowadays write-only pages are not very

127

Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped 1/0 Device Emulation. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 121-134

common in both hardware and software implementations. Certain PowerPC
implementations [9] or processor extensions may provide access to them, so it
remains a good idea to check CPU manuals before abandoning the try. For example,
Intel x86 processors starting from Nehalem technically support write-only memory
via EPT (Extended Page Tables [10]), yet it can hardly be used for anything but
virtualization.

5.2 Without write-only page support

When write-only pages are not available, we may still be able to work out a simpler
approach, and this is where memory patching comes in hand. The idea is to let the
original instruction perform the I/O just as normal, but to encode a jump-back
instruction right afterwards to ensure that page protection is limited again to trap the
next 1/O operation. Initially this approach may appear to have too many issues to be
considered in practice, however, they could all be solved with enough effort, and
some of them could even be turned into benefits.

The first issue to solve is the length of the faulted instruction. A number of
architectures provide fixed-length instruction sets, so the next instruction address to
encode our jumpback instruction could be calculated even without knowing anything
about the current instruction. For others one could write or find simple instruction
fetchers, to only decode the length without operand or operation details. Such
software may also go under the name of length disassemblers, and various
implementations exist for popular platforms [11]. It may become a little more
involved when the 1/O instruction results in non-linear control flow, but in general
I/0 and branching instructions belong to separate classes and are not mixed together.
The second issue occurs when the device memory is mapped to userspace and the
communication happens in userspace as well. In this case a direct jump to protection
restoration code is not possible, and a breakpoint or similar instruction will have to
be encoded to trigger the context switch, return to the kernel and pass the control to
our handler.

The third and probably the most serious issue happens when 1/O operations are
performed through shared code. By assuming serialized 1/0 we consider no cases of
simultaneous code execution from the same area (unless there are multiple devices).
Therefore, we could safely patch it. However, nothing prohibits the driver from
utilizing generic memory primitives like memcpy or memset to bulk-write or read the
dedicated area. These primitives generally have no effect on the 1/0 itself, and we do
not need to intercept every byte they touch. To avoid the issue one could examine the
stack trace and modify the instruction at the return address. Not only this does not
require disassembling but also reduces the penalty from trapping extra I/O operations,
S0 a quick stack unwinding that can often be implemented with compiler intrinsics
easily pays off.

With all the pieces put together it creates a solid approach for a large chunk of 1/0
protocols. In addition to these general improvements platform-specific optimizations
could be applied. For example, extra page protection changes may be avoided for
128

Yenmos B.1O., Xopoumnos A.B. Dmynsuus BBoaa-BbiBoaa 060pyaoBanus ¢ orobpaxenuem B O3Y BHyTpH siaep
ornepanroHHbIX cucreM. Ipyost UCIT PAH, Tom 30, Beim. 3, 2018 1., crp. 121-134

write operations, if the hardware may ignore interrupts caused by write protection
violation (CRO WP bit on x86). It should be noted that one is to pay extra attention to
the scheduler (e.g. disable preemption) not to let it switch the task to another core,
where write protection is on.

6. Evaluation

To apply the proposed solution in practice we created a software-based emulator for
the 2nd generation Apple SMC in a form of a kernel extension for Apple macOS.
System Management Controller (SMC) is a chip commonly found in Intel-based
Apple Macintosh computers or certain Google Chromebooks. This chip is responsible
for computer power management, display backlight control, HDD monitoring,
thermal control, hybrid sleep and hibernation support, external device current
regulation (AirPort, USB, FireWire), charging the battery, trackpad controls, screen
mirroring, etc. This chip is not essential for computer functioning, and could be
viewed as a convenience feature for a vendor to rely on to centralize and simplify
hardware management.

There are two main generations of SMC controllers in Apple computers. The 1st
generation was built on a 16-bit Renesas H8S/2117 controller and exposed port-
mapped 1/O interfaces to communicate with the operating system. The 2nd and
subsequent generations are based on 32-bit ARMv7-A processors, and expose
memory-mapped and port-mapped /O interfaces. Both approaches are used to
implement the same functionality within a single synchronous stateful protocol.
Initially the communication happens via the PMIO protocol, and then a switch to
MMIO protocol happens if the device supports it. The whole communication process
happens within the kernel and the existing drivers for the 2nd generation hardware are
closed-source. Fortunately, due to side researchers the communication protocols are
mostly documented [12].

The reasons for taking this particular device into consideration was not only because
it is a challenging task compared to devices with open specifications and decent
documentation, but also for the importance of having better control of the hardware
you use. Apple SMC has complete access to every device in the system and could
monitor the bus communications. Other than that it stores temporary encryption keys
for hibernation images or user action free restarts (authenticated restarts), when full
disk encryption is enabled. Apple SMC drivers expose a dedicated protocol to
userspace. This protocol provides a way to obtain SMC data and configure both SMC
and onboard devices. Given its direct connection to the hardware, it may be possible
to inflict damage on the computer by overheating or causing power surges. Moreover,
previous researches discovered that it was very easy to modify SMC firmware, which
is also a very serious concern [13].

The actual implementation follows the proposed approach without write-only page
support with all the suggested optimizations and certain platform-specific
adjustments. SMC MMIO protocol covers a 64 KB area, which we split into pages

129

Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped 1/0 Device Emulation. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 121-134
with the dedicated handlers based on the page index. Since the access to each page is
serialized, no additional 1/O wrapping is necessary.
In the XNU kernel, which powers all modern Apple hardware including Macs, Intel
CPU exceptions are routed through a dedicated kernel_trap function. To let the driver
communicate with the emulated device we added a SMC nub via the standard 1/0 Kit
APIs with mapped memory regions with restricted protection and extended the
kernel_trap function in EXC_I386_PGFLT handling code specifically for our
memory.
A simplified version of this code is shown in Listing 1. ioRegionStart and
ioRegionEnd locate the emulated I/O area starting and ending addresses,
appleSmcStart and appleSmcEnd point to the AppleSMC driver address range.
instrSize function calculates the instruction length at the return address to later write
the jump-back code via writeTrampoline function, which not only writes the
trampoline code (by disabling the WP bit and interrupts) but additionally disables
CPU preemption to avoid the scheduler switch.
auto faultAddr = state->cr2;
if (faultAddr >= ioRegionStart &é&
faultAddr < ioRegionEnd) {
auto retAddr = state->rip;
if (retAddr >= appleSmcStart &&
retAddr < appleSmcEnd) {
// Simple case (from AppleSMC)
retAddr += instrSize (retAddr, 1);
} else {
// Complex case (from e.g. memcpy)
retAddr = unwindToSMC (state->rsp);
}

auto faultType = FaultTypeRead;

if (state->err & T_PF WRITE) {
faultType = FaultTypeWrite;

}

updateProtection (faultType, faultAddr);

saveOrgCode (retAddr, TrampolineSize);

writeTrampoline (faultType, faultAddr);

return;

Listing 1. Sample code

To transfer the control flow to the protocol emulator updateProtection is performing
the actual protection upgrade of the emulated 1/O area and invokes the read access
handler. It should be noted that a dedicated procedure may be needed for platforms
with delayed physical mapping update. For example, with XNU it is necessary to
trigger virtual memory fault twice when the page is not present. Similarly, the

130

Yenmos B.1O., Xopoumnos A.B. Dmynsuus BBoaa-BbiBoaa 060pyaoBanus ¢ orobpaxenuem B O3Y BHyTpH siaep
ornepanroHHbIX cucreM. Ipyost UCIT PAH, Tom 30, Beim. 3, 2018 1., crp. 121-134

protection restoration routine invoked from the trampoline preserves the registers and
calls the write handler.

As a result, it was possible to emulate all the existing SMC protocols at no issue and
avoid the use of the original device.

7. Conclusion

Emulating peripheral devices within the existing operating system is not a new
problem. Different solutions and approaches have appeared over the years. The
industrial demand for full-stack operating system virtualization brought their
performance to a completely different level, and the needs for better customization
resulted in operating system developers providing more flexible interfaces with the
possibility to create virtual hardware out of the box. Programmable microcontrollers
made the process of building a device clone with the necessary features a much
simpler task to accomplish.

However, there are numerous cases, where in-kernel peripheral emulation is highly
anticipated, such as driver development needs, testing and verification, hardware
migration, security analysis, etc. As we stated, it is often not possible or extremely
impractical to attempt to incorporate virtual machines due to development costs or
performance penalties. While virtual machines succeed in emulating CPUs of the
same architecture at almost the same speed with hardware assisted virtualization, the
performance of other CPUs without the use of JITs, commonly used in video game
console emulators but rarely found in generic virtualization software, is often much
worse. And in terms of 1/O emulation, which is the primary concern of this paper, the
situation is no better.

Furthermore, all the solutions heavily depend on the target architecture. While it was
possible to think of x86 as the main architecture for personal computers in the
beginning of 2000- s, today the concept of personal computers has shifted away, and
other major players, e.g. ARM, appeared on the market. With this in mind the classical
approach to virtualizing the whole operating system could face severe issues in the
future.

The idea of using page protection faults to handle device I/O events without a
hypervisor may be known but not widespread anywhere out of 1/0 tracing. In this
paper we described a way to implement a complete MMIO protocol emulator in the
kernel with the use of a generic approach that has few dependencies on the target
architecture and relies on platform features such as MMU and paging. We showed
that certain target architecture capabilities and device protocol specifics may affect
the implementation, and effectively allow or disallow a broad range of optimizations.
We believe that a suggested device 1/0 protocol model is applicable to various
hardware, and give examples on how to simplify and optimize its implementation.
After exploring the existing hardware, we built a SMC emulator in the XNU kernel
to illustrate the suggested approach.

131

Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped 1/0 Device Emulation. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 121-134

Acknowledgements

The authors thank ISP RAS and SYRCOSE staff for review and comment, Nikita
Golovliov for aid in SMC emulator development, and Marvin Hauser for reverse-
engineering Apple SMC UEFI drivers.

References

[1].

[2].

[3].

[4].

[5].

(6].
[71.
(8l.

[].
[10].

[11].
[12].

[13].

132

Jeremy Sugerman, Ganesh Venkitachalam, Beng-Hong Lim. Virtualizing I/O Devices on
VMware Workstation’s Hosted Virtual Machine Monitor. In Proceedings of the General
Track: 2001 USENIX Annual Technical Conference, 2001, pp. 1-14. Available at:
http://static.usenix.org/legacy/publications/library/proceedings/usenix01/sugerman/suger
man.ps, accessed 12.06.18

Keith Adams, Ole Agesen. A Comparison of Software and Hardware Techniques for x86
Virtualization. In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, 2006, pp. 2-13. Available at:
https://www.vmware. com/pdf/asplos235 adams.pdf, accessed 09.06.18

Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji. GPUvm: Why Not
Virtualizing GPUs at the Hypervisor? In Proceedings of the 2014 USENIX Annual
Technical Conference, 2014, pp. 109-120. Auvailable at:
https://www.usenix.org/system/files/conference/ atcl4/atc14-paper-suzuki.pdf, accessed
12.06.18

Hangchen Yu, Christopher J. Rossbach. Full Virtualization for GPUs Reconsidered. In
Proceedings of the Annual Workshop on Duplicating, Deconstructing, and Debunking,
2017.

Konstantinos Menychtas, Kai Shen, Michael L. Scott. Enabling OS Research by Inferring
Interactions in the Black-Box GPU Stack. In Proceedings of the 2013 USENIX conference
on Annual Technical Conference, 2013, pp. 291-296. Available at:
https://www.usenix.org/system/files/ conference/atc13/atc13-menychtas.pdf, accessed
accessed 12.06.18

Unified EFI, Inc. Platform Initialization (PI) Specification. Version 1.6. 2017. Available
at: http://www.uefi.org/sites/default/files/resources/Pl Spec 1 6.pdf, accessed 09.06.18
Jeff Muizelaar, Pekka Paalanen. In-kernel memory-mapped 1/O tracing Available at:
https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt, accessed 12.06.18

Arm Holdings. ARM1176JZ-S Technical Reference Manual. Available at:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/ Caceaije.html,
accessed 12.06.18

NXP Semiconductors. e500mc Core Reference Manual. Available at: http://cache.
freescale.com/files/32bit/doc/ref manual/ES00MCRM.pdf, accessed 09.06.18

Intel. Intel Virtualization Technology: Hardware Support for Efficient Processor
Virtualization. Available at: http://www.ece.cmu.edu/_ece845/sp17/ docs/vt-overview-
itj06.pdf, accessed 12.06.18

BeaEngine. Length Disassembler Engine for Intel 64-bit processors. Available at:
https://github.com/BeaEngine/lde64, accessed 12.06.18

CupertinoNet. EfiPkg, AppleSmclo protocol. Awvailable at: https://github.com/
CupertinoNet/EfiPkg, accessed 12.06.18

Crowdstrike. Alex Ionescu. ”Spell”unking in Apple SMC Land. 2013. Available at:
http://www.nosuchcon.org/talks/2013/D1 02 Alex Ninjas and Harry Potter.pdf, accessed
09.06.18

http://static.usenix.org/legacy/publications/library/proceedings/usenix01/sugerman/sugerman.ps
http://static.usenix.org/legacy/publications/library/proceedings/usenix01/sugerman/sugerman.ps
http://www.uefi.org/sites/default/files/resources/PI%20Spec%201%206.pdf
https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt
https://github.com/BeaEngine/lde64

Yenmos B.1O., Xopoumnos A.B. Dmynsuus BBoaa-BbiBoaa 060pyaoBanus ¢ orobpaxenuem B O3Y BHyTpH siaep
ornepanroHHbIX cucreM. Ipyost UCIT PAH, Tom 30, Beim. 3, 2018 1., crp. 121-134

Amynsauua BBoaa-BbiBoAa 060pyaoBaHusA ¢
oTtobpaxeHnem B O3Y BHYTpU siaep onepaumoHHbIX
cuctem

14 B, IO. Yenyoe <cheptsov@ispras.ru>
1234 4. B. Xopowunos <khoroshilov@ispras.ru=
Y Uncmumym cucmemmozo npozpammuposanus um. B.I1. Heannuxosa PAH,
109004, Poccus, e. Mocksa, yn. A. Conscenuywina, 0. 25;
2 Mockosckuii 2ocyoapcmeennsiii yHueepcumem umeny M.B. Jlomornocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwi, 0. 1,
SMockoeckuii puzuxo-mexnuveckutl uHcmumym,
141700, Mockosckasi obnaCmo, 2. /lonconpyonsiii, Uncmumymcekuil nep., 9
4 Boicuias wikoaa sKoHOMUK,
101000, Poccus, e. Mocksa, yn. Macnuykas, 0. 20.

Annoramusi. HeoOXomMMOCTb SMY/IIMKM 00OPYHOBAaHMS YacTO BO3HHMKACT HA PasINYHBIX
CTaauiX LHUKIa pa3pabOTKH, MUTpaly o0OpYyHOBaHUS WM OOpaTHOH pa3pabOTKH.
Peanyzanysi alNropuTMOB, CBS3aHHBIX ¢ KOHKPETHBIM YCTPOHCTBOM, caMma Io cebe sBIeTCs
HETPUBHAJBHON 3a/iadeii, HO MHTerpaLus SMYJSITOpa C CYLIECTBYIOIICH cpeoi, HampuMmep,
IpaiiBepamMy, NpeAHA3HAYCHHBIMH [UI1 PabOThl C peajbHBIM OOOPYIOBAHHEM, 3a4acTyro
OKa3bIBACTCS HE MEHEe CIOKHOW. YCTpOMCTBa, MONArarolMecss Ha BBOA-BBIBOL C
O0TOOpaKCHHEM B ONEPATHBHYIO MaMSATh, IPEACTAaBISIIOT OCOOBIH MHTEpEC, TaK KaK B 3THX
ciydasx, B ONIMYHME OT HCIOJIB30BAHUS TOPTOB BBOJIA-BbIBO/IA, FOPa3/10 MEHbLIE BEPOSATHOCTD,
4TO LeneBas Iwardopma NpenocTaBUT HHTepdelc a1 nepexsata onepauuid. OxuH U3
pacnpocTpaHEHHBIX IOAXO/0B, IIMPOKO HCob3yeMblii B [IO BUPTyaabHBIX MAIIMH, COCTOUT
B TOM, YTOOBI IOMECTHUTb BCIO ONEPALIOHHYIO CUCTEMY IO/l THIIEPBU30P M CO3AaTh BHELIHUI
aMynsaTop. OAHAKO 3TO MOXET ObITh HEXXKEIATENbHO 10 MPUYMHAM CIIOXKHOCTH THUIEPBU30DA,
IOTE€PU NPOU3BOAUTEIILHOCTH, JONOIHUTEIBHBIX TPEOOBAaHUI K allllapaTHOMY 00ECIIeUEeHHIO
U 1p. B 1aHHOI cTaThe Takoi MOAXOA paclpocTpaHsieTcs Ha Sapo, U Ipeiaraercsi OnucaHue
BO3MOJKHOCTH IIOCTPOMTBH 3MYISATOpP, NpUOeras JMMIb K CYIECTBYIOIMM HHTepdelcam,
MPEIOCTaBIIEMbIM OIEPalMOHHONW cucreMoil. BBunmy wacrtoit gocrymnoctu MMU u
MEXaHM3MOB 3aIlUThl CTPAHUILI, MO3BOJIAIOLIMX IEPEXBATHIBATh JOCTYI 3alMCH U YTEHHU,
[PEJIONAraeTcs, YTo MpelaraéMblii MOAX0] MOXKET ObITh MCIOJb30BaH Ha 3HAYUTEIHHOM
KOJIMYECTBE LENEeBbIX IaThopM. B crarbe MpUBOAUTCS MOAPOOHOE PACCMOTPEHHE IPOOIIEM,
BO3HHMKAIOIIMX MPH HAIMCAHUM KOHKPETHOM pealn3aldd, W IPHUBOAATCS CIOCOOBI €&
YHPOLICHUs M ONTHUMHU3ALMM B 3aBUCHMOCTH OT BO3MOXKHOCTEH IIeleBOH IIaTdopMBbl,
SMYJIUPYEMOro MPOTOKOJIAa U MHBIX TpeOOBaHMH K 3ajaue. B kayecTBe sKCIIepUMEHTaIBHOIO
JIOKa3aTeJIbcTBa PAbOTOCIOCOOHOCTH MpPE/UIaraéMoro IoAXoNa IMPUBOIMUTCS pealu3alis
amymsitopa SMC mist mardopmbr X86.

KuroueBble ci1oBa: Myl o00pyIOBaHHS; BBOA-BBIBO ¢ 0ToOpakeHueM B O3Y; Moxynu
aapa
DOI: 10.15514/ISPRAS-2018-30(3)-9
HJas uurtupoBanus: Yernmos B.IO., Xopommmnos A.B. DOwymsuus BBOJa-BHIBOAA
obopynoBanust ¢ orobpakeHneM B O3Y BHyTpH siiep omepannoHHBIX cucteM. Tpyast MCIT
PAH, tom 30, Beim. 3, 2018 1., crp. 121-134 (na arrmuiickom si3bike). DOI: 10.15514/ISPRAS-
2018-30(3)-9

133

Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped 1/0 Device Emulation. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 121-134

Cnucok nutepatypbl

[1].

[2].

31

[4].

[5].

[6].

[7].

(8l.

9.
[10].

[11].
[12].

[13].

134

Jeremy Sugerman, Ganesh Venkitachalam, Beng-Hong Lim. Virtualizing I/0O Devices on
VMware Workstation’s Hosted Virtual Machine Monitor. In Proceedings of the General
Track: 2001 USENIX Annual Technical Conference, 2001, pp. 1-14. Pexum jpocryma:
http://static.usenix.org/legacy/publications/library/proceedings/usenix01/sugerman/suger
man.ps, nara oopamenus 12.06.18

Keith Adams, Ole Agesen. A Comparison of Software and Hardware Techniques for x86
Virtualization. In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, 2006, pp. 2-13. Pexum
nocryma: https://www.vmware. com/pdf/asplos235 adams.pdf, nara o6pamenns 09.06.18
Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji. GPUvm: Why Not
Virtualizing GPUs at the Hypervisor? In Proceedings of the 2014 USENIX Annual
Technical Conference, 2014, pp. 109-120. Pexnm Jocryna:
https://www.usenix.org/system/files/conference/ atcl4/atcl4-paper-suzuki.pdf, nara
obpamnienus 12.06.18

Hangchen Yu, Christopher J. Rossbach. Full Virtualization for GPUs Reconsidered. In
Proceedings of the Annual Workshop on Duplicating, Deconstructing, and Debunking,
2017.

Konstantinos Menychtas, Kai Shen, Michael L. Scott. Enabling OS Research by Inferring
Interactions in the Black-Box GPU Stack. In Proceedings of the 2013 USENIX conference
on Annual Technical Conference, 2013, pp. 291-296. Pexum mgocryma:
https://www.usenix.org/system/files/ conference/atc13/atc13-menychtas.pdf, mara
obpamenust 12.06.18

Unified EFI, Inc. Platform Initialization (P1) Specification. Version 1.6. 2017. Pexum
nocryma: http://www.uefi.org/sites/default/files/resources/Pl Spec 1 6.pdf, nara
obpamenust 09.06.18

Jeff Muizelaar, Pekka Paalanen. In-kernel memory-mapped I/O tracing Pexum mocryma:
https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt, mara obpamieHus
12.06.18

Arm Holdings. ARM1176JZ-S Technical Reference Manual. Pexum mocryma:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/ Caceaije.html,
nara obpatenust 12.06.18

NXP Semiconductors. e500mc Core Reference Manual. Pexum mocryna: http://cache.
freescale.com/files/32bit/doc/ref manual/ES00MCRM.pdf, nara o6pamierus 09.06.18
Intel. Intel Virtualization Technology: Hardware Support for Efficient Processor
Virtualization. Pexxum mocryma: http://www.ece.cmu.edu/_ece845/spl7/ docs/vt-
overview-itj06.pdf, nara o6pamierust 12.06.18

BeaEngine. Length Disassembler Engine for Intel 64-bit processors. Pexum nocryma:
https://github.com/BeaEngine/lde64, nata obpamierus 12.06.18

CupertinoNet. EfiPkg, AppleSmclo protocol. Pexxum mocryma: https://github.com/
CupertinoNet/EfiPkg, nata obpamenus 12.06.18

Crowdstrike. Alex Ionescu. ”Spell”’unking in Apple SMC Land. 2013. Pexum mocryna:
http://www.nosuchcon.org/talks/2013/D1 02 Alex Ninjas and Harry Potter.pdf, nata
obpamienus 09.06.18

http://static.usenix.org/legacy/publications/library/proceedings/usenix01/sugerman/sugerman.ps
http://static.usenix.org/legacy/publications/library/proceedings/usenix01/sugerman/sugerman.ps
http://www.uefi.org/sites/default/files/resources/PI%20Spec%201%206.pdf
https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt
https://github.com/BeaEngine/lde64

Building Modular Real-time software from
Unified Component Model

1,2 K.A. Mallachiev <mallachiev@ispras.ru=>

1,2,3,4 A.V. Khoroshilov <khoroshilov@ispras.ru>

! Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
* Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
*Higher School of Economics.
20, Myasnitskaya Ulitsa, Moscow 101000, Russia

Abstract. Modern real-time operating systems are complex embedded product made by
many vendors: OS vendor, board support package vendor, device driver developers, etc.
These operating systems are designed to run on different hardware; the hardware often has
limited memory. Embedded OS contains many features and drivers to support different
hardware. Most of the drivers are not needed for correct OS execution on a specific board.
OS is statically configured to select drivers and features for each board. Modularity of OS
simplifies both configuration and development. Splitting OS to isolated modules with well-
specified interfaces reduces developers’ needs to interact during joint development. The
configurator, in turn, can easily compose isolated components without component developers.
We use formal models to specify components and their composition. Formal model describes
the behavior of components and their interaction. Usage of formal models has many benefits.
Models contain enough information to generate source code in C language. Our model is
executable; this allows configurator to quickly verify the correctness of component
configurations. Moreover, model contains constraints on its parameters. These constraints are
internal consistency or some external properties. Constraints are translated into asserts in
generated source code. Therefore, we can check these constraints both at model simulation
and at source code execution. This paper presents our approach to describe such models at
Scala language. We successfully tested the approach in RTOS JetOS.

Keywords: components; modularity; RTOS; formal models; code generation

DOI: 10.15514/ISPRAS-2018-30(3)-10

For citation: Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from
Unified Component Model. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-
148. DOI: 10.15514/ISPRAS-2018-30(3)-10

135

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

1. Introduction

Modern embedded operating systems support several CPU architectures and a lot of
peripheral devices. OS contains many drivers to support numerous different
hardware. Embedded OS are often designed for execution in a restricted
environment, for example, with limited memory. Most of the drivers are not needed
for correct OS execution on some specific board and spend valuable resources.
Therefore, OS must support configuration to select drivers, which will execute on
the target hardware.

Static OS configuration is used in cases when it is known in advance, on which
hardware the OS image is going to be executed. Static means that configuration is
performed on the host machine before OS loading to the target machine. The result
of static OS configuration is the final image, which can be run on the target. Static
configuration allows keeping final image small.

Typically, there are two roles taking part in the process of OS image building. The
first role is a developer of whole OS or some driver. Developer implements his part
in some programming language, writes documentation and provides support of
source code and documentation. The second one is a system integrator who is
responsible for correct OS configuration for specific task of specific board. Usually
the system integrator does not change OS source code.

Besides simple selecting, which driver will be in the final OS image, many
operating systems support finer tuning. For example, configuration allows selecting
file system for each hard drive, or set IP address that will be used by network stack.
These details are configured statically because for embedded OS and especially for
safety-critical systems simplicity is more important than generality.

It is a natural desire to divide the operating system into isolated components, but not
every part of the OS can be isolated. For example, OS core often is strongly coupled
and might be divided into isolated components only if the core will be fully
redesigned to support new architecture.

If we investigate configurations of the same OS on different boards, then we will
see that there is the most variable part in the OS. We call this part OS drivers. OS
drivers contain device drivers and some services such as network stack, file system,
logging, etc. Our work aimed to support flexible configuration of OS drivers.

It is common that there are many vendors involved in building of OS drivers. When
services or drivers are strongly coupled, their developers have to interact a lot.
Therefore, splitting OS drivers into independent isolated components helps to
simplify and accelerate development.

Component should interact with each other. Appearance of fixed interface between
components would make component development easier. Moreover, fixed interface
can make system flexible. Only connected components can interact, and only
component with the same interfaces can be connected. System integrator is
responsible for connection of the components.

136

Mainauues K.A., Xopommmuinos A.B IToctpoenre MOy IbHOTO IPOrpaMMHOT0O 00€CIIeUeH sl Ha OCHOBE OJIHOPOIHOM
KoMnoHeHToit Mozenu. Tpyowt UCII PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 ., cTp. 135-148

Suppose that system integrator created a composition of the components, which
describes how each component is configured and how components are connected.
We call component-based system flexible if the system integrator can:

¢ modify configuration of the single component without modifying others,

e substitute component with another one of the same interface without
modifying other components,

e add a new component between two other connected components without
modifying any component configuration except the new one.

¢ add to composition a copy of existing component, and they should not
disturb each other.
We are developing an embedded real-time operating system for civil aircraft
computers called JetOS [1]. JetOS is ARINC-653 compliant and statically configured.
Approaches presented in this paper are designed for JetOS. Since JetOS is a RTOS,
we are focused on minimizing the overhead added by component-based system.

2. Related Works

Classical distributed component models like Enterprise JavaBeans, CORBA and
CORBA Component Model [2, 3] define components and interfaces between them.
These models allow substituting one component with another one if both have the
same interfaces. Brokers dynamically change components configuration. This
dynamic configuration is not suitable for embedded systems with static configuration.
Ideas to separate OS appeared long ago in microkernels. Microkernel architecture’s
[4, 5] primary goal is to separates OS into independent servers that could be isolated
from each other. Servers interact through inter-process communication (IPC). IPC
calls are typed and servers with the same interface can substitute one another. But
there cannot be two servers with the same interface; therefore, this model is not
suitable for our tasks too.

OS-Kit [6] and eCos [7] apply modularity benefits into OS development process.
They provide a set of OS components, which are used as building blocks to
configure an OS. For configuration, eCos uses the Component Definition Language
(CDL), an extension of the existing Tool Command Language (Tcl) scripting
language. Configuration is represented as feature tree with internal dependencies,
group and feature constraints. Enabling of one component can lead to enable of
whole components subtree. Components can have calculated value in configuration,
which are calculated based on other configuration parameters. However, this is not
enough for our task. Configurator cannot manage component connections and
cannot add copies of the same component.

puC/OS-11 kernel uses THINK component framework [8, 9]. THINK is an
implementation of the FRACTAL component model that aims to take into account
the specific constraints of embedded systems development. Component describes
through its interface. Interaction between components is possible after establishment

137

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

of bindings between their interfaces. Binding is a communication channel between
two or more components. Binding can be created between components of a
distributed system (RPC binding). This concept also does not allow having several
copies of the same component in the composition.

VxWorks is a popular embedded operating system. VxWorks board support
package (BSP) is divided into components. Components interfaces are declared in
Component Description Language (CDL). Note that this CDL is different from the
CDL used in eCos. BSP developer can construct BSP from existing component and
can add their own components. However, this system is not flexible. For example,
each component has fixed list of component names, with which it can interact.

We are not aware of any component-based model with the following set of features:

o static configuration;
o low overhead;
o flexible configuration (in all aspects described in the introduction);

o type checking of the connection, i.e. checking that connected components
have the same interface.

3. Component-based Model

Our model is component-based. Component has state, which is changed during
model execution, and configuration, which is immutable. Components can
communicate with other components via ports. Port is a set of functions; there are
two kinds of ports: input ports and output ports. Output port can be connected with
input port. Set of port function signatures is called port type. Only input and output
port of the same port type can be connected.

Each function of a component input port has an assigned handler inside the
component. Call of output port function leads to the call of connected input port,
which, in turn, calls the assigned handler. These calls are standard function call, or
in other words synchronous call inside the same thread. Therefore, component loses
control during output port call.

Thus, port call keeps the current thread. Threads cannot be created dynamically
during model execution. Threads count is constant during execution.

If component needs an additional thread, then this should be explicitly specified in
the model. These components are called active. Active components have special
handlers, which are called periodically or once in the context of the new thread. We
call these handlers the activity handlers.

In order to facilitate component reuse we introduce the concepts of a component
type and a component instance. Each component type can have any number of
instances. The components described above are close to component instances.
Component type contains types of component state and configuration, but not their
values. Component type contains types and names of input and output ports, but not
their connection. In addition, component type contains implementation of:

138

Mainauues K.A., Xopommmuinos A.B IToctpoenre MOy IbHOTO IPOrpaMMHOT0O 00€CIIeUeH sl Ha OCHOBE OJIHOPOIHOM
KoMnoHeHToit Mozenu. Tpyowt UCII PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 ., cTp. 135-148

e component initialization function, which is called at start and is used to
initialize state based on the configuration;

o handlers assigned with input ports, if component has any;

e activity handlers if component is active.
Instances have unique values of state and configuration. It is easy to see that
concepts of component type and component instance are similar to terms “class”
and “class object” respectively.

3.1 Component Developer View

Component developer designs component state structure, how it should be
initialized base on configuration and how it is changed during execution. Developer
chooses types of configuration parameters. Developer does not aware of specific
configuration parameters values, but he can add constraints on the values. He
designs component input and output ports and implements handlers for input ports.
Component’s input and output ports restrict component developer’s knowledge
about “outside world”. He does not know how many instances of his component
will be created or how they will be connected.

Component developer’s definition of component types consists of two parts:
component type specification and implementation. Specification contains:

e component type name

e component input and output port names and their types

e structure of component configuration

e component’s purpose description: how it should be configured and in
which environment its input ports should be called.

The rest of the information is private for component and is considered as
implementation part.

3.2 System integrator view

System integrator gets specification of all component types in the system. System
integrator decides how many instances of each component should be created and
how they should be connected for solution of the specific problem. For each
instance, integrator sets its configuration values.

3.2 Simple example

Suppose that component developer created Amplifier component type. Amplifier has
single input port “in” and single output port “out”. In addition, it has single
configuration parameter “factor”. Components aim is to amplify input signal from
“in” port by factor “factor” and put output to “out” port.

Suppose that the system integrator wants to pass signal from two sensors to a single
actuator, but he should amplify signal from first sensor by factor of 2 and from

139

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

second one by factor of 10. System integrator decides to use Amplifier component
type. He does not worry about implementation, only interfaces matters to him. For
simplicity, let us assume that all ports have the same type. Amplifier component
type as seen by system integrator can be seen at Fig. 1

Amplifier
in out
factor: Int

Fig. 1. Graphical representation of Amplifier component type specification

System integrator creates two instances of Amplifier component type: “amp1” with
configuration value “factor” equal to 2 and “amp2” with configuration value
“factor” equal to 10. Then connects them accordingly to sensors and to actuator.
Scheme of the result can be seen at Fig. 2

sensori amp1:Amplifier
i>_)|z:r> factor =2 out
actuator
sensor2 amp2:Amplifier
i>_)|zir> factor = 10 out

Fig. 2. Amplifier instances connection scheme

4. Prototype

In previous work [10], we implemented component-based approach in C language
with some YAML code. We used common approach to apply object-oriented ideas
in C language. Component state and configuration is presented as C structure, which
explicitly passed to all component functions. Wrappers hid calls to output ports.
There was a lot of boilerplate code used to create component instances, describe
their configuration, and their connections, in component type specification and its
wrappers implementation.

To reduce amount of handwork we started to use YAML — simple declarative
language. In the YAML developer specifies component type state, configuration,
input and output ports, names of functions-handler for input ports. System integrator
describes in the YAML component instances, their configuration and connections.
We generated C code based on these YAML specifications.

This approach has some disadvantages.

e Component developer has to manually keep consistent two files (in YAML
and C languages). Change in one file leads to change in another one.

140

Mainauues K.A., Xopommmuinos A.B IToctpoenre MOy IbHOTO IPOrpaMMHOT0O 00€CIIeUeH sl Ha OCHOBE OJIHOPOIHOM
KoMnoHeHToit Mozenu. Tpyowt UCII PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 ., cTp. 135-148

o Component developer’s workflow is not comfortable: after change in
YAML code generation should be processed and only then C code should
be updated accordingly.

e System integrator can connect instances incorrectly (this does not apply to
type checking, which is performed during compilation) and cannot see the
problem until final OS image is prepared and executed in target hardware.

5. Model-Based approach

We decided to go further along the path of abstraction and use abstract models of
components and their composition. We use formal executable models. This has
many benefits. Model contains more information than source code, thus source code
can be generated based on the model. In addition, executable model allows
simulating instances behaviour and their interaction. This is very useful for system
integrator to quickly verify the correctness of configurations. Moreover, formal
model can be used to formally verify its internal consistency.

We use Scala language to model components. Scala is a functional object-oriented
language that suits us well.

5.1 Model Description

5.1.1 Component Developer View

Component type is presented as Scala class inherited from interface (trait)
«Componenty». Component configuration and state are the class fields with fixed
names «config» and «state» respectively.

Active components have functions, which are called periodically or once. If
component type inherits trait «RunOnce» then it should implement function «starty,
which will be called once after component initialization. If component type inherits
class «Periodically», then it should implement function «periodically»; the
frequency of the call is determined by the configuration.

For example, consider “Counter” component type, at Fig. 3, which has a state but no
configuration. State contains value «callCounty», which is initialized with zero.
Function «periodically» increases «callCount» on every call.

class Counter extends Periodic with Component ({
class State(val callCount: Int)
var state = new State(0)

type Config = Unit
val config = ()

def pericdically = {callCount += 1}

Fig. 3. «Counter» component type

141

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP

RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

Port types are declared as interfaces (traits). Input ports are defined inside
component type class as objects, which inherited port type. Output port are class
fields with type of port type. Output ports values are passed as component type
constructor parameters. It is worth noting that output ports can be passed by name to
constructor, this allows initializing component instances with cycle connections
among them.

Example of input/output ports for “Amplifier” component type (defined in previous
sections) can be seen at Fig. 4 Model can have constraints on state and configuration
parameters values. These constraints are defined using Scala require function.
Example of require statement for “Amplifier” component type can be seen at Fig. 5.

trait SignalProcessor {
def processSignal(s:Int): Int

}
class Amplifier (out: =>SignalProcessor)...{

object in extends SignalProcessor ({
def processSignal(s: Int): Int = {
val processed = process(s)
out .processSignal (processed)

}

}

Fig. 4. Port type SignalProcessor and ports of «Amplifier» component type. The component
type has input port «in» and output port «out», both of them have type SignalProcessor. here
is an implementation of function processSignal of «in» port. Port «out» passed-by-name.
Scala syntax may be confusing, here function processSignal returns result of out port call

class Amplifier...{
class Config(val factor: Int) {
require (factor>0 && factor<50)

}

Fig. 5. Configuration constraint for «Amplifier» component type; «factor» can take values
only in the interval from 1 to 49

5.1.2 System Integrator View

System integrator creates instances of component type and connects them. For each
instance, he defines its configuration parameters values.

As an example of component instances and their connections, consider model of the
scheme depicted in the Fig. 2. This model can be seen at Fig 6.

142

Mainaunes K.A., Xopomuios A.B IToctpoeHne MOIy/IbHOTO MPOrPaMMHOTO 00ECIIEUCHHS Ha OCHOBE OJJTHOPOIHOMN
KoMnoHeHToit Mozenu. Tpyowt UCII PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 ., cTp. 135-148

val actuator = new Actuator

val ampl = new Amplifier (actuator.in) {
val config = new Config(factor = 2)

}

sensorl = new Sensor (ampl.in)

val amp2 = new Amplifier (actuator.in) {
val config = new Config(factor = 10)

}

sensor2 = new Sensor (amp2.in)

Fig. 6. «Amplifier» instances connection scheme

5.1.3 Preconfigured components

There is often component which have configuration parameters that have the same
value in different configuration. To simplify configuration process for system
integrator, we can define new component type, in which these parameters are fixed
and cannot be configured. New component type class constructor calls constructor
of the original one with values of these parameters. For example, it is possible to
define “AmplifierBy2” which amplifies signal by fixed factor of 2.

It is more interesting to define new component, which is a composition of existing
components. This is useful if some compositions are used often. Our approach
assumes unified modeling of components and their composition. This allows using
component-composition transparently for system integrator.

As an example, assume that there are component type «Amplifier» and «Filter», that
are often connected. We create a new component type «AmplifyAndFilter» that is
the composition of «Amplifier» and «Filter» Graphical representation of the
«AmplifyAndFilter» component type can be seen at Fig. 7 and implementation at
Fig. 8.

AmplifyAndFilter
filter:Filter amp1:Amplifier
ﬁn>— IfT> eut factor = 2 ﬁ_ -fout

Fig. 7. Graphical representation of «AmplifyAndFilter» component type.

143

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

class AmplifyAndFilter (out: SignalProcessor)
extends Component {
val amp = new Amplifier (out) ({
val config = new Config(factor)

}

val filter = new Filter (amp.in)

object in extends SignalProcessor ({
def processSignal (x:Int):Int = filter.in(x)
}
}

Fig. 8. Implementation of «AmplifyAndFilter» component type

5.2 Model Usage

We use model to simulate instances behaviour and their interaction. We can verify
that constraints are hold during simulation. In addition, we can write tests (unit and
integration) to check that component model is correct.

We use model to generate C code, which gets into JetOS. We statically parse Scala
code, extract needed information and translate it into C code.

Generated C code structurally looks much like code generated by prototype based
on YAML files. We use same approach to model OOP in C language.

Some parts of the model can be translated into C without modifications, for
example, simple operations and function calls. Some parts modified automatically
during translation, but some can not be automatically translated without human
help.

JetOS has strict coding style and, for instance, function can not have more than one
return statement. We can generate code according this code style and, for
example, we can automatically substitute several return statements in the model
with a single one in the generated code.

As was mentioned, there are also statements, which cannot be easily translated into
C. In addition, there are situations when generator tool cannot get enough
information statically analysing Scala code. To solve these problems we add
annotations to Scala code. Annotations does not change behaviour of model, they
used only to provide additional information for the generator tool.

We use annotations to highlight input and output ports and their type interfaces.
Annotations are «inport», «outport» and «interface» for input ports, output ports and
port types respectively. As an example, Fig, 9 shows «Amplifier» component type
with annotations.

144

Mainaunes K.A., Xopomuios A.B IToctpoeHne MOIy/IbHOTO MPOrPaMMHOTO 00ECIIEUCHHS Ha OCHOBE OJJTHOPOIHOMN
KoMnoHeHToit Mozenu. Tpyowt UCII PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 ., cTp. 135-148

@interface
trait SignalProcessor {

def processSignal(s:Int): Int
}

class Amplifier (@outport out: SignalProcessor)...{

@inport
object in extends SignalProcessor {
def processSignal(s: Int): Int = {
val processed = process(s)
out .processSignal (processed)
}
}
}

Fig. 9. Port type SignalProcessor and ports of «Amplifier» component type with annotations.

Scala language has rich syntax and not every statement can be easily translated to C.
We allow annotating blocks of Scala code or Scala functions with C code. Fig. 10
contains partial example.

@C_code (code="1int process(int* array) {...}")
def process(lst:List[Int]) = {...}

Fig. 10. C_code annotation example

This C_code annotation allows iteratively develop generator tool. At start, when
tool supports only a few Scala statements, almost all code has C annotations. When
support for new Scala statements adds to the tool, C annotations for these statements
are no longer needed. Therefore, during tool development number of C_code
annotations decreases.

6 Future Work

First, we still do not support many Scala statements and have a lot of C_code in our
models. We are going to fix this in the new versions of generator tool.

For now, system developer should write Scala code by hand. This Scala code is very
simple and matches a simple pattern. Thus, we can generate this Scala code from
some GUI interface. Configuration constraints of the model can be extracted and
added to this tool. This is one of optional future works.

Furthermore, formal model is a powerful tool and allows much more than C code
generation. Formal model can be used for model checking and formal verifying
internal consistency, preconditions or state invariants.

Tests and requirements can be generated based on the model and requirement
generation is our next task. Requirement is the most important part of safety-critical
system certification. Requirement writing is a hard handwork and automation (at
least partial) will be very helpful.

145

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

7 Conclusion

The paper presents continuation of the work on modularity of RTOS. OS drivers are
decomposed into isolated components. System integrator carries out component
composition, and it can be done without contacting component developers and
without writing C code.

We use a unified formal model to specify both components and their composition.
Model, which is written in Scala language, is used to generated C code.

Also, model is executable, this allows system integrator to quickly verify
correctness of composition. Model contains constraints on the model parameters.
These constraints are tested during model simulation, also constraints can be
translated into asserts in the generated C code.

Model-based approach still has disadvantage since the model is divided in two parts
written in two languages, which have to be manually kept consistent. However, C
code for some Scala statement is placed right before the statement, we hope that this
will stimulate developers to update parts synchronously. Maturing of the generator
tool decreases amount of C code in the model and reduces the importance of the
problem.

The approach has been successfully tested on OS drivers of JetOS — ARINC-653
compliant RTOS. ARINC-653 has restrictions on the code executed in OS. For
instance, resources (like buffers, semaphores, threads, etc.) can be requested only
during initialization stage. Model restriction on threads creation apply well to
ARINC-653 restrictions. Moreover, constructor code of the component type class is
executed during initialization stage. Thus, component can request resources in the
constructor.

References

[1]. K.M. Mallachiev, N.V. Pakulin, and A.V. Khoroshilov. Design and architecture of real-
time operating system. Trudy ISP RAN / Proc. ISP RAS, vol. 28, no. 2, 2016, pp. 181-
192. DOI: 10.15514/ISPRAS-2016-28(2)-12

[2]. J. Siegel and D. Frantz. CORBA 3 fundamentals and programming. John Wiley & Sons
New York, NY, USA, 2000, vol. 2.

[3]. N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the corba component model. In
Component-Based Software Engineering. Addison-Wesley Longman Publishing Co.,
Inc., 2001, pp. 557-571.

[4]. A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig, J. E. Tidswell, L.
Deller, and L. Reuther. The sawmill multiserver approach. In Proceedings of the 9th
workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for
the operating system, 2000, pp. 109-114.

[5]. I. Boule, M. Gien, and M. Guillemont. Chorus distributed operating systems. Computing
Systems, vol. 1, no. 4, 1988, pp. 305-370.

[6]. B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux oskit: A
substrate for kernel and language research. ACM SIGOPS Operating Systems Review,
vol. 31, no. 5, 1997, pp. 38-51.

146

Mainaunes K.A., Xopomuios A.B IToctpoeHne MOIy/IbHOTO MPOrPaMMHOTO 00ECIIEUCHHS Ha OCHOBE OJJTHOPOIHOMN
KoMnoHeHToit Mozenu. Tpyowt UCII PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 ., cTp. 135-148

[7]. A. Massa, Embedded software development with eCos. Prentice Hall Professional
Technical Reference, 2002.

[8]. J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller. Think: A software framework
for component-based operating system kernels. In Proceedings of the USENIX Annual
Technical Conference, General Track, 2002, pp. 73-86.

[9]. F. Loiret, J. Navas, J.-P. Babau, and O. Lobry. Component-based real-time operating
system for embedded applications. In Proceedings of the International Symposium on
Component-Based Software Engineering. Springer, 2009, pp. 209-226.

[10]. K. Mallachiev, N. Pakulin, A. Khoroshilov, and D. Buzdalov. Using modularization in
embedded OS. Trudy ISP RAN / Proc. ISP RAS, vol. 29, issue. 4, 2017, pp. 283-294.
DOI: 10.15514/ISPRAS-2017-29(4)-19

MocTpoeHne MoaynLHOro NporpaMmMHoOro obecrnevyeHus Ha
OCHOBE OQHOPOOHON KOMMOHEHTON Moaenu

L2 KA. Mannauues <mallachiev@ispras.ru>
1234 4 B. Xopowunos <khoroshilov@ispras.ru>
1HHcmumym cucmemnozo npoepammuposarnus um. B.11. Heannuxosa PAH,
109004, Poccus, . Mockea, yn. A. Conxcenuysvina, 0. 25,
2 Mockosckuii 2ocyoapcmeennbitl yrusepcumem umeru M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwl, 0. 1
*Mocrosckuii @usuKO-mexHuyecKull UHCMumym,
141700, Mockosckas obraCmew, 2. Jloneonpyousiii, Mncmumymcxuii nep., 9
* Bulcuias wikona sKonomuxu,
101000, Poccus, e. Mocksa, yn. Machuykas, 0. 20

Annotanusi. CoBpeMEHHBIE OIEPAMOHHBIE CHCTEMBl PEaJbHOTO BPEMEHH SBISIOTCS
CJIOXKHBIM TMPOJIYKTOM, pa3padaThlBacMbIM MHOTMMH ITOCTABIIMKAMU: HEIOCPEICTBEHHBIMU
pazpaborunkamu OC, mocTaBIIMKaMU IaKeTa MOJJIP)KKH ammapaTypbl, pa3paboTYMKaMu
npaiiBepoB ycTpoiictB u T.1. Takne OC CpoeKTHPOBaHBI TaK, YTOOBI HMMETh BO3MOXKHOCTh
3aIyCcKaThCs HAa PA3IMIHOM OOOPYIOBaHUH, YaCTO HMMEIOIIEM OTrpPaHUYEHHBIE PECYPCHL.
BcerpanBaemsie OC conepkaT MHOXKECTBO HACTPOEK M JpaiBEpOB UIS MOAJEPKKH pa3HOH
anmaparypbl. BONBIIMHCTBO U3 3THX ApaiiBepoB ABIIOTCSA M3MHIMHUME a1 3amycka OC Ha
KakOM-TO KOHKpeTHOM oGopynoBanun. OC cratudeckn KOHGUTypupyeTcs Uil BbIOOpa
Habopa JpaiiBepoB M HACTPOEK ISl KaXJI0ro THMa annaparypsl. MoxynsHocts OC yrporiaer
kak paspaborky OC, tak u ee koHpurypuposanue. Pasznenenne OC Ha W30IMpPOBaHHBIE
Monyiu ¢ (MKCUPOBaHHBIMH HMHTep(eiicaMu yMeHbIaeT HeoOXOUMMOCTh B3aMMOJICHCTBUS
MEXIy pa3paboTd4MKaMH B XOJ€ COBMECTHOH pa3paboTku. MblI ucmosb3yeM (GopMaibHbie
MOJICITU JIJIsl ONIMCAHHsI KOMIIOHEHTOB U WX B3amMoOJeicTBUs. Vcnonp30Banne (popManbHBIX
MOJleNiell TPUHOCUT OONBIIyI0 MMONb3y. OIUCHIBaGMBbIE MOJEIH COAEpKAT JOCTaTOYHO
nH(pOpMaIMH TS TeHepaliy HCXOJHOTO KoJia KOMIIOHeHTa Ha si3bike Cu. [IpenocraBisemsle
MOJIETTM SIBIIIIOTCSL MCTIOJIHAEMBIMH, YTO IIO3BOJISIET 4YEJIOBEKY, OTBEUAIOmIeMy 32
KOH(GUrypauuio, ObICTPO MPOBEPUTH IPABUIBHOCTH 3aJaHHO# KoH(urypauuu. Kpome Toro,
MOZENb COJACPKUT OrpaHHYCHHs Ha KOH(UIypalHOHHBbIE MapameTpbl. IIpuMepoM Takux
OTpaHMYCHUH SBJSIOTCS OTPAHUUYCHHS HAa BHYTPEHHIOI COIVIACOBAHHOCTh Mojenu. lIpu
TeHepaly UCXOJHOTO KOJA TaKHue OTrpaHMYCHUS TPAHCIUPYIOTCS B CIELHAIbHbBIC IPOBEPKH

147

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

Ha ypoBHE MCXOAHOTo koja. CiemoBaTensHO, OTPAaHUYEHHUSIMH MOTYT OBITH MPOBEPEHBI KAk
BO BpeMs CHMYIIIIIMM MOJENH, TaK M BO BpeMsl HCIOJIHEHHs HCXOJHOro kona. B manuoi
paboTe NpeACTaBlIeH MOAXOJ K ONMMCAHHIO TAaKMX MOJeJCi Ha S3bIKEe NPOrpaMMHUPOBAHHS
Scala. MbI ycrenHo anpoOupoBaiy JaHHbIA moaxoq Ha ocHoBe OC peaibHOr0 BpeMEHH
JetOS.

KiroueBblie ¢10Ba: KOMIIOHEHTHI; MOAyIbHOCTE; OCPB; dopMansHble MOJeTH; reHepanus
Kozaa

DOI: 10.15514/ISPRAS-2018-30(3)-10

Jas uurupoBanusi: Mamnaunes K.A., XopommnoB A.B IloctpoeHune MomynsHOTO
MPOrpaMMHOTo oOecrieueHHsT Ha OCHOBE OJHOPOAHOW KoMmmoHeHTod monenu. Tpymer UCIT
PAH, tom 30, Bem. 3, 2018 r., crp. 135-148 (ua anrmmiickom si3bike). DOI:
10.15514/ISPRAS-2018-30(3)-10

Cnucok nutepatypbl

[11]. K.M. Mallachiev, N.V. Pakulin, and A.V. Khoroshilov. Design and architecture of real-
time operating system. Trudy ISP RAN / Proc. ISP RAS, vol. 28, no. 2, 2016, pp. 181-
192. DOI: 10.15514/ISPRAS-2016-28(2)-12

[1]. J. Siegel and D. Frantz. CORBA 3 fundamentals and programming. John Wiley & Sons
New York, NY, USA, 2000, vol. 2.

[2]. N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the corba component model. In
Component-Based Software Engineering. Addison-Wesley Longman Publishing Co.,
Inc., 2001, pp. 557-571.

[3]. A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig, J. E. Tidswell, L.
Deller, and L. Reuther. The sawmill multiserver approach. In Proceedings of the 9th
workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for
the operating system, 2000, pp. 109-114.

[4]. 1. Boule, M. Gien, and M. Guillemont. Chorus distributed operating systems. Computing
Systems, vol. 1, no. 4, 1988, pp. 305-370.

[5]. B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux oskit: A
substrate for kernel and language research. ACM SIGOPS Operating Systems Review,
vol. 31, no. 5, 1997, pp. 38-51.

[6]. A. Massa, Embedded software development with eCos. Prentice Hall Professional
Technical Reference, 2002.

[7]. J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller. Think: A software framework
for component-based operating system kernels. In Proceedings of the USENIX Annual
Technical Conference, General Track, 2002, pp. 73-86.

[8]. F. Loiret, J. Navas, J.-P. Babau, and O. Lobry. Component-based real-time operating
system for embedded applications. In Proceedings of the International Symposium on
Component-Based Software Engineering. Springer, 2009, pp. 209-226.

[9]. K. Mallachiev, N. Pakulin, A. Khoroshilov, and D. Buzdalov. Using modularization in
embedded OS. Trudy ISP RAN / Proc. ISP RAS, vol. 29, issue. 4, 2017, pp. 283-294.
DOI: 10.15514/ISPRAS-2017-29(4)-19

148

Methods of protecting decentralized
autonomous organizations from crashes
and attacks

A.A. Andryukhin <Alexandr@kcdigital.ru>
KCD, office 3, 131, prospect Mira, Moscow, 129226, Russia

Abstract. Field of study: Blockchain technology, decentralized autonomous organizations,
smart contract and their resistance to attacks and failures. Theoretical and practical
significance: Due to the fact that such a form of organization is experimental, participants
often face problems of attacks on the organization, the consequences of incorrectly written
rules and of fraud. The task of creating decentralized autonomous organizations that are
resistant to failures and attacks, and research on the causes of such problems has become
relevant for software developers and architects. Goals and objectives of work: Investigation
of attack algorithms and development of methods for ensuring the sustainability of
decentralized autonomous organizations for attacks on the basis of analysis of the
subprocesses of border events and logs using the methods of Process Mining. The methods to
be developed should promptly identify and prevent inconsistencies between the alleged and
actual behavior of smart contracts that lead to such errors in the operation, such as the content
of spam contracts, empty transactions, increased block processing time, etc.

Keywords: blockchain; decentralized autonomous organizations; process mining; smart
contract; security

DOI: 10.15514/ISPRAS-2018-30(3)-11

For citation: Andryukhin A.A. Methods of protecting decentralized autonomous
organizations from crashes and attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3,
2018, pp. 149-164. DOI: 10.15514/ISPRAS-2018-30(3)-11

1. Introduction

1.1 Blockchain and crypto-currencies

In the past few years, thanks to the popularization of blockchain technology, which
represents a continuous series of blocks containing information, built according to
certain rules, there were created many services and applications using various
crypto-currencies [13]. Many crypto-currencies are inextricably linked with this
technology for such reasons: decisions on the blockchain do not require trust
between the participants, they are open and validated. Success of the Bitcoin,
decentralized crypto-currency with the capitalization of more than $ 10 billion, is of

149

Andryukhin A.A. Methods of protecting decentralized autonomous organizations from crashes and attacks. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 149-164

genuine interest both in industry, government, and in science [2]. A whitepaper,
written under the pseudonym Satoshi Nakamoto in 2008, is the basic document for
any form of organization created on blocking technology. This document for the
first time outlines the Bitcoin structure and introduces the concept of blockchain
[30]. The theoretical basis used in the creation of decentralized autonomous
organizations is based on the research of automatic verification systems [31, 32],
cryptography [33, 34] and distributed databases [35, 36].

1.2 Decentralized autonomous organizations

The economic theory and research of organizations [19, 20], the theory of contracts
[21, 22], auction mechanisms [23, 24], the theory of innovation [25, 26], as well as
virtual organizations [27, 28] played an important role in the emergence of
decentralized autonomous organizations [30].

Bitcoin can be called the very first decentralized autonomous organization created
to carry out paid transactions [1]. The most famous decentralized autonomous
organization, based on the Bitcoin code, was created in 2014 and was given the
current name Dash in March 2015. Dash is currently experiencing a stage of rapid
growth. In September 2017, the company's market capitalization was $ 2.5 billion.
However, the most promising platforms for the development of decentralized
autonomous organizations are platforms that use smart contracts and the Turing-
complete programming language, such as Ethereum [2].

On April 30, 2016, the first decentralized crowd-funding project, known as The Dao
(Decentralized Autonomous Organization), was launched on the Ethereum
blockchain platform. The organization was established as a venture capital fund
with transparent and democratic flows of project financing, in which each investor
would have a voice whose weight is directly proportional to the funds invested. The
technology of smart contracts was laid for the first time in the basis of the
functioning of the organization The DAO. The Dao in record time attracted more
than $ 168 million in investment almost immediately became a target of intruders
and was repeatedly attacked to steal or freeze funds. As a result of one of the
attacks, more than $ 50 million was stolen from the organization, and as a result of
the other, more than $ 150 million was frozen [14, 16]. The imperfection in the code
of smart contracts and the existing vulnerabilities, as well as the inability to change
them lead to so-called softfork and hardfork. The Dao is not the only decentralized
organization deployed on Ethereum. Fermat (www.fermat.org), Digix.global also
operate on the Ethereum blockchain platform and are managed collectively by the
participants who own the tokens by voting.

1.3 Smart contracts

In 1994, cryptographer Nick Szabo proposed the use of cryptography and computer
technology to automate the process of concluding, executing and auditing various
contracts [29]. The development of this direction led to the creation of smart

150

AnaproxuH A.A. MeToIbl 3allIUThI ACLEHTPATM30BAHHBIX ABTOHOMHBIX OpPraHU3alMi OT CUCTEMHBIX OTKa30B M aTak.
Tpyowt UCII PAH, Tom 30, Beim. 3, 2018 1., ctp. 149-164

contracts on the basis of the blockade - special electronic algorithms introduced into
the block, where they are monitored by the decentralized computer network itself.
This allows you to expand the capabilities of the block-up to a computing platform
for centralized execution of common tasks [5].

Smart contracts allow you to exclude from the process of intermediaries because
computer algorithm independently and automatically confirms the fulfillment of the
terms of the contract and determines what to do with the asset for which the contract
was created. Smart contracts are protected from uncoordinated changes in the terms
of the transaction, allow you to automate the audit and make it in real time.

The most famous framework for smart contracts is Ethereum, a decentralized virtual
machine, where the Turing-complete programming language is used to create smart
contracts. A distinctive feature of Ethereum is the ability to transfer ETH crypto
currency between users and contracts. Users create transactions on the Ethereum
network in order to create a new contract, call a contract, or transfer ETH to a
contract or another user. Blockchain allows you to track the status of each contract
and the balance of each user.

Smart contracts are unchangeable: after they are deployed in the core network,
updates and changes are not possible, they are publicly available. The main serious
problem of creating smart contracts is their formal verification: for example, in the
Etherium network, verifying the decentralized virtual machine (EVM) code is very
difficult, so unverified smart contracts are often the subject of hacker attacks. Later
in the article, known vulnerabilities and attacks will be examined using the example
of the Ethereum network and the distributed decentralized autonomous organization
The Dao.

In this article, special attention will be paid to the security of decentralized
autonomous organizations, which are based on smart contracts, examines examples
of existing attacks. The problem of attacks on DAO is currently relevant, although it
is currently not very well covered [2, 4].

2. Structure of the DAO based on smart-contracts

A decentralized autonomous organization is a supposedly "democratic" organization
operating in a distributed network through a combination of "smart" contracts and a
rich scripting language. Technically, DAO is the implementation of a financial
service by performing all necessary calculations directly in smart contracts when
using the scripting language. A distributed ledger, for example, a host, provides a
secure environment for computing and storing data across the entire network, and,
as a consequence, eliminates the need for a central trusted party [1].

As an example of the structure of a decentralized autonomous organization,
TheDAO can be considered, where the main smart contract is used, serving as a
"factory" for sub-contracts, the number of which is already in the millions. Smart
contracts in Ethereum run on Ethereum Virtual Machine (EVM), the predominant
language of contracts is Solidity. A smart contract is an autonomous agent with its
own software logic, an identification address in the network and the associated

151

Andryukhin A.A. Methods of protecting decentralized autonomous organizations from crashes and attacks. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 149-164

balance of the Ether. After the initialization, the contract code can no longer be
changed, the contract can be called repeatedly and stored on the network forever,
until it executes the bytecode of the suicide instruction, after which the contract is
no longer subject to a call and is called dead [7,9]. Each contract call is carried out
by sending a transaction to the address of the contract together with the input data
and charges (the so-called gas). Ideally, the entire mining network performs a
function call and skips or does not miss the contract, depending on the consensus
reached, based on the consensus protocol. The result of the calculation is replicated
through the blockchain and provides a commission for the transaction for the miners
in accordance with the established interest rates.

In addition to being used as a reward, the service fee also protects against denial-of-
service attacks when an attacker tries to slow down the entire network by requesting
time-consuming calculations. Each operation consumes a certain level of gas, the
upper consumption threshold and the unit price of which are indicated in the
transaction. Unused gas comes back, and if during the calculation all gas was
consumed, then the process stops and all gas is lost.

EVM allows contract functions to have a local state, while contracts themselves can
contain global variables stored in the blockchain. Contracts can also refer to other
contracts via message calls. The output of these calls is part of the same transaction
and is also returned during the runtime of the transaction. It is important to note that
calls can also send the Ether to other contracts and non-contractual addresses. The
balance of the contract can be read by any member of the blockchain, but it can be
changed only by calls originating from other contracts or initiated from outside the
transaction. Only contracts with white list addresses can receive funding from the
organization, and track the addition of new contract addresses, the main purpose of
which is financing, curators [9].

The main motive for the introduction of human control is the screening out of
malicious addresses, through which the "51% attack" is carried out, the purpose of
which is to transfer most of the company's funds to one block. After adding the
contract address to the white list, further decisions on it are made by voting all the
holders of the tokens. At the time of voting, the balance sheets of the voters are
"frozen™ to the voting results. The withdrawal of funds from the organization is
possible only by creating a sub-organization, where the withdrawing funds is the
sole curator. The decision on separation (creation of a new DAO) is also adopted by
a general vote. The entire process of creating a new DAO takes a little more than 30
days [4, 10].

3. Vulnerabilities of DAO

Attacks of the DAO system based both on the technical imperfection of the system
and on the behavioral characteristics of the DAO participants [15, 16, 17]. The
behavior of participants allowed the appearance of the following types of attacks,
some of which are still used for malicious actions in the system [4].

152

AnaproxuH A.A. MeToIbl 3allIUThI ACLEHTPATM30BAHHBIX ABTOHOMHBIX OpPraHU3alMi OT CUCTEMHBIX OTKa30B M aTak.
Tpyowt UCII PAH, Tom 30, Beim. 3, 2018 1., ctp. 149-164

Stalker Attack. During the separation and creation of a subsidiary DAO in order to
withdraw funds from the system (the withdrawal is possible only under this
scheme), an attacker can seize tokens created by the DAO and have a negative
impact on the withdrawal of funds.
Attack of the last moment. At the last moment of voting, a large investor is added
with a hug number of tokens with which he votes "yes" and pushes an unprofitable
or absurd project.
Attack of the value of the token. Sowing panic among tokens holders, forcing to
sell tokens, and not invest in system projects. There is a buying up of tokens at a
low price and the acquisition of a larger stake in the DAO.
Attack of extra-balance. The attacker provokes the separation of DAQ to increase
the book value of tokens. The more participants are separated from the DAO, the
higher the value of the extra balance as a percentage.
Attack of 53%. Despite the huge amounts of 53% of DAO funds and curatorial
verification of the addresses of financed contracts, there is a possibility of cartel
collusion with the aim of raising funds for interrelated projects.
Attack of parallel voting. For the voting period, the balances of the voters are
blocked, which can be used for voting for a malicious contract with a smaller voting
period.
Attack on reward. To reduce the payments to the separated participants of the
system, the remaining participants can deliberately create overheads for
maintenance by looping money in fake contracts.
Logical vulnerability of voting. The nature of voting in the existing DAO does not
allow to build a logical chain during voting. For example, (vote "yes" the proposal A
if the proposal B is not funded). Because social processes are non-linear, it is
impossible to foresee how competing or conflicting proposals run simultaneously.
Attacks that exploit the behavioral features of the system, for the most part, require
tremendous resources and considerable training, while attacks based on technical
vulnerabilities and bugs can be carried out with minimal costs, thus such attacks are
the most interesting and dangerous.
According to the studies [5], the Ethereum blockchain contains over 34,000
vulnerable smart contracts per 1 million researched contracts. Vulnerable contracts
were divided into 3 conditional groups: suicidal contracts, prodigal contracts and
greedy contracts - such contracts allow either to block funds for an indefinite
period, or to destroy the contract after implementation, or allow leakage means of
purse to arbitrary users.
There are several types [2] of major vulnerabilities that make the contract dangerous
for the system.
Call to the unknown. When the code is illiterate, the call, send, and delegate call
primitives can result in sending to an unset address or returning a broadcast by
calling a backup function.
Exception disorder. In Solidity, exceptions are used in the following cases:

e the gas has ended;

153

Andryukhin A.A. Methods of protecting decentralized autonomous organizations from crashes and attacks. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 149-164

e the call stack has reached the limit;

e acommand throw is executed [2].
However, in some cases (often these are chains of nested calls), exceptions can lead
to an unplanned cancellation of the actions performed, while gas consumption is not
returned [11].
Gasless send. The lack of gas in the transmission of Ether can cause unpredictable
behavior.
Type casts. Using the compiler does not guarantee the correct operation of the
contract.
Reentrancy. It can often be confusing to realize that if a function is not recursive,
then it will not allow repeated repetitions. However, this misconception can lead to
the fact that a non-recursive function starts a cycle of calls that ultimately consume
all the gas [11].
Keeping secret. Fields in contracts can be both private and public for all users.
However, declaring a field private does not guarantee its inaccessibility to others.
This is due to the fact that to set the privacy of the field, the user must send the
corresponding transaction to the miners who will then publish it in the blockchain.
Since the blockchain itself is public, any user can check the contents of the
transaction and make changes to the privacy of the field. In order to best protect the
contract field, you need to use suitable cryptographic methods [12].
Immutable bugs. As already known, after the publication of the contract in the
detachment, it is already impossible to change it, so contracts with errors can
manifest themselves completely unpredictably. Sometimes, when the consequences
of executing such contracts have an extremely negative impact on the entire
detachment, the community comes to the decision to use softfork or hardfork.
Ether lost in transfer. Some addresses in the blockchain are not associated with
either specific users or contracts, so when sending airtime to these addresses, it is
lost irrevocably.
Stack size limit. The stack size is limited to 1024 frames. Every time there is a call
to another contract or even yourself, the stack size increases by 1. If the rules for
rejecting a call when reaching a stack limit are incorrectly set, then the attacker has
the opportunity to exploit the vulnerability. The vulnerability was closed in 2016 by
limiting gas at a rate of 63/64 from the existing one. Since the current gas limit is
limited to 4.7M units, the depth of the stack is always less than 1024.
Unpredictable state. When sending a transaction to the network, the user can not
always be sure of the status of the contract, which is determined by the cost of its
fields and balance. This can happen because at the time of sending the contract
status was changed by another transaction, or the contract contains dynamic
variables associated with other contracts. Such wvulnerability can be used by
attackers to link the called contract to malicious components that allow stealing the
broadcast.
Generating randomness. Due to the fact that execution of the bytecode on EVM is
deterministic, i.e. all participants as a result of processing the transaction should

154

AnaproxuH A.A. MeToIbl 3allIUThI ACLEHTPATM30BAHHBIX ABTOHOMHBIX OpPraHU3alMi OT CUCTEMHBIX OTKa30B M aTak.
Tpyowt UCII PAH, Tom 30, Beim. 3, 2018 1., ctp. 149-164

receive the same result, unless otherwise specified, to obtain non-deterministic
results, some contracts (for example, games, lotteries) use pseudo-random number
generators. Such blocks usually have timestamps. The vulnerability lies in the fact
that an attacker can try to create his own block with the content controlled by him in
order to evade the result of the generator and shift the probability of distribution of
pseudo-random numbers.

Time constraints. Time constraints are used to identify permitted or mandatory
actions and contain a timestamp that is consistent with all participants in the
process. Contracts can extract timestamps and set their own. Attackers can exploit
this vulnerability to gain temporary advantages over other participants in the
process.

The Threat of Quantum Computing. One of the potential vulnerabilities is the
instability of cryptography to quantum attacks. The most popular public-key
encryption algorithms, for example, RSA in the near future can be destroyed with
the help of a quantum computer.

4. Levels of attacks on smart-contracts

In connection with the fact that the basis of any decentralized autonomous
organization is the implementation of smart contracts, the main attacks are aimed at
them. The existing vulnerabilities of smart contracts can be conditionally divided
into three classes, depending on the level at which the vulnerability is detected
(Solidity, EVM bytecode, blockchain). Each vulnerability class can spawn one or
more known attack types [2, 16, 17] (fig. 1).

In the study [2], the simplest test DAO was simulated,

contract SimpleDAD { function withdraw(uint amount) {
mapping (address => uint) public credit; if (credit[msg.sender]>= amount) {
function donate(address to){credit[to] += msg.value;} msg.sender.call.value (amount) () ;
function queryCredit(address to) returns (uint){ credit [msg.sender] -=amount ;
return credit[to]; I

}

on which the following attacks, existing in real Ethereum, were made.

The DAO Attack. In the well-known attacks on the DAO, the purpose of which was
to seize the organization's funds, the call to the unknown and reentrancy
vulnerabilities were exploited, which could have a negative impact, because the
broadcast was broadcast before the credit was reduced. Examples of contracts used
in attacks:

contract Mallory {
SimpleDAO public dao = SimpleDA0(0x354...);
address owner;
function Mallory(){owner = msg.sender; }
function() { dao.withdraw(dao.queryCredit(this)); }
function getJackpot(){ owner.send(this.balance); }

155

Andryukhin A.A. Methods of protecting decentralized autonomous organizations from crashes and attacks. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 149-164

156

contract Mallory2 {
SimpleDAQ public dao

= SimpleDAO(0x818EA...);

address owner; bool performAttack = true;

function Mallory2(){ owner =

function attack() {
dao.donate.value(1) (this);
dao.withdraw(1);

}

Vulnerability

Solidity

Contracts P

Call to the unknown &%

Contracts P

I~

Contracts GP S

o eres B

Contracts GP S

Contracts G

T -

Contracts G P

Exception disorders 1

FF=-
AL

\

Contracts P D

Ether lost in transfer

Contracts GP S

Immutable bugs

Contracts GP S

msg.sender; }

\

. function() {

2 if (performAttack) {

3 performAttack = false;
4 dao.withdraw(1);

5 3}

&

7 function getJackpot(){

8 dao.withdraw(dao.balance);
9 owner.send(this.balance) ;
w3}

| Attack

The Dao attack (1)

M Multi-player games
(3)

et — — —

King of the ether
throne (2)

e — — —

-- IO

Stack size limit

Blockchain

Contracts GP S,

Contracts G Pi :
Unpredictable stack

Contracts P

Generating
randomness

I EVM

]

I

I
1

I

I

Goverrnmental (5)

Dynamic libraries (6) I

Fig. 1. Vulnerabilities of smart contracts

AHle}OXI/IH A.A. MeTojb! 3allUThI JCHCHTPAJIM30BaAHHBIX aBTOHOMHBIX opraHmaunﬁ OT CUCTECMHBIX OTKA30B U aTak.

Tpyowt UCII PAH, tom 30, Bem. 3, 2018 ., ctp. 149-164

Attack in the game King of Ether throne. The game is represented by simplified

contracts with vulnerabilities.

contract KotET {
address public king;
uint public claimPrice = 100;
address owner;

function KotET() {
owner = msg.sender; king = msg.sender;

¥

function sweepCommission(uint amount) {
owner . send(amount) ;

}

contract KotET {

function() {
if (msg.value < claimPrice) throw;
uint compensation = calculatecampensatinn();
if ('king.call.value(compensation)()) throw;
king = msg.sender;
claimPrice = calculateNewPrice();

}r

function() {

if (msg.value < claimPrice) throw;

uint compensation = calculateCompensation();
king.send(compensation) ;

king = msg.sender;

claimPrice = calculateNewPrice();

contract Mallory {

function unseatKing(address a, uint w) {
a.call.value(w);

}

function () {
throw;

}r

At first glance, contracts seem fair, but the lack of a send return check (1) and
intentional call exceptions (2) can result both in unfair winnings and in theft of
contract funds after the game is over.

Attack in games with multiple players. In such games, hidden fields are often used,
which are unknown during the game, but can be opened at the time of joining the
game (vulnerability keeping secrets). An example of a similar game with existing
vulnerabilities is represented by a contract

contract OddsAndEvens{
struct Player { address addr; uint number;}
Player[2] private players;
uint8 tot = 0; address owner;

function andTheWinnerIs() private {
uint n = players[0] .number
+ players[1].number;
players [n%2] .addr.send (1800 finney);
delete players;
function OddsAndEvens() {owner = msg.sender;} tot=0;
}

function play(uint number) {

if (msg.value != 1 ether) throw; function getProfit() {
players[tot] = Player(msg.sender, number); owner.send(this.balance);
tot++; }
if (tot==2) andTheWinnerIs(); ¥
}
Using data from private fields, an attacker can lead a strategy of permanent
winnings.

Attack of Rubixy. Was implemented in contracts that use the Ponzi scheme
(financial pyramid). Attack was possible because the developers renamed the
contract with DynamicPyramid Rubixy, forgetting to change the name of the
constructor, which then became a function that everyone can call. Instead of a single
use of DynamicPyramid when setting the owner's address, which is allowed to take
profit, this function was used by intruders to set their addresses as owner addresses.

157

Andryukhin A.A. Methods of protecting decentralized autonomous organizations from crashes and attacks. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 149-164

contract Rubixi {
address private owner;
function DynamicPyramid() { owner = msg.sender; }
function collectAllFees() { owner.send(collectedFees); }

Attack GovernMental. As well as above, the contract is implemented by the Ponzi
scheme. Money receives the final invested after 12 hours except for the fees of the
organizers. After that, the array is cleared with the data of the participants. At some
point, the list became so huge that it took much more gas to clean up the arrays than
the maximum allowed for a single transaction.

A simplified version of the game with all the existing vulnerabilities looks like this

contract Governmental { function resetInvestment() {
address public owner; if (block.timestamp <
address public lastInvestor; lastInvestmentTimestamp+ONE_MINUTE)
uint public jackpot = 1 ether; throw;
uint public lastInvestmentTimestamp;
uint public ONE_MINUTE = 1 minutes; lastInvestor.send(jackpot) ;

owner.send(this.balance-1 ether);
function Governmental() {

owner = msg.sender; lastInvestor = 0;
if (msg.value<l ether) throw; jackpot = 1 ether;
} lastInvestmentTimestamp = O;
}
function invest() { }

if (msg.value<jackpot/2) throw;

lastInvestor = msg.sender;

jackpot += msg.value/2;

lastInvestmentTimestamp = block.timestamp;

¥

This scheme was also subjected to attacks using the exception disorder and stack
size limit vulnerabilities. Thanks to these vulnerabilities, it became possible not to
pay the winners to win by launching a new round of the game. Also, dishonest
miners used the possibility of not adding new blocks to be the last ones invested, or
adding a timestamp to the block in such a way that the block would become the last
one each time.
An attack using dynamic libraries. Such attacks use the Unpredictable state
vulnerability, since it is possible to update the library with malicious content after
the publication of the contract.

5. Potential mitigations and solutions

Having considered the above vulnerabilities and attacks based on them, it is possible
to draw conclusions and understand the need for steps to be taken in the field of
DAO security.

Confidentiality. Many mistakenly accept conditional anonymity of transactions in
the blockchain for real: transactions are recorded and stored in the public registry
and are linked to the address of the account that does not contain information about
the real person behind this account. However, identifying information can be

158

AnaproxuH A.A. MeToIbl 3allIUThI ACLEHTPATM30BAHHBIX ABTOHOMHBIX OpPraHU3alMi OT CUCTEMHBIX OTKa30B M aTak.
Tpyowt UCII PAH, Tom 30, Beim. 3, 2018 1., ctp. 149-164

obtained through web trackers and cookies. In addition, the required data is often
contained directly in smart contracts [17]. Lack of confidentiality is a serious threat
when it comes to medical records, identity documents, credential management, and
a number of closed financial documents. Strengthen confidentiality in several ways:

e addresses on the Diffie-Hellman-Merkle protocol on elliptical curves
(ECDHM) will allow the use of the secret key by the two sides of the
process;

e creation of a decentralized mix-protocol for joining a group of
payments into one pool, with the possibility of tracking amounts in a
private registry, without a third party;

e cvidence with zero disclosure — the preservation of confidential
information and at the same time the certification of its availability; it
can be achieved by authentication of the "call-response” to verify the
transaction, using the zkSNARK (zk-zero-knowledge, SNARK-
Succinct Non-interactive Adaptive Argument of Knowledge) module
for verification; it will make certain contract variables private,
ensuring that they are stored out of the blockchain by users who using
the SNARK protocol to prove that they adhere to its rules (requires a
prior "trust"); the use of the zkSTARK (T-transparent, i.e. transparent)
block is a simple protocol that relies solely on hashes and is better
protected of quantum computers, because it does not use elliptic
curves;

e use of obfuscation (code entanglement);

e use of oracles - parties transferring information between smart
contracts and external data sources;

e use of the trusted environment for program execution.

Verification of smart contracts. The development of tools for verification, the
introduction of verification formats will make sure that the smart contract behaves
the way it was intended. The complexity of verification of smart contracts lies in the
complexity of verification of the EVM bytecode. Verification of smart contracts
will also reduce the risk of virus infection and hacker attacks. Verification
guarantees greater accuracy, than traditional approaches, for example, testing [8].
Perfection of intra-organizational processes. Improving the voting processes by
introducing a grace period that allows the movement of non-voting funds, adding
the function of the voting office, prolonging the voting time for a statistical release,
attracting more users to the process, developing secure withdrawal methods will
prevent a number of attacks and increase trust in the system.

Improving the mechanism for achieving consensus. The use of the existing PoW
(Proof-of-Work) protocol, which depends on computing power, jeopardizes the
decentralization of the system and makes it possible for a cartel plot. Because Major
mining pools have a great advantage over private miners in the extraction of blocks
and profit distribution, centralization occurs in the blockage and several large
mining pools own more than 70% of the hash. A more advanced PoS protocol

159

Andryukhin A.A. Methods of protecting decentralized autonomous organizations from crashes and attacks. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 149-164

(Proof-of-Stake) practically excludes the possibility of bundle aggregations in terms
of computing power, but at the same time it requires solutions to problems such as
«Nothing at stake», when forming forecaster, the miners vote simultaneously for
several different blocks on one altitude, or start fork from any place, getting
validators of previous participants and creating a million blocks in a new
blockchain, preventing users from understanding which of the blockchain is
«correcty.
Creation of the necessary tools for development.
At the moment, in the ecosystem of the toolkit of the developer of smart contracts,
the weak points are:
Integrated Development Environment (IDE);
the code assembly system and compiler program;
deployment tools;
storage medium,;

e debugging and logging tools;

e security audit;

e analytical tools.
Improving the development toolkit will have a positive impact on the functioning of
the entire DAO.

References

[1]. Williams J. The Seconomics (Security-Economics) Vulnerabilities of Decentralized
Autonomous Organizations. Lecture Notes in Computer Science, vol. 10476, 2017, pp.
171-179.

[2]. Atzei N., Bartoletti M., Cimoli T. A survey of attacks on Ethereum smart contracts
(SoK). In Proc. of the International Conference on Principles of Security and Trust,
2017, pp. 164-186.

[3]. Mehar M. et al. Understanding a Revolutionary and Flawed Grand Experiment in
Blockchain: The DAO Attack. Available at SSRN: https://ssrn.com/abstract=3014782,
accessed 29.05.2018.

[4]. DuPont Q. Experiments in algorithmic governance: A history and ethnography of “The
DAO,” a failed decentralized autonomous organization. In Bitcoin and Beyond:
Cryptocurrencies, Blockchains and Global Governance, Routledge, 2017, 212 p.

[5]. Nikolic I. et al. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. arXiv
preprint arXiv:1802.06038, 2018.

[6]. Grossman S. et al. Online detection of effectively callback free objects with applications
to smart contracts. Proceedings of the ACM on Programming Languages, vol. 2, issue
POPL, article 48, 2017, 20 p.

[7]. Gurfinkel A. et al. The SeaHorn verification framework. In Proc. of the International
Conference on Computer Aided Verification, 2015, pp. 343-361.

[8]. Bhargavan K. et al. Formal verification of smart contracts. In Proc. of the ACM
Workshop on Programming Languages and Analysis for Security, 2016, pp. 91-96.

