H C I I Huctutytr Cucremuoro IlporpaMmmupoBaHus
Poccuiickoii AKageMHH HaAYK
I I ——

ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)

Tpyabl
NucTuryTa CHCTEMHOIO
IIporpammupoBanusa PAH

Proceedings of the
Institute for System
Programming of the RAS

Tom 27, Bbimyck 3

Volume 27, issue 3

Mocksa 2015

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)
Tpyabl UHCcTUTYTA cuctemHoro nporpammupoBaHust PAH

Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH — 510 u3nanue ¢
JIBOMHON aHOHUMHOHN CUCTEMOM
pELEH3UPOBaHMUS, MyOINKYyIOIee HayIHbIe
CTaTbU, OTHOCSIIHECS KO BCEM 00IacTsIX
CHCTEMHOTO TIPOrPaMMHUPOBAHHS,
TEXHOJIOT Uil IPOrpaMMHPOBAHUS 1
BBIYHCITUTENILHON TeXHHUKU. Llerplo u3nanust
SIBJIAETCSl QOPMHUPOBAHHE HAYIHO-
HHPOPMALTMOHHOH CpelIbl B 3THX 001aCcTIX
ITyTeM ITyOJIMKAIN BHICOKOKAYECTBEHHBIX
cTaTel B OTKPBITOM JIOCTYTIE.
M3nanue npennazHadeHo st
uccIeioBaTeeil, CTyIeHTOB U aClIPaHTOB,
a Taroke NpakTukoB. OHO OXBATHIBACT
MINPOKUH CIIEKTP TeM, BKIIIOYas, B
YaCTHOCTH, CIIEAYIOIINE:
® OIepalMOHHBIE CHCTEMBI;
® KOMIMIATOPHBIC TEXHOJOTHUH;
e (0a3bl JaHHBIX U HHPOPMAIIHOHHBIC
CHCTEMBI;
e TapajenbHBIC U PacTIpe/eIeHHbIe
CHCTEMBI;
e aBTOMaTH3MPOBaHHas pa3zpaboTka
IpOTpamMm;
e BepuduKanus, BaIMIANMS U
TECTHPOBAHNE;
CTATUYECKUN U IMHAMUYCCKUI aHaJIu3;
3aIuTa 1 obecredeHre 6e30macHOCTH
T10;
KOMIIBIOTEPHBIE aJITOPUTMBI;
HCKYCCTBEHHBII HHTEIIIEKT.
KypHan nzgaercs no 0JHOMY TOMY B TOJ,
HIECTH BBIITYCKOB B KaXXJ0OM TOME.
Tonnep>xuBaeTcst OTKPBITHIN JOCTYM K
COZIEPKAHMIO M3/IaHUs, 00ecTIeunBast
JOCTYITHOCTh Pe3yJIbTaTOB UCCIICIOBAHMIN
JUISL OOIIECTBEHHOCTH U ITO/|/ICPIKUBAsT
r7100aJIbHBIA 0OMEH 3HAHUSAMH.
Tpynst UCIT PAH pedepupyrorest n/unm
UHJIEKCHUPYIOTCS B:

Proceedings of ISP RAS are a double-blind
peer-reviewed journal publishing scientific
articles in the areas of system programming,
software engineering, and computer science.
The journal's goal is to develop a respected
network of knowledge in the mentioned
above areas by publishing high quality
articles on open access.

The journal is intended for researchers,
students, and practitioners. It covers a wide
variety of topics including (but not limited
to):

e Operating Systems.

e Compiler Technology.

e Databases and Information Systems.

e Parallel and Distributed Systems.

e Software Engineering.

e Software Modeling and Design Tools.

e Verification, Validation, and Testing.

e Static and Dynamic Analysis.

e Software Safety and Security.

e Computer Algorithms.

e Artificial Intelligence.

The journal is published one volume per year,
six issues in each volume.

Open access to the journal content allows to
provide public access to the research results
and to support global exchange of knowledge.
Proceedings of ISP RAS is abstracted and/or
indexed in:

GOugle@ £ WorldCat

[:YBEI![ENINKA
S| OpenDOAR

eI.IBRARY.RII ER08

ULRICHSWEB"

GLOBAL SERIALS DIRECTORY

YJIK004.45

Peaxosuterns

I'naBublii pepakrop - Mpannukos Bukrop Ilerposuy,
akazemuk PAH, npodeccop, MCII PAH (Mockga,
Poccuiickas exneparus).

3amMecTUTeIb IVIABHOT0 pefakTopa - Kysueios Cepreit
JIMuTpreBnd, A.T.H., mpodeccop, UCIT PAH (Mocksa,
Poccuiickas Oenepars).

Aserncsna Apytion Uixanosud, x.¢.-m.H., UICII PAH
(Mockga, Poccuiickas ®eneparusi).

bypaonos Wrops bopucosuy, a.¢.-m.H., UCIT PAH
(Mockga, Poccuiickas ®eneparusi).

Boponkor Anyipeii Asarosnbesnd, A.¢g.-M.H., npodeccop,
Vuusepcurer Manuectepa (Manuectep, Bennkobpuranus).
Bup6uuxkaiire Upuna bonasentyposHa, npodeccop, a.¢.-
M.H., UHCTHTYT cucTem HHpOpMATHKH nM. akagemuka A.IT.
Epmosa CO PAH (HoBocubupck, Poccust).

Laiicapsi Cepreii Cypenosud, K.¢.-m.H., UCII PAH
(Mocksa, Poccuiickas dexeparius).

Eprymienxo Huna Biaiumnpossa, npopeccop, A.1.H., TTY
(Tomck, Poccuiickas ®eneparms).

Kapnos Jleonna Esrensesny, a.1.1., UCIT PAH (Mocksa,
Poccuiickas denepars).

Konnos Mrops Bragnvuposud, K.¢.-M.H., TexHuueckuit
yuuBepcutet Bens! (Bena, ABctpust)

Kocaues Anexcannp Cepreesud, K.¢.-m.H., UCIT1 PAH
(Mocksa, Poccuiickas dexepariust).

Kystopun Hukonait Hukonaesud, n.¢.-m.H., UCIT PAH
(Mocksa, Poccniickas ®enepanust).

Jlactoserkuit Anexceit Jleonnmosud, a.¢.-M.H., mpodeccop,
Yuusepcurer Jyomuna (Jyomun, paanmus).

Jlomazosa Mpuna Anexcangposua, a.¢.-M.H., npodeccop,
HanyonanbHblit nceneoBaTenbCkuil yHuBepeuTeT «Boicimas
mkosa skoHoMuK» (Mocksa, Poccuiickas dezneparus).
Hosukos bopuc Acenosnd, 1.¢.-M.H., mpodeccop, CaHkT-
IlerepOyprekuii rocynapcTBennslil yuusepcuter (CaHkT-
IletepOypr, Poccus).

Ilerpenko Anekcanap Koncrautunosud, a.¢.-m.H., UCII
PAH (Mocksa, Poccuiickas deaepans).

ITerpenko Anekcanap Pegoposud, a.¢.-M.H.,
HccaenoBarenbekuit nHCTUTYT MoHpeasst (MoHpeanb,
Kanana)

Cemenor Buramnii Anonsdosnd, a.d.-M.H., mpodeccop,
UCIT PAH (Mocksa, Poccuiickas ®eneparms).

Tomummun Anexcanap Hukonaesuy, a.¢.-M.H., mpodeccop,
HCII PAH (Mocksa, Poccuiickas Ddenepatis).

Yepubix Anjapeii, 1.¢.-m.H., npodeccop, Hayuano-
uccnenosarensckuii ueHTp CICESE (Ducenana, Humkuss
Kamndopuus, Mekcnka).