[9]. Delmolino K. et al. Step by step towards creating a safe smart contract: Lessons and
insights from a cryptocurrency lab. In Proc. of the International Conference on Financial
Cryptography and Data Security, 2016, pp. 79-94.

160

AnaproxuH A.A. MeToIbl 3allIUThI ACLEHTPATM30BAHHBIX ABTOHOMHBIX OpPraHU3alMi OT CUCTEMHBIX OTKa30B M aTak.
Tpyowt UCII PAH, Tom 30, Beim. 3, 2018 1., ctp. 149-164

[10].

[11].

[12].
[13].

[14].

[15].

[16].

[17].

[18].

[19].
[20].
[21].
[22].
[23].

[24].

[25].

[26].

[27].
[28].

[29].

Wiist K., Gervais A. Ethereum Eclipse Attacks. Report, ETH Zurich Research
Collection, 2016, 7 p.

Chen T. et al. An Adaptive Gas Cost Mechanism for Ethereum to Defend Against
Under-Priced DoS Attacks. In Proc. of the International Conference on Information
Security Practice and Experience, 2017, pp. 3-24.

Luu L. et al. Making smart contracts smarter. In Proc. of the ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 254-269.

Dhillon V., Metcalf D., Hooper M. The DAO Hacked. In Blockchain Enabled
Applications, Apress. Berkeley, CA, 2017, pp. 67-78.

Mayer H. ECDSA security in bitcoin and ethereum: a research survey. CoinFabrik,
2016. Awvailable at https://blog.coinfabrik.com/wp-content/uploads/2016/06/ECDSA-
Security-in-Bitcoin-and-Ethereum-a-Research-Survey.pdf, accessed 29.05.2018.

Marcus Y., Heilman E., Goldberg S. Low-Resource Eclipse Attacks on Ethereum’s
Peer-to-Peer Network. IACR Cryptology ePrint Archive, Available at
https://eprint.iacr.org/2018/236.pdf, accessed 29.05.2018.

Dika A. Ethereum Smart Contracts: Security Vulnerabilities and Security Tools,
Master’s thesis, NTNU, 2017.

Woéhrer M., Zdun U. Smart Contracts: Security Patterns in the Ethereum Ecosystem and
Solidity. In Proc. of the International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), 2018, 8 p.

Biryukov A., Khovratovich D., Tikhomirov S. Findel: Secure Derivative Contracts for
Ethereum. In Proc. of the International Conference on Financial Cryptography and Data
Security, 2017, pp. 453-467.

Ross S. A. The economic theory of agency: The principal's problem. The American
Economic Review, vol. 63, Ne. 2, 1973, pp. 134-139.

Eisenhardt K. M. Agency theory: An assessment and review. Academy of management
review, vol. 14, Ne 1, 1989, pp, 57-74.

Gale D., Hellwig M. Incentive-compatible debt contracts: The one-period problem. The
Review of Economic Studies, vol. 52, Ne. 4, 1985, pp. 647-663.

Bolton P., Dewatripont M. Contract theory. MIT press, 2005, 744 p.

Edelman B., Ostrovsky M., Schwarz M. Internet advertising and the generalized second-
price auction: Selling billions of dollars’ worth of keywords. American economic
review, vol. 97, Ne. 1, 2007, pp. 242-259.

Roth A. E., Ockenfels A. Last-minute bidding and the rules for ending second-price
auctions: Evidence from eBay and Amazon auctions on the Internet. American
economic review, vol. 92, Ne. 4, 2002, pp. 1093-1103.

Greenstein S. How the internet became commercial: Innovation, privatization, and the
birth of a new network. Princeton University Press, 2015, 488 p.

Moeen M., Agarwal R. Incubation of an industry: Heterogeneous knowledge bases and
modes of value capture. Strategic Management Journal, vol. 38, Ne. 3, 2017, pp. 566-
587.

Handy C. Trust and the virtual organization. Harvard business review, vol. 73, Ne. 3,
1995, pp. 40-51.

Markus M. L., Agres B. M. C. E. What makes a virtual organization work? MIT Sloan
Management Review, vol. 42, Ne. 1. 2000, 16 p.

Szabo N. The idea of smart contracts. Nick Szabo’s Papers and Concise Tutorials.
Available at

161

Andryukhin A.A. Methods of protecting decentralized autonomous organizations from crashes and attacks. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 149-164

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOT
winterschool2006/szabo.best.vwh.net/smart_contracts_idea.html, accessed 29.05.2018.

[30]. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2008. Awvailable at
https://bitcoin.org/bitcoin.pdf, accessed 29.05.2018.

[31]. Haber S., Stornetta W. S. How to time-stamp a digital document. In Proc. of the
Conference on the Theory and Application of Cryptography, 1990, pp. 437-455.

[32]. Massias H., Avila X. S., Quisquater J. J. Design of a secure timestamping service with
minimal trust requirement. In Proc. of the 20th Symposium on Information Theory in the
Benelux, 1999, pp. 79-86.

[33]. Merkle R. C. Protocols for public key cryptosystems. In Proc. of the IEEE Symposium
on Security and Privacy, 1980, pp. 122-122.

[34]. Katz J. et al. Handbook of applied cryptography. CRC press, 1996, 810 p.

[35]. Ozsu M. T., Valduriez P. Principles of distributed database systems. Springer Science &
Business Media, 2011, 846 p.

[36]. Bernstein P. A., Hadzilacos V., Goodman N. Concurrency control and recovery in
database systems. 1987. Awvailable at https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/05/ccontrol.zip, accessed 29.05.2018.

MeToabl 3aWUThbl AeLeHTParM30BaHHbIX aBTOHOMHbIX
opraHusauumn oT CUCTEMHbIX OTKa30B U aTakK

A.A. Anoproxun <Alexandr@kcdigital.ru>
00O "KEUCHIH", 129226, 2 Mockea, npocnexkm Mupa, 131, ogpuc 3

AHHOoTaumsi. B cratbe 0OCYXIAIOTCS TEXHOJOTHS OJIOKYCHHOB, JELEHTPANTH30BaHHBIC
ABTOHOMHBIE OpPraHHM3allMK, CMapT-KOHTPAKTHI H X YCTOMYHUBOCTH K atakaM u cOosm. 13-3a
TOTO, YTO Takas (opMa OpraHHM3alMi SBISETCS SKCIEPUMEHTAIBHOM, UX YYaCTHHKH 4acTo
CTAIKUBAIOTCA C MpoOleMaMHM arak Ha OpPTraHW3alMIo, IOCIEACTBUAMH HENPaBUILHO
HaIlMCAaHHBIX TpPaBMJ M MOLIGHHWYECTBA. 3ajaya CO3JaHMs JCLEHTPAIHN30BaHHBIX
ABTOHOMHBIX OpTaHM3alWil, KOTOpble YCTOWYMBBI K OTKa3aM W aTakaM, M HCCIeJ0BaHHE
NPUYMH 3THX MPOOJEM CTAlN0 aKTyalbHBIM JUI HPOEKTHPOBIIMKOB H pa3pabOTYMKOB
MPOrpaMMHOr0 obecriedeHusi. B cTaTbe HCCIEAYIOTCS aNrOPUTMBI aTaKk M MPeIIararoTcs
METO/Ibl 00eCHeUYeHUs] YCTOHYMBOCTH ACIEHTPAIN30BaHHBIX aBTOHOMHBIX OpraHH3alui s
aTak Ha OCHOBE aHalIW3a MOJNPOLECCOB IOrPAHUYHBIX COOBITHA M IKYpHAJIOB C
HCIOJIb30BaHHEM MeToJIoB Process Mining. Metonsl, KoTopble HE0OX0auMO pa3paboTatsk,
JOJDKHBI OIIEPATUBHO BBISABIIATH U NMTPEAOTBPAIATH HECOOTBETCTBUA MEXAY MPEATIOIaracMbIM
¥ (aKTHYECKUM TOBEACHHEM CMapT-KOHTPAKTOB, KOTOPBIE MPHBOIAT K TaKUM OIIHMOKaM B
(YHKLIMOHHPOBAHNH, KaK ITyCThIE TPAH3aKIMH, YBEIHUEHHOE BpeMsi 00pabOTKU GJIOKOB U T. 1.

KniodeBble cioBa: ONOK4YeHH; IEIEHTPAIN30BAHHbIE AaBTOHOMHBIC OPTaHW3alUM; aHAIN3
MPOLIECCOB; CMAaPT-KOHTPAKT; Security

DOI: 10.15514/ISPRAS-2018-30(3)-11

Jlst uutupoBanusi: AHaproxuH A.A. MeTozbl 3aluThl JeIeHTPATN30BaHHBIX aBTOHOMHBIX
opranu3anuii 0T CUCTeMHBIX 0TKa3oB U arak. Tpyast UCII PAH, tom 30, Bem. 3, 2018 r.,
crp. 149-164 (una anrsmiickom si3pike). DOI: 10.15514/ISPRAS-2018-30(3)-11

162

AnaproxuH A.A. MeToIbl 3allIUThI ACLEHTPATM30BAHHBIX ABTOHOMHBIX OpPraHU3alMi OT CUCTEMHBIX OTKa30B M aTak.
Tpyowt UCII PAH, Tom 30, Beim. 3, 2018 1., ctp. 149-164

Cnucok nutepatypbl

[1].

[2].

(3]

[4].

[5].
[6].

[7].
[8].
[9].

[10].

[11].

[12].
[13].

[14].

[15].

[16].

[17].

Williams J. The Seconomics (Security-Economics) Vulnerabilities of Decentralized
Autonomous Organizations. Lecture Notes in Computer Science, vol. 10476, 2017, pp.
171-179.

Atzei N., Bartoletti M., Cimoli T. A survey of attacks on Ethereum smart contracts
(SoK). In Proc. of the International Conference on Principles of Security and Trust,
2017, pp. 164-186.

Mehar M. et al. Understanding a Revolutionary and Flawed Grand Experiment in
Blockchain: The DAO Attack. Available at SSRN: https://ssrn.com/abstract=3014782,
accessed 29.05.2018.

DuPont Q. Experiments in algorithmic governance: A history and ethnography of “The
DAO,” a failed decentralized autonomous organization. In Bitcoin and Beyond:
Cryptocurrencies, Blockchains and Global Governance, Routledge, 2017, 212 p.

Nikolic I. et al. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. arXiv
preprint arXiv:1802.06038, 2018.

Grossman S. et al. Online detection of effectively callback free objects with applications
to smart contracts. Proceedings of the ACM on Programming Languages, vol. 2, issue
POPL, article 48, 2017, 20 p.

Gurfinkel A. et al. The SeaHorn verification framework. In Proc. of the International
Conference on Computer Aided Verification, 2015, pp. 343-361.

Bhargavan K. et al. Formal verification of smart contracts. In Proc. of the ACM
Workshop on Programming Languages and Analysis for Security, 2016, pp. 91-96.
Delmolino K. et al. Step by step towards creating a safe smart contract: Lessons and
insights from a cryptocurrency lab. In Proc. of the International Conference on Financial
Cryptography and Data Security, 2016, pp. 79-94.

Wiist K., Gervais A. Ethereum Eclipse Attacks. Report, ETH Zurich Research
Collection, 2016, 7 p.

Chen T. et al. An Adaptive Gas Cost Mechanism for Ethereum to Defend Against
Under-Priced DoS Attacks. In Proc. of the International Conference on Information
Security Practice and Experience, 2017, pp. 3-24.

Luu L. et al. Making smart contracts smarter. In Proc. of the ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 254-269.

Dhillon V., Metcalf D., Hooper M. The DAO Hacked. In Blockchain Enabled
Applications, Apress. Berkeley, CA, 2017, pp. 67-78.

Mayer H. ECDSA security in bitcoin and ethereum: a research survey. CoinFabrik,
2016. Pexum JIOCTyTa: https://blog.coinfabrik.com/wp-
content/uploads/2016/06/ECDSA-Security-in-Bitcoin-and-Ethereum-a-Research-
Survey.pdf, nara o6pamenus 29.05.2018.

Marcus Y., Heilman E., Goldberg S. Low-Resource Eclipse Attacks on Ethereum’s
Peer-to-Peer Network. [ACR Cryptology ePrint Archive, Pexum mocryma
https://eprint.iacr.org/2018/236.pdf, nara o6pamenuns 29.05.2018.

Dika A. Ethereum Smart Contracts: Security Vulnerabilities and Security Tools,
Master’s thesis, NTNU, 2017.

Wohrer M., Zdun U. Smart Contracts: Security Patterns in the Ethereum Ecosystem and
Solidity. In Proc. of the International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), 2018, 8 p.

163

Andryukhin A.A. Methods of protecting decentralized autonomous organizations from crashes and attacks. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 149-164

[18].

[19].
[20].
[21].
[22].
[23].

[24].

[25].

[26].

[27].
[28].

[29].

[30].
[31].

[32].

[33].

[34].
[35].

[36].

164

Biryukov A., Khovratovich D., Tikhomirov S. Findel: Secure Derivative Contracts for
Ethereum. In Proc. of the International Conference on Financial Cryptography and Data
Security, 2017, pp. 453-467.

Ross S. A. The economic theory of agency: The principal's problem. The American
Economic Review, vol. 63, Ne. 2, 1973, pp. 134-139.

Eisenhardt K. M. Agency theory: An assessment and review. Academy of management
review, vol. 14, Ne 1, 1989, pp, 57-74.

Gale D., Hellwig M. Incentive-compatible debt contracts: The one-period problem. The
Review of Economic Studies, vol. 52, Ne. 4, 1985, pp. 647-663.

Bolton P., Dewatripont M. Contract theory. MIT press, 2005, 744 p.

Edelman B., Ostrovsky M., Schwarz M. Internet advertising and the generalized second-
price auction: Selling billions of dollars’ worth of keywords. American economic
review, vol. 97, Ne. 1, 2007, pp. 242-259.

Roth A. E., Ockenfels A. Last-minute bidding and the rules for ending second-price
auctions: Evidence from eBay and Amazon auctions on the Internet. American
economic review, vol. 92, Ne. 4, 2002, pp. 1093-1103.

Greenstein S. How the internet became commercial: Innovation, privatization, and the
birth of a new network. Princeton University Press, 2015, 488 p.

Moeen M., Agarwal R. Incubation of an industry: Heterogeneous knowledge bases and
modes of value capture. Strategic Management Journal, vol. 38, Ne. 3, 2017, pp. 566-
587.

Handy C. Trust and the virtual organization. Harvard business review, vol. 73, Ne. 3,
1995, pp. 40-51.

Markus M. L., Agres B. M. C. E. What makes a virtual organization work? MIT Sloan
Management Review, vol. 42, Ne. 1. 2000, 16 p.

Szabo N. The idea of smart contracts. Nick Szabo’s Papers and Concise Tutorials.
Pexxum nocryna:
http://www.fon.hum.uva.nl/rob/Courses/InformationinSpeech/CDROM/Literature/LOT
winterschool2006/szabo.best.vwh.net/smart_contracts_idea.html, mara o6pamenus
29.05.2018.

Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2008. Pexum mocrymna
https://bitcoin.org/bitcoin.pdf, nara o6pamenus 29.05.2018.

Haber S., Stornetta W. S. How to time-stamp a digital document. In Proc. of the
Conference on the Theory and Application of Cryptography, 1990, pp. 437-455.

Massias H., Avila X. S., Quisquater J. J. Design of a secure timestamping service with
minimal trust requirement. In Proc. of the 20th Symposium on Information Theory in the
Benelux, 1999, pp. 79-86.

Merkle R. C. Protocols for public key cryptosystems. In Proc. of the IEEE Symposium
on Security and Privacy, 1980, pp. 122-122.

Katz J. et al. Handbook of applied cryptography. CRC press, 1996, 810 p.

Ozsu M. T., Valduriez P. Principles of distributed database systems. Springer Science &
Business Media, 2011, 846 p.

Bernstein P. A., Hadzilacos V., Goodman N. Concurrency control and recovery in
database systems. 1987. Pexxum noctymna https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/05/ccontrol.zip, nara o6pamenus 29.05.2018.

Cryptographic Stack Machine Notation One

S.E. Prokopev <s.e.pr@mail.ru>
Independent researcher
Moscow, Russia

Abstract. A worthy cryptographic protocol specification has to be human-readable (declara-
tive and concise), executable and formally verified in a sound model. Keeping in mind these
requirements, we present a protocol message definition notation named CMN.1, which is
based on an abstraction named cryptographic stack machine. The paper presents the syntax
and semantics of CMN.1 and the principles of implementation of the CMN.1-based executa-
ble protocol specification language. The core language library (the engine) performs all the
message processing, whereas a specification should only provide the declarative definitions
of the messages. If an outcoming message must be formed, the engine takes the CMN.1 defi-
nition as input and produces the binary data in consistency with it. When an incoming mes-
sage is received, the engine verifies the binary data with respect to the given CMN.1 defini-
tion memorizing all the information needed in the further actions. The verification is com-
plete: the engine decrypts the ciphertexts, checks the message authentication codes and signa-
tures, etc. Currently, the author's proof-of-concept implementation of the language (embedded
in Haskell) can translate a CMN.1-based specifications both to the interoperable implementa-
tions and to the programs for the ProVerif protocol analyzer. The excerpts from the
CMN.1-based TLS protocol specification and corresponding automatically generated ProVer-
if program are provided as an illustration.

Keywords: cryptographic stack machine; cryptographic protocol message notation;
executable cryptographic protocol specification languages; embedded domain-specific
languages; Haskell; ProVerif; TLS.

DOI: 10.15514/ISPRAS-2018-30(3)-12

For citation: Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 165-182. DOIL: 10.15514/ISPRAS-2018-
30(3)-12

1. Introduction

The establishment of good soundness relations between cryptographic protocol
implementations and their formal models is a popular research area. The existing
approaches differ by the starting point of development (implementation first [1-6] or
formal model first [7-9]), by the degree of cryptographic soundness of the models
(symbolic [10] or computational [9]), by the presence of the formal proof of the
soundness of the model-to-implementation (or vice verse) translation procedure, by
implementation usability area and by other aspects.

165

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.
165-182

Our aim is to soundly tie not two (implementation and formal model) but three
elements of the protocol development process: implementation, formal model and
specification. By the latter, we mean a human-readable protocol description that is
usually placed in RFC. The models' languages, which are based on logics or special
versions of general-purpose programming languages, are not quite suitable for this
task: they are either not convenient for capturing the low-level details or are firmly
imperative.

Therefore, our goal is a declarative specification language that could be directly
used in the RFCs to considerably enhance the degree of formalization of these
documents. Yet, the specification must be automatically translatable both to the
interoperable implementation and to the programs for the state-of-the-art protocol
model analyzers such as ProVerif [10] and Tamarin [11].

2. Related work

There exist many formal notations for data structures: ASN.1, JSON, etc. These
notations are often provided with the engines, which can automatically generate the
binary data using the provided data structure definition and, in the opposite
direction, automatically unpack the binary data in accordance with the definition.
Such projects as CSN.1 [12], TSN.1 [13], BinPAC [14], NetPDL [15] are targeted
specifically at the network protocols.

While the readability of some of these notations can be suitable, their
expressiveness (in the domain of cryptographic protocols) does not. We need to
have behind the notation not simply a message generator/parser waiting to be
embedded to some bigger program, but a generic cryptographic protocol
implementation waiting for (semi-)declarative specification to adjust to specific
case. Therefore, the primary challenge is to find such powerful underlying
abstraction, whereas the notation would have to be naturally emerged from it.

3 Cryptographic Stack Machine Notation One

We propose an abstraction named cryptographic stack machine (abbreviated as
CSM), which is a stack machine specifically tailored to the needs of cryptographic
protocols. Within the proposed approach, the message definition is in fact a
sequence of the CSM instructions. The instructions set is divided into "bare-metal"
and "sugared" parts. The "sugared" instructions make the message definitions
(which in their essence are imperative) looking declarative. The instructions set may
be expanded if needed.

To reflect the fact that the declarative style of the protocol message definitions is
one of the main targets, we name our notation «Cryptographic Stack Machine
Notation One» (abbreviated as CMN.1) adopting the naming style of the ASN.1,
CSN.1 and TSN.I notations.

166

TIpoxonse C.E. Hotamust kpunTorpaduyeckoil CTekoBoi Maimubl Bepcun ogus. Tpyowt UCIT PAH, tom 30, Bbim. 3,
2018 r, cTp. 165-182

3.1 CMN.1 syntax

Below, the terms 'String', 'Integer’, 'Int', "Word8' denote the sets of strings, unlimited
integers, integers ranged from 0 to 2°2-1 and integers ranged from 0 to 2°-1,
respectively. The curled brackets mean repetition, the square ones — optionality. The
symbol ', means comma itself, not concatenation.

Prog ::="["{Instr, } *[Instr]"]"

Instr ::= BareMetal | Sugared

BareMetal ::= Const Word8List | Var VarName Role VarType | V VarName |
SEnc' SEncAlg | Enco' EncoAlg | Xor' Int | ModAdd' | ModMult' | ModInv' |
Add' Integer | Rev RFun | Hash' HashAlg | Pad' Int Word8List | Mod' | ModExp' |
Take' IntList | Split' IntList | SplitE' Int | ECMult' | ECAdd' | C' | CE' | Len' LenHdr |
InsertTo Int | PickFrom Int | Dup Int | Free Int | Elem Int Prog | Map' Prog Int Int |
Sort' Int Int | SA' Int Int Prog | Select' CaseList | M Prog | L Int Inst

Sugared ::= C Prog | CE Prog | Hash HashAlg Prog | SEnc SEncAlg Prog |
Enco EncoAlg Prog | Mod Prog | ModAdd Prog | ModMult Prog | ModExp Prog |
ModInv Prog | ECMult Prog | ECAdd Prog | Len LenHdr Prog | Xor Prog |
Add Integer Prog | Take IntList Prog | Split IntList Prog | SplitE Int Prog |
Pad Int Word8List Prog | Map Prog Int Prog | Sort Int Prog | Select Inst CaseList |
SA Prog | WithLen LenHdr Prog | VarL Int VarName Role VarType |
VL Int VarName | SelectV VarName CaseList

VarName ::="["{String, } *String"]"

VarType ::= Plain Int | Primary Int | Modulo Inst | UTC | ECx Inst | Sublist Prog |
Choice Prog | Subset Prog | Is Prog

Word8List ::="["{Word8, } *[Word8]"]"

IntList ::="["{Int,} *Int"]"

IntegerList ::= "[" {Integer, } *Integer"]"

SEncAlg ::= AES128CBC | AES256CBC ...

HashAlg ::= SHA1 | SHA256 ...

EncoAlg ::= SSLPad Int | B2DERInt | B2DERBits ...

LenHdr ::= BE Int | LE Int | DER

CaseTy ::= Case Word8List Prog | Cases "["{Word8List,}*Word8List "]" Prog |
Case' Condition Prog | Otherwise Prog | CaseUndef Prog

CaseList ::="["{CaseTy,} *CaseTy"]"

Condition ::= Bytes Word8List | Equal Integer | Less Integer | More Integer |
LessOrEq Integer | MoreOrEq Integer | OneOf IntegerList |Otherwise'

Role ::=Clnt | Serv |A|B|S|CA|RA|TTP...

3.2 CMN.1 semantics

CSM has one main stack and varying number of temporary stacks, random-number
generator, real-time clock, the storage S_var containing the values of the protocol
variables (actually they don’t vary in CSM) and the register S_rol containing the
identifier of the protocol role (fig. 1).

167

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.

165-182

stacks

\\

the most the least RTC
significant byte \ ‘/ significant byte —
stack grows } ‘| { 1 : | | RNG)
underward -
|

top element
Y\ of the stack s rol

Fig. 1. Cryptographic stack machine

The language of the CSM instructions extends the line of the stack-oriented
languages. It supports branching but doesn't support looping or recursing (table 1).

Table 1. CSM instructions semantics

Instruction ‘ CSM actions

Const bs

"Bare-metal" instructions

‘ CSM pushes the byte string bs onto the stack.

Varsrt

If the storage S_var contains the variable named s, then CSM pushes this
variable value onto the stack. Otherwise, if » /= s_rol, CSM returns an error.
Otherwise, it generates a new element of type ¢, stores its value under the
name s in the S_var storage and puts this value in the stack.

The currently defined variable types: Plain n — random » bytes; Primary n —
random primary integer of n-bit length; Modulo is — random integer modulo
n, where n is the big-endian value of the result of the instruction is execution;
ECx is — random point on the curve curve_id, where curve_id is the value of
the result of the instruction is execution; UTC — the time and date in standard
UNIX 32-bit format; Sublistp (Choice p, Subset p) — random sublist
(element, subset) of the list comprised of resulting elements of the program p
execution; Is p — equivalent to Choice [C p].

If the storage s_var contains the variable with name s, then CSM pushes the
value of this variable onto the stack. Otherwise, it returns an error.

SENc' alg

CSM takes the top 3 elements of the stack as arguments: a, b, ¢. CSM
encrypts a with b as initial vector and ¢ as the key using symmetric
encryption algorithm alg.

Here and after: 1) if the stack is underflowed, CSM returns an error; 2) the
last argument in the argument list is located at the top of the stack; 3) the
arguments of the function are removed from the stack; 4) the result is pushed
to the stack.

Enco' alg

Encoding of a using algorithm alg. List of arguments: a.

168

TIpoxonse C.E. Hotamust kpunTorpaduyeckoil CTekoBoi Maimubl Bepcun ogus. Tpyowt UCIT PAH, tom 30, Bbim. 3,
2018 r, cTp. 165-182

Xor' n ‘ Exclusive OR. Arguments: the top # elements of the stack.

ModAdd', Addition (multiplication) of @ and » modulo m. List of arguments: a, b, m.

ModMult' Here and after: the byte strings are interpreted as integers basing on the ‘big
endian’ agreement.

ModInv' ‘ Inverse of @ under modulo m. List of arguments: a, m.

Add' n Let a is the top element of the stack. CSM adds n to @ modulo 2"(8*k),
where k is the length of a in bytes.

Rev fin The function that is reverse to the function fun, where fun must be one of:
Enco’ alg, SEnc' alg, Xor' n, ModMult', ModAdd', ModInv', Add' n.

Mod' ‘ Modulo operation. List of arguments: a.

ModExp' ‘ Modular exponentiation: b mod m. List of arguments: a,b,m.

Hash' alg ‘ CSM calculates the hash of a using algorithm alg. List of arguments: a.

Pad' n ws Padding of a using the bytes ws until the length of the result reaches n (n
must be equal or greater than length of). List of arguments: a.

Take' ns Here ns is the list of numbers. If the length of the top element of the stack is
less than the sum of the elements of ns, then CSM returns the specification
error. Otherwise, CSM cuts the top element of the stack into n parts
considering the numbers from the ns list as lengths of elements and pushes
(from left to right) the resulting » elements onto the stack, where » is the
length of the ns list. The remainder of the top element is dropped (if any).

Split' ns The same as the instruction Take' ns, except that the length of the top
element of the stack must be exactly equal to the sum of the numbers from
the ns list.

SplitE' n [s equivalent to the instruction Split' [k.k...k], where k = len / n, where len is

the length of the top element of the stack (/en must be dividable by »).

ECMult' Elliptic curve scalar multiplication. List of arguments: curve id (curve
identifier), x (x-coordinate), y (y-coordinate), k (the scalar). Instruction
produces 2 elements of the stack: x-coordinate and y-coordinate.

ECAdd' Elliptic curve addition of points (x/,y/) and (x2,y2). List of arguments:
curve_id (curve identifier), x/, yI, x2, y2. Instruction produces 2 elements
of the stack: x-coordinate and y-coordinate.

C'n ‘ Concatenation. Arguments: the top n elements of the stack.
CE'n ‘ Concatenation of the equal-sized arguments.
Len'e ‘ The length of the top element of the stack written in e format, where e can be

169

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.
165-182

one of: BE n (packing into n big-endian bytes), LE n (packing into » little-
endian bytes), DER (packing using ASN.1 DER format).

Insert i ‘ CSM moves the top element of the stack to the i-th position.

Pick i, CSM moves (for Pick) or copies (for Dup) the i-th element of the stack to
Dup i the top position.

Free i ‘ CSM removes the i-th element from the stack.

Elemip CSM executes the program p using temporary empty stack and then puts in

the current working stack the i-th element of temporary stack.

SA'nkp CSM copies n elements from the current working stack to temporary stack,
executes the program p using a new temporary stack and then inserts the
resulting elements between the (k+17)-th and k-th elements of the current
working stack.

Map'p in The stack must contain at least i*n elements. CSM executes the program p n
times using at each iteration a new temporary stack to which the next i
elements from the current working stack are moved (beginning from the
depths of the stack). At each iteration the elements containing in temporary
stack after execution of p are moved to the current working stack.

Sort' i n CSM considers the top i*n elements of the stack as a list of n elements,
where each element, in turn, is a list of i elements. CSM sorts this list of
elements comparing their first (from the depths of the stack) elements.

Select' ¢s CSM converts the list of the cases cs into the form:

[Case'¢; p;,...,Case' ¢, p,l.

If CSM finds in the list ¢s (from left to right) the condition ¢; to which the
top element of the stack satisfies, then it removes the top element from the
stack and executes the program p;. Otherwise, it returns an error.

Mp Macro instruction: CSM simply executes the program p.

Lnp Macro instruction supplemented by the total length of the resulting elements
of p execution (parameter n).

"Sugared" instructions

Cp, CE p, Xor | CSM executes the program p using temporary empty stack and copies
p, SEnc al p, the resulting m elements onto the current working stack. Then it

Mod p, executes the "bare-metal" counterpart of the "sugared" instruction: C' m,
ModMuilt p, CE' m, Xor' m, SEnc' al, Mod', ModMult', ModAdd', ModEXxp',
ModAdd p, ModInv', ECMult' or ECAdd'. In the end, CSM moves the resulting
ModExp p, elements (two elements in the case of the ECMult' or ECAdd'

ModlInv p, instruction and one element in the other cases) to the current working
ECMult p, stack.

ECAdd p

170

TIpoxonse C.E. Hotamust kpunTorpaduyeckoil CTekoBoi Maimubl Bepcun ogus. Tpyowt UCIT PAH, tom 30, Bbim. 3,

2018 r, cTp. 165-182

Mapgnp CSM executes the program p using temporary empty stack. If m mod »

Sortnp /=0, CSM returns an error (where m is the number of elements of
temporary stack after execution of p). Otherwise, it copies the resulting
m elements onto the current working stack executes the "bare-metal"
counterpart: Map' ¢ i n or Sort' i n, where i = m / n.

Hash al p, CSM executes the program [C p] using temporary empty stack and

Enco al p, Add
np,

Pad n bs p, Len
ep, Take Ist p,

copies the resulting element onto the current working stack. After that,
CSM executes the "bare-metal" counterpart of the "sugared" instruction:
Hash' al, Enco' al, Add' n, Pad' n bs, Len' ¢, Take' Is, Split' Is or
SplitE' .

Split Ist p,

SplitE n p

Select is cs CSM tries to execute the program [C [is]] using temporary empty stack.
If the program was successfully executed, CSM copies the resulting
element onto the current working stack and executes the instruction
Select' ¢s. If the execution failed (due to unknown variable), CSM
checks if the list ¢s does contain the element CaseUnkno p. If so, CSM
executes the program p, otherwise it returns an error.

VarLnsrt Is equivalent to: L n (Var s r ¢)

VLins Is equivalent to: L n (V s)

SAp Is equivalent to: SA' 7 0 p

WithLen ep Is equivalent to: M [C p, SA' I I [Len' ¢]]

SelectV s cs Is equivalent to: Select (V s) cs

4. Simple CMN.1-based specification language

The language presented below is simple in the sense that it doesn't capture the
protocol automata in full. A specification consists of the CMN.1-based message
definitions and a sequence of protocol actions with simple branching support (table

2).
Table 2. Protocol actions
Action Description

roles rlist | The action sets the roles participating in the protocol. Each role runs its own
CSM instance.

msg src The message with the CMN.1 definition p is transferred from the role src to the

dstp role dst.

set r wiist | Here wiist is the list of pairs of type (V name, is). For each pair, the action
executes the CSM instruction is and includes the pair (name, val) in a storage

171

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.
165-182

s_var belonging to the CSM instance of the role », where val is concatenation
of the resulting elements of the execution of is.

select »is | This action provides a branching support in the same manner as the CSM
acs instruction Select is ¢s does. The difference between the lists ¢s and acs is that
cs consists of elements Case value p, where p is a CSM program, whereas acs
consist of elements Case value a, where a is a sequence of protocol actions.

trusted » | This action takes from a trusted storage the binary data stored under the name
idp id and processes these data using CMN.1 definition p and the CSM instance of
the role r.

connect » | If this action is present, the specification turns into the client implementation
port addr | acting as the protocol role role. The action carries out the connection to a third-
party server implementation listening on the port port of the IP-address addr.

accept The specification turns into the server implementation acting as role and
role port | listening on the port port.

printPV Both actions generate the ProVerif program corresponding to the protocol
printPV' | events that took place at the time of the call. The first action generates a full
program, the second one ignores the lengths fields of messages and related
events as non-essential in order to make this program more concise and
productive.

Bearing in mind the elegant and concise syntax of the Haskell language and
advantages of embedded domain-specific languages, we integrate our CMN.1-based
specification language in Haskell.

As an illustration, we present an excerpt from the CMN.1-based specification of the
TLS protocol (fig. 2; note that the order of declarations can be arbitrary in the
Haskell language). A specification, which serves as source for this excerpt,
comprises about 500 lines (the total for client and server) covering substantial part
of the TLS v.1.2 protocol including four ciphersuites and X.509 certificates support
and excluding extensions and renegotiations. The specification turned into the
implementation (see the actions connect and accept in the table 2) was successfully
tested for interoperability with the OpenSSL v.1.0.20 tool (both in the client and
server roles).

172

TIpoxonbeB C.E. Horarust kpurnrorpadgudeckoil CTekoBoil MaliHbel Bepcun ogut. Tpyos: UCIT PAH, tom 30, Bbim. 3,
2018, cp. 165-182

1tlsMsg m src =

[VL 1 ["contentType",m],
SelectV ["version", "clntHello"]
[CaseUnkno [VarL 2 ["version",m] src
(Choice [Const [0x03,0x03], Const [Ox03,0x02],
Const [0x03,0x01]]1)1,
otherwise [V ["version","clntHello"11],
WithLen (BE 2)
[SelectV ["CCS",show src]
[CaseUnkno [payload],
Otherwise [payloadProtected]]]]
where
payload =
SelectV ["contentType",m]
[Case [0x14] [VarL 1 ["CCS",show src] src (Is [Const [0x01]])],
Case [0x15] [VL 1 ["alertLevel",m],
VL 1 ["alertDescr",m]],
Case [0x16] [Var ["hshkMsg",m] src (Is hshkMsg)],
Case [0x17] [V ["dataContent",m]]]
where
hshkMsg =
[VL 1 ["hshKkType",m],
WithLen (BE 3}
[SelectV ["hshkType",m]
[Case [0xO1] clntHello,
Case [0x02] servHello,
Case [0x0b] servCert,
Case [0x0c] servKeyExch,
L1
where
clntHello =
[VarL 2 ["version","clntHello"] Clnt
(Choice [Const [0x03,0x03], Const [0x03,0x02],
Const [0x03,0x01]]),
random Clnt,
Const [0],
WithLen (BE 2) [Var ["suites","clntHello"] Clnt
(Subset [Const [0x00,0x38], Const [0x00,0x32],
Const [0xc@,0xBa), Const [0xcO,0x09]]1)1,
WithLen (BE 1) [Const [0]],
Var ["helloExt","clntHello"] Clnt (Choice [Const []])}]

servHello =
[VarL 2 ["version","servHello"] Serv
(Is [V ["version","clntHello"]]),
random Serv,
WithLen (BE 1) [Var ["sessId","servHello"] Serv (Plain 32)],

173

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.
165-182

a7 Var ["suite","servHello"] Serv

48 (Choice [SpLitE 2 [V ["suites","clntHello"]]]),

49 VarL 1 ["compressAlg","servHello"] Serv

50 (Choice [Const [0x6011)]

51 servCert = ...

52 servKkeyExch =

53 [keyExchParams,

54 VarL 1 ["sigHashAlg","servKeyExch"] Serv

55 (Is [SelectV ["suite","servHello"]

56 [Cases [[0x00,0x32],[0x00,0x38],

57 [0xc@,0x09], [6xc0,0x0a]] [Const [0x02]1]1),
58 VarL 1 ["sigAlg","servkeyExch"] Serv

59 (Is [SelectV ["suite","servHello"]

60 [Cases [[0x00,0x32],[0x00,0x38]] [Const [0x02]],
61 Cases [[0xc0,0x891,[0xc0,0x0al] [Const [0x031111),
62 WithLen (BE 2)

63 [mDER 0x30 [mDER ©x02 [sigPart 1],

64 mDER 0xE2 [sigPart 211]]

65 where

66 keyExchParams =

67 SelectV ["suite","servHello"]

68 [Cases [[Gx00,0x32],[0x00,0x38]] dh,

69 Cases [[0xc0,0x09],[0xcO,0x0a]] ecdh]

70 where

71 dh = [withLen (BE 2) [dhP],

72 WithLen (BE 2) [dhG],

73 withLen (BE 2) [dhPubk Serv "servKeyExch"]

74 ecdh = ...

75 sigPart i =

76 SelectV ["sigAlg","servKeyExch"]

77 [Case [0x02] [Elem i sig dsa],

78 Case [0x03] [Elem i sig ecdsa]]

79 where

80 sig dsa = mSigDSA [hash,p,q.q.X,k] where

81 [p.9.,9,x] = [V [x,"servCert"] | x <- ["dsaP","dsaQ",
82 "dsaG", "dsax"]]
83 K = Var ["dsaK","servCert"] Serv (Modulo p)

84 sig ecdsa = ...

85 hash = ...

86 .

87 random src =

88 C [Var ["time",show src] src UTC,

89 Var ["salt",show src] src (Plain 28)]

jelo]

a1 dhP = Var ["dhP","servKeyExch"] Serv (Primary 256)
92 dhG = Var ["dhG","servKeyExch"] Serv (Modulo dhP}
a3 dhX src a = Var ["dhX",a] src (Modulo dhP)
94 dhPubk src a = ModExp [dhG, dhX src a, dhP]

174

TIpoxonse C.E. Hotamust kpunTorpaduyeckoil CTekoBoi Maimubl Bepcun ogus. Tpyowt UCIT PAH, tom 30, Bbim. 3,

2018 r, cTp. 165-182

96 payloadProtected = ...
a7
98mDER t p = € [Const [t], WithLen DER (f t)] where

99 f 0x02 = [Enco B2DERInt p]
100 f Ox03 [Enco B2DERBits p]
101 f =p

162...

103 mSigDSA [e,p,q,d9,%x,k] = [r,s] where
104 r = Mod [ModExp [g, k., pl, gl
185 s = ModMult [ModAdd [ModMult [r, x, gl, e, gl,

166 ModInv [k, ql, q]
107 main =

108 roles [Clnt,Serv] >>=

109 -- connect Clnt 4433 0 >>= -- accept Serv 4433 >>= --
110 sendHandsh Clnt Serv [0x01] 1 »>»=
111 sendHandsh Serv Clnt [0x02] 2 >>=
112 P

113 sendHandsh Serv Clnt [0x0c] 4 >>=
114

115 printPV'

116

117 sendHandsh src dst htype 1 ss =

118 set src [(V ["contentType",show 1], Const [0x16]),
119 (V ["hshkType", show i], Const htype)] ss >>=
120 msg src dst [tlsMsg (show 1) src]

Fig. 2. CMN.I-based specification of the TLS protocol (an excerpt)

5. Translation to the ProVerif program

The ProVerif program presented in the fig. 3 was generated automatically from the
above specification (it is a console output of the call printPV'; see the line 115 in the
fig. 2). This program corresponds to the protocol trace based on the ciphersuite
TLS-DHE-DSS-WITH-AES-256-CBC-SHA. The program passed the ProVerif
compiler checks without warnings. The events and queries of interest have to be
inserted manually because CMN.1-based specifications do not contain such

information.

1free c: channel.

2...

3 fun ModExp(bitstring,bitstring,bitstring): bitstring.
4 const dhG servkeyExch: bitstring [data].

5 const dhP_servKkeyExch: bitstring [data].

6 equation forall x:bitstring,y:bitstring;

7 ModExp (ModExp(dhG_servKeyExch,x,dhP_servKeyExch),y,dhP servKeyExch} =

8 ModExp (ModExp(dhG servKeyExch,y,dhP_servKeyExch),x,dhP_servKeyExch).

9 fun ModAdd(bitstring,bitstring,bitstring):bitstring.

10 equation forall a@:bitstring,al:bitstring;

11 ModAdd(a@,al,dhP servkeyExch) = ModAdd(al,a@,dhP servKkeyExch).
12 equation forall a@:bitstring,al:bitstring;

13 ModAdd(ad,al,dsaP servCert) = ModAdd(al,ab,dsaP servCert).

175

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.
165-182

14 reduc forall a0:bitstring,al:bitstring,a2:bitstring;

15 RevOModAdd (ModAdd(a0,al,a2),al,a2) = a0.

16 reduc forall a@:bitstring,al:bitstring,a2:bitstring;

17 Rev1ModAdd(a®,ModAdd (a0,al,a2) ,a2) = al.

18 fun ModInv(bitstring,bitstring):bitstring.

19 reduc forall a@:bitstring,al:bitstring; Rev@ModInv(ModInv(a@,al),al) = a@.
20 fun HashSHAl(bitstring):bitstring.

21 fun Mod(bitstring,bitstring):bitstring.

22 fun EncoB2DERInt(bitstring):bitstring.

23 reduc forall a@:bitstring; Rev@EncoB2DERInt(EncoB2DERINnt(a@)) = a@.
24 const xnull: bitstring [datal.

25 const x0038: bitstring [data].

26...

27 let processClnt =

28 new time Clnt: bitstring;

29 new salt Clnt: bitstring;

30 let v17 = (time_Clnt,salt_Clnt) in

31 new suites clntHello: bitstring;

32 let v25 = (x0303,v17,x00,suites clntHello,x€0,xnull) in
33 let hshkMsg 1 = (x01,v25) in

34 let vlil = (x16,x0303,hshkMsg_1) in

35 out(c,vll);

36 in(c,v37:bitstring);

37 let (=x16,=x0303,hshkMsg_2:hitstring) = v37 in

38 let (=x02,v48:bitstring) = hshkMsg 2 in

39 let (=x@303,v42:bitstring,sessId servHello:bitstring,

40 =x0038, compressAlg servHello:bitstring) = v48 in
41 let (time Serv:bitstring,salt Serv:bitstring) = v42 in
42

43 in(c,v180:bitstring);

44 let (=x16,=x0303,hshkMsg_4:bitstring) = v18@ in

45 let (=x0c,v217:bitstring) = hshkMsg 4 in

46 let (v193:bitstring,=x02,=x02,v214:bitstring) = v217 in
47 let (=dhP_servKeyExch,=dhG servKeyExch,v190:bitstring) = v193 in
48 let (=x30,v21l:bitstring) = v214 1n

49 et (v206:bitstring,v210@:bitstring) = v211 in

50 let (=x02,v203:bitstring) = v206 in

51 let v196 = RevBEncoB2DERInt(v203) in

52 let (=x02,v207:bitstring) = v210 in

53 let v202 = Rev@FncoB2DERINt(v2A7) in

54 let v198 = (v17,v42,v193) in

55 let v199 = HashSHA1(v198) in

56 let v223 = ModInv(v202,dsaQ servCert) in

57 let v224 = ModMult(v199,v223,dsaQ servCert) in

58 let v226 = ModExp(dsaG servCert,v224,dsaP servCert) 1in
59 let v225 = ModMult(v196,v223,dsaQ servCert) in

60 let v227 = ModExp(v132,v225,dsaP servCert) in

61 let v230 = ModMult(v226,v227,dsaP_servCert) in

62 1if v196 = Mod(v230,dsaQ servCert) then
63 din(c,v237:bitstring);

64 ...

65 let processServ =

66 in(c,vl@:bitstring);

176

TIpoxonse C.E. Hotamust kpunTorpaduyeckoil CTekoBoi Maimubl Bepcun ogus. Tpyowt UCIT PAH, tom 30, Bbim. 3,
2018 r, cTp. 165-182

69 let (=x€303,v14:bitstring,=x00,suites clntHello:bitstring,
70 =x00, helloExt clntHello:bitstring) = v22 in

71 let (time Clnt:bitstring,salt Clnt:bitstring) = v14 in

72 new time Serv: bitstring;

73 new salt Serv: bitstring;

74 let v38 = (time_Serv,salt_Serv) in

75 new sessId servHello: bitstring;

76 if x0038 = Split2 2 2 2 1(suites clntHello) then

77 let v44 = (x0303,v38,sessId servHello,x0038,x00) in

78 let hshkMsg 2 = (x02,v44) in

79 let v34 = (x16,x0303,hshkMsg 2) 1n

80 out(c,v34);

81 ...

82 new dhX servkeyExch: bitstring;

83 let v203 = ModExp(dhG_servKeyExch,dhX servKeyExch,dhP servKeyExch) in
84 let v206 = (dhP_servKeyExch,dhG_servKeyExch,v203) in

85 new dsaK servCert: bitstring;

86 let v21@ = ModExp(dsaG servCert,dsaK servCert,dsaP servCert) in
87 let v211 = Mod(v210,dsaQ servCert) in

88 let v218 = EncoB2DERInt(v21l) in

89 let v221 = (x02,v218) in

90 let v212 = ModMult(v2l1ll,dsaX servCert,dsaQ servCert) in
91 let v213 = (v14,v38,v206) in

92 let v214 = HashSHA1(v213) in

93 let v215 = ModAdd(v212,v214,dsaQ servCert) in

94 let v216 = ModInv(dsaK servCert,dsaQ servCert) in

95 let v217 = ModMult(v215,v216,dsaQ servCert) in

96 let v222 = EncoB2DERInt(v217) in

97 let v225 = (x02,v222) in

98 let v226 = (v221,v225) in

99 let v22¢ =

(
(x30,v226) in
100 let v232 = (v206,x02,x02,v229) in
101 let hshkMsg 4 = (x0c,v232) in

162 let v194 = (x16,x0303,hshkMsg 4) in
103 out(c,v194);

104 ...

165 process

106 ((!processClnt) | (!processserv))

Fig. 3. The corresponding ProVerif program (an excerpt)

6. Engine implementation details

The engine implements the functionality that is significantly more powerful than the
CSM machine presented in the section 3. The engine does not execute the CMN.1-
notated programs as straightforward as CSM does. It executes the programs
symbolically: the elements of the stack are not byte strings but symbolic
expressions. This well-known technique allows the engine to fully take over the task
of verification of the incoming messages using the same CMN.1-definitions that are
used in the direct task of message generation. The verification is complete: the
engine decrypts the ciphertexts, checks MACs and signatures, etc. Throughout a
protocol execution, the engine accumulates the generated symbolic expressions,
their values, lengths and types. It uses this information to generate or verify the

177

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.
165-182

protocol messages in the future. In addition, the engine logs such events as
calculations of the values of the symbolic expressions and applications of the
rewriting rules. This information can be used by the engine's environment to extract
symbolic traces and convert them to the programs for symbolic verifiers, e.g.
ProVerif (as was presented in the previous section).
The scheme of the verification is as follows. Let the byte string bs is considered by
the engine as a protocol message with the CMN.1 definition p. Let EQ is a set
variable containing equations, i.e. pairs of type (symbolic expression, byte string).
The engine implements the verification procedure as follows.
Step 1. The engine executes the program p symbolically resulting the
symbolic expression exp. EQ is initialized with the equation (exp,bs).
Step 2. For every new equation (exp,bs) from EQ, until neither of Step 2.1
or Step 2.2 can be applied anymore:
Step 2.1. The engine tries to apply a rewriting rule to this
equation. This rule can be a simple inversion (for Enco, SEnc,
Xor, ModMult, ModAdd, Modinv or Add functions) or be a
complex group operation taking into account other equations from
EQ (e.g. for Split). The application of the rule produces one or
several new equations, which are inserted in EQ. If some rule was
applied, the engine returns to the beginning of the Step 2.
Otherwise, it goes to the Step 2.2.
Step 2.2. If the values of all the arguments of the top operation of
the symbolic expression exp are known, the engine calculates the
value of exp. If this value is equal to bs, the engine removes the
equation from EQ. Otherwise, it returns the message verification
error.
The engine knows about the equality (a°)° = (a%)" and analogous equality for the
elliptic curve scalar multiplication, so Diffie-Hellman key exchange and ElGamal
asymmetric encryption do not ask for special treatment. Yet the engine uses specific
rewrites for expressions relevant to the DSA and ECDSA algorithms or to their
relatives.
The calls exported by the engine are presented below.
1. cSymExec p — The engine executes the program p symbolically and
returns the descriptor of the generated symbolic expression.
2. cCalc d — The engine calculates the value of the symbolic expression with
descriptor d.
3. cGetVal d — The engine returns the value of the symbolic expression with
descriptor d.
4. cSetVal d bs — The engine assigns the value bs to the symbolic expression
with descriptor d.
5. cVerify d bs — The engine verifies the byte string bs with respect to the
symbolic expression with descriptor d. If verification has failed, it returns

178

TIpoxonse C.E. Hotamust kpunTorpaduyeckoil CTekoBoi Maimubl Bepcun ogus. Tpyowt UCIT PAH, tom 30, Bbim. 3,
2018 r, cTp. 165-182

an error, otherwise, it returns the superfluous remainder of the byte string
bs (if present).

6. cEvent ev — The engine logs the event ev (i.e. the environment can insert
additional events into the engine log).

7. cGetlLog — The engine returns content of its log.

7. Conclusion

We presented cryptographic protocol message notation (named CMN.1) based on
the instruction set of a stack machine specifically tailored to the needs of
cryptographic protocols (named cryptographic stack machine, or CSM). The
principles of implementation of the protocol specification language based on this
notation also presented. Within such an approach, specifications are executable and
also translatable to the programs for symbolic verifiers, such as ProVerif. The
readability of CMN.1-notated specifications is brought in the court of public
opinion.

In addition, the validation of the proposed notation on a wider spectrum of
cryptographic protocols is needed. The validation will certainly cause minor
additions to the notation (at least regarding cryptographic key types) without
affecting currently defined CSM instructions. Taking into account the fact that the
author's proof-of-concept implementation of the core language library (the engine)
comprises only 700 lines of the Haskell code (excluding cryptographic primitives),
it seems logical to provide in the future a formal description of the engine's
algorithm and, basing on it, a proof of the soundness of the ProVerif-translation
procedure.

References

[1]. S. Chaki and A. Datta. Aspier: An automated framework for verifying security protocol
implementations. In Proceedings of the Computer Security Foundations Workshop,
2009, pp. 172-185.

[2]. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
Proceedings of the 6th International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI’05), Lecture Notes in Computer Science, vol. 3385,
2005, pp. 363-379.

[3]. Mihhail Aizatulin, Andrew D. Gordon, and Jan Jurjens. Extracting and verifying
cryptographic models from C protocol code by symbolic execution. In Proc. of the 18th
ACM Conference on Computer and Communications Security (CCS’11), 2011, pp. 331—
340.

[4]. Nicholas O’Shea. Using Elyjah to analyse Java implementations of cryptographic
protocols. In Proc. of the Joint Workshop on Foundations of Computer Security,
Automated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security (FCS-ARSPA-WITS’08), 2008.

[5]. Karthikeyan Bhargavan, Cedric Fournet, Andrew Gordon, and Stephen Tse. Verified
interoperable implementations of security protocols. ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 31, no. 1, 2008.

179

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.

165-182

[6]. Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified Models and
Reference Implementations for the TLS 1.3 Standard Candidate. In Proc. of the IEEE
Symposium on Security and Privacy, 2017.

[7]. Matteo Avalle, Alfredo Pironti, Riccardo Sisto, and Davide Pozza. The JavaSPI
framework for security protocol implementation. In Proc. of the 6th International
Conference on Availability, Reliability and Security (ARES’11), 2011, pp. 746-751.

[8]. David Cade, Bruno Blanchet. From Computationally-Proved Protocol Specifications to

Implementations and Application to SSH. Available at:
http://prosecco.gforge.inria.fr/personal/dcade/CadeBlanchetJoWUA13.pdf, accessed
10.06.2018.

[9]. A. Delignat-Lavaud et al. Implementing and Proving the TLS 1.3 Record Layer. In Proc.
of'the 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 463-482.

[10]. Bruno Blanchet. Automatic Verification of Security Protocols in the Symbolic Model:
the Verifier ProVerif. In Foundations of Security Analysis and Design VII, FOSAD
Tutorial Lectures, Lecture Notes in Computer Science, vol. 8604, 2014, pp. 54-87.

[11]. Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe.
2017. Source files and annotated RFC for TLS 1.3 analysis. (2017). Available at:
https://tls13tamarin.github.io/TLS13Tamarin/, accessed 10.06.2018.

[12]. Concrete Syntax Notation One (CSN.1). Available at: http://csnl.info, accepted
10.06.2018.

[13]. Transfer Syntax Notation One (TSN.1). Available at: http://www.protomatics.com/tsnl.
Html, accessed 10.06.2018..

[14]. The BinPAC language. Available at: https://www.bro.org/sphinx/components/binpac/
README .html, accessed 10.06.2018..

[15]. Mario Baldi, Fulvio Risso. NetPDL: An Extensible XML-Based Language for Packet
Header Description. Computer Networks, vol, 50, issue 5, 2006, pp. 688-706.

HoTauusa kpuntorpacgpmuyeckom CTeKOBOW MallMHbI BepCcuUmn
oaVH

C.E. Ilpoxonves <s.e.pr@mail.ru>
2. Mockesa

AnHoTamus. Xopomras crenu(uKanus KPHUITOTpagHUIecKoro INPOTOKOJIA JOJDKHA JIETKO
BOCIIPHMHUMAThCSI YEJIOBEKOM (OBITh JIEKJIApaTHBHON W JIAKOHMYHOI), OBITh MCIIOMHUMOH U
npodTH mpouenypy QopmanbHOl BepudUKAlMM B HEKOTOPOIl aJeKBaTHOM MOJEH.
HauenuBasich Ha 3T TpeOOBaHuUs, B cTaThe npeaioxkena Hotauuss CMN. 1, npeana3HayeHHas
JUIL ONHUCAHHWSA COOOMEHWH KpHUNTOrpaguYecKHX MPOTOKOJIOB W OCHOBAaHHAas Ha
BEIYHCIIUTENFHON aOCTPAaKIMK TIOJ HA3BaHUEM KPUNMoepaguueckas cmeKo8as MauuHd
(CSM). Crarps ommceiBaeT cuHTakcuc M ceMaHTHKy CMN.1, a Takke mpencTaBiser
pe3ynbraTtel pa3pabOTKM s3bIKa CHEHUUKAMH KPUNTOTpadUIECKUX MPOTOKOJNIOB,
MOCTPOEHHOTO HAa OCHOBE JaHHOW HOTalWHM M BCTpoeHHOro B s3bik Haskell. B aBropckoii
peanu3anuy Bcst 06paboTka COOOLICHNI HHKATICYIMPOBaHa BHYTPpU 0a30BOro OMOIMOTEYHOTO
MOZyJIsl, B TO BpeMsl Kak crenuduKaiys J0MKHA JIHIIb JaTh JEKIapaTUBHbBIC ONpPEAEICHUS
9THX coobuieHui. [Ipu GpopmMupoBaHNUH UCXOASAIIEr0 COOOLICHHS NPOTOKOIa 0A30BbIil MOIYIIH
Oeper ommcanue gaHHOro coodmenus B HoTarumu CMN.1 u Bo3Bpamaer (pparMeHT HaHHBIX,
CTCHEPHPOBAHHBIA 110 3TOMy omucanuio. IIpn oOpaboTke BXomsIiero cooOIIeHUs Ga30BbIi
MOIyNb OepeT NMOCTYNMBIIMH (parMeHT AAHHBIX W OINMCAaHHE OXKUAAEMOTO COOOIIEHHS B

180

TIpoxonse C.E. Hotamust kpunTorpaduyeckoil CTekoBoi Maimubl Bepcun ogus. Tpyowt UCIT PAH, tom 30, Bbim. 3,
2018 r, cTp. 165-182

Horanun CMN.1 n Bo3Bpamaer BEpAUKT 00 MX COOTBETCTBHHU APYT IpPYry, U3BIEKas U
3alOMHHAsl I[IPU 3TOM BCE COAEpKalHecs B COOONIEHHM JaHHBIE, HEOOXOOUMBIC IS
¢dopmupoBaHUS WM BepH(QUKAIMM CIEAYIOIIHX COOOIIeHMH mportokona. Ilpormecc
BepuUKaLMK SBIACTCS IOJHBIM: 0a30BBIl MOZAYIb OCYIIECTBISIET pacuIuppOBaHHUE,
MPOBEPKY KOJOB ayTEeHTU(PHKAIUU COOOIIEeHNH M 3HayeHWi LuQpoBOH mHoxmHCH WU T.1.
Texymass peanuzauus s3bIKa BKIHOYaeT (YHKIMM TpaHCIAUMM —crnenuduKauuid B
UCIIONHSEMBIH KOJ, COBMECTUMBIH C CYIIECTBYIOIIUMHU IPOTPAMMHBIMH pPealH3alHIMI
MIPOTOKOJIOB, a Takke (YHKIMM KOHBEPTalWH CHEeNU(UKamUi B NPOTpaMMBI Ha BXOJHOM
SI3bIKE aHAIN3aTopa MpoToKoIoB ProVerif. B kauecTBe minmocTpanuy MpUBOASTCS BEIIEPIKKH
w3 CMN.l-cnenmdpukanun mpotokona TLS ® cooTBeTCTByIOmIEH el aBTOMATHYECKH
CreHepHpOBaHHOM nporpammbl 1uist Pro Verif.

KiroueBble cJjioBa: s3bIK crenuuKanuii KpUnTorpadpuyeckux MPOTOKOJIOB; HOTALHS
COOOIICHUI KPUNTOrpapHUSCKUX MPOTOKOIOB; KpUNTOTpaduuecKas CTEKOBas MalllUHa;
BCTPOCHHBIE MPEMETHO-OpUeHTUpoBaHHbIe s13bIkH; Haskell; ProVerif; TLS

DOI: 10.15514/ISPRAS-2018-30(3)-12

Jas nurupoBanus: IlpoxonbeB C.E. Horamms kpunrtorpaguyeckoidl CTEKOBOH MaIInHBI
Bepcun onuH. Tpymer UCII PAH, tom 30, Bem. 3, 2018 ., ctp. 165-182 (Ha aHmIHIiCKOM
s3pike). DOI: 10.15514/ISPRAS-2018-30(3)-12

Cnucok nutepaTtypbl

[1]. S. Chaki and A. Datta. Aspier: An automated framework for verifying security protocol
implementations. In Proceedings of the Computer Security Foundations Workshop,
2009, pp. 172—-185.

[2]. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
Proceedings of the 6th International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI’05), Lecture Notes in Computer Science, vol. 3385,
2005, pp. 363-379.

[3]. Mihhail Aizatulin, Andrew D. Gordon, and Jan Jurjens. Extracting and verifying
cryptographic models from C protocol code by symbolic execution. In Proc. of the 18th
ACM Conference on Computer and Communications Security (CCS’11), 2011, pp. 331—
340.

[4]. Nicholas O’Shea. Using Elyjah to analyse Java implementations of cryptographic
protocols. In Proc. of the Joint Workshop on Foundations of Computer Security,
Automated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security (FCS-ARSPA-WITS’08), 2008.

[5]. Karthikeyan Bhargavan, Cedric Fournet, Andrew Gordon, and Stephen Tse. Verified
interoperable implementations of security protocols. ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 31, no. 1, 2008.

[6]. Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified Models and
Reference Implementations for the TLS 1.3 Standard Candidate. In Proc. of the IEEE
Symposium on Security and Privacy, 2017.

[7]. Matteo Avalle, Alfredo Pironti, Riccardo Sisto, and Davide Pozza. The JavaSPI
framework for security protocol implementation. In Proc. of the 6th International
Conference on Availability, Reliability and Security (ARES’11), 2011, pp. 746-751.

181

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.

165-182

[8]. David Cade, Bruno Blanchet. From Computationally-Proved Protocol Specifications to
Implementations and Application to SSH. Pexum JocTyna:
http://prosecco.gforge.inria.fr/personal/dcade/CadeBlanchetloWUA13.pdf, nara

[9].
[10].

[11].

[12].
[13].

[14].

[15].

182

obparenus 10.06.2018.

A. Delignat-Lavaud et al. Implementing and Proving the TLS 1.3 Record Layer. In Proc.
of'the 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 463-482.

Bruno Blanchet. Automatic Verification of Security Protocols in the Symbolic Model:
the Verifier ProVerif. In Foundations of Security Analysis and Design VII, FOSAD
Tutorial Lectures, Lecture Notes in Computer Science, vol. 8604, 2014, pp. 54-87.

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe.
2017. Source files and annotated RFC for TLS 1.3 analysis. (2017). Pexxum noctyma:
https://tls13tamarin.github.io/TLS 13 Tamarin/, nara obpamenns 10.06.2018.

Concrete Syntax Notation One (CSN.1). Pexxum poctyma: http://csnl.info, mara
obpamenus 10.06.2018.

Transfer Syntax Notation One (TSN.1). Pexum JoCTyma:
http://www.protomatics.com/tsn1. Html, nara o6parenus 10.06.2018.
The BinPAC language. Pexum JlocTyna:

https://www.bro.org/sphinx/components/binpac/ README.html, nara o6pameHus
10.06.2018..

Mario Baldi, Fulvio Risso. NetPDL: An Extensible XML-Based Language for Packet
Header Description. Computer Networks, vol, 50, issue 5, 2006, pp. 688-706.

Construction of validation modules based
on reference functional models in a
standalone verification of communication
subsystem

D.A. Lebedev <lebedev_d@mcst.ru>
I.A. Stotland <stotl_i@ mcst.ru >
MCST, 24 Vavilov st., Moscow, 119334, Russia

Abstract. The paper proposes some approaches to functional verification of microprocessor
communication controllers based on developing layered UVM (Universal Verification
Methodology) test systems. In modern microprocessor systems there are a lots of controllers
operating with their own data types. Communication controllers support transferring and
transformation data between microprocessor units. Such transformation must be carried out
quickly and without data corruption for the correct functioning of the whole system.
Communication controllers could carry additional functions such transmission values of
copies of the system registers, address translation and others. Brief overview of verification
tools and benefits of application standalone simulation based verification for checking the
correctness of communication subsystems are marked out in the paper. We present the
approaches of construction a standalone UVM-based verification environment with checking
module implemented in external functional reference model. We also propose some
techniques for checking the correctness of communication subsystems: checking multiple-
clock controllers using parametrized clock generator, supporting of credit exchange
mechanisms. Presented approaches were used to verify the communication subsystem —
Host-Bridge — of Sparc V9 eight-core microprocessor developed by MCST. The difficulties
discovered in the process of test system developing and its resolutions are described in the
paper. The results of using presented solutions for verification of communicating subsystem
controllers and further plan of the test system enhancement are considered.

Keywords: test system; communication controller; functional verification; Universal
Verification Methodology (UVM); reference model.

DOI: 10.15514/ISPRAS-2018-30(3)-13

For citation: Lebedev D.A., Stotland I.A. Construction of validation modules based on
reference functional models in a standalone verification of communication subsystem. Trudy
ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 183-194. DOI: 10.15514/ISPRAS-2018-
30(3)-13

183

Lebedev D.A., Stotland I.A. Construction of validation modules based on reference functional models in a standalone
verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 183-194

1. Introduction

The state of the art in microprocessors compaosition includes a variety of hardware
controllers, which differ in complexity, speed rate, volume and types of data
transmitted over them. The characteristics of data are continuously increasing. At
the same time, verification costs are increasing, because the possibilities of
verification methods are significantly lagging behind the development of
microprocessor systems and, accordingly, the correctness checking requires more
resources [1].

Each peripheral controller in the system could have its own data format. Converting
data format is one of the functions of the interface communication controllers. The
communication controllers can be a part of communication subsystem also known
as northbridge. The northbridge typically handles communications among the CPU,
I/0 and in some cases RAM. Therefore, these transformations must be carried out
quickly and without data loss. For this reason, the verification of communication
controllers is an important step in the development of the microprocessor system.
The rest of the paper is organized as follows. Section 2 reviews the existing
techniques for verifying communication controllers. Section 3 suggests an approach
to the problem of developing test system. Section 4 describes a case study and the
suggested approaches. Section 5 reveals results and Section 6 concludes the paper.

2. Functional verification of the communication controllers

It is necessary to simulate the operation of entire environment while providing
standalone verification of a controller. This requires a test system, the development
of which could be started at the earliest stages of whole microprocessor
development, as soon as module specification and the RTL-model becomes
available. Standalone verification allows detecting errors in the early stages of
project. In addition, it helps to create complicated, critical and incorrect situations
for the verified module. The achivement of such situations using system verification
of the whole microprocessor model takes lot of resources. It is also important to
note that the localization of the error is faster, what reduces the debugging time of
the controller.

Due to its location between the CPU and the peripheral interface controller, the
communication controller, in addition to its basic data format transformation
function, could include copies of registers, buffers, FIFOs, parts of distributed
control systems, and perform other additional functions. A number of these features
should be taken into account in the standalone verification of communication
controllers.

It is essential that, according to the classification proposed in [2], the properties of
communication controllers include the absence of a pipeline, the absence of strict
time (in the system clock frequency) restrictions on transaction processing and
tagging of transmitted data. Accordingly, when the devices of this type are verified
it is possible to use event-checking modules.

184

Jle6enes I.A., Crornana U.A. TloctpoeHne MoyJieii MPOBEPKH Ha OCHOBE ATAJOHHBIX (DYHKIIMOHATIBHBIX MOJICIICH TIPH
AQBTOHOMHOI#1 BepH(HKaIUK OACUCTeMBI CBsi3H. Tpyost UCIT PAH, Tom 30, Beim. 3, 2018 r., ctp. 183-194

There are a number of methods to build a test system and implement a standalone
verification of microprocessor controllers. Among them there is a tool created in the
"MCST" named Alone-env, the development of the ISP RAS named C++TESKHW
and methodology UVM [3]. The Alone-env tool simplifies implementation of
standalone Verilog tests by creating test sequences in C++. Its library provides a
wrapper-class over Verilog description of the verified module. Despite the relative
simplicity of using Alone-env tool, there are some disadvantages: the lack of
collecting coverage means, high requirements for the testing reference model and
the inability to reuse the test system. One of the C++TESKHW tool features is
availability of test generation based on the device state graph traversal. However,
sometimes it is very hard to define all of the states of device and it needs high
accuracy of documentation and checking reference model. UVM is the most
widespread verification methodology developed by Accellera Systems [4]. UVM is
a library with well-described tools for building portable and reusable testbenches
and their components. The test system based on UVM can generate pseudo-random
constrained input requests to cover all the possible states of the verified device.
Most of well-known simulation tools (like Incisive, VCS, etc.) support the
methodology. Moreover, most of VIP (Verification IP) support UVM-based
interfaces. We also have a number of test systems and libraries already written and
debugged. Therefore, we choose to use UVM for verification of RTL implemented
modules of microprocessor systems.

Alone-env and C++TESKHW do not support UVM and we cannot use these tools
for UVM-based test system development. UVM provides the universal approach for
all types of devices to develop test systems. In this way, test systems are becoming
more complex and worse in debugging. UVM also has no additional approaches for
construction of validation modules based on reference functional models. Therefore,
the main purpose of our investigation is to develop and extend the methods of
standalone verification of communication controllers using UVM and program
reference models.

3. Principles for testing communication controllers

Standalone verification of communication controllers can be carried out using
simulation reference models that are part of the test systems - specially implemented
software environment for the verified device. Test system functions includes:

e generating of input requests;

e monitoring of reactions from the verified device and the reference model,;
e checking of reactions;

e forming a conclusion about the completeness of testing.

Uvm_sequence_item and uvm_sequence extension classes are defined to generate
pseudorandom constrained impacts. The first one defines a set of variables that are
required for serialization of set of impacts into a serial bit format. The second
performs a single or multiply generating of a set of variables to transmit a request.

185

Lebedev D.A., Stotland I.A. Construction of validation modules based on reference functional models in a standalone
verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 183-194

The request generated by the uvm_sequence_item object is processed by a special
uvm_sequencer class and passed to the uvm_driver class. Uvm_driver produces a
transformation of generated random requests into sequential bit-vectors in
accordance with the interface exchange protocol. Uvm_monitor class is passive. It
tracks changes in the interface of the verified device, indicating the appearance of
input or output data, then packages the serial bit signals into the
uvm_sequence_item format and transmits for further analysis to the checking
blocks. To simplify the structure of the test environment perception, the
uvm_driver, uvm_monitor, and uvm_sequencer are combined in the uvm_agent
class, shown on fig.1.

[mem ||[moniTor

=)

[mem [oriver

DUV INTERFACE

[mem |ehsEQUENCER |

Fig 1. An example of the uvm_agent structure

Checking the reactions of the verified device can be carried out by internal means of
the UVM library, however, if the verified device has a complex structure and many
states, the checking module is based on the external to the controller environment
reference model usually written in C++. A typical reference model-based test
system is shown in Fig. 2.

In Fig. 2 DUV (Design Under Verification) is RTL-model of the verified device,
ENV (Environment) - test environment. The number of agents are determined by
the number of interface groups of the verified device (tracking the reactions
uvm_monitor object can be taken outside from the agents). The reference model
generates reference responses when impacts from the test environment are implied.
Uvm_scoreboard is a checking module compares the response from the verification
device and the reference model and makes a conclusion about the correctness of the
operating. Using the DPI (Directed Programming Interface) of System Verilog is
necessary to reconcile the types and classes of the test system written in
SystemVerilog hardware description language with the C++ language. in which the
reference model is developed.

186

Jle6enes I.A., Crornana U.A. TloctpoeHne MoyJieii MPOBEPKH Ha OCHOBE ATAJOHHBIX (DYHKIIMOHATIBHBIX MOJICIICH TIPH
AQBTOHOMHOI#1 BepH(HKaIUK OACUCTeMBI CBsi3H. Tpyost UCIT PAH, Tom 30, Beim. 3, 2018 r., ctp. 183-194

ENVIROMENT
“—_DRVER | [
C
€] 0 M
D R (o]
E
U e 5 | D
V E
(0]
A L
R
D

i MONITOR

Fig 2. A typical structure of a test system for testing communications controllers.

The reference models could be divided into three types: cycle-accurate, discrete-
event with time accounting and event models [5]. The choice of model type depends
on the type of verified device, its architecture, and the complexity of developing a
test environment. As stated earlier, the use of event models is justified for
communication controllers, as they require less time to develop, maintain changes
and can fully simulate the operation of such a controllers.

4. Functional verification of communication controller — Host-
Bridge

Host-Bridge is a part of northbridge of microprocessor MCST-R2000 CPU with
Sparc V9 architecture developing by MCST. The Host-bridge interface
communication controller connects the system with external devices, accepting
requests from the system and the 1/O space while maintaining the transaction
formats accepted in the system and 1/O space. The Host-bridge receives requests
from the System Commutator, communicate with two 1/0 channel controllers (10-
links) and provide translation of the virtual address to physical addresses. In
addition, controller provides access to the system registers, registers of inter-
processor links, memory controller’s registers, transferring the new values of the
registers to the local copies of them, transmitting interrupts, status signals and
collecting snoop-responses. Each type of the registers has its own interface for
communication with the destination device. All these features should be taken into
account when verifying Host-bridge.

Some approaches for standalone verification using UVM and reference models were
observed in [2, 6-8]. In [2] authors used buffers between testbench and reference
model for checking marked transactions. In [6, 7] assertions and checking reference
model were applied. In [8] there was reference model with very complicated
algorithms. In our work, we used model buffers and assertions for checking
correctness of transactions. In addition, we present a number of new solutions of the
standalone verification process, which was applied for verification of Host-Bridge.

187

Lebedev D.A., Stotland I.A. Construction of validation modules based on reference functional models in a standalone
verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 183-194

4.1 Several synchro signals parameters randomization

The main task of communication controllers is to coordinate the requests and data of
several devices of the microprocessor system operating at different frequencies of
the synchro signal. The parts of the communication controller in which several
synchro signals interact should be checked carefully. Generating of random periods
of synchro signals and their shifts that are relative to each other can be used for this
purpose. The controller specification defines the operating ranges of each synchro
signal. At the beginning of each test the frequency and start time of random synchro
signal generators are pre-calculated. Thus, it is possible to detect errors in
synchronization of internal units: the detection of metastability, desynchronization
of releasing requests and data, sticking data in some positions of the buffers.

4.2 Support of credit exchange mechanisms

To control the flow of requests and free positions in the transaction buffers, Host-
bridge supports a credit mechanism, which is a one-bit signal transmission that
informs about the availability of free space in the buffers of connected devices. The
management of this mechanism allows creating tests with full filling of all positions
in the device buffers and needing to wait the vacated space to handle new requests,
or on the other hand, tests, when the release of positions provides very fast, and the
requests are executed almost instantly. As a result, it is possible to create test
scenarios that are difficult to implement during system testing.

4.3 Verification of address translation controller

One of the components of the Host-Bridge is the address translation controller
IOMMU. It translates a virtual address received from the 1/0O subsystem requests to
physical addresses. The controller sends a request for information about the physical
address to a special memory area for providing translation. Virtual address mapping
to physical addresses is stored in a special controller buffer — IOTLB (Input-Output
Translation Lookaside Buffer). If the buffer is full, the oldest element is displaced.
The algorithm of the translation could be represented in the form of several
consecutive steps:

1) receiving DMA request p « start(x),

2) analyzing of the input request then matching in the cache IOMMU with the

following scenarios:

a) match is found (hit IOMMU) — a request with the translated address x"
is executed;

b) match is not found (miss IOMMU) — a request for a physical address X'
is executed , then waiting for a response p.receive(y) with the data, and
only after that translation of the address is done.

Under dynamic test conditions, there may be situations when a lane in the IOMMU
cache is not yet displaced in the RTL-model and the address can be translated
without additional request, but it is not present in the reference model. In this case,

188

Jle6enes I.A., Crornana U.A. TloctpoeHne MoyJieii MPOBEPKH Ha OCHOBE ATAJOHHBIX (DYHKIIMOHATIBHBIX MOJICIICH TIPH
AQBTOHOMHOI#1 BepH(HKaIUK OACUCTeMBI CBsi3H. Tpyost UCIT PAH, Tom 30, Beim. 3, 2018 r., ctp. 183-194

the reference model will give unnecessary requests to the test system. A global
transaction counter was introduces in the reference model to solve this problem. The
task of this counter was to identify the source of the requests. In addition, the
responses generated by the test system are analyzed too. In the case when the
request is successfully translated on the RTL-model side, and the reference model
has already given an extra request for a physical address, the test environment
generates a response that is marked with a special identifier and sent it to the
reference model. When processing a response, the model concludes that the
translation was not performed p.model_check(y), calculates the desired transaction
identifier y.id and sends it to a special buffer of canceled requests Q;; for the
physical address. When checking the interchange buffers with reference model after
the test completes, the identifier values in the buffer of canceled requests Q,., are
compared with the identifiers of the remaining unprocessed requests for physical
addresses from the reference model. Such remaining requests are not treated as
erroneous and are deleted delete(req.id). The pseudo-code of the algorithm is
presented below.
DMA handling:
while true do
wait p « start(x)
if x' then
p.ncheck (x')
else if x” then
begin
wait p.receive(y)
p.model check (y)
Qig— y-1id
p.finish()
end
end
After test checking:
for i € Qpeqdo
if c.check (req.id, Q;z) then
delete (reqg.1id)
else report(req.id)
end

4.4 The correct organization of the exchange in terms of the
uncertainty of the issuance of queries

In high-load dynamic tests with many input requests and responses, labeling

requests and responses with tags that correspond to positions in the controller’s

buffers may differ from the values of tags in the reference model. This happens

because of the inability to predict time of release of the buffer's position in the

189

Lebedev D.A., Stotland I.A. Construction of validation modules based on reference functional models in a standalone
verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 183-194

event-driven models. Therefore, it is important to match the input and output
requests of the model and the verified device. Each request, whether it is an 1/0
request or a PIO request, has several stages of execution. To ensure the correct
functioning of the test scenarios we need to use an associative memory (mappers)
for matching. The function of this memory is to store the matching of RTL request
tags with reference model tags, when the remaining request data field, such as an
address, destination device 1D, processor number, and others are compared. Later,
when you receive responses to the request, you have to pass to the model the same
tag, which was allocated by the model at the stage of forming the request.
Communication controllers in multi-core systems can participate in the coherence
protocol and accept snoop responses. Depending on the mode of operation and the
content of the fields of the first received for the request response could come as
several responses or only one. To complete the request check in coherent mode, it
needed to pass all the responses with the correct tags to the model.

4.5 After test checking

The correct behavior of the communication controller is determined in providing a
certain number of responses to requests and receiving the exact number of responses
to them. Incorrect operation can be identified by counting the number of received
requests, converted to another format requests, and accepted responses. For this
purpose, the test system includes transaction counters. They capture all kinds of
transactions while the test is running. At the end of the test, special algorithm
checks values of these counters and make a conclusion about correctness.

After the test scenario is complete, it also needs to verify absence of unanswered
requests in the buffers that link the reference model to the test environment. The
presence of such requests signals about error of either the verified device or the
reference model.

5. Results

The approaches described above were applied to standalone verification of the Host-
Bridge of microprocessor MCST «R2000». Parametrization of synchro signals
allowed finding metastability in the controller interfaces. Using different types of
credit exchange rate helped to locate deadlocks and livelocks in the controller.
Based on one test system the built-in IOMMU controller was also verified. Different
configuration of answers with physical address were verified, which helps finding
errors in displacement algorithms. After test, checking of model buffers and
requests counters provide finding of not released responses to the system.

For the Host-Bridge controller, due to its functional and structural features that
belong to the class of communication controllers, a test environment is developed
with a checker based on reference event-model. Due to standalone verification of
the device 67 errors that have not been found by other means of verification were
found and corrected. Code and functional coverage was carried out and 94%

190

Jle6enes I.A., Crornana U.A. TloctpoeHne MoyJieii MPOBEPKH Ha OCHOBE ATAJOHHBIX (DYHKIIMOHATIBHBIX MOJICIICH TIPH
AQBTOHOMHOI#1 BepH(HKaIUK OACUCTeMBI CBsi3H. Tpyost UCIT PAH, Tom 30, Beim. 3, 2018 r., ctp. 183-194

coverage was extracted. Gaps in coverage will be eliminated with the further
expanding of the test environment with external parts of interrupt system. Total
result indicates about effectiveness of standalone verification of communication
controller.

6. Conclusion

Communication controllers are among the important parts of multi-core
microprocessor systems have to be thoroughly tested. The principles described in
the article do not depend mainly on the implementation of these controllers and
allow their full standalone verification. The article suggests the ways to organize the
interaction of the test system and the event reference model, as well as ways to
resolve the difficulties encountered in the development of the test system.

The proposed approaches have been applied in the verification of the controller
Host-bridge as a part of eight-core microprocessor, developed by "MCST". The
developed test system and tests made it possible to detect and correct a number of
logical errors that were not detected by other test methods.

In the future, it is planned to expand the test environment by adding a part of the
interrupt system transmitting signals directly to the core. Fig. 3 shows a generalized
diagram of a Host—bridge, and the dotted lines illustrate such extension.

CPU o
| apic ¥
registers
interfaces
JTAG interrupts
«—"—» HOSTBRIDGE (¢ —*
status aerrs
signals
I/0
links

Fig 3. A typical structure of a Host Bridge controller connected with interrupt controllers

References

[1]. Kamkin A.M., Kotsynyak S.A, Smolov A.A.. Sortov A.D., Tatarnikov, Chupilko M.M.
Tools for functional verification of microprocessors. Trudy ISP RAN/Proc. ISP RAS,
vol. 26, issue 1, 2014, pp. 149-200 (in Russian).

191

Lebedev D.A., Stotland I.A. Construction of validation modules based on reference functional models in a standalone
verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 183-194

[2]. Shmelev V.A., Stotland I.A. Standalone verification of microprocessors using reference
models with various levels of abstraction. Problemy razrabotki perspektivnyh mikro- i
nanojelektronnyh sistem [Problems of development of promising micro- and
nanoelectronic systems], no 1, 2012, pp. 435-440 (in Russian)..

[3]. A.N. Meshkov, M.P. Ryzhov, V.A. Shmelev. The developement of the verification tools
of the Elbrus-2S microprocessor. VVoprosy radioelektroniki [Issues of radio electronics],
ser. EVT, 2014, no. 3, pp. 5-17 (in Russian).

[4]. Standard Universal Verification Methodology
http://accellera.org/downloads/standards/uvm (12.06.2018).

[5]. Kelton W., Law A. Simulation modeling. Classics of CS. 3 ed. SPb.: Piter, 2004.

[6]. Li-Bo Cheng, Francis Anghinolfi, Ke Wang, Hong-Bo Zhu, Wei-Guo Lu, Zhen-An Liu.
A UVM Based Testbench Research for ABCStar. In Proc. of the IEEE-NPSS Real Time
Conference (RT), 2016.
https://indico.cern.ch/event/390748/contributions/1825090/attachments/1280814/190641
3/CR_PosterSession2_268.pdf (12.06.2018).

[7]. Abhineet Bhojak, Tejbal Prasad. A UVM Based Methodology for Processor
Verification. Proc. of the Design and Verification Conference and Exhibition (DVCON),
2015. https://dvcon-india.org/sites/dvcon-
india.org/files/archive/2015/proceedings/6_UVM_Based_Processor_Verification_paper.
pdf (12.06.2018).

[8]. Kamkin A., Petrochenkov M. A Model-Based Approach to Design Test Oracles for
Memory Subsystems of Multicore Microprocessors. Trudy ISP RAN/Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 149-160. DOI: 10.15514/ISPRAS-2015-27(3)-11.

NMocTpoeHue Moaynen NnpoBepKU Ha OCHOBE 3TaNlOHHbIX
PyHKLMOHaNbHbLIX Moaenen Nnpu aBTOHOMHOMN
BepucukaumMm nogcmcTteMbl CBA3MN

JImumpuit Jlebeoes <lebedev_d@mcst.ru>
Hpuna Cmomnano <stotl_i@ mcst.ru >
AO «MLCT», 119334, Mocksa, Poccus, yn. Basunosa, 0. 24

AHHOTammMsi. B cratbe mpemtoxkeHbl MOAXOAbl K (YHKIHMOHANLHOW —BepuHKaILN
KOHTPOJUIEPOB COMPSDKEHUST HHTEP(EHCOB B COCTaBE MHKPOIPOIECCOPOB HA OCHOBE
pa3pabOTKH MHOTOYPOBHEBBEIX TECTOBBIX-cHCTeM Io Merononormn UVM. B coBpemeHHBIX
MHKPOIPOIECCOPHBIX CHCTEMax CYIIECTBYET MHOXXECTBO KOHTPOJUIEPOB, paboTarommux ¢
COOCTBEHHBIMH THIIAMHU JaHHBIX. KOHTpoitepsl comnpsbkeHus MHTepdEiicoB y4yBCTBYIOT B
nepefaue M NpeoOpa3oBaHMM JAHHBIX MEXIy OJokaMu Mukpompoueccopa. Takoe
npeoOpa3oBaHue MJODKHO OCYLICCTBISATHCSA OBICTPO M 0e3 MOBPEXKICHHS TaHHBIX IS
KOPPEKTHOTO (YHKIMOHUPOBaHMs Beei cucteMbl. KOHTpoIuteps! compshkeHust HHTepGhelicoB
MOTYT BBINOJNHATE JONOJHUTENbHBIE (DYHKIMM, Takue Kak Iepefadya 3HadeHHH KO
CHCTEMHBIX PETHUCTPOB, IpeoOpa3oBaHMUE aIpecoB U Apyrue. B cratee maH kpatkuii 0030p
CpeICTB BepUHKAIMU U MNPEHMYIISCTB HNPUMEHEHHWs AaBTOHOMHOW HMHTAI[IOHHOMN
Bepu(UKanuu AT HNPOBEPKH KOPPEKTHOCTH KOHTPOJUICPOB CONpPSDKEHHS HHTEepdeiicoB B
cocraBe moxacucreM cBsa3u. IlpeacraBneHbl NOAXOAbI K IOCTPOCHUIO aBTOHOMHOM

192

Jle6enes I.A., Crornana U.A. TloctpoeHne MoyJieii MPOBEPKH Ha OCHOBE ATAJOHHBIX (DYHKIIMOHATIBHBIX MOJICIICH TIPH
AQBTOHOMHOI#1 BepH(HKaIUK OACUCTeMBI CBsi3H. Tpyost UCIT PAH, Tom 30, Beim. 3, 2018 r., ctp. 183-194

BepH(HUKaMOHHON TECTOBOM cHCTEMBI Ha ocHOBe MeTononorun UVM ¢ MozyieM NpoBepKH,
peaNn30BaHHBIM BO BHENIHEH (DyHKIHMOHANBHOM STaJoHHONH Mozmenu. Tak e NpeaioKeHbI
METOIbI IPOBEPKH KOPPEKTHOCTH TOJCUCTEM CBSA3U: MPOBEPKa KOHTPOIIEPOB, paboTaromuX
C HECKOJNIBKHMH CHUHXpPOCHTHalaMH TIpH IIOMOINM TapaMeTPU30BAaHHOTO TeHepaTopa
CHHXPOCHUTHAJIOB, MOAJEPKKa MEXaHU3MOB 0OMeHa kpeauTamu. IIpencraBieHHbIE TOAXOIBI
HCIONB30BaHbl Il BepU(HKALUK MOACHCTEeMBI cBsi3u - Host-Bridge - BocemusimepHOro
MHKpOIIpoIieccopa ¢ apxuTekTypoit Sparc V9, paspaboranHoro komnanueir AO «MIICT». B
CTaThe OIMCAHEI MPOOJIeMBl, OOHApYKEHHBIE B IIPOIlecce Pa3pabOTKU TECTOBOH CHCTEMBI U
croco0OBl WX paspemieHus. [IpexcTaBieHbl pe3yabTaThl HCIOIB30BAHUS PACCMOTPEHHBIX
pemreHuit a1 BepUUKAIMKM KOHTPOJUIEPOB IIOJCHCTEM CBS3M W JANbHEHIIMH IUTaH
COBEPILEHCTBOBAHMS TECTOBOH CHCTEMBI.

KiroueBble cj0Ba: TECTOBAas CUCTEMa; KOHTPOJUIED CONpPSUKEHMsS —HMHTEpQEicoB;
¢byukimonaneHas Bepudukanms; Universal Verification Methodology (UVM); sranonnas
MOJIEJIb.

DOI: 10.15514/ISPRAS-2018-30(3)-13

Jas nurupoBanusi: Jlebener JI.A., Crotnann U.A. TloctpoeHre Mojynell MpOBEpKH Ha
OCHOBE 3TAIIOHHBIX ()YHKIIMOHAIBHBIX MOJEJICH IPH aBTOHOMHOW BEpU(PHUKALIUH OJCUCTEMBI
cesi3u. Tpynst UCIT PAH, tom 30, Beim. 3, 2018 r., ctp. 183-194 (Ha aHrIHIACKOM SI3BIKE).
DOI: 10.15514/ISPRAS-2018-30(3)-13

Cnucok nutepaTtypbl

[1]. A.C. Kamkun, A.M. Koupiasik, C.A. Cmonos, A.A. Copros, A.J[. Tarapuukos, M.M.
Yymmiko. CpezncTBa GpyHKIHOHATIBHOW BepuuKanuu Mukporponeccopos. Tpyast UCIT
PAH, tom 26, Bem. 1, 2014, ctp. 149-199.

[2]. Imenes B.A., Crotnanx W.A. ABroHOMHas Bepu(UKAlUs MHKPOIMPOILECCOPOB HA
OCHOBE STAJOHHBIX MOJeNeld pa3Horo ypoBHS abcrpakuuu. [IpoGrembl pa3paOoTKu
MEePCIEeKTUBHBIX MUKPO- W HaHOAMEeKTpoHHBIX cucteM (MOC), No. 1, 2012, crp. 435-
440.

[3]. A H. Memkos, M.II. Pooko, B.A. Illmenes. PasButve cpeacts Bepu(UKaAIKH
MHKporpoleccopa «Dnbbpyc-2S». Bompockl paguodnexkTpoHuku, cep. DBT, BbIm.3,
2014, ctp. C. 5-17.

[4]. Standard Universal Verification Methodology
http://accellera.org/downloads/standards/uvm (12.06.2018).

[5]. Kenbron B., Jloy A. Mmuranmonnoe moneiuposanue. Kinaccuka CS. 3-e¢ uszn. CII6.:
ITurep, 2004.

[6]. Li-Bo Cheng, Francis Anghinolfi, Ke Wang, Hong-Bo Zhu, Wei-Guo Lu, Zhen-An Liu.
A UVM Based Testbench Research for ABCStar. In Proc. of the IEEE-NPSS Real Time
Conference (RT), 2016.
https://indico.cern.ch/event/390748/contributions/1825090/attachments/1280814/190641
3/CR_PosterSession2_268.pdf (12.06.2018).

[7]. Abhineet Bhojak, Tejbal Prasad. A UVM Based Methodology for Processor
Verification. Proc. of the Design and Verification Conference and Exhibition (DVCON),
2015. https://dvcon-india.org/sites/dvcon-

193

Lebedev D.A., Stotland I.A. Construction of validation modules based on reference functional models in a standalone
verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 183-194

india.org/files/archive/2015/proceedings/6_UVM_Based_Processor_Verification_paper.
pdf (12.06.2018).

[8]. Kamkin A., Petrochenkov M. A Model-Based Approach to Design Test Oracles for
Memory Subsystems of Multicore Microprocessors. Trudy ISP RAN/Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 149-160. DOI: 10.15514/ISPRAS-2015-27(3)-11.

194

Verification of System on Chip Integrated
Communication Controllers

M.V. Petrochenkov <petroch_m@mcst.ru>
R.E. Mushtakov <mushtakov_r@mcst.ru>
D.l. Shpagilev <shpagilev_d@mcst.ru>
MCST, 1 Nagatinskaya st., Moscow, 117105, Russia

Abstract. This article presents an approach used to verify communication controllers
developed for Systems on Chip (SOC) at MCST. We provide a list of communication
controllers developed in MCST and present their characteristics. We describe principles of
communication controller’s operation on transaction, data link and physical layers and
highlight their similarities. Then we describe a common method of device verification:
principles of test system design, constrained random test stimuli generation and checking of
device behavior. Based on common features of the controllers, we provide the general design
of their test system. It includes components to work with transaction level interface (system
agent of system on chip communication protocol) and physical interface (physical agent of
protocol for SOC communication on a single board), configuration agent that determines
device mode of operation and a scoreboard. Because controllers only execute transformation
of transactions between different representation, scoreboard checks accordance of in and
outgoing transactions. In addition, we describe specific features of devices that require the
adjustments to the common approach. We describe how verification of those features affected
the design of different test systems. We explain how a replacement of a physical agent with a
second communication controller allows to speed up the development of test systems. We
explain challenges of link training and status state machine (LTSSM) verification. We
provide a way to work with devices with direct memory access (DMA) in a system agent. In
conclusion, we present a list of found errors and directions of further research.

Keywords: Elbrus; system on chip; communication controller; Ethernet; DDR4; PCI
Express; UVM,; stand-alone verification

DOI: 10.15514/ISPRAS-2018-30(3)-14

For citation: Petrochenkov M.V., Mushtakov R.E., Shpagilev D.I. Verification of System on
Chip Integrated Communication Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue
3, 2018, pp. 195-206. DOI: 10.15514/ISPRAS-2018-30(3)-14

1. Introduction

Modern systems on chip (SOC) may include multiple microprocessor cores,
complex hierarchy of caches, peripheral controllers and other types of data
processing modules. The task of interconnection between different systems on chip
is solved by communication controller (CC) modules. Those modules solve the

195

Petrochenkov M.V., Mushtakov R.E., Shpagilev D.I. Verification of System on Chip Integrated Communication
Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 195-206

problem of interprocessor communications, communication between CPU and
random access memory (RAM), CPU and peripheral devices, network interfaces,
etc. Performance and reliability of communication controllers is crucial for the
quality of the whole system. To ensure that communication controllers satisfy all
requirements, they must be thoroughly verified. Verification of complex
communication controllers is a time-consuming task [1]. One of the widely used
approaches to verification of SOC is system verification - execution of test
programs (implemented in assembly language) on the model of microprocessor.
Another approach is stand-alone verification of SOC components. In this approach,
model of the device under verification (DUT) is included in a special program — a
test system, which goal is to ensure that DUT satisfies all requirements. This article
describes a problem of stand-alone verification of communication controllers with
physical media access interfaces in the industrial setting.

The rest of the paper is organized as follows. Section 2 describes communication
controllers for physical media access interfaces developed by MCST company.
Section 3 presents a common approach to the design a test system and describes its
components. In section 4 we provide a case study for suggested approach applied to
specific devices, and adjustments to the approach that were implemented to verify
specific features of those devices. In conclusion, we present of verification and
provide a direction of further research.

2. Overview of communication controllers in «Elbrus-16C»
microprocessor

“Elbrus-16C” System on Chip includes many communication controllers. In the
following list we will describe ones that require the stand-alone verification: the
most complex ones and the ones which reliability is crucial for the functionality of
the system.

1. DDR4 Memory Controller is a digital circuit that manages the flow of data
going to and from the computer's main memory. The controller contains
the logical circuits necessary to perform read and write operations in
DRAM, with all necessary delays (for example, between reading and
writing). The flow of incoming requests is converted into sequences of
DRAM commands, while monitoring various conflicts on banks, buses and
channels. To increase the effective bandwidth of the memory channel,
incoming requests can be buffered and reordered. The reordering
mechanism is implemented on the basis of a sequential combination filter
system.

2. PCI Express Root Complex (RC) Controller transforms packets from in-
house protocol to standard PCl Express transaction level packets and
implements RC configuration space for communication with peripheral
devices. The controller is connected directly to on-chip network to improve
throughput and reduce delays. The controller supports up to 16 lanes with
speed up to 8 GT/s [2].

196

TlerpouerkoB M.B., Mymrrakos P.E. IlInarunes JI.1. Bepudukarius KOHTPOIICPOB CBSA3M B CHCTEMax Ha KPHCTAILIC.
Tpyowt UCII PAH, Tom 30, Boim. 3, 2018 r., ctp. 195-206

3.

Inter-Processor Communication Controller (IPCC) is designed to solve
problems of organization of multiprocessor architectures with shared
memory [3]. IPCC functions are logically divided into two levels: the link
layer (DLL - Data Link Layer) and the physical layer (PHL - Physical
Layer). Exchange by link is carried out by transport packages (containers)
of fixed size. Packages contain information about the type of the channel,
data, as well as the CRC checksum. Packages are formed into containers
according to special rules in order to ensure the priority and maximize the
bandwidth of the link. The protocol packets are distributed among several
virtual channels (VC) or streams with different priorities. To ensure the
integrity of the data during the transmission over the link, the mechanism
of sequential container numbering and CRC encoding are used.

Wide Link Communication Controller (WLCC) is used to connect south
bridge controller to SOC using a protocol similar to PCI Express 2.0 but
with reduced overhead. Controller supports memory and configuration
space access operations. Supported link width is up to 16 lanes with speed
2.5 or 5 GT/s for each lane. To ensure channel reliability transmitted
packets are protected by 16 bit CRC. After transmission, packets are stored
in replay buffer waiting for receive confirmation. If negative packet
acknowledge is received or time-out is reached, packets are retransmitted.
Controller supports up to 8 virtual channels.

10 Gigabit Ethernet Controller uses 10GBASE-KR interface [4]. It sends
and receives Ethernet frames over backplane electrical interface. On a
physical layer, it supports procedures of Clause 73 Auto-negotiation and
Clause 72 Auto-adaptation. This device supports hardware calculation and
checking of Ethernet CRC, IPv4, TCP and UDP checksums, various
filtering mechanisms based on MAC addresses and VLAN tags and
automatic handling of pause frames.

Gigabit Ethernet Controller uses 1000BASE-KX interface [4]. Ethernet
frames are sent using backplane electrical interface. It supports calculation
and checking of Ethernet frame CRC, calculation and checking of IPv4,
TCP and UDP checksums, filtering based on mac and IP addresses and
automatic handling of pause frames.

Despite the fact that those devices implement sufficiently different protocols, they
nonetheless solve a lot of similar problems and implement similar features.
Common features of controllers are:

Register transfer level (RTL) models of this devices are implemented using
Verilog and SystemVerilog [5] hardware description languages.
Controllers communicate with other components on chip using the system
interface that implements on-chip communication protocol, and represents
transaction layer of the device.

197

Petrochenkov M.V., Mushtakov R.E., Shpagilev D.I. Verification of System on Chip Integrated Communication
Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 195-206

Controllers don’t possess complex internal state and don’t implement
complex data processing or caching mechanisms. They transform packets
between different representations: system level communication protocol
packets (used for on-chip communications) and physical interface signals
(used for communication on distances beyond the single chip).

Controllers implement data link layer (DLL) that performs error detection
and/or correction using such mechanisms as Cyclic Redundancy Checks
(CRC) or forward error correction (FEC).

Controllers expose the physical interface and implement logical and
electrical parts of physical layer for communication with other components
on a board. All aforementioned controllers communicate using low voltage
differential signaling (LVDS). To ensure clock recovery and dc balancing
devices use physical encoding schemes (for example 8b/10b, 64b/66b,
128b/130b) and signal scrambling.

3. Test system structure

Test systems are usually implemented using either general purpose programming
languages (C++), hardware description languages (VHDL, Verilog) or dedicated
verification languages (SystemVerilog, e, OpenVera). In our company we use
SystemVerilog [5] with Universal Verification Methodology [6] (UVM). Use of this
language allows for an easy interface with Verilog and SystemVerilog devices, and
UVM describes a general test system structure and provides a library of basic
verification components.

198

Device Configuration System Transactions
Configuration System

Agent Agent System Protocol
Checker

System Interface

DUT Scoreboard —> Verdict

Control Interface

Physical Interface

PHY Protocol
PHY Checker

Agent

Error Injection T
Lower-level Transactions

PHY State Management System Transactions

Fig 1. Structure of test system of communication controllers

TlerpouerkoB M.B., Mymrrakos P.E. IlInarunes JI.1. Bepudukarius KOHTPOIICPOB CBSA3M B CHCTEMax Ha KPHCTAILIC.
Tpyowt UCII PAH, Tom 30, Boim. 3, 2018 r., ctp. 195-206

Common principles of controller behaviour determine the general structure of the
test system. All test systems include a set of basic components. Test system
structure is presented in fig.1.

A. Test stimuli generators are based on constrained randomization. In our
case, stimuli generators communicate with system and physical interfaces
of DUT. Transactions are described in terms of their attributes and
constraints. To specify some test scenario, one must define specific
constraints for transactions that will be issued by request generators.
SystemVerilog offers a native support for constrained randomization
constructs. In addition to transaction transmission and reception. physical
agent is able to model some “non-standard” types of behavior: injection of
corrupted or non-standard compliant transactions, or handling of received
transactions in user-specified way (for example, send negative
acknowledge for non-corrupted packet, drop the response to request from
DUT, etc..).

B. Test system scoreboard implements a correctness checks. Devices under
verification do not possess complex data processing logic and simply
perform transformation of transactions between different representations.
Scoreboard receives transactions from system and physical interface
monitors and performs comparison between ingress and egress transaction.
If discrepancy between expected (transmitted) and received packets is
detected, module reports an error in the test system.

C. In addition to global test system scoreboard, test system contains local
(system and physical) interface protocol checkers. Their goal is to check
that interface rules and invariants are not violated and otherwise report an
error.

D. Configuration agent is used to access a set of memory-mapped
configuration registers in the controllers. Those registers are accessed using
separate configuration interface. Initial phase of a test is writing desired
values to this registers.

4. Case study

This chapter describes the adjustment and highlights specific implementation details
of different test systems.

4.1 Verification of Link Training and Status State Machine

One of the features of PCI Express, WLCC and IPCC links is a complex procedure
of link initialization and training. During the initialization procedure device sends
data patterns containing device capabilities and its current state across the link.
Those data patterns are called a training sequence (TS). At the same time, using
information from received training sequences, the controller detects the presence of
a link partner, determines its active lanes and abilities. Based on this information,

199

Petrochenkov M.V., Mushtakov R.E., Shpagilev D.I. Verification of System on Chip Integrated Communication
Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 195-206

pair of devices establishes common mode of operation for transaction transfer. In
addition, training sequences are used to change the state of the link (for example,
from active to low power mode or to the disabled state).

Presence of the LTSSM provides several additional challenges for the device
verification.

e To send the transactions across the link, the active link must be established
first. Thus, first action that the controller and its physical link agent partner
performs is a link training sequence.

e One must test ability of the device to change its state and check that it
reacts correctly to the state change of the link partner.

e In addition to “main” device states there are several “transient” states that
the device passes when switching from one main state to another.
Depending on training sequences received from link partner in transient
states, link training procedure either continues successfully or terminates
while reporting the error status.

It should be said that, despite the internal complexity of LTSSM protocols, they are
almost invisible to the transaction layer. Only information available to transaction
layer is whenever link is currently active or not.

4.2 Test systems based on a pair of controllers

To verify implementations of in-house communication protocols (IPCC and WLCC)
additional type of test system was used [7]. It is based on the pair of RTL-models of
communication controllers. In these test systems two controllers are connected
using their corresponding physical interfaces. Errors are injected by manipulating
the signals of physical interface. The structure of the test system is presented in
fig.2.

Error
Injection
Control Control

Interface J Interface

System Controller Controller System

Interface IPCC/WLCC IPCC/WLCC Interface
Physical

Interface

Scorehoard

!

Verdict
Fig 2. Structure of test system based on a pair of controllers
Advantages of the approach are as following.

e Simulation of device behaviour in realistic scenarios. Those devices (IPCC
and WLCC) use our company’s proprietary protocols to connect identical

200

TlerpouerkoB M.B., Mymrrakos P.E. IlInarunes JI.1. Bepudukarius KOHTPOIICPOB CBSA3M B CHCTEMax Ha KPHCTAILIC.
Tpyowt UCII PAH, Tom 30, Boim. 3, 2018 r., ctp. 195-206
devices, developed in-house. Thus, test system of this kind represents a
realistic use-case of the device.

o Simplicity of implementation. The development of physical level agent is a
labor-intensive and time-consuming, and its development cannot be
avoided by purchasing a third party Verification IP (VIP). In this approach,
the development of only a system agent is necessary, and verification can
start earlier.

Disadvantages are as following.

e Lower simulation performance is caused by the need to simulate two
identical controllers. This doubles the required computational resources.

e More difficult state and error injection control. To inject errors into sent
and received transactions one must either directly manipulate external
signals of the controller or use hierarchical access to modify the behaviour
of the controllers.

e Inability to detect “self-correcting” bugs (for example, incorrect CRC
polynomial). This disadvantage is mitigated by the fact those bugs will also
self-correct in “real” device.

e Absence of checks on lower protocol levels. The main way to detect an
error is to receive an unexpected packet on system interfaces. This may
cause difficulties in bug detection and localization in many cases. For
example, an error that causes an incorrect request to repeat a transaction
can be detected only by performance degradation.

One can reduce the disadvantages while keeping most of some of the advantages of
the approach by adding physical monitor on a link between devices.

4.3 Complex system agent in the Ethernet test systems

Distinctive feature of Ethernet test systems (both 10 Gigabit and Gigabit) is a
complex system agent [8]. To reduce CPU usage and increase device efficiency
controllers implement Direct Memory Access (DMA). Instead of sending Ethernet
frames directly to device interfaces, frames are stored in system memory and the
device reads the memory when it is ready for frame transmission. In a same way,
the system must prepare a memory space for device to store received frames The
device will write the data to this location after the frame reception. Ethernet
controllers are managed using a set of memory-mapped registers. The most
important ones are descriptor pointer registers (head and tail). Descriptors contain
an Ethernet frame metadata (size of frame, memory location address, higher-level
protocol information, etc...). The head register points to the first descriptor available
to the controller, and the tail points to the last processed by it. Using those registers
the controller reads and writes transaction descriptors and a frame memory. The
structure of Ethernet agents is presented in fig. 3.

201

Petrochenkov M.V., Mushtakov R.E., Shpagilev D.I. Verification of System on Chip Integrated Communication
Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 195-206

Ethernet System Agent

Swstem Memaory
Frame storage Frame storage
r<_head
thesd —
‘_ _____________
rx_tail
t_tail
____________ —
P
T descriptars Fix descriptars
ol
DibdA
Trregs 11 FXregs
TAaL }4 R TaAL
HEAD |- ---1 HEAD

Ethernet Controller

Fig 3. Structure of Ethernet controller test system

4.4 DDR4 Memory Controller protocol checks

A system agent in the memory controller test system consists of a set of two
modules: the management agent of the information written into the memory and the
agent for transferring requests from the system to the controller. The test system
requires more sophisticated physical protocol checkers. For this purpose, two
modules are used: the DFI protocol verification module and the DDR protocol
verification module.

Before active work with the memory is started, the controller performs
programming of the operating modes of the DRAM memory modules, conducts its
initialization and training. To verify these processes, the DDR Protocol Checker is
used. In addition to the fact that the module monitors the initialization and training
of the memory, it also controls the execution of all the time constraints imposed to
the controller when it issues commands to the memory.

Another important function of the memory controller is to periodically update the
data stored in the DRAM using a refresh command. Without periodic updates,
DRAM memory chips would gradually lose information, as capacitors storing bits
are discharged by leakage currents. DDR protocol checker is used to analyze
transactions on physical interface and to check if Refresh commands are issued
within specified timing constraints. In addition, the memory state is checked before
executing the Refresh command. The memory must be in the IDLE state. The
controller has built-in noise immunity mechanisms that allow to check the integrity

202

TlerpouerkoB M.B., Mymrrakos P.E. IlInarunes JI.1. Bepudukarius KOHTPOIICPOB CBSA3M B CHCTEMax Ha KPHCTAILIC.
Tpyowt UCII PAH, Tom 30, Boim. 3, 2018 r., ctp. 195-206

of the data, and to correct it if necessary. Such mechanisms include: rectification of
parity errors of the DDR bus, calculation of checksums, correction of CRC errors on
the data bus of the DFI interface while writing, and correction of ECC errors on the
DFI data bus during reading. Verification of noise immunity of transmitted data is
provided by the DFI Protocol Checker. In addition, checker provides a way to verify
the process of switching to and from power saving modes of memory chips by
checking their timing parameters.

5. Conclusion

Methods described in the paper were used to verify components of “Elbrus-16C”
microprocessor. Errors found in the controllers as a result of stand-alone verification
are presented in table 1.

Table 1. Results of stand-alone verification

Device Number of bugs
DDR4 MC 32
PCI Express RC 48
IPCC 13
WLCC 2
10 Gigabit Ethernet 51
Gigabit Ethernet 22

Verification of those devices is still ongoing. Our future work is aimed at improving
those test systems, developing additional test scenarios and using the approach to
verify other devices.

References

[1] Stotland 1., Shpagilev D., Starikovskaya N. UVM based approaches to functional
verification of communication controllers of microprocessor systems. In Proc. of the
2016 IEEE East-West Design & Test Symposium (EWDTS).

[21 PCI Express Base Specification Revision 3.0, http://pcisig.com/specifications

[3] Belyanin I, Petrakov P., Feldman V. Functional organization and hardware means of
network interconnection of modules in computer cluster on «Elbrus» microproseccors.
Voprosy radioelektroniki [Issues of radio electronics], ser. EVT, no. 3, 2015, pp. 7-20
(in Russian).

[4] |EEE Standard for Ethernet. IEEE Std 802.3-2012. 1983 p.

[5] IEEE Standard for SystemVerilog — Unified Hardware Design, Specification, and
Verification Language. IEEE Std 1800-2012

[6] 1800.2-2017 - IEEE Standard for Universal Verification Methodology Language
Reference Manual

[71 Stotland I., Shpagilev D., Petrochenkov M. Features of High Speed Communication
Controllers Standalone Verification of «Elbrus» Microprocessor Systems. Voprosy
radioelektroniki [Issues of radio electronics], ser. EVT, 3, 2017, pp. 69-75 (in Russian).

[8] S. Chitti, P. Chandrasekhar, M. Asha Rani. Gigabit Ethernet Verification using Efficient
Verification Methodology. In Proc. of the International Conference on Industrial
Instruments and Control (ICIC), 2015, pp.1231-1235.

203

Petrochenkov M.V., Mushtakov R.E., Shpagilev D.I. Verification of System on Chip Integrated Communication
Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 195-206

Bepudumkaums KOHTponnepos CBA3U
B CUCTeMaX Ha Kpuctanne

M.B. I[lempouenxos <petroch_m@mcst.ru>
P.E. Mywmaxos <mushtakov_r@mcst.ru>
JLU. lnazunes <shpagilev_d@mcst.ru>
AO «MILICT», 117105, Poccus, e. Mocxkea, yn. Haecamunckas, 0.1, cmp. 1

AHHOTanmsi. B cTaThe ommcaHBl MOXXOJBI, KOTOPBIE HCIOJIB30BAINCH A BepUHUKALMN
KOHTPOJUIEPOB CBS3U B CHCTeMax Ha KpucTaiuie, paspabarbiBaeMbeix B MLICT. IlpeacraBnen
CITMCOK KOHTPOJUIEPOB CBSI3M, a TAaKKe UX XapaKTepUCTHKH. [IpuBeqeHBI MPUHIMUITEI PAOOTHI
KOHTPOJUIEPOB HAa YPOBHE TPaH3aKLMH, KaHATHHOM U (PU3NYECKOM, M OTMEUCH MX OO
¢yHkumoHan. 3areM onmcaH OOMMHA MOAXOJ K BepU(PUKAIUU YCTPOMCTB: NPHHINI
NPOEKTHPOBAHMS TECTOBOW CHCTEMBI, TCHEpallMM CIYYailHBIX TECTOBBIX BO3JICHCTBUI M
NPOBEpKU IoBeeHNsT ycrpoicTBa. IlpencraBieHa oOmas CTPYKTypa TECTOBOW CHCTEMEI,
OCHOBaHHAas Ha OOIIMX CBOMcTBaX yCTpoHCTB. OHa BKIIOYAET KOMIIOHEHTHI IJIs paboTHI C
HHTEPQEHcOM YPOBHS TpaH3aKIHMH (CHCTEMHBIN areHT, pealu3yOMUi KOMMYHHKAIUOHHBIH
TIPOTOKOJI CHCTEMBI Ha KPHCTAIUIE), HHTepdericoM GU3NIECKOro ypoBHS ((PHU3HUECKUI areHT,
peann3ylomuil KOMMYHHMKAIIMOHHBIH TIPOTOKON MEXIy pa3NIUYHBIMH CHCTEMaMH Ha
KpHCTaJUIe Ha OJHOHM IuIaTe), MOAYJIb KOH(HIYpalHMOHHOrO HHTep(eiica, onpenesnsonero
pexuM paboTBl yCTPOWCTBA, a TaKKe MOIYNb NpoBepkd. OTMEYEHO, 4YTO MOCKOJIBKY
YCTPOWCTBA HCIIONHSIOT TOJBKO IPeoOpa3soBaHWs TPaH3aKUUH MEXIY pa3IudHBIMU
NPEICTAaBICHUSIMH, 3aKII0YEHHE O KOPPEKTHOCTH MOBEAEHHS OCYIIECTBIISIETCSI HA OCHOBAaHUHU
MPOCTOM MPOBEPKU COBMAACHMSI BXOAALIMX W HUCXOAALIMX TpaH3akuuid. Kpome Toro,
TIpUBEAEHBI 0COOEHHOCTH (PYHKIHMOHANA YCTPOICTB, KOTOPBIE TPeOYIOT ajanTandd OOIIero
nmonxona. OOBSCHEHO, Kak BepH(UKAIMsi MaHHBIX OCOOGHHOCTEH pabOTBI yYCTPOWCTB
OIIpefieNuIa JeTall CTPYKTYPHI TECTOBBIX cucTeM. OrmmcaHo, Kak 3aMeHa (pu3nueckoro
areHTa Ha BTOPOIl KOHTPOJUIEP CBSI3U MO3BOJISIET YCKOPUTH Pa3pabOTKy TECTOBOW CHCTEMBL.
[IpencraBneHbl METOJBI M CIIOXKHOCTH BepU(HKAIUK KOHEYHOTO aBTOMAra TPEHHPOBKH U
cocrosiaust uHKa (LTSSM). Onmcana ctpykTypa ¥ OPHHIMI PAbOThl CHCTEMHBIX areHTOB,
MOJIEPKUBAIOIIUX NpAMON aoctyn k mamatd (DMA). B 3aknroueHue NpHUBENEH CIHMCOK
HaliICHHBIX OIIMOOK M HANpPaBIICHNs TaJbHEHIIeil paboThI.

KuroueBble cioBa: Dip0pyc; cucreMa Ha Kpucraiuie; KoHTpoiiep cesizu; Ethernet; DDR4;
PCI Express; UVM; aBronomHasi BepuuKarus

DOI: 10.15514/ISPRAS-2018-30(3)-14

Jas uurupoBanms: IlerpouenkoB M.B., Mymrakos P.E., Hlnarunes J.1. Bepuduxarus
KOHTPOJIJIEPOB CBsA3U B cucTteMax Ha kpucramie. Tpyast UCII PAH, tom 30, Beim. 3, 2018 1.,
crp. 195-206 (na anrsmiickom s3bike). DOIL: 10.15514/ISPRAS-2018-30(3)-14

204

mailto:mushtakov_r@mcst.ru

TlerpouerkoB M.B., Mymrrakos P.E. IlInarunes JI.1. Bepudukarius KOHTPOIICPOB CBSA3M B CHCTEMax Ha KPHCTAILIC.
Tpyowt UCII PAH, Tom 30, Boim. 3, 2018 r., ctp. 195-206

Cnucok nutepatypbl

[1]

[2]
[3]

[4]
[5]

[6]
[71

(8]

Stotland 1., Shpagilev D., Starikovskaya N. UVM based approaches to functional
verification of communication controllers of microprocessor systems. In Proc. of the
2016 IEEE East-West Design & Test Symposium (EWDTS).

PCI Express Base Specification Revision 3.0, http://pcisig.com/specifications

bensnun U., [letpakos I1., @enpaman B. dyHkMoHanbHas opraHu3alnys U anmnaparypa
CCTCBOI'0O B3aPIMOﬂeI71CTBPH71 Moz[yneﬁ B BBIYHUCIUTCIBHOM KJIACTEPE Ha Oaze
MHKPOIIPOLIECCOPOB C ApPXUTEKTYPOH «Ip0pyc». Bompockl paano3nekTpoHUKH, cepust
OBT, Bbim. 3, 2015 ., ctp. 7-20.

IEEE Standard for Ethernet. IEEE Std 802.3-2012. 1983 p.

IEEE Standard for SystemVerilog — Unified Hardware Design, Specification, and
Verification Language. IEEE Std 1800-2012

1800.2-2017 - IEEE Standard for Universal Verification Methodology Language
Reference Manual

Crotnang W., Hlmarmnes /[I., IletpouerkoB M. OcoOGeHHOCTH (YHKIMOHATBHOMN
BEpUBUKAIIUU KOHTPOJUIEPOB BBICOKOCKOPOCTHBIX KaHaJIOB obmena
MHKpPOTIPOLIECCOPHBIX CHUCTEM CeMeHCcTBa «DIpOpyc». Bompockl paauosieKTpOHUKH,
cepust OBT, Boim. 3, 2017, ctp. 69-75.

S. Chitti, P. Chandrasekhar, M. Asha Rani. Gigabit Ethernet Verification using Efficient
Verification Methodology. In Proc. of the International Conference on Industrial
Instruments and Control (ICIC), 2015, pp.1231-1235.

205

Petrochenkov M.V., Mushtakov R.E., Shpagilev D.I. Verification of System on Chip Integrated Communication
Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 195-206

206

[MporpamMmMHble pelueHus ans
ANHAMNYECKOro U3MeHeHus
nosib3oBaTesIbCKOro nHrtepdenca Ha
OCHOBe aBTOMaTU4eCcKun cobpaHHOMn
UHopMaLumm o nonb3oBartene

B.B. 3ocumos <zosimovww@gmail.com>
A.B. Xpucmooopos <belfegor26@gmail.com>
A.C. Byreaxosa <sashabulgakova2@gmail.com>
Huxonaesckuii nayuonanonviil ynugepcumem um. B.A. Cyxomauncko2o
Yxpauna, 54030, o. Huxonaes, yn. Huxkonvckas, 24

AHHOTammsi. B cratke ONMCHIBAIOTCS (DYHKIMOHANBHBIE BO3MOXKHOCTH U CTPYKTypa
NPOrpaMMHOI0 MOJYJs [Jis aBTOMAaTH3MPOBAHHOW ajantanuu HMHTEp(delcoB Be6-
npunoxeHnit. Ocoboe BHHUMaHWE yAelseTcs HMIACHTH(GUKAIUK W Pa3NUICHHIO
TICEBIOAHOHMMHBIX MOJIb30BaTENel BeO-NMPHIOKEHUI Uil ajnantaumu uHTepdeiica mox
KOHKPETHOTO mHoib3oBaTens. PaspaboTaHHblii moaxonx obecreunBaeT — BO3MOXKHOCTB
NICEBIONACHTU(DHKAIIMY KHOEPCYIIHOCTEl B KOHTEKCTE IIOBE/ICHUSI IIOJIb30BATeNied U
ABTOMATHU3UPOBAHHYIO ajanTaluio HHTep(EeicoB 1moJ OCOOSHHOCTH BBIIEIEHHOTO
TMOJTB30BAaTENs B 3aBUCHMOCTH OT ITOCTAaBJICHHBIX 33/1a4.

KioueBble ciioBa: uHTepdeiic; alanTHBHOCTb, HHAYKTHBHOE MOJEIHPOBaHKE; BeO-
HHTEpdeiic

DOI: 10.15514/ISPRAS-2018-30(3)-15

Jas murupoBanmsi: 3ocumoB B.B., Xpucrogopos A.B., Bymrakosa A.C. IIporpammHble
pelreHust A8 JUHAMHYECKOTO HW3MEHEHHs MOJIb30BaTeNbCKOro HHTepdeiica Ha OCHOBE
aBTOMaTH4ecku cobpanHoit uHpopManuu o nonszosatene. Tpynst UCII PAH, Tom 30, BbIm.
3, 2018 r., cp. 207-220. DOI: 10.15514/ISPRAS-2018-30(3)-15

1. BeedeHue

WuTepdeiicet — 3T0 HeoTheMJeMas COCTABISIOMIAs 3BEHBEB BOCHPHUATHA
NPOTPaMMHBIX IPOJYKTOB M yIpaBleHHs HMH. VMeHHO OHHM oOecrednBaroT
yIpaBl€HUE NPOrpaMMHBIMH NMPOAYKTaMH U CBA3b MOJIb30BaTENeH ¢ MporpaMMoil.
Heycrannas unrerpanus IT-texnonoruil B cpeny CyLecTBOBaHHS COBPEMEHHOIO
YeJoBeKa MOPOXKAAeT Bce OOJBLIMH CIpoc Ha pa3pabOTKH B 00JIaCTH aiarTaluu

207

Zosimov V.V., Khrystodorov O.V., Bulgakova O.S. Dynamically changing user interfaces: software solutions based on
automatically collected user information. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 207-220

uHTep(dEiicOB IMPOrpaMMHBIX IIPOXYKTOB, HAIPABICHHBIX HA yJOBICTBOPEHHE
MOTPEeOHOCTEH TOTH30BATEIIECH.

[IporpaMMHBIE HPOAYKTOB, OPHEHTHPOBAHHBIE HA MOBBINICHHE ynoOCTBa
HOJIL30BaHUs HHTEpdeiicaMu, 061aafoT CIIeAYIOIUMHI JOCTOMHCTBAMHE:

® YOPOUICHHWE BOCIPHUATHA OHM3HEC-JIOTMKM MPOTPaMMHOTO TPOIYKTa
KOHKPETHBIM I10JIb30BaTENIEM,;
e THOKOCTH MOJEINH MPENCTABICHIS HHPOPMAIINH;
e TIOBBIIICHHUE MTPONU3BOIUTEIHFHOCTH PaOOTHI ¢ HHTEP(EHCOM.
[Non nuHAMHYIECKNM N3MEHEHHEM HHTepdelica ceayeT MOHUMATh €T0 alalTalnio B
pe3ysbTaTe BBIMOJHEHUS HEKOTOPOTO CIEHApHsS Ha OCHOBE IIOBEICHUYECKOTO
MOPTpEeTa HOIb30BATENS.
Haunbomnee momHBII 0030p conep)kaHMs aJalTHBHOTO IIOBEJCHUS YEJIOBEKO-
mamuHHOro uHTepdeiica (UMW) comepxkurcst B [1]. ABTOpBI HpemiarailoT TpH
napameTpa uHrepdeiica, KOTOpble MOTYT MEHSTHCS:
® cozaepKaHHUE MPEACTABISIEMON MH(POPMALIHH;
e ¢opma npencraBieHAs HHGOPMAIN 1 BEACHHUS ANAJIOTa;
e paclpelesieHHEe 3aJad MEXIy 4YeJOBEKOM M MalnHON (YpOoBEHb
aBTOMATH3AIIHH).
B apyrux paboTax Jekiapupyercs, 4To aIalTHBHOCTh nHTepdelica mposBiseTcs:

e B HACTpOWKE YPOBHSA JAETAIHM3AalUU [Wallora C IONb30BaTeleM — OT
MOIPOOHOTO AMAJOra, «BEAYIIEro» IOJIh30BaTeNl K LENIH IIar 3a IIaroM
gepe3 HepapXui0 MEHI0, K KOPOTKOMY, C HCIIOJB30BAHUEM COKPAIEHHBIX
KOMaH]l 1 MaKpOCOB B PEXHME «BOIPOC-0TBET» [2];

® B MOJCKAa3KaX, OTPAaHUYECHUH JOCTyMa K MPUIOKEHHUSIM, PETYIUPOBAHUHI
HHTCHCUBHOCTH MH(OPMAIIMOHHOTO OOMEHa ¥ M3MEHEHHIO BHEIITHETO BUIa
untepdeiica [3,4];

e B (QHIbTPAIMK M PACCTAHOBKE MPHUOPUTETOB KOHTEHTA, MPEIJIOKCHHOTO
[I0JIB30BATENIO; 3TO MOXKET MPOMCXOJUTh HE TOJBKO B COOTBETCTBUU C
COOCTBCHHBIMU TPEATIOYTECHHUSIMA, HO | TO]T BIASHUECM BHEITHUX ()aKTOPOB
U KOHTEKCTa (HampuMep, TIOJNB30BaTENI0 MPEIBIBISACTCS MPOAYKT,
KOTOPBII BBITOJTHO KYIIHTh UIMEHHO ceitgac [5]);

e B U3MCHCHHU TEMIIA IMOIa4u HHPopManuu [6];

® B HACTpOWKE IapaMeTpoB H300pakeHHs (TOJINUHBI JIMHUH, pa3Mepa
mpudTa, IPKOCTH H 1Ip.).

B ycnoBusxX KOHKYpEHIIMH COBPEMEHHBIX Pa3pabOTOK B 00JacTH pa3padOTKU U
NPUMEHEHHST WHTEPAKTHBHBIX HHTEP(PEHCOB MOBBIMIACTCS AKTyaJbHOCTH
WCCIIeTOBaHUI B HaIpaBICHUU ABTOMAaTH3UPOBAHHON aJanTarm
MOJIb30BaTEbCKUX ~ WHTepdericoB. [log aBTOMAaTH3MpPOBAHHOW a;amTarueit
MOHUMAETCS TUHAMUYECKOE W3MEHEHHE II0JIb30BATEIbCKIX WHTEepdeiicoB Ha
OCHOBE aBTOMATHYECKH COOPAHHON MHPOPMAITUH O TI0JIh30BaTEIE.

208

3ocumos B.B., Xpucronopos A.B., Bysirakosa A.C. IIporpaMMHble penieHus JUls JHHAMUYECKOT0 H3MECHEHHs
TOJIB30BATENBCKOT0 HHTEp(elica Ha OCHOBE aBTOMAaTHYECKU cOOpaHHO# nHpopMamu o nons3oBatene. Tpyost UCIT
PAH, tom 30, Bbim. 2, 2018 1., cTp. 207-220

3HAUUTEIBbHYI0 pOJb B MCCICAOBAHMM MOJAENEH W METOJOB aJalTaluu
uHTepdeiicoB urpator noctikeHus Ilutepa Okepcnu [7]. OTaenbHBIE BOIMPOCH
MPOEKTUPOBAHUS u aHajM3a HCIIOJIb30BAHUS BO3MOXKHOCTEH
NICEBJIOUICHTU(HUKALIMA paccCMaTpUBAIOTCsl B Tpynax uccienosareneil I'. Kpuina,
K. Hoxuns, k. 'mimop [8, 9]. HekoTopbie BOIPOCH UCTIONB30BaHUS TEXHOJIOTHN
cOopa MaHHBIX B aBTOHOMHBIX KHOep(H3WYecKHx CHUCTeMax pacCMaTPHUBAIOTCS B
pabotax otedecTBeHHBIX yueHBIX A. Boukapesa, B. I'omem6o [10].

B [8-10] paccMoTpensl (yHOaMeHTaNbHBIE MPHUHIUIGI W KOHIICTIIHH, KOTOpBIC
NPUMEHSIOTCA TPH pealu3aliddl INPOTPAMMHBIX MPOAYKTOB, MPEACTABICHBI
pasnuyHbIE MOZIEIM M METOABI, HAllPaBICHHbIC Ha YIYYIICHHE BOCIPUATHA H
B3aUMOJICHCTBUSI ¢ MHTepdelicaMy KOHCUHBIX NPOrpaMMHBIX Mpoxykros. Ho Bce
9TH AacleKThl pPacCMaTpPUBAINCh KaK OTHEIbHBIC 3a/lauyd, M OTCYTCTBOBAJIO HX
00BEANHEHNE B CIUHYIO aIalITHBHYIO CHCTEMY.

AHanu3 pe3ynabTaToOB MPEABIIYIINX HCCICAOBAHUM ITTO3BOJMI NPHUHTH K BBIBOIY,
YTO Ha CETONHAILIHMI J€Hb HEYKIOHHO pacTeT CHpOC Ha CHCTEMBI aJaNTalliH
uHTep(eiicoB BO BCeX cdepax MX HCIOIB30BAHHA, a PAOOTOCIIOCOOHBIE CHCTEMBI
OTCYTCTBYIOT. B JaHHOU cTaThe OMHCHIBACTCS pa3pabOTaHHBIA aBTOPaMHU MOJXOI,
JIOBEJICHHBIH /10 POTPaMMHOM peaii3anunu.

1. WHOyKkmueHbIli nodxo0 K MNOCMPOEHUro adanmueHbIX
uUHmep@gelicoe

ITycte CR = {Cry, ... Clicr} — MHOXKECTBO KPUTEPHEB, KOTOPhIE OYIyT H3MEHATCH,
TO ecTh aJanTUpoBaThCA oA momb3oBatens, Fact = {fact;, ... factp.q}
MHOXECTBO (PAKTOpOB, KOTOpBIE OYAYyT BIHUATH Ha BBHIOOP TOTO WM WHOTO
KPUTCPHSL.

Ha ocHoBe BbIIEIEHHBIX 3apaHee (PaKTOpOB, KOTOPBIE MOTYT BIUATH Ha HHTEpdeiic,
OyAyT MEHSTBCS KPUTEPUH IOCTPOCHHS WHTepdeiica. UHAYKTHBHOCTh mpoIecca
3aKIIFOYaeTCs B TOM, YTO aJanTalds WHTepdeica MPOUCXOTUT OT KOHKPETHBIX
JAHHBIX HAOJIONEHHWH, TO ecTh (akropoB — k oOmed momemu [11], koropas
BKIIIOYAeT B ceOs MHOXECTBO KPHUTEPUCB, KOTOpPBhIE OYIYT MEHATHCS (HAIIpUMED,
Opyd HM3BECTHOW uHpOpMANUU O BO3pacTe Mojb3oBarens ((pakrop —BO3pPacT),
YBEJIMYHUTH pa3Mep MIPUQPTa (JUTS MOKUIBIX JTIOJCH) — KPUTEPHU.

CrnenoBarenbHO, MCXOAS W3 BBIIMIECKA3aHHOIO, MOXHO MOCTPOHTH (GyHKIHI0 O,
OTPaKAIONIYIO MPOLIECC aAANTAINH, TIe € — ITapaMeTphl MO)IGJ'II/I'

m

O(cy (fact,,.... fact,),....cr, (fact,,.... fact.) = 6, +Z€cr2 (fact,,..., fact.) +

m m m m m

+ZZ@ crch (fact,.... fach)+ZZZ cr,crjcr}ci (fact,,.... fact.) + ...

i=1 j=1 i=1 j=1 &=l

061112[5[(byHKHI/IOHaIILHaH CX€Ma MCXaHu3Ma ajalrainun HHTep(beﬁca npeacTaBJjiCHa
Ha pI/IC.l. MexaHu3M COCTOMT M3 HECKOJILKHMX OJIOKOB: OJIOK OIpCACIICHUA

209

Zosimov V.V., Khrystodorov O.V., Bulgakova O.S. Dynamically changing user interfaces: software solutions based on
automatically collected user information. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 207-220

(haktopoB, rae GopMUPYIOTCA/XpaHATCS (HAKTOPHI TMOJIB30BATENS, KOTOPBIE MOTYT
BIMATh Ha KPUTEpUH M3MEHeHus1 uHTepdeiica, TO ecTh ajanranuu; OJIOK
(dhopMupoBaHus KpUTepHeB (KOJUYECTBO KPUTCPHUEB IS KAKIOTO (haKkTopa MOXKET
OBITh pa3HOIi); OJIOK 0OPAOOTKHU TaHHBIX, B KOTOPOM MPOTPaMMHEIM 00pa3oM OyaeT

00pabaThIBaThCs COJEpIKaHWE KPUTEPHEB, NMPUBOJUT K M3MEHEHWIO HHTepdeiica
[12].

Cpepa nonb3oBarensa K- -

!

MexaHu3Mm aganTtauumn

Bnok onpegenenua
dakTopoB

\

Bnok gopmupoBanna Kpntepuer

| Monb3oBarens I=$

dopmupoBaHme 6a3bl faHHbIX

'3

I Bnok 06poboTkK AaHHbIX

Puc.1. Cocmasnvie yacmu mexanusma adanmayuu unmepgeiica
Fig.1. Components of the interface adaptation mechanism

2. TpebosaHusi K NPo2pPaMMHOMY NPOdyKmy

IIporpaMMHBI TPOAYKT AODKEH obOecmedmBaTh CleAylomue (yHKINOHAIbHEIE
BO3MOXXHOCTH!

e cOop u XxpaHeHHe MH(DOPMAIUH O MOJIF30BATEISIX COOTBETCTBYIOMIETO BEO-

MIPUII0KEHNUS;

® TICEeBIOMICHTHU(UKAIMIO TII0JIb30BaTeNiel Ha OCHOBaHMM COOpaHHBIX
JIaHHBIX;

® aBTOMAaTH3MPOBAHHYIO aJlanTanuo nunrepgeiicon

TICEBIOUICHTH(DUITUPOBAHHBIX TTOJIb30BATEICH.
[IporpaMMHEI IPOAYKT TOJKEH COOTBETCTBOBATH CJIEIYIONINM TPEOOBAHUSIM:
1. xoHTpomupyeMbli cOop wHpOpMAImMH O TMOJB30BATENAX BeO-
MPWIOKCHUS,
2. cO31aHUC W NOAJCPKKA Oa3bl JAHHBIX MOJNYYCHHOMN HHPOPMALINY;
3. rmceBmouneHTH(UKAIUS TMOJIH30BATENICH BEO-NPIIIOKCHUS Ha OCHOBE
coOpaHHOM HHOpMAIIHY;

210

3ocumos B.B., Xpucronopos A.B., Bysirakosa A.C. IIporpaMMHble penieHus JUls JHHAMUYECKOT0 H3MECHEHHs
TOJIB30BATENBCKOT0 HHTEp(elica Ha OCHOBE aBTOMAaTHYECKU cOOpaHHO# nHpopMamu o nons3oBatene. Tpyost UCIT
PAH, tom 30, Bbim. 2, 2018 1., cTp. 207-220

4. aBTOMAaTH3MPOBaHHAs AJANTALHs OJIb30BATEILCKOTO HHTEpdelica BeO-
NPWIOXKEHHS HAa OCHOBAaHMM COOpaHHBIX W 00pabOTaHHBIX
OPOrPaMMHBIM MPOAYKTOM JAaHHBIX.

Hmxe npoBeneH cpaBHEHHE NPEIbABICHHBIX TPEOOBAaHMH C BO3MOXKHOCTAMH
CYIIECTBYIOIIMX AHAJIOTOB. 3a IOCJIEAHUE TOAbl COPMUPOBAIOCH U MPONOIDKAET
pa3BUBaThCS HAIIpaBJIEHHE KOPPEKTUPOBKH KOHTEHTA, CTPYKTYpPHI caiiTa, KOHTPOJIs
BHYTPEHHHUX ¥ BHEIIHHUX (DaKTOPOB MPEOBIBAHUS U B3aMMO/ICHCTBUS MOJIb30BATEIS C
uaTepdeiicoM. DTo HeoThemiieMas COCTAaBIAIOINAs yCIIeXa MAapKETHHTOBBIX H
MHPOPMAIMOHHBIX caiiToB. CymIecTBYeT TOCTAaTOYHO OONBIIOE KOIHYECTBO CHCTEM
cbopa uHpOpMAIHK O MOTB30BaTENX, HanpuMep, Amplitude [13], Mixpanel [14] u
Ip. DTH MporpaMMHBIE MPOILYKTHI YIOBJICTBOPSIOT TpeGoBaHusM 1 M 2, HO He
YIOOBJICTBOPSIOT TpeOoBaHHAM 3 u 4. IIpakTHYEeCKH OTCYTCTBYIOT CHCTEMBL,
KOTOPBIC YIOBJICTBOPSIIOT BCEM YETHIPEM NEPEUHCIICHHBIM TPEOOBAHHSM.

3. CmpykmypHas cxema rnpo2pamMmMHO20 rnpoodykma

Ha puc. 2 npencraBieHa cxema B3anMoAeHCTBHS porpaMMHOi cucteMbl «AAUI -
Automatic Adaptation of User Interfaces».

Adaptation

Identification

Process identifier

Operating
system

Browser identification

Human behavior

Puc 2. Cxema e3aumooeiicmsus npoepammuoti cucmemvt «AAUID»
Fig. 2. Diagram of interaction of the "AAUI" software system
biox «AAUID» siBnsieTcsi HaYaJIbHBIM MOAYJIEM, HAaUWHAs C KOTOPOTO MPOUCXOTUT
B3aUMOJICHICTBAE C KOMIIOHCHTaMH THporpaMMHoro mpoaykra. «ldentification»
peanm3yetr GOpMHPOBaHUE CYIIHOCTH Ha OCHOBaHWUHU coOpaHHOW mH(OpMaImu 00
00BeKTe, KOTOPHIM MPOSBUI aKTUBHOCTH. «Operating system» obecriednBaeT cOOp

211

Zosimov V.V., Khrystodorov O.V., Bulgakova O.S. Dynamically changing user interfaces: software solutions based on
automatically collected user information. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 207-220

MHGOpPMAMM O NPOrPaMMHBIX CPEACTBAX AaKTHBHOTO OOBEKTa IOCELICHHS.
«Browser identification» otBewaer 3a cOop WHPOPMAIUK O TIPOTPAMMHOM
obecrieueHNH, KOTOpOE 3a/IeHiCTBOBAaHO BO B3aUMOJCHCTBUM C KOHEYHBIM
nporpaMMHBIM mpoaykroM. «Human behavior» oOecnieunBaeT IPOBEPKY
BO3MOXKHOTO TIPOLIJIOr0 TPHCYTCTBHS MCEBIOACAaHUMHU3MPOBAHHOTO O0OBEKTa.
«Adaptation» oTBedaeT 3a IPOrPaMMHYI0 aJalTallMI0 Ha OCHOBE CO3JaHHOTO
oTHeyarka MCeBJOACaHMMU3UPOBAHHOTO OOBEKTAa B3aUMOJEHCTBUS C KOHEYHBIM
nponykroM. «Database» oTBedaeT 3a COXPaHHOCTh MNPOAHATU3UPOBAHHOM
MH(POPMALIH, TOKEHOB IICEBJOACAHNMU3ALUH U MPaBWI aJanTauiuy MHTepdeicos.
«Process identifier» oTBedaeT 3a coriacoBaHWe MIECHTH()HUKAINU CYIIECTBYIOIIIX
00OBEKTOB B3aHMMOJACIHCTBHSI.

Ha puc. 3 MNpeaAcTaBjICHA 0JIOK-CXeMa HMCIIOIb30BaHHUS MNporpaMMHOTO IPOAYKTaA.

LOGIN
v
Set token
v
Checking visit
User identified - »| Usernot identified
v v
Aalysis s savig changes mace
v
Involvement rules
v
Tracking status changes
Saving thlate st user
settings
» LOG OUT -

Puc 3. Cxema ucnonvsosanus npocpammHozo npooykma
Fig. 3. Scheme of using the software

212

3ocumos B.B., Xpucronopos A.B., Bysirakosa A.C. IIporpaMMHble penieHus JUls JHHAMUYECKOT0 H3MECHEHHs
TOJIB30BATENBCKOT0 HHTEp(elica Ha OCHOBE aBTOMAaTHYECKU cOOpaHHO# nHpopMamu o nons3oBatene. Tpyost UCIT
PAH, tom 30, Bbim. 2, 2018 1., cTp. 207-220

B Omoke «Set token» — mporpammuas cucremMa «AAUI» renepupyer
uneHTudukarop. [‘eHepanus HUIACHTUPHUKATOpPA TMPOUCXOMUT MAPALICIBHO CO
cOOpOM JIOMIOJHUTENBHBIX JAHHBIX JUIi OoJiee TOYHOW HICHTU(UKAIUH
MOJIb30BAaTENA, pUC. 4.

_getsr erprint() {
fuseragent » HTTP_USER_AGENT ']
$accept $_SERVER AWCCEPT']

$charset §_SERVER
$encoding = $_SERVER

EPT_CHARSET ']

EPT_ENCODING]

$language = $_SERVER EPT_LANGUAGE "]
$data
$data Suseragent

$data $accept
fdata $charset

$data $encoding
$data $language
Shash ("sha256", $data)

%hash

Puc 4. Peanusayus 610ka eenepayuu uoeHmuguxamopa
Fig. 4. Implementation of the 1D generation unit
«Checking visity» — mpoBepka Ha BO3MOXKHOT'O NPEABIAYIIEro MOCEUICHUs] cepBHca
MOJIb30BaTEIIEM.

e Ecnu monp3oBatens uaentudpunupyercs («User identified») mpoucxomut
aHaM3 TOBEICHYECKUX XapakTephCcTHK «Analysis rulesy, coOpaHHbIX Ha
OCHOBE 00BEKTOB unrepdeiica POTrPaMMHOTO MPOJIyKTa,
OpHEHTHPOBAHHBIX HA OTCIICKMBAHME HW3MCHEHHH; MNPUMEHEHUE
nepcoHabHbIX HAcTpoek «Involvement rules» u nanbHeiinee HabmoCHUE
32 M3MEHEHHEM [OTCHIMATbHO H3MEHSIEMBbIX HACTpoeKk wuHTepdeiica
«Tracking status changes». Bce u3meHeHusi HacTpoek BeO-uHTEpdeEiica,
KOTOpBIE OTCIIS)KUBAIOTCS, COXPAHSIOTCS B 0a3e JaHHBIX KaXIblil pas,
KOT'/Ia OHH MPOUCXOJIAT — «Saving the latest user settingsy;

e B ciyuae, eciii 1oJjib30BaTelb BIEPBbIE MOCEIIaeT BeO-cepBuc, T.e. «User
not identified», mpowcxomWUT OTCIEKMBAHHE HW3MEHEHHWH, 3aJaBAEMBIX
MoJIb30BaTeNeM, U UX B 0a3e JaHHBIX coxpaHeHHe «Saving changes made
by the user».

4. [MpoecpammHasi peanusayusi

OCHOBHBIM TIPEHIMYIIECTBOM IIPOTPaMMHON CHCTEMBI SIBISIETCS TIPHMEHEHHAS
MOJIeNb WJICHTH(HKAUN AHOHUMHBIX MOJh30BATEICH KOHEYHBIX MPOTPaMMHBIX
MPOAYKTOB C JaJbHEHIINM HUCIOJIh30BAHUEM JHMHAMHUYCCKOTO HICHTU(DUKATOPA IS
ABTOMATHYCCKOW ajganTanuu uHTepdeiica TOoA WACHTUPHUIIMPOBAHHOTO
MOJIb30BATENISI.

213

Zosimov V.V., Khrystodorov O.V., Bulgakova O.S. Dynamically changing user interfaces: software solutions based on
automatically collected user information. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 207-220

«AAUI» sBnsieTcss cepBEepHbIM IPOTPAMMHBIM TMPOAYKTOM, HAMMCAHHBIM Ha
CKpUITOBOM si3plke nporpammupoBanusi PHP. IlporpaMMHBII ~ OpOOyKT
obecrieuynBaeT:

® QIMHHHCTPHPOBAHHE IPOTPAMMHOIO MPOIYKTa (YIpPaBIECHHE CIIHCKOM
3a71eHCTBOBAHHBIX ¢unpTpOB nACHTH(UKAINH, HN3MCHEHHE,
pelaKTHpOBaHUE, CO3AaHUE PABIII aallTalluk);
e XpaHeHue U 00paboTKa HHPOPMAIIMH O MOJIH30BATENAX;
e obecnieyeHue XpaHeHHs: HHYOPMALUH O CECCHSX.
B «AAUIl» npeaycMOoTpeH MeXaHU3M HACTPOMKH IICEBIOJECAHOHUMM3ALUHI
MOJIb30BATENICH, U WX TPYNIHMPOBKU II0 3aJaHHBIM (uibrpaM. DyHKIMM Tpynm
10JIb30BaTEJICH:
1. TrpynmupoBKa CIMCKOB IO CTPaHaM MOCEIICHHS;
2. TPYIIHPOBKA CIMCKOB MOJIH30BATENEH 10 SI3BIKY I10JIb30BaTENEH;
3. TpYNNUpPOBKA MO KOH(UTypaluK KOHEYHOTO YCTPOHCTBA ITOCETUTEIS;
4. xoMOWHaNMA TPYI JUIsS BBIICIEHUS LIeIeBOH ayTUTOpHH.
Hagexnocts ® ycToiiumBoe ¢yHkuuoHupoBanme «AAUI» mocturaercs
COBOKYITHOCTBIO CJIEYIOIINX OPraHN3allMOHHO-TEXHUYECKIX MEPOTIPHSTHIA:
1. OopraHu3anusa Ha[[e)l(HOﬁ 3alllUThI CricuuaJaucraMu nmo
KnOep0e301acHOCTH BeO-TIPUIIOKEHNUH;
2. oOpraHMzalMd peryJjsipHOr0 M KayeCTBEHHOTO TEXHUYECKOTO
00CITyKMBaHHs CEPBEPHOM YaCTH;
3. CBOEBpEMEHHOE 00CITyKMBaHUE 0a3bl JaHHBIX.
CepBepHoe mpmitokeHne «AAUI» B3aUMOJCHCTBYeT C IMOCETHTEIEM BeO-
MPUJIOKEHUS ¢ Havaja ero B3auMOICUCTBHS ¢ HHTep(ercoM BeO-puIokeHus (puc.
5). YpOBEHB «IOTIIONICHHUSI» COOPAHHOM HH(POPMAIHH O TOCETUTEIIC YCTAHABIHBACT
aJIMUHUCTPATOP MPOTPAMMHON CHCTEMBI.

Be06-
IPUIOKEHUE

ITonp30BaTenn

Puc 5. Cxema mooenu 3aumooeticmeust
Fig. 5. Diagram of interaction model

OCHOBHBIM HCTOYHHKOM XPaHEHUS JMJaHHBIX SBIsIeTCS 0a3a NaHHBIX. B Hel
XpaHUTCA I/IH(l)OpMaHI/ISI O MOJYYCHHBIX CYITHOCTAX NCEBAOACAHOHMMHU3NPOBAHHBIX
noJip3oBatenax. Jns xpaHeHUs WHPOPMAIWUM HCHOJB3YeTCs CBOOOIHAs CHUCTEMa
yIpaBlIeHUsT pPeIIMOHHBIMU Oa3zamMu maHHBIX MySQL. Ctpykrypa 06a3bl JaHHBIX
paspaboTaHa Ha OCHOBe pa3pabOTaHHOH METOJOJIOTHH WICHTH()HUKAITIH
I10JIb30BaTENEH.

214

3ocumos B.B., Xpucronopos A.B., Bysirakosa A.C. IIporpaMMHble penieHus JUls JHHAMUYECKOT0 H3MECHEHHs
TOJIB30BATENBCKOT0 HHTEp(elica Ha OCHOBE aBTOMAaTHYECKU cOOpaHHO# nHpopMamu o nons3oBatene. Tpyost UCIT
PAH, tom 30, Bbim. 2, 2018 1., cTp. 207-220

Jns Bu3yadbHOTO MPEICTaBJICHHST CXEMbl 0a3bl JaHHBIX ObUIa HCIIOJIB30BaHA
meronoiorus IDEF1X, nampaBneHHas Ha MOJEIMPOBaHME pPEJSIMOHHBIX 0a3
naHHbX (puc.6). YKasaHHBIA CTaHIAPT BXOMUT B ceMmeiicTBO mertojonoruii IDEF
MO3BOJISIIONIEE HCCIENOBAaTh CTPYKTYpY, IHapamMeTpsl U XapaKTepUCTUKU
MPOU3BOJACTBEHHO-TEXHUYECKAX M OPraHU3alMOHHO-DKOHOMHUYECKUX CHCTEM.
Metononorus IDEF1X agantupoBana st coBmecTHOro uctnonb3oBanus ¢ IDEFO B
paMKax enuHoM TexHojoruu monenuposanus. Ha ocnose IDEF(netanusupyrorcs
¢yakunonansable O70kn, a IDEF1X mo3BomseT neTamm3upoBaTh «CTPEITKH».
PazpaboTka ©a3pl JaHHBIX NPOM3BOAMIACHE C IIOMOIIBIO HMHCTPYMEHTA I
npoexTupoBaHus 06a3 maHHRIX MySQL Workbench — wmHCTpy™mMeHTa,
UHTETPUPYIOLIETO IIPOEKTUPOBAHKUE, MOJACIUPOBAHUE, CO3JaHUE U IKCILIyaTallUIO
BJ] B equHOE OKpyKeHHE IS CUCTeMbl 0a3 AanHbIx MySQL ¢ ucrnonb3oBaHueM, B
yactHocTH, HoTaumu IDEF1X.

O O O
_ | essences v
?id INT(11) _| data v
date TIMESTAMP id INT(11)

() hrdw VARCHAR(S00) C idessence VARCHAR(S50)
langcode VARCHAR(S500) rule VARCHAR(50)
resolution VARCHAR(500) ! essences_id INT(11)

» 3

o O 0

Puc 6. @paemenm ER-ouazpammer 6azvr oannvix ¢ nomayuu IDEF1X

Fig. 6. Fragment of the ER-diagram of the database in IDEF1X notation
HutepecHoid B JaHHOM MPOAYKTE SABJISIETCS peaju3alus CUCTEMBbI
TICEBJAOUICHTU(PUKAIIMN TI0JIb3oBaTeneil. B3anmoseiicTBiue yacteil mporpaMMHOTO
MPOAYKTa IEMOHCTPUPYIOT YaCTH KOJAa, IpeicTaBieHHble Ha puc.7 u 8. Ha puc.7.
NpeCTaBiIeH OJOK MoiydeHus WHPOpPMAaIuu 00 YCTAaHOBJICHHBIX IOJB30BATEIEM
SI3BIKOB M 4yacoBoro mnosca. MyHKLIMS aBTOMATUYECKOW aJanTaldd JIOKAIU3aLUU
BeO-TIPHUIIOKEHUS HA OCHOBE COOPAHHBIX TAaHHBIX IPEJICTaBJICHA Ha pUC. 3.

5. 3kcnepumeHmaanoe ucriosib3oeaHue mexHoJsiocuu

[ocne wnrerpammu «AAUI» ¢ UHrepHer Mara3uHoM OBUIO INPOBEICHO
UCCIICIOBAaHUE, HAIMPABICHHOE HAa BBIABIEHHE MPOLEHTHOIO COOTHOLIEHUS
IPUPOCTa KOJNMYECTBA HOBBIX MoceTUTened. B TeueHue Tpuauatu gHel cucrtema
paborana B pexxuMe cOopa NMOBEIECHYECKUX CYIIHOCTEH, ICeBIOJCaHUMU3ALMN U
(hopmupoBaHUst 6a3bl MOCETUTEIEH.

215

Zosimov V.V., Khrystodorov O.V., Bulgakova O.S. Dynamically changing user interfaces: software solutions based on
automatically collected user information. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 207-220

Brura nmonydena Beidopka 3 2000 yHHKaIBHBIX TIOBEIEHYECKHUX MTOPTpeToB. V3 HIX
30% Bo3Bpamanuck Ha caliT VHTepHET MarasmHa B mampHeimem. Ha ocHoBaHWHM
aHanM3a COOpaHHBIX JAaHHBIX OblIa 3amporpaMMHpOBaHa (YHKIHS aJanTarus,
KoTOopasi Obuta Oosiee Bcero BOCTpeOOBaHa — COPTHPOBKA TOBApOB IO IieHE (OT
MHUHHUMAaJIbHOM 0 MaKCHMAJIbHOK).

216

App: :before(function($request){

$url_lang = Request::segment(1);

$cookie_lang = Cookie::get(‘language’);

$browser_lang = substr(Request::server("HTTP_ACCEPT_LANGUAGE'), @, 2);
if(!empty($url_lang) AND in_array($url_lang, Config::get('app.languages®)))

if($url_lang != $cookie_lang)
{

Session::put(’language’, $url_lang);

}
App: :setlLocale($url_lang);
}
else if(!empty($cookie_lang) AND in_array($cookie_lang, Config::get('app.languages')))

{
b

App: :setlocale($cookie_lang);

else if(!empty($browser_lang) AND in_array($browser_lang, Config::get(app.languages’)))
{

if($browser_lang != $cookie_lang)

{

Session::put(’language', $browser lang);
$timezone = \Auth::user()->timezone;

$datetime = $this->asDateTime($value);
DB::table('essences')->insert(
[*langcode® => , $browser_lang) ‘votes® => @]
[‘date’ => , $datetime + $timezone) ‘votes' => @]
);

alca

Puc 7. Brok cbopa ungopmayuu
Fig. 7. Information collection block

public function handle($request, Closure $next)

: if(!\Session::has("locale"))
. \Session::put(‘locale’, \Config::get("app.locale’));
%JSEPSPJIQ = DB::table('data’)->select('rule’, ‘rule')->get();
if(checkrule($usersrule) == Config::get('app.locale’))
app()->setlocale(\Session::get("usersrule’));
return $next($request);

¥

Puc 8. @ynxyus asmomamuueckoil adanmayuu
Fig. 8. Automatic adaptation function

3ocumos B.B., Xpucronopos A.B., Bysirakosa A.C. IIporpaMMHble penieHus JUls JHHAMUYECKOT0 H3MECHEHHs
TOJIB30BATENBCKOT0 HHTEp(elica Ha OCHOBE aBTOMAaTHYECKU cOOpaHHO# nHpopMamu o nons3oBatene. Tpyost UCIT
PAH, tom 30, Bbim. 2, 2018 1., cTp. 207-220

IIporpammuas cuctema «AAUI», B TedeHWe TpUANATH OHEH TeHEpUpoOBaia
BBIOODKY TOBEACHYECKMX MOPTpPeToB. [Ipy IOBTOPHOM MOCELICHUH
TICEB/I0/ICaHNMH3HPOBAHHOTO TI0JIb30BATEINS cucrema ABTOMAaTHYECKU
a/lanTUpOBaja 3alpOrpaMMUPOBAHHYIO HA OTCIIEKMBAaHUE (DYHKIHIO B 3aBUCUMOCTH
OT TOJYYCHHOTO COCTOSIHUS COPTUPOBKH.

B pesynbrare ucnonb3oBanus «AAUD» mpoueHT moceTuTenell BeO-NPUIIOKEHUS,
KOTOpBIE CHOBa oOpatiiichk B MIHTEepHEeT-Maras3uH, Beipoc ¢ 30% no 50%.

B nanbHeiimem Oyzmer mpoBeneHo Oojiee AeTalbHOE HKCIEPUMEHTABHOE
UCCleIOBaHNE BO3MOKHOCTEH IpeiaraeMoil TeXHOJIOTHH.

6. 3aknroyeHue

B pabore mpencraBieHO ~—ONHMCaHWE MPOTPAMMHOrO oOecredeHus: JUis
AaBTOMATH3MPOBAHHOW aJlanTalliy MOJIb30BaTeIbCKUX UHTEp(eiicoB. IIpoBeneHHbIH
aHaJIM3 CUCTEM, HalpaBJICHHBIX Ha cOOp MH(POPMAIIMHU O MOJIb30BATENSIX, TAKUX KaK
Amplitude u Mixpanel, mO3BOJHI cAeNaTh BBIBOJ, YTO YKa3aHHBIC MMPOTPaMMHEIC
CHCTEMBI O00ECIeYMBAIOT TOJBKO cOOp TNPOGHIMPOBAaHHOW HHPOpPMAIKMU O
BXOJIIMX IOJIB30BATENIAX W HE 00ECHEYMBAIOT aBTOMATH3MPOBAHHOHN amanTaluy
UHTEP(EHCOB MO HYXKIIBI TIOJIb30BATEICH.

Paspaborannas cumctema «AAUI» HampaBieHa Ha aBTOMAaTH3HPOBAHHYIO
ajlanTanuio MHTEpQeHcoB IMoJ HYXIbl Mojb3oBareneil. Cucrema obecnednBaeT
NICEBIONICHTU(HKAIINIO TIOJb30BaTenei (moctpoeHne 0a3sl aHOHMMHBIX
MOJB30BATENIC M TPAaBWJI HA OCHOBE MX NPEOBIBAaHHS B BEO-TIPHIIOKEHHSAX).
OpurnHanbHOW OCOOEHHOCTBIO CHCTEMBI SIBJISICTCS HCIIOJIb30BaHHAs MOJIEIb
UIeHTU(HUKALUE AaHOHUMHBIX I0JIb30BaTeJel KOHEYHBIX MPOrPaMMHBIX HPOJYKTOB
C JaJbHEHIIMM HUCMOJb30BaHHMEM JMHAMHUYECKOro uaeHTHHKaropa ajs
aBTOMAaTHYeCcKoil ajganrauuu WHTepdeiica 1ox MICHTH(PUIMPOBAHHOTO
MOJIB30BaTeNd. B OTKPBITOM JOCTyHEe OTCYTCTBYET AHAJOTHYHOE MPOTPaMMHOE
obecrieueHue.

K mepcnexruBam nanmsHedmer pazpadorkn «AAUID» MOXHO OTHECTH yBEIHUYCHHE
KOJIMYECTBA MAapKepOB WACHTHU(QHKAIWK JUIS TOBBIIEHHUS JOCTOBEPHOCTH
WICHTU(QHUKAIINN TI0JIb30BATENIeH, BHEIPEHHE B CHCTEMBI YIIPABICHNUS KOHTEHTOM U
ONTHMU3AIHIO PaOOTHI C JAHHBIMH.

IIpencraBneHO JKCHEPUMEHTAIFHOE MPHUMEHEHHE TEXHOJIOTHM Ha IPHMEpe
WuTepHeT-marasnHa, B KoTopoM B TeueHue 30 nueil Opiio 3adukcuposano 2000
YHUKQJIBHBIX TIOBEJICHYECKUX MOPTPETOB. B pesynbraTe SKCIEpHMEHTa MpPOLEHT
noceTuTeNnel BeO-IIprIIoKeHNs, KOTOpble CHOBAa oOpaTmiuch B MIHTepHeT-MarasuH,
BbIpoc ¢ 30% no 50%.

Cnucok nutepaTtypbl

[1] Rothrock L., Koubek R., Fuchs F. et al. Review and reappraisal of adaptive interfaces:
toward biologically inspired paradigms. Theoretical Issues in Ergonomics Science, vol.
3, No. 1, 2002, pp. 47-84.

217

Zosimov V.V., Khrystodorov O.V., Bulgakova O.S. Dynamically changing user interfaces: software solutions based on
automatically collected user information. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 207-220

[2] Xonaxos B.E., Xonakos JI.B. AnanTuBHBII HOJIb30BaTENbCKUI HHTEpdEC: MPoOIeMbI
TIIOCTPOCHUHA. ABTOMATHKA. ABTOMaTI/ISaL[I/ISI. QHCKTPOTGXHI/I‘IGCKI/IG KOMILJICKCBI H
cuctemsl, Ne 1 (11), 2002, crp. 45-57.

[3] Kypsannesa JL.U. MeToauka KOMIUIEKCHOTO HCCIEIOBAHHS aIalTHBHOTO YEIOBEKO-
MauHHOTO MHTep(deiica. MaremaTndeckue Maiuusl U cuctemsl, Ne 4, 2011, ctp. 69-
77.

[4] Kypsanuesa JLU. OG amanTHBHOM HHTEIUIEKTYalbHOM HHTEpdeiice «Imoap30BaTeslb —
CHUCTEMAa MAacCOBOI'0 IPUMEHCHUS». KOMHBIOTepHI)Ie cpeacrtsa, C€TU U CUCTEMBI, N97,
2008, ctp. 110-116.

[5] Langley P. User modeling in adaptive interfaces. In Proceedings of the Seventh
International Conference on User Modeling, 1999, pp. 357-370.

[6] Karwowski W. A review of human factors challenges of complex adaptive systems:
discovering and understanding chaos in human performance. Human Factors, vol. 54,
No. 6, 2012, pp. 983-995.

[7] Peter Eckersley, How Unique Is Your Web Browser? Electronic Frontier Foundation
Pesxum nocrymna: https://www.eff.org/, nara o6pammenus 02.05.2017.

[8] Gilmore J. Easy Laravel 5. Leanpub, 2016, 235 p.

[9] Dockins K. Design Patterns in PHP and Laravel. Appers, 2017, 45 p.

[10] O. BoukapwoB, B. T'onem60. BukopucraHHs iHTEIEKTyalIbHUX TEXHOJIOTIH 360py JaHHX
y aBTOHOMHHX Kibepdisuunux cucremax. Lviv Polytechnic National University
Institutional Repository. Coopuuk Hayunbix Tpymos, Ne 830, 2015, crp. 7-11 (ua
YKPAUHCKOM).

[11] Stepashko V., Bulgakova O., Zosimov V. Construction and research of the generalized
iterative GMDH algorithm with active neurons. Advances in Intelligent Systems and
Computing, vol. 689, 2018, pp. 492-510.

[12] Bynrakosa A.C. KoHuemniusi MOCTPOCHHS aIanTHBHOIO HHTEpdeiica ¢ HCIOIb30BaHHEM
HWHIAYKTUBHOI'O IOAXOHa. I/IH)IyKTI/IBHOG MOJCIIMPOBAHUE CIIOKHBIX CUCTEM. C60pHI/IK
Tpynos, Beinyck 8. Kues: MHHII ITC, 2016, ctp. 73-78 (Ha yKpauHCKOM)

[13] Amplitude. Analytics for modern product teams. Pexum gocryma:
https://amplitude.com/, nara o6pamenus 02.05.2017.

[14] Mixpanel. Product and User Analytics for Mobile, Web, and Beyond. Pexxum moctyma:
https://mixpanel.com/, nara o6pamenust 02.05.2017.