[InuTman Bukrop 3unosbesnd, a.1.H., UCIT PAH (Mocksa,
Poccuiickas deneparus).

Llycrep Accad, a.¢.-M.H.,, mpodeccop, Texuuon —
Wspaunbcekuii TexHomornyeckuit nucTutyT Technion
(Xaitta, Uzpanis)

Agpec: 109004, r. Mockaa, yi1. A. ColKeHHIbIHA, 10M
25.

Tenedou: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caitr: http://www.ispras.ru/proceedings/

Editorial Board

Editor-in-Chief - Victor P. Ivannikov, Academician RAS,
Professor, ISPSystem Programming of the RAS (Moscow,
Russian Federation).

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr. Sci.
(Eng.), Professor, Institute for System Programming of the
RAS (Moscow, Russian Federation).

Arutyun |. Avetisyan, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation).

Igor B. Burdonov, Dr. Sci. (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation).
Andrei Chernykh, Dr. Sci., Professor, CICESE Research Centre
(Ensenada, Lower California, Mexico).

Sergey S. Gaissaryan, PhD (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation).
Leonid E. Karpov, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation).

Igor Konnov, PhD (Phys.—Math.), Vienna University of
Technology (Vienna, Austria).

Alexander S. Kossatchev, PhD (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation).

Nikolay N. Kuzyurin, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation).

Alexey Lastovetsky, Dr. Sci. (Phys.—Math.), Professor, UCD
School of Computer Science and Informatics (Dublin, Ireland).
Irina A. Lomazova, Dr. Sci. (Phys.—Math.), Professor, National
Research University Higher School of Economics (Moscow,
Russian Federation).

Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor, St.
Petersburg University (St. Petersburg, Russia).

Alexander K. Petrenko, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation).

Alexandre F. Petrenko, PhD, Computer Research Institute of
Montreal (Montreal, Canada).

Assaf Schuster, Ph.D., Professor, Technion - Israel Institute of
Technology (Haifa, Israel)

Vitaly A. Semenov, Dr. Sci. (Phys.—Math.), Professor, Institute
for System Programming of the RAS (Moscow, Russian
Federation).

Victor Z. Shnitman, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation).
Alexander N. Tomilin, Dr. Sci. (Phys.—Math.), Professor,
Institute for System Programming of the RAS (Moscow,
Russian Federation).

Irina B. Virbitskaite, Dr. Sci. (Phys.-Math.), The A.P. Ershov
Institute of Informatics Systems, Siberian Branch of the RAS
(Novosibirsk, Russian Federation).

Andrey Voronkov, Dr. Sci. (Phys.—Math.), Professor,
University of Manchester (Manchester, UK).

Nina V. Yevtushenko, Dr. Sci. (Eng.), Tomsk State University
(Tomsk, Russian Federation).

Address: 25, Alexander Solzhenitsyn st., Moscow, 109004,
Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings/

© Uncruryt Cucremuoro IIporpammuposanus PAH, 2015

http://www.ispras.ru/persons/ivannikov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/persons/burdonov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://www.ispras.ru/persons/gaissaryan.php
http://persona.tsu.ru/Home/UserProfile/1015
http://www.ispras.ru/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/persons/kossatchev.php
http://www.ispras.ru/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://www.ispras.ru/persons/semenov.php
http://www.ispras.ru/persons/tomilin.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/persons/shnitman.php
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/ivannikov.php
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/en/persons/burdonov.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/en/persons/gaissaryan.php
http://www.ispras.ru/en/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/en/persons/kossatchev.php
http://www.ispras.ru/en/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/semenov.php
http://www.ispras.ru/en/persons/shnitman.php
http://www.ispras.ru/en/persons/tomilin.php
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/
https://persona.tsu.ru/Home/UserProfile/1015

Tpyast Uauctutyta Cuctemuoro IlporpammMmupoBanus PAH

ConepxaHue
IIpeaucnoue
A.C. Kamxun, A.K. Ilempenko, A.H. TEPEXOBccoccrvviviiiiiciiiiiiiiiieiieee 7

SI3pikoBoit cepeuc FRIS nns paciumpennoit noanepsxku Fortran 8 Microsoft
Visual Studio

HLC. PAMKEBUU ...ttt et 9
[Ipobnemsr 06001mennii C# 1 ciocoObl NX peIeHHs C TOMOIIBIO KOHIETITOB
FO.B. Benako8a, C.C. MUXANKOBUYuuvuvuusussusss. 29

O6naunslit PaaS-cepBuc BU3yaabHOT0 NapajuleIbHOTO IPOrpaMMHUPOBAHUS B
TEXHOJIOTHH TPado-CUMBOJIIMUECKOTO TDOTDAMMHUDOBAHHUS

L. E20p08a, B. JKUOUCHKO ..ottt 47
BecrioBHas pa3paboTka MporpaMMHOTrO 00SCICYCHHUS: MPUMEHUMOCTh Ha

npumepe

A. HAYMUEE ...ttt sttt sb e reenre e 57

ParroHansHOE IPOEKTHPOBAHHUE MO/JICNH, OTIMCHIBAIONIEH CTPYKTYPY KIacCOB
00BEKTOB, HA OCHOBE OHTOJIOTMYECKOT'0 aHAJIM3a JaHHBIX

A.H. Kosapyes, B.C. CMupro8, C.B. CMUPHOBc.covuereeiiaiiiaiiiienieeniienieeniesie e 73
Knaccudukanus npoueayp ais BbIOOpa CTpaTern ONTUMHU3AIUU
O.A. HEMBEPUHA. ...ttt 87

YuupuuupoBanHast MOJIeTIb TECTUPOBAHHS HHCTPYMEHTOB Pa3pa0doTKH
00BEKTHO-OPUEHTHPOBAHHBIX MTPHUIOKCHUN
TLTI ONCUHUK. ..., 101

Meto/1 aBTOMaTUYECKON KOHKPETH3AIUH CUMBOJIMYECKAX TECTOBBIX CIICHAPUEB
H.B. Bounos, I1.J]. /[pobunyes, U.B. Huxugopos, B.Il. Komuapos, A.B. Koauum....... 115

MeTox reHepalyy TECTOBBIX MPOrPaMM Ha OCHOBE (hOPMaTbHBIX
crenuUKauil MEXaHU3MOB K3IIHPOBAHUS M TPAHCIISLUYU aJPECOB
A.C. Kamxun, A.C. Ipoyenro, A.J]. TAMAPHUKOB.........cccuevvueeriieriiaiiienieeniee e 125

TToxxoxn k BepudUKaIUy MOIYJIS IPSMOTO AOCTYIA K TAMSITH
B.H. Kyyeeon, A.H. Mewxos, M.II Pvioicos, [1.B. @PONOGcccoevevciiiiiciaennnn, 139

TToaxoa K MOCTPOSHHUIO TECTOBBIX OPAKYJIOB IS [TOJCHCTEM MAMSITH
MHOTOSIZICPHBIX MHKPOIIPOIIECCOPOB Ha OCHOBE MOJIEICH
A.C. Kamxut, M.B. TIEMPOUCHKOBccccviiiiiieiiiiiiiiesit sttt 149

IToaxon k TeHepaIuu TECTOB, HAIlEJIEHHBIX Ha OKpBITHE Koja HDL-onmucanmit
anmapaTrypbl, Ha OCHOBE PACITUPEHHBIX KOHEYHBIX aBTOMATOB
U.B. Menvruuuenko, A.C. Kamxun, C.A. CMONOB ..., 161

O peanu3zanuu GopMaabHOTO METOJIa BEpH(PHUKAITUN MACIITAOUPYEMBIX CHCTEM
C KOTEPEHTHOM MaMsIThIO
B. BYPEHKOB ...t 183

Tpyast UauctutyTta Cucrtemuoro IlporpammupoBanus PAH

[Ipumenenue packpameHHbIx cereid [letpu i Bepudukanum
pactipesieleHHBIX CUCTEM, crieruduurupoBaHHbEIX MSC-nuarpaMmmaMu
C.A. Yeprenox, B.A. HENOMHAUSUILccueiuieiireiiee i

PenakxTop moneneit nporeccoB «Carassiusy
H. Hukumuna, A. MULIOKc...coiiiiiiieiii et e e e ssiane e s e e s ssasanee e e e e s s aannes

Iskra: THCTpyMEHT MOYNHKH MOJETIeH MPOIECCOB
H. LIyaypos, A. MUYIOK.............cccoviiiiiiiiiiiiiii e

CpaBHeHne Mozenel busHec-poreccos B popmare BPMN 2.0 XML
C. UBAHO08, A. KOMCHKOBA ..eeeeeeeeeeeeeeeeseseseseseses e bbb asasasasnes

Y nanenHoe 00CIy)KMBaHUE CUCTEMHBIX BHI30BOB B MUKPOSIICPHOM
THIIEPBU30pE
K. Mannauueg, H. TIGKYTUHccoovuiiiiiiiiiiii ittt

Coznanue mpuBaTHOTO cepBuUca ¢ ucroyib3oBanrueM npunoxxkenuss CRYP2CHAT
A. Kupbanyeg, Y. CIM@EDAHOBAc..coevueiiaiiii it

CoBMeIIeHHbIH KiTaccuuKaTop It GHUIBTPALlUU COOOIEHNH Ha BeO calTax
B. Tapacos, E. Me3zenye8a, [l KapOaeecccouveeiiiiiiiiiiiiiiiiesie e

[Iporpamma cratucTudeckoit 00pabOTKH MaHHBIX aHanm3aropa Wireshark u
HCCIIeIOBAHUE BXOJSIIIEro Tpaduka
B. Tapaco8, C. MANAXOB..............cccovuiiiiiaiii ettt

DddheKTHBHOE KCIIOIb30BAaHAE PECYPCOB PACHPEAEIICHHON IIaThOpMBbI
00JIa9HbIX BRIYMCICHHUH [JIs 00€CIIeYeHNs Ka4eCTBA MYJIbTHMEIUIHHBIX YCIyT
HUIT. Bonodypuna, JI.H. TIAP@EHOB............c.ccoeveeiiiiiiiiiieeee s

Merto/1 MOUCKa PEKBU3UTOB (PH3MUECKUX JIMII B 0a3aX JaHHBIX HA OCHOBE
HEYETKOrO CpaBHEHHUS
H. JTUMAHOBA, M. CROOB.......evvvenenenenrrinirriiriririisiisessnsaes

D¢ dexruBHOE B3aumopeiicteue ¢ CYBJl DIM
JL.B. AHMOHO8B, B.C. PYDJICEccueeiuiiiiiiiii ettt

MHcTpyMeHTapuii KpayICOPCHUHIA sl MEXaHU3UPOBAaHHOTO TPyia
JIA. VOIAIOB ...ttt

IIporpammuble cpeacTBa Jisl OpraHu3aluu U MOAAEPKKH UTPOBON

JTUCTAaHIIMOHHOM oOydatomei cucremsl «3Ducationy

JI.C. 3enenxo, . A. Kononenvxun, B.C. Heanos, A.O. [pucopves, A.E. Cemenos,
M.A. Casauaes, E.E. TIOOCPDEZKUH.c.ccoueiieiiiiiiii ittt

Yckopernue co3ganus mpoduiielt s TpeXMEPHOTO BEKTOPHOTO BHIEO C
nomomsio GPGPU
A A, LBIZAHOB ...ttt e

JByX11aroBblii TeHEpaTOp rapMOHUYHBIX MEJIOIUN
(O (7777 S e B PSP OPPRPRPOPRRS

Proceedings of the Institute for System Programming RAS

Table of Contents

Foreword

A.S. Kamkin, A.K. Petrenko, AN, TErekNOV..........cccceviiiiiinene e 7
FRIS language service for extended Fortran support in Microsoft Visual Studio

LS. RABEKEVICH ...ttt eb e 9
Pitfalls of C# Generics and Their Solution Using Concepts

J. Belyakova, S. MIiKN@IKOVICNccoiiiiiiiiiiiicc e 29

Visual Parallel Programming as PaaS cloud service with Graph-Symbolic
Programming Technology

D. EQorova, V. ZNIdChENKOcciiiiieieee s 47
Seamless Development Applicability: an Experiment

N N TH g Tod 1SRRI 57
Intelligent Design of Class Structure Model based on Ontological Data Analysis

A.N. Kovartsev, V.S. Smirnov, S.V. SMIrNOVccccevveiimiiiiiie e 73
Procedures classification for optimizing strategy assignment

L@ A O 511 Y - SR 87
Unified Model for Testing Object-Oriented Application Development Tools

PP OIEYNIK. ot 101
Method of Symbolic Test Scenarios Automated Concretization

N.V. Voinov, P.D. Drobintsev, I.V. Nikiforov, V.P. Kotlyarov, A.V. Kolchin............... 115

An Approach to Test Program Generation Based on Formal Specifications of
Caching and Address Translation Mechanisms

A. Kamkin, A. Protsenko, A. TatarnikoV..........cccooeviiii e 125
An approach to Direct Memory Access module verification
V. Kutsevol, A. Meshkov, M. Ryzhov, P. Frolov..........cccccervviiiiinniniicecc e, 139

A Model-Based Approach to Design Test Oracles for Memory Subsystems of
Multicore Multiprocessors
A. Kamkin, M. PetrOChENKOV........ccuviiieieictie ettt 149

An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs
I. Melnichenko, A. Kamkin, S. SMOIOVcccooviiiiiiicee et 161

On the Implementation of a Formal Method for Verification of Scalable Cache
Coherent Systems
V. BUFEBNKOV ...t 183

The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts
S.A. Chernenok, V.A. NEpOMNIASCRYcccoveriiiiririeiieeeie e 197

Proceedings of the Institute for System Programming RAS

Carassius: A Simple Process Model Editor

N. NIKItina, A, IMIESYUKooviiieiiriieicie ettt sne s 219
Iskra; A Tool for Process Model Repair

1. ShugQUIOV, A, IMIESYUK ... 237
Comparing process models in the BPMN 2.0 XML format

S. VANV, A. KalENKOVA.........cociiiiiiiiiccese s 255
Remote Service of System Calls in Microkernel Hypervisor

K. Mallachiev, N. PaKUIINcccoiiiiiiiiiee e 267
Constructing Private Service with CRYP2CHAT application

A. KiryantseV, 1rina Stefanova..........ccocviviiiiiieiei e 279

Combined Classifier for Website Messages Filtration
V. Tarasov, E. Mezenceva, D. Karbaev ... 291

Statistical data handling program of Wireshark analyzer and incoming traffic
research
V. TarasoV, S. MalaknOV.........c.ccceiiiiiiiccce sttt 303

Effective Use of Resources Distributed Cloud Computing Platform for
Providing Quality Multimedia Services

1. Boloduring, D. ParfenOy ..ot 315
Searching method of personal details on the basis of fuzzy comparison

N. LIManova, M. SEAOV.........cccoiiiiiiie ettt 329
Effective interaction with the DIM DBMS

D.V. AntonoV, V.S. ROUDIEYocueiieii e 343
A Crowdsourcing Engine for Mechanized Labor