Dynamically changing user interfaces: software solutions
based on automatically collected user information

V.V. Zosimov <zosimovvw@gmail.com>
O.V. Khrystodorov <belfegor26@gmail.com>
0.S. Bulgakova <sashabulgakova2@gmail.com>
V.0. Sukhomlynsky Mykolaiv National University,
24 Nikolska St, Mykolayiv, 54030, Ukraine

Abstract. The developed system "AAUI" is aimed at the automated adaptation of interfaces
to the needs of users. The system provides pseudo-identification of users (building
anonymous users and rules database based on their stay in web applications). The original
feature of the system is the used model of identifying anonymous users of the end products

218

https://www.eff.org/

3ocumos B.B., Xpucronopos A.B., Bysirakosa A.C. IIporpaMMHble penieHus JUls JHHAMUYECKOT0 H3MECHEHHs
TOJIB30BATENBCKOT0 HHTEp(elica Ha OCHOBE aBTOMAaTHYECKU cOOpaHHO# nHpopMamu o nons3oBatene. Tpyost UCIT
PAH, tom 30, Bbim. 2, 2018 1., cTp. 207-220

with the further use of the dynamic identifier to automatically adapt the interface to the
identified user's need. The analysis of the systems aimed at collecting information about users
made it possible to conclude that these software systems provide only the collection of
profiled information about incoming users and do not provide for automated adaptation of
interfaces to the needs of users. There is no similar software in the open access. The prospects
for the further development of AAUI include an increase in the number of identification
markers to improve the authenticity of user identification, the integratioin with content
management systems and the optimization of data management.

Keywords: interface, adaptiveness, inductive modelling, web-interface
DOI: 10.15514/ISPRAS-2018-30(3)-15

For citation: Zosimov V.V., Khrystodorov O.V., Bulgakova O.S. Dynamically changing user
interfaces: software solutions based on automatically collected user information. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 207-220 (in Russian). DOI:
10.15514/ISPRAS-2018-30(3)-15

References

[1] Rothrock L., Koubek R., Fuchs F. et al. Review and reappraisal of adaptive interfaces:
toward biologically inspired paradigms. Theoretical Issues in Ergonomics Science, vol.
3, No. 1, 2002, pp. 47-84.

[2] Khodakov V.E., Khodakov D.V. Adaptive user interface: problems of building.
Avtomatika. Avtomatizacija. Jelektrotehnicheskie kompleksy i sistemy [Automation.
Automatization. Electrotechnical complexes and systems], Ne 1 (11), 2002, pp. 45-57 (in
Russian).

[3] Kurgantseva L.I. Methodology of integrated studies of the adaptive human-machine
interface. Matematicheskie mashiny i sistemy [Mathematical Machines and Systems], Ne
4, 2011, pp. 69-77 (in Russian).

[4] Kurgantseva L.I. About the adaptive intellectual interface “The user — system of mass
application”. Komp'juternye sredstva, seti i sistemy [Computer means, networks and
systems], Ne7, 2008, pp. 110-116 (in Russian).

[5] Langley P. User modeling in adaptive interfaces. In Proceedings of the Seventh
International Conference on User Modeling, 1999, pp. 357-370.

[6] Karwowski W. A review of human factors challenges of complex adaptive systems:
discovering and understanding chaos in human performance. Human Factors, vol. 54,
No. 6, 2012, pp. 983-995.

[7] Peter Eckersley, How Unique Is Your Web Browser? Electronic Frontier Foundation
Pexxum mocryna: https://www.eff.org/, nata o6pamenus 02.05.2017.

[8] Gilmore J. Easy Laravel 5. Leanpub, 2016, 235 p.

[9] Dockins K. Design Patterns in PHP and Laravel. Appers, 2017, 45 p.

[10] Botchkaryov A., Golembo V. Applying intelligent technologies of data acquisition to
autonomous cyber-physical systems. Lviv Polytechnic National University Institutional
Repository, Ne 830, 2015, ctp. 7-11 (in Ukrain).

[11] Stepashko V., Bulgakova O., Zosimov V. Construction and research of the generalized
iterative GMDH algorithm with active neurons. Advances in Intelligent Systems and
Computing, vol. 689, 2018, pp. 492-510.

219

https://www.eff.org/

Zosimov V.V., Khrystodorov O.V., Bulgakova O.S. Dynamically changing user interfaces: software solutions based on
automatically collected user information. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 207-220

[12] Bulgakova O. The concept of constructing an adaptive interface using an inductive
approach. Induktivnoe modelirovanie slozhnyh sistem [Inductive modeling of complex
systems], pp. 73-78 (in Ukrain)

[13] Amplitude. Analytics for modern product teams. Available at: https://amplitude.com/,
accessed 02.05.2017.

[14] Mixpanel. Product and User Analytics for Mobile, Web, and Beyond. Available at:
https://mixpanel.com/, accessed 02.05.2017.

220

https://mixpanel.com/

Variants of Chinese Postman Problems and
a Way of Solving through Transformation
into Vehicle Routing Problems

M.K. Gordenko <mgordenko@hse.ru=>
S.M. Avdoshin <savdoshin@hse.ru>
Department of Software Engineering,
National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. In this article, the routing problems are described. It is shown, that almost all routing
problem can be transformed into each other. An example of the Mixed Chinese Postman
problem is discussed. The article gives an overview of various variants of Chinese Postman
Problem. For all problems the mathematical formulation is given. Moreover, the useful real-
life application is presented, too. Then, the article provides a table of possible Chinese Postman
problems and identifies parameters that can be varied for obtaining new problems. Five
parameters have been identified, such as: presence of set of edges; presence of set of arcs;
presence of edges with cost, depending on traversing; the presence of set of required edges; the
presence of set of required arcs. It was shown that by varying these parameters one can obtain
tasks that were not described earlier but can be used in real life. Four new tasks were identified.
Then it is shown that the Chinese Postman problem can be solved as another routing tasks
through graph transformations. The method for transforming Chinese Postman problem into
the Generalized Travelling Salesman problem is given. Then the results of solving the above
problem are presented by simple algorithms, and their effectiveness is shown. The research is
not over yet. The testing of other algorithms is planned.

Keywords: Generalized Routing Problem; Arc Routing Problem; Chinese Postman Problem;
Generalized Travelling Salesman Problem

DOI: 10.15514/ISPRAS-2018-30(3)-16

For citation: Gordenko M.K., Avdoshin S.M. The Variants of Chinese Postman Problems and
Way of Solving through Transformation into Vehicle Routing Problems. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 221-232. DOI: 10.15514/ISPRAS-2018-30(3)-16

1. Introduction

The General Routing Problem (GRP) is a routing problem defined on a graph where
a minimum cost tour is to be found and where the route must include visiting certain
required vertices and traversing certain required edges [1]. The routing problems are

221

Gordenko M.K., Avdoshin S.M. The Variants of Chinese Postman Problems and Way of Solving through
Transformation into Vehicle Routing Problems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 221-232

closely related to the logistic and transportation management. From the theoretical
point of view, routing problems are mainly related to determining the optimal set of
routes in a graph. In practice, the routing problems are not only the tasks of
determining optimal set of routes, they are also the tasks of testing robots, the
correctness of links in the application menu and operating systems, interactivity
usability of web-sites [2]. The Travelling Salesman Problem (TSP) is one of the
routing problem consisting in finding a minimal length closed tour that visits each
city once. The TSP is one of the most well-known routing problem. Another practical,
but less well-known problem is the Chinese Postman Problem (CPP). The CPP is
finding a shortest closed path that visits every edge or arc of a graph. The CPP has a
simple formulation and a lot of potentially useful applications, but today is poorly
understood.

The article gives an overview of various CPPs, provides mathematical formulations
of problems, and describes the scope of the problem. In addition, the article cites
references to the literature, in which the various ways of transforming different types
of ARP to VRP is described. Also, the results of the current research of various
algorithms for solving the problem of a Generalized Traveling Salesman Problem
(GTSP) are presented.

2. The Variations of Chinese Postman Problem
There are a lot of variations of CPP. Below, some of them are described.

2.1 The Windy Rural Chinese Postman problem

The Windy Rural Chinese Postman Problem (WRCPP) is a special case of ARP, in
which A, € A, E; S E, and the cost of traversing the edges is depended from the
direction of traversing.

WRCPP is a generalization of the CPP in a mixed multigraph. In original CPP
problem, it is necessary to find a closed route of minimum length that contains all
edges and arcs of the original multigraph at least once. In the real world, it is not
always necessary to traverse absolutely all edges and arcs, it is enough to traverse
only a certain set of them. Besides, the cost of traversing the edges depend from
direction of traversing. The problem of this type is known as the Windy Rural Chinese
Postman Problem, which is finding a closed route of minimum length that contains
all required edges or arcs of the original multigraph at least once and can contains
non-required edges or arcs, so, that the cost of traversing edges depends on traversing
direction [5, 6].

Fix the edge {v; v;} (non-oriented pair of vertex) from E. Define (v, v;) as ordered
pair of vertices, meaning the traversing an edge {v;, v; } from vertex v;to v; vertex.
Note, that (3{v, v;} € E)(C(v, v) # C(v, v]-)) (D
Letarc be (v, v;) € Aordered pair of vertices, meaning the traversing an arc (v;,)
from vertex v; to v; vertex.

222

T'opnenko MLK., Aomun C.M. BapuanTel 3a1a4 KHTaliCKOro nouTanboHa M UX pellleHUs uepe3 npeodpazoBaHue B
3amaun Mappyruzaimu. Ipyost UCI1 PAH, tom 30, Bein. 3, 2018 1., ctp. 221-232

We give a formal formulation of the WRCPP problem, extending it to the case of a
mixed multigraph.

Let I ={12,...,|Eg + 4gl},L ={1,2,...,|V]}. On the set of vertices V of G define
indexation inv =V - L, (VYv; €EV)(Vv; EV)(v; #v; > 1 #)),i = inv(v).
On the set E,UA, of G define indexation inea=ERUA — I,
(Vu; € (Er UAR)(Vu; € (Eg UAR)) (u; # u; - i #j),i = inu(uy).

The solution o_f WRCPP istheroute g = (Vyy, Upy, Vip Upy - -+, Uy Up,), Which satisfy
for the following [11]:
_ (vli' 17li+1)‘(vli’ vli+1) EE =172 k—1
e = (v,v,) (v,v)EAl_ R
L Pliv1) \ Pl Pl
iova) (riovn) €8 o

u = l
P {("zk"’ll)'("lk' vy,) €A
Eg UAR{upl,upz, Uy } = (1)}

We denote by C(u) =), ; f 1 C(uy,) the cost of traversing the route.

Let M is a set of WRCPP routes. It is needed to find u, € M, where

(Vu € M) (C(u0) < C(w)).

A lot of theoretical and computational works is devoted to WRCPP. WRCPP cannot
be solved for polynomial time. In general, the problem of WRCPP is NP-hard [12].

2.2 The Undirected Rural Chinese Postman problem

The Undirected Rural Chinese Postman Problem (URCPP) is a particular WRCPP
which consists of determining a minimum cost circuit on a graph so that it is possible
to traverse a given subset of required edges.

DCPP is a special case of WRCPP, where A = @, and there is not edges, which
satisfy (1). So, Y{v;,v;} € E, C(v;,v)) = C(v},v).

The URCPP is known to be an NP-hard problem and it has some interesting real-life
applications.

2.3 The Undirected Chinese Postman problem

The Chinese Postman problem in the undirected graph (Undirected Chinese Postman
Problem, UCPP) is the original statement of the CPP problem, which was firstly
introduced by the mathematician Kwang-Mei-Ko in 1960 [2].

UCPP is a special case of WRCPP, where A = @, E; = E and there is not edges, which
satisfy (1). So, ¥{v;,v;} € E, C(v;,v;) = C(v},v))

If multigraph has Eulerian circuit then this cycle is a solution of UCPP. The algorithm
for constructing the Eulerian circuit has O(|E]) time complexity [5].

The Eulerian circuit is existing in an undirected multigraph if multigraph is connected
and every vertex has an even degree. A multigraph satisfying the conditions for the
existence the Eulerian circuit is called Eulerian multigraph. If the original multigraph

223

Gordenko M.K., Avdoshin S.M. The Variants of Chinese Postman Problems and Way of Solving through
Transformation into Vehicle Routing Problems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 221-232

is not Eulerian, then for UCPP solution some edges must be traversed more than once.
In other words, the multigraph should be supplemented with copies of some the edges
to the Eulerian multigraph, so that the cost of the added copies of the edges is minimal

[4]

2.4 The Directed Rural Chinese Postman problem

The Directed Rural Chinese Postman Problem (DRCPP) is a special case of the
WRCPP where a subset of the set of arcs of a given directed graph is required to be
traversed at minimum cost [2, 8].

DRCPP is a special case of WRCPP, where E = 0.

In general, the DRCPP is NP-hard for directed multigraphs.

This problem also known as the Selecting Chinese Postman problem [8].

2.5 The Directed Chinese Postman problem

The Chinese Postman problem in the directed graph (Directed Chinese Postman
Problem, DCPP) is a special case of the WRCPP problem, in which defined on
directed graph and all arcs should be traversed. In some articles DCPP also called
New York Street Sweeper Problem [8].

DCPP is a special case of WRCPP, where E = @, Az = A.

If multigraph has Eulerian trail, then this trail is a solution of DCPP. The algorithm
for constructing the Eulerian trail has O(JA]) time complexity [9].

The Eulerian trail is existing in a directed multigraph if multigraph is strongly
connected and outdegree of each vertex is equal to indegree. A multigraph satisfying
the conditions for the existence the Eulerian trail is called Eulerian multigraph. If the
original multigraph is not Eulerian, then for DCPP solution some edges must be
traversed more than once. In other words, the multigraph should be supplemented
with copies of some the arcs to the Eulerian multigraph, so that the cost of the added
copies of the arcs is minimal [2].

2.6 The Undirected Windy Rural Chinese Postman problem

The Undirected Windy Rural Chinese Postman Problem (UWRCPP) is an important
ARP which generalizes most of the single-vehicle ARP and can be defined as follows
[2,9].

UWRCPP is a special case of WRCPP, where A = @ and there is edges, which satisfy
Q).

2.7 The Undirected Windy Chinese Postman problem

The Undirected Windy Chinese Postman problem is the NP- hard problem of finding
the minimum cost of a tour traversing all edges of an undirected multigraph, where
the cost of traversal of an edge depends on the direction [10].

UWCPP is a special case of WRCPP, where A = @ and there is not edges, which
satisfy (1). So, Y{v,,v;} € E, C(v;,v)) = C(v},v).

224

T'opnenko MLK., Aomun C.M. BapuanTel 3a1a4 KHTaliCKOro nouTanboHa M UX pellleHUs uepe3 npeodpazoBaHue B
3amaun Mappyruzaimu. Ipyost UCI1 PAH, tom 30, Bein. 3, 2018 1., ctp. 221-232

If multigraph has Eulerian circuit then this cycle is a solution of WCPP. The algorithm
for constructing the Eulerian circuit has O(|E|) time complexity [5]. If the original
multigraph is not Eulerian, then some should be traversed more than once. In other
words, the multigraph should be supplemented with copies of the edges to the
Eulerian multigraph so that the cost of the added copies of the edges is minimal. The
solution of the complement problem for a graph that does not satisfy properties (9)
and (10) is an NP-hard problem. Thus, WCPP belongs to the class of NP- hard that
cannot be solved in polynomial time [13].

2.8 The Mixed Chinese Postman problem

Mixed Chinese Postman Problem (MCPP) it is a version of WRCPP, where
multigraph consists from edges and arcs, simultaneously, and all of them should be
traversed [11, 12].

MCPP is a special case of WRCPP, where Ay = A, Ez = E. and there is not edges,
which satisfy (1). So, V{v, v;} € E,C(v,v)) = C(v;,vy).

In 1962, Ford and Fulkerson proposed necessary and sufficient conditions for a mixed
graph to be Eulerian. It is necessary and sufficient that in a strongly connected
multigraph, the degrees of all vertices are even, and the divergence of each vertex is
zero. If a mixed multigraph does not satisfy these conditions, then it must be
supplemented by copies of arcs and edges to the Eulerian multigraph, so that the cost
of the added copies of the arcs and edges is minimal. The addition of a mixed
multigraph to Eulerian is an NP-difficult problem [13].

2.9 The Mixed Windy Chinese Postman Problem

The Mixed Windy Chinese Postman Problem (MWCCP, also called WCPP) is a
special case of WRCPP. In MWCCP the cost of traversing the edges is depended from
the direction of traversing.

UWRCPP is a special case of WRCPP, where there are edges, which satisfy (1).

In many theoretical works it was shown that problem is NP- hard.

2.10 The Mixed Windy Chinese Postman Problem

The Mixed Rural Chinese Postman Problem (MRCCP) is a special case of WRCPP.
In MRCCP not all edges and arcs should be traversed. There is a set of arcs and edges,
which must appear in solution, other arcs and edges may appear in solution or may
not.
MRCPP is a special case of WRCPP, where there are not edges, which satisfy (1).
In many theoretical works it was shown that problem is NP- hard [14].
We tried to build a classification of different CPP. Combine the existing CPP in a
table containing the following criteria:

« the presence of set of edges (A),

« the presence of set of required edges (B),

« the presence of edges with cost, depending on traversing

225

Gordenko M.K., Avdoshin S.M. The Variants of Chinese Postman Problems and Way of Solving through
Transformation into Vehicle Routing Problems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 221-232

« direction (C),

« the presence of set of arcs (D),

« the presence of set of required arcs (E).
The results are shown in “Table 1”. As we can see, there are four problems, which
today are not existing (yellow cells in table), but also can have real-world
applications.

Table 1. The Classification of CPP

a & a
o a a

a | o Sl a|lOo| &l ol O

a | O aoll:);n:DOD
ol x| 2| 2| o|lex| Q| S|le| | x| X
5| 3| 5| 5| alaoa|=|a|lS|a|3]=|al =2
Al - | - | - | - | + + |+ |+ |+ | + |+ +
B| - | - | - | - | - + +
c| - | + | -1+ -1 - -0+ -1+ -1+ -1+
Dl + | + | + | + | - | =]+ | + |+ |+ |+ |+ +
E| - | - | + | + | -1 -1 -1 -1+1+4+/1-1- +

3. Solving the Variations of Chinese Postman Problem

In many sources was shown that almost all ARP problems can be transformed into
VRP problems, predominantly in generalized travelling salesman problems (GTSP)
[13, 15, 16, 17]. For example, in [16] paper is described how the Capacitated Arc
Routing Problem can be formulated as a standard vehicle routing problem. This
allows us to transform arc routing into node routing problems and, therefore,
establishes the equivalence of these two classes of problems. A well-known
transformation by Pearn, Assad and Golden [16] reduces arc routing problem (ARP)
into an equivalent vehicle routing problem (VRP). However, that transformation is
regarded as unpractical, since an original instance with n required edges is turned into
a VRP over a complete graph with 3n+1 vertices. In [15] article was proposed a
similar transformation that reduces this graph to 2n+1 vertices, with the additional
restriction that a previously known set of n pairwise disconnected edges must belong
to every solution.

Thus, one can move from less studied problems ARP to well-known problems VRP,
such as TSP and GTSP, which have a lot of different approximation algorithms for
solving.

In the next sections, we try to compare the simplest algorithms for solving the GTSP.
Generalized travelling salesman problem (GTSP) is an expansion of well-known TSP
(Travelling Salesman Problem). In GTSP all vertices of graph are grouped in separate
clusters. The solution of GTSP is a minimum-cost route, which traverse each cluster
exactly once.

226

Toparenko M.K., Aroumnn C.M. BapuaHTs! 3a[1a4 KHTAfICKOTr0 MOYTAIBOHA M UX PEIICHHUS Yepe3 npeodpa3oBaHue B
3amaun Mappyruzaimu. Ipyost UCI1 PAH, tom 30, Bein. 3, 2018 1., ctp. 221-232

4. Methods for Solving the Generalized Travelling Salesman
Problem

Now, we investigate the following simple approximate algorithms for solving
GTSP:

» Nearest Neighbor Heuristic (NN) [19];

Repetitive Nearest Neighbor Heuristic (RNN) [20];

Improved Nearest Neighbor Heuristic (INN) [21];

Repetitive Improved Nearest Neighbor Heuristic (RINN) [22];

Loneliest Neighbor Heuristic (NLN) [23].

To evaluate the developed algorithms, the source code was written in the
C++language.

Experiments was conducted on Apple Macbook Pro 13 a1502. Measurements were
made of the executing time of the algorithm and the error rate of the solution. The
results is presented in Table 1, 2, 3, 4, 5 and 6. Min(T), max(T) and M(T) means
minimum, maximum and average time of algorithm working. Min(C), max(C) and
M(C) means minimum, maximum and average error rate of algorithms.

Table 2. The measurements of NN algorithms

V| min(T) max(T) | M(T) | min(C) max(C) M(C)

50 0,001 0,079 | 0,003 | 6,65% | 23,53% | 14,59%
100 0,001 0,009 0,002 7,35% 21,25% 15,00%
200 0,002 0,025 0,004 8,93% 21,77% | 15,24%
500 0,007 0,041 0,017 | 12,18% 35,04% | 20,42%
1000 0,025 0,114 0,062 | 12,99% | 40,77% | 21,33%
1500 0,054 0,264 0,132 | 12,90% 37,38% | 20,52%
2000 0,098 3,317 0445 | 12,28% 39,08% | 20,41%
3000 0,350 3,888 2,510 | 12,81% | 42,00% | 21,29%

Table 3. The measurements of RNN algorithms

[V] min(T) max(T) M(T) min(C) max(C) M(C)

50 0,011 0,088 0,033 431% | 16,66% | 9.84%
100 0,079 2,521 0,261 6,07% | 15,52% | 11,07%
200 0,630 3,365 1,504 6,72% | 1841% | 12,51%
500 6,678 98,085 31,772 | 10,08% | 30,40% | 17,83%

1000 | 62,258 695,821 | 247,218 | 11,65% | 37.44% | 18,51%
1500 | 198,014 | 2009,900 | 763,293 | 11,40% | 34.29% | 18,68%
2000 | 489,153 | 6731,020 | 2224,092 | 11,29% | 33.46% | 18,67%
3000 | 4102,820 | 8901,420 | 6334,230 | 12,53% | 38,94% | 20,59%

227

Gordenko M.K., Avdoshin S.M. The Variants of Chinese Postman Problems and Way of Solving through
Transformation into Vehicle Routing Problems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 221-232

Table 4. The measurements of INN algorithms

V| min(T) max(T) | M(T) min(C) max(C) M(C)
50 0,000 0,008 0,001 5,81% 25,32% 14,50%
100 0,000 0,009 0,001 7,48% 22,43% 14,79%
200 0,002 0,009 0,004 8,43% 22,36% 15,27%

500 0,011 0,054 0,025 12,57% 35,96% | 20,30%
1000 0,040 0,178 0,095 12,64% 40,29% | 20,63%
1500 0,091 0,395 0,207 12,24% 38,45% | 20,31%

2000 0,155 1,035 0,404 | 12,09% 35,56% | 20,24%
3000 0,369 21,215 4,478 12,65% 42,12% | 21,20%

Table 5. The measurements of RINN algorithms

V]| min(T) | max(T) M(T) min(C) | max(C) M(C)
50 0,001 0,029 0,008 6,49% 22,54% | 14,07%
100 0,004 0,652 0,067 7,17% 20,65% | 14,86%

200 | 0,050 1,212 0372 | 8.65% | 2328% | 15,14%
500 | 0,018 0,178 0,072 | 12,57% | 35.96% | 20,30%
1000 | 0,094 1,177 0,446 | 12,64% | 40,29% | 20,63%

1500 | 0,212 6,003 1,769 | 1224% | 38,45% | 20,36%
2000 | 0,556 28860 | 6,816 | 12,09% | 35,56% | 20,24%
3000 | 1,007 | 114,590 | 28,321 | 12,65% | 42,12% | 21,20%

Table 6. The measurements of NLN algorithms

V| min(T) max(T) M(T) min(C) max(C) M(C)

50 0,001 0,029 0,003 | 6,38% | 2221% | 14.44%
100 | 0,004 0,046 0,011 | 803% | 20,63% | 14,76%
200 | 0,017 0,078 0,036 | 845% | 21,76% | 1541%

500 | 0,078 0,434 0,190 | 12,52% | 34,46% | 20,36%
1000 | 0,293 2,262 0814 | 12,65% | 40,48% | 20,68%
1500 | 0,656 15,192 | 3,043 | 12,81% | 36,84% | 20,17%
2000 | 0,356 19953 | 3,764 | 12,59% | 38,07% | 21,32%
3000 | 1,456 | 120,110 | 27,402 | 1334% | 39,91% | 22.33%

5. Summary

This article provides an overview of the known CPP. An attempt to systematize and
classify these problems has been made. Mathematical formulations of new types of
CPP was founded. The paper also shows that almost all problems of the ARP can be
transformed to VRP. In addition, for solving the Chinese Postman problems the way
of transformation it into VRP (mainly in GTSP) has been chosen.

228

T'opnenko MLK., Aomun C.M. BapuanTel 3a1a4 KHTaliCKOro nouTanboHa M UX pellleHUs uepe3 npeodpazoBaHue B
3amaun Mappyruzaimu. Ipyost UCI1 PAH, tom 30, Bein. 3, 2018 1., ctp. 221-232

At this stage, the research is not complete. It is necessary to investigate the various
ways of transformation ARP is into VRP. In addition, it is necessary to investigate
the various ways of solving the GTSP. And the key idea of future research is the use
of transformation algorithms and algorithms for solving the GTSP for solving the
different modifications of CPP.

References

[1]. Eglese R., Letchford A., General Routing Problem. In Encyclopedia of Optimization.
Springer, Boston, MA. 2008.

[2]. Thimbleby, H. The directed chinese postman problem. Software: Practice and Experience,
33(11), 2003, pp. 1081-1096.

[3]. Toth P., Vigo D. (ed.). The vehicle routing problem. — Society for Industrial and Applied
Mathematics, 2002.

[4]. Hertz A., Laporte G., Mittaz M. A tabu search heuristic for the capacitated arc routing
problem. Operations research, vol. 48, no. 1, 2000, pp. 129-135.

[5]. Zerbino D. R., Birney E. Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome research, vol. 18, no. 5, 2008, pp. 821-829.

[6]. Edmonds J., Johnson E. L. Matching, Euler tours and the Chinese postman. Mathematical
programming, vol. 5, no. 1, 1973, pp. 88- 124.

[7]. Kolmogorov V. Blossom V: a new implementation of a minimum cost perfect matching
algorithm. Mathematical Programming Computation, vol. 1, no. 1, 2009, pp. 43-67.

[8]. Robinson H. Graph theory techniques in model-based testing. In Proc. of the International
Conference on Testing Computer Software, 1999.

[9]. Wilson R. J. An eulerian trail through Kénigsberg. Journal of graph theory, vol., 10, no.
3, 1986, pp. 265-275.

[10]. Ababei C., KavasseriR. Efficient network reconfiguration using minimum cost maximum
flow-based branch exchanges and random walks-based loss estimations, IEEE
Transactions on Power Systems, vol. 26, no. 1, 2010, pp.. 30-37.

[11]. Chen W. H. Test sequence generation from the protocol data portion based on the
Selecting Chinese Postman algorithm. Information Processing Letters, vol. 65, no. 5, pp.
261-268.

[12]. Aho A.V.etal. An optimization technique for protocol conformance test generation based
on UIO sequences and rural Chinese postman tours. IEEE transactions on
communications, vol. 39, no. 11, 1991, pp, 1604-1615.

[13]. Dror M. (ed.). Arc routing: theory, solutions and applications. Springer Science &
Business Media, 2012.

[14]. Ghiani G., Improta G. An algorithm for the hierarchical Chinese postman problem.
Operations Research Letters, vol. 26, no. 1, 2000, pp. 27- 32.

[15]. Longo H., De Aragao M. P., Uchoa E. Solving capacitated arc routing problems using a
transformation to the CVRP. Computers & Operations Research, vol. 33, no. 6, pp. 1823-
1837.

[16]. Pearn W. L., Assad A., Golden B. L. Transforming arc routing into node routing problems,
Computers & operations research, vol. 14, no. 4, 1987, pp. 285-288.

[17]. Laporte G. Modeling and solving several classes of arc routing problems as traveling
salesman problems. Computers & operations research, vol. 24, no. 11, 1997, pp. 1057-
1061.

229

Gordenko M.K., Avdoshin S.M. The Variants of Chinese Postman Problems and Way of Solving through
Transformation into Vehicle Routing Problems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 221-232

[18]. Fischetti M., Salazar Gonzalez J. J., Toth P. A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem. Operations Research, vol. 45, no. 3. 1997. pp.
378-394.

[19]. Solomon M. M. Algorithms for the vehicle routing and scheduling problems with time
window constraints, Operations research, vol. 35, no. 2, 1987, pp. 254-265.

[20]. Modares A., Somhom S., Enkawa T. A self-organizing neural network approach for
multiple traveling salesman and vehicle routing problems. International Transactions in
Operational Research, vol. 6, no. 6, 1999, pp. 591-606.

[21]. Cheung K.L., Fu AW.C. Enhanced nearest neighbor search on the R-tree. ACM
SIGMOD Record, vol. 27, no. 3, 1998. pp. 16-21.

[22]. Tao Y., Papadias D., Shen Q. Continuous nearest neighbor search. In Proceedings of the
28th International Conference on Very Large Databases, 2002, pp. 287-298.

[23]. Pimentel F. G. S. L. Double-ended nearest and loneliest neighbour: a nearest neighbour
heuristic variation for the travelling salesman problem. Revista de Ciéncias da
Computacdo, vol. 6, issue 6, 2011.

BapuaHTbl 3a4a4 KUTaNCKOro NnoyTanboHa U UX peLleHus
yepes npeobpaszoBaHue B 3a4aYM MapLUpyTU3aLmm

M.K. I'opoenxo <mgordenko@hse.ru>
C.M. Asdowun <savdoshin@hse.ru>
Jlenapmamenm npocpammHot undcenepuu,
Hayuonanvnwiii uccnedosamenvckuil ynugepcumem “Buicuias wikoaa skonomuru”,
101000, Poccus, 2. Mockea, yn. Macuuykasi, 0. 20

Abstract. B crarbe ommcansl TpoOieMbl MapuipyTH3anud. [l0ka3aHO, YTO TMOYTH BCE
mpoOJieMbl MapUIpyTH3alMH AyT MOTYT OBITh MNpeoOpa3oBaHel B JApPYrHe MpoOIEeMBI
MapIpyTU3anud. DTO MPOAEMOHCTPUPOBAHO HA MPUMEPE 337aud KUTAWCKOTO MOYTajJboHA B
cMeraHHoM MyJseTurpade. Takxke B cTaThe HpHBEAeH 0030p pasiIMYHBIX 33/1a4 KHTalCKOTO
MoYTaNbOHa (B 3aBUCHMOCTH OT THINA rpada, (QYHKIHH CTOMMOCTH U 00s3aTeIbHOCTH
HPOXOKACHNMS dJIeMeHTOB rpada). J[ms kaxoii mpoOieMbl 1aHa MaTeMaTHUecKas TOCTaHOBKA.
Kpome Toro, omuicansl npuMeps! HOTEHIIMAIBHO IOJIE3HBIX MPWIOKEHHH, TAe 3aladd MOTYT
OBITh TpHUMeHeHBl. [IpuBeneHa Ta0iMMIA pa3IMYHBIX BapUAHTOB 3aJaddl KUTAHCKOTO
MOYTaIbOHA ¥ BEIOPAHbI MapaMeTPhl AT HACHTU(DUKALNY PA3IMYHBIX TUIOB 3a1a4. BeigeneHo
[T [TApaMeTPOB. HaJIM4HWe Iyr, Haumaue pebep, HanMuuue o0s3aTeNbHBIX IyT, HalHIne
00s13aTeNnbHBIX pedep, Hanuuue pedep co CTOMMOCTHIO, 3aBHcsAIIel oT npoxoaa. [TokaszaHo,
YTO, BapbUpPys 3TH MapaMeTpbl, MOXHO IOJYYUTh HOBBIE 3a7auM, KOTOPbIE MOTYT OBITH
TIOJIE3HBI B PeaJlbHOM JKM3HU, OJHAKO ellle He ONHCaHbl. BBIABICHBI YeTHIpe TaKHWX 3aadqH.
INokazano, 4TO 3aJa4a KUTAHCKOTO MOYTAIbOHA MOXKET OBITh PEIIeHa ITyTeM MpeoOpa3oBaHus
B JIpyTHe 3aJa4y MapuIpyTru3anud. [IprBeaeH MeTo 1, MO3BOJIIONIMI IpeoOpa3oBaTh 3a/1a4y B
0000mEeHHy 0 3a1aqy KOMMHBOsDKepa. Iloka3aHel pe3ynbTaThl NPUMEHEHWS MPOCTEHIINX
aITOPUTMOB IS peIIeHHs MPeoOpa30BaHHOTO BapUaHTa 3a4a4qH (pe3yIbTaThl IPUBEACHBI IS
aNrOpUTMOB OJIMbKaiiliiero cocena u ux Moaubukamuii). Mcciaenosanue eie He 3aBEpIICHO,
IUIAHUpYeTCS NPOJOJDKaTh TECTHPOBAaTh AITOPUTMBI PEIICHMS CMEXKHBIX — 3a71ad
MapIIpyTH3ALUH U aJITOPUTMBI IS IpeoOpa3oBaHui 3a1a4 B SKBUBAJICHTHEIE.

230

T'opnenko MLK., Aomun C.M. BapuanTel 3a1a4 KHTaliCKOro nouTanboHa M UX pellleHUs uepe3 npeodpazoBaHue B
3amaun Mappyruzaimu. Ipyost UCI1 PAH, tom 30, Bein. 3, 2018 1., ctp. 221-232

Keywords: o6o0mieHHasi 3agada KOMMHBOSDKEpa; 3afada MapIIpyTH3alHd AyT; 3ajada
MapIIpyTH3aluy; 00001IeHHas 3a1aua MapIIpy TH3AIMH; 33a4a KUTalCKOTO MOYTaIboHA

DOI: 10.15514/1ISPRAS-2018-30(3)-16

Jass umrupoBanmsi: Topnenko M.K., ApnmommH C.M. BapuanTsl 3amau kuraiickoro
MOYTAIbOHA M MX PEHICHHUS 4Yepe3 mpeoOpa3oBanue B 3aaa4n Mapiupytusammu. Tpyasr UCIT
PAH, Tom 30, Bem. 3,2018 1., ctp. 221-232 (na anrmuiickom si3sike). DOIL: 10.15514/ISPRAS-
2018-30(3)-16

Cnucok nuTtepaTtypbl:

[1]. Eglese R., Letchford A., General Routing Problem. In Encyclopedia of Optimization.
Springer, Boston, MA. 2008.

[2]. Thimbleby, H. The directed chinese postman problem. Software: Practice and Experience,
33(11), 2003, pp. 1081-1096.

[3]. Toth P., Vigo D. (ed.). The vehicle routing problem. — Society for Industrial and Applied
Mathematics, 2002.

[4]. Hertz A., Laporte G., Mittaz M. A tabu search heuristic for the capacitated arc routing
problem. Operations research, vol. 48, no. 1, 2000, pp. 129-135.

[5]. Zerbino D. R., Birney E. Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome research, vol. 18, no. 5, 2008, pp. 821-829.

[6]. Edmonds J., Johnson E. L. Matching, Euler tours and the Chinese postman. Mathematical
programming, vol. 5, no. 1, 1973, pp. 88- 124.

[7]. Kolmogorov V. Blossom V: a new implementation of a minimum cost perfect matching
algorithm. Mathematical Programming Computation, vol. 1, no. 1, 2009, pp. 43-67.

[8]. Robinson H. Graph theory techniques in model-based testing. In Proc. of the International
Conference on Testing Computer Software, 1999.

[9]. Wilson R. J. An eulerian trail through Kénigsberg. Journal of graph theory, vol., 10, no.
3, 1986, pp. 265-275.

[10]. Ababei C., KavasseriR. Efficient network reconfiguration using minimum cost maximum
flow-based branch exchanges and random walks-based loss estimations, IEEE
Transactions on Power Systems, vol. 26, no. 1, 2010, pp.. 30-37.

[11]. Chen W. H. Test sequence generation from the protocol data portion based on the
Selecting Chinese Postman algorithm. Information Processing Letters, vol. 65, no. 5, pp.
261-268.

[12]. Aho A.V.etal. An optimization technique for protocol conformance test generation based
on UIO sequences and rural Chinese postman tours. IEEE transactions on
communications, vol. 39, no. 11, 1991, pp, 1604-1615.

[13]. Dror M. (ed.). Arc routing: theory, solutions and applications. Springer Science &
Business Media, 2012.

[14]. Ghiani G., Improta G. An algorithm for the hierarchical Chinese postman problem.
Operations Research Letters, vol. 26, no. 1, 2000, pp. 27- 32.

[15]. Longo H., De Aragdo M. P., Uchoa E. Solving capacitated arc routing problems using a
transformation to the CVRP. Computers & Operations Research, vol. 33, no. 6, pp. 1823-
1837.

[16]. Pearn W. L., Assad A., Golden B. L. Transforming arc routing into node routing problems,
Computers & operations research, vol. 14, no. 4, 1987, pp. 285-288.

231

Gordenko M.K., Avdoshin S.M. The Variants of Chinese Postman Problems and Way of Solving through
Transformation into Vehicle Routing Problems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 221-232

[17]. Laporte G. Modeling and solving several classes of arc routing problems as traveling
salesman problems. Computers & operations research, vol. 24, no. 11, 1997, pp. 1057-

1061.

[18]. Fischetti M., Salazar Gonzalez J. J., Toth P. A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem. Operations Research, vol. 45, no. 3. 1997. pp.

378-394.

[19]. Solomon M. M. Algorithms for the vehicle routing and scheduling problems with time

window constraints, Operations research, vol. 35, no. 2, 1987, pp. 254-265.

[20]. Modares A., Somhom S., Enkawa T. A self-organizing neural network approach for
multiple traveling salesman and vehicle routing problems. International Transactions in

Operational Research, vol. 6, no. 6, 1999, pp. 591-606.

[21]. Cheung K.L., Fu AW.C. Enhanced nearest neighbor search on the R-tree. ACM

SIGMOD Record, vol. 27, no. 3, 1998. pp. 16-21.

[22]. Tao Y., Papadias D., Shen Q. Continuous nearest neighbor search. In Proceedings of the

28th International Conference on Very Large Databases, 2002, pp. 287-298.

[23]. Pimentel F. G. S. L. Double-ended nearest and loneliest neighbour: a nearest neighbour
heuristic variation for the travelling salesman problem. Revista de Ciéncias da

Computacdo, vol. 6, issue 6, 2011.

232

Analysis of Mathematical Formulations of
Capacitated Vehicle Routing Problem and
Methods for their Solution

E. Beresneva <eberesneva@hse.ru>
S. Avdoshin <savdoshin@hse.ru>
Department of Software Engineering,
National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. Vehicle Routing Problem (VRP) is one of the most widely known questions in a
class of combinatorial optimization problems. It is concerned with the optimal design of routes
to be used by a fleet of vehicles to serve a set of customers. In this study we analyze Capacitated
Vehicle Routing Problem (CVRP) — a subcase of VRP, where the vehicles have a limited
capacity. CVRP is mostly aimed at savings in the global transportation costs. The problem is
NP-hard, therefore heuristic algorithms which provide near-optimal polynomial-time solutions
will be considered instead of the exact ones. The aim of this article is to make a survey on
mathematical formulations of CVRP and on methods for solving each type of this problem.
The first part presents a general information about the problem and restrictions of this work. In
the second part, the classical mathematical formulations of CVRP are described. In the third
part, a classification of most popular subcases of CVRP is given, including description of
additional constraints with their math formulations. This section also includes most perspective
methods that can be applied for solving special types of CVRP. The forth part contains an
important note about the most powerful algorithm LKH-3. Finally, the fourth part consists of
table with solving techniques for each subproblem and of scheme with basic problems of the
CVRP class and their interconnections.

Keywords: capacitated vehicle routing problem; mathematical formulation; metaheuristics;
classification of cvrp

DOI: 10.15514/ISPRAS-2018-30(3)-17

For citation: Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of
Capacitated Vehicle Routing Problem and Methods for their Solution. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018. pp. 233-250. DOI: 10.15514/ISPRAS-2018-30(3)-17

1. Introduction

The Vehicle Routing Problem (VRP) is one of the most widely known questions in a
class of combinatorial optimization problems. VRP is directly related to Logistics

233

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

transportation problem and it is meant to be a generalization of the Travelling
Salesman Problem (TSP). In contrast to TSP, VRP produces solutions containing
some (usually, more than one) looped cycles, which are started and finished at the
same point called “depot”. The objective is to minimize the cost (time or distance) for
all tours. For the identical type of input data, VRP has higher solving complexity than
TSP. Both problems belong to the class of NP-hard tasks. Specialized algorithms are
able to find optimal solutions for cases with up to about 50 customers; larger problems
have been solved to optimality in some cases, but often at the expense of considerable
computing time. Thus, actuality of research and development of heuristics algorithms
for solving VRP is on its top, because such approximate algorithms can produce near-
optimal solutions in a polynomial time. It is especially important in real-based tasks
when there are more than one hundred clients in a delivery net.

Real world applications may be mail delivery, solid waste collection, street cleaning,
distribution of commodities, design telecommunication, transportation networks,
school bus routing, dial-a—ride systems, transportation of handicapped persons, and
routing of sales people and maintenance units. A survey of real-world applications is
in [1].

This work is aimed at analysis of VRP subcase, which is called Capacitated Vehicle
Routing Problem (Capacitated VRP, CVRP), where the vehicles have a limited
capacity. It means that there is a physical restriction on transportation more than
determined amount of weight for each machine. Capacitated vehicle routing problems
CVRP form the core of logistics planning and are hence of great practical and
theoretical interest.

Nowadays, there is a great range of different variations of both classical mathematical
model of CVRP and its subcases. It can be too difficult to understand all the details
for newcomers in this field of study. It is important to have an ability not to waste
personal time doing observation but to quickly get the best solution methods for the
current problem. Unfortunately, there are no articles concerned with CVRP, which
have both a full classification of the subcases and a list of the solving algorithms. So,
the purpose of this study is to make a survey on subcases of CVRP and on state-of-
the-art heuristic methods for solving each extension of this problem. Also, it was
decided to provide a new variant of mathematical model differed from Integer Linear
Programming models.

Clearly, a study of this type is inevitably restricted by various constraints, in this
research only CVRP subcases with static and deterministic input are considered
instead of the dynamic and stochastic ones. Another condition is that classification is
based according to various types of constraints.

The paper is structured as follows. In the second part, the classical mathematical
formulations of CVRP are described. In the third part, a classification of most popular
subcases of CVRP is given, including description of additional constraints with their
math formulations. This section also includes most perspective methods that can be
applied for solving special types of CVRP. Finally, the fourth part consists of scheme
with basic problems of the CVRP class and their interconnections and of conclusion.

234

Bepecuesa E.H., Apgonmu C.M. AHann3 MaTeMaTHYECKHX IOCTAHOBOK 33/1adl MapIIPYTH3ALUK C OTPAHUICHHEM 110
TPY30MOABEMHOCTH H METOI0B HX peuteHus. Tpyowr UCIT PAH, Tom 30, Beim. 3, 2018 ., crp. 233-250

2. CVRP mathematical model

In this paper, mathematical formulation of Asymmetrical CVRP (ACVRP) proposed
by original authors [2] is adopted in a new way as follows. This new variant of math
model is created because only Integer Programming models were found in other
articles. ACVRP is chosen for basic formulation instead of Symmetrical CVRP
(SCVRP) because the first one is a general variant of the second problem. In the paper
we will use CVRP abbreviation having in mind the next formulation.
Given a complete weighted oriented graph ¢ = (V,A4). Let I = {0, 1, ..., N}, where
N = |V]|. Graph vertices are indexed as =V - [,(VveV)(VWEV) v+w =
ind(v) # ind(w). Thus, V = {v,, vy, ..., vy } is set of vertices, here i = ind(v;), and
Alissetofarcs. Let v, bea depot, where vehicles are located, and v; be the destination
points of a delivery,i # 0.
The distance between two vertices v; and v; is calculated using a distance function
c(v;,v;). Here a real-valued function c(,") on V x V satisfies [3]:

~ ¢(v;,v;) = 0 (non-negativity axiom)

~ ¢(vy,v;) = 0ifand only if v; = v; (identity axiom)
Each destination point v;, i = 0.. N, is associated with a known nonnegative demand,
d;, to be delivered, and the depot has a fictitious demand d, = 0. The total demand
of the set V' € V is calculated as d(V') = Xy, d;.
Let K be a number of available vehicles at the depot v,. Each vehicle has the same
capacity — C. Let us assume that every vehicle may perform at most one route and
K = Kpin, Where K,,.;,, is @ minimal number of vehicles needed to serve all the
customers due to restriction on C. Clearly, next condition must be fulfilled —
(Vv; € V)d; < C, which prohibits goods transportation that exceed maximum
vehicle capacity.
Let introduce VO ={v,},where v,€V. We divide V in K+ 1 sets:
S ={V°,Vv?, .., VK} each subset, except for V°, represent a set of customers to be
served for one vehicle. S ={S} is a set of all possible partitions of V.
Let/ = {0, 1, ..., K} be a set that keeps indexes. Then (Vi € J) [V!| = 1. There should
be no duplicates in any of subsets from S:(Vie))(VjeE]))
i#j=VinV/ =0@). Also, all subsets from S must form set V. Thus,
V = UK, V% Inthis notation, we should make V% = V° u Vi,i = 1..K. Itis obvious
that d(V°) < C,i =1..K.
Let introduce M!={1,..,N},N! = |vi|, 2K, Ni= N.So, M% = {0} U M'. Let
I'={ili=ind(v),v €V} be a set of vertex indices from Vi Then
" ={0}ull. Let H!={p" M® - I°|p'(0) =0 & (Vx € M) (Vy € M%)
x#+y = p'(x) #p'(y)} be a set of codes of all Hamiltonian cycles
ht = (vpz(o),vpi(l), Upi(Ni)) of V. Weight of a Hamiltonian cycle h* € H' can be

235

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

found as f(h)) = C(Upi(o),vpi(Ni)) + XNt (Vi Vpicren))- Let S' be a set of
{(vor,voz .,V°k3}. In this notation the weight of S’ is calculated as
F(S') = Liztx f(h).
Overall, the formulation of CVRP is to find such §°: F(S°) = min”F(S).

Ses%

If c(v,v;)=c(v;v;) for Yv; € VVv; €V then the problem is symmetrical
(SCVRP) and triangle inequality axiom must be hold c(v;,v}) < c(v,v;) +
c(vj,vk).

According to [1], another variant of mathematical formulation of CVRP allows to
leave some vehicles unused, it means that at most K circuits must be determined. Of
course, the number of K,,,;,, must be less or equal than K.

In this case in the basic formulation described above we should subsequently divide
VinK' + 1sets: S ={VO, V1, ..., VE}, where K' € [Ki; K]

Alternative variant takes its place from real-based situations where available vehicles
have their own capacity C; i = 1..K. Due to this fact, next restriction appears:
vy <c¢,i=1.K.

However, most researches put this alternative to another class of problems not
connected with CVRP which is known as the Mixed Fleet VRP or as the
Heterogeneous Fleet VRP. Thus, this variant will not be taken into consideration in
this paper.

Among the best-known heuristic algorithms are those proposed by Pisinger and
Ropke (2007) [4], Nagata and Braysy (2009) [5], and Vidal et al. (2012) [6].

3. Extensions of CVRP
3.1. Open VRP (OVRP)

The OVRP is a variant of the CVRP where the vehicles need not return to the depot
after visiting the last customer of a given route. Any OVRP instance can be converted
to an ACVRP instance by simply setting c(v;, vo) = 0.

There is only one heuristic algorithm for solving OVRP proposed by Salari et al.
(2010) [9]. Their method is based on Integer Linear Programming Improvement
Procedure.

There is a good variety of metaheuristics. Most known and important are following
algorithms: Hybrid evolution strategy algorithm by Repoussis et al. (2010) [10],
variant of Variable Neighborhood Search (VNS) algorithm for OVRP by Fleszar et
al. (2009) [11], method based on Tabu Search (TS) with route-evaluations memories
by Zachariadis and Kiranoudis (2010) [12], Yu et al. (2011) Genetic algorithm and
the last one is Particle swarm optimization metaheuristic proposed by MirHassani and
Abolghasemi (2011) [13].

236

Bepecuesa E.H., Apgonmu C.M. AHann3 MaTeMaTHYECKHX IOCTAHOBOK 33/1adl MapIIPYTH3ALUK C OTPAHUICHHEM 110
TPY30MOABEMHOCTH H METOI0B HX peuteHus. Tpyowr UCIT PAH, Tom 30, Beim. 3, 2018 ., crp. 233-250

3.2. Distance-Constrained CVRP (DCVRP)

The next extension of CVRP to be considered is Distance-Constrained CVRP [14]. It
suggests introducing the maximum length or time constraint for each route. It means
that the total travelled distance by each vehicle in the solution is less than or equal to
the maximum possible travelled distance T. Thus, new function t(v;,v;), returning
travel time between v; and v;, appears.

Function t(:,-) on V x V satisfies the same axioms as c(:,").

Ni-1
fT(hi) =t (vpi(o), vpi(Ni)) + Z t(vpi(j), vpi(j+1))
j=0
FT(S’) — Z fT(hi)
i=1.K

(Vi = TR)(FT(A) < Tyay)

Most heuristics applied to simple CVRP can be easily converted for solving DCVRP
cases. However, one heuristic proposed by Li et al. stands out from them [15]. It
transforms the DCVRP into a multiple traveling salesman problem with time
windows.

3.3. VRP with Time Windows (VRPTW)

In VRPTW there isa constraint on time interval [a;; b;] associated with each v;, called
time window. It means that service of each customer must start only after the time q;
comes and this service must end before the time b;. Obviously, a, = 0 and by, = o
for vy. Let us assume that if t.,,. is a current time, then all vehicles leave v, when
teur = 0. Ifavehicle arrives to v; at the moment when ¢, < a;, then it is obliged to
wait until ¢, = a; and to start serving only after that moment.

New function t(vi,vj), returning travel time between v; and v;, appears. Also, a
variable srv; keeping serving time of v; is introduced. It is clear, that the problem can
be solved if {(vv; € V)(3v; € V) | a; + srv; + t(v,,v)) + srv; < by

There are a lot of metaheuristics for solving VRPTW, but the most actual and state-
of-the-art ones are given. The guided Evolutionary algorithm of Repoussis et al.
(2009) [16] combines evolution, ruin-and-recreate mutations and guided local search.
Prescott-Gagnon et al. (2009) [17] suggests a Large Neighborhood search (LNS)
combined with branch-and-price for solution reconstruction. The method proposed
by Nagata et al. (2010) [18] uses an interesting relaxation scheme with penalized
returns in time. Another algorithm (Vidal et al. (2013)) [19] also applies time-
constraint relaxations during the search to benefit from infeasible solutions in the
search space.

237

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

3.4. VRP with Backhauls (VRPB)

VRPB is another extension to CVRP. To define VRPB we need to divide the set of
customers V! into two subsets: the first set contains customers who require the
product to be delivered, these customers are called linehaul customers L' c V. The
other set contains customers who require the product to picked up, they are called
backhaul customers B! c V. Lin Bi= @,L'uB!=V°. Also, neither all
deliveries nor all pick-ups should exceed vehicle capacity: d(LY) < C & d(BY) < C.
If the tour contains customers from both sets, the linehaul customers must serve
before any backhaul customers. Note that tours with backhaul customers only are not
allowed in some formulations [1].

In basic formulation H¢ shoud be changed as follows:

Hi = {p': M > [%| pi(0) = 0 & (Vx € M°)(Vy € M°)
x#y = p'(x0) = p'() & ((x <y) = (Vi) € B) or (v, & L))}
The best metaheuristics, according to [20], include the Adaptive LNS (ALNS) of
Ropke and Pisinger (2006) [21], the Tabu Search (TS) of Zachariadis and Kiranoudis
(2012) [22] which uses long-term memories to direct the search toward inadequately

exploited characteristics; and finally multi-ant colony system algorithm by Gajpal and
Abad (2009) [23], which suggests two multi-route local search schemes.

3.5. VRP with Backhauls and Time Windows (VRPBTW)

Like in VRPB, VRPBTW suggests having linehaul and backhaul customers. In
addition, with every location v; there is a service time srv; associated for
loading/unloading and a time window [a;; b;], which specifies the time in which this
service has to be provided. In the same way as for VRPTW, when arriving too early
at a location v;, i.e., before a;, the vehicle is allowed to wait until a; to start the
service. Also, the linehaul customers must be served before any backhaul customers.
Thus, mathematical formulation of VRPBTW is a combination of both formulations
of VRPTW and VRP.

The most powerful algorithms for solving VRPBTW are those which are proposed
by Thangiah et al. (1996) [24] and by Kucukoglu et al (2015) [25]. The first method
is based on insertion procedure with improving through the application of A-
interchange and 2-opt exchange procedures. The second one includes combination of
TS and SA.

3.6. VRP with Pickup and Delivery (VRPPD)

In the basic version of VRPPD, each customer v; requests either two demands, d; to
be delivered and p; to be picked up, or only d; = d; — p;, that represents the
difference between two demands. In addition, we need to add for each customer v,
two new variables: 0; which denotes the vertex where the source of delivery

238

Bepecuesa E.H., Apgonmu C.M. AHann3 MaTeMaTHYECKHX IOCTAHOBOK 33/1adl MapIIPYTH3ALUK C OTPAHUICHHEM 110
TPY30MOABEMHOCTH H METOI0B HX peuteHus. Tpyowr UCIT PAH, Tom 30, Beim. 3, 2018 ., crp. 233-250

originates and D; which denotes the customer where the destination of the pick up
exists. It should be noted that for each customer the delivery must be implemented
before the pick up.

Let define d(Vi%,.) — p(Vi%,¢) < C,part = 0..N*, as the weight of the current load

of the vehicle after Visiting v, ,qy¢), Where d(Vitic) = Xjejo.pare) dj, part < N*

and p(Vl%rt) = ZjelO..part| pj'

In basic formulation H! shoud be changed as follows:
Hi = {p': M° > % pi(0) = 0 & (Vx € M°)(Vy € M)
(x#y =p'(x) #p'() & (Vx € M*)(Vy € M)
((vpi(y) = Dpi(x)) = (x < y)) & (Vx € M‘”)(Vy € MOi)
((Vpic) = Opigy) = (x >y}

A great number of heuristics and metaheuristics are presented in [26].

3.7. VRP with Simultaneous Pickup and Delivery (VRPSPD)

VRPSPD is a subcase of VRPPD where each customer is a linehaul as well as a
backhaul customer. In VRPSPD each customer not only requires a given quantity of
products to be delivered but also requires a given quantity of products to be picked
up. A complete service (i.e., delivery and pickup) to the customer is provided by a
vehicle in a single visit. Thus, there is no need to explicitely indicate both variables
0, and D; as in VRPPD.

It is found in the literature that the heuristics of Subramanian et al. (2010) [27],
Zachariadis and Kiranoudis (2011) [28] and Souza et al. (2010) [29] together produce
the best known results.

3.8. VRP with Mixed Pickup and Delivery (VRPMPD)

VRPMPD is also a subcase of VRPPD where each customer has either a delivery
demand or pickup. Therefore, there is d; > 0 and p; = 0 in the first case and p; > 0
and d; = 0. Nevertheless, in basic formulation H* shoud be changed the same way as
it was shown for VRPPD.

The best known heuristics are those of Subramanian (2013) which is based on
Iterative Local Search (ILS) idea [30] and hybrid algorithm proposed by
Subramanian, Uchoa and Ochi (2013) [31].

3.9. VRP with Pickup and Delivery and Time Windows (VRPPDTW)

The VRPPDTW in this paper contains all constraints in the VRPPD plus added
constraints in which both pickup and delivery have given time windows. With every
location v; there is a service time srv; associated for loading/unloading and a time
window [a;; b;], which specifies the time in which this service has to be provided. In

239

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

the same way as for VRPTW, when arriving too early at a location v, i.e., before a;,
the vehicle is allowed to wait until a; to start the service. Also, for each customer the
delivery must be implemented before the pick up.

Efficient neighborhood-centered metaheuristics have been proposed, including the
ALNS of Ropke and Pisinger (2006) [32] and the two-phase method of Bent, and Van
Hentenryck (2006) [33], which combines SA to reduce the number of routes with
LNS to optimize the distance. However, these methods were recently outperformed
by the memetic algorithm of Nagata and Kobayashi (2011) [34], which exploits a
well-designed crossover focused on transmitting parent characteristics without
introducing too many new arcs in the offspring.

3.10. Multi-depot VRP (MDVRP)

The MDVRP is a generalization of the CVRP where more than one depot may be
considered. Obviously, the vehicle must start and end at the same depot.

So, part of basic formulation should be changed as follows:

Let G be a number of depots. Let introduce V° = {v§,vZ, ..., v§}, where vi € V. In
this case, we should make V% = {v] e v} uVii=T.K,j=1..G.

The best heuristic approaches for the MDVRP are considered to be developed by
Pisinger and Ropke (2006) [35] and Vidal et al. (2012) [6].

3.11. VRP with Multiple Use of Vehicles (VRPM) or Multi-Trip VRP
(MTVRP)

VRPM or MTVRP is a variant of standard CVRP in which the same vehicle can be
assigned to several routes during a given planning period. Not only this constraint is
introduced but also the sum of the durations of the trips assigned to the same vehicle
must not exceed Ty ax- Twax 1S @ trip duration being the sum of the travel times on
arcs used in the route. Thus, new function ¢(v;, v;), returning travel time between v,
and v;, appears.

In this variant it is possible if d(V°) > C, i = 1.. K. We additionally divide V* in
MT; sets: Vi = {Vi, V4, ..., Vi }, where MT; € [1;|V]]. Let] = {0,1, ..., K} be a set
that keeps indexes. Then (Vi € J) (vmt € 1..MT,) |V;%| = 1. There should be no
duplicates in any of subsets from _ /4R
(Vi € J) (vmt, € T..MT)) (Vmt, € T..MT)) (mt, # mt, = Vi, NV, =0).
Also, Vi = UMTi yi In this notation, we should make (Ymt € T.. MT,)V2 =

mt=1
VO U Vi,. Itis obvious that (vmt € 1..MT,) d(V,3i) < C.

Let introduce My, = {1, ..., Ni}, Ny = |Viie|, Zmgly Nipe = N©. Then MY, =
(0} UM, LetIl, ={i|i=ind(v),v € Vi,} be a set of vertex indices from V.

Then 19, = {0} U IL,,.

240

Bepecuesa E.H., Apgonmu C.M. AHann3 MaTeMaTHYECKHX IOCTAHOBOK 33/1adl MapIIPYTH3ALUK C OTPAHUICHHEM 110
TPY30MOABEMHOCTH H METOI0B HX peuteHus. Tpyowr UCIT PAH, Tom 30, Beim. 3, 2018 ., crp. 233-250

Let Hy,, = {print: Mpi = Iglitl Po(0)=0& (Vx € M‘r(;l:t)(vy € Mgl:t) X+Fy =
pLe(x) # pL.(y)} be a set of codes of all Hamiltonian cycles hl, =

L 0i
Vbl Vplye (1) vpint(Nl)) of Vit

Weight of a Hamiltonian cycle hi,, € H},, can be found according to the formula:

Ni—1
f(Rine) = c(v L0y pmt(N,int)> + Z C(Vbl)’ pmt(j+1))
7=0
Let S’ be a set of {V,91, V.92, ..., V953, mt = 1..MT,. In this notation the weight of S’

is calculated as F(S") = lel__,(Y=t f (Rine).
Function t(-,-) on V x V satisfies the same axioms as c(+,). And it is defined as

N -1
17 (hm t)‘t(t(o>'”p£nt(N£nt)>+ o (Vo e)

The most important thing here is the next constraint:

(vi=T.K) Z £ (i) < Thas

mt=1

Overall, the formulation of VRPM is to find:
SO:F(5°) = min F(S)
se Sall

Metaheuristic inspired by ideas of TS and adaptive memory-based search (AMS)
(Taillard (1993) [36]) still shows good results. In addition, another variant of AMS
by Olivera and Viera (2007) [37] is considered to be competitive.

3.12. Periodic VRP (PVRP)

The Periodic VRP (PVRP) is used when planning is done over a certain period and
deliveries to the customer can be done in different days. For the PVRP, customers can
be visited more than once, though often with limited frequency.

Efficient algorithm for solving PVRP is parallel extension of UTS with
neighborhood-centered search (Cordeau and Maischberger, 2012 [38]). Also, the
VNS of Hemmelmayr et al. (2009) [39], and the hybrid record-to-record and integer
programming metaheuristic of Gulczynski et al. (2011) [40] can be successfully
applied. In addition, one more metaheuristic is one that proposed by Vidal et al.
(2012) [6]. It produces the current best solutions by combining the GA search breadth
with efficient LS, relaxations schemes, and diversity management procedures.

241

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

3.13. Split Delivery VRP (SDVRP)

In the SDVRP-MDA, more than one vehicle can service a customer, so that a
customer’s demand can be split among several vehicles on different routes. The most
important here is that split deliveries are allowed only if at least a minimum fraction
of a customer’s demand is delivered by each vehicle visiting the customer.

The first metaheuristic for a SDVRP is proposed in Chen et al. (2007) [41]. The idea
of the approach is based on combination of the classical Clarke and Wright algorithm,
the Mixed-Integer Linear Programming (MILP) model and variable length record-to-
record travel methods. A similar procedure is applied in Gulczynski et al. (2010) [42]
to the SDVRP with minimum delivery amounts, that is a SDVRP where each delivery
to a customer should consist of at least a minimum amount of goods. Another
metaheuristic which contains TS approach is proposed in 2008 by Archetti et al. [43]
The main thing here is to obtain a reduced graph by removing some arcs and to apply
a set covering MILP formulation for the best routes. And in Jin et al. (2008) [44] a
set covering formulation is proposed and the problem is solved through column
generation.

3.14. Cumulative CVRP (CCVRP)

CCVRP minimizes the sum of the arrival times at the customers instead of
minimizing the total distance (or travel time) as an objective.

For the CCVRP, Ngueveu et al. (2010) [45] and Ribeiro and Laporte (2012) [46]
modified the hybrid GA. Also, two-phase metaheuristic proposed by Ke and Feng in
2013 [47] is considered to be successful enough.

4. An important note

There is an important note about recent state-of-the-art algorithm proposed by K.
Helsgaun [48]. In the end of 2017 this author released an extension of the Lin-
Kernighan-Helsgaun TSP Solver for Vehicle Routing Problems, called LKH-3. In his
technical report it is said that his algorithm can often obtain best known solutions for
benchmark instances, and even new best solutions were found. Unfortunately, his
algorithm cannot solve all subcases of CVRP. MDVRP, VRPM, PVRP, SDVRP and
CCVRP can be solved using other metaheuristics but not using LKH-3.

5. Conclusions

Table 1 sums up abovementioned and shows a list of best metaheuristics for each
defined subcase of CVRP.

The presented study is undertaken in order to make a survey on CVRP subcases and
on heuristic methods for solving each extension of this problem. In addition, author
variants of mathematical formulations are given.

242

Bepecuesa E.H., Apgonmu C.M. AHann3 MaTeMaTHYECKHX IOCTAHOBOK 33/1adl MapIIPYTH3ALUK C OTPAHUICHHEM 110
TPY30MOABEMHOCTH H METOI0B HX peuteHus. Tpyowr UCIT PAH, Tom 30, Beim. 3, 2018 ., crp. 233-250

Table 1. Best metaheuristics for CVRP subcases

| Problem Best metaheuristics
1 | CVRP LKH-3, Tabu Search, Simulated Annealing, Ant Colony Optimization
algorithm, Genetic algorithm, Variable Neighborhood Search
2 | OVRP LKH-3, Evolution algorithm, Variable Neighborhood Search, Tabu Search,
Genetic algorithm,
Particle swarm optimization metaheuristic
3 | DCVRP LKH-3, CVRP + transformation to mTSP with Time Windows
4 | VRPTW LKH-3, Guided Evolutionary algorithm, Large Neighborhood search
(LNS)
VRPB LKH-3, Adaptive LNS, Tabu Search, Multi-Ant Colony System algorithm
VRPBTW LKH-3, Tabu Search + Simulated Annealing, A-interchange and 2-opt
exchange procedures
7 | VRPSPD LKH-3, Genetic algorithm, Guided Evolutionary algorithm, Iterated Local
Search algorithm
8 | VRPMPD LKH-3, Genetic algorithm, Guided Evolutionary algorithm, Iterated Local
Search algorithm
9 | VRPPDTW | LKH-3, Adaptive LNS, Simulated Annealing + LNS
10 | MDVRP Hybrid Genetic algorithm
11 | VRPM or | Adaptive Memory-Based Search variants
MTVRP
12 | PVRP Tabu Search, Variable Neighborhood Search, Genetic algorithm + LNS
13 | SDVRP Clarke and Wright Savings + Mixed-Integer Linear Programming, Tabu
Search
14 | CCVRP Adaptive LNS, Variable Neighborhood Search

Fig. 1 sums up relations between classes of the CVRP and forms the classification of
its subtypes. In our future work, we are going to extend current survey adding
dynamic and stochastic subcases of CVRP.

243

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

PVRP [DCVRP ’ MTVRP [MDVRP ’ OVRP

L

SDVRP CVRP VRPMPD

[y A

VRPB VRPPD j

CCVRP _ VRPSPD
¥

‘ VRPBTW VRPPDTW

Fig. 1. The basic problems of the CVRP class and their interconnections

References

(1]
[2]
(3]
(4]
(5]
(6]
(7]

(8]

(9]

P. Toth and D. Vigo. An overview of vehicle routing problems, In The Vehicle Routing
Problem, SIAM, 2002.

G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem. Management Science,
vol. 6, no. 1, 1959, pp. 80-91.

M. Reed and B. Simon. Methods of Modern Mathematical Physics, London: Academic
Press, 1972.

B. Golden, S. Raghavan and E. Wasil. The vehicle routing problem: Latest advances and
new challenges, New York: Springer, 2008.

P. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, vol. 34, no. 8, 2007, pp. 2403-2435.

Y. Nagata and O. Braysy. Edge assembly-based memetic algorithm for the capacitated
vehicle routing problem. Networks, vol. 54, no. 4, 2009, pp. 205-215.

T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi and W. Rei. A hybrid genetic algorithm
for multi-depot and periodic vehicle routing problems. Operations Research, vol. 60, no.
3, 2012, pp. 611-624.

M. Salari, P. Toth and A. Tramontani. An ILP improvement procedure for the Open
Vehicle Routing Problem. Computers & Operations Research, vol. 37, no. 12, 2010, pp.
2106-2120.

P. Repoussis, C. Tarantilis, O. Braysy and G. loannou. A hybrid evolution strategy for the
open vehicle routing problem. Computers & Operations Research, vol. 37, no. 3, 2010,
pp. 443-455.

[10] K. Fleszar, I. Osman and K. Hindi. A variable neighbourhood search algorithm for the

open vehicle routing problem. European Journal of Operational Research, vol. 195, no. 3,
2009, pp. 803-809.

[11] E. Zachariadis and C. Kiranoudis. An open vehicle routing problem metaheuristic for

244

examining wide solution neighborhoods. Computers & Operations Research, vol. 37, no.
4, 2010, pp. 712-723.

Bepecuesa E.H., Apgonmu C.M. AHann3 MaTeMaTHYECKHX IOCTAHOBOK 33/1adl MapIIPYTH3ALUK C OTPAHUICHHEM 110
TPY30MOABEMHOCTH H METOI0B HX peuteHus. Tpyowr UCIT PAH, Tom 30, Beim. 3, 2018 ., crp. 233-250

[12] S. MirHassani and N. Abolghasem. A particle swarm optimization algorithm for open
vehicle routing problem. Expert Systems with Applications, vol. 38, no. 9, 2011, pp.
11547-11551.

[13] G. Laporte, Y. Nobert and M. Desrochers. Optimal routing under capacity and distance
restrictions. Operations Research, vol. 33, no. 5, 1985, p. 1050-1073.

[14] C. Li, D. Simchi-Levi and M. Desrochers. On the distance constrained vehicle routing
problem. Operational Research, vol. 40, 1992, pp. 790-799.

[15] P. Repoussis, C. Tarantilis and G. loannou. Arc-guided evolutionary algorithm for the
vehicle routing problem with time windows. IEEE Transactions on Evolutionary
Computation, vol. 13, no. 3, 2009, pp. 624-647.

[16] E. Prescott-Gagnon, G. Desaulniers and L. Rousseau. A branch-and-price-based large
neighborhood search algorithm for the vehicle routing problem with time windows.
Networks, vol. 54, no. 4, 2009, pp. 190-204.

[17] Y. Nagata, O. Braysy and W. Dullaert. A penalty-based edge assembly memetic algorithm
for the vehicle routing problem with time windows. Computers & Operations Research,
vol. 37, no. 4, 2010, pp. 724-737.

[18] T. Vidal, T. Crainic, M. Gendreau and C. Prins. A hybrid genetic algorithm with adaptive
diversity management for a large class of vehicle routing problems with time-windows.
Computers & Operations Research, vol. 40, no. 1, 2013, pp. 475-489.

[19] K. Braekers, K. Ramaekers and I. Nieuwenhuyse. The vehicle routing problem: State of
the art classification and review. Computers & Industrial Engineering, vol. 99, 2016, pp.
300-313.

[20] S. Ropke and D. Pisinger. A unified heuristic for a large class of vehicle routing problems
with backhauls. European Journal of Operational Research, vol. 171, no. 3, 2006, pp. 750—
775.

[21] E. Zachariadis and C. Kiranoudis. An effective local search approach for the vehicle
routing problem with backhauls. Expert Systems with Applications, vol. 39, no. 3, 2012,
pp. 3174-3184.

[22] Y. Gajpal and P. Abad. Multi-ant colony system (MACS) for a vehicle routing problem
with backhauls. European Journal of Operational Research, vol. 196, no. 1, 2009, pp. 102—
117.

[23] S. Thangiah, J.-Y. Potvin and T. Sun. Approaches to Vehicle Routing with Backhauls and
Time. Windows International Journal of Computers and Operations Research, vol. 23, no.
11, 1996, pp. 1043-1057.

[24] 1. Kiigiikoglu and N. Oztiirk. An advanced hybrid meta-heuristic algorithm for the vehicle
routing problem with backhauls and time windows. Computers and Industrial
Engineering, vol. 86, no. 3, 2015, pp. 60-68.

[25] S. Parragh, K. Doerner and R. Hartl. A survey on pickup and delivery problems. Journal
fiir Betriebswirtschaft, vol. 58, 2008, pp. 81-117.

[26] A. Subramanian, Drummond, C. Bentes, L. Ochi and R. Farias. A parallel heuristic for the
vehicle routing problem with simultaneous pickup and delivery. Computers & Operations
Research, vol. 37, no. 11, 2010, pp. 1899-1911.

[27] E. Zachariadis and C. Kiranoudis. A local search metaheuristic algorithm for the vehicle
routing problem with simultaneous pick-ups and deliveries. Expert Systems with
Applications, vol. 38, no. 3, 2011, pp. 2717-2726.

[28] M. Souza, M. Silva, M. Mine, L. Ochi and A. Subramanian. A hybrid heuristic, based on
iterated local search and GENIUS, for the vehicle routing problem with simultaneous

245

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

pickup and delivery. International Journal of Logistics Systems Management, vol. 10, no.
2, 2010, pp. 142-156.

[29] A. Subramanian and M. Battarra. An iterated local search algorithm for the travelling
salesman problem with pickups and deliveries. Journal of the Operational Research
Society, vol. 64, 2013, pp. 402-409.

[30] A. Subramanian, E. Uchoa and L. Ochi. A hybrid algorithm for a class of vehicle routing
problems. Computers & Operations Research, vol. 40, no. 10, 2013, pp. 2519-2531.

[31] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science, vol. 40, no. 4, 2006, pp.
455-472.

[32] R. Bent and P. Van Hentenryck. A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research, vol. 33,
no. 4, 2006, pp. 875-893.

[33] Y. Nagata and S. Kobayashi. A memetic algorithm for the pickup and delivery problem
with time windows using selective route exchange crossover. In Proceedings of PPSN’11,
vol. 6238, 2011, pp. 536- 545.

[34] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, vol. 34, no. 8, 2007, pp. 2403-2435.

[35] E. Taillard, G. Laporte and M. Gendreau. Vehicle routeing with multiple use of vehicles.
Journal of the Operational Research Society, vol. 47, no. 8, 1996, pp. 1065.

[36] A. Olivera and O. Viera. Adaptive memory programming for the vehicle routing problem
with multiple trips. Computers & Operations Research, vol. 34, no. 1, 2007, pp. 28-47.

[37] J.-F. Cordeau and M. Maischberger. A Parallel Iterated Tabu Search Heuristic for VVehicle
Routing Problems. Computers & Operations Research, vol. 39, no. 9, 2012, pp. 2033—
2050.

[38] V. Hemmelmayr, K. Doerner and R. Hartl. A variable neighborhood search heuristic for
periodic routing problems. European Journal of Operational Research, vol. 195, no. 3,
2009, pp. 791-802.

[39] D. Gulczynski, B. Golden and E. Wasil. The period vehicle routing problem : New
heuristics and real-world variants. Transportation Research Part E: Logistics and
Transportation Review, vol. 47, no. 5, 2011, pp. 648-668.

[40] S. Chen, B. Golden and E. Wasil. The split delivery vehicle routing problem: Applications,
algorithms, test problems, and computational results. Networks, vol. 49, 2007, pp. 318—
329.

[41] D. Gulczynski, B. Golden and E. Wasil. The split delivery vehicle routing problem with
minimum delivery amounts. Transportation Research Part E, vol. 46, 2010, pp. 612-626.

[42] C. Archetti and M. Speranza. The split delivery vehicle routing problem: a survey. In The
Vehicle Routing Problem Latest Advances and New Challenges, Operations Research,
Computer Science Interfaces Series, 2008, pp. 103-122.

[43] M. Jin, K. Liu and B. Eksioglu. A column generation approach for the split delivery
vehicle routing problem. Operations Research Letters, vol. 36, 2008, pp. 265-270.

[44] S. Ngueveu, C. Prins and C. Wolfler. An effective memetic algorithm for the cumulative
capacitated vehicle routing problem. Computers & Operations Research , vol. 37, no. 11,
2010, pp. 1877-1885.

[45] G. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the
cumulative capacitated vehicle routing problem. Computers & Operations Research, vol.
39, no. 3, 2012, pp. 728-735.

246

Bepecuesa E.H., Apgonmu C.M. AHann3 MaTeMaTHYECKHX IOCTAHOBOK 33/1adl MapIIPYTH3ALUK C OTPAHUICHHEM 110
TPY30MOABEMHOCTH H METOI0B HX peuteHus. Tpyowr UCIT PAH, Tom 30, Beim. 3, 2018 ., crp. 233-250

[46] L. Ke and Z. Feng. A two-phase metaheuristic for the cumulative capacitated vehicle
routing problem. Computers & Operations Research, vol. 40, no. 2, 2013, pp. 633-638.

[47]J. Sze, S. Salhi and N. Wassan. The cumulative capacitated vehicle routing problem with
min-sum and min-max objectives: An effective hybridisation of adaptive variable
neighbourhood search and large neighbourhood search. Transportation Research Part B:
Methodological, vol. 101, 2017, pp. 162-184.

[48] K. Helsgaun. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained
Traveling Salesman and Vehicle Routing Problems. Technical Report, Roskilde
University, 2017.

AHanu3 matemaTM4eCKMX NOCTAaHOBOK 3afauum
MapuwpyTtTu3aumm ¢ orpaHn4eHmem no rpysonoabeMHOCTU U
MeTO40B UX pelleHuns

E.H. Bepecnesa <eberesneva@hse.ru>
C.M. Asoowun <savdoshin@hse.ru>
Jlenapmamenm npocpammuon uHdiceHepuu,
Hayuonansuwlil ucciedosamenbckuil yuugepcumem “Boicutas wkoaia 3kOHOMuKu”,
101000, Poccus, 2. Mockea, yn. Macuuykas, 0. 20

AHHoTaums. 3ajaya MapIIpYTHU3aLHUU SABIAETCS OAHOM n3 BaxkHeHummx NP-TpynHbIX 3ama4
KOMOMHATOpHON onTuMu3anu. OHa 3aKIIF0YaeTCs B HAXOXICHUH MHOXECTBA ONTHMAJIBHBIX
3aMKHYTBIX MapLIPyTOB C LIEJIbIO Pa3BO3KH TOBAPOB KIMEHTaM, HCIIOIb3ys OrPaHUYCHHOE
KOJIMYECTBO TPAHCHOPTHBIX CpeJCTB. B maHHON pabore aHanm3upyeTcst 0coOblil BU] 3a1a4n
MapLIpyTH3alMy — 3aJa4a MaplIpyTH3alldd C OrpaHMYEHHEM MO TPy30HOIbEMHOCTH, B
KOTOPOH Y KaXI0ro TPaHCIIOPTHOI'O CPEJICTBA €CTh JIMMHT HAa MakKCHMaJbHbIH Bec (00beM)
rpy3a. Llenbto aHHON pabOTHI SIBISETCS COCTaBJECHHE KIACCHU(UKALMH Pa3IMYHBIX THUIIOB
3a1a4¥ MapLIPYTH3allMK C O'PaHMYEHHEM I10 TPY30NOAbEMHOCTU. B mepBoii yactu paboTsl
naHa oOmas wuHbopManms o mnpoOiieMe, YKa3aHbl paMKH, B KOTOPBIX HPOBOAMIIOCH
HCCIIEZIOBAHUE — HE PAacCMaTPUBAINCH AMHAMHYECKHE W CTOXACTHYECKUE IMOABHIbI 3a/laul
Mapupyrusaiui. Bo BTopoii 4acTH peicTaBiIeHa BIepBbIe NPeUI0KeHHAs aBTOpaMU paboThI
MaTeMaTH4yecKas IOCTAHOBKA TPEX KJIACCHYECKMX BapUAHTOB 3aJayd MapIIPYTHU3ALHUU C
OTpaHUYEHHEM [0 TPY30MONBEMHOCTH. B TpeTbeil wacTu paboOThl MpPEACTaBIEH CIHCOK
TOJIKJIACCOB PAacCMaTPUBACMON 3aJa4y, BKIIOYAIOIIMK ONHCAHUE, MaTEMAaTHYECKUE MOACIU
JUIsL HEKOTOPBIX 3ajad, a Takke Hauboliee NepCIeKTUBHbIE METa3BPUCTHKH, C MOMOLIBIO
KOTOPBIX MOKHO PelIaTh IOCTaBJICHHYIO 3a/ja4y. B ueTBepToii yacTu NpHBEICHO yOMUHAHUE
06 amroputme LKH-3, crmocobHOM peliaTh HEKOTOpbIE MOKIACCH 3a4ad C MEHBIINM
OTKJIOHEHHEM OT ONTHUMAIIBHOTO 3HAa4YEHMS 0 CPAaBHEHHIO C JPYTMMH aJIrOpuTMaMu. B
3aKJIIOUCHHUH, TIPUBE/ICHa Ta0HIa, 00bEANHSIONIAs BCE METO/IbI, ONIUCAHHbIE paHee, U cXeMa C
B3aMMOCBS3SIMH 3a[ja4id MapIIPYTU3alKd C OTPAaHUYEHHEM II0 TPY30MOABEMHOCTH U €&
noxkiaccamMu. B Oyaymem aBTopbl pabOThl IUIAHUPYIOT PACIIMPHUTh KIACCH(HUKALMIO,
BKJIIOYMB B HE€ MOJIKIIACCHI CTOXACTHYECKHUX U IMHAMHMYECKHX BapHAHTOB JAHHOH MPOOIEMBIL.

KiroueBble cjoBa: 3ajaya MaplIpyTH3allMd € OTPAaHUYEHHEM IO TPY30IOJbEMHOCTH;
MaTeMaTH4YecKasi IOCTAaHOBKA; META3BPUCTHKH; KilaccUUKalus 3a1a4 MapIIpyTH3aLHH.

247

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

DOI: 10.15514/ISPRAS-2018-30(3)-17

Jost nutupoBanus: bepecuesa E.H., ABnommu C.M. AHann3 MaTeMaTHYeCKUX MOCTAaHOBOK
3a7a4d MapIIpyTH3al{ C OFPaHHYCHUEM II0 T'PY30MOXBEMHOCTH M METOOB MX DPEIICHUS.
Tpymer UCIT PAH, Tom 30, Beim. 3, 2018 1., ctp. 233-250 (ma anrmmiickoM s3bike). DOI:
10.15514/ISPRAS-2018-30(3)-17

Cnucok nutepatypbl

[1] P. Toth and D. Vigo. An overview of vehicle routing problems, In The Vehicle Routing
Problem, SIAM, 2002.

[2] G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem. Management Science,
vol. 6, no. 1, 1959, pp. 80-91.

[3] M. Reed and B. Simon. Methods of Modern Mathematical Physics, London: Academic
Press, 1972.

[4] B. Golden, S. Raghavan and E. Wasil. The vehicle routing problem: Latest advances and
new challenges, New York: Springer, 2008.

[5] P. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, vol. 34, no. 8, 2007, pp. 2403-2435.

[6] Y. Nagata and O. Braysy. Edge assembly-based memetic algorithm for the capacitated
vehicle routing problem. Networks, vol. 54, no. 4, 2009, pp. 205-215.

[7] T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi and W. Rei. A hybrid genetic algorithm
for multi-depot and periodic vehicle routing problems. Operations Research, vol. 60, no.
3, 2012, pp. 611-624.

[8] M. Salari, P. Toth and A. Tramontani. An ILP improvement procedure for the Open
Vehicle Routing Problem. Computers & Operations Research, vol. 37, no. 12, 2010, pp.
2106-2120.

[9] P. Repoussis, C. Tarantilis, O. Braysy and G. loannou. A hybrid evolution strategy for the
open vehicle routing problem. Computers & Operations Research, vol. 37, no. 3, 2010,
pp. 443-455.

[10] K. Fleszar, I. Osman and K. Hindi. A variable neighbourhood search algorithm for the
open vehicle routing problem. European Journal of Operational Research, vol. 195, no. 3,
2009, pp. 803-809.

[11] E. Zachariadis and C. Kiranoudis. An open vehicle routing problem metaheuristic for
examining wide solution neighborhoods. Computers & Operations Research, vol. 37, no.
4, 2010, pp. 712-723.

[12] S. MirHassani and N. Abolghasem. A particle swarm optimization algorithm for open
vehicle routing problem. Expert Systems with Applications, vol. 38, no. 9, 2011, pp.
11547-11551.

[13] G. Laporte, Y. Nobert and M. Desrochers. Optimal routing under capacity and distance
restrictions. Operations Research, vol. 33, no. 5, 1985, p. 1050-1073.

[14] C. Li, D. Simchi-Levi and M. Desrochers. On the distance constrained vehicle routing
problem. Operational Research, vol. 40, 1992, pp. 790-799.

[15] P. Repoussis, C. Tarantilis and G. loannou. Arc-guided evolutionary algorithm for the
vehicle routing problem with time windows. IEEE Transactions on Evolutionary
Computation, vol. 13, no. 3, 2009, pp. 624-647.

[16] E. Prescott-Gagnon, G. Desaulniers and L. Rousseau. A branch-and-price-based large
neighborhood search algorithm for the vehicle routing problem with time windows.
Networks, vol. 54, no. 4, 2009, pp. 190-204.

248

Bepecuesa E.H., Apgonmu C.M. AHann3 MaTeMaTHYECKHX IOCTAHOBOK 33/1adl MapIIPYTH3ALUK C OTPAHUICHHEM 110
TPY30MOABEMHOCTH H METOI0B HX peuteHus. Tpyowr UCIT PAH, Tom 30, Beim. 3, 2018 ., crp. 233-250

[17] Y. Nagata, O. Braysy and W. Dullaert. A penalty-based edge assembly memetic algorithm
for the vehicle routing problem with time windows. Computers & Operations Research,
vol. 37, no. 4, 2010, pp. 724-737.

[18] T. Vidal, T. Crainic, M. Gendreau and C. Prins. A hybrid genetic algorithm with adaptive
diversity management for a large class of vehicle routing problems with time-windows.
Computers & Operations Research, vol. 40, no. 1, 2013, pp. 475-489.

[19] K. Braekers, K. Ramaekers and I. Nieuwenhuyse. The vehicle routing problem: State of
the art classification and review. Computers & Industrial Engineering, vol. 99, 2016, pp.
300-313.

[20] S. Ropke and D. Pisinger. A unified heuristic for a large class of vehicle routing problems
with backhauls. European Journal of Operational Research, vol. 171, no. 3, 2006, pp. 750—
T75.

[21] E. Zachariadis and C. Kiranoudis. An effective local search approach for the vehicle
routing problem with backhauls. Expert Systems with Applications, vol. 39, no. 3, 2012,
pp. 3174-3184.

[22] Y. Gajpal and P. Abad. Multi-ant colony system (MACS) for a vehicle routing problem
with backhauls. European Journal of Operational Research, vol. 196, no. 1, 2009, pp. 102—
117.

[23] S. Thangiah, J.-Y. Potvin and T. Sun. Approaches to Vehicle Routing with Backhauls and
Time. Windows International Journal of Computers and Operations Research, vol. 23, no.
11, 1996, pp. 1043-1057.

[24] 1. Kiigiikoglu and N. Oztiirk. An advanced hybrid meta-heuristic algorithm for the vehicle
routing problem with backhauls and time windows. Computers and Industrial
Engineering, vol. 86, no. 3, 2015, pp. 60-68.

[25] S. Parragh, K. Doerner and R. Hartl. A survey on pickup and delivery problems. Journal
fiir Betriebswirtschaft, vol. 58, 2008, pp. 81-117.

[26] A. Subramanian, Drummond, C. Bentes, L. Ochi and R. Farias. A parallel heuristic for the
vehicle routing problem with simultaneous pickup and delivery. Computers & Operations
Research, vol. 37, no. 11, 2010, pp. 1899-1911.

[27] E. Zachariadis and C. Kiranoudis. A local search metaheuristic algorithm for the vehicle
routing problem with simultaneous pick-ups and deliveries. Expert Systems with
Applications, vol. 38, no. 3, 2011, pp. 2717-2726.

[28] M. Souza, M. Silva, M. Mine, L. Ochi and A. Subramanian. A hybrid heuristic, based on
iterated local search and GENIUS, for the vehicle routing problem with simultaneous
pickup and delivery. International Journal of Logistics Systems Management, vol. 10, no.
2, 2010, pp. 142-156.

[29] A. Subramanian and M. Battarra. An iterated local search algorithm for the travelling
salesman problem with pickups and deliveries. Journal of the Operational Research
Society, vol. 64, 2013, pp. 402-409.

[30] A. Subramanian, E. Uchoa and L. Ochi. A hybrid algorithm for a class of vehicle routing
problems. Computers & Operations Research, vol. 40, no. 10, 2013, pp. 2519-2531.

[31] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science, vol. 40, no. 4, 2006, pp.
455-472.

[32] R. Bent and P. VVan Hentenryck. A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research, vol. 33,
no. 4, 2006, pp. 875-893.

249

Beresneva E., Avdoshin S. Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and
Methods for their Solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp, 233-250

[33] Y. Nagata and S. Kaobayashi. A memetic algorithm for the pickup and delivery problem
with time windows using selective route exchange crossover. In Proceedings of PPSN’11,
vol. 6238, 2011, pp. 536 545.

[34] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, vol. 34, no. 8, 2007, pp. 2403-2435.

[35] E. Taillard, G. Laporte and M. Gendreau. Vehicle routeing with multiple use of vehicles.
Journal of the Operational Research Society, vol. 47, no. 8, 1996, pp. 1065.

[36] A. Olivera and O. Viera. Adaptive memory programming for the vehicle routing problem
with multiple trips. Computers & Operations Research, vol. 34, no. 1, 2007, pp. 28-47.

[37] J.-F. Cordeau and M. Maischberger. A Parallel Iterated Tabu Search Heuristic for VVehicle
Routing Problems. Computers & Operations Research, vol. 39, no. 9, 2012, pp. 2033—
2050.

[38] V. Hemmelmayr, K. Doerner and R. Hartl. A variable neighborhood search heuristic for
periodic routing problems. European Journal of Operational Research, vol. 195, no. 3,
2009, pp. 791-802.

[39] D. Gulczynski, B. Golden and E. Wasil. The period vehicle routing problem : New
heuristics and real-world variants. Transportation Research Part E: Logistics and
Transportation Review, vol. 47, no. 5, 2011, pp. 648-668.

[40] S. Chen, B. Golden and E. Wasil. The split delivery vehicle routing problem: Applications,
algorithms, test problems, and computational results. Networks, vol. 49, 2007, pp. 318-
329.

[41] D. Gulczynski, B. Golden and E. Wasil. The split delivery vehicle routing problem with
minimum delivery amounts. Transportation Research Part E, vol. 46, 2010, pp. 612-626.

[42] C. Archetti and M. Speranza. The split delivery vehicle routing problem: a survey. In The
Vehicle Routing Problem Latest Advances and New Challenges, Operations Research,
Computer Science Interfaces Series, 2008, pp. 103-122.

[43] M. Jin, K. Liu and B. Eksioglu. A column generation approach for the split delivery
vehicle routing problem. Operations Research Letters, vol. 36, 2008, pp. 265-270.

[44] S. Ngueveu, C. Prins and C. Wolfler. An effective memetic algorithm for the cumulative
capacitated vehicle routing problem. Computers & Operations Research , vol. 37, no. 11,
2010, pp. 1877-1885.

[45] G. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the
cumulative capacitated vehicle routing problem. Computers & Operations Research, vol.
39, no. 3, 2012, pp. 728-735.

[46] L. Ke and Z. Feng. A two-phase metaheuristic for the cumulative capacitated vehicle
routing problem. Computers & Operations Research, vol. 40, no. 2, 2013, pp. 633-638.

[47]J. Sze, S. Salhi and N. Wassan. The cumulative capacitated vehicle routing problem with
min-sum and min-max objectives: An effective hybridisation of adaptive variable
neighbourhood search and large neighbourhood search. Transportation Research Part B:
Methodological, vol. 101, 2017, pp. 162-184.

[48] K. Helsgaun. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained
Traveling Salesman and Vehicle Routing Problems. Technical Report, Roskilde
University, 2017.

250

Applying the methods of system analysis to
teaching assistants’ evaluation

E. Beresneva <eberesneva@hse.ru>
M. Gordenko <mgordenko@hse.ru>
Department of Software Engineering,
National Research University Higher School of Economics, 20, Myasnitskaya st.,
Moscow, 101000 Russia

Abstract. This article presents the results of applying various methods of system analysis
(CATWOE, Rich Picture, AHP, Fuzzy AHP) to evaluation of teaching assistants. The soft
and hard methods were applied. Methods of system analysis are considered as an example at
the Higher School of Economics (HSE) in program “Teaching assistant”. The article shows
the process of interaction of teaching assistants with students and faculty in the form of Rich
Picture. Selection and analysis of criteria for the evaluation of training assistants are carried
out. Three groups of criteria were defined: professional skills, communicating skills, personal
qualities. Each group has some subcriteria, which were defined in brainstorm. Its own method
was determined, which immediately allow drop some assistants. In addition, the application
of the methods AHP and Fuzzy AHP type-2 to evaluate teaching assistants is considered. The
strengths and weaknesses of each method are revealed. It is also shown that, despite the
power of the methods of system analysis, it is necessary to use common sense and logic. Do
not rely only on the numbers obtained by the methods of system analysis. In the process of
work, the best teaching assistant is selected, and the group of the best teaching assistants is
defined.

Keywords: system analysis; combination of soft and hard methods; multicriteria decision
making (MCDM); AHP; type-2 fuzzy sets; Fuzzy AHP

DOI: 10.15514/ISPRAS-2018-30(3)-18

For citation: Beresneva E., Gordenko M. Applying the methods of system analysis to
teaching assistants’ evaluation. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp.
251-270. DOI: 10.15514/1SPRAS-2018-30(3)-18

1. Introduction

At the Higher School of Economics (HSE) there is a program “Teaching assistant”
which has been effective for sever-al years. Each teacher can invite an education
assistant, who will take some of the routine tasks related to teaching the course
(checking homework, developing test materials, etc.).

251

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

Every student or a graduate student of the HSE, who meets the criteria established
by the faculty, can be a teaching assistant. The teacher (or group of teachers)
formulates tasks for the teaching assistants and monitors the quality of their
performance. The teacher is responsible for the results of the students' knowledge,
the quality of materials prepared by the education assistant, methodical support of
the teaching assistant’ work.

At the moment, all faculties establish their own criteria for selecting teaching
assistants independently. Now there is only one criterion for all disciplines: “A
student must have a mark at least 8 on the course in which he/she is involved, or
he/she must have a recommendation from the department, to which teaching of this
discipline is fixed.” However, the practice shows that it is not enough to have only
this criterion. There were no special studies about it before, but annual evidence
showed that an excellent mark does not fully correlate with being a good teaching
assistant. Recent year revealed that 60% of assistants were not able to cope with
their work according to teachers. Most problems were connected with personal
qualities, professional and communicative skills. For example, somebody did all the
tasks slowly and did not do everything in time, or just did not have enough
knowledge in the subject area. There were even some facts of disclosure of
confidential information: one teaching assistant shared answers to the tests with
students. Thus, there is a strong necessity to define a group of selective factors in a
clever manner.

Recently, the head of Computer Science faculty has ordered each teacher (or group
of teachers) on all disciplines to choose the best teaching assistant to give him/her
an incentive award. In addition, next year the number of students is reduced, and it
is necessary to decrease the number of assistants. Now there is a tendency on
«Discrete mathematics» course that the education assistants who come from year to
year are the same. This situation prompted the idea that at the moment when
assessing teaching assistants, it is worth using additional criteria that will allow the
group of teachers to select the best assistant and choose the group of the most
successful assistants.

Thus, two tasks are faced — to choose the best assistant on «Discrete mathematicsy»
course and to select the group of the most successful assistants, with whom it is
possible to continue working on this course.

The purpose of this work is the development of searching method, which will select
the best assistant and select the group of the most successful ones according to the
criteria set by the group of teachers.

The rest of the paper is organized as follows. We discuss the problem specification
in Section 2 and introduce our premises for model, which we use to illustrate our
main results on Section 9. Sections 3, 4 and 6 present the different methods used for
solution the problem. In sections 5 and 7 the derivations for the AHP and Fuzzy
AHP are dis-cussed. Section 8 presents a sensitivity analyze.

252

Bepecuena E.H., I'opnenko M.K. TIpuMeHeHre METOI0B CHCTEMHOTO aHAIN3a K OLCHHBAHUIO PabOTHl y4eOHbIX
accucteHtoB. Tpyost CII PAH, Tom 30, Beim. 3, 2018 1., cTp. 251-270

2. The Difference between Previous Works and Our Approach

The literature review shows that there are a lot of researches that reveal a high
success of applying the teaching assistant program in general. The most recent one
is [3]. However, no one article is aimed neither at selection criteria for teaching
assistants nor at searching methodology.

The closest study to our problem is devoted to a proposed framework for evaluating
student’s performance [4]. This work is based on the hard approach only. It uses the
variation of the most widely used approach for multi-criteria decision-making —
Analytic Hierarchy Process that combines mathematics and expert judgment. Since
Analytic Hierarchy Process suffers from the problem of imprecision and
subjectivity, their paper proposes to use Fuzzy AHP instead of traditional method.
However, there is an opinion about useless of applying Fuzzy AHP method. In [3] it
is said that “the numerical representation of judgments in the AHP is already fuzzy”
and “making fuzzy judgments more fuzzy does not lead to a better more valid
outcome and it often leads to a worse one.”

Our article proves that Fuzzy AHP with type-2 modification can still be used in a
decision making process. Moreover, our study combines both hard and soft
approaches be-cause this problem consists of not only main criteria but also it has a
lot of additional ones. And these auxiliary factors can not be described using only
formal algorithms.

3. Problem Definitions

The problem of finding the best teaching assistant and the group of teaching
assistants is closely related with searching the criteria by which the teaching
assistants should be selected.
To analyze the domain and determine its boundaries, the rich picture can be applied.
Rich Picture is a collection of sketches, pictures, photos, symbols, signatures which
represent a particular situation or a question of the real world from the point of view
of the person or group of people who create it. Image components are people
(stakeholders), systems, processes, inter-faces, data streams, information sources,
infrastructure objects, attendant and impeding factors, emotions, points of view and
attitude to them, etc.
Rich Picture can reflect the interaction and connections of the system components
(or the surrounding world), their influence, cause and effect. It can also represent
such subjective elements as attitude (perception), point of view, prejudice [1].
It is used to explore and aggregate the physical, conceptual and emotional aspects of
the actual situation (sys-tem/problem/need).
Rich picture on subject «Teaching assistants» interactions in discipline «Discrete
mathematic» is provided in Fig. 1.
To analyze the subject area and project boundaries, the CATWOE technique is a
good addition to Rich Pictures.

253

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

CATWOE is defined by Peter Checkland as a part of his Soft Systems Methodology
(SSM). It is a simple checklist for thinking. CATWOE is an acronym, each letter
stands for a specific word: Clients, Actors, Transformation, World view, Owner,
Environmental constraints [2].

Questions about tests

Other interactions do not connected with | Drafting task templates
- — — —tminingassistants _ _ _ H_;
Discussion of lessons plans
Brainstorminy
m m < "*; ; ﬁn
Reports

Course leader

I

I

1
1

1
1

i
|
! :
! Teachers % teacher I
1

I
1

1
1

1
1

!
1

I
1

1
1

)

Reports Test < T
templates 1
Students Group of teachers !
— AT 1
1

e
1
. - a
§ £ 5
2 ki g § %
£ £l 8 g s & s
£ gzl 5 =] a
3 HERE R 2 =
3 =3 3 E Fl
i 3 g El
E E g
K 5 2 3
g 3 E g
E S| 5 | E 8,
3 k-] < 3
£ 21
& 8
— Help with cheking home-work -E:
o o O Help to conduct examination]
i
E
Yo Yo) S— -
i Head of !
3 Training assistants @Mﬂ% faculty |7 T T T~ ’

[Enoouragmg l

Fig. 1. Rich picture on subject “Teaching assistans’ interactions in ““Discrete mathematics”

Table 1. The CATWOE analysis

Role Description
. Teachers who want to assess their teaching assistants. Students who
Clients . s
need assistants’ help.
Groups of teachers who interested in evaluating of skills of teaching
Actors assistants and choosing the group of the best teaching assistants. The

head of faculty who wants to encourage the best teaching assistant.

Transformation

Teaching assistant receives points for certain evaluation criteria.

It is needed to define a group of the best teaching assistants and the best
teaching assistant. The definition of a group of best teaching assistants is

World View necessary in order to reduce the risks associated with incompetent and
disinterested teaching assistants with the next year group of teaching
assistants.

Owner Teachers and the head of faculty.

Environmental

National educational and assessment standards.

254

Bepecuena E.H., I'opnenko M.K. TIpuMeHeHre METOI0B CHCTEMHOTO aHAIN3a K OLCHHBAHUIO PabOTHl y4eOHbIX
accucteHtoB. Tpyost CII PAH, Tom 30, Beim. 3, 2018 1., cTp. 251-270

| constraints |

After analyzing the processes and interactions associated with the members of the
system, a clear understanding of the subject area is emerged.

There are three teachers: one lecturer (the leading teacher) and two seminarians at
“Discrete mathematics” course. They compose a decision group for choosing best
assistants. Fair and reliable evaluation results would be obtained by this group
because its members have a strong relationship with teaching assistants during the
course.

In order to evaluate the assistants, it is decided to come up with evaluation criteria.
After the first brainstorm, the list of criteria is similar to a chaotic list of records.
The next meeting of the teachers shows that some of the criteria identified in the
first stage for assessing the assistants turned out to be duplicated or unnecessary.
After long discussions and joint brainstorming, three main groups of criteria are
identified: professional skills, communicating skills, personal qualities.

The professional skills include the following sub-criteria:

— active involvement in the process of forming the program of discipline;
— initiative to compile new types of tasks for tests;

— knowledge of the subject domain;

— quality of homework checking;

— speed of homework cheking;

— experience of active use of the LMS;

The communicating skills include the following sub-criteria:

— pedagogical experience, the ability to correctly present information;

— openness to student issues (e.g. quick response to questions, competent
answers);

— participation in counseling sessions before the tests and examinations;

— active communicating with teachers, participation in weekly meetings;

— the ability to listen carefully.

The personal qualities include the following sub-criteria:

— ecthical compliance;

— punctuality;

— self-motivation, the desire for development;
— responsibility for work;

— teamwork skills;

— subordination;

— striving to achieve common results;

— resistance to conflict situations;

— the ability to generate new and innovative ideas;
— the ability to compromise;

— benevolence.

From the first group the next criteria are deleted:

255

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

active involvement in the process of forming the program of discipline. The
teachers should do it, because drawing up a discipline program requires
experience and entails a great responsibility;

knowledge of the subject domain. Taking into account that each assistant is
selected among the best students of the course, this requirement should be

fulfilled by default.

And the next criteria are combined as they characterize the checking of homework
and are closely interrelated:

quality of homework checking;
speed of homework checking.

From the second group the next criteria are deleted:

pedagogical experience, the ability to correctly present information. This
ability can be learned. One of the goals of the "Teaching Assistant” program is
the development of teaching skills;

the ability to listen. In our opinion, this parameter is almost impossible to
estimate.

From the third group the next criteria are combined, because they are very
interrelated and cannot be separated:

self-motivation, the desire for development;
responsibility for work;

And the next criteria are deleted:

teamwork skills. /¢ is related with the responsibility of work criteria,

ability to be subordinate. By default, the main person on the course is the
teacher. This is necessary to understand at first;

striving to achieve common results. It is related with the responsibility of work
criteria;

resistance to conflict situations. It is the responsibility of the teacher to resolve
and prevent the emergence of conflict situations;

the ability to generate new and innovative ideas. This is not a paramount task
of the teaching assistant. And the teaching assistant can work great, but do not
come up with ideas, it's not scary,

the ability to compromise. The last word for the teacher;

benevolence. It is related with the ethical compliance and punctuality of work
criteria.

The final elected criteria and subcriteria are shown in Fig. 2. All the criteria and
subcriteria have their own identification numbers.

256

Bepecnesa E.H., l'opaenko M.K. IIpuMeHeHHE METOI0B CHCTEMHOTO aHAIIM3a K OLCHUBAHUIO pabOThl YU4eOHBIX
accucteHToB. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 251-270

1.| Professional skills 2.|Communicating skills 3.| Personal qualities

Initiative to compile new types 22 Actve commuication wih feachers, [32 Ethical compliance] [Sty’mrg'-: achieve

with
11 of tasks for tests participation in weekly meetings

The ability to compromise
Benevolence

e
(N

Knowledge of the subject domain

Fig. 2. The final list of criteria.

4. Exploring the alternatives

There are ten teaching assistants A, B, C, D, E, F, G, H, I, J on the course.

We can reduce the number of evaluating teaching assistants after assessing the
involvement of teaching assistants in educational process.

We have 3 groups of criteria, consisting of 9 sub-criteria. In order to assess the
involvement of assistants in the educational process, we did not use the values of the
last three subcriteria (3.1-3.3). These sub-criteria refer to a group of personal
qualities and cannot be regarded as involvement in the educational process. Then
the involvement of the teaching assistant in the educational process for each
criterion is evaluated, based on expert judgment. The results are presented in Table
2.

Table 2. The involvement in educational process

ABI|CIDIEIF |GH|Il |J
11. (5 |5 |5 |5 |4 |5 |3 |2 |1 |1
12. (4 |5 |5 (4 |4 |4 |4 |4 |1 |4
13. (1|12 |1 (4 |51 11 1 1)1
21 |4 3 |13 |4 2 |5 |51 3 1
22. |5 (4 |4 |4 [3 |5 |2 |1 |2 |2
23. |4 |4 |13 |4 |1 |4 |5 12 |1 |2

257

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

Let us understand which assistants are least involved in the work process, according
to experts. Calculations of threshold equals to 3, 4 and 5 are shown in Tables 3, 4
and 5.

Table 3.Treshhold is equal to 3

A|B|C|D|E|F|G|H]|IT|]
1011|1111)]1|0]0¢|0O
1201111111101
13j0jofof1j1j0|0(0]|0]O
211 (111|021]0)1]|0O
2211 (111|110 0)0O0]|O
231111]j02|1|0)0O0]|O

Table 3 and 4 allow to identify teaching assistants who are least involved in the
educational process.

The Table 5 with threshold equals to 5 shows that no one from H, I, J is not
indispensable.

Table 4.Treshhold is equal to 4

A|B|C|D|E|F|G|H]|I]|J
1.1 (1|11 |1]1]o0o|0]0O]oO
1201111 |1|1]|1]|]1]0]1
1300|011 |0|J0O]|]0O]O0O]|0O
211010202121 |0]|0]O
2241 (111|1j0|212|0|0]|0O0]O
231110212 }j0|1|1|0|0]O
Table 5.Treshhold is equal to 5

A|B|C|D|E|F|[G|H|I1]|J
111|111 |0o|1]|]0]|]0]|O0]O
1210|1(1|0|0}|0O]JO|0O]O0O]O
130|000 |O0O|1}|0]J0O|0]O0]O
21.)]0(0|0O|O0O|O]J21|1]0|0}|0O
2211(0|0|0O0f|O]J212|0]0O]|0}O
23./]0(0|0|O0Of|O]JO|1T]|]0O0]|0}0O

Thus, it is decided not to consider further the last three teaching assistants (H, I, J).
However, little involvement in the educational process has its own explanations:

e Hwas ill two month;

258

Bepecuena E.H., I'opnenko M.K. TIpuMeHeHre METOI0B CHCTEMHOTO aHAIN3a K OLCHHBAHUIO PabOTHl y4eOHbIX
accucteHtoB. Tpyost CII PAH, Tom 30, Beim. 3, 2018 1., cTp. 251-270

e | was out of connection;

e J decided to switch to another faculty. Preparation for the exams took all
his spare time.

Thus, seven candidates are remained. It is difficult to find the best one because each
of them is successful in one or more criteria.
Stakeholders are about to choose A as a winner because this assistant took part in all
teacher meetings and he suggested new types of tasks for tests so regularly
(approximately once every two weeks). Assistant A communicated with teachers a
lot (flashed before their eyes), that is why they prefer him.
However, this decision can be too unfair, that’s why multicriteria decision making
(MCDM) prosess is decided to be applied.

5. Analytical Hierarchy Process

Analytic Hierarchy Process (AHP) which is one of the most used MCDM
approaches ¥Yka3zan HexomycTumblii ucToyHMK. IS a structured multicriteria
technique for organizing and analyzing complex decisions including many criteria.
In this paper we use a classical AHP proposed by the author Ykaszam
HeIIOHyCTI/leli/'l HCTOYHMUK..

At the first step of AHP a model for the decision is developed. Experts break down
the decision into a hierarchy of goals, criteria, sub-criteria and alternatives.

After that, decisioners derive priorities (weights) for the criteria with respect to the
desired goal. It is made in the form of pairwise comparisons using individual
questionnaires. Since the evaluation criteria are subjective and qualitative in nature,
it is very difficult for the decision maker to express the preferences using exact
numerical values. That is why a special numerical scale Yka3zan umexomycTumblii
ucrounuk. Which consists of interpretation of linguistic terms is used (see Table 6).

Table 6. Saaty’s pairwise comparison scale

Numeric value Linguistic terms

Equally important

Moderately more important

Strongly more important

Extremely important

1
3
5
7 Very Strongly more important
9
2

,4,6,8 The intermediate values that are used to address situations of
uncertainty between the two adjacent judgments

Results of comparisons of all experts are presented in the form of matrices (see Table 7).
Table 7. Criteria pairwise comparisons obtained by experts

Professional skills | Communicative skills | Personal qualities

Exp.1|Exp.2| Exp.3 |Exp.1| Exp.2 | Exp.3 |Exp.1|Exp.2 | Exp.3

259

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

Professional skills 1 1 1 5 5 4 3 2 1
Communicative skills 1/5 1/5 1/4 1 1 1 1/3 1/4 1/5
Personal qualities 1/3 | 12 1 3 4 5 1 1 1

Before calculating the weights, the consistency of the comparison matrix is checked.
As a rule, only if consistency is less than 0.1, it considered as acceptable, otherwise
the pair-wise comparisons should be revised. In this decision making process, all of
them are less than 0.092 that shows answers are consistence.

On the basis of Table 7 the final matrix is created by finding a mean between
estimates of all experts (see Table 8). This metric is used because of solid decision
to make all experts’ voices to be equal.

Table 8. Aggregate matrix with criteria pairwise comparisons

Professional skills | Communicative skills | Personal qualities
Professional skills 1 4,66 2
Communicative skills 0,22 1 0,25
Personal qualities 0,6 4 1

The matrix from Table 8 is used in order to calculate criteria priority weights. The
same way as it was earlier, a pairwise comparison of all the sub-criteria, with
respect to each criterion, included in the decision-making model, is made. Obtained
results are shown in Table 9.

Table 9. Criteria and subcriteria priority weights

1.1. New task types creation 25,232%

1. Professional skills 54,772% 1.2. HW checking 26,068%
1.3. Experience in LMS 3,472%

2.1. Openness to students 2,946%

2. Communicative skills | 10,069% | 2.2. Communication with teachers 1,288%
2.3. Participation in consultations 5,834%

3.1. Punctuality 13,086%
3. Personal qualities 35,159% 3.2. Ethical compliance 10,062%
3.3. Self-motivation 12,011%

Next step consists of deriving the relative priorities (preferences) of the alternatives
with respect to each criterion. Overall priority weights of assistants are calculated by
summing all local priorities. Final figures are shown in Table 10. Bar chart is built
on the basis of overall preferences of the alternatives (see Fig. 3).

Table 10. Local and overall priorities of alternatives

260

Bepecuena E.H., I'opnenko M.K. TIpuMeHeHre METOI0B CHCTEMHOTO aHAIN3a K OLCHHBAHUIO PabOTHl y4eOHbIX
accucteHtoB. Tpyost CII PAH, Tom 30, Beim. 3, 2018 1., cTp. 251-270

A B Cc D E F G
1.1. 8,352% |6,711% [3,784% |2,728% |1,821% |1,214% |0,622%
1.2. 3,140% |6,060% [9,131% |(3,836% [1,700% [0,966% |1,234%
1.3. 0,160% |0,249% |0,148% |1,001% |1,618% |0,148% |0,148%
2.1. 0,203% |0,154% |0,101% |0,441% |0,082% |0,803% [1,161%

2.2. 0,444% |0,089% |(0,117% |0,062% |0,062% |0,444% |0,072%
2.3. 0,414% |0,387% |0,198% |0,833% [0,144% [1,628% |2,230%
3.1 1,035% |2,677% [1,921% [3,670% |1,663% |1,041% |1,078%
3.2. 0,254% (1,928% [0,254% |3,822% |1,782% |0,993% [1,029%
3.3. 0,923% |2,040% |0,761% |4,201% |1,640% [1,108% |1,339%
Totals [14,924% [20,296% [16,416% [20,595% [10,010% (8,846% [9,114%

025

010

0.00
< @ 5 o w w w

Fig. 3. Overall preferences of the alternatives

6. A Discussion on AHP Results

AHP analysis shows that the prompt decision of choosing A as the best assistant is
totally unfair. Results reveal that experts did not take into account other important
criteria that in general over weighted those, which were chosen at first. Another
discovered problem of A is some of his/her estimates, which are the worst in
comparison with others (for instance, criteria 3.1 and 3.2). This fact also decreases
his/her chances to be a leader.

The main interesting point of results are the highest figures which belong to both
two assistants B and D. Let's describe each of them.

Assistant B cannot be named as a brilliant employee. Nevertheless, he/she has
showed good stable work without having bad results in any of the activities during
the course. Despite not being the best in any of the criteria, B always was close to
the leader.

In the same manner as B, assistant D has shown quite strong results in technical and
communicative estimates. In addition, D was on the top in the personal qualities

261

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

criteria. He/she produces an impression of too self-motivated person and D was
never late on any events. Result of D exceeds B at an inconspicuous gap of 0,3.
Since experts make an arrangement on having no less than 2% advantage taking by
the leader, such difference is admitted being not crucial for them.

In addition, there is a problematic situation with evaluation of the five best
assistants. Four employees can be determined more or less clearly (A, B, C, and D).
However, the difference between E and the closest competitor G is less than 1%,
which is also insignificant.

7. Fuzzy Type-2 AHP

Since experts want to be more confident in fairness of their choice, we decide to
apply another MCDM approach for purpose of aiming our goal. It is called Fuzzy
AHP. In classical AHP crisp numbers are used, for pairwise comparison
evaluations. However, in Fuzzy AHP, the linguistic variables are represented as
fuzzy numbers instead of crisp. In this case a fuzzy logic provides a mathematical
strength to capture the uncertainties associated with human cognitive process. Many
researchers Yka3zan HellOl'lyCTI/lM])lﬁ HUCTOYHHK., Yka3zan HeZ[Ol'[yCTHMbIﬁ
ucrounuk. Who have studied the Fuzzy AHP have provided evidence that it shows
relatively more sufficient description of decision making processes compared to the
traditional AHP methods.

According to Yka3an nemonmyctumblii ucrounuk., the membership functions of
type-1 fuzzy sets have no uncertainty associated with it. Type-2 fuzzy sets
generalize type-1 fuzzy sets and systems so that more uncertainty for defining
membership functions can be handled. That’s why type-2 fuzzy logic is used.

A type-2 fuzzy set A in the universe of discourse X can be represented by a type-2

membership function p 3, shown as follows Yka3zan nexonycrumblii HCTOYHHK. !
A= {((x,u), nz(x, u)) |Vx EX,Vu€J, c[0,1],0 < pz(x,u) < 1},

where], denotes an interval [0, 1].

A is called an interval type-2 fuzzy set if all px = 1 Ykazan negomycrumblii

ucrouyHuk.. Interval type-2 fuzzy sets are the most commonly used type-2 fuzzy

sets because of their simplicity and reduced computational effort with respect to
general type-2 fuzzy sets. For this reason, we use interval type-2 fuzzy sets.

A trapezoidal interval type-2 fuzzy set is illustrated as

A= (A7) = (ol o o ati Hy (A7), 1 (A7)) (ab, aby, ab, abys Hy(AF), Ho(AF)),
where AU and AL are type-1 fuzzy sets, a¥,a%, ..., ak, at, are the references points
of the interval type-2 fuzzy set A,; Hj(ﬁ?) denotes the membership value of the
element a}’(jﬂ) in the upper trapezoidal membership function AU and I-I](ZLZ)
denotes the membership value of the element af;,,y in the lower trapezoidal
membership function AL, j = 1..2 Yka3aH HeqonyCcTHMBbIii HCTOYHHK..

262

Bepecuena E.H., I'opnenko M.K. TIpuMeHeHre METOI0B CHCTEMHOTO aHAIN3a K OLCHHBAHUIO PabOTHl y4eOHbIX
accucteHtoB. Tpyost CII PAH, Tom 30, Beim. 3, 2018 1., cTp. 251-270

Pairwise comparison matrices got from experts for AHP are directly applied for our
needs in Fuzzy AHP. We introduce interval trapezoidal type-2 fuzzy scales of the
linguistic variables (see Table 11). They represent a modified version of scales
proposed by Yka3zau nemomycrumbiii ucrounuk. and include intermediate values
between the two adjacent judgments like in AHP.

The priority weights of criteria (Table 12) and sub-criteria (Table 13) are

demonstrated.

Type 2 fuzzy and defuzzified overall weights of the alternatives are shown in Tables
14 and 15. For defuzzification the Defuzzified Trapezoidal Type-2 Fuzzy Set
(DTraT) approach is used proposed by Yka3aH He1omycTuMblii HCTOYHHUK. .

Bar chart is built on the basis of overall preferences of the alternatives (see Fig. 4).

Table 11. Trapezoidal interval type-2 fuzzy scales

Numeric value from AHP Trapezoidal interval type-2 fuzzy scales

1

(1,1,1,1;1,1)(1,1,1,1; 1, 1)

(1,1,3,4;1,1) (1.2, 1.2, 2.8, 3.8; 0.8, 0.8)

1,2,4,5,1,1) (1.2, 2.2, 3.8, 4.8; 0.8, 0.8)

(2,3,5,6;1,1) (2.2,3.2,4.8,58; 0.8, 0.8)

(3,4,6,7;1,1) (3.2,4.2,5.8, 6.8; 0.8, 0.8)

(4,5,7,8;1,1) (4.2,5.2,6.8,7.8; 0.8, 0.8)

,6,8,9 1,1) (5.2, 6.2, 7.8, 8.8; 0.8, 0.8)

(6,7,85,9;1,1) (6.2,7.2,8.3,8.8; 0.8, 0.8)

O|lo(N[OOjO|B|[lw|N

(7,8,9,9:1,1) (7.2, 8.2, 8.8, 9; 0.8, 0.8)

Table 12. Interval type-2 fuzzy weights of criteria

Criteria Interval type-2 weights

1. Professional skills

(0.275, 0.377,0.754, 1.005; 1, 1)
(0.304, 0.410, 0.706, 0.935; 0.8, 0.8)

2. Communicative skills

(0.057,0.073, 0.14, 0.211; 1, 1)
(0.061, 0.078, 0.13, 0.19; 0.8; 0.8)

3. Personal qualities

(0.188, 0.257, 0.519, 0.708; 1, 1)
(0.203, 0.274, 0.477, 0.639; 0.8, 0.8)

Table 13. Interval type-2 fuzzy weights of sub-criteria

Sub-criteria Interval type-2 weights
1.1. (0.071, 0.134, 0.447, 0.811, 1, 1) (0.085, 0.154, 0.396, 0.703; 0.8, 0.8)
1.2. (0.074, 0.138, 0.453, 0.811; 1, 1) (0.088, 0.158, 0.402, 0.705; 0.8, 0.8)
1.3. (0.013, 0.022, 0.069, 0.124; 1, 1) (0.015, 0.025, 0.061, 0.108; 0.8, 0.8)
2.1. (0.008, 0.014, 0.062, 0.149; 1, 1) (0.009, 0.016, 0.052, 0.118; 0.8, 0.8)

263

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

2.2. (0.004, 0.007, 0.031, 0.071; 1, 1) (0.004, 0.008, 0.025, 0.055; 0.8, 0.8)
2.3. (0.014, 0.029, 0.115, 0.24; 1, 1) (0.017, 0.034, 0.099, 0.199; 0.8, 0.8)
3.1 (0.055, 0.087, 0.212, 0.317; 1, 1) (0.062, 0.095, 0.191, 0.28; 0.8, 0.8)
3.2. (0.046, 0.069, 0.168, 0.265; 1, 1) (0.051, 0.075, 0.151, 0.23; 0.8, 0.8)
3.3. (0.046, 0.075, 0.196, 0.317; 1, 1) (0.052, 0.082, 0.175, 0.274; 0.8, 0.8)

0.25

020

0.15

010

005

0on

Fig. 4. Overall preferences of the alternatives

Table 14. Local and overall priorities of alternatives A, B, C, D

A

B

C

D

11

(0.115, 0.212, 0.505, 0.806; 1, 1)
(0.133,0.234, 0.462, 0.7; 0.8, 0.8)

(0.098, 0.174, 0.414, 0.692; 1, 1)
(0.113,0.191, 0.38, 0.612; 0.8, 0.8)

(0.048, 0.091, 0.252, 0.484; 1, 1)
(0.06, 0.1, 0.23, 0.4; 0.8, 0.8)

(0.037, 0.063, 0.173, 0.342; 1, 1)
(0.042,0.07, 015, 0.3; 0.8, 0.8)

1.2.

(0.04,0.067, 0.158, 0.272; 1, 1)
(0.045, 0.073, 0.14, 0.24, 0.8, 0.8)

(0.083,0.144, 0.314,0.471; 1, 1)
(0.095, 0.157, 0.3, 0.429; 0.8, 0.8)

(0.186, 0.265, 0.477, 0.657; 1, 1)
(0.202, 0.283, 0.45, 0.6; 0.8, 0.8)

(0.067, 0.108, 0.26, 0.406; 1, 1)
(0.077,0.12, 0.24,0.37; 0.8, 0.8)

13.

(0.038, 0.042, 0.055, 0.067; 1, 1)
(0.039, 0.043, 0.05, 0.064; 0.8, 0.8)

(0.038, 0.051, 0.082, 0.106; 1, 1)
(0.041, 0.054, 0.08, 0.1; 0.8, 0.8)

(0.032, 0.037, 0.051, 0.067; 1, 1)
(0.033, 0.04, 0.05, 0.063; 0.8, 0.8)

(0.177,0.229, 0.382, 0.536; 1, 1)
(0.187,0.24,0.36, 0.5; 0.8, 0.8)

2.1

(0.029, 0.044, 0.086, 0.133; 1, 1)
(0.032, 0.047, 0.08, 0.12; 0.8, 0.8)

(0.027,0.038, 0.072,0.11; 1, 1)
(0.029, 0.04, 0.07,0.1; 0.8, 0.8)

(0.021, 0.026, 0.046, 0.071; 1, 1)
(0.022, 0.03, 0.043, 0.06; 0.8, 0.8)

(0.064, 0.104, 0.237, 0.409; 1, 1)
(0.072, 0.113, 0.22, 0.36; 0.8, 0.8)

2.2.

(0.185, 0.262, 0.448, 0.587; 1, 1)
(0.2,0.278, 0.426, 0.554; 0.8, 0.8)

(0.041, 0.05, 0.077, 0.106; 1, 1)
(0.04, 0.05, 0.07, 0.098; 0.8, 0.8)

(0.044, 0.055, 0.084, 0.111; 1, 1)
(0.046, 0.057, 0.08, 0.1; 0.8, 0.8)

(0.038, 0.043, 0.061, 0.076; 1, 1)
(0.04, 0.05, 0.06, 0.07; 0.8, 0.8)

2.3.

(0.033, 0.046, 0.091, 0.137; 1, 1)
(0.035, 0.05, 0.08, 0.124; 0.8, 0.8)

(0.034,0.046, 0.083,0.122; 1, 1)
(0.036, 0.049, 0.08, 0.1; 0.8, 0.8)

(0.019, 0.025, 0.046, 0.07; 1, 1)
(0.02, 0.026, 0.04, 0.06; 0.8, 0.8)

(0.065, 0.1, 0.22, 0.366; 1, 1)
(0.072,0.108, 0.2, 0.323; 0.8, 0.8)

3.1

(0.029, 0.042, 0.086, 0.13; 1, 1)
(0.03, 0.045, 0.08, 0.116; 0.8, 0.8)

(0.102, 0.161, 0.324, 0.462; 1, 1)
(0.113,0.174, 0.3, 0.425; 0.8, 0.8)

(0.038, 0.052, 0.095, 0.138; 1, 1)
(0.041, 0.055, 0.09, 0.126; 0.8, 0.8)

(0.134, 0.215, 0.483, 0.71; 1, 1)
(0.153, 0.24, 0.45, 0.649; 0.8, 0.8)

3.2.

(0.015, 0.02, 0.035, 0.053; 1, 1)
(0.016, 0.021, 0.03, 0.048; 0.8, 0.8)

(0.068, 0.102, 0.198, 0.295; 1, 1)
(0.075, 0.109, 0.2, 0.27; 0.8, 0.8)

(0.015, 0.02, 0.035, 0.053; 1, 1)
(0.02,0.02, 0.03, 0.05; 0.8, 0.8)

(0.163, 0.269, 0.543, 0.78; 1, 1)
(0.184, 0.3, 0.51, 0.72; 0.8, 0.8)

3.3.

(0.05, 0.059, 0.09, 0.115; 1, 1)
(0.052, 0.061, 0.09, 0.108; 0.8, 0.8)

(0.061, 0.089, 0.23, 0.325; 1, 1)
(0.07,0.099, 0.2, 0.294; 0.8, 0.8)

(0.038, 0.047, 0.081, 0.115; 1, 1)
(0.04, 0.05, 0.076, 0.105; 0.8, 0.8)

(0.184, 0.262, 0.492, 0.632; 1, 1)
(0.2,0.28, 0.46, 0.59; 0.8, 0.8)

Total
fuzzy
weight

(0.018, 0.052, 0.372, 1.069; 1, 1)
(0.023, 0.064, 0.3, 0.826; 0.8, 0.8)

(0.026, 0.074, 0.496, 1.336; 1, 1)
(0.034, 0.091, 0.4, 1.044; 0.8, 0.8)

(0.023, 0.061, 0.384, 1.062; 1, 1)
(0.03,0.074, 0.32, 0.83; 0.8, 0.8)

(0.035, 0.09, 0.552, 1.46; 1, 1)
(0.045, 0.11, 0.454, 1.14; 0.8, 0.8)

Total
defuz.
weight

0.331

0.426

0.337

0.471

264

Bepecuena E.H., I'opnenko M.K. TIpuMeHeHre METOI0B CHCTEMHOTO aHAIN3a K OLCHHBAHUIO PabOTHl y4eOHbIX
accucteHtoB. Tpyost CII PAH, Tom 30, Beim. 3, 2018 1., cTp. 251-270

Total

norm.
defuz.
weight

14.868%

19.119%

15.124%

21.128%

Table 15. Local and overall priorities of alternatives E, F, G

E F G
11 (0.025,0.042, 0.123,0.257; 1,1) | (0.019, 0.03, 0.082, 0.161; 1, 1) (0.013, 0.018, 0.04, 0.077; 1, 1)
(0.029, 0.046, 0.109, 0.212; 0.8, 0.8) | (0.021, 0.033, 0.073, 0.134; 0.8, 0.8) | (0.014, 0.019, 0.036, 0.065; 0.8, 0.8)
12 (0.029, 0.046, 0.106, 0.192; 1, 1) | (0.021, 0.028, 0.055,0.091;1,1) | (0.024,0.033,0.076, 0.131; 1, 1)
(0.033, 0.05, 0.097, 0.165; 0.8, 0.8) | (0.022, 0.03, 0.05, 0.08; 0.8, 0.8) | (0.026, 0.036, 0.068, 0.111; 0.8, 0.8)
13 (0.283,0.378,0.56, 0.674; 1,1) | (0.032,0.037,0.051,0.067;1,1) | (0.032,0.037,0.051, 0.067; 1, 1)
(0.302, 0.4, 0.532, 0.648; 0.8, 0.8) | (0.033, 0.038, 0.049, 0.063; 0.8, 0.8) | (0.033, 0.038, 0.049, 0.063; 0.8, 0.8)
’1 (0.015, 0.02, 0.037, 0.06; 1, 1) (0.128,0.193,0.392, 0.613; 1,1) | (0.177,0.282, 0.546, 0.772; 1, 1)
(0.016, 0.021, 0.034, 0.053; 0.8, 0.8) | (0.14, 0.208, 0.363, 0.553; 0.8, 0.8) | (0.198, 0.304, 0.509, 0.715; 0.8, 0.8)
22 (0.038, 0.043, 0.061,0.076; 1, 1) | (0.226,0.292, 0.461,0.589;1,1) | (0.042, 0.049, 0.068, 0.086; 1, 1)
(0.039, 0.045, 0.058, 0.072; 0.8, 0.8) | (0.239, 0.306, 0.44, 0.559; 0.8, 0.8) | (0.044, 0.05, 0.066, 0.08L; 0.8, 0.8)
23 (0.014, 0.017, 0.031, 0.049; 1, 1) (0.135, 0.2, 0.409, 0.6; 1, 1) (0.179, 0.272, 0.537, 0.747; 1, 1)
(0.014, 0.018, 0.029, 0.044; 0.8, 0.8) | (0.148, 0.216, 0.377, 0.543; 0.8, 0.8) | (0.2, 0.295, 0.5, 0.693; 0.8, 0.8)
31 (0.064, 0.094, 0.194, 0.316; 1, 1) | (0.046, 0.064, 0.128, 0.209; 1, 1) (0.05, 0.067, 0.13, 0.197; 1, 1)
(0.07,0.1,0.179,0.28: 0.8, 0.8) | (0.049, 0.068, 0.118, 0.184; 0.8, 0.8) | (0.053, 0.071, 0.12, 0.175; 0.8, 0.8)
32 (0.088, 0.146, 0.327,0538; 1,1) | (0.047,0.067,0.145,0.263;1,1) | (0.056,0.077, 0.145, 0.225; 1, 1)
(0.099, 0.159, 0.3, 0.48; 0.8, 0.8) | (0.051, 0.072, 0.132, 0.227; 0.8, 0.8) | (0.06, 0.082, 0.135, 0.203; 0.8, 0.8)
33 (0.111,0.129, 0.195,0.233; 1,1) | (0.059, 0.074,0.131,0.175;1,1) | (0.064, 0.078, 0.137, 0.167; 1, 1)
(0.117, 0.135, 0.186, 0.222; 0.8, 0.8) | (0.063, 0.078, 0.122, 0.159; 0.8, 0.8) | (0.067, 0.082, 0.127, 0.154; 0.8, 0.8)
Total | (0.021,0.049,0.283,0.789; 1, 1) | (0.015,0.035, 0.227,0.681;1,1) | (0.016,0.037,0.232, 0.652; 1, 1)
weight | (0.026, 0.059, 0.233, 0.604; 0.8, 0.8) | (0.018, 0.042, 0.183, 0.509; 0.8, 0.8) | (0.019, 0.044, 0.188, 0.496; 0.8, 0.8)
Total
defuzzy 0.251 0.208 0.205
weight
Total
d’;‘f’;’znzy 11.347% 9.334% 9.079%
weight

8. Discussion on Fuzzy-Type-2 AHP Results

Now, we see that assistant D has higher priority weigth than B and difference
between them (2%) is suitable for experts. In addition, it can be noticed that E
should be in the top five group, for sure (difference is also about 2%). Thus, Fuzzy
AHP does not change ranks of alternatives but makes it clearer. It means that more
reliable results are maintained since interval type-2 fuzzy sets can better represent
uncertainties.
It is important to note that, contrary to the common belief, the system does not
determine the decision we should make, rather, the results should be interpreted as a
blueprint of preference and alternatives based on the level of importance obtained

265

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

for the different criteria taking into consideration our comparative judgments. In
other words, the AHP methodology allows us to determine which alternative is the
most consistent with our criteria and the level of importance that we give them.
Taking this point into account, Sensitivity Analysis is used. It performs a “what-if”
analysis to see how the final results would have changed if the weights of the
criteria would have been different Ykazan HexonmycTumblii HCTOYHHK..
Let’s start with a goal of finding the best teaching assistant. The first criterion has
the highest weight in our results (= 50%). If we decrease its weight and
proportionally increase other weights then D will still be a leader. In this case D will
have even more clear-cut victory. Otherwise, if we increase weight of this criterion
up to 60% and more, then B will become a new leader. However, stakeholders come
to one opinion that no one criterion should cost more than a half and they has
highlighted that the first criterion (professional skills) should stay as the most
important one.
It means that weight of the first criterion should be in the next approximate range
[33%; 50%].
Let’s now tune proportions of the second and the third criteria. Calculations show
that D can stop be a winner only and only if the third criterion will cost more than
the second. Thus, this point was brought to expert discussion and they have
unanimously decided that personal qualities (third criterion) should be appreciated
higher than communicative ones.
Another important note is change of proportions of subcriteria inside their criteria.
There are no strong disputes about subcriteria weights, experts’ opinions differ no
more than 10%. In this case change of subcriteria preferences in that range does not
influence on the leader.
It means that there is no opportunity to have another leader than D by introducing
small changes in current proportions of criteria weights.
At the same time, there is a complex situation with choosing top five assistants
group. Analysis shows that four assistants are determined clearly. They are A, B, C,
and D. The fifth assistant can be either E or G.
Calculations reveal that position of assistant G is directly connected with the second
criteria and if its weight is equal or more than 15% than G will be in top five group
instead of E. However, now second criterion has only nearly 10%.
Finally, after Sensitivity Analysis is done, next recommendations for the experts are
given:

e to choose assistant D as a winner;

e to prolongate contracts with A, B, C and D;

e to prolongate contract with E if experts think that personal qualities should
be at least twice more important than communicating skills (finally,
communicating skills should have a weight less than 15);

e to prolongate contract with G, in other case.

266

Bepecuena E.H., I'opnenko M.K. TIpuMeHeHre METOI0B CHCTEMHOTO aHAIN3a K OLCHHBAHUIO PabOTHl y4eOHbIX
accucteHtoB. Tpyost CII PAH, Tom 30, Beim. 3, 2018 1., cTp. 251-270

9. Final Result and Conclusion

Taking into consideration recommendations mentioned above, group of teachers has
decided to follow first two instructions. They have selected D as the best teaching
assistant on the course of «Discrete mathematics». Also, they have prolongated
contracts with D and A, B, and C assistants.

The main important step now is to choose the fifth assistant. Before making a
choice, experts decide to use a retrospective and to look through all methods that
were applied earlier. Lecture of the course noticed that since A, B, C, and D
assistants are already confirmed it means that nobody will be responsible for
communication with students (answering questions, having consultations) because
assistant F did it before. However, now there is a choice between either E or G. And
in this case G demonstrates a clear superiority compared with others as he/she is one
of the top in this kind of work. Finally, G is chosen.

At the very beginning teachers wanted to choose assistant A as the best teaching
assistant. However, the soft methods of analysis helped us to choose another
assistant. Also, neither AHP nor Fuzzy AHP chose G teaching assistant as the 5th
best assistant in the group. Only a sound logic helped us to do this.

The application of methods of system analysis can help to make a decision but it
does not make a choice for us. We should look carefully at the results of system
analysis methods, but make a balanced and considered decision.

References

[1] J. Lopa. Using Undergraduate Students as Teaching Assistants. The Professional &
Organizational Development Network in Higher Education, vol. 21, 2009, pp. 50-62.

[2] M. Asad, S. Kermani and H. Hora. A Proposed Framework for Evaluating Student’s
Performance and Selecting the Top Students in E-Learning System, Using Fuzzy AHP
Method. In Proceedings of the International Conference on Management, Economics and
Humanities, Istanbul-Turkey, 2015.

[3] T. Saaty. There is no mathematical validity for using fuzzy number crunching in the
analytic hierarchy process. Journal of Systems Science and Systems Engineering, vol.
15, no. 4, 2006, pp. 457-464.

[4] Monk and S. Howard. The Rich Picture: A Tool for Reasoning about Work Context.
[Online]. Awvailable: http://www-users.york.ac.uk/~am1/RichPicture.pdf, accessed
12.05.2018.

[5] Changing Minds. CATWOE. [Online]. Available: http://creatingminds.org/tools/catwoe,
accessed 12.05.2018.

[6] M. Velasquez and P. Hester. An Analysis of Multi-Criteria Decision Making Methods.
International Journal of Operations Research, vol. 10, no. 2, 2013, pp. 56-66.

[7] T. Saaty. The Analytic Hierarchy Process, New York: McGraw Hill, 1980.

[8] C. Boender and J. De Graan. Multicriteria Decision Analysis with Fuzzy Pairwise
Comparisons. Fuzzy Sets and Systems, vol. 29, 1989, pp. 133-143.

[9] D. Chang. Applications of the Extent Analysis Method on Fuzzy-AHP. European
Journal of Operational Research, vol. 95, 1996, pp. 649-655.

267

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

[10]J. Mendel and R. John. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy
Systems, vol. 10, no. 2, 2002. pp. 117-127.

[11] C. Kahraman and B. Oztaysi. Fuzzy analytic hierarchy process with interval type-2 fuzzy
sets. Knowledge-Based Systems, vol. 59, 2014, pp. 48-57.

[12] E. Mu and M. Pereyra-Rojas. An Introduction to the Analytic Hierarchy Process (AHP).
Using Super Decisions, vol. 2, New York: Springer, 2016.

anIMeHeHVIe MeTOAOB CUCTEMHOro aHanu3a K
oueHunBaHuio paGOTbI yqe6HbIX dCCUCTEeHTOB

E.H. Bepecnesa <eberesneva@hse.ru>
M.K. I'opoenxo <mgordenko@hse.ru>
Henapmamenm npoepammuou undtceHepuu,
Hayuonanvnoviii uccreoogamensvckuti ynugepcumem “Buvicuwias wkona sxonomuxu”,
101000, Poccus, 2. Mockea, yn. Msacnuykasi, 0. 20

AHHoOTanus. B 3Toif cTaThe mpencTaBIeHBI Pe3yIbTaThl IPUMEHEHHUS Pa3IHYHBIX METOJO0B
cuctemsoro anammza (CATWOE, Rich Picture, AHP, Fuzzy AHP) nns ouenkn ydeOHBIX
ACCHCTEHTOB Ul IpemojaBateineil. B cratbe paccMoTpeno mpumenenue SOft- u hard-
METOJIOB CHCTEMHOT'0 aHaln3a. MeTobl CHCTEMHOTO aHaJIN3a PAaCCMaTPUBAIOTCS HA TPUMEpPe
peanu3anuy INporpaMMBl «Y4eOHBIN accucTeHT» B HammonamsHoM lccnemoBatenbckoM
YHuBepcutere «Bricmas mkona sxoHomuku» (HUY BID) Ha mucnmmmae «/luckpeTHast
MaTeMaTHKay. B cTaThe mokasaH Impomecc B3anMOJEHCTBHS NpenoiaBaTenell ¢ yIeHHKaMH 1
npenogasarensimu B popme Rich Picture. OnpemeneHsl CBA3YIOMNE MEPOTIPHUATHS, BCTPEUH U
JlaXke OTYETHI, KOTOPbIE PEJOCTABIISIOT ACCHCTEHTHI IPEMOAABATEN0. 3aTEM OMHICAHO KAKHM
00pa3oM ObUIM BHIOPAHBI KPUTEPUH JUTS OIIEHKH ACCHCTEHTOB U OIEHEHAa BAKHOCTH KaXJ[0TO
KpUTepHs. Bbutn onpeneneHsl Tpy rpymnmsl KpUTepreB: MpodeccnoHaIbHbIe HAaBBIKH, HABBIKU
oOIIeHus, JUYHBle KadecTBa. Kakmas rpymnma MMeeT HEKOTOpble MOAKPHTEPHH, KOTOpPHIE
OBLIM OIPE/IENICHBI ITOCPEICTBOM YTOUYHSIONIMX BCTPEY M MO3rOBOTO IITypMma. Takxke B
paboTe ObUT ompeseneH COOCTBEHHBIH METOJ OLIEHKH, KOTOPBIH SIBUIICS TIPEPEKBU3UTOM IS
AHP wu mo3BonmBHmIMI cpa3y ke OTOPOCHTH HamOoJiee HETEPCHEKTHBHBIX aCCHCTEHTOB.
Kpowme toro, paccmarpusaercs npumenenne metoo8 AHP u Fuzzy AHP tuna 2 st ouenku
y4eOHBIX aCCUCTEHTOB. BEIIBIEHBI CHIBHBIC M CIa0ble CTOPOHBI KaKAOTo MeToxa. Takke
MOKa3aHO, YTO, HECMOTPS HA MOIIb METONOB CHCTEMHOTO aHain3a, HEeO0OXOINMO
HCIT0JIb30BaTh 3)1paBbII>’I CMBICJI U JIOTUKY. Henw3s monaraTbCsl TOJBKO Ha 4ucia, MoJIy4CHHbIC
METOJaMH CHCTEMHOTO aHaIU3a, HEOOXOIMMO 3aTeM NPOU3BOAUTH aHAIU3 PE3ysIbTaToB. B
nporecce paboThl BHIOMpaeTCs JydIIMH Y4eOHBII aCCUCTEHT, W OmpenelsieTcs Tpymmna
Jy4YIIUX y9eOHBIX aCCHCTEHTOB.

KiloueBble cioBa: cucTeMHbIH aHanm3; KomOuHamms SOft wu hard wmeronos;
MHOTOKpHTepuallbHOe npuHsaTHe pemennii; AHP; Fuzzy Type-2 AHP; HedeTkne MHOXKeCTBa.

DOI: 10.15514/ISPRAS-2018-30(3)-18

Jas nurtuposanus: bepecuesa E.H., I'opaenko M.K. IIpuMeHeHne MeTOJOB CUCTEMHOIO
aHanM3a K OLCHUBAHUIO paboThl yueOHbIX accucteHToB. Tpynst CII PAH, Tom 30, BB 3,
2018 r., ctp. 251-270 (Ha anraumiickom s3bike). DOI: 10.15514/ISPRAS-2018-30(3)-18

268

Bepecuena E.H., I'opnenko M.K. TIpuMeHeHre METOI0B CHCTEMHOTO aHAIN3a K OLCHHBAHUIO PabOTHl y4eOHbIX
accucteHtoB. Tpyost CII PAH, Tom 30, Beim. 3, 2018 1., cTp. 251-270

Cnucok nutepaTtypbl

[1] J. Lopa. Using Undergraduate Students as Teaching Assistants. The Professional &
Organizational Development Network in Higher Education, vol. 21, 2009, pp. 50-62.

[2] M. Asad, S. Kermani and H. Hora. A Proposed Framework for Evaluating Student’s
Performance and Selecting the Top Students in E-Learning System, Using Fuzzy AHP
Method. In Proceedings of the International Conference on Management, Economics and
Humanities, Istanbul-Turkey, 2015.

[3] T. Saaty. There is no mathematical validity for using fuzzy number crunching in the
analytic hierarchy process. Journal of Systems Science and Systems Engineering, vol.
15, no. 4, 2006, pp. 457-464.

[4] Monk and S. Howard. The Rich Picture: A Tool for Reasoning about Work Context.
[Online]. Available: http://www-users.york.ac.uk/~am1/RichPicture.pdf, accessed
12.05.2018.

[5] Changing Minds. CATWOE. [Online]. Available: http://creatingminds.org/tools/catwoe,
accessed 12.05.2018.

[6] M. Velasquez and P. Hester. An Analysis of Multi-Criteria Decision Making Methods.
International Journal of Operations Research, vol. 10, no. 2, 2013, pp. 56-66.

[7] T. Saaty. The Analytic Hierarchy Process, New York: McGraw Hill, 1980.

[8] C. Boender and J. De Graan. Multicriteria Decision Analysis with Fuzzy Pairwise
Comparisons. Fuzzy Sets and Systems, vol. 29, 1989, pp. 133-143.

[9] D. Chang. Applications of the Extent Analysis Method on Fuzzy-AHP. European
Journal of Operational Research, vol. 95, 1996, pp. 649-655.

[10]J. Mendel and R. John. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy
Systems, vol. 10, no. 2, 2002. pp. 117-127.

[11] C. Kahraman and B. Oztaysi. Fuzzy analytic hierarchy process with interval type-2 fuzzy
sets. Knowledge-Based Systems, vol. 59, 2014, pp. 48-57.

[12]E. Mu and M. Pereyra-Rojas. An Introduction to the Analytic Hierarchy Process (AHP).
Using Super Decisions, vol. 2, New York: Springer, 2016.

269

Beresneva E., Gordenko M. Applying the methods of system analysis to teaching assistants’ evaluation. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp. 251-270

270

Static dependency analysis for semantic
data validation

D.V. llyin <denis.ilyin@ispras.ru>
N.Yu. Fokina <nfokina@ispras.ru>
V.A. Semenov <sem@ispras.ru>
Ivannikov Institute for Systems Programming of the RAS,
25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia

Abstract. Modern information systems manipulate data models containing millions of items,
and the tendency is to make these models even more complex. One of the most crucial
aspects of modern concurrent engineering environments is their reliability. The principles of
ACID (atomicity, consistency, isolation, durability) are aimed at providing it, but directly
following them leads to serious performance drawbacks on large-scale models, since it is
necessary to control the correctness of every performed transaction. In the paper, a method
for incremental validation of object-oriented data is presented. Assuming that a submitted
transaction is applied to originally consistent data, it is guaranteed that the final data
representation is also consistent if only the spot rules are satisfied. To identify data items
subject to spot rule validation, a bipartite data-rule dependency graph is formed. To
automatically build the dependency graph a static analysis of the model specifications is
proposed to apply. In the case of complex object-oriented models defining hundreds and
thousands of data types and semantic rules, the static analysis seems to be the only way to
realize the incremental validation and to make possible to manage the data in accordance with
the ACID principles.

Keywords: information systems; ACID; data consistency management; EXPRESS
DOI: 10.15514/1ISPRAS-2018-30(3)-19

For citation: Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for
semantic data validation. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 271-284.
DOI: 10.15514/ISPRAS-2018-30(3)-19

1. Introduction

Management of semantically complex data is one of the challenging problems
tightly connected with emerging information systems such as concurrent
engineering environments and product data management systems [1-4]. Although
transactional guarantees ACID (Atomicity, Consistency, Isolation, and Durability)
are widely recognized and recommended for any information system, it is difficult
to maintain the consistency and integrity of data driven by complex object-oriented

271

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

models. Often such models are specified in EXPRESS language being part of the
STEP standard on industrial automation systems and integration (ISO 10303). To be
unambiguously interpretable by different systems the data must satisfy numerous
semantic rules imposed by formal models. Maintaining data consistency and
ensuring system interoperability become a serious computational problem. Full
semantic validation requires extremely high costs, often exceeding the processing
time of individual transactions. Periodic validation is possible, but at a high risk of
violating rules and losing actual data.

The paper presents an effective method for incremental validation of object-oriented
data. An idea of incremental checks is well-understood and was successfully
implemented for the validation of such specific data as UML charts, XML
documents, deductive databases [5-7]. Unlike the aforementioned results, the
proposed method can be applied to semantically complex data driven by arbitrary
object-oriented models.

Assuming that a submitted transaction is applied to originally consistent data, it is
guaranteed that the final data representation is also consistent if only the spot rules
are satisfied. To identify data items subject to spot rule validation, a bipartite data-
rule dependency graph is formed. To automatically build the dependency graph a
static analysis of the model specifications is proposed to apply. In the case of large-
scale models defining hundreds and thousands of data types and semantic rules,
static analysis seems to be the only way to realize the incremental validation and to
make possible to effectively manage the data in accordance with the ACID
principles.

The structure of the paper is as follows. In section 2, we will shortly overview
EXPRESS language with an emphasis on the data types and the rule categories
admitted by the language. Formal definitions of model-driven data, rules and
transactions are also provided. In section 3, we will present a complete validation
routine and then explain how an incremental validation can be arranged using the
proposed dependency graph. This is accompanied by an example of the model
specification. In conclusion, we summarise benefits of the proposed validation
method and outdraw future efforts.

2. Product data and transactions

2.1 EXPRESS language

Product data models and, particularly, semantic rules can be specified formally in
EXPRESS (ISO 2004) language [8]. This object-oriented modeling language
provides a wide range of declarative and imperative constructs to define both data
types and constraints imposed upon them. The supported data types can be
subdivided into the following groups: simple types (character, string, integer, float,
double, Boolean, logical, binary), aggregate types (set, multi-set, sequence, array),
selects, enumerations, and entity types.

272

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

Depending on the definition context, three basic sorts of constraints are
distinguished in the modeling language: rules for simple user-defined data types,
local rules for object types, and global rules for object type extents. Depending on
the evaluation context these imply the following semantic checks:

o attribute type compliance (R,);

¢ limited widths of strings and binaries (R4, R,);

e size of aggregates (R5);

o multiplicity of direct and inverse associations in objects (R,, Rs);
e uniqueness of elements in sets, unique lists and arrays (Rg);

e mandatory attributes in objects (R;);

e mandatory elements in aggregates excluding sparse arrays (Rg);
¢ value domains for primitive data types (Ro);

o value domains restricting and interrelating the states of separate attributes
within objects (R, or so-called local rules);

e uniqueness of attribute values (optionally, their groups) on object type
extents (R, or uniqueness rules);

e value domains restricting and interrelating the states of whole object
populations (R, or so-called global rules). Value domains can be specified
in a general algebraic form by means of all the variety of imperative
constructs available in the language (control statements, functions,
procedures, etc.).

Certainly, each product model defines own data types and rules. Therefore,
semantic validation methods and tools should be developed in a model-driven
paradigm allowing their application for any data whose model is formally specified
in EXPRESS language. For a more detailed description refer to the mentioned
above standard family which regulates the language.

2.2 Formalization of models, data and transactions

An object-oriented data model M can be formally considered as a triple M =
(T U< UR), where the types T ={C US U AU ...} are classes C, simple types S,
aggregates A and other constructed structures allowed by EXPRESS.
Generalization/specialization relations < are defined among these types. Each class
¢ € C defines a set of attributes in the form c.a: C — T. The attributes c.a: C - C,
c.a:C » aggregate(C) are single and multiple associations which play role of
object references. The rules R ={R,UR; UR, U ..UR,,} define the value
domains of typed data in an algebraic way in accordance with EXPRESS. The rules
are subdivided into 12 categories enumerated above. Let us define the key concepts
that are used in further consideration.

273

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

An object-oriented dataset x = {0, 0,,...} is said to be driven by the model
M(T, <, R) if all the objects belong to its classes: V o € x — typeof(0) € C c T.
Let a dataset x is driven by the model M(T, <, R). All the objects {0*} c x such that
subtypeof (0*) = ¢ € C c T are called an extent of the class ¢ on the dataset x. A
query returning the class extent ¢ on the dataset x is called the extent query and is
designated as Qxten: (X, €).

Let a dataset x is driven by the model M(T,<,R). An object set {o*} c x,
typeof(0*) =c* € Cc T is said to be interlinked with the objects {o} c x,
typeof(o) =c€ C cT along the association c.a if Vo € {0},0.a c {0*},
Vo* € {0*} — 30 € {0}: 0* € 0.a. We will denote that as {0} 3 {o*}.

Let a dataset x is driven by the model M(T,<,R). An object set {o*} c x,
typeof(0*) =c*€ Cc T is said to be interlinked with the objects {o} c x,
typeof (o) = c € C c T along the route {c.a} if 3 {0’} c x,{0"} c x, ..., so that

01510715 0% S0 A query returning the objects {o*} interlinked
with a given set {0} along the route {c. a} is called the route query and is designated
as Qroute (x, {0}, {c. a}). A query returning the objects {0} by a given object set {o*}
is called the reverse route query and is designated as Q,oyz. (x, {0*}, rev {c.a}).

The object set x = {o4, 0, ... } driven by the model M(T, <, R) is called consistent if
all the rules being instantiated and evaluated are satisfied on this data set: Vr €
R - r(x) = true.

Finally, let us introduce the concept of the delta as a specific representation of
transactions. Each delta A(x’,x) aggregates the changes happened in the dataset
x' = {o1, 04, ...} compared with its original revision x = {o,, 0,, ... }. It is assumed
that both revisions are driven by the same model and the objects have unique
identifiers that allows to uniquely map the objects and to compute delta in a formal
way as A(x’,x) = delta(x’,x). The delta can be arranged as bidirectional one and
then any of the revisions can be restored by the given other: x" = apply(x,A) and
x = apply(x’,A™).

The delta is represented as a set of elementary and compound changes A = {5},
where each change can be either the creation of an object, or its deletion or
modification designated as Snew(o) Odei(0)r Omoaoy COrrespondingly. The
modification, in turn, is represented as a change in the attributes &,,54(0) =
{6mod(o_a)} that in the case of aggregates is represented by the operations of
insertion, removal and modification of the elements
Smod(o.a) = {Simso.af) Srem(o.a) Omoaoam}- N What follows, we assume that
each creation operation in the delta representation is complemented by the
operations of initializing the attributes that are equivalent to the modification
operations. Each deletion operation is supplemented by the operations of resetting
the attributes to an undefined state, also representable by the modification
operations. Regardless of the way, the delta is structured, only elementary
operations are taken into account in the context of the studied validation problems.

274

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

3. Validation

3.1 Complete validation

The complete validation routine is provided below (see Figure 1). In a cycle on all
objects their attributes are checked against the rules of the categories R; UR, U ...U
Ry. The checks are performed individually for each attribute provided that the
corresponding rules are imposed on their types. In case of detected violations, the
error messages are logged. Rules R, are evaluated for entire objects in the same
loop. The second cycle is formed due to the need for checks of uniqueness rules
R,,. Since these rules are declared inside the class definitions, an additional cycle is
arranged on the model classes. The rules are evaluated on the class extents. Finally,
the third cycle allows to check global rules R,, which are defined directly in the
model. Such checks are performed for the corresponding class extents.
for each dbject o € x in dataset
for each attribute o.a in object
for each attribute rule ERO URL U R2 U .. U R9 defined for typeof(o.a)
check rule(o.a), log if violated
for each local rule € R10 defined for typeof(o)
check rule(o), log if violated
for each class c € C defined in model
for each uniqueness rule € R11 defined for class c
check rule(Q extent(x, rule.c)), log if violated

for each global rule € R12 defined in model
check rule(Q extent(x, rule.cl), Q extent(x, rule.c2),..), log if violated

Fig. 1. Complete validation routine

As mentioned above, complete validation of semantically complex product data is a
computationally costly task that can cause performance degradation when
processing transactions. Incremental validation makes it possible to reduce the
amount of checks to be performed.

3.2 Incremental validation

The proposed incremental validation method is based on the idea of localizing spot
rules that can be affected by a transaction and generating a set of semantic checks
that is sufficient to detect all potential violations. For this purpose, the dependency
graph is built by a given specification of the data model in EXPRESS language. For
brevity, we just explain that this structure represents and omit the details of how it
can be formed using static analysis of the specification.

The dependency graph is a bipartite graph whose nodes represent the kinds of
transaction operations and the categories of semantic rules both defined by the
underlying model. An operation node is connected with the rule nodes by directed
edges if only such operations can violate the rules being instantiated for particular
data. Usually, the semantics of the operations imply what are the data it is applied
to. Sometimes the inspected data are apriori unknown and have to be determined by

275

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

executing corresponding route queries. Therefore, each edge is formed by the
dependency structure o containing both a rule reference o.rule and an optional
query route a.route. In some sense, the graph reflects the transaction structure as if
it contains all possible kinds of changes and the data organisation as if all data types
are present and all rules are potentially suffered to violations. As mentioned above,
only elementary operations are involved in the dependency analysis.
Thus, the dependency graph enables to determine spot rules that could be violated
for particular data due to the accepted transaction. For example, if the node
operation is a modification of the object attribute c.a and a rule r € R, U Ry U
R, U ..U R, is defined for its type, then the node &,,04(c.q) IS connected with the
rule node r by a corresponding edge. Having a specific operation of this kind
Omod(o.a)r typeof(o) =c in the delta representation the corresponding check
r(0.a) can be produced using the dependency edge.
The method of the dependency graph construction is described in more detail in the
next section. Still, here we will point out some of its important features.
If the same attribute c.a participates in an expression of the domain rule » € R, for
the class c, then the operation &,,,4(0.0), typeof (o) = ¢ produces the check (o)
for the object o.
If the attribute c. a participates in the uniqueness rule r € R,, defined for the class
¢, then another dependency edge must be associated with the operation node. In this
case, the corresponding check r(Qeyxtens (%, ¢)) must be performed.
There is a more difficult case when the attribute c. a participates in an expression of
the domain rule r € R, defined for the other class c*. The attribute c. a is assumed
to be accessed by traversing associated objects along the route {c*.a*} from the
objects o™ € c*. Then the operation 8,,,4(0.0), tyreof (o) = c induces the checks
r(0*) for all 0* € Qoute(x,0,7ev {c*.a*}). To identify and perform such checks
the operation node must be connected with the evaluated rule node and a route
{c*.a*} must be prescribed to the edge. The dependency analysis of spot rules
T € Ry, is carried out in a similar way.
Finally, we note that the operations of creating and deleting objects on the
assumptions made above can only violate global rules and only in those cases if the
cardinalities of class extents are computed. Considering object references as specific
attribute types, it is possible to localize some spot rules more exactly. Differing
operations on aggregates also leads to better localization of spot rules. For brevity
we omit the details how the spot rules can be localized more carefully and provide
an example in the next subsection.
for each elementary operation &(0),d(0.a) € delta
{ 0 } = dependency graph(kindof(&))
for each dependency o € { o}
switch kindof (o.rule)
case attribute rule :

check o.rule(o.a), log if violated
case local rule :

276

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

{ o* } = Query route(x, o, rev (o.route))
for each o* € { o* }
checkset.put (o.rule(o*))
case uniqueness rule :
checkset.put (o)
case glabal rule :
checkset.put (o)
for each check o, c(0) € checkset
switch kindof (o.rule)
case local rule :
check o.rule(o), log if violated
case uniqueness rule :
check o.rule(Query extent(x, o.rule.c)), log if violated
case global rule :
check o.rule(Query extent(x, o.rule.cl), Query extent(x, o.rule.c2),..),
log if violated

Fig. 2. Incremental validation routine

The validation routine presented in Figure 2 consists in the sequential traversing of
delta operations, determining the nodes of the operation semantics, obtaining
associated spot rule nodes, evaluating the rules directly or filling the checkset for
the subsequent validation. The checkset is organized as an indexed set of records
each of which stores references on the validated rule, query and factual data to
perform the corresponding check. The use of the checkset is motivated by the fact
that some operations lead to repeated checks of the same rules. Indexing of the
checkset allows you to exclude repeated records and, thus, to avoid redundant
computations. At the same time, the attribute rule checks are always produced once
by the modification operations and, therefore, it is more expedient to execute them
immediately, without overloading the checkset.

3.3 Dependency graph construction

To construct the dependency graph, an abstract syntactic tree for the model is built.
According to the retrieved data, for all attribute declarations operation nodes are
built. Number and types of these nodes constructed for a single attribute depend on
its type. For non-aggregate attributes c.a only node §,,,4(c.a), representing
modification of the attribute, is built. For aggregate attributes c. a[] three nodes are
created: (1) &;,5(c.a[]) — insertion of a new element; (2) &poa(c-a[l) —
modification of an element of the aggregate; (3) 8,.m(c.a[]) — removal of an
element.

Construction of the dependency graph proceeds with generating rule nodes. We
handle construction of nodes for rules R;-Rgand Rio-Ry, differently.

For rules R;-Rg we take all explicit attributes and build rule nodes for each of them.
The types of rule nodes depend on the type of the attribute in question. For instance,
if it is a bounded string c.S, we generate a R;(c.S) (R; — limited width of strings),
connected with the node corresponding to the modification of S &,,,4(c.S).
Similarly, if an attribute is a bounded aggregate, we construct a node of type R, and

277

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

connect it with the insertion &;,¢(c.a[]) and/or removal §,.,,(c.a[]) operation
nodes of the attribute, depending on the side from which the aggregate is bounded —
if it is bounded above, then only with insertion node, if below — with removal, if
from both sides — with both of them.

The way of construction of rule nodes for Ryp-Ry, is uniform. We start with locating
all local rules for Ry, all uniqueness rules for Ry; and all global rules for Ry,. For
each of the rules, we find all attributes used in it. If an attribute is explicit, we only
connect its modification with the rule node, and also with insertion and removal, if
it is an aggregate used inside a SIZEOF operation. If an attribute is derived, we take
its definition and find the attributes used in it; if inverse — we proceed with
analyzing the attribute it references. For derived and explicit attributes, the analysis
is performed recursively, until all the explicit attributes, directly and indirectly
referenced by them, are located. Then all of them are connected with the rule node
corresponding to the rule in question. If the during the analysis we find a node that
is a function call, we substitute its formal parameters with actual and thus locate the
attributes which are used in it; the analysis of a function body with the parameters
substituted is completely identical to the analysis of a rule.

An example illustrating the constructed graph is given in the next subsection.

3.4 Example of a dependency graph

Let us consider a fragment of the EXPRESS specification of a project management
system. Three classes depicted in Figure 3 — Task, Link and Calendar — are its core
entities. The meaning of Task is self-evident; Link represents a connection defining
a relation and execution order between two tasks. The fact that between two tasks
might be only a single link of one type is reflected in uniqueness rule url. A
Calendar defines a typical working pattern: working days, working times, holidays.
The calendar can be assigned to specific tasks, and one calendar can be set as a
default project calendar, that means that it will be used for tasks for which no task
calendar is set. Besides that, it is possible to use an Elapsed calendar for a task
implying that work will be performed 24/7. Global rule SingleProjectCalendar
restricts the possible number of project calendars to no more than one. Moreover,
local rule wr3 is used to check that if a task has got a task calendar, it the reference
to it must be non-null. One more local rule, wr2, restricts the length of an
EntityName to be between 1 and 32 characters.