DA USTAIOV .. bbb bbbt 351

Software tools for organization and support of distance learning game system
«3Ducationy

L.S. Zelenko, D.A. Konopelkin, V.S. Ivanov, A.O. Grigoriev, A.E. Semenov,

M.A. SavachaeV, E.E. PODEIEZKIN.coeevuiiicie ittt 365

Acceleration of profile creation for three-dimensional vector video with
GPGPU
ALA. TSYGANOV ...ttt s e s nn e r e en e nneenre e 379

Two-step Harmonious Melody Generator
S LAEKINAL 1.ttt 389

A.C. Kamkun, A K. Tlerpenko, A.H. Tepexos. Ilpeaucnosue. Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., c. 7-8

IHIpeauciaoBmue

Oror Bemyck «TpymoB WCII PAH» comepuT wu30paHHBIE CTaThH,
NpEACTaBICHHBIE Ha 9-OM KOJUIOKBHYME MOJOIBIX YYEHBIX B 00jactu
nporpammuoi umxeHepun SYRCOSE 2015 (Spring/Summer Young Researchers’
Colloquium on Software Engineering). Meponpuste nponuio 28-30 mas 2015
roma B Camape Ha 06a3e [lOBOJOKCKOTO TOCYNapCTBEHHOTO YHHBEPCHTETA
tenekomMmyHuKammii u uHGOopMmatuku (I[II'YTH). OpranmsatopamMu BBICTYITHIIH
WCII PAH, Cankr-IletepOyprekuii rocynapctBeHHbIN yHUBepeuTeT u [IT'YTU.

VY4acTHUKH KOJUIOKBHYyMa IPEICTABISUTH Takue opraHusanmu, kak Nazarbayev
University, VERIMAG Laboratory, BcepoccuiiCKuii-HaydHO HCCIIEI0BATENbCKUN
MHCTHTYT 3KCIEPUMEHTAJIbHOU (H3MKH, VIHCTUTYT MaTeMaTukd U MEXaHUKH HM.
H.H. KpacoBckoro YpO PAH, HWuctuTyT mnpobieM ynpaBieHUs CIOXHBIMH
cucremamu PAH, Uncturyr cucrem muHpopmatuku um. A.Il. Epmosa CO PAH,
«WHOYM um. U.C. Bbpyka», HNCII PAH, MockoBckuil rocyaapCTBEHHBIN
TexHuueckud yHuBepcureT uMm. H.O. baymana, MockoBckuil rocynapcTBEHHBIM
YHUBEPCHUTET HM. M.B. JIomoHOCOBa, «MLCT», HaunonaneHslii
HCCIIEIOBATENIbCKUIA yHUBEpcUTET «Bpicmass mkona »koHoMuku», III'YTH,
Camapckuil TOCYJapCTBEHHBIH a’pOKOCMUYECKUN YHUBEPCUTET HM. aKaJeMHUKa
C.I1. Koponea, Camapckuii rocyAapCTBEHHbIH TEXHUYECKUI yHUBepcUuTeT, CaHKT-
IletepOyprekuii monuTexHuueckuil yHuBepcureT Ilerpa Benukoro, YHuBepcuter
Wunononuce, Ypanbckuil (enepanbHblii yHUBepcuTeT, HOKHBIN (enepanbHbli
yHuBepcurer, SpocnaBckuil rocyaapcTseHHblid yHuBepeuteT uM. ILIN. Jlemunosa u
JpyTHe.

TemaTuka IpeICTaBICHHBIX CTaTe€d JOCTATOYHO IIMPOKA U BKIIIOUAET CIELYHOLINE
TEMbI: TEXHOJIOTMH IpPOrPaMMHPOBAHHUs, TECTHPOBaHME W BepUHKALUS
KOMITBIOTEPHBIX CHCTEM, Oe3omacHOCTh M 3amuineHHocts I10, dQopmanbHble
METO/Ibl MOJCIIMPOBAHNUS U aHAJIU3a IIPOLIECCOB U JPYIHeE.

Ms1 6narogapum ygactHukoB SYRCOSE 2015, wieHoB nporpaMMHOTO KOMHTETa U
npurianeHHeix noktagdukos: Susanne Graf (VERIMAG Laboratory), Hukonas
Makymuna (UCIT PAH) u Huxonmas Ilunosa (Nazarbayev University). Mer
NPH3HATENBHBI crioHCOpaM Mepomnpusitust: POD®U (rpant 15-07-20201) u Exactpro
Systems. OcoOyioo OnaromapHOCTh Mbl BbIpaxkaeMm mnpodeccopam I[II'YTU
B.H. TapacoBy, H.®. baxapesoii u H.W. JIumaHoBo#l 3a MX OTpOMHBIN BKIaja B
OPraHU3aIMIO KOJUIOKBHYMa.

A.C. Kamkun, A K. [Terpenko, A.H. Tepexon

A.S. Kamkin, A.K. Petrenko and A.N. Terekhov. Foreword. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 7-8

Foreword

This issue of ‘The Proceedings of ISP RAS’ contains selected papers presented at
the 9th Spring/Summer Young Researchers’ Colloquium on Software Engineering
(SYRCoSE 2015). The event took place in Samara on May 28-30, 2015. It was
hosted by Povolzhskiy (Volga Region) State University of Telecommunications and
Informatics (PSUTI) and organized by ISP RAS, Saint-Petersburg State University
and PSUTI.

The participants of the colloquium represented such organizations as A.P. Ershov
Institute of Informatics Systems of SB of RAS, Bauman Moscow State Technical
University, INEUM, Innopolis University, Institute for the Control of Complex
Systems of RAS, ISP RAS, MCST, N.N. Krasovskii Institute of Mathematics and
Mechanics of UB of RAS, National Research University — Higher School of
Economics, Nazarbayev University, Peter the Great Saint-Petersburg State
Polytechnic University, PSUTI, Samara State Aerospace University, Samara State
Technical University, Southern Federal University, The All-Russian Research
Institute of Experimental Physics, Ural Federal University, VERIMAG Laboratory,
Yaroslavl Demidov State University and others.

The presented papers cover a variety of topics including programming technologies,
testing and verification of computer systems, software safety and security, formal
methods for modeling and analysis of processes and others.

We would like to thank the participants of SYRCoSE 2015, the PC members and
the invited speakers: Susanne Graf (VERIMAG Laboratory), Nikolay Pakulin
(ISPRAS) and Nikolay Shilov (Nazarbayev University). We are grateful to the
event sponsors: RFBR (grant 15-07-20201) and Exactpro Systems. Our special
thanks to the PSUTI professors V.N Tarasov, N.F. Bahareva and N.I. Limanova for
their invaluable help in organizing the colloquium.

A.S. Kamkin, A.K. Petrenko and A.N. Terekhov

W.C. Parkesnu. SI3bikoBoii ceprc FRIS st pacupennoii nojepxkn Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

FRIS Language Service for Extended
Fortran Support in Microsoft Visual Studio

I.S. Ratkevich <ratkevichis@gmail.com>,
Russian Federal Nuclear Center — All-Russian Scientific Research Institute of
Experimental Physics (RFNC — VNIIEF),
607190, Mira, 37, Sarov, Nizhny Novgorod Region, Russian Federation

Abstract. This report deals with the construction of the language service for extended support
of the Fortran programming language in the integrated development environment (IDE)
Microsoft Visual Studio. The model and general approach for language service construction is
offered.

The proposed general model of a language service consists of five key blocks: the IDE
integration block; the analysis block; the recognized elements storage block; the elements
serialization/deserialization block; the elements view model block.

The IDE integration block connects a language service with a basic IDE infrastructure. It’s
responsible for subscription of Language Service for text editing events and for providing
corresponding responses.