TYPE LinkEnum = ENUMERATION OF
(START START, START FINISH, FINISH START, FINISH FINISH);
END_TYPE;

TYPE CalendarRuleEnum = ENUMERATION OF
(TASK, PROJECT, ELAPSED);

END TYPE;

FUNCTION TaskIsCyclic (Tl : Task, T2 : Task) : BOOLEAN;
IF (SIZEOF(Tl.Parent) = 0) THEN RETURN (FALSE) ;
ELSE

278

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

IF ((TaskIsCyclic(Tl.Parent[l], T2) = TRUE) OR (Tl = T2))
THEN RETURN (TRUE) ;
END_IF;
END_IF;

END_FUNCTION;
RULE SingleProjectCalendar FOR (Calendar);
WHERE
wrl: SIZEOF (QUERY (Temp <* Calendar | Temp.isProjectCalendar =
TRUE)) <= 1;
END RULE;

TYPE EntityName = STRING;
WHERE

wr2: (1 <= SELF) AND (SELF <= 32);
END TYPE;

ENTITY Task;
ID : INTEGER;
Name : EntityName;
TaskCalendar : Calendar;

CalendarRule : CalendarRuleEnum;

Children : LIST [0:?] OF Task;
DERIVE

TaskDuration : Duration := ?;
INVERSE

Parent : SET [0:1] OF Task FOR Children;

DownstreamLinks : SET [0:?] OF Link FOR Predecessor;

UpstreamLinks : SET [0:?] OF Link FOR Successor;
WHERE

wr3 : CalendarRule <> CalendarRuleEnum.TASK OR
EXISTS (TaskCalendar) ;

wr4 : (SIZEOF (Parent) = 0) OR (TaskIsCyclic(Parent[1l], SELF) =
FALSE) ;
UNIQUE

url : ID;
END_ENTITY;

ENTITY Link;
ID : INTEGER;
LinkType : LinkEnum;
Predecessor : Task;
Successor : Task;

UNIQUE
ur2 : LinkType AND Predecessor.ID AND Successor.ID;
ur3 : ID;

END_ENTITY;

ENTITY Calendar;
ID : INTEGER;
Name : OPTIONAL EntityName;
IsProjectCalendar : BOOLEAN;
UNIQUE
urd4 : ID;
END ENTITY;

Fig. 3. An example of the model specification in EXPRESS language
279

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

The dependency graph for this fragment of the specification is shown in Figure 4.

ins(Children[])

Smod(Children(])

Omoa(Task.ID)

Imoa(Name)

Smoa(Link.ID)

Imod(LinkType)

Smod(Predecessor)

JImod(Successor)

Imod(TaskCalendar)

Jmod(CalendarRule)

Jmoa(Calendar.ID)

Smod(IsProjectCalendar)

Jrem(Children[])

O

LLALIAAN,

Ro(Children)
Rg(Children)

Ruo(wrd)

R11(Task.ID)
Ro(Name)

R7(Name)

Rio(wr2)

Ry(Link.ID)
Ro(LinkType)
R7(LinkType)

Ru(ur2)
Ro(Predecessor)
R7(Predecessor)
Ro(Successor)
R7(Successor)
Ro(TaskCalendar)
R1o(wr3)
Ro(CalendarRule)
R7(CalendarRule)
Rii(Calendar.1D)
Ro(IsProjectCalendar)
R7(IsProjectCalendar)
R12(SingleProjectCalendar)
R4(Children)

Rs(Parent)

Fig. 4. A fragment of the model dependency graph

Each operation of attribute modification except for removal of elements from the
list of task children is connected with the rules validating corresponding attribute
type compliance R, and availability of defined values for mandatory attributes R;.
To avoid placement of null values to the list of mandatory elements the rule Rg
should be validated as well after the operations have been performed. The insertion
cannot violate multiplicity of the direct and inverse associations as their upper
borders are unlimited, but checks R4, Rs should be performed when an element is

280

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

removed from Children. Therefore, the corresponding operation nodes should be
connected with the aforementioned nodes of the rules that the operations may
potentially violate. As the expression for the local rule wr3 includes the attributes
CalendarRule and TaskCalendar, the nodes corresponding to the operations of
modification of these attributes are connected with the wr3 rule node. For the rule
wr2 defining the value range of the EntityName type, there is a connection between
the EntityName modification node and the wr2 rule node. The corresponding edges
are assigned by the routes by traversing of which the attributes could be accessed.
The expression of the global rule SingleProjectCalendar references only one
attribute IsProjectCalendar, so the appropriate graph nodes are connected by the
edge as well. Modification of any attribute of the Link class can affect its uniqueness
defined by ur2; hence the connections between LinkType, Predecessor and
Successor and the uniqueness rule node.

It is also possible that a change affects a constraint not directly but through an
inverse association, or even a chain of them, where other classes can be involved.
In this case, rules for all the chain of affected classes is added to the checkset.
Furthermore, they can be affected not only by direct associations but also by the
inverse. For instance, cardinality constraints on inverse aggregate attributes causes
insertion of additional rule nodes to the graph.

4. Conclusion

This paper presents the incremental method of model data validation. The method is
applicable for semantically complex data driven by arbitrary object-oriented
models. It allows to increase the performance of semantic validation and to
effectively manage the data in accordance with the ACID principles.

The planned work concerns basically the implementation of the method proposed
and its evaluation for industry meaningful product data. The expected positive
results will allow its wide introduction into new software engineering technologies
and emerging information systems.

References

[1]. V.A. Semenov. Product Data Management with Solid Transactional Guarantees, In
Transdisciplinary Engineering: A Paradigm Shift Series Advances in Transdisciplinary
Engineering, 10S Press, 2017, pp. 592-599.

[2]. L. Lammer and M. Theiss. Product Lifecycle Management, In Concurrent Engineering
in the 21st Century — Foundations, Developments and Challenges, Springer, 2015, pp.
455-490.

[3]. J. Osborn. Survey of concurrent engineering environments and the application of best
practices towards the development of a multiple industry, multiple domain environment.
Clemson University, 2009. Accessed: 29/01/2018. Available:
http://tigerprints.clemson.edu/all_theses/635/

[4]. M. Philpotts. An introduction to the concepts, benefits and terminology of product data
management, Industrial Management & Data Systems, MCB University Press, vol. 96,
no. 4, 1996, pp. 11-17.

281

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

[5]. X. Blanc, A. Mougenot, I. Mounier, T. Mens. Incremental Detection of Model
Inconsistencies based on Model Operations. In Advanced Information Systems
Engineering, CAISE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6]. C. Xu, C.S. Cheung, W.K. Chan. Incremental Consistency Checking for Pervasive
Context. In Proc. the 28th International Conference on Software Engineering, 2006, pp.
292-301.

[7]. J. Harrison, S.W. Dietrich. Towards an Incremental Condition Evaluation Strategy for
Active Deductive Databases. In Research and Practical Issues in Databases, World
Scientific, 1992, pp. 81-95.

[8]. 1SO 10303-11: 2004. Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: The EXPRESS language
reference manual, 1SO, 2004.

CtaTnyeckum aHanmn3 3aBUCMMOCTEN AN CeMaHTU4YeCKomn
Banuaauuu AaHHbIX

Hwun J].B. <denis.ilyin@ispras.ru>
@oxuna H.1O. <nfokina@ispras.ru>
Cemenos B.A. <sem@ispras.ru>
Hnemumym cucmemnozo npoecpammuposanus um. B.I11. Heannuxoea PAH,
109004, Poccus, . Mockea, yn. A. Conocenuyvina, 0. 25

Annorammsi. CoBpeMeHHble HMH(GOPMAlMOHHBIE CHUCTEMbl MAHUITYJIMPYIOT MOJACISIMU
JAHHBIX, COAEPKAMIMMU MIJUTHOHBI OOBEKTOB, M TEHAEHNMS TaKoBa, YTO STH MOJEIH
TIOCTOSIHHO YCIOXKHSIOTCA. OHIM 13 Ba)KHEWIINX acCIeKTOB COBPEMEHHBIX MapajlIeTbHBIX
WH)KEHEpHBIX cpel sABIseTcss uX HagexHocTb. [lpuamumer ACID (aTomapHOCTS,
COTJIACOBAaHHOCTh, HM30JIMPOBAHHOCTh, YCTOMYMBOCTH) HAIpaBICHBl Ha ee obecreuceHue,
OJIHAKO IPSMOE CJICIOBAHUE MM NPUBOAUT K CEPbE3HOMY CHIDKEHHUIO NPOU3BOIUTEIBHOCTH
Ha KPYIHOMACIITaOHBIX MOJEJAX, OCKOJIBKY HEOOXOAUMO KOHTPOJIMPOBATH IPABUIBHOCTh
KaXJIOW BBINOJHEHHON TpaH3akuMu. B Hacrosimed crarbe NpPeACTaBICH METOJ
WHKPEMEHTAIbHOW BaMnMAalnd OOBEKTHO-OPHEHTHPOBAHHBIX IAHHBIX. lIpenmornaras, 9ro
TpaH3aKIHs MPUMEHseTCS K MepBOHAYAIBFHO COTJIACOBAHHBIM IAHHBIM, TapaHTHPYETCS, 4TO
OKOHYATEILHOE TIPEJCTaBICHNE JAAHHBIX TaKXke OyIeT COTrIacoBaHHBIM, €CIH TOJNBKO OymyT
BEITIOJTHEHB! JIOKaJbHBIE MpaBmia. [ompeneneHuss OOBEKTOB JAHHBIX, ITOUICKAIINX
npoBepke, (GOpPMHUpYeTCsl IBYAONBHBIA Tpad 3aBUCHUMOCTEH 1O JOaHHBIM. J[ns
ABTOMATHYECKOTO MOCTPOCHHs rpada 3aBUCUMOCTEH MpeAaraeTcsi IPUMEHSTh CTaTHIeCKHN
a”anu3 creruuKaii Moaenu. B ciydae clI0XHBIX 00BbEKTHO-OPUEHTHPOBAHHBIX MOJIEIICH,
BKIIIOYAKOIIMUX COTHU W TBICAYM THUIIOB AJAHHBIX U CEMAaHTUYCCKUX IIPaBUII, CTaTUYCCKUM
aHaNN3, MO-BUMMOMY, SBISIETCS €IMHCTBEHHBIM CIIOCOOOM pealn3alii WHKPEMEHTaIbHON
BaUAIUN ¥ OOECIeYeHUss BO3MOXKHOCTH YIPABIECHHS JaHHBIMA B COOTBETCTBHH C
npuHuunamu ACID.

KmioueBbie cioBa: wundpopmannonnsie cuctemsl; ACID; ynpasieHue LelOCTHOCTBIO
nanasix; EXPRESS

DOI: 10.15514/ISPRAS-2018-30(3)-19

282

Wneun 1.B., ®okuna H.1O., CemenoB B.A. CraTudeckuii aHau3 3aBUCUMOCTEH 11 CEMaHTHYECKOW BaJlJalluKl
naHHbIX. Tpyoet UCIT PAH, tom 30, Beim. 3, 2018 1., ctp. 271-284

Jasi uurupoBanusi: Wnbun J1.B., ®oxuna H.IO., CemenoB B.A. Craruyeckuil anamus
3aBUCUMOCTEH JUIsl ceManTHdeckod Banmuaanuu ganueix. Tpynst UCIT PAH, tom 30, Beim. 3,
2018 r., ctp. 271-284 (na anrimiickom si3bike). DOIL: 10.15514/ISPRAS-2018-30(3)-19

Cnucok nutepaTtypbl

[1]. V.A. Semenov. Product Data Management with Solid Transactional Guarantees, In
Transdisciplinary Engineering: A Paradigm Shift Series Advances in Transdisciplinary
Engineering, 10S Press, 2017, pp. 592-599.

[2]. L. Lammer and M. Theiss. Product Lifecycle Management, In Concurrent Engineering
in the 21st Century — Foundations, Developments and Challenges, Springer, 2015, pp.
455-490.

[3]. J. Osborn. Survey of concurrent engineering environments and the application of best
practices towards the development of a multiple industry, multiple domain environment.
Clemson University, 2009. Jara o6pamenus: 29/01/2018. Pexum npocryma:
http://tigerprints.clemson.edu/all_theses/635/

[4]. M. Philpotts. An introduction to the concepts, benefits and terminology of product data
management, Industrial Management & Data Systems, MCB University Press, vol. 96,
no. 4, 1996, pp. 11-17.

[5]. X. Blanc, A. Mougenot, I. Mounier, T. Mens. Incremental Detection of Model
Inconsistencies based on Model Operations. In Advanced Information Systems
Engineering, CAISE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6]. C. Xu, C.S. Cheung, W.K. Chan. Incremental Consistency Checking for Pervasive
Context. In Proc. the 28th International Conference on Software Engineering, 2006, pp.
292-301.

[7]. J. Harrison, S.W. Dietrich. Towards an Incremental Condition Evaluation Strategy for
Active Deductive Databases. In Research and Practical Issues in Databases, World
Scientific, 1992, pp. 81-95.

[8]. 1ISO 10303-11: 2004. Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: The EXPRESS language
reference manual, 1SO, 2004.

283

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

284

Simulating Behavior of Multi-Agent Systems
with Acyclic Interactions of Agents’

L2R.A. Nesterov <rnesterov@hse.ru, r.nesterov@campus.unimib.it>
L A.A. Mitsyuk <amitsyuk@hse.ru>
I.A. Lomazova <ilomazova@hse.ru>
! National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000, Russia
2 Dipartimento di Informatica, Sistemistica e Communicazione,
Universita degli Studi di Milano-Bicocca,
Viale Sarca 336 — Edificio U14, 1-20126 Milano, Italia

Abstract. In this paper, we present an approach to model and simulate models of multi-agent
systems (MAS) using Petri nets. A MAS is modeled as a set of workflow nets. The agent-to-
agent interactions are described by means of an interface. It is a logical formula over atomic
interaction constraints specifying the order of inner agent actions. Our study considers
positive and negative interaction rules. In this work, we study interfaces describing acyclic
agent interactions. We propose an algorithm for simulating the MAS with respect to a given
interface. The algorithm is implemented as a ProM 6 plug-in that allows one to generate a set
of event logs. We suggest our approach to be used for evaluating process discovery
techniques against the quality of obtained models since this research area is on the rise. The
proposed approach can be used for process discovery algorithms concerning internal agent
interactions of the MAS.

Keywords: Petri nets; multi-agent systems; interaction; interface; simulation; event logs.
DOI: 10.15514/ISPRAS-2018-30(3)-20

For citation: Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-
Agent Systems with Acyclic Interactions of Agents. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 3, 2018, pp. 285-302. DOI: 10.15514/ISPRAS-2018-30(3)-20

1. Introduction

Process discovery has been actively developed over recent years [1]. Many
algorithms for the automatic model synthesis from event logs have been proposed
[2]-[7]. They produce process models in different notations. These can be Petri nets

“This work is supported by the Basic Research Program at the National Research University
Higher School of Economics and Russian Foundation for Basic Research, project No.
16-01-00546.

285

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

[3], [6], [7], fuzzy models [2], heuristics nets [4] or BPMN models [5] and many
others (see [8] for the comprehensive review of process discovery algorithms).
Discovering process models from event logs helps to use information about users
and system runtime behavior for proper specification, design, and maintenance of
software systems [9], [10]. This topic is increasingly attracting the attention of
researchers [11]-[14]. In particular, application of process mining techniques to
distributed and multi-agent software systems [15], [16] is interesting and important.
The main drawback of most algorithms is that they are not appropriate for modeling
highly concurrent systems. In particular, these are multi-agent systems (MAS). Such
a system consists of multiple agents executing their work independently and
interacting via predefined interfaces. It makes sense to use compositional
approaches to model MAS’s. Fortunately, such approaches have been proposed over
recent years [17], [18].

The overwhelming majority of process discovery algorithms employ different
heuristics. That is why testing is used to evaluate their efficiency and validity [8]. It
is performed using real-life and artificially generated event logs with suitable
characteristics. The latter are prepared using event log generators.

In this paper, we describe a new event log generator that aims at preparing artificial
event logs for MAS’s. We model individual agents using workflow nets, whereas
interfaces are specified using special formulae. They are constructed using a
declarative formalism that we introduce to describe basic asynchronous interactions
between agents. Based on agent models and a declarative interface formula our
generator derives the operational semantics that describes a MAS behavior. We
show that both of MAS representations are equivalent, i.e. they have the same set of
possible model runs. Thus, this semantics can be used to simulate the model and
generate event logs.

The main contributions of this paper are:

o aformalism for a declarative description of the requirements for agent
interactions is defined;

o the operational semantics representing the behavior of a multi-agent system
with declarative requirements for interactions of agents is defined;

o an algorithm for generating event logs from given agent models and
declarative constraints on their interactions based on the operational
semantics is developed;

o the approach is implemented as a prototype software and evaluated.
This paper is structured as follows. The next section gives an overview of existing
approaches for generating event logs and simulating process models. Section 3
introduces main notions used in the paper. In Section 4, we describe our approach to
modeling multi-agent systems with the help of Petri nets. Implementation details are
discussed in Section 5, and Section 6 concludes the paper.

286

Hectepos P.A., Mumtok A.A., Jlomazosa M. A. CUMynsius MOBEJCHHUS MYJIBTHATCHTHBIX CUCTEM C AllUKIMYECKH
B3auMozeiicTByOIMMH areHTamu. 1pyost UCIT PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 285-302

2. Related Work

Process Logs Generator PLG2 [19] is one of the most popular tools for generating
well-structured process models represented by dependency graphs. The tool
constructs models using randomly generated context-free grammars. The user
should specify desired characteristics of models: a size, a number of choices,
hierarchy blocks etc. The obtained model can be used to generate an event log.
Another tool that aims at randomized event log generation is PT and Log
Generator [20]. It generates random process trees (well-structured models)
containing desired number of specified workflow patterns. In particular, generated
models can be constructed from sequences, AND/XOR/OR splits and joins, as well
as structured loops. The algorithm can also randomly insert elements representing
activities. The tool also generates the desired number of logs from automatically
constructed models.

The problem of the randomized process model generation has also been addressed
by Yan, Dijkman, and Grefen in [21]. However, they have not considered event log
generation within the context of their approach.

The main goal of the tools discussed above is the randomized testing using sets of
models and event logs. However, in some cases there is a need to generate event
logs from specific process models that have been prepared on the basis of the real
data or expert knowledge. If this is the case, one can use the tool GENA [22]. It aims
at generating sets of event logs from a Petri net model. The approach allows users to
use preferences to influence a control-flow and to artificially introduce a
randomized noise into an event log. The improved version of GENA can generate
event logs from BPMN 2.0 models [23]. Most basic BPMN constructs are
supported: tasks, gateways, messages, pools, lanes, data objects.

Colored Petri nets can be used to generate event logs [24]. Authors have developed
the extension for CPN Tools that can generate randomized event logs based on a
given colored Petri net. The main drawback of this approach is that it implies
writing Standard ML scripts, which leads to possible problems during tool
adaptation for a specific task. Moreover, this approach and GENA do not support
multi-agent systems with independent asynchronous agents.

Declarative process models might also be used to generate event logs [25]. This
approach is based on construction of a finite automaton using a Declare process
model. The tool can generate a specified number of strings accepted by this
automaton. Strings are generated using the automaton and its randomized execution.
Afterwards, each string is transformed into a log trace with necessary attributes.
This tool is useful, when the only information about the process is the set of
constraints. This approach is also not appropriate for the MAS simulation as we
suggest, because it does not support the imperative control-flow description of
individual agents.

In this paper, we propose an extension to the GENA tool that is supposed to be used
for generating event logs by simulating MAS models, because the tools described
above cannot fully support this feature.

287

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

3. Preliminaries

Let N denote the set of all non-negative integers, A" — the set of all finite non-empty
sequences over a set A, and A" = A*U{e}, where ¢ is the empty sequence. For a
subset B C A, the projection of o € A" on a set B, denoted g, is the subsequence of
o including all elements belonging to B.

3.1 Petri Nets

A Petri net is a triple N = (P, T, F), where P and T are two disjoint sets of places
and transitions, and F € (PxT)U(TxP) is a flow relation. Pictorially, places are
shown by circles, transitions — by boxes, whereas the flow relation is depicted using
directed arcs (see Fig. 1 for an example).

We suppose that transitions of a Petri net are labeled with activity names from
AU{r}, where A is a set of visible activity names, and t is a label for an invisible
action. Labels are assigned to transitions via a labeling function A: T — A U {t}.

A marking (state) of a Petri net N is a function m: P — N assigning numbers to
places. A marking m is designated by putting m(p) black dots into each place p. By
m, we denote the initial marking.

Let X=P UT.Forx € X, 'x={y € X|(y, X) € F} is the set of input nodes of x in N,
and x" ={y € X| (x, y) € F} is the set of its output nodes.

(a) initial marking (b) transition b fires

Fig. 1. A Petri net

A marking m enables a transition t € T iff there is at least one token in all places
which are input for t. An enabled transition may fire yielding a new marking m’
(denoted m[tym”), consuming one token from each of its input places and producing
a token into each of its output places (see Fig. 1b).

A sequence w = tit,...t, over T is a firing sequence iff mg[t;)my[to)...m,¢[t,)m,
(denoted mg[w)my,).

Let w = t;t,...t, be a firing sequence of the net N, 4 — a labeling function over a set of
activity names A. Define A(w) = A(t)A(ty)...A(t,). Then A(w)|, is called an
(observable) run in N.

A marking m is reachable iff 3w € T": mo[w)m. A reachable marking is called dead
if it does not enable any transition.

288

Hectepos P.A., Mumtok A.A., Jlomazosa M. A. CUMynsius MOBEJCHHUS MYJIBTHATCHTHBIX CUCTEM C AllUKIMYECKH
B3auMozeiicTByOIMMH areHTamu. 1pyost UCIT PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 285-302

Workflow nets (WF-nets) form a subclass of Petri nets used for business process
modeling. A Petri netis a triple N = (P, T, F, mg) is a WF-net iff:

e there is a single source place i and a single source place f, s.t. ‘i =f " =2,

e eachnodein PUT lies on a path fromitof.
The initial marking m, of a WF-net contains exactly one token in its source place i.

3.2 Event Logs

A multiset over a set A is a map B: A — N. The set of all multisets over A is
denoted by B(A).

Let A be a set of activity names. A trace o over A is defined as a finite non-empty
sequence over A, i.e. g € A*. An event log L over A is a finite multiset of traces,
i.e. L€ B(A).

4. Modeling Multi-Agent Systems

In this section, we present formalism for modeling multi-agent systems consisting
of several asynchronously interacting agents.

A model for a system of k agents will consist of k WF-nets Ni, N,,..., Ny,
representing behavior of individual agents (called agent nets), and constraints on
their asynchronous interaction 7 (called interface).

We assume that transitions of agent nets have individual labels. In other words,
different agents implement different activities. We also assume that agent
interactions are acyclic, namely, activities in interaction constraints do not belong to
cycles and therefore occur in each system run not more than once.

Interfaces are defined as positive logical formulae over atomic constraints. Let us
give the exact definitions.

Let Ny, No,..., Ng be agent nets with pairwise disjoint sets of activity names A,(T,),
Ao(To),..., A(Ty) respectively. We define two types of atomic constraints, namely
A<B and A<B, where A and B are activity names from two different sets, i.e.
Ae Ai(Ti), Be AJ(TJ) and |7‘—'J

The validity of atomic constraints for a given trace o over the set of activity names
A =A(T) UA(To) U ... UA(Ty) is defined as follows:

e g EA<B & ifBoccursin o, then A occurs before B;

e ¢ =A<B < if Adoes not occur before B in o.
When o E ¢, we say that ¢ is valid for o, and o satisfies ¢. The validity of the
atomic constraints has a natural interpretation.
The constraint A < B means that B should be always preceded by A, e.g. a message
can be received only if it has already been sent. Thus, A <B is valid for a trace
o=...A...B... and is not valid for a trace o = ...<except A>...B... The constraint
A < B means that B cannot occur if A has happened before, e.g. if a message has

289

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

been already sent by mail, we should not fax it again. A trace
o =...<except A>...B... satisfies this constraint, and a trace o =...A...B... does
not satisfy it. However, these atomic constraints are not negations of each other.
Both A < B and A < B are valid for a trace that does not contain B.
Now a language of interface constraints is defined by the following grammar rules:
Atom ::=A<B|A<B,
¢=Atom|pV | A,
where Atom is an atomic constraint, and ¢ is a constraint formula.
Validity of a constraint formula ¢ for a given trace o is defined in a standard way:
O'|=¢1/\¢2<=> O'l=¢land0'|=¢2,
CEGIVP, @ cgEp0roE ¢,
Let L be an event log over a set A of activity names, and ¢ be a constraint formula,
then ¢ is valid for L iff ¢ is valid for each trace in L.
Interface formulae allow us to express different useful interaction constraints, e.g.
the formula ¢ = A< B A B < A describes a conflict between A and B, i.e. A and B
cannot occur in the same trace.
Recall that a MAS model consists of k agent nets Ny, Np,..., Ny, where N; = (P;, T;,
Fi. m¢', A), and a constraint formula 7 (interface) with atomic constraints that
defines the relations on activities of different agents.
It is easy to see that the union of Petri nets (considering several disjoint graphs as
one disconnected graph) is also a Petri net. Thus, we can consider k agent nets as a
single Petri net N. Recall that a run for a Petri net N is a sequence of activity names,
corresponding to a firing sequence of N, and a trace from the related event log. Then
a run of a MAS model S=(Ni, N,,..., N, J) is defined as a run p in N
satisfying 7, i.e. p £ 7.
The following proposition is the immediate consequence of the definitions.
Proposition 1: Let S = (Ny, No,..., Ny, 7) be a MAS model, and p be arunin S. Then
for all i the projection p|Ai(Ti) on transition labels of an agent net N; isa run in N;.

Agent 1 Agent 2

Fig. 2. A multi-agent system with two interacting systems

290

Hectepos P.A., Mumtok A.A., Jlomazosa M. A. CUMynsius MOBEJCHHUS MYJIBTHATCHTHBIX CUCTEM C AllUKIMYECKH
B3auMozeiicTByOIMMH areHTamu. 1pyost UCIT PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 285-302

Consider as an example the system shown in Fig. 2 with 7= A< B A B < A meaning
that A conflicts with B. Consider a run o = x;By,X; satisfying J. Projecting ¢ on
agent nets gives traces x;xz and By,, which are runs of the corresponding agent nets.
This property will be further used for designing the simulation algorithm presented
in the next section.

5. Simulating MAS Process Models

In this section, we describe an algorithm for simulating MAS models. It has been
implemented as a ProM 6 plug-in extending GENA tool [22].

5.1 An Interface-Driven Firing Rule

A constraint formula in a MAS model defines declarative restrictions on the model
behavior. To simulate the model behavior, we need to define operational semantics
for MAS models based on a special firing rule for selecting and executing the next
step in the run of the model. We call this rule an interface-driven firing rule to
distinguish it from the standard Petri net firing rule. Naturally, this rule should be
consistent with the declarative definitions of MAS model behavior.

Let S = (N, 7) be a MAS model, where a Petri net N = (P, T, F, my, A) is a union of
all agent nets.

Firstly, we convert 7 to a disjunctive normal form (DNF) using standard logical
laws. Then, an interface 7 = VC;for j =1, 2,..., n, where C; = AS;, and S, is an
atomic constraint for | = 1, 2,..., m. By abuse of notation, we also denote by 7 the
set of its conjuncts, and by C; — the set of atomic constraints in a conjunct C;.
Obviously, a trace o satisfies 7 iff 3C; € J: o = C;, i.e. it should satisfy at least one
conjunct in J. Thus, to generate a model run, we choose a conjunct C; and fire
transitions of N only if they do not violate C;.

Then we define T; € T to be the set of transitions involved in agent interaction, i.e.
teTy; iff A(t) occurs in 7. We call transitions from Tj interface transitions.
Independent transitions from T\T; fire according to the standard firing rule for Petri
nets. The firing of interface transitions is restricted by the constraint formula. To
check whether firing of a transition t violates C;, we keep the current historical
model run, i.e. a sequence of already fired activities. When a transition t € Ty is
enabled according to the standard Petri net firing rule at a current marking m, and an
atomic constraint A < A(t) occurs in C;, then t is defined to be enabled only if A
occurs in the current run. Similarly, if A < A(t) occurs in Cj, then t is enabled only if
A does not occur in the current run. Otherwise, a transition t is enabled in the model,
when it is enabled in N.

Now the operational semantics of a MAS model S = (N, 7), where N = (P, T, F, m,,
A)and 7 = VCjforj=1,2,..., n, is defined by the following procedure.

Step 1. Choose nondeterministically a conjunct Cin J.

Step 2. Start with the initial marking myand & for the current run o.

291

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

Step 3. For a current marking m and a current run o repeat while there are enabled
transitions in N:
1) compute the set T, of all transitions enabled at m and not violating
constraints from C w.r.t. o;
2) choose nondeterministically a transition t from Ty;
3) fire t by changing the current marking to m’, m[tym’, and adding A(t) to o.

5.2 Event Log Generation

This subsection presents an algorithm for generating an event log by simulating
behavior of a MAS model.

Let S= (N, 7) be a MAS model, where N = (P, T, F, my, 1) is a Petri net, and 7 is in
DNF. Firstly, for each conjunct C occurring in J, we run (simulate) S to check if it is
possible to obtain a trace o satisfying C. If we cannot obtain such a trace, we
exclude this conjunct. As a result, we come to a set of conjuncts 7' € J, which can
be actually satisfied by traces of S or an empty set if 7 cannot be satisfied by traces
of S. If 7' = 2, then the simulation is terminated producing an empty event log L.

That is why we can simulate S w.r.t. conjuncts occurring in 3’ only. Starting a new
iteration of simulation, we randomly choose a conjunct from 3’ and fire transitions
of N according to the interface-driven firing rule.

The end user specifies the final marking my, which is actually the set of sink places
of agent nets. Apart from that, the log generation is regulated by the number of logs,
the number of traces in a log, and by the maximum number of steps which can be
executed while generating a single trace (denoted further by maxSteps).

Algorithm 1 is used for generating a single trace that satisfies C from J".

Algorithm 1. Single trace generation
Input: N = (P, T, F, my, A), I/, and m;
Output: a trace o, s.t. o F J’
0 « & me my; 1 < 1; C « pickRandomConjunct (J7)
while (i < maxSteps) A (m # mg) do
Tox <« findEnabledTransitions (N, m, C, 0)
if T, # @ then
t <« pickRandomTransition (T.y)
m <« fireTransition (N, m, t)
if A(t) # T then
g« 0+ A(t); 1« 1+ 1
end
else
o < &; break

end
end
Algorithm 2 is used for finding enabled transitions, which do not violate constraints
of C. Firstly, we find a set of transitions enabled at a reachable marking m according

292

Hectepos P.A., Mumtok A.A., Jlomazosa M. A. CUMynsius MOBEJCHHUS MYJIBTHATCHTHBIX CUCTEM C AllUKIMYECKH
B3auMozeiicTByOIMMH areHTamu. 1pyost UCIT PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 285-302

to the standard firing rule. Secondly, if m enables interface transitions, we check
whether the current run o = A(w)| ,, s.t. mg[w)m, satisfies constraints of C using the

interface-driven firing rule. A run ¢ is a trace to be recorded into an event log L.

Algorithm 2. Function findEnabledTransitions
Input: N = (P, T, F, my, A), m € [my), C € I/, @
Output: a set T, of transitions enabled w.r.t. C
T, < stEnabledTransitions (N, m)
Tox & Tu\Ty
foreach t € T, N Ty do
foreach S € C do
if S = x < A(t) then
if 0 = uXv then T, <« T,Ut
else if s = x < A(t) then
if o#uXv then T, « T,Ut
end
end
end

We do not show here how the transition firing is implemented. It is discussed in
detail in [22] where the original GENA plug-in is described.

Consider an example based on the system shown in Fig. 2. Assume 7 = (A <B) v
(Y19 X1 A X 9Yy1). C =y <X, A X dy; is chosen. We are at the initial marking, i.e.
o = ¢&. Enabled transitions are {A, xi, B, y1}. However, x, cannot fire, since it should
wait until y, is executed. Then B fires nondetermenistically. Subsequently, the run is
o = B, and the enabled transitions are {A, Xy, Y-}, but x; still cannot fire. We can
choose A to fire. Then the run is ¢ = BA, and the enabled transitions are {x,, y,}
firing of which is not influenced by C. As a result, we can obtain a trace o = BAy,x,
satisfying C, and the projections of o on agent transitions, Ax, and By, are the runs
of corresponding agent nets.

5.3 Experimental Simulation

We have developed the extension to the ProM? plug-in GENA implementing the
proposed simulation algorithm and allowing users to obtain a set of event logs by
simulating a given MAS model w.r.t. interaction constraints.

We have prepared five use cases for evaluating the proposed simulation approach.
In each case, we have generated event logs with 5000 traces. In addition, we provide
a “filtered” version of a generated event log w.r.t. interacting actions, s.t. it is clear
whether the corresponding interface is exactly observed.

We have used Disco® to visualize generated event logs. Insignificant parts of agent
nets are shown by shaded ovals.

% ProM 6 Framework page: http://www.promtools.org
® Fluxicon Disco page: https://fluxicon.com/disco/
293

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

a) Sequencing: Consider a system with three interacting agents (see Fig. 3). Each
agent always executes one action. We have simulated it w.r.t. the interface
J=A<BAB<C. Intuitively, in this case each interacting agent prepares resources
needed for the other agent.

Ny Ny N3
(a) a system ! (b) an event log

Fig. 3. Sequential interaction

b) Conditional sequencing: As opposed to sequencing, conditional sequencing
allows for several execution options. In this case, a system consists of two agents,
one of which has two alternative branches (see Fig. 4). The interface for the
conditional sequencing is as follows: 7=A<Cv C < B.

(a) a system (b) an event log
Fig. 4. Sequential interaction with options

c) Alternative interaction: The alternative interaction implies that one of two
interacting agents influences the choice done by the other agent. A system consists

294

Hectepos P.A., Mumtok A.A., Jlomazosa M. A. CUMynsius MOBEJCHHUS MYJIBTHATCHTHBIX CUCTEM C AllUKIMYECKH
B3auMozeiicTByOIMMH areHTamu. 1pyost UCIT PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 285-302

of two interacting agents both having two alternative branches (see Fig. 5). The
interface formula for this case is as follows: 7=A<C Vv B < D.

A

(a) a system (b) an ever[t log

Fig. 5. Alternative interaction

d) Interaction using negative constraints: Assume we have a system of two
interacting agents with two alternative branches as shown in Fig. 5a. The result of
simulating this system w.r.t. the interface 7 = A< C is shown in Fig. 6. It is clear
from the simulation result that C is never preceded by A. Intuitively, negative
constraints allow for a more compact way of interface construction.

®

Fig. 6. Interaction using negative constraints: an event log

295

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

e) Complex interaction: In this case, we show several ways of interaction among
three different agents (see Fig. 7a). For convenience, we have filtered the obtained
log in two ways (see Fig. 8). We have used the following interface formula (given in
a conjunctive normal form for the convenience of a reader): 7= B<AAH<CA
(D<FVE<G).

N =

3

(a) a system (b) a full event log

Fig. 7. Complex interaction

2,511

(a)actions D, E, F, G (b) actions 4, B, C, H

Fig. 8. Complex interaction: filtered event logs

296

Hectepos P.A., Mumtok A.A., Jlomazosa M. A. CUMynsius MOBEJCHHUS MYJIBTHATCHTHBIX CUCTEM C AllUKIMYECKH
B3auMozeiicTByOIMMH areHTamu. 1pyost UCIT PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 285-302

6. Conclusion

We have proposed the new approach to model and simulate multi-agent systems
using Petri nets. Independent agents are modeled as a set of labeled workflow nets,
and their interaction is described using a declarative interface. The interface is
constructed as a logic formula over atomic constraints describing the order of
internal agent actions. This study has considered only acyclic agent interactions
described by two kinds of atomic constraints, s.t. interacting activities are
implemented only once. If cyclic interactions are allowed, subtler relations on
interacting activities are needed to express such constraints as “each B should be
preceded by A” or “at least one B should be preceded by A”. This is a subject for
further research.

An algorithm for simulating process models of multi-agent systems with respect to
the interface has been developed. We have implemented the algorithm within the
existing ProM 6 plug-in GENA and have evaluated it using five different cases of
agent interactions. The experiment results show how to obtain artificial event logs
by simulating process models of multi-agent systems with a finite number of
asynchronously interacting agents.

References

[1]. van der Aalst W.M.P. Process Mining — Data Science in Action. Springer, Heidelberg,
2016, 467 p.

[2]. Glunther C.W., van der Aalst W.M.P. Fuzzy mining: Adaptive process simplification
based on multi-perspective metrics. BPM 2007. LNCS, vol. 4714, 2007, pp. 328-343.

[3]. van der Werf J.M.E.M., van Dongen B.F., Hurkens C.A.J., Serebrenik A. Process
Discovery using Integer Linear Programming. Fundamenta Informaticae, vol. 94, no. 3-
4, 2009, pp. 387-412.

[4]. Weijters A.J.M.M., Ribeiro J.T.S. Flexible Heuristics Miner (FHM). In Proceedings of
the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2011,
pp. 310-317.

[5]. Kalenkova A.A., Lomazova I.A., van der Aalst W.M.P. Process Model Discovery: A
Method Based on Transition System Decomposition. ICATPN 2014. LNCS, vol. 8489,
2014, pp. 71-90.

[6]. Leemans S.J.J., Fahland D., van der Aalst W.M.P. Scalable Process Discovery with
Guarantees. BPMDS 2015, EMMSAD 2015. LNBIP, vol 214, 2015, pp. 85-101.

[7]. Begicheva A.K., Lomazova I.A. Discovering high-level process models from event logs.
Modeling and Analysis of Information Systems, vol. 24, no. 2, 2017, pp. 125-140..

[8]. Augusto A., Conforti R., Dumas M., La Rosa M., Maria Maggi F., Marrella A., Mecella
M., Soo A. Automated Discovery of Process Models from Event Logs: Review and
Benchmark. CoRR, 2017, vol. abs/1705.02288.

[9]. Rubin V.A., Mitsyuk A.A., Lomazova I.A., van der Aalst W.M.P. Process Mining can
be applied to software too! In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM °’14), 2014,

pp. 1-8.

297

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].
[19].
[20].
[21].

[22].

[23].

[24].

[25].

298

Leemans M., van der Aalst W.M.P. Process mining in software systems: Discovering
real-life business transactions and process models from distributed systems. MODELS
2015, pp. 44-53.

Leemans M., van der Aalst W.M.P., van den Brand M. Recursion Aware Modeling and
Discovery for Hierarchical Software Event Log Analysis (Extended). CoRR, 2017, vol.
abs/1710.09323.

Liu C., van Dongen B.F., Assy N., van der Aalst W.M.P. Component behavior discovery
from software execution data. In Proceedings of the IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1-8.

Davydova K.V., Shershakov S.A. Mining hybrid UML models from event logs of SOA
systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174. DOI:
10.15514/ISPRAS-2017-29(4)-10.

3TU: Big software on the run. [Online]. Available: http://www.3tu-bsr.nl. Accessed:
09.06.2018.

Cabac L., Denz N. Net Components for the Integration of Process Mining into Agent-
Oriented Software Engineering. Transactions on Petri Nets and Other Models of
Concurrency I. LNCS, vol. 5100, 2008, pp. 86-103.

Cabac L., Knaak N., Moldt D., Rélke H. Analysis of Multi-Agent Interactions with
Process Mining Techniques. MATES 2006. LNCS, vol. 4196, 2006, pp. 12-23.

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of
Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp.
21-38. DOI: 10.15514/ISPRAS-2017-29(4)-2.

Nesterov R.A., Lomazova I.A. Compositional Process Model Synthesis Based on
Interface Patterns. TMPA 2017. CCIS, vol. 779, 2018, pp. 151-162.

Burattin A. PLG2: Multiperspective Process Randomization with Online and Offline
Simulations. BPMD 2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 1-6.
Jouck T., Depaire B. PTandLogGenerator: A Generator for Artificial Event Data. BPMD
2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 23-27.

Yan Z., Dijkman R.M., Grefen P. Generating process model collections. Software and
System Modeling, 2017, vol. 16, issue 4, pp. 979-995.

Shugurov 1.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. In
Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software
Engineering (SYRCOSE 2014), 2014, pp. 88-95. DOI: 10.15514/SYRCOSE-2014-8-13.
Mitsyuk A.A., Shugurov |.S., Kalenkova A.A., van der Aalst W.M.P. Generating event
logs for high-level process models. Simulation Modelling Practice and Theory, vol. 74,
2017, pp. 1-16.

de Medeiros A.K.A., Giinther C.W. Process Mining: Using CPN Tools to Create Test
Logs for Mining Algorithms. In Proceedings of CPN 2005. DAIMI, vol. 576, 2005, pp.
177-190.

Di Ciccio C., Luca Bernardi M., Cimitile M., Maria Maggi F. Generating Event Logs
Through the Simulation of Declare Models. EOMAS 2015. LNBIP, vol. 231, 2015, pp.
20-36.

Hectepos P.A., Mumtok A.A., Jlomazosa M. A. CUMynsius MOBEJCHHUS MYJIBTHATCHTHBIX CUCTEM C AllUKIMYECKH
B3auMozeiicTByOIMMH areHTamu. 1pyost UCIT PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 285-302

CMMyHFILI,VISI noeeAeHNsA MyrnbTUareHTHbIX CUCTeM C
aAUUNKNn4ecKkumn B3aMMOAEﬁCTByWU4MM areHTamMu

L2 p 4. Hecmepos <rnesterov@hse.ru, r.nesterov@campus.unimib.it>
Y A.4. Muyrox <amitsyuk@hse.ru>
Y U.A. Jlomasosa <ilomazova@hse.ru>
! Hayuonansmoii uccnedosamenscruii yHUepcumem «Bvicwas wkona sxonomuxuy,
101000, Poccus, . Mockea, yn. Macnuykas, 0. 20.

Zﬂenapma/wenm uHgpopmamury, cucmem u KOMMYHUKAYULL,
Munancxuti ynugepcumem-buxokka,

20126, Umanus, 2. Munan, Viale Sarca 336 — Edificio U14

AnHoTamms. B pabote mpeanioxeH MOAXOA ISl MOJEIMPOBAHHS U CHMYJISIILIMU ITOBEICHHS
mynbTHareHTHEIX cucteM (MAC) ¢ nmpumenenueMm ceted [lerpu. MAC mpencraBmseTcs Kak
KOHEYHOE MHOXKECTBO CETEH IOTOKOB paboT. ACHHXPOHHBIC B3aMMOJCIHCTBUS areHTOB
OTIMCBHIBAIOTCS C TIOMOIIBIO HHTEp(defica, KOTOPHI Onmpeaesercs Jormdeckoil popmMymnoit Hax
MHO>KECTBOM aTOMApHBIX OTpaHMYEHHIl. DTH OTpaHWYEHHS 3aJal0T MOPSIOK BBIIOIHECHHS
BHYTPCHHHX JeHCTBMH areHToB. B cTaThe paccMaTpHBAIOTCS TOJBKO AIMKINYECKUE
B3aUMOJICHCTBHS areHToB. Takke ObUT pa3paboTaH anroput™ cuMyisiuu noseaeHust MAC ¢
Y4eTOM OTrpPAHWYCHUH B3aMMOJCWCTBUS areHTOB. AJITOPHTM peanu3oBaH B BHAE
MOJKJTF0YaEMOT0 MOAYJIS Uil HHCTpyMeHTa ProM 6. TlpensiokeHHbIH MOIX0I MOXKET OBITh
HCTIONB30BaH JIsI OL[EHKH Ka4eCTBa alrOpPUTMOB H3BIIeUeHusI porieccoB (process discovery)
C TOYKH 3pEHHs XapaKTePHUCTHK ITOJIy9aeMbIX MOJIEIIeH TPOLIECCOB.

KmioueBsie cioBa: ceru IleTpy; MynbTHareHTHbIE CHCTEMBI; B3aMO/IeHCTBIE; HHTepdeiic;
CHMYJISLIHS;)KyPHAITBI COOBITHIT

DOI: 10.15514/ISPRAS-2018-30(3)-20

Jost uutupoBanms: HecrepoB P.A., Mumitok A.A., Jlomazoa U.A. Cumynsiust moBeeHus
MYJBTHATCHTHBIX CHCTEM C alMKINYEeCKH B3amMoneiicTByrommmu areHtamu. Tpynsr UCIT
PAH, tom 30, Bem. 3, 2018 r., crp. 285-302 (ma aHnrmmiickom s3bIke). DOI:
10.15514/ISPRAS-2018-30(3)-20

Cnucok nutepatypbl

[1]. van der Aalst W.M.P. Process Mining — Data Science in Action. Springer, Heidelberg,
2016, 467 p.

[2]. Giinther C.W., van der Aalst W.M.P. Fuzzy mining: Adaptive process simplification
based on multi-perspective metrics. BPM 2007. LNCS, vol. 4714, 2007, pp. 328-343.

[3]. van der Werf J.M.E.M., van Dongen B.F., Hurkens C.A.J., Serebrenik A. Process
Discovery using Integer Linear Programming. Fundamenta Informaticae, vol. 94, no. 3-
4, 2009, pp. 387-412.

299

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

[4].

[5].

[6].
[7].
[8].

9.

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].
[19].
[20].

[21].

300

Weijters A.J.M.M., Ribeiro J.T.S. Flexible Heuristics Miner (FHM). In Proceedings of
the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2011,
pp. 310-317.

Kalenkova A.A., Lomazova I.A., van der Aalst W.M.P. Process Model Discovery: A
Method Based on Transition System Decomposition. ICATPN 2014. LNCS, vol. 8489,
2014, pp. 71-90.

Leemans S.J.J., Fahland D., van der Aalst W.M.P. Scalable Process Discovery with
Guarantees. BPMDS 2015, EMMSAD 2015. LNBIP, vol 214, 2015, pp. 85-101.
Begicheva A.K., Lomazova I.A. Discovering high-level process models from event logs.
Modeling and Analysis of Information Systems, vol. 24, no. 2, 2017, pp. 125-140..
Augusto A., Conforti R., Dumas M., La Rosa M., Maria Maggi F., Marrella A., Mecella
M., Soo A. Automated Discovery of Process Models from Event Logs: Review and
Benchmark. CoRR, 2017, vol. abs/1705.02288.

Rubin V.A., Mitsyuk A.A., Lomazova I.A., van der Aalst W.M.P. Process Mining can
be applied to software too! In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM °14), 2014,
pp. 1-8.

Leemans M., van der Aalst W.M.P. Process mining in software systems: Discovering
real-life business transactions and process models from distributed systems. MODELS
2015, pp. 44-53.

Leemans M., van der Aalst W.M.P., van den Brand M. Recursion Aware Modeling and
Discovery for Hierarchical Software Event Log Analysis (Extended). CoRR, 2017, vol.
abs/1710.09323.

Liu C., van Dongen B.F., Assy N., van der Aalst W.M.P. Component behavior discovery
from software execution data. In Proceedings of the IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1-8.

Davydova K.V., Shershakov S.A. Mining hybrid UML models from event logs of SOA
systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174. DOI:
10.15514/ISPRAS-2017-29(4)-10.

3TU: Big software on the run. [Online]. Available: http://www.3tu-bsr.nl. Accessed:
09.06.2018.

Cabac L., Denz N. Net Components for the Integration of Process Mining into Agent-
Oriented Software Engineering. Transactions on Petri Nets and Other Models of
Concurrency I. LNCS, vol. 5100, 2008, pp. 86-103.

Cabac L., Knaak N., Moldt D., Rolke H. Analysis of Multi-Agent Interactions with
Process Mining Techniques. MATES 2006. LNCS, vol. 4196, 2006, pp. 12-23.

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of
Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp.
21-38. DOI: 10.15514/ISPRAS-2017-29(4)-2.

Nesterov R.A., Lomazova I.A. Compositional Process Model Synthesis Based on
Interface Patterns. TMPA 2017. CCIS, vol. 779, 2018, pp. 151-162.

Burattin A. PLG2: Multiperspective Process Randomization with Online and Offline
Simulations. BPMD 2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 1-6.
Jouck T., Depaire B. PTandLogGenerator: A Generator for Artificial Event Data. BPMD
2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 23-27.

Yan Z., Dijkman R.M., Grefen P. Generating process model collections. Software and
System Modeling, 2017, vol. 16, issue 4, pp. 979-995.

Hectepos P.A., Mumtok A.A., Jlomazosa M. A. CUMynsius MOBEJCHHUS MYJIBTHATCHTHBIX CUCTEM C AllUKIMYECKH
B3auMozeiicTByOIMMH areHTamu. 1pyost UCIT PAH, 2018, Tom 30, BeIm. 3, 2018 1., cTp. 285-302

[22]. Shugurov LS., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. In
Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software
Engineering (SYRCoSE 2014), 2014, pp. 88-95. DOI: 10.15514/SYRCOSE-2014-8-13.

[23]. Mitsyuk A.A., Shugurov I.S., Kalenkova A.A., van der Aalst W.M.P. Generating event
logs for high-level process models. Simulation Modelling Practice and Theory, vol. 74,
2017, pp. 1-16.

[24]. de Medeiros A.K.A., Giinther C.W. Process Mining: Using CPN Tools to Create Test
Logs for Mining Algorithms. In Proceedings of CPN 2005. DAIMI, vol. 576, 2005, pp.
177-190.

[25]. Di Ciccio C., Luca Bernardi M., Cimitile M., Maria Maggi F. Generating Event Logs
Through the Simulation of Declare Models. EOMAS 2015. LNBIP, vol. 231, 2015, pp.
20-36.

301

Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

302

On the model checking of finite state
transducers over semigroups

! AR. Gnatenko<gnatenko.cmc@gmail.com>
2V.A. Zakharov<zakh@cs.msu.su>
! Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
% National Research University High School of Economics,
20, Myasnitskaya str., Moscow, 101000, Russia

Abstract. Sequential reactive systems represent programs that interact with the environment
by receiving signals or requests and react to these requests by performing operations with
data. Such systems simulate various software like computer drivers, real-time systems,
control procedures, online protocols etc. In this paper, we study the verification problem for
the programs of this kind. We use finite state transducers over semigroups as formal models
of reactive systems. We introduce a new specification language LP-CTL* to describe the
behavior of transducers. This language is based on the well-known temporal logic CTL* and
has two distinguished features: 1) each temporal operator is parameterized with a regular
expression over input alphabet of the transducer, and 2) each atomic proposition is specified
by a regular expression over the output alphabet of the transducer. We develop a tabular
algorithm for model checking of finite state transducers over semigroups against LP-CTL*
formulae, prove its correctness, and estimate its complexity. We also consider a special
fragment of LP-CTL* language, where temporal operators are parameterized with regular
expressions over one-letter alphabet, and show that this fragment may be used to specify
usual Kripke structures, while it is more expressive than usual CTL*.

Keywords: reactive program; transducer; verification; model checking; temporal logic; finite
state automaton; regular language

DOI: 10.15514/ISPRAS-2018-30(3)-21

For citation: Gnatenko A.R., Zakharov V.A. On the model checking of finite state
transducers over semigroups. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-
324. DOI: 10.15514/ISPRAS-2018-30(3)-21

1. Introduction

Finite state machines are widely used in the field of computer science and formal
methods for various purposes. While finite automata represent regular sets,
transducers stand for regular (or, rational) relations and, therefore, can serve as
models of programs and algorithms that operate with input and output data. For

303

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

example, transducers are used as formal models in software engineering to represent
numerous algorithms, protocols and drivers that manipulate with strings, dataflows,
etc. [1, 15, 25].

By extending the concept of ordinary transducers, we build a new formal model for
sequential reactive systems. These systems are software programs or hardware
devices that receive requests (control signals, commands) from the environment and
perform in response some manipulations (actions, transformations) with data,
interactions with the environment, mechanical movements, etc. While the flow of
requests can be represented by finite or infinite words in some fixed alphabet, the
sequence of actions of the system needs a more sophisticated interpretation. The key
point here is that different sequences of actions may bring a computing system to
the same result. To capture this effect the collection of actions performed by a
reactive system can be viewed as a generating set of some algebraic structure (e.g.
semigroup, group, ring, etc.) and particular algebraic properties of basic actions
should be taken into account when choosing adequate formal models for this class
of information processing systems. Let us illustrate this consideration by several
examples.

e A network switch with several input and output ports. A switch is a device,
which receives data packets on its input port, modifies their heads and
commutes them to one of the output ports. Once received a special control
signal, this switch changes its packet-forwarding table and, thus, its behaviour.
Since packets from different flows may be processed in any order, the switch
can be modeled by a transducer, which operates over a free partially
commutative semigroup, or a trace monoid. Trace monoids are commonly used
as an algebraic foundation of concurrent computations and process calculi (see,
e.g. [9]).

e A real-time device that control the operation of some industrial equipment (say,
a boiling system). Such device receives data from temperature and pressure
sensors and switches some processes on and off according to its instructions
and the current state of the system. It seems reasonable that for some actions the
order of their implementation is not important (routine actions), while others
must follow in a strictly specified order (e.g. an execution of some complex
operation). Moreover, there are also actions which bring system to certain
predefined operation mode (set-up actions). These actions are implemented in
the emergency situations. A partially commutative semigroup with right-zero
elements 0 which satisfy the equalities x0 = 0 for every element x provides an
adequate interpretation for such operations.

e A system supervisor that maintains a log-file. For each entry its date and time is
recorded in the file and there is no way to delete entries from the log — only to
append it. Thus, for any two basic actions (record operations to the log-file) it is
crucial in which order they are performed and such a supervisor can be modeled
by a transducer over a free semigroup. Verification techniques for such reactive

304

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

systems are considered in [17]; this is the main topic of this paper as well.

e A radio-controlled robot, that moves on a surface. It can make one step moves
in any of direction. When it receives a control signal in a state g’ it must choose
and carry out a sequence of steps and enter to the next state q'’. At some
distinguished state g the robot reports its current location. Movements of the
robot may be regarded as basic actions, and the simplest model of computation
which is suitable for analyzing a behaviour of this robot is a nondeterministic
finite state transducer operating on a free Abelian group of rank 2.

To construct a reliable system or network it is crucial for its components to have a
correct behaviour. For example, a network switch must process received data
packets within a specified number of execution steps and the boiling system should
never be overheated, that is, will never remain for a long time in a particular
condition without appropriate responses from the control device. By using finite
state transducers as formal models of reactive systems, one can develop verification
algorithms for these models to solve such problems as equivalence checking,
deductive verification or model checking.

The study of the equivalence checking problem for classical transducers began in
the early 60s. It was established that the equivalence checking problem for non-
deterministic transducers is undecidable [13] even over 1-letter input alphabet [16].
However, the undecidability displays itself only in the case of unbounded
transductions when an input word may have arbitrary many images. The
equivalence checking problem was shown to be decidable for deterministic [4],
functional (single-valued) [5, 19], and k-valued transducers [6, 26]. In a series of
papers [20-22] techniques for checking bounded valuedness, k-valuedness and
equivalence of finite state transducers over words were developed. Recently in [29]
equivalence checking problem was shown to be decidable for finite state transducers
that operate over finitely generated semigroups embeddable in decidable groups.

There are also papers where equivalence checking problem for transducers is
studiedin the framework of program verification. The authors of [23] proposed
models of communication protocols as finite state transducers operating on bit
strings. They set up the verification problem as equivalence checking between the
protocol transducer and the specification transducer. The authors of [25] extended
finite state transducers with symbolic alphabets, which are represented as parametric
theories. They showed that a number of classical problems for extended transducers,
including equivalence checking problem, are decidable modulo underlying theories.
In [1] a model of streaming transducers was proposed for programs that access and
modify sequences of data items in a single pass. It was shown that a number of
verification problems such as equivalence checking, assertion checking, and
checking correctness with respect to pre/post conditions, are decidable for this
program model.

Meanwhile, very few papers on the model checking problem for transducers are
known. Transducers can be conveniently used as auxiliary means in regular model

305

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

checking of parameterized distributed systems where configurations are represented
as words over a finite alphabet. In such models, a transition relation on these
configurations may be regarded as a rational relation and, thus, it may be specified
by finite state transducers (see [7, 28]). In these papers, finite state transducers just
play the role of verification instrument, but not an object of verification. However,
as far as we know, a deeper investigation of the model checking problem for the
reactive systems represented by transducers has not yet been carried out. We think
that this is due the following main reason. A transducer is a model of computation
which, given an input word, computes an output word. The letters of input and
output alphabets can be regarded as valuations (tuples of truth values) of some set of
basic predicates. Therefore, a transducer can be viewed as some special
representation of a labeled transition system (Kripke structure) (see [2]). From this
viewpoint model checking problem for finite state transducers conforms well to
standard model checking scheme for finite structures, and, hence, it is not worthy of
any particular treatment.

However, our viewpoint is quite different. Transducer is a more complex model of
computation than a finite state automaton (transition systems). Its behaviorism
characterized by the correspondence between input and output words. A typical
property of such behaviour to be checked is whether for every (some) input word
from a given pattern a transducer outputs a word from another given pattern.
Therefore, when formally expressing the requirements of this kind one needs not
only temporal operators to specify an order in which events occur but also some
means to refer to such patterns. Conventional Temporal Logics like LTL or CTL are
not sufficient in this case; they should be modified in such a way as to acquire an
ability to express correspondences between the sets (languages) of input words and
the sets (languages) of output words. This could be achieved by supplying temporal
operators with patterns as parameters. Every such pattern is a formal description of
a language L over an input alphabetC; automata, formal grammars, regular
expressions, language equations are suitable for this purpose. The basic properties
of output words can be also represented by languages over an output alphabet. Then,
for instance, an expression G, P can be understood as the requirement that for every
input word w from the language L the output word h of a transducer belongs to the
language P.

The advantages of this approach are twofold. On the one hand, such extensions of
Temporal Logics make it possible to express explicitly relationships between input
and output words and specify thus desirable behaviours of transducers. On the other
hand, it can be hoped that such extensions could rather easily assimilate some well-
known model checking techniques (see [3, 8]) developed for conventional Temporal
Logics. The first attempt to implement this approach was made in [17]. The authors
of this paper introduced an LP-LTL specification language based on LTL temporal
logic and developed a checking procedure for transducers over free monoids against
specifications from LP-LTL. It was shown that this procedure has double
exponential time complexity.

306

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

In this paper we continue this line of research and "raise" the specification language
introduced in [17] to the level of LP-CTL*. We will focus only on one task related
to the use of new logic for the verification of reactive systems, namely, the
development of a general model checking algorithm for finite state transducers
against specifications in LP-CTL". Such issues as expressive power of LP-CTL",
complexity of model checking and satisfiability checking problems, the influence of
types of languages used as parameters and basic predicates in LP-CTL* on
decidability and complexity of model checking problem remain topic of our further
research and will be covered in our subsequent works. We also leave beyond this
work a number of applied questions, which are worthy of consideration in a separate
paper. For example, it is important to understand to what extent the already
developed model checking tools can be adapted to the new temporal logic. And, of
course, in the future we will have a well-chosen series of examples that illustrate the
new possibilities of using LP-CTL*to describe the behavior of reactive systems.

The paper is organized as follows. In Section 2, we define the concept of finite state
transducer over semigroup as a formal model of sequential reactive systems (see
[29]) and in Section 3, we describe the syntax and the semantics of LP-CTL" as a
formal language for specifying behaviour of sequential reactive systems. In Section
3 we also set up formally model checking problem for finite state transducers
against LP-CTL" formulae. In Section 4, we present an LP-CTL* model checking
algorithm for the case when parameters of temporal operators and basic predicates
are regular languages represented by finite state automata. The model checking
algorithm we designed has time complexity which is linear of the size of a
transducer but exponential of the size of LP-CTL* formula. This complexity
estimate is in contrast to the case of conventional CTL model checking: its time
complexity is linear of both the size of a model and the size of a CTL formula. To
explain this effect in Section 5 we show how LP-CTL* formulae can be also
checked on the conventional Kripke structures. Finally, we compare LP-CTL* with
some other known extensions Temporal Logics and discuss some topics for further
research.

2. Finite state transducers as models of reactive systems

In this section, we introduce a Finite State Transducer as a formal model of a
reactive computing system which receives control signals from the environment and
reacts to these signals by performing operations with data.

Let € be a finite set of signals. Finite words over C are called signal flows; the set of
all signal flows is denoted byC*. Given a pair of signal flows u and v we write uv
for their concatenation, and denote by & the empty flow.

Let A = {a,, ..., a,} be a finite set of elements called basic actions; these actions
stand for the elementary operations performed by a reactive system. Finite words
over A are called compound actions; they denote sequential compositions of basic
actions. Since different sequences of basic actions could produce the same result,

307

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

one may interpret compound actions over a semigroup (S, e, o) generated by a set
of basic actions A. The elements of S are called data states. Every compound action
h = a;,a;, ...a;, is evaluated by the data state [h] = [a;,] ° [a;,] ..o [a;,]. For
example, if a reactive system just keeps a track of input requests by adding certain
records to a log-file then a free semigroup will be suitable for interpretation of these
operations. But when a robot moves on a 2-dimensional surface then the actions
(movements) performed by this robot may be regarded as generating elements of
Abelian group G of rank 2, and the positions on the surface occupied by this robot
can be specified by the elements from G. In this paper we restrict ourselves to the
consideration of free semigroups when [h] = h holds for every compound action h,
and o is the word concatenation operation.
Let C be a set of signals and <A be a set of basic actions that are interpreted over a
semigroup (S,e,0). Then a Finite State Transducer (in what follows, FST) is a
quintuple T = (Q, C, A, qinit, T), Where

e (isafinite set of control states;

® (i € Q isaninitial control state;

e T cQxCxQ xA"isafinite transition relation.
Each tuple (q',c,q",h) in T is called a transition: when a transducer is in a control
state ¢’ and receives a signal c, it changes its state to g’’ and performs a compound

c,h . ..
action h. We denote such transition by q¢' — ¢q"’. A run of a FST II is any finite
sequence of transitions

chi by c3hz cphp
1 —— 42 —>q3 — "~ qn1;
this run transduces a signal flow w = ¢, c, ... ¢,, into a data state [k, h, ... h,].

The behaviour of a FST I1 = (Q, C, A, qinie, T) Over a semigroup (data space)
(S,e,0) is presented formally by a transition system TS(II,S) = (D,C, dinit, T),
where

e D = Q xSis(in general case, infinite) set of states of computation,

o diir = (i e) is the initial state, and

e T CSDXxXCXD is a transition relation such that for every states of
computation d' = (q',s"),d" = (q",s"") and every signal c €C the

relationship
(d',c,d)YeT = FheA(q,c,q",h) eTands" = s'o[h]
holds.

As usual, a transition (d’,c,d"") € T is denoted by d’ Sd.

A trajectory in a transition system TS(I1,S) is a pair tr = (dy, @), where dy, €D
and a = (¢, dy), (cy,d5), ..., (c;, d;), ... is a sequence of pairs (c;, d;) such that
Ci . . .

d;_, = d; holds for every i,i > 1. A trajectory represents a possible scenario of a
behaviour of a sequential reactive system: when receiving a signal flow

308

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

€1, Cy, -, Ciy ... the reactive system performs a sequence of basic actions h and
follows sequentially via the states of computation d;, d,, ..., d;, By tr|* we mean
the trajectory(d;, a|®), where a|' = (ciy1,dis1), (Civzr disz), ... is a suffix of a,
respectively.

3. LP-CTL" specification language

When designing sequential reactive systems one should be provided with a suitable
formalism to specify the requirements for their desirable behaviour. For example,
one may expect that

e a mobile robot, receiving an equal number of control signals "go_left" and
"go_right", will always return to its original position,

e a network switch will never commute data packets from different packet
flows into the same output buffer,

e itis not possible for the interrupt service routine to complete the processing
of one interrupt before it receives a request to handle another.
These and many other requirements which refer to the correspondences between
control flows and compound actions in the course of FST runs can be specified by
means of Temporal Logics. When choosing a suitable temporal logic as a formal
specification language of FST behaviours one should take into account two
principal features of our model of sequential reactive systems:

e since a FST operates over a data space which is semigroup, the basic
predicates must be interpreted over semigroups as well, and

e since a behaviour of a FST depends not on the time flow itself but on a
signal flow which it receives as an input, temporal operators must be
parameterized by certain descriptions of admissible signal flows.

To adapt traditional temporal logic formalism to these specific features of FST
behaviours the authors of [17] introduced a new variant of Linear Temporal Logic
(LTL). We assume that in general case one may be interested in checking the
correctness of FST's responses to arbitrary set of signal flows. Every set of control
flows may be regarded as a language over the alphabet C of signals. Therefore, it is
reasonable to supply temporal operators (“globally” G, "eventually" F, etc.) with
certain descriptions of such languages as parameters. In more specific cases we
may confine ourselves with considering only a certain family of languages (finite,
regular, context-free, etc.) £ used as parameters of temporal operators. These
languages will be called environment behaviour patterns.

A reactive system performs finite sequences of basic actions in response to control
signals from the environment and thus follows in the course of its run via a
sequence of data states, which are elements of a semigroup (S, e, ©), Therefore,
basic predicates used in LTL formulae may be viewed as some sets of data
states S’, S’ € S. These sets can be also specified in language-theoretic fashion.

309

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

Any language P over the alphabet of basic actions A corresponds to a predicate (set
of data states) S, = {[h] | h € P}. As in the case of environment behaviour patterns
we may distinguish a certain class 2 of languages and use them as specifications of
basic predicates. When these languages are used as parameters in temporal formulae
then it will be assumed that they are defined constructively by means of automata,
grammars, Turing machines, etc.

Thus, we arrive at the concept of LP-variants of Temporal Logics. In [17] the
syntax and semantics of LP-LTL was studied in some details in the case when both
environment behaviour patterns and basic predicates are regular languages
presented by finite automata. In this paper we make one step further and extend the
concept of LP-variants of Temporal Logics to CTL*. Select an arbitrary family of
environment behaviour patterns £ and a family of basic predicates . The set of
LP-CTL* formulae consists of state formulae and trajectory formulae, which are
defined as follows:
e each basic predicate P € P is a state formula;

e if ¢, @, are state formulae then — ¢, ¢, A @, and ¢, V @, are state
formulae;

e if 3 isatrajectory formula then Ay and Eip are state formulae;
e if ¢ is a state formula then ¢ is a trajectory formula;

o if Y,,9y, are trajectory formulae then —,, Y AY, and P, Vi, are
trajectory formulae;
o if @, ¢, @, are state formulae, c € G, and L € L then X.¢, Y., F, ¢,
G, and ¢, Uq, are trajectory formulae.
The specification language LP-CTL" is the set of all state formulae constructed as
defined above.
Now we introduce the semantics of LP-CTL* formulae. These formulae are
interpreted over transition systems. Let M = TS(II, S) be a transition system, d be
a state of computation in this system, and tr be a trajectory in M. Then for every
state formula ¢ we write M, d = ¢ to denote the fact that the assertion ¢ is true in
the state d of M, and for every trajectory formula ¢ we write M, tr = 1 to denote
the fact that the assertion y holds for the trajectory tr in M.
In the definition below it is assumed that M is a transition system, d = (g, s) is a
state of computation in M, and tr = (d,, @) is a trajectory in M such that
a = (c1,dy), (cz,d3), ..., (¢;, d;), ... We define the satisfiability relation = by
induction on the height of formulae:
e MdEeEP < s€ P,
e M,dE —@ <itisnottruethat M,d & ¢;
e MdE@ ANp, & M,dE@,andM,d E @,;
e M, dE Ep < there exists a trajectorytr’ = (d,a")in M such
that M, tr' E ¢;
310

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

e M dE Ap < for any trajectorytr’ = (d,a)inMit is true
that $M, tr' & ;
if @ is a state formulathen M,tr £ ¢ & M,d, E ¢;
o M,tr e =y < itisnottruethat M,tr & ;
o MtrE YA Y, & M, tr £ Y, and M, tr \models Y, ;
e Mitre X, & c=c,andM,d; E ¢;
e M,tr= Y.p & eitherc # ¢;,0rM,d, E @;
e Mitre Fiop ©3i >0:ccy...c; € LandM,tr|' E ¢;
e MitrE Gp © Vi=0:ifcicy.. c; € Lthen M, tr|' & ¢;
e MtreoU,p ©3i=0:ccy...; € LLMtr|'E ¢
andVvj,0< j < i, ifcicy ... ¢; € Lthen M, tr|’ E ¢.
Observe, that operators X, and Y, as well as F; and G, are dual to each other:

Proposition 1. For any LP-CTL" formula ¢, any c € € and any L € £, and for an
arbitrary trajectory tr in M

e trE X, & trE aY, 0o,
o tre Fip & trkE =G, —0o.

As usual, other Boolean connectives like v, —, = may be defined by means of —
and A. Some other CTL" operators like, for example, R (release) or W (weak until)
may be parametrized by environmental behaviour patterns in the same fashion.

The model checking problem we deal with is that of checking, given a finite state
transducer I operating over a semigroup (S, e, o), and an LP-CTL* formula ¢,
whether TS(I1, S), dinir E ¢ holds. When a semigroup is fixed then we use a brief
notation IT & ¢.

4. Model checking against LP-CTL* specifications

In this paper, we discuss only the most simple case of model checking problem for

finite state transducers against LP-CTL* formulae when

o the semigroup (S, o, e) the transducers operate over is a free monoid, which
means that S is the set of all finite words in the alphabet A, the binary
operation o is concatenation of words, and the neutral element e is the empty
word &;

o the family of environment behaviour patterns £ is the family of regular
languages in the alphabet C;

o all basic predicates in P are specified by regular languages in the alphabet A.

All regular languages used as environment behaviour patterns and basic predicate

specifications are defined by means of deterministic finite state automata (DFAS).

Therefore, the size of a LP-CTL* formula is the number of Boolean connectives

and temporal operators occurred in ¢ plus the total size of automata used in ¢ to

specify environment behaviour patterns and basic predicates.

311

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

Let us first describe a model checking algorithm for £LP-CTL fragment of LP-
CTL*, which consists of all LP-CTL* formulae such that every temporal operator
X., Y., F;, Gy U; is immediately preceded by a trajectory quantifier E or A. In our
algorithm, we involve an explicit iterative model checking techniques for the
ordinary CTL (see [8, 10]). Following this approach satisfiability checking of a
formula ¢ in a state d of a model M is reduced to satisfiability checking of the
largest subformulae of ¢ in the state d and in the neighboring states of M. In other
words, a model checking procedure incrementally labels all states of a model by
those subformulae of ¢ which are satisfied in these states.

Let I = (Q,C A, qinit, T) be a finite state transducer over the free semigroup
(A", -,€) and let ¢ be an LP-CTL formula. There are five pairs of coupled LP-
CTL temporal operators: AX, and EX,, AY, and EY,., AF; and EF;, AG; and EGy,
AU; and EU;. As in the case of “ordinary” CTL (see), each of these couple can be
expressed in terms of four main coupled operators EX., EY,., EG; and EU;:

Proposition 2. For every formula ¢ the following equalities hold

1. EAX.¢ = —EY. -0,

2. EAY.p = -EX, -0,

3. EAF, ¢ = —EG, -9,

4. EEF@ = E[trueU,¢],

5. EAG,p = —EF, -0,

6. EAlpU Y] = =E[-Yp U, (me A=p)] A =EG, 1.

Certainly, some other relationships like fixed-point identities are also valid in LP-
CTL" (see [17]) but they will not be involved in this paper.

We can now bound our consideration with those LP-CTL formulae which are
constructed using only =, A, EX., EY,, EG; and EU;. Let M be a transition system
TS, A*) = (D, C,dini,, T)of IT over A*. It should be noticed that M is, in
general, infinite. Therefore, to obtain an effective model checking procedure we
need a construction that will model the behaviour of M w.r.t. a target formula ¢.

For every basic predicate P € P let Ap = (Qp, A,initp,dp,Fp) be a minimal
DFA recognizing this language. Here Qp is a finite set of states, initp is an initial
state, Fp is a set of accepting states and &p : Qp X A — Qp iS a transition
function. The latter can be extended to the set A in the usual fashion:

8p(qp.€) = qp and 6p(qp,va) = 6p(8p(qp. V), @).

Let P4, P,,..., P, be all basic predicates occurred in the formula ¢. Given a
transducer I1 = (Q, C, A, q;niry T) and a formula ¢, we build a checking machine
— atransducer M = (Q,C, A, Ginir, T), Where
o 0=0x Qp, X ... X Qp, is a set of states (to avoid misunderstanding we will

call them metastates);
o Ginit = (Qinie, initp,, ..., initp,) is an initial metastate;
e Tc Qx Cx Qx A*isatransition relation, such that:

312

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

(4’7 ¢ q"wh) €T and
@.cqg"heg = 6p;(a'p; h) = q"p
forallj,1<j<k

Thus, every metastate is a tuple § = (qo, ¢4, -, qx) such that g, € Q and q; € Qp;

for every j, 1 <j < k, and the transition relation T synchronizes transitions of IT
and the automata Ap,, ..., Ap, in response to every signal c. Recall that the elements
of the free monoid are words s from A*. The checking machine M induces a binary
relation ~ on the set D: for an arbitrary pair d' = (¢q',s") and d" = (q", s") of states
of computation of IT over A"

ql — qll and

Op,(initp, s') = 8p (initp, s") for all j.

The relation ~ is clearly an equivalence relation of finite index, and every
equivalence class of states of computation in M corresponds to a metastate of the
checking machine M. As it can be seen from the definition of ~, if two states of
computation d' and d” are equivalent and there is a trajectory tr' = (d',a") in M,
where a' = (cq,d'y), (cz,d'y), ..., from one of these states, then there is
also a corresponding trajectory tr” = (d",a"), where a” = (¢, d"4), (c2,d"5), ...
from the other state, such that d’; ~ d”; holds for every i,i > 1. Actually, this
means that ~ is a bisimulation relation on the state space of the transition system M.
It is well known (see [3, 8]) that bisimulation preserves the satisfiability of CTL
formulae. The Proposition below shows that the same is true for LP-CTL. This
means that the checking machine provides a finite contraction of the infinite
transition system M = TS(II, A") w.r.t. satisfiability of LP-CTL formulae.

d~d o {

Proposition 3. Suppose that d' and d” are two states of computation in M such
thatd' ~ d". ThenM,d' E ¢ © M,d" E ¢.

Proof. It is carried out by induction on the nesting depth of ¢. When ¢ is a basic
predicate the assertion follows from the definition of ~. The cases when ¢ = =y
and ¢ = Y, AP, are obvious. We focus only on the case of ¢ = E[yp U, x]; the
other cases when ¢ is of the form EX .y, EY, 4, or EG, can be treated similarly.
Suppose that M,d’ = E[yY U, x]. Then, by the definition of £P-CTL semantics,
there exists a trajectory tr’' = (d',a’), such that M,tr' =y U,y anda’' =
(c1,d'1), (cz,d'y), ... As it was noticed above, there is also a corresponding
trajectory tr" = (d",a") inM, where a”" = (c¢1,d"1),(cy,d";), ..., such that
d'; ~d"; holds for every i,i = 1. Then, by induction hypotheses, M,d’; £ ¢
M,d"; =ypand M,d'; E y © M,d"; = y hold for every i,i = 1.

Since M, tr' = Y Uy, there exists i such that

1. ¢cpoc; €ELand M, tr'|! & x;

2. forallj <iifcc,..c; €Lthen M, tr'|) & .

313

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

However, taking into account the fact that iy and y are state formulas, we must
recognize that M,tr"|' & y and that M,tr"|/ &y every time when M, tr')/ & .
Thus, we arrive at the conclusion that M,tr" =y U, x and, hence, M,d" E
E[y U x] m

Each metastate § = (qo, 91, ---,qx) Of the checking machine A represents an

equivalence class Dy which includes all states d = (g, h) € D such that ¢ = q, and

8Pj(initpj, h) = q; for all j,1 < j < k. By using Proposition 3, we can correctly

introduce a new satisfiability relation =, on the metastates of the checking machine:
a'(f"’ & forsomed €Dy M,dFE¢.

Not only the states of the transition system M = TS(I1,S) correspond to the
metastates of the checking machine M, but also there is a relationship between the
trajectories in M and the traces in M (they can be quite naturally called
metatrajectories). More formally, every trajectory tr = (do,¢) in M with
a = (¢q,dy)(cz,dy) ..., corresponds to a metatrajectory tr = (Go, &), Where
@ = (c1,41)(c2,q>) ... is such that for alli > 0: d; € Dai. It is easy to see that

every metatrajectory &r = (g,, @) corresponds to the only trajectory tr = (d,,),
which originates in a given state do from Dy, .

The well-known labeling algorithm for conventional CTL and ordinary Kripke
structures can be now adapted in such a way as to cope with model checking
problem for LP-CTL. The algorithm operates as follows. For every metastate § € Q
of the checking machine M it computes a set label(q) of all subformulae of ¢
satisfied in g. More formally, let Sub(¢) be the minimal set of LP-CTL formulae
such that:

1. ¢ € Sub(p);

if =) € Sub(¢p) then Y € Sub(¢p);

if Y Ay € Sub(o) theny, y € Sub(p);

if EX.) € Sub(¢p), EY.) € Sub(p) or EG,Yp € Sub(¢p) theny € Sub(¢);
if E[yy U, x] € Sub(¢) theny, y € Sub(¢p).

The algorithm builds incrementally the sets label(q) of all those i € Sub(¢) for
which @ &, ¥ holds. At the first step every label(q) contains only basic predicates,
i. e. label(q) € Sub(p)n P. Then, at step i the algorithm processes those
subformulae 1 whose nesting depth is i — 1. Every time when the algorithm adds a
subformula v to label(§) it thus detects that G =, .

All we need now is to describe how the algorithm should process formulae of 7
types: basic predicate P, =, Y1 AP,, EX P, EY Y, EG;p and E[Y U, x].

o A basic predicate P; is added to label(gq) iff § = (q0,91, -, q;, -, qx) and

Gi €Fp, 121,

o A subformula —p is added to label(§) iff & label(§);

o A subformula ¥, A, is added to label(§) iff both 4,1, € label(q);
314

o bk DN

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

o A subformula EX_ i is added to label(q) iff there exists a transition
q 2 G’ such that y € label(§");

o A subformula EY.y is added to label(q) iff there exists a transition
il 2 g’ such that i € label(q") or a transition § = g' such that ¢' # c;

. To handle a subformula E[y U, y] we construct a directed labeled graph
(DLG) I'y (MM, L) as follows. Let A; = (Q;, C, init;, §;, F,) be a minimal DFA
that recognizes the language L. Then the nodes of Iy(M,L) are all
pairs (g, qL)EQxQL This DLG has an arc of the form (§',q.")
C

2 @', q,")iff g it " is a transition of M and 6,(q,’,c) = q,".

We then delete all those nodes (q,q,) of I';y(M, L) for which the relations
Y & label(q), x € label(§) and q; € F,, hold simultaneously and discard all
arcs incoming to or outcoming from such nodes. A DLG thus reduced is
denoted by I}, (M, L).

A subformula E[y U, x] is added to the set label(§) iff I};(M, L) includes the
node (g, init;) and there exists a directed path in this graph from this node to
some node (§',q,") such that y € label(§") and q,' € F,,.

o For a subformula EG, 1y we construct a DLG Iz (M, L) in the same fashion
and delete all the nodes (§,q;) for which the relations i & label(§) and
q, € F, hold simultaneously. As the result we obtain the reduced DLG
I'.G (M,L).
The subformula EG, vy is added to the set label(q) iff [; (M, L) includes the
node (g, init;) and there exists a directed path in this graph from this node to
some nontrivial strongly connected component (SCC), that is, to a subgraph,
every node of which is reachable from any other node by some non-empty
path.

As soon as all the subformulae from Sub(¢) (including the formula ¢) are
processed we obtain the result of the model checking as

nH=¢p < @E€label(Qin)-

The correctness of this assertion is based on the following relationship: § = @ <
@ € label(q). It can be proved by applying induction on the nesting depth of
formulae with the help of Proposition 3. We also need Propositions 4 and 5 to
justify the induction step for formulae of the form E[y U; x] and EG .

Suppose, that for every metastate g € Q it is true that § =, Y < ¥ € label(q)
andq Eo x © x € label(q). This statement is used as an inductive hypothesis.

Proposition 4. Let G, € Q be an arbitrary metastate in M. Then G, Eq E[¢ U, x]
iff some node (§',q,") in DLGI'y(M,L), such that §' =q ¥ andq,’' € Fy, is
reachable from the node (q,, init;) by a directed path.

315

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

Proposition 5. Let §, € Q be an arbitrary metastate in M . Then § £q EG¥ iff
some nontrivial strongly connected component is reachable from the node
(@, init;) in DLG I'y;(M, L) by a directed path.

The proofs of these Propositions are straightforward adaptations of the correctness
proof of the tabular model checking algorithm for CTL which is discussed in much
details in [8]. However, for completeness of the exposition we give here a proof of
Proposition 5. The proof of Proposition 4 follows the similar line of reasoning.