The Analysis block is responsible for accomplishing lexical, syntactic and semantic analysis. It
gathers all needed information about the elements of a programming language and puts it into
the recognized elements storage block. The second task of this block is to provide information
for syntax highlighting of edited text.

The Recognized elements storage block is like a database of all elements needed for the
Language Service operation. In general case, it is kind of a symbol table. The storage block
could be filled from two sources: from analysis block, as a result of analysis of a source files,
and from elements serialization/deserialization block, as a result of deserialization from a
previously existing specialized program description in the case of using model of API
(Application Programming Interface) for arbitrary programming libraries.

The elements serialization/deserialization block performs two functions. Firstly, it allows saving
the content of programming projects as XML files for description of APl and documentation
comments. Secondary, it allows restoring the content of programming projects from their XML
models.

The Elements view model block is a link, a kind of adaptor for elements of storage block to their
representation needed by IDE integration block. Thus, recognized elements may contain some
information that is not necessary to IntelliSense technology features, or on the contrary, does not
contain some needed information. The elements view model is playing this interconnection role.
It contains data types that are wrappers for elements of storage block, which fulfils requirements
of the IDE integration block. There is also implemented various functions of filtering and
selecting of different kinds necessary information.

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

The proof of operability of proposed general model of a language service is given on the
example of the FRIS language service developed by author. The material could be equally
applied for construction language services both for other programming languages and for other
development environments.

Keywords: FRIS; Fortran Intelligent Solutions; Fortran; Visual Studio Extensibility;
Language Service; Visual Studio

DOI: 10.15514/ISPRAS-2015-27(3)-1

For citation: Ratkevich I.S. FRIS Language Service for Extended Fortran Support in
Microsoft Visual Studio. Trudy ISP RAN/Proc. ISP RAS, 2015, vol. 27, issue 3, pp. 9-28.
DOI: 10.15514/ISPRAS-2015-27(3)-1.

1. Introduction

Fortran [1], [2] is one of the first high-level programming languages. It was created
in the 50s of XX century and it was intended for development of programs for
scientific calculations. Fortran is still used by its intended purpose in the
development of simulation programs. Nowadays the most widespread Fortran
standard is Fortran 2003 [2] (however there is the Fortran 2008 standard, and the
Fortran 2015 standard is in development stage). It cardinally differs from previous
standards because it introduces the support of object-oriented programming in a
Fortran language. This feature changes the language syntax, where many new
statements are added in conjunction with new conceptions. Definitely, such
modernizations are necessary, but at the same time they are objectively making the
language more complicated.

However these difficulties may be hidden or even eliminated, if the Fortran-
programmer will have appropriate assistance from the IDE in which he writes his
programs code. The most widely used IDE on Windows is Microsoft Visual Studio.
It is extensible and allows adding practically any feature into it. As an example,
Visual Studio may be extended to support various programming languages.

The most widely used Visual Studio integrations of the Fortran language are being
developed in Intel [3] and PGI [4] in conjunction with corresponding compilers.
However the supported features of those integrations significantly inferior to
integrations developed by Microsoft, e.g. for C# programming language.
Primarily it applies to the support of InlelliSense [5] technology, which consists
of the following features: List Members, Parameter Info, Quick Info wu
Complete Word (table 1).

It must be noted that in all implemented IntelliSense features, excluding those
for intrinsic procedures, there is essentially absent any description of the
elements except for their definitions.

This great difference between Fortran support and support for languages, developed
by Microsoft, became a key factor for author in the decision to implement the FRIS
(Fortran Intelligent Solutions) language service, that is intended to cover this gap
and implement all IntelliSense features to support Fortran-programmer in effective
development of programs.

10

W.C. Parkesnu. SI3bikoBoii ceprc FRIS st pacupennoii nojepxkn Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, Tom 27, Bemm. 3, 2015 ., c. 9-28

Table 1. The IntelliSense technology features implementation in Intel and PGI

Function Intel PGI
List
Members No No
Parameter | Yes, excluding overloaded procedures | Yes, only for intrinsic
Info and type bound procedures procedures
. Yes, excluding fields and procedures of | Yes, only for intrinsic
Quick Info deri
erived types procedures
Complete Yes, only for modules names, functions | Yes, only for keywords
Word names and subroutines names statements

2. Making model of a language service

Language service [6] is responsible for providing language-specific support for editing
source code in the Visual Studio IDE, or, generally speaking, in any IDE. Basic
language service must by definition [7] to provide a program syntax highlighting, all
other features, including the IntelliSense support, are extra (or extended) features. The
main question that must be answered at first when starting a new language service
development is what features are needed for a programmer. After that, those features
must be ranked by priority (or by usability).

Next, it is needed to identify the sources of data that must be used in the
implementation of the language service. The main data source for any language
service, no doubt, is source files containing programs text on a target language, but in
some cases additional data sources may be needed.

The next stage is to estimate implementation complexity of needed functions. This
estimation may include as the IDE restrictions to different components of a language
service, and the analysis complexity of the target programming language itself.

After this the aggregate language service model is constructed, that reflects its major
structural elements and interconnections between them. This report contains
generalized and optimal, in author's opinion, language service model, which provides
extended support for a target programming language.

When the aggregate language service model is constructed, each of its structural
elements is detailed according to specific requirements to implementation of different
features, and also depending on the restrictions of the target programming language.
Next in the report each of aforementioned steps in making language service will be
examined in details, on example of the Fortran programming language, but the given
material, without loss of generality, could be applied to any other programming
language.

2.1 Analysis of requirements and the necessary features

The first thing, that definitely wants to see any programmer is a program syntax
highlighting, for keywords, data type names, string literals, comments and so on. At
the same time, it’s important to provide the ability to configure such highlighting,

11

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

for example, for significant to user procedure names and data type names of
program libraries, say, OpenMP, MPI, and others. Such syntax highlighting helps to
focus attention on the most important details.

The second thing, that is important to a programmer, is the amount of provided context
help, that at least must consist of the definition for a programming language element
with which programmer works or wants to work (in the case of word completion lists).
But in most cases the element definition is not enough to understand, how exactly the
element must be used, as an example, a procedure that has more than a dozen
parameters, some of which may be optional. In this case it’s necessary to accompany the
element definition with some meaningful description. When the data that must be
provided to user, and, respectively, that must be collected and stored, are identified, the
sources, from which this could be obtained, must be analyzed.

2.2 Analysis of data sources

The most obvious way to get the definitions of programming language elements is
the analysis of program source files. The form of such definitions is fixed in the
programming language standard, e.g. in the Fortran standard. The meaningful
description of the elements may be obtained, if to complement the program text
with comments in a special form — documentation comments. The XML
documentation comments are the standard for Visual Studio. So, the program text
contains two languages: the base language — Fortran, and the embedded language —
documentation comments language.

It should be noted, that Fortran has a distinctive feature in using of the programming
libraries. There are three ways to connect the programming library to the main
Fortran project:

e with source code files, that contains the library API, including procedure
definitions, data types definitions and so on;

o with compiled binary files of Fortran modules, that have a closed format,
which understandable just by compiler. Those files also contains the library
API definitions;

e without any descriptions of library API. In such case the compiler will
deduce the outer interfaces for used procedures, and will try to resolve
external references by their names.

In the first case, it is possible to analyze source file that contains the library APl and
get all necessary information from it, but in the other two cases, it’s impossible to
do so, and it's necessary to provide other mechanisms to get such information.

As a basis for implementation of this task, was taken the idea that is used in the
program for automatic documentation generation for so called managed applications
— Sandcastle [8]. It uses two files for generation of program documentation: one
with the API description, and the other with the documentation for the API.

Fortran isn’t managed language, so it’s impossible to use the standard Sandcastle
API format for description of its elements. Therefore the model for description
12

W.C. Parkesnu. SI3bikoBoii ceprc FRIS st pacupennoii nojepxkn Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

Fortran APl was developed in FRIS for this purpose. It is the XML file in the
special format, which contains a description of main Fortran elements. FRIS can
save (serialization) the structure of elements, which is obtained from the analysis of
program texts, into XML format and restore (deserialization) Fortran elements from
their XML representation.

The XML model for Fortran documentation comments is also developed, including
the features for its serialization and deserialization. This will allow to develop a
special Sandcastle plug-in, and to use files of Fortran API and documentation
comments description to automatically generate a developer or/and user help files.

2.3 Analysis of main operating characteristics of a language
service

When developing a language service it’s necessary to take into account that analysis
of program texts will operate in a real time. This means that in most cases the text
under analysis will be in the lexical, syntactic or semantic incorrect state, in terms of
programming language specification. This peculiarity must be considered in the
construction of corresponding analyzers.

The second peculiarity is in the fact that the analysis for a syntax highlighting is
carried out in Visual Studio line-by-line (one line a time). The analyzer, colorizer in
terms of VS, is transmitted for analysis a string of text and the analyzer state in
which it was at the end of analysis of the previous line. This means that the
corresponding analyzer must be constructed with the ability to save its state in any
time and to restore its work from any such state. This approach makes it possible to
carry out incremental analysis, which is very important for large source files
(approx more than 10000 lines). Then, when some lines are changed, it’s necessary
to analyze just the changed lines, but not a whole file.

The third peculiarity that must be considered to create effective full-text analyzers is
the need to take into account the state of source files. In terms of using program
project source files in the IDE, file could be in a one of two essential states:

e opened in editor;

e doesn’t opened in editor.

In the first case, it’s needed to accomplish full-text analysis of a source files, but in
the second one it’s possible to accomplish a simplified analysis to collect
information about just externally visible program elements. For example, it’s not
necessary to analyze whole body of procedure, because information, say, about its
local variables could be needed to user just in a moment of editing a procedure
body, which automatically transfers file with procedure to the sate “opened in
editor”, and consequently, the other analysis rules will be applied to it. Thus the
requirement to analyzer to operate in two modes, for convenience “full” and
“simplified” analysis, will significantly increase the analysis speed of programming
project source files.

13

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

3. General model of alanguage service

The author proposes the following general model for building any language
services, which is the result of summarizing author’s experience in developing FRIS

(Fig. 1).

IDE integration ‘ ' Analysis block

block

) Elements
. Recognized S
Elements view serialization /
elements L
model block deserialization
block

storage block

Fig. 1. General language service model

As shown in Fig.1 any language service could be represented as 5 base blocks. The
arrows represent the data exchange between blocks.

The IDE integration block contains interfaces implementation, which are required
for interaction with IDE. It’s responsible for subscription of a language service on
the text editing editor events, and for corresponding responses, for example, for
syntax highlighting and information providing for work of IntelliSense features.

The analysis block is responsible for lexical, syntactic and semantic analysis. When
it receives events from the IDE integration block, it performs appropriate actions.
For example, in response to file open event or text changed event, it will provide the
information for syntax highlighting. It’s also responsible for providing source files
analysis depending on their states.

The recognized elements storage block is central data storage about all elements,
necessary for language service. In general case, it is kind of a symbol table. The
storage block could be filled from two sources: from analysis block, as a result of
analysis of a source files, and from serialization/deserialization block, in the case of
using model of Fortran API for any program libraries.

The elements serialization/deserialization block performs two functions. Firstly, it
allows saving the content of programming projects as XML files for description of
Fortran APl and documentation comments. Secondary, it allows restoring the
content of programming projects from their XML models. This approach reflects
the dual nature of programming projects. Thus, for author of programming project,
for example, program library, it is accessible in source files and it is perceived as
“internal”, but for a user of this library, it is perceived as “external”, and its source
files may be inaccessible to user.

The elements view model block is a link, a kind of adaptor for elements of storage
block to their representation needed by IDE integration block. Thus, recognized
elements may contain some information that is not necessary to IntelliSense
technology features, or on the contrary, does not contain some needed information.
The elements view model is playing this interconnection role. It contains data types
14

W.C. Parkesnu. SI3bikoBoii ceprc FRIS st pacupennoii nojepxkn Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

that are wrappers for elements of storage block, which fulfils requirements of the
IDE integration block. There is also implemented various functions of filtering and
selecting of different kinds necessary information. It could be said, that the storage
block is like a database, and the view model block is like a data selection
procedures.

3.1 IDE integration block

The IDE integration block connects a language service with a basic IDE
infrastructure. In the case of Visual Studio, the base language service must implement
the 1VsLanguagelnfo [9] interface. This interface is responsible for providing
information about target language including its name, associated file extensions, and
component for a syntax highlighting (colorizer). Colorizer must to implement the
IVsColorizer [10] interface, which is responsible for providing character-by-character
information about colors of buffered program text representation in memory. In order
to provide the IntelliSense technology support it is needed to implement 5 additional
interfaces [11]: IVsCodeWindowManager, IVsMethodData, [VsCompletionSet,
IVsTextViewFilter and 10leCommandTarget.

To simplify for developers the task of creating new language services, and the other
tasks of Visual Studio extension, Microsoft created MPF (Managed Package
Framework) [12] library, which supplies a set of base classes that implements many
needed interfaces, and thus provides to developers the ability to implement only the
features that is needed to them. Let’s take a brief look at the key classes that are
necessary for the implementation of the language service and its various features.

The LanugageService abstract class provides basic implementation of a language
service. It contains a number of abstract methods responsible for different features of a
language service, such as syntax highlighting, and initialization of full-text source files
analysis in order to provide information for various IntelliSense features, and so on.
The Source class is a source file abstraction in terms of a language service. It is used
to store all information about edited file, as well as for interoperability with other
language service model classes, which require information about current source file.
In particular, it contains an instance of the Colorizer class, which is responsible for
syntax highlighting.

The Colorizer class implements IVsColorizer interface. This class is used by the core
editor of IDE for providing of syntax highlighting in current source file. For even
more flexibility and abstraction MPF Colorizer from concrete programming language,
the scanner abstraction is used.

The scanner must to implement IScanner interface. Each scanner is essentially a
specialized lexical analyzer, which must to be able to save its current state and to
restore its state for continuation of analysis as if it is doing a simple linear analysis of
character stream.

The AuthoringScope class contains all information about a source file which is the
result of parsing of this file. It is the central place for providing information for basic

15

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

IntelliSense technology features. In particular, method GetDataTipText — returns a
string that contains description of programming language element, under the mouse
cursor. It provides data for Quick Info IntelliSense feature. Method GetDeclarations —
returns a list of programming language element definitions. It provides data for List
Members and Complete Word IntelliSense features. Method GetMethods — returns a
list of method signatures with a given name, including their overloaded versions. It
provides data for Parameter Info IntelliSense feature.

In FRIS implementation is used modified version of MPF library, since a number of
methods needed by FRIS were inaccessible for overriding in Microsoft’s MPF classes.

3.2 Analysis block

The FRIS analysis block consists of two sub blocks: analysis for syntax highlighting
and full-text analysis (in “full” and “simplified” mode) for a collection of
information about elements in a source file.

The FRIS analyzers are built with the ability to support sublanguages. In this case,
the base language is Fortran, and sublanguages are any other languages, other than
Fortran, that are used in the program text, for example, the XML documentation
comments language and the OpenMP directives language.