Proof of Proposition 5 (Sketch).
(=) Suppose, thatg, o EG,p. Consider an arbitrary state do € Dg,. Then, by
definition of =4 and by Proposition 3, it is true that M, d, = EG;. This means that
there is a trajectory tr = (dy,), where a@ = (¢q,d4),(c3,d5), ..., such
that M, tr = G . By the semantics of LP-CTL*, M, d; = holds for every i
such that ¢4 ¢; ...c; € L.
Consider now the corresponding metatrajectory &r = (o, @) in the checking
machine, where @ = (¢4, §41), (¢2,G3), ..., and let
c1,h c2,h c3,h

w = (o inity) —— (@1 q1) — @2 qQ21) — -,
be the respective path in the DLG Tg(M,L) which originates in the node
(g, init;). Relying on Proposition 3 and taking into account the fact that q;;, =
6, (init;, c1c, ...c;) for every i,i = 0, we may conclude that g; =, ¥ holds for
every i such that q;; € F. By induction hypothesis, §; £q ¥ is equivalent toy €
label(q;). Therefore, by definition of DLG Tz (M, L) the path m is the infinite path
which is entirely contained in the Iz (M, L). Due to the finiteness of I'z(M, L), this
path may be represented as a concatenation T = m,1,, where 14 is a finite path,
and m, is an infinite path passing through each of its nodes infinitely often. It is
clear that the set V(m,) of all nodes of m, is included in some strongly connected
component. Thus, a nontrivial strongly connected component is reachable from the
node (g, init;) in DLG I'g(M, L).
(<) Suppose, that a nontrivial strongly connected component is reachable from the
node (G, init,) in DLG I'z(M, L). Then there exists an infinite path

SO V0 RN chy c3,h3
m = (o, init)) — (G1,q11) — (@2, 921) — .-,

in T;(M, L) from the node (g, init;) Consider now the sequence of the first
components g; of all nodes (q;, q;;),i = 0, occurred in this path. By the definition
of the DLG I'g(M, L),

1. this sequence is a metatrajectory £r in the checking machine M,

2. Y € label(g;) holds for every node (§;, q;,) such that q;;, € F;.

By the induction hypothesis, the latter implies §; =, ¥ for every metastate g; in this
trajectory such thatc,c, ...c; € L. Consider an arbitrary state d, € Dz, and a

316

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

trajectory tr = (dy, @) inM, where a = (¢, d,), (c3, d5), ..., which corresponds
to fr. By definition of =, and Proposition 3, M, d; & i holds for every i such that
€1Cy ...c; € L. Then, according to the semantics of LP-CTL*, M,tr = G, and,
hence, M, d, = EG, . Thus, by referring once again to definition of i=,, we arrive
at the conclusion that g, =, EG Y. m

Now we estimate the complexity of the model checking algorithm for £P-CTL
described above. By the size of a transducer I1 = (Q,C, A, qinir, T) We will mean
the sum || IT l|I= |Q| + |T|. The size of a formula ¢ is defined as follows. Suppose
that basic predicates {P;}*, occurred in ¢ are recognized by minimal DFAs
{Ap, = Qp,, A, initpi,6pi,Fpl.)}§‘:1. Suppose also that environment patterns
{L;}i-1 used in P are recognized by minimal
DFAs{A;, = (QuA, inity, 8;, F,)}i-1. Then the size of ¢ is the sum|l @ I =
|Sub(@)| + 2y | @p,] + Tzt 1 Qu,

As it can be seen from the description of our model checking algorithm, the size of
auxiliary graphs Ij;(M, L) and I (M, L) used in this algorithm does not exceed the

value || IT |- (]‘[|Qpl.|> -max(|Q.|:1 < i <s). These graphs are processed in no

k
i=0

more than |Sub(¢)| steps. So, the total time complexity of our model checking

algorithm does not exceed the value || IT || |Sub(¢@)| (H |QP.-|> -max(|Qy|:1 <
k
i=0
i < s)whichis o(ll IT ||- 2'¢").

Because of these considerations, we get the following

Theorem 1. Model checking of a finite state transducer IT operating over a free
monoid against a formula ¢ € LP-CTL can be performed in time O(|l IT ||- 2"¢").

When a more general case of model checking problem of FSTs against LP-CTL*
formulae is concerned we can rely on the well-known combining approach which is
based on the interleaving application of model checking algorithms for CTL
and LTL. The details can be found in [8]. The similar procedure for LP-CTL* can
be obtained in the same fashion by means of LP-CTL model checking algorithm
described above and LP-LTL model checking algorithm developed in . Since this
approach does not take into account any specific features of LP-CTL" formulae, we
will not give a complete description of it.

5. LP-LTL* and ordinary Kripke structures

In this section, we consider the model checking problem for two subfamilies of
LP-CTL"* whose semantics can be defined on ordinary Kripke structures.

317

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

Recall, that a Kripke structure over a finite set AP of atomic propositions is a
quadruple M = (Q, q;nit» R, p), Where @ is a finite set of states which includes an
initial state q;,;;, R S Q X Q is a transition relation and p: Q — 24% is a labeling
function which for each state q gives a matching set p(q) < AP of all atomic
propositions that are evaluated to true in this state. As usual, the size of M is the
sum || M ll=|Q]| + |R]|. Below we present two modifications of LP-CTL" that are
well suited for model checking of Kripke structures.

Given a Kripke structure M = (Q, ginir, R, L), consider a set of LP-CTL" formulae
where Lis a family of regular languages over one-letter alphabet {c} and P = AP
(we denote this formulae by LP-1-CTL*) and a transition system M, =
(Q,{c}, qiniv» Rc, L) where (q',c,q") € R, iff (q',q") € R. Then for q € Q the
relation q &= P holds iff P € p(q). The semantics of more complex formulae is
defined exactly as in Section 3.

Some LP-1-CTL* formulae have an ability to keep track of the number of steps of
the run. For example, an £LP-1-LTL formula AG,, ¢, where L = {c?"} is a regular
language which contains all 1-letter words of even length, expresses the assertion
that ¢ holds at every even step of a run. By using the techniques of Ehrenfeucht-
Fraisse games for Temporal Logics developed and studied in [11] one can prove
that this property cannot be specified by means of usual LTL. This certifies that LP-
1-CTL" is more expressive than CTL* and justifies its use as a new specification
language for finite state transducers and Kripke structures.

Observe, that given a set AP of all atomic propositions used in formulae we can use
the M, directly as a checking machine M for the algorithm described in Section 4.
Suppose that formula ¢ refers to 1-letter regular languages L4, L, ...,Lg as the
parameters of temporal operators, and every language L;, 1 < i < s, is recognized
by a DFA with a set of states @,,. Then the size of the graphs used in this algorithm
does not exceed the value || M |I- max(]Q,|: 1 < i <s) whichisO(ll M II-Il @ I),
where || @ ll= [Sub(@)| + Xi-o | Q|-

Another modification of the Kripke structure M allows one to encode more detailed
information of the computation flow. Let £ = 24P, For each state q in M there
exists a letter o, 4, € Z corresponding to the label p(q) assigned to this state.

Let Myp = (Q U {err}, qinir, Rap, Pap) be a transition system for M, where for
every q € Q the following equalities hold: p4p(q) = p(q), pap(err) = {err}
and R,p S Q X 24P x Q@ isa minimal transition relation such that:

o for each transition (q’,q") of the Kripke structure M there exists a fair
transition (q',0,(qn,q") and erroneous transitions (q',o,err) for each
0 F Op(qn);

o (err,a,err) € Ryp holds for each o € X and (err, g, q) € Ryp holds for each
q + err.

Then consider a specification language £P-n-CTL* which is a set of all such
formulae where £ is a family of regular languages over X and P = AP. To model

318

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

check a transition system M,, against these formulae one needs to process only the
states in Q and only the fair transitions. To do so, we replace all state formulae of
type A@ withA(G —err — ¢) and all state formulae of type E¢ with
E(G = err A ¢). The transition system My, thus obtained may as well be used as a
checking machine for the model checking algorithm described in Section 4.
Thereby, the following theorem holds.

Theorem 2.

1. There exists an algorithm for model checking of a Kripke structure M against
a formula ¢ € LP-1-CTL with time complexity O(l M II-Il ¢ 11?).

2. There exists an algorithm for model checking of a Kripke structure M against
aformula ¢ € LP-n-CTL with time complexity O(Il M [I-l ¢ [12- 214P1).

As it can be seen from this theorem, the exponential complexity of model checking
procedure described in Section 4 is due to the language-theoretic nature of basic
predicates used in LP-CTL".

6. Related papers and conclusion

Actually, the idea of providing parameterization of temporal operators is not new. In
[27] right-linear grammar patterns were offered to define new temporal operators.
The same kind of temporal patterns but specified by means of finite state automata
were introduced in [18, 24]. For these extensions it was proved that they have the
same expressiveness as S1S and that satisfiability checking problem in these logics
is PSPACE-complete. We did not pursue a goal of merely expanding the expressive
possibilities of CTL*; our aim was to make CTL* more adequate for describing the
behaviour of reactive systems. Almost the same kind of parametrization is used in
Dynamic LTL. However, our extension of CTL* differs from that which was
developed in [14], since in our logic basic predicates are also parameterized.

The LP-CTL* formulae allows one to specify and verify the behaviour of finite
state transducers that operate over semigroups as well as classical Kripke structures.
Moreover, when Kripke structures are concerned LP-CTL* has more expressive
power than conventional temporal logics. But the place of LP-CTL" in the
expressive hierarchy of specification languages, such as S1S, PDL or u-calculus,
has not yet been established and remains a matter for our further research.

The results of this paper combined with the results of [17] provide positive solution
to model checking for transducers over free semigroups. Free semigroups is the
most simple algebraic structure which can be used for interpretation of basic actions
performed by transducers when they are regarded as formal models of sequential
reactive systems. Next, we are going to find out whether model checking algorithms
could be built for transducers operating over more specific semigroups. Some
preliminary results showed that this is not an easy problem. In [12] we proved that it
is undecidable for the case of Abelian groups and free commutative semigroups.

319

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

It is also interesting how much the complexity of model checking algorithms for
LP-CTL" depends on languages that are used as parameters of temporal operators.
We assume that model checking problem becomes undecidable when context-free
languages are allowed for this purpose. The complexity issues of model checking
for regular variant of LP-CTL" also need further research. We assume that even for
regular LP-CTL this problem is PSPACE-complete.

As for practical application of the results obtained, the most important issue is that
of adapting the existing means of working with finite automata to widely known
model checking tools (like SPIN, v-SMV, etc.) in order to be able to effectively
implement the proposed model checking algorithms for LP-CTL".

Acknowledgments

The authors of the article thank the anonymous reviewers for their valuable
comments and advice on improving the article. This work was supported by the
Russian Foundation for Basic Research, Grant N 18-01-00854.

References

[1]. Alur R., Cerny P. Streaming transducers for algorithmic verification of single-pass list-
processing programs. In Proceedings of 38-th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, 2011, pp. 599-610

[2]. Alur R., Moarref S., and Topcu U. Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. In Proceedings of 21-st International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, 2015, pp. 501-516.

[3]. Baier C., Katoen J. Principles of Model Checking, 2008, MIT Press.

[4]. Blattner M., Head T. The decidability of equivalence for deterministic finite transducers.
Journal of Computer and System Sciences, 1979, vol. 1, pp. 45-49.

[5]. Blattner M., T. Head T. Single-valued a-transducers. Journal of Computer and System
Sciences, vol. 15, 1977, pp. 310-327.

[6]. Culik K, Karhumaki J. The equivalence of finite-valued transducers (on HDTOL
languages) is decidable. Theoretical Computer Science, 1986, vol. 47, pp. 71-84.

[7]. Bouajjani A., Jonsson B., Nilsson M., Touili T. Regular Model Checking. Proceedings
of 12-th International Conference on Computer Aided Verification, 2000, p. 403-418.

[8]. Clarke (Jr.) E. M., Grumberg O., Peled D. A. Model Checking. MIT Press, 1999.

[9]. Diekert V., Rozenberg G. eds. The Book of Traces, 1995, World Scientific, Singapore.

[10]. Emerson E.A., Halpern J.Y. Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences, vol. 30, N 1, 1985,
pp. 1-24.

[11]. Etessami K., WilkeT. An Until Hierarchy and Other Applications of and Ehrenfeucht-
Fraisse Game for Temporal Logic. Information and Computation, vol. 160, 2000, pp.
88-108.

[12]. Gnatenko A.R., Zakharov V. A. On the complexity of verification of finite state
machines over commutative semigroups. In Proceedings of the 18-th International
Conference "Problems of Theoretical Cybernetics", 2017, pp. 68-70 (in Russian).

320

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

[13]

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].
[27].

[28].

[29].

. Griffiths T. The unsolvability of the equivalence problem for free nondeterministic
generalized machines. Journal of the ACM, vol. 15, 1968, pp. 409-413.

HenriksenJ. G., Thiagarajan P.S. Dynamic linear time temporal logic. Annals of Pure
and Applied Logic, vol. 96, 1999, pp.187-207.

Hu Q., D'Antoni L. Automatic Program Inversion using Symbolic Transducers. In
Proceedings of the 38-th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2017, pp. 376-389.

Ibarra O. The unsolvability of the equivalence problem for Efree NGSM’s with unary
input (output) alphabet and applications. SIAM Journal on Computing, vol. 4, 1978, pp.
524-532.

Kozlova D. G., Zakharov V. A. On the model checking of sequential reactive systems.
Proceedings of the25-th International Workshop on Concurrency, Specification and
Programming (CS&P 2016), CEUR Workshop Proceedings, vol. 1698, 2016, pp. 233-
244,

Kupferman O., Piterman N., Vardi M.Y. Extended Temporal Logic Revisited. In
Proceedings of 12-th International Conference on Concurrency Theory, 2001, pp. 519-
535.

Schutzenberger M. P. Sur les relations rationnelles. In Proceedings of Conference on
Automata Theory and Formal Languages, 1975, pp. 209-213.

Sakarovitch J., de Souza R. On the decomposition of k-valued rational relations. In
Proceedings of 25-th International Symposium on Theoretical Aspects of Computer
Science, 2008, pp. 621-632.

Sakarovitch J., de Souza R. On the decidability of bounded valuedness for transducers.
In Proceedings of the 33-rd International Symposium on Mathematical Foundations of
Computer Science, 2008, pp. 588-600.

De Souza R. On the decidability of the equivalence for k-valued transducers. In
Proceedings of 12-th International Conference on Developments in Language Theory,
2008, pp. 252-263.

Thakkar J., Kanade A., Alur R. A transducer-based algorithmic verification of
retransmission protocols over noisy channels. In Proceedings of IFIP Joint International
Conference on Formal Techniques for Distributed Systems, 2013, pp. 209-224.

Vardi M.Y., Wolper P. Yet Another Process Logic. Logic of Programs, 1983, pp. 501-
512.

Veanes M., Hooimeijer P., Livshits B. et al. Symbolic finite state transducers:
algorithms and applications. In Proceedings of the 39-th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, ACM SIGPLAN Notices, vol.
147, 2012, pp. 137-150.

Weber A. Decomposing finite-valued transducers and deciding their equivalence. SIAM
Journal on Computing. vol. 22, 1993, pp. 175-202.

Wolper P. Temporal Logic Can Be More Expressive. Information and Control, vol. 56,
N 1/2, 1983, pp. 72-99.

Wolper P., Boigelot B. Verifying systems with infinite but regular state spaces. In
Proceedings of the 10-th Int. Conf. on Computer Aided Verification (CAV-1998), 1998,
pp. 88-97.

Zakharov V.A. Equivalence checking problem for finite state transducers over
semigroups. In Proceedings of the~6-th International Conference on Algebraic
Informatics (CAI-2015), 2015, pp. 208-221.

321

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

O Bepudumkaumm KOHe4YHbIX aBTOMaTOB-Npeob6pasoBaTenemn
Hap nonyrpynnamm

! A.P. I'namenxo<gnatenko.cmc@gmail.com>
2B A. 3axapos<zakh@cs.msu.su>
! Mockoscruii eocyoapcmeennulil ynusepcumem um. M. B. Jlomonocosa,
119991, Poccuiickas @eoepayus, Mocksa, Jlenunckue copwi, 0. 1
2Hauu0naﬂbnbzd uccnedogamenvckull ynugepcumem Bvicuias wikona 3koHoMuKu,
101000, Poccuiickas ®@edepayus, Mocxaa, yn. Macnuykas, 0. 20

AuHoraumsi. IlocnenoBarenbHble pEardpyloIlde CHCTEMbBI — 3TO [IPOTPaMMBbI,
KOTOpBIC B3aUMOJECIHCTBYIOT C OKpY)XCHHEM, Iojdydas OT HEro CHUTHajbl WIN 3alpockl,
U pearnpyloT Ha OSTH 3alpoChl, IPOBOJIS OINEpalui C JaHHBIMH. [10J0OHBIE CHCTEMBI
MOTYT CIYXHTh MOJIENbIO MJIsI MHOTHUX IIPOrpaMM: JpailBEpoOB, CHCTEM pPEAIBLHOTO
BPEMEHH, CETeBBIX INPOTOKOJIOB M 7Ap. B craTbe HcciemyroTcst — 3ajada
Bepu(HUKAIMK HPOrpaMM TaKoro BHAa. B KkauectBe (OpMalbHBIX Mojeieil it
pearupylommx CHCTEM Mbl HCHOJIb3yeM KOHEYHbIC aBTOMAThI-IIPeoOpa3oBaTely,
paboTarorue HaJ HOJIYTPYIIIAMH. s OIMCaHUs TIOBEJICHUS
aBTOMAToB-TIpeoOpa3zoBaTeneil BBen€H HOBBIA s3bIk crnenudukammii LP-CTL*. B ero
OCHOBY TIOJNIO)KeHa TemmopanbHas yoruka CTL*. DroT s3bIk crenudukanuii uMeeT
JBE XapaKkTepHble OCOOCHHOCTH: 1) KaXIblH TEMIOPaJbHBI omeparop CHaOXKEH
peryJisipHBIM ~ BBIpOKEHMEM HaJ BXOJHBIM anaBUTOM aBTOMara, W 2) KaxIoe
aTOMapHOEe BBICKA3bIBAHHME 33/1a€TCS PETYJSIPHBIM BBIPAKECHHEM HAJ BBIXOAHBIM

anpaBUTOM aBTOMara-Tpeodpa3zoBaTes. B JTAaHHOM pabote MpecTaBIeH
TaOJMMYHBIA aNTOpUTM TPOBepkH BeIMoMHUMOCTH (opmyn LP-CTL* Ha wmogensax
KOHEYHBIX aBTOMAaTOB-TIpeoOpazoBareei, paboTaromux Hajg CcBOOOTHBIMH

nosyrpynnaMu. JlokazaHa KOPPEKTHOCTb MPEUIOKEHHOrO0 aJropuTMa U IOJIyYeHa
OLIEHKAa ero CJO0XHOCTH. Kpome TOro, paccMOTpeH CcHEUHalbHBIH (parMeHT s3bIKa
LP-CTL*, conmepxammii B KauecTBe MapaMeTPOB TEMIIOPAIBHBIX OMEPaTOPOB
TOJIBKO PETYJIIPHBIC BBIPQKEHHUS HaJ OJHOOYKBEHHBbIM andaBuToM. I[lokaszaHo, dYTO
3TOT (parMeHTa MPUMEHUM s crierudukamii 00bIIHEIX Mozenel Kpuike, u mpu 3TOM ero
BBIPa3HTENIbHBIC BO3MOKHOCTH MPEBOCXOAT 00bIuHyt0 Jtoruky CTL*.

KiioueBble ciioBa: pearupyoolias CHCTEMa, aBTOMAaT-peoOpa3oBatesib, BepHUKAIHS,
MpOBEepKa Ha MOJIEJIH, TEMIIOpaJIbHAas JIOTUKA, KOHEYHbIH aBTOMAT, PETYISAPHBIMA A3bIK.

DOI: 10.15514/ISPRAS-2018-30(3)-21

Jas uutupoBanus: ['Harenko A.P., 3axapos B.A. O Bepubukanuu KOHEYHBIX aBTOMATOB-
npeobpa3oBareneit Haj nomyrpynmamu. Tpyasr MCIT PAH, Tom 30, Bem. 3, 2018 r., c1p.
303-324 (na anrmuiickoM si3bike). DOI: 10.15514/ISPRAS-2018-30(3)-21

Cnucok nutepaTtypbl

[1]. Alur R., Cerny P. Streaming transducers for algorithmic verification of single-pass list-
processing programs. In Proceedings of 38-th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, 2011, pp. 599-610

322

T'narenko A.P., 3axapos B.A. O Bepudukain KOHEUHBIX aBTOMATOB-TIpeoOpa3oBatesieil Haa nomyrpynmnamu. 7pyost
HUCII PAH, tom 30, Boim. 3, 2018 r., ctp. 303-324

2.
o
[5].
[6].
[71.
[8].

[o].
[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

Alur R., Moarref S., and Topcu U. Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. In Proceedings of 21-st International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, 2015, pp. 501-516.
Baier C., Katoen J. Principles of Model Checking, 2008, MIT Press.

Blattner M., Head T. The decidability of equivalence for deterministic finite transducers.
Journal of Computer and System Sciences, 1979, vol. 1, pp. 45-49.

Blattner M., T. Head T. Single-valued a-transducers. Journal of Computer and System
Sciences, vol. 15, 1977, pp. 310-327.

Culik K, Karhumaki J. The equivalence of finite-valued transducers (on HDTOL
languages) is decidable. Theoretical Computer Science, 1986, vol. 47, pp. 71-84.
Bouajjani A., Jonsson B., Nilsson M., Touili T. Regular Model Checking. Proceedings
of 12-th International Conference on Computer Aided Verification, 2000, p. 403-418.
Clarke (Jr.) E. M., Grumberg O., Peled D. A. Model Checking. MIT Press, 1999.

Diekert V., Rozenberg G. eds. The Book of Traces, 1995, World Scientific, Singapore.
Emerson E.A., Halpern J.Y. Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences, vol. 30, N 1, 1985,
pp. 1-24.

Etessami K., WilkeT. An Until Hierarchy and Other Applications of and Ehrenfeucht-
Fraisse Game for Temporal Logic. Information and Computation, vol. 160, 2000, pp.
88-108.

T'matenko A.P., 3axapoB B.A. O cnoxxHOCTH BepH(UKAIMd KOHEYHBIX ABTOMATOB-
npeoOpa3zoBareneii Hal KOMMYTaTUBHBIMH moxyrpynmamu. Marepuansr XVIII
MexayHapoaHoi koH(epeHmn «[Ipobiemsr Teopermyeckoit kubepHeTnkm»' (Ilensa,
20-24 urons, 2017), ctp. 68-70.

Griffiths T. The unsolvability of the equivalence problem for free nondeterministic
generalized machines. Journal of the ACM, vol. 15, 1968, pp. 409-413.

HenriksenJ. G., Thiagarajan P.S. Dynamic linear time temporal logic. Annals of Pure
and Applied Logic, vol. 96, 1999, pp.187-207.

Hu Q., D'Antoni L. Automatic Program Inversion using Symbolic Transducers. In
Proceedings of the 38-th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2017, pp. 376-389.

Ibarra O. The unsolvability of the equivalence problem for Efree NGSM’s with unary
input (output) alphabet and applications. SIAM Journal on Computing, vol. 4, 1978, pp.
524-532.

Kozlova D. G., Zakharov V. A. On the model checking of sequential reactive systems.
Proceedings of the25-th International Workshop on Concurrency, Specification and
Programming (CS&P 2016), CEUR Workshop Proceedings, vol. 1698, 2016, pp. 233-
244,

Kupferman O., Piterman N., Vardi M.Y. Extended Temporal Logic Revisited. In
Proceedings of 12-th International Conference on Concurrency Theory, 2001, pp. 519-
535.

Schutzenberger M. P. Sur les relations rationnelles. In Proceedings of Conference on
Automata Theory and Formal Languages, 1975, pp. 209-213.

Sakarovitch J., de Souza R. On the decomposition of k-valued rational relations. In
Proceedings of 25-th International Symposium on Theoretical Aspects of Computer
Science, 2008, pp. 621-632.

323

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

[21].

[22].

[23].

[24].

[25].

[26].
[27].

[28].

[29].

324

Sakarovitch J., de Souza R. On the decidability of bounded valuedness for transducers.
In Proceedings of the 33-rd International Symposium on Mathematical Foundations of
Computer Science, 2008, pp. 588-600.

De Souza R. On the decidability of the equivalence for k-valued transducers. In
Proceedings of 12-th International Conference on Developments in Language Theory,
2008, pp. 252-263.

Thakkar J., Kanade A., Alur R. A transducer-based algorithmic verification of
retransmission protocols over noisy channels. In Proceedings of IFIP Joint International
Conference on Formal Techniques for Distributed Systems, 2013, pp. 209-224.

Vardi M.Y., Wolper P. Yet Another Process Logic. Logic of Programs, 1983, pp. 501-
512.

Veanes M., Hooimeijer P., Livshits B. et al. Symbolic finite state transducers:
algorithms and applications. In Proceedings of the 39-th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, ACM SIGPLAN Notices, vol.
147, 2012, pp. 137-150.

Weber A. Decomposing finite-valued transducers and deciding their equivalence. SIAM
Journal on Computing. vol. 22, 1993, pp. 175-202.

Wolper P. Temporal Logic Can Be More Expressive. Information and Control, vol. 56,
N 1/2, 1983, pp. 72-99.

Wolper P., Boigelot B. Verifying systems with infinite but regular state spaces. In
Proceedings of the 10-th Int. Conf. on Computer Aided Verification (CAV-1998), 1998,
pp. 88-97.

Zakharov V.A. Equivalence checking problem for finite state transducers over
semigroups. In Proceedings of the~6-th International Conference on Algebraic
Informatics (CAI-2015), 2015, pp. 208-221.

On the verification of strictly deterministic
behavior of Timed Finite State Machines

E.M. Vinarskii <vinevg2015@gmail.com>
V.A. Zakharov <zakh@cs.msu.su>
Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. Finite State Machines (FSMs) are widely used as formal models for solving
numerous tasks in software engineering, VLSI design, development of telecommunication
systems, etc. To describe the behavior of a real-time system one could supply FSM model
with clocks — a continuous time parameters with real values. In a Timed FSM (TFSM)
inputs and outputs have timestamps, and each transition is equipped with a timed guard and
an output delay to indicate time interval when the transition is active and how much time
does it take to produce an output. A variety of algorithms for equivalence checking,
minimization and test generation were developed for TFSMs in many papers. A
distinguishing feature of TFSMs studied in these papers is that the order in which output
letters occur in an output timed word does not depend on their timestamps. We think that
such behavior of a TFSM is not realistic from the point of view of an outside observer. In this
paper we consider a more advanced and adequate TFSM functioning; in our model the order
in which outputs become visible to an outsider is determined not only by the order of inputs,
but also by de lays required for their processing. When the same sequence of transitions is
performed by a TFSM modified in a such way, the same outputs may follow in different
order depending on the time when corresponding inputs become available to the machine. A
TFSM s called strictly deterministic if every input timed word activates no more than one
sequence of transitions (trace) and for any input timed word which activates this trace the
letters in the output words always follows in the same order (but, maybe, with different
timestamps). We studied the problem of checking whether a behavior of an improved model
of TFSM s strictly deterministic. To this end we showed how to verify whether an arbitrary
given trace in a TFSM is steady, i.e. preserves the same order of output letters for every input
timed word which activates this trace. Further, having the criterion of trace steadiness, we
developed an exhaustive algorithm for checking the property of strict determinacy of TFSMs.
Exhaustive search in this case can hardly be avoided: we proved that determinacy checking
problem for our model of TFSM is co-NP-hard.

Keywords: Timed Finite State Machines; strictly deterministic behavior
DOI: 10.15514/1ISPRAS-2018-30(3)-22

For citation: Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic
behaviour of Timed Finite State Machines. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3,
2018, pp. 325-340. DOI: 10.15514/ISPRAS-2018-30(3)-22

325

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

1. Introduction

Finite State Machines (FSMs) are widely used as formal models for analysis and
synthesis of information processing systems in software engineering, VLSI design,
telecommunication, etc. The most attractive feature of this model of computation is
its simplicity — many important synthesis and analysis problems (equivalence
checking, minimization, test derivation, etc.) for classical FSMs can be solved in
time which is almost linear or quadratic of the size of an FSM under consideration.
The concept of FSM is rather flexible. Since in many applications time aspects such
as durations, delays, timeouts are very important, FSMs can be augmented with
some additional features to describe the dependence of the behavior of a system on
events occurring in real time. One of the most advanced timed extension of FSMs is
the concept of Timed Automata which was developed and studied in [1]. Timed
Automata are supplied with clocks (timers) for indicating real time moments,
measuring durations of events, providing timeout effects. Transitions in such
automata depends not only on the incoming of the outside messages and signals but
also on the values of clocks. Further research showed that this model of
computation is very expressive and captures many important features of real-time
systems behavior. On the other side, Timed Automata in the full scope of their
computing power are very hard for analysis and transformations. The reachability
problem for Timed Automata is decidable [2], and, therefore, this model of
computation is suitable for formal verification of real-time computer systems. But
many other problems such as universality, inclusion, determinability, etc. are
undecidable (see [2], [8]), and this hampers considerably formal analysis of Timed
Automata.

When a Timed Automaton is capable to selectively reset timers, it can display rather
sophisticated behavior which is very difficult for understanding and analysis. In
some cases, such ability is very important; see, e.g. [9]. But a great deal of real-time
programs and devices operate with timers much more simply: as soon as such a
device switches to a new mode of operation (new state), it resets all timers. Timed
Finite State Machines (TFSM) of this kind were studied in [5], [10], [13], [14].
TFSM has the only timer which it resets "automatically” as soon as it moves from
one state to another. On the other hand, TFSMs, in contrast to Timed Automata
introduced in [1], operate like transducers: they receive a sequence of input signals
augmented with their timestamps (input timed word) and output a sequence of
responses also labeled by timestamps (output timed word). The timestamps are real
numbers which indicate the time when an input signal becomes available to a TFSM
or an output response is generated. Transitions of a TFSM are equipped with time
guards to indicate time intervals when transitions are active. Therefore, a reaction of
a TFSM to an input signal depends not only on the signal but also on its timestamp.
Some algorithms for equivalence checking, minimization and test generation were
developed for TFSMs in [6], [5], [13], [14], [15]. It can be recognized that this
model of TFSM combines a sufficient expressive power for modeling a wide class
of real-time information processing systems and a developed algorithmic support.

326

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

As it was noticed above a behavior of a TFSM is characterized by a pair sequences:
an input timed word and a corresponding output timed word. A distinguishing
feature of TFSMs studied in [5], [10], [13], [14], [15] is that an output timed word is
formed of timestamped output letters that follows in the same order as the
corresponding input letters regardless of their timestamps. Meanwhile, suppose that
a user of some file management system gives a command «Save» and immediately
after that a command «Exity». Then if a file to be saved is small then the user will
observe first a response «File is saved» and then a notification «File Management
System is closed». But if a file has a considerable size then it takes a lot of time to
close it. Therefore, it can happen that a user will detect first a notification «File
Management System is closed» and then, some time later, he/she will be surprised
to find an announcement «File is saved». Of course, the user may regard such
behavior of the system enigmatic. But much worse if the order in which these
notifications appear may vary in different sessions of the system. If a File
Management System interacts with other service programs such an interaction will
almost certainly lead to errors. However, if a behavior of TFSMs is defined as in the
papers referred above then such a model can not adequately capture behavioral
defects of real-time systems, similar to the one that was considered in the example.
To avoid this shortcoming of conventional TFSMs and to make their behavior more
“realistic” from the point of view of an outside observer we offer some technical
change to this model. We will assume that an output timed word consists of
timestamped letters, and these letters always follow in ascending order of their
timestamps regardless of an order in which the corresponding input letters entered a
TFSM. In this model it may happen so that an input b follows an input a but a
response to b appears before a response to a is computed. Clearly, the defect with
File Management System discussed above becomes visible to an outside observer
“through” the model of TFSMs thus modified.

At first sight, it may seem that this change only slightly complicates the analysis of
the behavior of such models. But this is a false impression. In the initial model of
TFSM the formation of an output timed word is carried out by local means for each
state of the system. In our model this is a global task since to find the proper
position of a timestamped output letter one should consider the run of TFSM as a
whole. Therefore, even the problem of checking whether a behavior of an improved
model of TFSM is deterministic can not be solved as easy and straightforwardly as
in the case of the initial model of TFSM.

It should be noticed that the property of deterministic behavior is very important in
theory real-time machines. As it was said above, universality, inclusion and
equivalence checking problems are undecidable for Timed Automata in general case
[2] but all these problems have been shown to be decidable for deterministic Timed
Automata [3], [11]. However, testing whether a Timed Automaton is determinable
has been proved undecidable [8]. Understanding and coping with these weaknesses
have attracted lots of research, and classes of timed automata have been exhibited,
that can be effectively determinized [3], [12]. A generic construction that is

327

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

applicable to every Timed Automaton, and which, under certain conditions, yields a
deterministic Timed Automaton, which is language-equivalent to the original timed
automaton, has been developed in [4].

We studied the determinacy checking problem for improved TFSMs and present the
results of our research in this paper. First, we offer a criterion to determine whether
a given sequence of transition (trace) in a TFSM is steady, i.e. for any input timed
word which activates this trace the letters of output words always follow in the same
order (but, maybe, with different timestamps). Then, using this criterion we
developed an exhaustive algorithm for checking the property of strict determinacy
of TFSMs. This property means that every input timed word activates no more than
one trace and all traces in a TFSM are steady. Exhaustive search, although been
time consuming, can hardly be avoided in this case: we proved that determinacy
checking problem for improved version of TFSMs is co-NP-hard by polynomially
reducing to its complement the subset-sum problem [7] which is known to be NP-
complete.

The structure of the paper is as follows. In Section Il we define the basic notions
and introduce an improved concept of TFSM (or, it would be better said, a concept
of TFSM with an improved behavior). In Section Il we present necessary and
sufficient conditions for steadiness of traces in a TFSM and show how to use this
criterion to check whether a given TFSM s strictly deterministic. Section IV
contains the results on the complexity of checking the properties of strictly
deterministic behavior of TFSM. In the Conclusion we briefly outline the
consequences of our results and topics for further research.

2. Formatting overview

Consider two non-empty finite alphabets I and O; the alphabet I is an input alphabet
and the alphabet O is an output alphabet. The letters from I can be regarded as
control signals received by some real-time computing system, whereas the letters
from O may be viewed as responses (actions) generated by the system. A finite
sequence w = iy, iy, ..., I, Of input letters is called an input word, whereas a
sequence z = o4, 04, ..., 0, Of output letters is called an output word. As usual, the
time domain is represented by the set of non-negative reals RY. The set of all
positive real numbers will be denoted by R*. When such a system receives a control
signal (a letter i) its output depends not only on the input signal i but also on

e acurrent internal state of the system,

e atime instance when i becomes available to a system, and

e time required to process the input (output delay).

These aspects of real-time behavior can be formalized with the help of timestamps,
time guards and delays. A timestamp as well as a delay is a real number from R*. A
timestamp indicates a time instance when the system receives an input signal or
generates a response to it. A delay is time the system needs to generate an output
response after receiving an input signal. A time guard is an interval g = (u, v),

328

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

where (€ {([}, Y€ {),]}, and u,v are timestamps such that 0 < u < v. Time
intervals indicate the periods of time when transitions of a system are active for
processing input signals. As usual, the term time sequences is reserved for an
increasing sequence of timestamps. For the sake of simplicity we will deal only with
time guards of the form (u, v]: all the results obtained in this paper can be adapted
with minor changes to arbitrary time guards.

Let w = xq,%5,...x, and T = tq, t,, ..., t, be an input (output) word and a time
sequence, respectively, of the same length. Then a pair (w,t) is called a timed
word. Every pair of corresponding elements x; and t;, 1 < j < n, indicates that an
input signal (or an output response) x; appears at time instance t;. In order to make
this correspondence clearer we will often write timed words as sequences of pairs
(w, 1) = (iy, ty), (i, ty), ..., (i, t,) Whose components are input signals (or output
responses) and their timestamps.

A Finite State Machine (FSM) over the alphabets I and O is a triple M = (S, s;, p)
where S is a finite non-empty set of states, s;, is an initial state, p € (§ X I X 0 X
S) is a transition relation. A transition (s, i, 0, s") means that FSM M when being at
the state s and receiving an input signal i moves to the state s’ and generates the
output response o.

FSMs can not measure time and, therefore, they are unsuitable for modeling the
behavior of real-time systems. The authors of [1] proposed to equip FSMs with
clocks — variables which take non-negative real values. To manipulate with clocks
machines use reset instructions, timed guards and output delays. Time guards
indicate time intervals when transitions are active for processing input signals. An
output delay indicates how much time does it take to process an input. Thus, every
transition in such a machine is a quadruple
(input, timed guard, output, delay). Input signals and output responses are
accompanied by timestamps. If an input is marked by a timestamp which satisfies
the time guard then the transition fires, the machine moves to the next state and
generates the output. This output is marked by a timestamp which is equal to the
timestamp of the input plus the delay. For real-time machines of this kind usual
problems from automata theory (equivalence and containment checking,
minimization, etc.) may be set up and solved. The minimization problem for real-
time machines is very important, since the complexity of many analysis and
synthesis algorithms depend on the size of machines. In [14] this problem was
studied under the so called "slow environment assumption”: next input becomes
available only after an output response to the previous one is generated.

In this paper, we consider a more advanced real-time machine; in this model the
order in which outputs become visible to an outside observer is determined not only
by the order in which inputs follow, but also by the delay required for their
processing. When the same sequence of transitions is performed by such a machine
the same outputs may follow in different order depending on the arriving time of the
corresponding inputs. Our main goal is to develop equivalence checking and

329

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

minimization algorithms for real-time machines of this kind. But, as the results of
Automata Theory show, these problems may have efficient solution only for
deterministic machines. Thus, our first step toward the solution of these problems is
to find a way to check if the behavior of a machine is deterministic.

But there is also another reason to study the problem of checking the determinism of
the behavior of real-time machines. Unlike traditional discrete models of
computation, the behavior of real-time machines depends not only on the control
signals as such, but also on the time of their arrival. However, the latter factor has a
greater degree of uncertainty. In most cases, in practice, it is desirable to reduce the
effect of this uncertainty to a minimum. Therefore, the determinacy checking
problem for real-time machines can be considered as a special version of the
verification problem — checking that the time factor does not have an unforeseen
influence on the behavior of the system.

Formally, by Timed FSM (TFSM) over the alphabets I and O we mean a quadruple
M = (S8, s;,, G, p) where:

. Sisafinite non-empty set of states,

. S isaninitial state.

. Gisasetof timed guards,

. PES(SXIx0xSxGxR")isatransition relation.
A transition (s, i,0,s’, g, d) should be understood as follows. Suppose that TFSM
receives the input letter i marked by a timestamp t when being at the state s. If the

previous letter has been delivered to the TFSM at time ¢ suchthat At =t — ¢ € g
then the TFSM moves to the state s’ and outputs the letter o marked with the
timestamp t = t + d. When algorithmic and complexity issues of TFSM’s analysis
and synthesis are concerned then we assume that time guards and delays are rational
numbers, and the size of a TFSM is the length of a binary string which encodes all
transitions in the TFSM.

A trace tr in TFSM M is a sequence of transitions
(50, a1, b1, 51, (Ug,v1],d1),) (Sn—1, A, by, Sp, (U, v,], dy,), Where every state
sj, 0 <j <m, is an arrival state of one transition and a departure state of the next
transition. We say that the trace tr converts an input timed word

a=(ay,ty), (ayty), .., (a,t,) to the timed output word
ﬁ = (bjl,Tl), (biZ’TZ)’ . (bjn’ Tn), iff
. tj — tj—1 € (u;,v;] holds for all j,1 < i < n (itis assumed that t, = 0);

. B is such a permutation of the sequence y = (by, t; + dq), (by, t, +
dy), ..., (by, t,, + d,,) that the second components of the pairs 7, t,, ..., T,,
constitute a time sequence.

Clearly, for every trace tr and an input timed word « its conversion g (if any) is
determined uniquely; such a conversion will be denoted as conv(tr,). If

330

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

conv(tr, a) is defined then we say that the input timed word « activates the trace
tr. We will say that the output word b; , b;,, ..., b;, is a plain response to the input
timed word « on the trace tr; it will be denoted as resp(tr, a).

1, (0.5, 2]/ (015 4) /\ i, (1.5, 2] /(025 3) /-\ i, (1,1.5]/ (o3, 1)

Fig.1 TFSM M
Consider, for example, a TFSM M depicted in Fig. 1 and a trace
tr = (Sg,i,51,01,(0.5,2],4),(s4,1,5;,0,,(1.5,2],3),

(s2,i,53,03,(1,1.5],1)
in this TESM. Then this trace

1. accepts an input timed word a; = (i, 1), (i, 2.7), (i,4.1) and converts it to the
output timed word B, = (04, 5), (03, 5.1), (04, 5.7); thus, the plain response of
M to @, isw; = 04,03, 0,;

2. accepts an input timed word a, = (i, 1.5), (i, 3.2), (i, 4.3) and converts it to
the output timed word S, = (05, 5.3), (04, 5.5), (0,, 6.2), and the plain
response of M to a, is w, = 03, 04, 0, Which is different from wy;

does not accept an input timed word a5 = (i, 2.3), (i, 4), (i, 6).

3. Steady traces and strictly deterministic TFSMs

As can be seen from the above example, a pair of input timed words that differ only
in timestamps of input signals may activate the same trace in a TFSM, although
plain responses of TFSM to these words are different. Generally speaking, there is
nothing unusual in this: in real-time models not only the input signals, but also the
values of timers influence a run of a model. Nevertheless, in many applications it is
critically important to be sure that the behavior of a real-time system is predictable:
once a system choose a mode of computation (i.e. a trace in TFSM) it will behave in
a similar way (i.e. give the same plain response) in all computations of this mode.
Traditionally, computer systems in which for any input data the processing mode is
uniquely determined by the system are called deterministic. But for our model of
real-time systems this requirement should be clarified and strengthened. For this
purpose, we introduce the notion of steady traces and the property of strict
determinacy of a real-time system.

A trace tr in TFSM M is called steady if resp(tr, a,) = resp(tr,a;) holds for
every pair of input timed words a4 and a, that activate tr. Thus, the order of the
output letters generated by a steady trace does not depend on the small deviations of
the timestamps of the input signals. A TFSM M = (S, s;,, G,p) is called
deterministic iff for every pair of transitions (s,iy,04,s’,(uy,v4],dy) and
(s,i3,05,8", (U, v5],dy) in p either iy #i,, or (uq,v1] N (Uy,vy] = 0. This
requirement means that every timestamped input letter can activate no more than

331

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

one transition from an arbitrary given state s. It also implies that every input timed
word can activate no more than one trace in M. A deterministic TFSM is called
strictly deterministic iff every initial trace in M which starts from the initial state s;,,
is steady. It is easy to see that TFSM, depicted in Fig. 1, is not strictly deterministic.

The Strict Determinacy Checking Problem (in what follows, SDCP) is that of
checking, given a TFSM, if it is strictly deterministic. It is easy to check whether a
TFSM is deterministic by considering one by one all pairs of transitions that emerge
from the same state. But local means alone are not enough to check whether a given
trace in a TFSM is steady. A simple criterion for steadiness of traces is presented as
a Theorem below.

Let a sequence of transitions

(SO' ilﬁ $1,01, (ulr 171), dl)' (N (sn—li in' Sn Ony (un' vn)' dn)
be atrace tr in a TFSM M. Then the following theorem holds.
Theorem 1. A trace tr is steady iff for all pairs of integers k,m such that 1 < k <
m < n at least one of the two inequalities dy — d,, < Xy, u; OF dy — d,, >
Yjmk+1V;j holds.
Proof. (=) Suppose that there exists a pair k,m such that 1 <k <m <n, and a
double inequality holds:

m m
Z uj<d,-d,< Z V.
j=k+1 j=k+1

Then we use two positive numbers r =d; —d,, — Yjlx 4 and & =£ and
consider a behaviour of a TFSM M in the input timed words

k k k m
a' = (i, vq), ""(i"’z v}), (ik“’z Vj+ Upyq +), ...,(im,z v + Z u; + ¢€),
j=1 j=1 j=1 j=k+1
k k+1 m
a’ = (il' 171), vy (ik,z 17]'), (ik+1, Z v]'), ey (im,z 17])
j=1 j=1 j=1

It is easy to see that both words activate tr.
The trace tr converts the timed input word a to the timed output word
conv(tr,a’) = -, (0, T'), ..., (01, T'1), ...
such that T'y, = ¥jC 1 vj + Xty 1 (U + €) + dyy, and T’y = ¥, v; + d. In this
timed output word, the output letter o, follows the output letter o,, since

’ ’ - r(m—k)
T~ T, =dy—dy, Z w+(m-ke=r-——" 250,

j=k+1

n

332

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

Hence, resp(tr,a’) = -+, 0., ..., O, ...
On the other hand, the trace tr converts the timed input word a” to the timed output
word

conv(tr,a”) =, (0;, T"), o, (03, T"), ...
such that T", = 2}‘:1 vj+dgand T",, = Y121 vj + dyy,. In this timed output word
the output letter o,,, follows the output letter oy, since

m
T"m—T"kzdm—dkz Z VIZO
j=k+1
Therefore, resp(tr,a”) = -, 04, ..., 0, ...
Thus, we got evidence that the trace tr is not steady.
(<) Suppose that the trace tr is not steady. Then there exists a pair of timed input
words a' = (iq,t'1), ..., (ip, t'n) and a” = (iy, t"y), ..., (i, t",) such that both
words activate the trace tr and resp(tr,a’) # resp(tr, a"). Consequently, there
exists a pair of output letters o, and oy, such that
conv(tr,a’) =, (0, T's), e, (O, '), -
conv(tr,a”) =, (0, T"), s (01, T"1), v
Such permutation of output letters is possible iff the following inequalities hold
ty+d, =T, <T',,=t,+d,

t+dy =T, >T',=t", +d,,.
But since both input timed words a' and a” activate tr, we have the following
chain of inequalities:

m m
Z u <T' —T' <dpy—dp <T,, — Ty < Z v;.
j=k+1 j=k+1
Thus, if tr is not steady then there exists a pair of integers such that 1 < k <m <
n and

m m
Z u<dg—d,< Z v;
j=k+1 j=k+1
holds.
End proof.

Now, having the criterion for steadiness of traces, we can give a solution to SDCP
for TFSMs. Let TFSM M = (S, s;,,, G, p) be a deterministic TFSM. Denote by u,,in,
the greatest lower bound of all left boundaries used in the time guards of M. In our
model of TFSM u,,;;, > 0. Let d,,,;, and d,;, be the minimum and the maximum

333

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

output delays occurred in the transitions of M. A theorem below gives necessary
and sufficient conditions for the behaviour of M to be strictly deterministic.

Theorem 2. A deterministic TFSM M is strictly deterministic iff all its traces of
dmax dmm
length p, where p = [u—] are steady.

min

Proof. The necessity of conditions is obvious.

We prove the sufficiency of conditions by contradiction. Suppose that all traces of
length less or equal p are steady but TFSM M is not. Then there exists such a trace
tr in M which is not steady. Then, by Theorem 1, this trace is a sequence of
transitions (sj_q,i;, 55, bj, (W;,v5],d;),1 < j <mn, such that for some pair of
integers m and k where 1< k < m < n, two inequalities

m m
Z u<dy—d,< Z v;
j=k+1 j=k+1
hold. It should be noticed, that, by the same Theorem 1, the trace ¢r’ which
includes only the transitions (s;_4, ij, s;, bj, (W;, v;], d;), m < j < k, is not steady as

well. Hence, m — k > p, and we have the following sequence of inequalities
m

dmax_dmin 2 dm_dk 2 Z uj > P * Upin
j=k+1
which contradicts our choice of p = [M].
Umin
End of proof.

As it follows from Theorems 1 and 2, to guarantee that a given TFSM M =
(8,50, G, p) is strictly deterministic it is sufficient to consider all traces
(59, a1, by, 51, (U1, V1], d1), -, (Sn—1, An, by, Sp, (U, V], dy) In M, whose length

n does not exceed the value p = [Ld"”'"] defined in Theorem 2, and for every

Umin

such trace check that one of the inequalities dy —d,, < Yj_,u; or dy —d,, >
Yj=2 vj holds. Thus, we arrive at

Corollary 1. Strict Determinacy Checking Problem for TFSMs is decidable.

4. Strict Determinacy Checking Problem for TFESMs is co-NP-
hard

Clearly, the decision procedure, based on Theorem 2, is time consuming since p
may be exponential of the size of M and the number of traces of length p in TFSM
M is exponential of p. In this section we show that such an exhaustive search can
hardly be avoided because SDCP for improved version of TFSMs is co-NP-hard.

We are aimed to show that the complement of SDCP is NP-hard. To this end we
consider the Subset-Sum Problem (see [7]) which is known to be NP-complete and

334

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

demonstrate that this problem can be reduced in polynomial time to the complement
of SDCP for TFSMs.

The Subset-Sum Problem (SSP) is that of checking, given a set of integers @ and an
integer L, whether there is any subset Q',Q' € Q, such that the sum of all its
elements is equal to L. More formally, the variant of the SSP we are interested in is
defined as follows. Let Q = m4, m,, ..., my be a sequence of positive integers, and
L be also a positive integer. A solution to (Q, L)-instance of SSP is a binary tuple
z = (04,0, ..., 0y) such that Z}"zl o;m; = L. In [7] it was proved that the problem
of checking the existence of a solution to a given (Q, L)-instance of SSP is NP-
complete.

0, (6, €]/(0, &)

0,(1,21/(0, L + D)

0, (6,€l/(0, D) Li{mp | —,mp_ +€]/(1,8)

Fig.2 TFSM M

Now, given a (Q, L)-instance of SSP, we show how to build a deterministic TFSM
My, such that it has an initial trace which is not strictly determined iff this instance
of SSP has a solution. Let D = Z}":l m;, and £ and & be positive rational numbers
such that £ = 0(1/N?) and & = o(g/N?). Consider a TFSM depicted in Fig. 2.
This machine operates over alphabets I =0 =1{0,1}. It has N+ 2 states
50,51, -»Sn Sy+1- The only transition (sg,0,0,s4,(1,2],L + D) leads from the
initial state so to s;. From each state s;,1<j <N, two transitions
(s, 1,1,8544,(m; —g,m; + €],8) and (s5;,0,0,s;,4,(8,£],6) lead to the state
Sj+1- The state sy is different: two transitions (sy, 1,1, sy, (my — &, my + €], D)
and (sy,0,0,sy.1, (8, €], D) lead this state to sy,q.

First, we make some observations.

1) Since all transitions outgoing from the states s;, 1 < j < N, have the same delay

&, every trace from a state s, to a state s,, where 0 < k < £ < N, is strictly
deterministic.

335

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

2) Since & = o(1/N*) and 0 < &£ = 0(1/N?), for every k,1<k <N, and a
binary tuple z = (o), 0441, --., Oy) the inequalities
N
§—-D<O0<NS< Z (0,(m; — &) + (1 — 5))6)
j=k+1
hold. By Theorem 1, this implies that every trace from a state s,, 1 < k < N, to the
state sy, is strictly deterministic.
3) For the same reason the inequalities

k k
D+L—8>ij + ks=2(6;(mi+€)+(1— j)€)
=1 =1

hold for every k,1 < k < N, and a binary tuple z = (a4, 6, ..., 0). By Theorem 1,
this guarantees that every initial trace leading to a state s,,1 < k < N is strictly
deterministic.

As for the initial traces that lead to the state sy, due to our choice of € and &, we
can trust the following chain of reasoning. By definition, a (@, L)-instance of SSP
has a solution z = (a4, 05, ..., o) iff Z}"zl o;m; = L. The latter is possible iff two

following inequalities hold:
N N

Zajmj—£+N6<L<Zaj(mj)+Ns (1)
j=1 j=1
By taking into account the relationships below
N N
D (o)amy =) + (1= 0)8) <) oym; — £+ N8
j=1 j=1
N N
Z o, (m;) + Ne = Z(a,(mj +&)+(1-0)e),
j=1 j=1

we can conclude that (1) holds iff another pair of inequalities hold:
N N
Z(a,-(m,- —e)+(1-0)8) <L< Z(aj(m,- +&)+(1-0)s)
j=1 j=1

But in the context of observations 1) — 3) above, the latter inequalities, as it follows
from Theorem 1, provide the necessary and sufficient conditions that the initial trace
in TFSM My, activated by the input word z = (g4,05,...,0y) is not strictly
deterministic.

Thus, a (Q,L)-instance of SSP has a solution iff TFSM M, is not strictly
deterministic.

The considerations above bring us to

Theorem 3. SDCP for TFSMs is co-NP-hard.

336

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

5. Conclusion

The main contributions of this paper are

1. the development of a modified version of TFSM which, in our opinion,
provides a more adequate model of real-time computing systems;

2. the introduction of the notion of strict deterministic behaviour of TFSM
and setting up the Strict Determinacy Checking Problem (SDCP) for a
modified version of TFSMs;

3. the establishing of an effectively verifiable criterion for the strict
determinacy property of TFSMs;

4. the proving that SDCP for TFSMs is co-NP-hard.

However, some problems concerning strict deterministic behavior of TFSMs still

remain open. They will be topics for our further research.

1. In Sections [Sect3] and [Sect4] it was shown that SDCP for TFSMs is co-NP-
hard and in the worst case it can be solved in double exponential time by
means of a naive exhaustive searching algorithm based on Theorems 1 and 2.
We think that this complexity upper bound estimate is too much high. The
question arises, for what complexity class € SDCP for TFSMs is a &
complete problem. By some indications we assume that SDCP for TFSMs is
PSPACE-complete problem.

2. As it can be seen from the proof of Theorem 3, SDCP for TFSMs is
intractable only if timed parameters of transitions (time guards and delays)
depend on the number of states in TFSM. But this is not a typical
phenomenon in real-time systems since in practice the performance of
individual components of a system does not depend on the size of the system.
Therefore, it is reasonable to confine ourselves to considering only such
TFSMs, in which the time guards and the delays are chosen from some fixed
finite set. As it follows from Theorem 2, for this class of TFSMs SDCP is
decidable in polynomial time. One may wonder what is the degree of such a
polynomial, or, in other words, how efficiently the strict determinacy property
can be checked for TFSMs corresponded to real systems.

3. In the model of TFSM besides the usual transitions there are also possible
timeout transitions. A timeout transition fires when a timestamped input letter
(i,t) can not activate any usual transition from a current state. In it was
shown that in some cases such timeout transitions can not be replaced by any
combination of ordinary transitions. In the future we are going to study how
SDCP can be solved for TFSMs with timeouts.

Acknowledgments

The authors of the article express their deep gratitude to V.V. Podymov and the
anonymous reviewers for their valuable comments and advice on improving the
article. This work was supported by the Russian Foundation for Basic Research,
Grant N 18-01-00854.

337

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

References

[1].
2.

3].

[4].

[5].

[6].
[7].
(8]

[a].
[10].

[11].

[12].

[13].

[14].

[15].

338

Alur R., Dill D. A Theory of Timed Automata. Theoretical Computer Science, vol. 126,
1994, pp. 183-235.

Alur R., Madhusudan P. Decision Problems for Timed Automata: A Survey. In
Proceedings of the 4-th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM’04), 2004, pp. 1-24.

Alur R., Fix L., Henzinger Th. A. A Determinizable Class of Timed Automata. In
Proceedings of the 6-th International Conference on Computer Aided Verification
(CAV’94), 1994, p 1-13.

Baier C., Bertrand N., Bouyer P., Brihaye T. When are Timed Automata
Determinizable? In Proceedings of the 36-th International Colloquium on Automata,
Languages, and Programming (ICALP 2009), 2009, p. 43-54.

Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State
Machines: Equivalence Checking and Expressive Power. In Proceedings of the
International Conference GANDALF, 2014, p. 203-216.

Cardell-Oliver R. Conformance Tests for Real-Time Systems with Timed Automata
Specifications. Formal Aspects of Computing, vol. 12, no. 5, 2000, p. 350-371.

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. 35.5: The subset-sum problem.
Introduction to Algorithms (2-nd ed.), 2001.

Finkel O. Undecidable Problems about Timed Automata. In Proceedings of 4th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), 2006, p. 187-199.

Fletcher J. G., Watson R. W. Mechanism for Reliable Timer-Based Protocol. Computer
Networks, vol. 2, 1978, pp. 271-290.

Merayo M.G., Nuunez M., Rodriguez |. Formal Testing from Timed Finite State
Machines. Computer Networks, vol. 52, no 2, 2008, pp. 432-460.

Ouaknine J., Worrell J. On the Language Inclusion Problem for Timed Automata:
Closing a Decidability Gap. In Proceedings of the 19-th Annual Symposium on Logic in
Computer Science (LICS’04), 2004, pp. 54-63.

Suman P.V., Pandya P.K., Krishna S.N., Manasa L. Timed Automata with Integer
Resets: Language Inclusion and Expressiveness. In Proceedings of the 6-th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’08),
2008, pp. 78-92.

Tvardovskii A., Yevtushenko N. Minimizing Timed Finite State Machines. Tomsk State
University Journal of Control and Computer Science, No 4 (29), 2014, pp. 77-83 (in
Russian).

Tvardovskii A., Yevtushenko N., M. Gromov. Minimizing Finite State Machines with
Time Guards and Timeouts. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017,
pp. 139-154 (in Russian).

Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test Derivation
Strategies for Systems with Timeouts. In Proceedings of the 11-th International
Conference on Quality Software, 2011, p. 141-149.

Bunapcxkuit E.M., 3axapos B.A. K nposepke cTporo JIeTepMUHUPOBAHHOTO MOBEICHHS BPEMEHHBIX KOHEUHbBIX
aBTomatoB. Ipyosr UCII PAH, Tom 30, Bem. 3, 2018 1., cTp. 325-340

K npoBepke cTporo neTepMMHUPOBAHHOIO NoBeAeHUs
BpeMeHHbIX KOHe4YHbIX aBTOMaTOB

E.M.Bunapckuii <vinevg2015@gmail.com>
B.A. 3axapos < zakh@cs.msu.su >.
Mockosckuii 2ocyoapcmeennuiii yHusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue eopwl, 0. 1

AHHoTanus. KoHeyHble aBTOMAThl IIMPOKO MPUMEHAIOTCA B KayeCTBE MAaTeMaTHUECKHX
MoJelell TpH pemIeHMH MHOTOYMCIEHHBIX 3ajad B 00NacTH IpOrpaMMHPOBAHUSA,
MIPOEKTHPOBAHUSI MHKPOIIEKTPOHHBIX CXEM M TEIEKOMMYHHKAIIMOHHBIX cHCTeM. Jlis
OIIHCAHMUS TTOBEACHHS CUCTEM PEAIbHOTO BPEMEHH MOJIeb KOHETHOTO aBTOMATa MOXET OBITh
pacmmpeHa no0OaBIeHHEM B He€ 4YacoB - IapamMeTpa HENpPEpHIBHOTO BPEMEHH,
MOJEIMPYEMOT0 BELIECTBEHHOM mepeMeHHOH. B aBromarax peanbHOro BpeMEHH MJIs
BXOJHBIX M BBIXOAHBIX CHIHAJIOB YKa3bIBA€TCSI BPEMS HX IOCTYIUIGHHS M BBLAAYH, a
Hepexo/sl aBTOMAaTa CHA0XKEHBI ONMCAHHEM 3aJIepP)KEeK, CBA3AHHBIX C OXKHIAHHUEM BXOJHBIX
CUTHAIOB W ()OPMHUPOBAHUEM BBIXOJHBIX CHTHAJIOB. Tak ke, KaK M U KJIACCHYECKUX
aBTOMATOB JUCKPETHOTO BPEMEHH, 3a7jada MUHMMH3ALMM KOHEUHBIX aBTOMATOB PEajbHOTO
BPEMEHM BO3HHUKAaeT BO MHOTMX IPWIOKCHHUAX OTOH Mojenu BbluuciaeHuil. s
KIIACCHYECKOH MOJEIH aBTOMAaTOB pEalbHOTO BPEMEHH 3Ta 3aJada ykKe MOJApOOHO
paccMoTtpeHa. B Hameit paboTe Mbl mpemiaraeM Ooliee CIIOKHYIO MOJENb: B HEl MOPSAIOK
CIICOBAaHMSI BBIXOJHBIX CHTHAJIOB OIPEAENSCTCS HE TONBKO IIOPSIKOM MOCTYIUICHUS
BXOJIHBIX CHTHAJIOB, HO TAaKXe W 3a/IEP)KKOU, CBA3aHHOU ¢ MX 00paboTkoifl. B aToif Monenn
IIpU BBINOJHEHUM OJHOW U TOH k€ MOCIe0BaTeNbHOCTH NEPEXOJ0B BBIXOJHbBIE CUTHAJIBI
MOTYT BBIJABaThCS B PA3HOM MOPSAAKE B 3aBUCHUMOCTH OT BPEMEHM INOCTYIUIEHHS BXOJIHBIX
CUTHaJIOB. B HOBOI MOzenM aBTOMAaTOB peaJbHOT0 BPEMEHH PELICHUIO 3a1a4d MUHUMU3ALUI
JIOJDKHO — IpPEAIeCTBOBaTh H3ydEHHE BOIPOCAa CTPOrOM JAETEPMUHUPOBAHHOCTH -
OJHO3HAYHOCTH MOBEJECHHUS aBTOMAaTa HA OJHUX U TeX XK€ MOCIIeI0BATENbHOCTSIX MePEXOI0B.
B mpexacraBneHHON cTaThe NPHBEAEHBHI M OOOCHOBAHBI HEOOXOMMMBIE M JIOCTATOYHBIE
YCIOBHSL CTPOTOH HETEPMHHMPOBAHHOCTH aBTOMAaTOB pPEATbHOTO BPEMEHH, a TakKxke
HCCIEI0BAHBI BOIPOCHI, CBSI3aHHbIE C PEIIEHHEM 337a4i MUHUMH3AIIH 3TONH pa3HOBHIHOCTH
aBTOMATOB.

KiioueBble cjI0oBa: KOHEYHEIC BPCMCHHBIC aBTOMAThl; CTPOr0 JACTCPMHUHHUPOBAHHOC
IIOBCACHUC

DOI: 10.15514/ISPRAS-2018-30(3)-22

Jas murupoBanmsi: Bumapckmit E.M., 3axapoB B.A. K mposepke crtporo
JIETepMUHHPOBAHHOTO TIOBEJICHHSI BpPEMEHHBIX KOHEUHBIX aBToMaToB. Tpynst UCITI PAH, Tom
30, Boim. 3, 2018 r., crp. 325-340 (Ha anrmmiickoM s3bike). DOI: 10.15514/ISPRAS-2018-
30(3)-22

339

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

Cnucok nutepatypbl

[1].
2.

[3].

[4].

[5].

[6].
[7].
[8].

[a].
[10].

[11].

[12].

[13].

[14].

[15].

340

Alur R., Dill D. A Theory of Timed Automata. Theoretical Computer Science, vol. 126,
1994, pp. 183-235.

Alur R., Madhusudan P. Decision Problems for Timed Automata: A Survey. In
Proceedings of the 4-th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM’04), 2004, pp. 1-24.

Alur R., Fix L., Henzinger Th. A. A Determinizable Class of Timed Automata. In
Proceedings of the 6-th International Conference on Computer Aided Verification
(CAV’94), 1994, p 1-13.

Baier C., Bertrand N., Bouyer P., Brihaye T. When are Timed Automata
Determinizable? In Proceedings of the 36-th International Colloquium on Automata,
Languages, and Programming (ICALP 2009), 2009, p. 43-54.

Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State
Machines: Equivalence Checking and Expressive Power. In Proceedings of the
International Conference GANDALF, 2014, p. 203-216.

Cardell-Oliver R. Conformance Tests for Real-Time Systems with Timed Automata
Specifications. Formal Aspects of Computing, vol. 12, no. 5, 2000, p. 350-371.

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. 35.5: The subset-sum problem.
Introduction to Algorithms (2-nd ed.), 2001.

Finkel O. Undecidable Problems about Timed Automata. In Proceedings of 4th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), 2006, p. 187-199.

Fletcher J. G., Watson R. W. Mechanism for Reliable Timer-Based Protocol. Computer
Networks, vol. 2, 1978, pp. 271-290.

Merayo M.G., Nuunez M., Rodriguez I. Formal Testing from Timed Finite State
Machines. Computer Networks, vol. 52, no 2, 2008, pp. 432-460.

Ouaknine J., Worrell J. On the Language Inclusion Problem for Timed Automata:
Closing a Decidability Gap. In Proceedings of the 19-th Annual Symposium on Logic in
Computer Science (LICS’04), 2004, pp. 54-63.

Suman P.V., Pandya P.K., Krishna S.N., Manasa L. Timed Automata with Integer
Resets: Language Inclusion and Expressiveness. In Proceedings of the 6-th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’08),
2008, pp. 78-92.

A.C. Tappmosckuif, H.B. Eprymenko. K MuHUMM3ammm aBTOMAaTOB C BpPEMEHHBIMH
OrpaHUYCHUAMU. Bectunk TomMckoro ToCyaapCTBEHHOI'0 YHUBCPCUTETA. YHpaBHCHI/IC,
BBIYHCIIMTENIbHAS TeXHUKA U nHpopMmaruka, Vol. 29, no 4, 2014, pp. 77-83.

Teapnosckuit A.C., Eprymenko H.B., I'pomor M.JI. MunuMusamus aBTOMaTroB c
TaliMayTaMu M BpeMeHHbIMU orpaHnueHusiMu. Tpynsl UCIT PAH, tom 29, Bem. 4, 2017 r.,
ctp. 139-154. DOI: 10.15514/ISPRAS-2017-29(4)-8..

Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test Derivation
Strategies for Systems with Timeouts. In Proceedings of the 11-th International
Conference on Quality Software, 2011, p. 141-149.

K nocTpoeHuio mogynbHon mogenu
pacnpegeneHHOro UHTennekTa

L210.J1. Cnosoxomos <slov@phys.chem.msu.ru>
$U.C. Hepemun <ivan@neretin.ru>
"Mockosckuii 2ocydapcmeennvlll ynugepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwl, 0. 1
2H)Ltcmumym anemenmoopeanuyeckux coeounenuii PAH,
119991, Poccus, Mocksa, ya. Basunosa, 0. 28
*Rock Flow Dynamics, 117418, Poccus, Mocksa, ya. Ilpoghcorosnas, 0. 254

AHHOTanmsl. OnucaHne W MOJAENMPOBaHHE JUHAMUKH MyJbTHATCHTHBIX COLMAIBHBIX CHCTEM
METOJaMH, 3aMMCTBOBaHHBIMU M3 CTATHCTUYECKOH (PU3MKHM «HEXHBBIX» MHOTOYACTUYHBIX CHUCTEM, HE
OTpaXkaeT NPUHIUIHAIBHYIO 0COOEHHOCTh COBOKYITHOCTH B3aMMOJACHCTBYIOIIMX aBTOHOMHBIX are¢HTOB!
CIIOCOOHOCTh ~ BOCIPHHHMATh, 00pabaThiBaTh ¥ HCHONB30BATh BHEIIHIO HH(MOPMAIHIO.
PacripesieneHHBIII MHTEIUIGKT COLMANBHBIX CHCTEM CJEIyeT HEHOCPEJCTBCHHO YYUTBHIBATh B HX
9KCHEPHMEHTAIBHBIX M TEOPETHYECKUX MCCIIEOBaHUAX. B paboTe mpeuioskeHa «MOIyIbHAs» MOJENTb
HHTEIUICKTYaJIbHOH AESTeIbHOCTH, BKIIOYAIONIAsl IPOU3BOCTBO HOBOW MH()OPMAIMU W NPUTOAHAS JUIS
OINMCAaHUS KaK HHIUBHAYaJbHOTO, TaK W PACMPEACACHHOTO HHTENICKTa, IEPEYHCIICHbl BO3MOXKHBIC
obmactu ee wucnonb3oBaHMA. «KomMuecTBEHHYIO OLEHKY» 3(P(EKTHBHOCTH PacIpeieICHHOrO
WHTEIUIEKTa ~ WUIIOCTPUPYET KOMIIBIOTEpPHAas MOJENb HCKYCCTBEHHOH COIMAIBHON CHCTEMBI,
00CYK/IAI0TCS MOIYyYCHHBIC PE3YIIbTAThI.

KiiloueBble €10Ba: MyibTHareHTHbIC COLMANBHBIC CHCTEMbI; PACIPEAEICHHBIM HHTEIUIEKT;
MOJIETTMPOBAHUE UHTEIUIEKTYaIbHOU ESITENIbHOCTH

DOI: 10.15514/ISPRAS-2018-30(3)-23

Jnsa mutupoBanus: CrosoxoroB FOJL, Heperun WM.C. K mHOCTpOeHHIO MOIY/IBHON MOjeIn
pacnpenenennoro unrtemekra. Tpyast UCIT PAH, tom 30, Bem. 3, 2018 r., crp. 341-362. DOI:
10.15514/ISPRAS-2018-30(3)-23

1. BeedeHue

W3ydyeHuto ¥ NOpPOTHO3MPOBAHUIO JUHAMUKHM PEAJIBHO CYIIECTBYIOLIUX
MyJIbTHAr€HTHBIX COLUAIBHBIX CHCTEM — TaKUX KakK IelIeXOAHble MOTOkH [1],
00BeKTHl ympaBieHus [2], yJacTHMKH TIOJIMTHYECKOro mpoTuBobopcTBa [3],
n30upaTenbHble KaMIaHuM [4] M MHOIMX JApPYrMX — THOCBSIIEHa OOIIMpHAas
aureparypa. OCHOBHBIM (POpMalbHBIM HMHCTPYMEHTOM aHallu3a CIYXXKHUT TEOpHs

341

mailto:slov@phys.chem.msu.ru
mailto:ivan@neretin.ru

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

WUTp, TIPU3BAHHAS THUIIOJOTU3HPOBATH TIOBEACHHE arentoB’ W YCTaHOBHUTH
BO3MOXKHBIE paBHOBecHs B cucTeMe. CTPYKTYpY COBOKYITHOCTH B3aMMOCBSI3aHHBIX
areHTOB HCCIEAYIOT METOAAMH TEOPHH Ipad)oB, IPEACTABISA JOCTATOYHO OOJIBIINE
CHCTEMBI B BHJE CIOXKHBIX ceTed [5]. DTO IMO3BOJSET BBIACIHUTH XapaKTepPHBIC
CTPYKTYPHBIC 3JIEMEHTHI (KOHIICHTPATOPBI, KJIMKH, COOOIIECTBA, JCPCBbH),
OTIPEJICNIUTh KOJMYECTBEHHBIE XApaKTEPUCTUKU CETH (AMAMETp, pachpeesieHue
MOPSAKOB BEPIIMH, CTENEHb KIACTepu3allid U Jp.), a TaKkKe MOAETUPOBaThH
JMHAMHKY Pa3JIHYHbIX MPOIIECCOB Ha CETeBBIX cyOcTparax [6—8].

IIpu 6ONBIIOM KOJIMYECTBE MOJOKHUTEIBHBIX PE3yJIbTATOB U HOBBIX IMITMPHUCCKUX
HAOJIOMICHUI, B TECOPETUKO-UTPOBBIX U TEOPETHKO-TPA(POBBIX HCCICIOBAHUAX
MYJbTHATCHTHBIX CHUCTEM JI0 CUX IMOP HE BHIPAOOTAHO WX OOIIEHPUHITON MOMICIH.
MonenupoBaHie MyJIbTHATEHTHBIX MPOIIECCOB METOJIAMU TEOPUH UTP CTATKUBACTCS
C HEOOXOAMMOCTBIO YYUTHIBATh KaK MHOTOYPOBHEBYIO pe(JIEKCHIO areHTOB,
00aaroIuX MHTEIUICKTOM [9], TaK M «OTPaHWYCHHO PAMOHAIBEHOEY» IOBEICHHE
moaeil B peanbHbIX ycioBusx [10]. DTo ycnoxHseT MoAenu, MAENAeT UX
CTOXAaCTHYECKUMH W 3aBHCAIIAMH OT OMIIMPUYSCKUX MapaMEeTpOB, CHIDKAs
MpecKa3aTeIbHy0 CIOCOOHOCTh. Jlake A CHCTEM C MPOCTHIMH CTPATETHAMHU
areHTOB, KOTOpBIC YAAeTCS BBIPA3UTh KBa3WU-IMHAMUYCCKAMHU YPaBHECHUSIMH,
pacUCTHBI KPAaTKOCPOUYHBI MPOTHO3 TpPeOyeT OOJBIIMX BBIYUCIUTEIHHBIX
MOIITHOCTeH (TPaHCHOPTHBIA MOTOK Ha 1mocce [11]) nmbo oka3biBaeTcs
HEBO3MOXXHBIM 3a MpeaeliaMi HECKOJbKHX HICaIM3UPOBAHHBIX PEKUMOB (Oupika
[12]). C npyroii cTOpoHBI, pe3ynbTaThl MOJCTUPOBAHNS COIMANBHBIX MPOIIECCOB HA
CETSIX BO MHOTHX CJIy4asX MOKa3bIBAIOT OTCYTCTBUE CUILHOTO BIUSHUS CTPYKTYPBI
cybcTpara (KOTOpOe HESBHO TOCTYJIHPYETCS B OONBIIMHCTBE «CETEBBIX» PadoT).
Tak, OCHOBHBIE KAauYeCTBCHHBIC pE3yJbTATBl MAaTEMAaTHYECKOH COMUOJIOTHH,
MOJy9YEeHHBIC BO 2-if mooBrUHEe XX Beka Ha KBaJPATHBIX PEIICTKaX, H300pajkaBIIIX
CUCTEMY cOLMalbHBIX cBsized [13, 14], B 11e10M BOCIPOM3BOAATCA M Ha CIOXHbBIE
CEeTSX; Pa3NIN4usi B OCHOBHOM COCTOAT B 3aMEIUICHHH MpoIlecca U HEOJHOPOIHBIX
«IIPOMEXYTOUYHBIX» paclpeAesIEeHUsIX COCTOSIHUN areHToB [14, 15].

C QopmanbHON TOYKH 3pEHUs, OOJNBIIMHCTBO COBPEMEHHBIX MYJIBTHATCHTHBIX
MoJIeJIell TIOCTPOCHBI TI0 AHAJOTHH C MOJCISIMH MHOTOYACTHYHBIX (DU3HYECKIX
cuctem [14]. TlomoOHO B3aUMOJEHCTBUAM B aHCaMOJIe «HEXHBBIX» YaCTHII,
B3aUMOJICHCTBHS areHTOB OCHOBAaHBI HA OallaHCEe KOJIMYECTBEHHO MM KAYECTBEHHO
OIIeHUBaeMbIX (DaKTOPOB (BBIMTPHINICH, HAMEPEHHH, HHTEPECOB U T.1.), a JHHAMHUKA
KKJOrO areHra HampaBlIseTCsl CTPEMIICHHMEM K MaKCHUMyMy JHEPromoio0HON
(QYHKIIMKM TIONIE3HOCTH M «Pa3MBIBAETCS» CTOXAaCTHUECKMM IyMOM, HEPEIKO
Ha3bIBa€MBIM TeMIIEpaTypoil. Y CIOXKHEHHUS areHTHBIX MOJIEJIEH, TI0 CPAaBHEHUIO C UX
(bU3rUeCKUMHU TTPOTOTHUIIAMH, CBOJATCS K HCITOJIb30BAHUIO HEYETKO OTPE/ICIICHHBIX
XapaKTCPUCTHK (HAYMHAS C «IOJE3HOCTH»), HEOJHO3HAYHBIX 3aBUCHUMOCTCH

1 o
B paMKax 3Ton pa60T1>1 TMOHATUA KMHAUBUI», KMHAUBUAYYM» U «arc¢HT» NPUMEHUTEIIBHO K
CAUHUYHOMY «aKTOpYy» COIMAIBHOM CHCTEMBI HCIIOJIb3YIOTCSI KaK CUHOHHMBI.

342

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

(pedrexcnn) W CIOXKHOW TUCKPETHOH KOHQPUTYpAIMH B3aWMMOICHCTBUH (ceTn).
IIpenckazyeMslil pe3ynbTaT COCTOMT B CHJIBHOM YBEIMUYEHHMU OOBbEMa pacyeToB U
HEOIpPEeICHHOCTH MPOTHO3a B TAaKUX CUCTEMax, IJe OUHAMUKa Ipolecca He
3a/1a€TCSl CaMOM CETEBOM CTPYKTYpo#l (Kak B SMUAEMHOJOTHH, YHEPTreTHUYECKUX U
TPaHCIIOPTHBIX CETAX, HEKOTOPBIX JPYIHX 00IacTsX).

HwMeromuecss pe3ynbTaTbl MYJIBTHAareHTHOIO — MOJETUPOBAHUS MO3BOJISIIOT
OPEANON0XUTh, YTO MHOTOYAaCTUYHBIE MOJIENH, 3aUMCTBOBAaHHBIE M3
CTaTHCTHYECKOM TEPMOJMHAMHKA U (U3UKM CTOXACTHYECKHUX IPOIIECCOB, HE
BIIOJIHE aJIeKBaTHBl (yHAaMEHTAIBHBIM OCOOCHHOCTSIM COLMANBHBIX CHUCTEM H
MPOLIECCOB B TaKMX cHcTeMax. (YTBEpkKICHHUE O HECBOJIMMOCTH COLIMyMa K (H3HKe
ABIsIeTCS oOmMM MecTOM B pabOTax TyMaHWTapHOTO HAIlPaBJICHHSA).
WHTpUTyIOIIMM ~ OMONHUTEIBHBIM OOCTOSITETIBCTBOM — CIY)KaT —OSMIIMPHIECKHUE
AQHAJOTUHM KOJUICKTHBHOTO TIIOBEJCHUS JIOJCH WM IUHAMUKH, HaOIOmaeMoil s
CHCTEM WHIMBHIOB CO 3HAYUTEJHPHO MCHBIIUMH HHTEIUIEKTYaTbHBIMH
BO3MOXHOCTSIMA (MypaBeWHHK, TepMUTHHK [16]), a Tarke it Qopmanuit
nporpaMMupyeMbIx aBromartoB [17]. Takum oOpa3oM, HamMdue MHIUBUIYaIHHOTO
CO3HAHUS y JIOJie He SABIEeTCS NPUHIMIIHAIBHBIM OTIMYHEM COLHAIbHOU
MYJITHAr€HTHOH CUCTEMBI OT (PM3NYECKON CUCTEMBbI «HEKUBBIX)» YaCTHUI (MOJIEKYII
U aTOMOB IIpU CKOJb YrOAHO [ETaJbHOM ONHCAHUM MX COCTOSSHUH U
B3aUMOJICHCTBUI): CXOIHYIO AMHAMHUKY MOTYT IPOSIBIATH COLUAIBHBIE CHUCTEMBI,
CHJIBHO Pa3JIMYaIOINecs 10 YPOBHIO HHTEJUIEKTa Y UX areHTOB.

Msl mpenmonaraeM, 4YTO IJIABHOW OCOOEGHHOCTBIO, OTIMYAIONIIEH CHCTEMY
B3aUMO/ICHCTBYIOIINX areHTOB OT aHcamOuIsl yacTul] (PU3NUECKON Cpebl, SBISETCS
pacmpesieieHHBIi ~ WHTEJUIEKT: CIIOCOOHOCTh ~ MYNBTHareHTHOM CHCTEMBI
BOCIIPMHHMMATh BHEIIHIOI HH(pOpMaIHoo, o0pabaTeiBaTh M HCIOJIB30BATh €€ B
CBOEH KOJIJIEKTUBHOM MuHAMuKe. Hanudme pacrpeneneHHOro MHTEIUIEKTa CIIeAyeT
HETIOCPEJICTBEHHO YYHUTHIBATh KaK B OSMIMPHYECKOM OIHUCAHHM COLMAIBHBIX
MYJIBTHAr€HTHBIX CHCTEM, TaK U B MX MOAENIHpoBaHuu. [lanee OyayT paccMOTpEHBI
HEKOTOPbIE BO3MOKHBIE TIOAXOAbI K MCCIIEAOBAHUSAM B 3TOM HAIIPABICHHH.