Fig. 2 shows the general scheme of working of the analyzers stack, on the example
of analysis of a part of XML documentation comment. The base language analyzer
(Fortran) generates tokens, which are then passed through a tokens filter. If token
matches with one of registered sublanguages, the appropriate analyzer is called. The
output is a set of fully recognized tokens for all supported languages.

The peculiarity of work of a syntax highlighting analyzing block is that it is
essentially some kind of extended version of a lexical analyzer, since there are strict
requirements on the speed of operation of a syntax highlighting. Support for
arbitrary program library in FRIS is, in particular, in the ability of a visual
highlighting of their elements such as procedures, modules, data types, etc. Such
highlighting is performed in a syntax highlighting block based on the current
context. For any identifier under analysis the check depending on current scope is
performed, whether it belongs to arbitrary library, which elements necessary to
highlight. Then, if necessary, the identifier is highlighted with a defined earlier
color.

The peculiarity of full-text analysis is in the used analysis strategy. Since the
analysis is need to be performed in the real time, while the user modifies the text of
program, all analyzers must to work in the error suppression mode. It must be noted
that Fortran is very complicated language for analysis, because of its lexical and
syntactical peculiarities. The most striking examples are:

o the ability to use multiline tokens, for example, identifiers. Next is given
the sample of a multiline identifier “my_id”. The special attention must be
given the fact that in between a start and end lines of any multiline lexeme,
it is allowed to use comments and blank lines.

16

W.C. Patkeuu. SI3bikoBoii cepuc FRIS st pacumpennoii nogaepsxkku Fortran 8 Microsoft Visual Studio. Tpyxst UCTT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

my &
lcomment

1

2

3

4 lanother comment after blank line
5 &id

o the absence of reserved keywords. The decision whether identifier is a
keyword depends on a context of its usage in a statement. Therefore, it is
not statements that are identified by keywords, as in languages with
reserved keywords, but the keywords are identified by statements. Taking
into account that analysis is performed in a real time, it is impossible to
determine the identity of incomplete statement. For example, it is unclear,
whether “if” is a keyword that belongs to conditional statement, or it is a
name of an array, in the following part of statement: “if(”.

Special Token XML DocStart

lll<summary> "
XML Tag
<summary>
Special Tokens Filter
Fortran Analyzer P (Sublanguages :">
(Base Language)

switch)

XML Documentation
Comments Analyzer
(Sublanguage)

OpenMP Analyzer
(Sublanguage)

Fig. 2. The general analyzers operation scheme

The emphasized peculiarities greatly complicate the development of analyzers for
Fortran. But all of them are taken into account in FRIS. In particular, the optimistic
parsing strategy is used. The parser processes a source file statement-by-statement.
For every statement the abstract syntax tree (AST) is built. If the statement could
not be matched, e.g. as a result of that the user just not has time to completely type
it; the special AST is generated for it, which includes all mismatched tokens.

In conjunction with a parser the full AST builder is operating (Fig.3). It builds the
full AST from the individual statement ASTs. It also stores the AST that is already
built. The builder task is to track operations of opening and closing of syntactical
contexts, in particular their optimistic completion.

For example, if now the operator “if(...)then” is analyzed, then according to
standard, it could be completed only by “endif” statement. However, the user could
not have enough time to fully type this statement, then the builder will interpret the
“end” statement as a completion of a “if(...)then” operator. Similarly to it, if in the
end of parsing of source file the stack of open contexts of the builder is not empty,

17

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

then they are completing in a special mode — completion by the end of the file. It is
also have ability of priority processing of high level element statements. For
example, if the subroutine element is processed now, and as a result of a parsing the
function element definition statement is discovered, then the current subroutine
element is being completed with a special flag, and the function element processing
is being started.

AST_ASSIGN AST_PROGRAM
= <virtual>
AST_ID AST_ID AST_ASSIGN
a b =

Fortran Parser Full AST builder
(Returns AST per (builds file AST from #

statment) statement AST’s)

Fig.3. The FRIS parser operation scheme

Thus, the parser is always outputs the correct AST, which has no error nodes. This
allows simplifying the semantic analysis algorithm. The semantic analyzer walks
the AST and collects information about all needed Fortran elements, which then
stores in the recognized elements storage block.

3.3 The recognized elements storage block

The recognized elements storage block is a central storage for all known in the
current programming project elements (modules, data types, variables, etc.). It is
filled from two sources: as a result of a source files parsing, and as a result of
deserializing information about arbitrary libraries.

This block is essentially a kind of a symbol table. Its design must take into account
that information in it will be continuously updating as a result of the user editing of
source files.

Consider the proposed generic model of the storage block (Fig. 4).
It consists of following parts:
o the class for a symbol table description;
o the class for an interface description for a typical element of the
programming language;
o the class for an interface description for a typical scope of the programming
language;

o the classes describing specific elements of the programming language, that
implement interfaces of a typical element and of a typical scope, for
elements, which are scopes.

18

W.C. Parkesnu. SI3bikoBoii ceprc FRIS st pacupennoii nojepxkn Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

Symbol Table

General Element General Scope
Interface Interface

Specific element
descriptions

Fig. 4. The model of the recognized elements storage block

The class for a symbol table description must be built as indexed data storage, in
order to effectively processing operations of update and elements search. For
maximum flexibility it must store the references on the interface for a typical
element, instead of references to specific elements. The specific element could be
obtained from an abstract interface as a result of type casting. The following scheme
of a symbol table is proposed (Table 2).

Table 2. The model of a symbol table

Field Data type Description
Names map<long, string> Map unique identifier to string
Elements map<long, object> Map element unique identifier to element
object
Projects map<string, Map program project name to map of
map<string, project file names to list of file elements
list<long>>> unique identifiers
ProjectDependencies map<string, Map program project to program projects
list<string>> it depends from

In this approach, firstly there is an access to all elements (Elements field). Secondly,
for any project there is a list of its dependencies from other projects, which allows
simplify a search procedure of needed elements, and to exclude from the search
result the elements that is not visible in target project. Thirdly, every project
contains a dictionary of its source files, and elements, which contained in every file
that allows to effectively performing the update operations. The update operation is
a result of a source file parsing operation, due to a text changes made by user. Thus,
since all elements that are connected with file is known, so their deletion from other
dictionaries and insertion a newly recognized elements, is a relatively simple task.
Next consider the proposed interface for a typical element of a programming
language (table 3).

Every element must have at least a name, a scope, where it’s defined, a description,
for example, that is obtained from documentation comments, and a location. An
element location consists from a declaration location and a definition location. Each
of which is in turn consists from a file name, and an element region in it.

Consider the proposed interface for a typical scope of the programming language
(table 4). The scope, in a general case, is a container of elements.

19

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

Table 3. The model of interface for a typical element of a programming language

Field Data type Description
Name string Name of element
Scope Scope Outer scope of element
Description string Description of element. For instance from documentation
comments
Location Location Element location: definition location, declaration location.
Location consists of file name and region. Region consists
of 4 integer indexes: start line, start line character index, end
line, end line character index.

Table4. The model of a typical scope of the programming language

Field Data type Description
Scope Scope Outer scope of this scope
Elements list<Element> | List of elements of the scope

Every scope contains a reference to a parent scope and a list of elements that make
up this scope.

Every specific element of a programming language must be derived from an
interface for a typical element, and if it is a scope, from an interface of a typical
scope.

3.4 The elements serialization/deserialization block

The elements serialization/deserialization block is a key element for the
implementation of a mechanism to support arbitrary user libraries. The serialization
mechanism performs a saving of a given programming project in a form of two
special XML files: description of Fortran APl and description of documentation
comments. The optional level of refinement could be additionally specified. In the
case, when the serialization is performed for creation a developer documentation of
a programming project, then all elements are saved, but in the case of creation a user
documentation or interface for a programming project as an external library, then
just externally visible elements are saved. It should be recalled that for each element
in the Fortran module, could be specified the access mode: public or private. The
public elements are externally accessible when the module is used, but the private
elements could be used just inside the module and inaccessible outside of it.