2. OnpedeneHus

Mynomuacenmunas coyuanvnass —cucmema (MCC) — 3T0 aAMHaMU4YecKas
COBOKYITHOCTh aBTOHOMHBIX areHTOB, KOTOpPbIE BOCHPHHHMAIOT HMH()OPMALHUIO H
B3aUMO/ICHCTBYIOT C BHEIIHEH cpelod M JIPYrUMH areHTaMH B XOZe COOCTBEHHOM
JeATeNbHOCTH (Ounamuku). B3auMoaeicTByromue OWOJOTHYECKHE CYIECTBA
OTHOTO BHJA COCTABISIOT COIHANBHYIO CHCTEMY B Y3KOM CMEBICIE CIIOBA.
«HexwuBbIe» mporpaMMupyeMble areHTsl (poOOTHI, OECTMIIOTHEIE anmapaTsl ¥ T.1.)
NpH HAIMYAM B3aWMOJEHCTBHSA MEXIy HUMH 00pa3yoT mckycctBeHHyo MCC.
NunuBuayanpable areHThl cocTaBisitoT MCC 1-ro ypoBHS (COOOIIECTBO >KHBBIX
OpraHW3MOB, aBTOMOOWJIM Ha TIIMOCCE ®W T.JI.). B3anMomelcTByrommme
MYJIbTHAr€HTHbIE CHCTEMBI (PKOHOMHYECKHE CyOBEKTBHI, Hay4HbIC IIKOJBI,
MOJIMTHYECKUE «AKTOPbI») CAMH MOTYT BBICTYIIAaTh B POJIM arcéHTOB B COLMAJIBHON
crcreMe 0oJiee BHICOKOTO YPOBHSI.

343

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

Kaxmas MCC (1) ob6mamaer cTpykTypod, (2) OCYIIECTBISIET HEKOTOPYIO
CyMMapHYI0 («CHCTEMHYIO») [esSTeIbHOCTh, (3) B ee XoIe BOCIPHHHUMACT,
oOpabatpiBaeT u wucmois3dyer wuHpopMmanuio. Crpykrypy MCC ompenensror
BO3JICHCTBUSI OKpYXaloIled Cpenpl Ha areHToB («BHEIIHEE TIONe») W
B3aUMOJICHCTBUSI MEX/ly areHTaMu (BHYTPEHHSSI CTPYKTypa, B OOIleM ciydae —
B3BCIICHHBIH OPHUEHTHUPOBAHHBIA Trpad, 3aBUCAMIMN OT BHEIIHErO IOJS U OT
Bpemenu). Junamuka MCC onpegensercs H3MEHEHUSIMH BHEIIHEH Cpensl,
COOCTBEHHOW JMHAMHKOH areHTOB W JBOJIOLMEH BHYTPEHHEH CTPYKTYphl BO
BPEMEHHU.

CuctemHas auHamuka MCC ckiafbIBaeTCsl U3 UHAUBUAYAIBHBIX TUHAMUK ar€HTOB,
OJIHAKO €€ pe3yNbTaTbl HE CBOJATCA K CyMME HHAMBUIYANbHBIX PpE3yJIbTaToOB
areHToB (TIepeMelieHHe CTaja JKUBOTHBIX M3 3aCyIUIMBOM MECTHOCTH B
OnmaronpusATHyI0, OWpPXEBOW KpaxX, aBTOMATH3aLUs IPOM3BOACTBA U T.J.).
Iockonpky areHTH-HHAMBHAL B MCC 1-T0 ypOBHS BOCIPHHUMAIOT HH(OPMAITHIO
U TIPeclefyloT ONpeNeNICHHBIH Habop mnenell, COoIManbHBIM CHCTEMaM Kak
«aKTOpaM» MOXHO TIPHIHUCATh cucmemuoe yerenonazanue. OOBEKTHBHON IETHIO
MCC Ha 3a1aHHOM HMHTEpBaJC BPEMEHM SBIICTCS ONTUMAJBHBIA IS CHCTEMBI
pesynpraT ee auHamuKH. PasHooOpazHeie MCC ¢ BapwaTUBHOW JIHHAMHUKOW
arcHTOB, HE IPEANOJIAraloleii CJI0XKHONW MHTEUIEKTYaJIbHOM JESATEIIBHOCTH,
BOCIPOM3BOJMMO M THOKO TIpECIeNylOT CHUCTEMHbIe Lenu (MUEeNUHBIH PO,
MypaBeMHUK, «HEBHIUMAas pyKa pbHKa»). OnHOW M3 OOBEKTUBHBIX IleNieit
COLIMAIIFHOW CHUCTEMBI B OOJBIIMHCTBE CIIy4aeB SBISETCA COXpaHEHHE JINOO
YBEJIMYCHUE KOJIMYECTBA areHTOB M IOJAEpKKa HX (YHKIHMOHUPOBAHUS:
CamocoxpameHue cucmembl.

Bocnpustue, 06paboTka ¥ HCHOIB30BaHHE WHGOPMALMU COIMANBHOM CHCTEMOH
SIBJISIIOTCSL PE3yJbTaTOM BOCHPUSATHS WH(OpMALUU €€ areHTaMH, B3anMOACHCTBUil
MEX1y HUMH U 1ienenonaranus arenToB. (Tak, hopManus aBTOMaToOB, IBHKYLIUXCS
B 33JlaHHOM HAIPaBJICHWU II0 aJTOPUTMY «CIEIOBaTh 3a COCENOM» M «H30eraTh
CTOJIKHOBEHHWI», orubaer mpensTcTBusi). Takum o0pa3oMm, COLMANBHBIE CHCTEMBI
M000T0 ypOBHS HE TOJBKO NpECIeNyIOT OIpe/eieHHbIe IEIH, HO TakXke, B
npolecce MUX JIOCTHKEHUS, aHAUIN3UPYIOT WHPOPMAlMIO — KaK BHEIIHIOW (cHia
CTHMYJla WJM YTrpO3bl H3BHE), TaK M BHYTPEHHIOIO (COCTOSIHMSI areHTOB M HX
coceneii B 30He BocmpusaTus). MHbiMu ciioBamu, nuHamuka MCC cymiecTBEHHO
BKJIIOUACT pacnpedeneHHblil UHmeniekm: BOCHPUSITUE, aHAaIU3 U HCIOJIb30BAHUE
MHQOPMAILIMN COIMAJIHHON CHCTEMOH KakK €IWHBIM «aKTOPOM» M, BO3MOXHO, Kak
areaToM B MCC 6osiee BBICOKOTO YPOBHS.

3. ModenupoeaHue uHmesnsiekma: cocmosiHue npobsems!

Mbl 1os1araeM, 4TO ONMUCAHHUE, THIOJOTHS U MOJESIUPOBAHHE COLHAIBHBIX CHCTEM
HE MOryT OBbITh KOPPEKTHBIMH 0€3 aHalu3a pAacIpelesieHHOTO HHTEIUICKTa,
KOTOophIM oOnamaroT pasnuunbie Tkl MCC. B aTtoM ciydae ocoOyro BaXXHOCTh
nproOpeTaeT GOPMATBLHBIA aHATTN3 UHOUBUOYATLHO2O UHMELIeKma — TIPEXK]IE BCETO

344

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

YEeJIOBEYECKOT0 MBIINUICHHSI — W CTENeHb IEPEHOCHMOCTH €ro pPe3ylbTaToB Ha
«KOJIJIEKTUBHBIM pazymy».
AHam3y YMCTBEHHON NESTENBHOCTH JIONEH W 3JIEMEHTOB MBIIUICHHUS KHUBOTHBIX
MOCBAIICHA OOINBIIAs OOJIACTD KOZHUMUBHBIX HAYK — «MEXKIUCITUTLTHHAPHBIX
UCCIIEIOBaHUN IO3HAHUS, IIOHUMAEMOro Kak COBOKYIIHOCTb IIPOLIECCOB
NpUOOpeTeH s, XpaHeHHs, IPeoOPa30BaHKsl U UCIIOJIb30BAHHUS 3HAHUH JKUBBIMH U
UCKYCCTBEHHbIMH cucTeMamm» [18, 19]. B sToli o0macTu moyiydeH OrpOMHBII
(haxTHYECKUIT MaTepHal Mo NCUXOJIOTHYECKUM MEXaHU3MaM MBIILIEHHS, CTPYKTYpe
CO3HaHUS u HEHPOPHU3HOIIOTHIECKUM nporeccaM («xoppensiTam»),
COINIPOBOXKAAONUM pabOoTy MoO3ra y 4YeloBeKa M JKUBOTHBIX. K KOTHUTHUBHBIM
HayKaM TPUMBIKaeT 00JIaCTh KOHCTPYHPOBAHUS U HCCIEHOBAHUS UCKYCCMBEHHO20
unmennexkma [17, 20]. OmgauM W3 HambOoee H3BECTHBIX JOCTIDKEHHEM 3]eCh
ABIISIIOTCST UCKyccTBeHHBIe HelpoHHble cetn (MIHC), ycmemrHO HCmois3yeMble B
AIIPOKCHMAITUH GyHKIHIA, pacro3HaBaHUU o0pa3os, (uHAHCOBOM
MIPOTHO3MPOBAHUHU U MOWCKE MHOTOIAPaMETPOBHIX KOppesuil. BaxkxHoe mecto B
uccnenoBaamsix MHC, mo HacTOAIEro BpeMEHH OCTAIOUINXCS IMEePCIIEKTUBHBIM, HO
HE BIOJHE OOBSICHEHHBIM TEXHHMYECKHM CPEACTBOM, 3aHMMAIOT HU3y4YEHUE
MeXaHu3Ma HuX (QYHKIMOHUPOBAHHS M OCYLIECTBIISIEMOH WMH IepepaboTKu
undopmanuu [21].
HecMmoTps Ha MHOTOYMCIIEHHBIC TIOJIOKUTENIBHBIC PE3yJbTaThl KOTHUTHBHBIX
UCCIIEIOBAaHUH M KOMITBIOTEPHOTO MOJIENHMPOBAHMS ITO3HABATENBHBIX IPOILECCOB,
o0mIeTpUHATON (HOPMATBHOW MOJIEIH HWHTE/UICKTYalbHON JEATSIILHOCTH 10
HACTOSIIETO BpPEMEHM TakXke He CyIecTByeT. B d9acTHOCTH, JeTajabHO
pa3paboTaHHBI aNropuT™M «0Oy4YeHMs» HEHWpOHHBIX cereld mo3poisier WMHC
pacro3HaBaTh JUIIb TAaKWE BBl BHEITHETO BO3ACHCTBHS, KOTOPBIC OBLIH 33JaHBI B
xoJie 00y4deHrs. 3a TpeAesaMyi TEOPUH OCTACTCs IIIaBHOE COAEpIKaHUE MBILICHHS:
MPOM3BOJICTBO HOBOM, paHee HE H3BECTHOW MH(DOPMAITHHL.
B 10 ke BpeMs B IICHXOJIOTUH MBIIUICHUS UMEETCS OOLICTIPHHATAs OMMCaTeIbHAs
CXeMa YMCTBEHHOM AESITeIbHOCTH, IPUBOSILIEH K OTKPBITHUIO HOBBIX 3HAHUH [22], 1
BBIPA0OTaHBI AMIHPUYCCKUEC PEKOMEHAANWU («IBPUCTUKWUY»), IOBBIMIAIOIINE
BEPOSATHOCTb €€ yCIeXa — TaKue, KaKk «MOo3roBoil mtypm» [23]. PsjgoM aBTOpoB — B
yactHocTH, B padorax [.C.YUepHaBckoro [24] — ObUI MPEIIOKEH «TCHETHICCKHI
MEXaHNU3M 0TOOpa noes3Hol uH@OpMayuu, KOTOPHIH 3aKperuisieT HOBOE 3HaHHE,
TEHEpUPYEMOE B ClyyallHOM Ipolecce. B uccienoBaHusX IUHAMUKU TOJIOBHOIO
Mo3ra MeToAaMu 3nekTposHiedanorpadpuu (330I) 1 QyHKIHOHATEHOW MarHUTHO-
pe3oHancHo# ToMorpaduu (GMPT) skcriepuMeHTaATEHO YCTAaHOBIEHBI JTOKAIA3AIIHS
MHQOPMAILIMN B ONpPENeIeHHBIX yJ9acTKax KOpwl [25], «XpaHEHHE» YeIOBEYECKHUX
3HAHWHA 1 YMOLIMHK B Pa3IMIHBIX 00JIACTAX Mo3ra [26].
XapakTepHBIMH ~ OCOOEHHOCTSAMH TBOPYECKOW YMCTBEHHOH JESATEILHOCTH,
YCTaHOBJICHHBIMU B TICUXOJIOTHH MBIIIIICHUS [22, 27], SBISIOTCS :

1. oOydeHne Kak HEOOXOAMMOE YCIOBHE MBINUICHHS, >XKEIaTeIbHOCTD

BO3MO)KHO 0oJiee MIMPOKOH «0a3pl 3HAHWNW» IS IIOZOTBOPHOTO
MBIIUICHHS;

345

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

2. CHOHTaHHOE BO3HMKHOBEHHE IIPABMJIBHOTO pelIeHHs («03apeHHe»,
WU uHcaum) y JIOAEH W KUBOTHBIX, OCTABJICHHBIX B «IIPOOIEMHYIO
CUTYALIAIO»;

3. TOBBINICHHE BEPOSTHOCTH HHCAMTAa TPH AKTHBHU3AIMH CIy9aifHOTO
nepebopa BapuUaHTOB OTBETa M OCHAaOJCHWM OTpaHWYEHHH Ha
BapbHPOBaHNE KOMIIOHEHTOB «IIPOOJIEMHON CUTYaLIUm».

IlepeunicieHHBIE MOJIOKEHHUA HCIOIB3YET, B YAaCTHOCTH, HIBPUCTHYECKAS CXEMa
CTUMYJHMpOBaHusl u300peratenbcko nearensHoctn (TPU3). B ee pamkax
npoOJieMHasi CUTyallusi Ha3BaHa «M300pETaTeNbCKOW CHUTyaluel», a n3o0OpeTeHue
(MHCAWT) COCTOMUT BO «B3IVIAJEC C HOBOW CTOPOHBI» HAa KOMIIOHEHTHI NPOOJIEMHON
CHUTYalllH ¥ B I3MCHEHUH JIOTHYECKOM CBSI3H MEX Iy HUMH [23].

4. ModynbHast MoOenib uHMensIeKma

Tepmun «moaympHOCTEY (Modularity) BeckMa pacnpocTpaHeH B ONHCAHHH
CTPYKTYpbl HHTEJIeKTa M ero (yHKUMiH (T03HaHHS), OIHAKO B KOTHUTHBHBIX
HayKax OH HCIIOJB3YyeTcs ckopee Ha BepOaibHOM ypoBHE [28]. MbI mpeminaraem
«MOJYJBHYIO» MOJIeNIb MHIMBUAYaJbHOTO WHTEIUIEKTa, KOTOpas BOCIPOM3BOIUT
BEIpaOOTKY HOBOH HWH(pOpMAlMKH B TIPOIECCE MBIIUICHUS W MOXET OBITh
pacrpocTpaHeHa Ha onrcaHue pacupenencHHoro uHtemiekta MCC. Hama monens
HE WCIONB3yeT MAaTeMaTHYECKHX COOTHOIICHWH Teopud HWH(OpMAIWH,
OTPAaHUYMBASCh «HAWBHBIMY» IpeJCTaBICHHEM 00 HH()OpMAIMH KaK HMCIOIEMCS
(MM BO3HHKAIOIIEM) YeIOBEYeCKOM 3HaHMU. Ee OCHOBOW CiyKaT mepedncIeHHbIS
BBIIIIE XapaKTEPUCTUKK MHTEIICKTYaIbHON TBOpUYECKO# aestensHocTH (.. 1 — 3)
U «yrajpiBaHue» (a HE CTPOTHIl JIOTMYECKHI BBIBOJ) MPAaBUILHOTO PELICHHS B
MpoOJIEeMHOM CUTYaIUH.

CyTp MoOIenu 3akirodaeTcs B OJIOUHOM (MOAYJIBHOM) XapakKTepe CXEeMaTHIHOIO
«OTOCPETOBAHHOTO ~ OTPAXEHHs», WIH eHympennell penpesenmayuu [29],
BbIPa0aThIBAEMOI CO3HAHHEM B OTBET HAa BHELIHEE BO3JICUCTBHE, U B TEHETHYECKOM
QIropuT™ME TMOAOOpPa MOJYJEH, COCTAaBISIIONIMX penpe3eHTtanuio. Msl
npejrnojaraeM, 4YTo BHEIIHEee BO3JCHCTBHE HA CO3HAHUE BBI3BIBAET B HEM
«OTIIEYaTOK», MHTEPIPETUPYEMBbId (T.e. BOCIPHHUMAEMbIi) MyTeM CpaBHEHHs C
HEKOTOPOH CXeMOW, paHee BHIpaOOTAHHOW [UIi CXOJAHBIX «OTIEYATKOB» H
BBI3bIBaEMO#l U3 mamsiTu. [IpeamonaraeTcs, 4To 3Ta cxema (najee — «o6paz-cxemay)
COCTOMT W3 HEOOJBIIOrO YHCJIA 3HAKOBBIX MOAYJeH-«uepornmudosy, OnOIMoTeka
KOTOPBIX COCTaBJIseTCS B Ipolecce oOydeHHs M XpaHUTCs B mamstu (puc. 1).
PasHble «OTmEYaTKM» HHTEPNPETHPYIOTCS Pa3HBIMH KOMOHMHALMAMH MOIYJICH.
«EnnannamMu XxpaHeHHs» B HAMSTH SIBISIFOTCSL HE 00pa3bl M HE alllPOKCUMHPYIOIIUE
WX CXEMBI: B MaMATH XPaHUTCS OWOIMOTEKa MOAYJIEH M COAEPIKATCS KITFOUI
(Ha00pPBI NACHTU(PUKATOPOB MOYJIEH), TIO3BOJISIONINE BRI3BATh paHee MOCTPOCHHbBIE
13 HUX CXeMBI (pHuc. 2).

346

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

]

CELLLLELLLLY L

Puc. 1. Komnonenmut socnpusmusl CO3HaHuem 6HeUHUxX Cmumynos. (I) «omnedamorx»
8HeuwHe20 6o30elicmaus, (2) eco unmepnpemayus («obpas- cxema), (3) conocmagnenue
«omneuamka)y u «o6pa3a- cxemol)»

Fig. 1. Components of perception of external stimulus: (1) «imprint» of the external action,
(2) its interpretation («image-schemey), (3) comparison of the «image-scheme» with the
«imprinty

odpas-cxemMa

image-scheme

ol =

«OTHOEeTaToE: (imprint)

NpoEEpEa COOTEETCTEHNT
correspondence checking

OHOMMOTERA MOTyIeH
library of modules

Puc. 2. Ancopumm 6ocnpusmus: nocmpoenue «obpasa-cxemuvly u3 bubauomexu mooynei
Fig. 2. Building of «image-schemey from the library of modules

347

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

[lo anamormm co 3HaKaMu HepOrTU(PHUUECKOW TMHCHBMEHHOCTH, MOJIYIIH,
COCTAaBILIIONINE CXEMy, B Iporecce UX MpuodpereHus (0O0ydeHHUs), BEPOSATHO,
XapaKTepU3yIOT OINpEIeNIeHHbIC MPHU3HAKW BHEIIHHX BO3NCHCTBHH, HO
WCTIONB3YIOTCS Janee KaKk YHHBEpCaJbHBIC KOMIIOHEHTHI «00Opa30B-CXeM»:
KOMOMHAIMH MOAyNeH, WHIMBHUAYaNbHBIX JUIS KaXJIOTO «OTHEYaTKay.
CooTBeTCTBHE BBI3BAHHOW MOIYJIBHOMN CXEMBI «OTIIEUATKy» BHEIIHETO BO3JEUCTBUS
NpoBepsieTCs B MO3Te 10 HEKOTOPOMY OBICTPOMY «aBTOMAaTHYECKOMY», HE BIIOJIHE
YCTaHOBJICHHOMY MEXaHU3MYy [26].
IIpu xopomeM COOTBETCTBHM IPOUCXOAUT Yy3HaBaHHe. Il1oxoe COOTBETCTBUE
BBI3BIBACT HEYAOBJIETBOpEHHOCTh (B TepmuHax TPU3 — «oboctpeHHoe
npoTtuBopeuney»). CTpeMieHue MpeofosieTh HEyAOBIETBOPEHHOCTh CTUMYIHPYET
MOCTPOEHHE HOBOW CXEMBI, JIy4llleé COOTBETCTBYIOLIEH «OTIEYATKY», M3 OJIOKOB,
uMmeromuxcs B ononmoreke. Co3naHne HOBOM MOIYIFHON CXEMBI M 3aIIOMHHAHHE €€
KIIFOYa COOTBETCTBYET IPOW3BOJICTBY HOBOW HMH(MOpPMAIMA B XOJE YMCTBEHHOH
JeSITeTHHOCTH.
Uucno Momynei, COCTaBIAIOMHX «00pa3-cxemy» (M), MOKHO OILCHHUTH CBEPXY
YHCIIOM TTapaMeTPOB TN (PaKTOPOB, KOTOPEIC YEIIOBEK B COCTOSIHIN BOCIIPHHAMATH
napaiensbHo («712»). PasymHol orenkoi oOmiero koiuuectBa N momyneil B
oubnmoreke (0€3yCIOBHO, OMPEAENIEMOTO IMPOAODKUTEIBHOCTEIO W TIIyOHHOM
00y4YeHHS) MOXET CIYXHUTh KOJHYECTBO HEpOrTH(OB, KOTOPHIMH OIEPHPYET
TPaMOTHBIA HOCHUTENb SIITOHCKOTO WIIM KATAMCKOTO SI3BIKA (10 HECKONBKHUX THICSY).
Onenkn M~10 u N~1000 maroT mpakTHYecKH OCCKOHEYHOE YHCIO BO3MOXHBIX
COueTaHUil Moxynel B cxeme (TI\'IL)~1023. BwMmecre ¢ TeM uIEHTH(DHUKATOP CXEMBI,
MO3BOJISTIOIIMI BBI3BATh €€ MOIYJIM U3 NMaMATH B 33IaHHOM MOPSAKE, MOXKET BECbMa
HKOHOMHO COCTOSITh U3 «HOMEPOB)» WJIM MHBIX NPU3HAKOB MOAYJIEH B OHOIMOTEKE —
JUIA 4ero B MPEIeNbHOM ciiydae JOCTaTOYHO OJHOTO HeHpOoHa, JTOKAJIH30BAHHOTO B
KOpe TOJIOBHOTO MO3Ta, Ha OINH MOAYJIb.
IIpemmnaraemast Mozenb Ha Ka4eCTBEHHOM YpPOBHE OTpakaeT INIABHOE COAEPIKaHUE
MHTEJUIEKTYaIbHON JeITeNIbHOCTH: «IPHUIyMbIBAaHHE HOBOTrO» B (hopme moadopa
HOBOW KOMOHWHAIIMHM MOJYJIEH, KOTOpas alnmpOKCHUMHUPYET BOCIIPUHUMAaeMbIii oOpa3
Jqydile BceX KOMOWHAIMH, XpaHALNIMXCS B MaMsiTH. 3 HEBO3MOXXHOCTH, IIpH
NPUHATBHIX OLleHKax yucen M u N, moctpouts 00pasz-cxemy NpsiMBIM I1epedopoM
MOJyJIell cleqyeT JIOCTaTOYHO IIPaBJONOAOOHBIH aJrOPUTM TBOPYECKOM
UHTEIUIEKTyaIbHOHN AesTeIbHOCTH:
1) nmouwck Hammydmero obpasa-cXeMbl Ui «OTIEYaTKa» BHELIHEro
BO3/AEUCTBYSI IO UMEIOIUMCSI B AMSATH KIII0YaM;
2) BbIABICHHE B HAWICHHON cxeme MOIylsl (MM MOAYJEH) C HAUXY/IIIHM
COOTBETCTBUEM «OTIIEUATKY»;
3) 3aMeHa «IIOXOro» MOAYNS Ha APYTHE MOMAYIH, XPAHSIIHECS B IAMSTH,
OTPaHWYEHHBIM CITyJaifHBIM ITepebopoM;
4) HaXOXKICHHUE MOJYIIS, YIYUIIAONIET0 COOTBETCTBUE CXEMBI «OTIICUATKY;
5) sanoMuHAHWE HOBO¥ KOMOWHAIIMH MOIYJICH: BBEICHHUE B MAMATH €¢ K04

(puc. 3).
348

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

HOEBRIH MOZYIE H2

HITOXOH» MOZYIB GHONHOTEEH
“bad” module neymodule from

skann

SITTITY

HOBEIH EIHT
KITEOT M3 MaMATH
new key

key from a memory

Puc. 3. 3amena mooyns 6 obpase-cxeme, yiyuuarowas coomeemcmeue KOmneyamry»
Fig. 3. Replacement of a module in the «image-scheme» improving its correspondence to
“imprint”

Hama wmogens cormacyercss ¢ TakMMH H3BECTHBIMH YCIOBHSMH YCIICITHOTO
peLIeHUs TBOPYECKHX 337134, KaK IpeJBapUTebHOe 00yUYeHue, Spyauust (co3nanme
W pacuipeHue OWOJIHOTEKM), OIBIT pACIO3HABAHUS TNPOOJEMHBIX CHTYyaIHid
(aropuT™M HaXOXKJAEHWS ~ Hawayuiiero oOpaza B TaMmsATH), CBOOOJMHBII
ACCOLMATUBHBIA TOUCK («KITIOUN») U YMCMBEHHble CHOCOOHOCMU, T.€. CTIOCOOHOCTD
0e3 ommbok oOpabarbiBaTh Oonbimue 00BbeMBI WH(popMarmu. B smmmprdeckmx
ONMMCAaHUAX TBOPYECKOH JNEATEJPHOCTH IYHKTY (2) HaIIero aiaropuTMa
COOTBETCTBYET «IpoOieMHas», WM «u300peTarensckas» cutyamus, m. (3) —
COCTOSIHHE «HEPEUICHHOW MpOoOJIeMbl», KOTOPOMY COIYTCTBYIOT —IIPOIIECCHI
«pacmaThIBaHus» 00pas3a (M CHATHE OTpaHWYEHHH B ITOHCKE KAaK OJJHO W3 YCIOBHH
ycmexa), 1. (4) — «o3apeHue» (MHCAHT), a 1. (5) — pOKACHHUE HOBOM WH(pOPMALIUH.
B OGecctpykrypHoit cxeme J[.C.UepHaBckoro [24] anamorom nepebopa Momyieit
SIBJIICTCS. XAOTUYECKUH «II€PEMEIINBAIOIIUN CIOW», WIN CTPaHHBIA aTTPAKTOp, B
(ha30BOM TIPOCTPAHCTBE KOHTHHYaJbHOH MaTeMaTHYECKOM MOMAETH, a IIEHHOCTh
HOBOIl WH(pOpManW{, TOJYyYEeHHOH CIy4alHBIM IIyTEM, OIpeAessieTcs ee
HNPUTOAHOCTBIO AJISL pPEIleHUs TeKyIUX 3ajad. B Hamel Mojenu reHeTudeckuit
noaboOp MOAyJieH KOHTPOJMPYETCS COINOCTABIEHHUEM IIOJYy4aeMBIX CXEM ¢
«OTIEYaTKOM)» BO3JEHCTBHS; XOPOILIEE COINIACHE MPEANOJIOKUTEIbHO BBI3BIBAET

OMOXMMHUYECKH KOHTPOJIMpYyeMoe yioBieTBopenue [26, 30].

O6cyxnaeMasi MOJEIb COIJIACyeTcs C HaIWYMeM JIOKAJIM30BaHHBIX HEHPOHOB,
BOCIIPOU3BOAUMO AKTHBHPYEMBIX B KOpE TOJOBHOIO MO3ra IpU MpPEIbSBICHUU
OIPEZIETICHHOTO CTUMYJIa («KOTHUTHBHOW CIelUMajIu3alieldl HeWpoOHOB B MO3re
yenoBeka» [25]). JlokanuzoBaHHBIE HEHPOHBI B 3TOM Ciydae SIBJISIOTCS YacThIO
¢usnyeckoro «cybcrpata» MOXIYJsS, WM BOCHPOU3BOIUMO aKTHBHPYEMOTO
ancamOnss HelipoHoB [31], B cocraBe «00pa3za-cXxembl», BO3HUKAIOMIEH P
pacmo3HaBaHWHM BHEIIHETO BO3JACHCTBHSL. B TepMmMHHAX, HCHONB3yeMBIX IIpH

349

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

0OCY>XICHUH CETEBBIX CTPYKTYP MO3ra, (U3NIECKUM HOCHUTEIEM MOAYJS SBISIETCS
Ko2: «paclpefeleHHas TpyINIa HEHPOHOB, CIEIUIEHHAs CIUHBIM KOTHHTHBHBIM
ONBITOM», T.€. KOAMPYIOIIAsl OINpPEICICHHBI aCIeKT BOCTIPHATHS BHEUIHHX
Bo3mericTBuit [25]. Cmemyer 3aMeTHTh, YTO HEHPOHBI, BXOIIIAE B COCTaB
«matTepHa akTuBanuu» [31], MOryT OBITH JIOKaIM30BaHBI B KOPE TOJOBHOTO MO3ra
0e3 ompeseNeHHOro aNropuT™Ma, CUTYaTHBHO — MOJOOHO 3amucy MH(OpManuu Ha
MarHMTHBI JHuCK. B 3TOM ciyyae TecHas CBSI3b MBIIUICHUS C KOHKPETHBIMH
CETeBBIMH CTPYKTypaMH MO3ra (KOHHEKmMOMOM) W CO3HAHUS (KOSHUMOMOM),
nocTyupyemast B JaHHOH obuiactu [25], mogo0HO mpearnosaraeMoil CBsA3M CETEBOU
CTPYKTYPbl C JIWHAMHKOH COIMAJBHBIX CHCTEM, MOXET HE COOTBETCTBOBATh
JeHCTBUTEBHOCTH (CM. pasz. 1).

5. K ModenupoeaHuro pacnpedesieHHO20 UHMeJsIiekma

[Ipennaraemasi «MoayJbHAs» MOJENb UHIWBUIYaTHLHOTO UHTEIVIEKTA €CTECTBEHHO
pacnpocTpaHseTcs ~Ha ~ OmMcaHue pachpeaeneHHoro — uHrteniekra (PN)
MyJIBTUAI€HTHBIX COLMalbHBIX cucrteM. Hamuume wunHTemnexkra y MCC
OTIpeneNsIeTCs] CHOCOOHOCTRIO areHTOB BOCIPHUHHMATH WH(POPMALHUIO, HAIMYHEM
meneil 'y areHToB W WX B3amMmopelictBHeM (cM. Beemenme). Ypoeens PU
COOTBETCTBEHHO 3aBHUCHT OT KOTHHUTHBHBIX BO3MOJKHOCTEH areHToB, OT
mpecieqyeMbIX HWMH Ielel, OT Xapakrepa MW CTPYKTYpPBHl MEXareHTHBIX
B3aUMOJICICTBUM, a TAK)KE OT BHEUIHUX YCJIOBUI.

Ipu pacnane ctpykrypsl MCC (OTCYTCTBHE pECypCOB, H300MIHE PECYPCOB JHOO
«BOWHAa BCeX TPOTHB BCEX») KOJUIEKTHBHas o00paboTka wuHpopmanmu He
peanusyetcs. PacnipeneneHHbIH HHTEUIEKT CUCTEMBI B O0IIIEM CITydae BO3pacTaeT C
YBEIMUYEHUEM UHCJIa aT€HTOB U C YCIOXKHEHHEM CTPYKTYPhI MX B3aUMOJCHCTBHA.
AHanu3 W WCHONBb30BaHWE WHGOPMAIMKM OPraHU3AIMOHHBIMH CUCTEMaMH
JIOCTATOYHO BBHICOKOTO YPOBHS, (DYHKIIMOHUPYIOIIUMHU B YEJIOBEYCCKOM OOIIECTBE,
MMEEeT OYEBUJHBbIE aHAJOTHU C ONHMCAHWEM WHJUBUAYaJbHOTO HHTEJUICKTa IO
«MOJyNbHOW cxeme (Tabi. 1). B kauecTBe «oTneuaTka» BHEIIHETO BO3JIEHCTBHS Ha
cucTeMy (HampuMmep, aBapuM Ha TPOW3BOJCTBE) 37ECh BBICTYIAET TeTEPOTCHHAsS
COBOKYITHOCTh PEaKIUi CHUCTEMBl KaK II€JIOT0O W WHIWBHUAYaJIbHBIX pEaKIUi
areHToB. (Tak, MO0 MOMKHOCTHBIM WHCTPYKIHSAM, PaOOTHHKH TPEIIPUATHS IPU
aBapuu 00sI3aHBI COOOIIUTH O HEH PYKOBOJCTBY, OJHAKO CEpPhe3HAsl aBapUs MOXKET
BBI3BAaTh NAHUKY U MOTEPIO YIPABICHUS).

CocTaBHBIMU E€IMHHMIIAMHU TpPU HUHTEPHIpETAlMM BO3JIEHCTBUSL CUCTEMOH CIy»Kat
WHCTPYKIMU H JOJDKHOCTHBIE 00s3aHHOCTH. CHIJIBHBIC BHCIIHUE BO3ICHCTBUS
U3MEHSAIOT CTPYKTYpPY CHUCTEeMbI (IIpU aBapuu — 3BaKyalldsl IepcoHasa, CO3JaHue
aBapuitHOTO mTada u Komuccum). «O0pa3oM-cxeMoil» B JTaHHOM CIy4ae sBISCTCS
CTaHIAPTHBIA OTBET CHCTEMBI (IEHCTBUE IO WHCTPYKIHMSIM), KOPPEKTHPOBKOU
CXeMbl — OIIEHKAa YCIENIHOCTH ACHCTBUI M HCHBITAHUE HOBBIX MPEIJIOKECHUIM
(pabota KOMHUCCHM), 3aMEHOW Momyns (Momyned) B «oOpase-cxeme» — BBIOOD
ONTHUMAIIBHBIX JEHCTBHI (BBIBOJBI KOMHCCHH), 3AIIOMUHAHHEM HOBOW MH(pOpMaIun
— JIOTIOJTHEHUE ¥ M3MEHEHHME WHCTPYKIIHH.

350

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.

Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

Tab6n. 1. CpasHenue KOMHOHEHMO8 UHOUBUOYATLHOU UHMELIEKMYANbHOU 0esimelIbHOCU U

pacnpebeﬂeﬁnoeo uHmejiekma

0p2aHu3auu0HHoﬁ cucmemswl

Table 1. A comparison of activity of individual human’s intellect with a distributed

intelligence of an enterprise

I/IHZ[I/IBI/IHyaJ'ILHLH‘/‘I HWHTCJIICKT YCJIOBCKaA

pacnpez{eneHHmﬁ HMHTCJUICKT NPEANPUATUSL

1-#i »sTam BOCHPHATHS: «OTIEYATOK» | CyMMa CHCTEMHBIX W HHIWBUIYAIBHBIX

BHEIIIHETO BO3JEUCTBUS peakuuit paboTHUKOB Ha BHEIIHEE
BO3CHCTBUE

OubimoTeka MoAayled W «xpaHWiIHLle | pabouas nHpOpMAIHs, JOJKHOCTHBIE

KJIIOYE» HMHCTPYKIUH

2-i1 oTanm BOCHPHATHS: BBIOOP MOAYIBHON
«CXeMbI-00paza»

OLICHKH TI1apaME€TpOB BO3Z[efICTBPIS{ u c€ro
npeaBapuTe/ibHasA XapaKTEpUCTHUKA, }Z[eﬁCTBPIH
110 UHCTPYKIUSIM

TIOMCK JIydlIel UMeromencst mpuOImKeHHOH
CXEMBI, OIIEHKA €€ PAaCXOXKACHHH ¢ 00pa3oM

OIIEHKA YCIEUIHOCTH CTaHAAPTHBIX AeHCTBUI
(«co31aHNE KOMHCCHIY)

CitydaiiHas 3aMeHa MOJyJieit

KOPPEKTUpPOBKa JEeMCTBHUIL; HUCIIBITAaHUE
HOBBIX TIpeUI0KEHHH («paboTa KOMHUCCUI»)

«TCHETUYECKUN KOHTPOJIb»

OIICHKa YCHELIHOCTU CKOPPEKTHPOBAHHBIX
JISHCTBUH («BBIBOJIBI KOMHCCHIY)

3aIIOMHHAHNIE HOBOM CXEMBI

JOIIOJIHCHNEC U U3MCHCHHC I/IHCprKIII/Iﬁ

[IpencraBneHHBII MOJAENBHBI TNpPUMEp HWLTIOCTPUPYET Kak

CJIIO)KHOCTh U

HEOJHOPOAHOCTh CTPYKTYPUPOBAHHOM COIIMANIbHOM CHUCTEMBbI, TaK U HalU4yue
HECKOJIbKUX YPOBHEIl €€ paclpelesieHHOro WHTeUIeKTa (Tak, NpU MoTepe
yOpaBleHUs] TEpPCOHAN MpEANnpusATdUs OymeT JAeWCTBOBaTh TPYIIaMH,
MpecleayomuMu coOCTBeHHbIe 1enu). CyIIeCTBEHHO, YTO PalMOHAIBHOCTh
CHCTEMHOW JMHAMHKU YyBEJIMYMBAETCS IPU OrPaHUYCHHUH HaOOpa BO3MOXKHBIX

JCHCTBUI areHTOB W MpH HATHMYUM «OMOTHMOTEKW» CTAaHAAPTHBIX pEeaKIui
PYKOBOJICTBA MPEIPUSATHS U IIEPCOHANA.
TecHyl0 CBSI3b «UHTEJUIEKTYaJbHOCTH» OPraHU3allMOHHOW CHUCTEMBI €

dbopmanuzanmeit ee CTPYKTYpsl MW JEHCTBUM wumocTpupyer Tabm. 2.
PanoHanbHOCTh MHIMBHIYAJIBHOTO MOBEAEHHS JIIOJEH TaKXKe BO3pacTaeT cC
COKpalleHHeM BO3MOKHOCTEH BbIOOpa (Iepexoi YIHUNBI 10 CBETO(Opy, MOKYIKa
WIM TIpoJjlaka akUui Ha Oupxke 10 (UKCHPOBAHHOM IIEHE) M CTAHOBUTCS
«OTpaHMYECHHON» TPU BHIOOpPE M3 MHOTHX BO3MOXKHOCTEH (Iepexox yiuipl Oe3
cBerodopa, MPOU3BOJIbHAS 1I€HA AKIMI Ha OupxKe).

Tabn. 2. Dopmanvhvie yCio8us QYHKYUOHUPOBAHUS DA3HBIX OP2AHU3AYUOHHBIX CUCTIEM
Table 2. Formal conditions of activity for different organizing systems

«HIeaqbHas KOMUCCHS MHTHHT «KOJUICKTUBHBIN
HJIUOTY
o0mue 3HAHUA o | oOmue HamMepeHus HHUYero od1iero
CIICIIUATTbHOCTH
LeJIeBO OTOOp YYaCTHHKOB MO | CITyYaiHBINA oTOOp | cBOOOIHBII BXO
KPUTEPHIO KBAUTH(UKAIIUI YYaCTHUKOB MO OIM30CTH

351

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

HACTPOCHUHI
CHIIbHOE ylpaBlieHue | craboe yrpaBleHHe HET yMpaBIeHHs
(mpencenarenb ¢ pEIIAIOIIUM
TOJIOCOM)
(hopMaT30BaHHbIH oOMeH | HedopMaNbHBIH oOMeH | ciryJaiHbIH oOMeH
nHpopManell W MHEHHSAMH, | MHEHHSIMH U YMOLIUSIMU SMOLMSIMU
HCKJIIOUCHUE IMOLIUH
KOJINYECTBEHHOE CpaBHEHHE | IeKIapaIuu MHEHHH | HET (OPMYyIHPYEMBIX
3HAYUMOCTH MHEHUH | (TIPU3BIBBI) MHEHHUH
(TolocoBaHue)
MOAYMHEHHUE MEHBIIMHCTBA | HENOJUYNHEHNE HET OOJBIINHCTBA
OOJIBIIMHCTBY MEHBIIHHCTBA OOJBIINHCTBY
00513aTeNbHOCTD HCTIOJIHEHUS | Heo0s3aTeNbHOCTh HET penIeHui
peneHui HCIIOJIHCHUS pellleHui

OO1men3BecTHBIE CXEMBI KOJUIEKTHBHOTO MOBEACHHS (GKUBBIX)» COLUAIBHBIX CHCTEM
¢ OoJsiee MPUMHUTUBHBIMY areHTaMu (yJiei, MypaBeilHUK, THE3/I0 OC) TaKXe HEIIoX0
COIJIaCYIOTCSI C OCHOBHBIMH 3TallaMH «MOJYJIBHOTO» aJITOPUTMa HHTEIUIEKTyaIbHON
nestenbHOCTH [16]. Kak u B opraHu3allMOHHON cucTeMe, COCTOSIIeH U3 JI0eH, B
MOBEICHUM HACEKOMBIX TPYJHO pa3fenuTbh (OPMHPOBAHHE «OTIEYATKA»
(pukcanmio cucTeMOl BHENIHETO BO3ACHCTBHA) M CTAHAAPTHYIO PEAKIMIO HAa HETO
(«obpa3-cxeMy»); TPHUMEPOM MOXKET CIY)KHTh aTaka MypaBbeB WJIM OC Ha
qy)KepoIHbII 00beKT BONMM3M rHe3na. (Paznenenue Bo3IeHCTBHSA, €r0 OTPaKCHUS B
CO3HAaHMU W penpe3eHTannii o0paza B ICHUXOJOTHMH TaKXKe SBISETCS HETPOCTOH
3amadeit [19]). «TaHIB» mMyen B yabe U «TPOIMUHKH» MYPaBbEB, KOTOPHIE MOXKHO
paccMmarpuBarh Kak MOJYJIH, HalPaBJISIOIINE JBIKSHUSI 0COOEH, U3MEHSIOTCS TIPH
W3MEHEHNH BHEIIHUX ycinoBuid. IlepememieHne MypaBRMHOTO THe3da U3
HEeOJIaronpuaATHOW 30HBI B OJArONPHUATHYIO, BOCCTAHOBJIEHHE ITOBPEkKACHHOTO
MypaBeHHHKa U MHOTHE APYrHe NeHCTBUSA KOJUIEKTUBHBIX HACEKOMBIX Pa30HUBaOTCs
Ha HECKOJNBKO CTAaHIAPTHBIX BOCIPOM3BOAMMBIX PpEXHUMOB (BO30YyXKIEHHE,
HECOTJIaCOBaHHbIE [EICTBHSA, COIJIACOBAaHHbIE JEHCTBHSA, «YyCIIOKOGHHE» MpHU
JOCTUTHYTOM 1I€JIM) — 3TOT MepedeHb JIErKO MPOI0JDKUTb.

6. «h3mepeHue» pacnpedesleHHO20 UHMessIekma MooesibHOU
cucmembl

KomnbsrorepHoe MonenupoBanue nuHaMMKH MCC HeSBHO BKIIIOYAET OLIEHKY
YPOBHSL paclpeie]eHHOT0 HHTEJIEKTa MOJCNIBHOM cucTeMbl (Hampumep,
TPAHCIOPTHOTO MoToKa [11] — mO CKOPOCTH ABMXKEHUSI, MPOIYCKHOH CIIOCOOHOCTH
JIOPOTH, TPEJICKa3bIBAEMOMY YHCITY aBapuil W T. 1.) ¥ MaKCUMHU3AIHI0 3TOTO
ypoBHA. Mepoit PU B Takmx pacderax sBiIseTcd OJIM30CTh JTOCTUTAEMOTO
pe3ynbpTaTa K OOBEKTHBHOHM IIEIH CHCTEMBI — B ClIydae TPAHCHOPTHOTO MOTOKAa K
MaKCHUMaJabHO ObICTpOMY O€3aBapwiiHOMY IBIDKEHUIO. JIJIT KOMITBIOTEPHOU
WUIIOCTPALMM 3TUX IOJOXKEHUI MBI HCIIOJIb30Bajld aHWMALMOHHYIO MOJENb, B
KOTOpPOMl areHTbl C OJMHAKOBBIM pajMyCOM [y MEpPEMEILAINCh IO KOPHUAOPY C
NPENATCTBUSMH, OJIOKHPYIOIIMMHU CKBO3HOE JBMKeHHE (puc. 4). CocrosHue areHTa

352

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

3ajaBany ATk 9ucioBeix mapamerpoB (R(N), Ky, Ko, ks, K4), THe R = nry — pamuyc
BOCIIPHATHSL arcHTOM ero Okpyxenus, a ocrtaibhbie 0<k<0.1 - mapamerps
JIBUJKEHUS areHTa:

ki — ycKopeHue BNpaBo: NPHpALIEHHE CKOPOCTH HA KAKAOM IIare IUCKPETHOIO
BPEMEHH KaK J0JIs MAKCUMAJILHOM CKOPOCTH Vq (yerenonazanue areHra),

K, — TOpMOsKeHME NEPE MIPENATCTBUEM B PAANYCE BOCIIPUATHS,

ks m ks — COOTBETCTBEHHO Clle[OBaHHE 3a JPYTMMH areHTaMd B paguyce
BOCIIPUSATHS M KOPPEKIHMA COOCTBEHHOM CKOPOCTH 10 CKOPOCTH MX JBUIKEHHS.
CTOJIKHOBEHHE areHTa ¢ NPENATCTBHAMU M IPYTMMM areHTaMU IPOUCXOIMIN KakK
abCOJIIOTHO YIPYIUE C COOTBETCTBYIOIIMMHY M3MEHEHHUAMH HAIPABJIEHHS JBIKEHUS
U ckopocTel. Bosee meTanbHOE ONMCAHUE CXEMbI pacyeTa OyAET MPENCTABIEHO B
OTIETBLHOM MyOIHKALMH.

——

NapaMeTpbl anexTa

AV
S

ko kg by kg
—‘ ﬂ

(=) (®

Puc.4. (@) Cxema «kopudopay ¢ npensimcmeusmu u napamempnvl azenma, (6) Osuxicenue 8
«0OyueHHOU» cucmeme
Fig. 4. (a) Pathway with obstacles and agent’s parameters; (b) movement of agents in a
«trainedy system

B mepBoM mukie pacuera 24 areHta ogmHAKOBOro pamuyca 0 ¢ ¢pukcupoBaHHBIM
paguycom BocmpusatHs R=3r0 wu mapamerpamu gBwkenus (0.01, 0,0, 0),
CilydalHBIM 00pa3oM pa3MelleHHble B mosoce muprHo 5r0 mepen «crapToBoi»
JUHMEH, TepeMeIlalnch IO KOPHUAOpY CcJlieBa HAMpaBO [0 «QHUHHIIA», T.C.
MPOXOKACHUS TOJHON JIWHBI Kopuaopa. HampaBneHust NBHKEHHS U CKOPOCTH
areHTOB KOPPEKTHUPOBAJINCH Ha KaXIOM IIare JWCKPETHOTO BpPEMEHH B
cootBerctBun ¢ mapamerpamu {Ki} 1o oOBekTaM (MPEMATCTBHAM H JPYTHM
areHTaMm) B paJnyce BOCIPHATHSA. B mocrieayomux nukiax mapameTpsl IBHKCHUS
12 «MemyIeHHBIX» areHTOB, IPEOI0JIEBIINX KOPUAOP Ha MPEABIIYIIEM IIUKIIE MO3Ke
12 «OBICTPBIX», 3aMEHSIM MapameTpamMu 12 «OBICTPBIX» areHTOB CO CIIy4allHBIMH
Bapuarsvu {[1ki=+0.001} (remetnueckuii ot6op). KommuectsenHoit orenkoit PU
CHCTEMBI CIIY)KWJIO CpeiiHee BpeMsl t MpOXOXICHHsI KOpUIopa areHTOM B KaXKIOM
LUKJIC.

353

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

Ky

waroe k|

00 00 520 e O 100 200 00

HUCNO NPOroHoR
YHUCNC NROroHOE

(@) (&)

Puc.5. (a) Hzmenenue cpeoneco spemenu npoxooa t npu o6yuenuuy cucmemvl, (6) usmenenus
K03(hPuyuenmos 0guicenus
Fig. 5. (a) Evolution of average passing time t during ‘learning’ (b) evolution of movement
parameters

B xoze sBomtonuu uckyccrseHHo MCC cpennee Bpems npoxoaa t 3a nepseie 150-
200 nuknoB ymensmanocs ot 1040-1050 no 880—870 maroB m majee ocTaBanoch
MPUOTU3UTETFHO OCTOSHHBIM (puC. 5 a). [lapaMeTphl IBM)KEHUS areHTOB IPH 3TOM
MPOJIOIHKANN U3MEHSTHCS (puc. 5 6). XapakTep JBUKEHHS B PE3YIbTATE YBOJIOIHUH
M3MEHSUICS. OT XaOTHYeCKOro npeiida mpu MHOTOYMCICHHBIX CTOJKHOBEHHSX C
NPEeNITCTBUSIMH M MEXIy CO00il B «HEOOyueHHOW» CHUCTEME K COIJIaCOBAaHHOMY
JBIDKCHUIO TPYNIAMH, OTMOAIONIMMH TIPETSATCTBUS, B «OOYUEHHOW» cHCTEMe
(puc. 4 6). Bpems TpOXOXIEHHUS KOPHIOpAa areHTaMu C (HUKCHPOBAHHBIMU
napametpamu gewkenns (k1, 0.01, 0.01, 0.01) mpu k1<0.05 ymenbmiagocr c
YBEIMYCHUEM pajJiyca BOCHPHATHSA, NPOXOJsS 4Yepe3 MHHUMYM (puc. 6).
(Janpueiimee yBenmuuenue K1 OPUBOIMIO K JOCTHXKCHHIO BCEMH areHTaMH
MakcuMaibHOW ckopoctu VO 3a mepsble 10-15 mraroB auckpeTHOro BpeMEHH H
COIIPOBOXKAAJIOCH YBENWYEHHEM t ¢ ero HeOONbIIMM JHHEHHBIM pPOCTOM MpHU
yBenmnuennu R). Takum 00pa3oM, pacueTsl HATIBIHO TMPOJEMOHCTPHPOBAIH
croco6HOCTh MoaenbHOH MCC #3 HMCKYCCTBEHHBIX areHTOB BOCHPHHHMATH
WHQOPMALIMI0O ¥ ONTUMHU3UPOBATh JWHAMHUKY B Xoae «oOyueHHs» (T.€.
TEHETHYECKOTO 0TOOpa «OBICTPBIX» areHTOB).

7. O6cyxdeHue

IIposiBnenussm PU B couManbHBIX CHCTEMax, BKIIOYas Pa3JIUYHBIE ACIEKThI
KOJUIEKTMBHOW YEJIOBEYECKOW JMEesTENbHOCTH, MOCBAIICHA OOIIUpHAs JUTEepaTypa
(em. [1, 10, 30, 32, 33]). OnHako B GOJBLIMHCTBE COBPEMEHHBIX ITyOJIMKALIUiA
UHTEJUIeKTyanbHas JesTenbHocte MCC TpakTyeTcsi BecbMa OrPaHHYCHHO: Kak
obmeH uHpopMmanueit Mexay arenramu [1, 33] wiu kak BepaboTKa 00LIEr0 MHEHHS

354

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

B coBokynHocTh jmogei («crowd wisdomy» [34]). 3a mpenenamu o6GCyRIEHUS,
QHAIOTMYHO TEOPHUSIM HMHAWBHIAYAJILHOTO MHTEJIEKTa, OKa3bIBAETCS CIOCOOHOCTH
MCC He TOIBKO BOCIPUHUMATE ¥ 00pabaThiBaTh HHGOPMAIIHIO, HO M TeHEPUPOBATH
HOBYIO MH(POPMAIIMIO — HATIPHUMED, B (POPME MYPABBUHBIX «TPOIHUHOKY, BEAYIIUX K
HOBOMY, HE HCIIOJb30BAHHOMY paHee MCTOYHUKY MUmM. IIpu 3ToM «obyuaemas»
CHCTEMAa MOJKET COCTOSATH U3 ar€HTOB C HYJIEBBIMA KOTHUTHBHBIMU BO3MOKHOCTSIMH
— KaK B IMOCTPOEHHOW HAaMHM MOJENU JBMKEHHS IO KOPHUIOPY, TJE JUHAMUKY
KaKIOTO areHTa 3aaBajii ATh YHCIOBBIX IIAPAMETPOB.

1ea0 4 m 00l
110510 -
], o 0o
L]
1000
E]
- 0o e 003
z 1]
g =0 - o 04
El i
C =404 o
] - -
. v 003
E_ -.":—- n » » o
500 - o .. - o .
E - o " ;'E
- o
280 Sr. %53 ., : -3 R
T - -
250 T T T T T T T T T 1
o z < = = o
B AAYC BOCHDASATHA 3r enTa R=I1l,:

Puc.6. 3asucumocmo epemenu npoxooa t om paduyca eocnpusmust R npu pasnwix
koa(puyuenmax Kq
Fig. 6. Passing time t vs. perception radius R at different values of movement parameter k;
OpraHu3alliOHHBIE CUCTEMBI, COCTOSIINE U3 JIIOJIEH, TaKkKe CIIOCOOHBI HE TOJBKO K
0oOMEHY WHIUBUIYaJTbHBIMH MHCHISIMH, TPUBOIAIIEMY K «KOHCEHCYCY» (YTO
BOCIPOHM3BOIUTCS OOJBLIIMHCTBOM COLHMOJIOTHYECKUX MoJesel, cM. [14, 15]), Ho u k
NPOU3BOJICTBY HOBOM MH(OpMaNNK «KOIJIEKTUBHBIM pasymom». PU Takux cucrem
OTIMYAETCA OT YEJIOBEYECKOr0 CO3HAHUS KaK MPUHLIMIUAIBHO MEHBIINM YHCIOM
«y310B» (T.e. JII0JIeH) B CETEBBIX CTPYKTYpPaX, TaK M CHOCOOHOCTBIO THX Y3JIOB K
rryookoii mepepabotke wuHpopmammu. Tekymas wHQOpMAMs O COCTOSHUH,
TeHepHupyeMasi B CUCTEME, HAIIPaBIseT ee KOJUIEKTHBHYIO IMHAMUKY B MEPEMEHHBIX
BHEIIHUX YCIOBHSX U (PUKCHpyeTCS B BUAE aIMUHUCTPATUBHBIX «00OPa30B-CXeM» —
T.e. pacIOpsHKCHHH, TpaBWi W HWHCTpyKuui. IIpm stom «rmybmaa» PU sBHO
BO3pacTaeT ¢ NOBBIMICHWEM (opManu3anuu cBs3ed B crpykrype MCC. Tak, B
MOJICTIBHBIX ~ IpUMepax TaOiumbl 2, cTporas perylaMeHTalusl —«HUlealibHOM
Komuccuu» (JieBas KOJIOHKA) SIBISETCS 3BPUCTUKOH, CTUMYyNMpyOUied ee
COJIepKaTeNbHyl0 paboTy, Torja Kak THOJIHOCTBIO JedopmanuzoBanHas MCC
(mpaBasi KOJOHKAa TaOJIMIBI), HE3aBUCHUMO OT MHTENIEKTYyaJbHOTO YPOBHS

355

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

COCTaBIIIIONIUX €€ JIIOACH, BpSA JIM CIIOCOOHA TPHHATH Kakoe-Tubo oobmee
perIeHue.

«MonmynpHBI» TOAXOA TPEIACTABISAETCA NPOAYKTHBHBIM TaKXKe JUIA
KOHCTPYHPOBAHHUSA HUCKYCCTBEHHOTO wHTeuiekta (M) B BBRUHCIHTENBHON
KOMIBIOTepHOIT cpene. M3BecTHO, YTO TmTpH «OOYYCHHHW» MHOTOCIOMHBIX
HEWPOHHBIX CETEH BEKTOPHBIC PEIIMKH pacllO3HAaBAEMBIX OOBEKTOB B
npomexxyTodnsix crnosx MHC mpeoOpasyroTcss k MoxynbHOU cTpykrype [21]. B
o011eM cityyae pacrio3HaBaeMoOMY OOBEKTY MOXKET COTIOCTABIISITHCS HA0OP MOJyIIEH,
(UKCHPYIOIMX ONpeNeieHHble KauecTBa OOBEKTa — 4YTO OTKPBIBAaCT NyTh K
CO3[JAHUIO CaMOOOY4YalomuXcsi IMporpamMM. B oTinmume OT WHIMBHIYalILHOTO
YeJIOBEUECKOr0 HMHTEJUIEKTa, YUCIO MOIYJIeH B «oOpase-cxeme», MpH XOPOLIMX
BBIYUCITUTEIBHBIX MOIIHOCTSAX, MOXET OBITh JIOCTATOYHO OOJBIIKUM, a mepedop
«IUTOXUX» MOAYyJeH — OBICTPBIM U 3 dekTuBHEIM. [lapamerpsl «mMoxynsHOTO» WU,
TakKUM 00pa3oM, MOTYT CYIIECTBEHHO IIPEBBICHTH JIIOOBIE YEIIOBEYECKHUE
BO3MOJKHOCTH, YTO YKa3bIBAET Ha BEPOSTHBIC PUCKH MPH €r0 PCATH3aLIH.

8. MepcnekmueHble HanpaesieHus uccriedoeaHul

HccrnenoBanms paclpeneieHHOTO HHTEIUICKTa COLMMANBHBIX CHCTEM OyOyT
MIPOBOAUTHCS B HECKOJIBKUX OCHOBHBIX HAIIPABJICHUSX.

(1) Paspaborka MOIYIBHOM MOJETH WHIMBUIYAILHOTO HHTEIUICKTA, MTOKA
chopMyIHpOBaHHOW Ha KayeCTBEHHOM YpOBHE, HAIOJHEHHE e¢
KOJIMYECTBEHHBIM COJICpXKaHUEM (CTPYKTypa MOIYJeH, KIo4Yed u
OMOIMOTEK, MOIYIBHBIH COCTaB «0Opa30B-CXeM», MEXaHHU3MEI
CpaBHEHMs «OTIEYaTKa» C MOAYJIbHOM CXEMOMW, 3aMEHbl MOJYyJIEH B
cxeMe, OOHOBIICHUSI MOy el B OHONIHOTEKEe U T.1.).

(2) Dwmnupuueckne ONEHKH YPOBHS PACIPEACICHHOTO WHTEIUICKTA IS
COLIMANBHBIX CHCTEM pa3HOW MpUpoAb! (OopraHu3anuii, mnapTui,
MOJUTUYECKUX TeYeHHH u T.A.). Ilouck Koppenmsimi «ypOBHS
HHTEJUIEKTa» CO CTPYKTYPOU COLMAIbHOU CUCTEMBL.

(3) ®opmanbHOE OIMMCAaHME TPOLECCOB BOCHPUATHA M IepepabOTKU
nHGOPMAIMK HMHIUBUAYATbHBIM CO3HAHHEM W «KOJUICKTHBHBIM
pazyMmomy». HccnenoBanue MaTeMaTHYECKUX CBOMCTB
UHGOPMAYUOHHO2O NPOCMPAHCMEd, OOBEKTAMH KOTOPOTO CITyKaT
MOJTyJT BOCTIPUSTHS U «00Pa3bI-CXEMBI.

(4) Mommduxkanus cymecTByromux Moseseil KOIIEKTHBHOTO MOBEIEHUS
(mmHamMuKa TIENIeX0THBIX u ABTOMOOMIIBHBIX MIOTOKOB,
pacrpocTpaHeHHe MHEHUH B OHJIAWHOBBIX COLMAIBHBIX CETSX,
MOJUTHYECKHEe KaMIAHWM W JAp.) C HENOCPEACTBEHHBIM Yy4YETOM
pacHpenesieHHOr0 HHTEJUIEKTa y CHUCTEMBI B3aMMOIECHCTBYIOIIUX
areaToB. ComocTaBiieHHE PE3yNbTaTOB MOJACIHPOBAHUSI C
SMITUPUYECKUMU JaHHBIMU.

356

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

9. 3aknroyeHue

Mp! mosnaraeM, 4To MpPEIIOKEHHBIH HAMH «MOIYJIBHBIN)» AITOPUTM BOCHPHUSTHS,
00pabOTKH, WCIIONB30BAaHUA W XpAaHCHHUS WHPOPMAINU IPUMEHHM K OIHCAHHUIO
WHIVBHIYaJIbHOTO WHTEIUICKTa 4YeJIOBeKa M (B CKOPPEKTHPOBAHHOM BHIE) K
MOJICTIMPOBAHUIO PACIPE/ICICHHOTO HHTEIUIEKTa COIHMANbHBIX cucTeM. Oba BHza
MH()OPMALMOHHOM AMHAMUKU PEaM3YIOTCS B ONPEJCIICHHBIX CETEBBIX CTPYKTYypax
(em. [1, 8, 14, 17, 25]), B3aUMOCBSI3b KOTOPBIX C YPOBHEM HHTEJUIEKTa CIEIyeT
JOTIOJTHUTENbHO M3ydaTh. OYeBUAHBIMH HANpaBICHUAMHU JalbHEHIINX
UCCIIEJIOBaHUI B JAaHHOW OOJIAaCTH SIBISIOTCS JeTaiau3auus U (opMaIn3anus
MOJYJIPHOH MOJENM WHTEIUIEKTa, OMIUPUYECKHE OLECHKH «TJIyOMHBI»
pacopeneneHHoro uHremwiekTa MCC U €ero HEmoCcpeACTBEHHBIM YYeT B
MOJICTTMPOBAHNH MYJIbTHATCHTHBIX CHCTEM.

I0JI.C. mpusHaTeneH AOKTOPY mcuxojorndeckux Hayk M.B. @amukman (HUY
BIIID) 3a mpenocTaBieHHYIO JHUTEPATypy [0 KOTHUTHUBHBIM HCCIICIOBAHHUSIM U
IUIOJJOTBOPHOE 00CYKACHHE «MOYILHOI» MOJIEITH.

Cnucok nutepatypbl

[1] Moussaid M, Helbing D, Theraulaz G, How simple rules determine pedestrian behavior
and crowd disasters. PNAS, 108 (17), 2011, pp. 6884-6888

[2] Tyoko M.B., HoBukoB JI.A. Teopuss urp B ympaBi€HHH OPTaHU3ALUOHHBIMH
cucremamu. 2-e uzganne. M.: Cunrer, 2005, 138 c.

[3] Galam S. Sociophysics: a physicist's modeling of phycho-polytical phenomena.
Springer, 2012, 439 p.

[4] 3axapos A.B. Mojenu moauTHYeCKON KOHKYPEHIHMH: 0030p JIUTEpaTyphl. JKOHOMHUKA U
MaTeMaTH4eCKue MeTobl, ToM 45, Beim. 1, 2009 r., ctp. 110-128

[5] Dorogovtsev S.N. Lectures on Complex Networks. Clarendon: Oxford, 2010, 134 p.

[6] Newman M.E.J. The structure and functions of complex networks, SIAM Review,
45(2), 2003, pp. 167-225.

[7] BepuoBckuit M.M., Kyswopun H.H. Cnyuaitnsie rpadbl, MOmenn u T€HEPaTOPHI
6esmacmtabueix rpados. Tpymsr MCIT PAH, 2012, tom 22, ctp. 419-432. DOI:
10.15514/ISPRAS-2012-22-22.

[8] EBun UM.A. BBeneHue B TEOPHUIO CIOXKHBIX ceTel. KOMIBIOTEPHBIE MCCIIEIOBAHUS H
MoOIeTIMpOBaHue, ToM 2, Bbi. 2, 2010 r., ctp. 121-141.

[9] Hosuxor J[.A. Mogaenu crpaterudeckoi peduieKcud. ABTOMATHKA M TelleMEXaHUKa,
tom 73, Bem.1, 2012 1., cTp. 1-19

[10] Kahneman D. Maps of Bounded Rationality: Psychology for Behavioral Economics
Amer. Econ. Rev., 2003, 93(5), pp. 1449-1475.

[11] TacuukoB A.B. (pen.), BeeneHne B MareMaTH4ecKoe MOJEIMPOBAHHE TPAHCIOPTHBIX
norokoB. M.: MITHMO, 2013, 428 c.

[12] Anamuyk A.H., EcunoB C.E. KoyuteKTHBHO (IyKTYHpPYIOIHE AKTHUBBI MPH WHATHIHH
apOUTPaKHBIX BO3MOXKHOCTEIl M OLEHKA IUIATEXKHbIX 00s3aTenbCTB. Y. (u3. Hayk,
toMm 167, Boim. 12, 1997 r., ctp. 1295-1306.

[13] Schelling T. Dynamic models of segregation. J. Math. Sociol., 1 (2), 1971, pp. 143-186

[14] Castellano C., Fortunato S., Loreto V. Statistical physics of social dynamics. Rev. Mod.
Phys. 81 (2), 2009, pp. 591-646.

357

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

[15] CnoBoxoroB 10.JI. ®usuka u corpodusuka. IIpodaemst ynpasienus, 2012, Bbim. 3, cTp.
2-34.

[16] KunsitkoB B.E. Mup 00IIeCTBEHHBIX HACEKOMBIX, 3-¢ u3j., M.: JluGpokom, 2009, 408 c.

[17] Engelbtecht A.P. Fundamentals of computational swarm intelligence. N.-Y.: Wiley,
2005, 672 p.

[18] ®anukman M.B. OcHoBHbIE TOIXOABI B KOTHHTHBHOW Hayke. http://www.soc-
phys.chem.msu.ru/rus/prev/zas-2017-02-09/presentation.pdf. [Hara obpameHus:
02.04.2018.

[19] Bennukosckuit 5.M. KoruurrBHas Hayka: OCHOBBI ICHXOJIOTHH MO3HaHKs. B 2-X T.. M.:
Cwmpicit; Akanemus, 2006.

[20] Shaib-Draa B, Moulin B., Mandiau P., Millot P. Trends in distributed artificial
intelligence. Artific. Intelligence Rev., 6 (1), 1992, pp. 35-66.

[21] Xaiikun C. Heliponnsie cetu. [Tonubiil Kype. 2-¢ usnanue. Bussmc, 2016, 1104 c.

[22] TIeryxo B.B. Ilcuxosorust MblUIcHHs. YueGHO-MeTOqMIecKoe nocobue. M.: MI'Y,
1987, 99 c.

[23] AnbTrymiep T.C. Haittu wunero. Beemenne B TPU3 — Teopuio perreHus
n300peTaTenbekux 3aaad. 4-¢ u3a. M.: Anpnuna [Tabmumeps, 2011, 400 c.

[24] Yepnasckuit JI.C. Cunepretika U uHpOpMamus: AWHAMHYECKas TeOpUs HMH(OpMAIHH.
3-e m3n. M.: Jlubpoxkom, 2009, 304 c.

[25] Anoxun K.B. KormumroM: pasyMm Kak (U3MUecKas W MaTeMaTHUecKas CTPYKTYpa.
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2016-09-27/presentation.pdf. Jara
obpammenust: 02.04.2018.

[26] IOymckuit C.A. MopenupoBanne pabOTBI MO3ra: COCTOSHHE H EPCICKTUBEIL.
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2015-03-31/presentation.pdf. Jara
obpamienus: 02.04.2018.

[27] Ohlsson S. Information-processing explanations of insight and related phenomena. In M.
T. Keane & K. J. Gilhooly (Eds.), Advances in the psychology of thinking. New York,
NY: Harvester Wheatsheaf, 1992, pp. 1- 44.

[28] Fodor J.A. The Modularity of Mind. MIT Press 1983,142 p.

[29] Kyprauckuit A.B. IloHsiTHe BHYTpEHHEH perpe3eHTalli B KOTHUTHBHOW HEWpOHAYKe.
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2017-02-28/presentation.pdf. Hara
obpamenus: 02.04.2018.

[30] Dandurand F., Shultz T.R., Rivest F. Complex problem solving with reinforcement
learning. Proc. 6th IEEE Internat. Conf. on Development and Learning, 2007, pp. 157-
162.

[31] Hebb D.O. The Organization of Behavior: a Neuropsychological Theory, Wiley, 1949,
335p.

[32] Mossaid M., Garnieer S., Theraulaz G., Helbing D. Collective information processing
and pattern formation in swarms, flocks and crowds. Topics Cogn. Sci., 1, 2009, pp 469-
497.

[33] Becker J., Brackbill D., Centola D. PNAS, 114, 2017, pp. E5070-E5076.

358

http://www.soc-phys.chem.msu.ru/rus/prev/zas-2017-02-09/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2017-02-09/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2016-09-27/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2015-03-31/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2017-02-28/presentation.pdf

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

Toward construction of a modular model of distributed
intelligence

L2yy.L. Slovokhotov <slov@phys.chem.msu.ru>
%|.S. Neretin <ivan@neretin.ru>
'Lomonosov Moscow State University,
GSP-1, 1 Leninskie Gory, Moscow, 119991, Russia
%Institute of Organoelement Compounds, Russian Academy of Sciences,
28 Vavilov St., Moscow, 119991, Russia
*Rock Flow Dynamics, 25A Profsoyuznaya St., Moscow, 117418, Russia

Abstract. Multi-agent social systems (MASS) in general are systems of autonomous
interdependent agents each pursuing its own goals interacting with other agents and
environment. Dynamics of MASS cannot be adequately modeled by the methods borrowed
from statistical physics since these methods do not reflect the main feature of social systems,
viz. their ability to percept, process and use the external information. This important quality
of distributed (“swarm”) intelligence has to be directly taken into account in a correct
theoretical description of social systems. However, discussion of distributed intelligence (DI)
in the literature is mostly restricted to distributed tasks, information exchange and aggregated
judgment — i.e. to ‘sum’ or ‘average’ of independent intellectual activities. This approach
ignores empirically well-known option of a ‘collective insight’ in a group as a special
demonstration of MASS’s DI . It this paper, a state of art in modeling social systems and
studies of intelligence per se are briefly characterized, and a new modular model of
intelligence is suggested. The model allows to reproduce the most important result of
intellectual activity, i.e. creation of new information, which is not reflected in the
contemporary theoretical schemes (e.g. neural networks). Using the “modular” approach, a
correspondence between individual intelligence and DI of MASS is discussed, and
prospective directions for future studies are suggested. Efficiency of DI was estimated
numerically by computer simulations of a simple system of agents with variable kinematic
parameters {ki}, moving through a pathway with obstacles. Selection of fast agents with
‘positive mutation’ of parameters gives ca. 20% reduction of average passing time after 200-
300 cycles and creates a swarm movement where agents follow a leader and cooperatively
avoid obstacles.

Keywords: multi-agent social systems; swarm intelligence; models of intelligence.
DOI: 10.15514/ISPRAS-2018-30(3)-23

For citation: Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of
distributed intelligence. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362
(in Russian). DOI: 10.15514/ISPRAS-2018-30(3)-23

References

[1] Moussaid M, Helbing D, Theraulaz G, How simple rules determine pedestrian behavior
and crowd disasters PNAS, 108 (17), 2011, pp. 6884-6888

[2] Goubko M.V.,Novikov D.A. Game theory in control of organizing systemsT. 2-nd ed..
Moscow, Sinteg, 2005, 138 p. (in Russian)

359

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

[3] Galam S. Sociophysics: a physicist's modeling of phycho-polytical phenomena.
Springer, 2012, 439 p.

[4] Zakharov A.V. Models of political competition” a review. Economics and Mathematical
Methods [Ekonomika | matematicheskiye metody], 45 (1), , 2009 pp. 110-128 (in
Russian)

[5] Dorogovtsev S.N. Lectures on Complex Networks. Clarendon: Oxford, 2010, 134 p.

[6] Newman M.E.J., The structure and functions of complex networks, SIAM Review,
45(2), 2003, pp. 167-225.

[7] Bernovskiy M.M., Kuzyurin N.N. Random graphs, models and generators of scale-free
graphs. Trudy ISP RAN/Proc. ISP RAS, 2012, v. 22, pp. 419-432 (in Russian). DOI:
10.15514/ISPRAS-2012-22-22.

[8] Yevin LA. Introduction to a theory of complex networks. Computer Research and
Modeling [Kompyuternye issledovaniya | modelirovanie], 2 (2), 2010, pp. 121-141 (in
Russian).

[9] Novikov D.A. Models of strategic behavior. Automation and Remote Control, 73 (1),
2012, pp.1-19

[10] Kahneman D. Maps of Bounded Rationality: Psychology for Behavioral Economics
Amer. Econ. Rev., 2003, 93(5), pp. 1449-1475.

[11] Gasnikov A.V. (Ed.). Introduction into mathematic modeling of traffic flows. Moscow,
MTsIMO, 2013, 428 p. (in Russian)

[12] Adamchuk A.N., Esipov C.E. Collectively fluctuating assets in the presence of arbitrage
opportunities, and option pricing. Phys. Usp., vol. 40, 1997, pp. 1239-1248

[13] Schelling T. Dynamic models of segregation. J. Math. Sociol., 1 (2), 1971, pp. 143-186

[14] Castellano C., Fortunato S., Loreto V. Statistical physics of social dynamics. Rev. Mod.
Phys. 81 (2), 2009, pp. 591-646.

[15] Slovokhotov Yu.L. Physics vs. Sociophysics. Control Science [Problemy upravleniya],
2012 (3), pp. 2-34 (in Russian).

[16] Kipyatkov V.E. World of social insects, 3rd Ed., Moscow, Librokom, 2009, 308 p.

[17] Engelbtecht A.P. Fundamentals of computational swarm intelligence. N.-Y.: Wiley,
2005, 672 p.

[18] Falikman M.V. The principal approaches in cognitive science http://www.soc-
phys.chem.msu.ru/rus/prev/zas-2017-02-09/presentation.pdf (in Russian). Accessed
02.04.2018.

[19] Velichkovsky B.M. Cognitive science: foundation of cognition psychology. In 2
volumes.Moscow, Smysl, Akademiya, 2006 (in Russian).

[20] Shaib-Draa B, Moulin B., Mandiau P., Millot P. Trends in distributed artificial
intelligence. Artific. Intelligence Rev., 6 (1), 1992, pp. 35-66.

[21] Khaikin S. Neural networks. A comprehensive course. 2nd edition. Viljams, 2016, 1104
p. (in Russian)

[22] Petukhov V.V. Psykhology of thinking A textbook. Moscow, MGU,. 1987, 99 p. (in
Russian).

[23] Altshuler G.S. To find the idea. Introduction into TRIZ: a theory of solving inventional
problems. 4EP ed. Moscow, Alpina Publishers, 2011, 400 p. (in Russian)

[24] Chernavsky D.S. Synergetics and information: dynamic theory of information. 3rd ed.
Moscow, Librokom, 2009, 304 p. (in Russian)

[25] Anokhin K,V. Cognitom: mind as a physical and mathematical structure.
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2016-09-27/presentation.pdf (in
Russian). Accessed 02.04.2018.

360

https://link.springer.com/article/10.1134/S0005117912010018
https://link.springer.com/journal/10513
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2017-02-09/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2017-02-09/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2016-09-27/presentation.pdf

Cnosoxotos 10.J1., Heperun U.C. K noctpoeHuIo MOIyIHON MOZEIH PaclpeIeeHHOTO HHTEIICKTA.
Tpyowt UCII PAH, Tom 30, . 3, 2018 r., ctp. 341-362

[26] Shumsky S.A. Modeling of brain activity: state of art and prospects. http://www.soc-
phys.chem.msu.ru/rus/prev/zas-2015-03-31/presentation.pdf (in Russian). Accessed
02.04.2018.

[27] Ohlsson S. Information-processing explanations of insight and related phenomena. In M.
T. Keane & K. J. Gilhooly (Eds.), Advances in the psychology of thinking, New York,
NY: Harvester Wheatsheaf, 1992, pp. 1- 44.

[28] Fodor J.A. The Modularity of Mind. MIT Press 1983,142 p.

[29] Kurgansky A.V. Internal representation in cognitive neuroscience. http://www.soc-
phys.chem.msu.ru/rus/prev/zas-2017-02-28/presentation.pdf (in Russian). Accessed
02.04.2018.

[30] Dandurand F., Shultz T.R., Rivest F. Complex problem solving with reinforcement
learning Proc. 6th IEEE Internat. Conf. on Development and Learning, 2007, pp 157-
162.

[31] Hebb D.O. The Organization of Behavior: a Neuropsychological Theory, Wiley, 1949,
335p.

[32] Mossaid M., Garnieer S., Theraulaz G., Helbing D. Collective information processing
and pattern formation in swarms, flocks and crowds. Topics Cogn. Sci., 1, 2009, pp.
469-497.

[33] Becker J., Brackbill D., Centola D. PNAS, 114, 2017, pp. E5070-E5076.

361

http://www.soc-phys.chem.msu.ru/rus/prev/zas-2015-03-31/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2015-03-31/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2017-02-28/presentation.pdf
http://www.soc-phys.chem.msu.ru/rus/prev/zas-2017-02-28/presentation.pdf

Slovokhotov Yu.L., Neretin I.S. Toward construction of a modular model of distributed intelligence. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 341-362

362

	Extracting architectural information from source code of ARINC 653-compatible application software using CEGAR-based approach
	1. Introduction
	2 IMA
	3 Source code analysis
	3.1 Architectural information in source code
	3.2 General approach for source code analysis
	3.3 Extracting APEX calls from source code
	3.4 Output format
	4 Results and conclusions
	References
	Извлечение архитектурной информации из исходного кода ARINC 653 совместимых приложений с использованием алгоритма CEGAR
	Список литературы

	Applying Deep Learning to C# Call Sequence Synthesis
	1. Introduction
	Our main contributions are:
	2. DeepAPI model
	3. Dataset
	3.1 Dataset collection
	3.1.1 Obtaining list of relevant repositories
	3.1.2 Downloading repositories
	3.1.3 Extracting data
	3.2 Data preprocessing
	3.2.1 Language detection
	3.2.2 Leaving only distinct pairs
	3.2.3 Repetition contraction
	3.2.4 Vocabulary filtering
	3.2.5 Stemming
	4. Transfer learning for API mining
	4.1 Alternative dataset
	4.2 Applying transfer learning for model improvement
	5. Model training
	6. Evaluation
	6.1 Metrics
	6.1.1 BLEU
	6.1.2 FRank
	6.1.3 Precision@N
	6.2 BLEU evaluation
	6.3 Transfer learning evaluation
	6.4 Human evaluation
	6.5 Limitations
	7. Related work
	7.1 API usage pattern mining
	7.2 Generating source code from natural language
	7.3 Deep neural machine translation and source code
	8. Conclusion
	Acknowledgment
	References
	Список литературы

	In-Kernel Memory-Mapped I/O Device Emulation
	1. Introduction
	2. State of the art
	3. Basic I/O Introduction
	4. Intercepting the I/O
	5. Proposed approach
	5.1 With write-only page support
	5.2 Without write-only page support
	6. Evaluation
	7. Conclusion
	Acknowledgements
	References
	Эмуляция ввода-вывода оборудования с отображением в ОЗУ внутри ядер операционных систем
	Список литературы

	Variants of Chinese Postman Problems and a Way of Solving through Transformation into Vehicle Routing Problems
	1. Introduction
	2. The Variations of Chinese Postman Problem
	2.1 The Windy Rural Chinese Postman problem
	2.2 The Undirected Rural Chinese Postman problem
	2.3 The Undirected Chinese Postman problem
	2.4 The Directed Rural Chinese Postman problem
	2.5 The Directed Chinese Postman problem
	2.6 The Undirected Windy Rural Chinese Postman problem
	2.7 The Undirected Windy Chinese Postman problem
	2.8 The Mixed Chinese Postman problem
	2.9 The Mixed Windy Chinese Postman Problem
	2.10 The Mixed Windy Chinese Postman Problem
	3. Solving the Variations of Chinese Postman Problem
	4. Methods for Solving the Generalized Travelling Salesman Problem
	5. Summary
	References
	Варианты задач китайского почтальона и их решения через преобразование в задачи маршрутизации
	Список литературы:

	Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and Methods for their Solution
	1. Introduction
	2. CVRP mathematical model
	3. Extensions of CVRP
	3.1. Open VRP (OVRP)
	3.2. Distance-Constrained CVRP (DCVRP)
	3.3. VRP with Time Windows (VRPTW)
	3.4. VRP with Backhauls (VRPB)
	3.5. VRP with Backhauls and Time Windows (VRPBTW)
	3.6. VRP with Pickup and Delivery (VRPPD)
	3.7. VRP with Simultaneous Pickup and Delivery (VRPSPD)
	3.8. VRP with Mixed Pickup and Delivery (VRPMPD)
	3.9. VRP with Pickup and Delivery and Time Windows (VRPPDTW)
	3.10. Multi-depot VRP (MDVRP)
	3.11. VRP with Multiple Use of Vehicles (VRPM) or Multi-Trip VRP (MTVRP)
	3.12. Periodic VRP (PVRP)
	3.13. Split Delivery VRP (SDVRP)
	3.14. Cumulative CVRP (CCVRP)
	4. An important note
	5. Conclusions
	References
	Анализ математических постановок задачи маршрутизации с ограничением по грузоподъемности и методов их решения
	Список литературы