The deserialization mechanism operation is slightly different, because in
deserialization there is just one operation mode — reading all information describing
an arbitrary library. In this case, even if there will be provided XML files, that
contains full description of arbitrary library, only externally visible elements will be
read. This allows reducing the amount of memory needed to store a library
description, and also eliminates the need to store elements, which will not be
accessed to user under no circumstances, for example, private module elements, or
internal elements of procedures.

20

W.C. Patkeuu. SI3bikoBoii cepuc FRIS st pacumpennoii nogaepsxkku Fortran 8 Microsoft Visual Studio. Tpyxst UCTT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

For serialization and deserialization are used the models for description of Fortran
APl and XML documentation comments, that is developed by author and are
expressed in the form of appropriate XML Schema Definitions (XSD) [13], [14].
Let’s consider each of these models.

The model of Fortran API (Fig.5) allows describing external interfaces of any
library as a Fortran interfaces. The meaning and purpose some of the model
elements are given in table 5.

assembly

| Global scope
(clomens]

reflection

moduledata

elements

Fig. 5. The part of Fortran APl XSD

" Module

Table 5. The description of some elements of the Fortran API model

Element (tag) Description
reflection Root tag
assemblies Describes set of projects that API contained in this file
assembly Describes individual project
apis Root for all API description
api Element description
apidata Describes group and supgroup of element. l.e. for function: group —
method, subgroup - function
moduledata Module description switch
referencedata Reference element switch
typedata Derived type description switch
variabledata Variable description switch
proceduredata Procedure description switch
interfacedata Interface description switch
methoddata Method description switch

namelistdata

Name list description switch

commonblockdata

Common block description switch

imports

Module imports description

elements

List of inner elements

As can be seen from the above figure, tag “apis” contains a description of all project
elements. The tag “api” is used for a direct element description. In order to uniquely

21

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

identify the type of element: a module, a function, a subroutine, a data type and so
on, the special switches, like a “moduledata” tag, are used.

One more remark should be made regarding the tag “elements”, which is used to
describe the internal elements of current element. It’s allowed to specify here
references — fully qualified element names, and their description place next in a
main “apis” tag, and also it’s allowed to provide the description of child elements
directly in this tag.

It should be noted that description of Fortran APl may be used for a creation of
Fortran procedure interfaces for their calls from other programming languages, that
is solves the inverse problem.

Consider the model of documentation comments. It conceptually consists of two
interconnected parts: a description of documentation tags for documenting program
elements (Fig.6), and a description of documentation comments XML file format
(Fig. 7). The meaning and purpose of the model elements are given in table 6.

subroutine

derived type

any element

- function

Fig. 6. The usage of documentation tags for different Fortran elements
summary
remarks
’{/ derived type
typeparam

function
param

>
Fig.7. The part of Fortran Documentation XSD

entry

For description of any element may be used 4 tags, two of which are high-level:
“summary” and “remarks”, and other two are nested, it means that they could be
used just inside of other tags: “see” and “para”. In addition to them, for description
of:

o derived type parameters is used “typeparam” tag;

e arguments of subroutines, functions and entry points is used “param” tag;

e result of function is used “result” tag.

22

W.C. Parkesnu. SI3bikoBoii ceprc FRIS st pacupennoii nojepxkn Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

Table 6. The elements description of the Fortran documentation model

Element (tag) Description
doc Root element
members Container for all documentation elements
member Contains documentation for single element
summary Element summary
remarks Additional information for element
see Internal tag, makes reference to given element
para Internal tag, creates paragraph in parent tag
typeparam Describes derived type parameter
param Describes argument of subroutine or function
result Describes function result

Thus, files for description of the model of Fortran APl and documentation
comments form the basis not only for work with arbitrary libraries in Fortran, but
also form the basis for the generation of the reference documentation, for example
with a Sandcastle tool. It should be noted that Fortran APl model can be used for
solving the inverse problem — description of API for a Fortran procedures for their
using from other programming languages.

3.5 The elements view model block

The elements view model block is a link between the IDE integration block and the
data storage block. It performs two basic functions: converts a data from a storage
block to a form required by the IDE, and performs various search operations in a
storage block.

The convert operation of stored data to the form required by the IDE produces
elements that are complemented by the properties of visual representation. For
example, such properties as text color and element icon, which used in various
completion lists, are set. In other words, the elements view model block contains
various aspects of data presentation to user. Thus the structure of the view model
block is analogue to the structure of the storage block. It also defines interfaces for
typical presentation elements and scopes, and a set of their specific implementations
for each element of the storage block.

The second function of this block is the search function. Here are performed various
operations of elements resolution in a scope, a search for elements with the
specified name and type, etc. That is, it performs the selection of needed elements
from the storage block that taking into account a different aspects of a programming
language. Then, selected data converted to the form required for user representation.

4. Proof of concept

The FRIS language service is built on the basis of the general model of a language
service, and implements all described blocks. Figures 8-13 are examples of work of
its various functions, proving the presented conception of a generalized language
service model, including providing extended support for user libraries.

23

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

type(Urs0fhata) ofdata
call ReleaseUrsOf(ofdata,ko,kan)

type(Urs0fData) ofdata
call ReleaseUrsOf{ofdata,ko,kan)

Fig. 8. The extended support of user libraries (before and after)

class (extendedtype) :: ex
call

Mpoueaypa mysubzi{a,b)

ElUE 0AHa CEAZEHHAA © THNOM ASHHEL: NPOLEAYRS
integerikind =43 11 a

NepEEIH NapaMaTp

* integerikind =4} .1 b

Wz ETOpoA NapamMeTp

af* secondtype

Fig. 9. List Members

call

subiia, b}

Mognporpara NoAnporpaMma BENCNHAST AERCTEMA HAA JEYMA NEDEMEHHBIMA
MpKMED CO34aHMA 303aLa B KOMMEHTADMA,

& integarfking = 4) 1 2

FEEERT TFAMETET
@ oex -~
W funl TyHELMA funliargl) result(res)
= green MoMen orMcaHMA oSwei MHbopMaL O dyHKLAM,
@i 3TOT TEKET Oy AST BEIBEASH C HOBOM CTDOKA

_ integer(kind = 47 argl

=f orange ™| B¥oAHOA NapamMeTp
integerikind = 8) i1 res
HOHEEPTHMROEAHHOE 3H3USHME

Fig. 10. Parameter Info and Complete Word

call globalsub

A 1cof 2 w globalsubia, b, c)
Mognporparma MHTepdeic 4na rnoSansHoM NoAnporpaMel
a: realfkind = 4) . a
DIAACAHAG FHSPEONE HaamMaTsa

Fig. 11. Parameter Info for overloaded subroutine

type(
‘g FirstType
“gr SecondType
“gr ThirdType

“1% ExtendedType PacwMpeHHsIi NpoKzEoaHLIA TN Extended Type
Bazoewlil TUN: SecondType
PaCWHPEHHBIA TN Z3HHBIX, COZA3HHBIA € MCMONEI0BAHNEM MEXaHMEMA
HaCNeA0BaHUR

Fig. 12. Complete word for a derived type name

24

W.C. Parkesnu. SI3bikoBoii ceprc FRIS st pacupennoii nojepxkn Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

=) function

2] module
2 subroutine

rnocule

CHWAN2T ANA onpegensHiaa Fartran mogyna

- g samnar v

Vg summar v
—lmodule Modulel
'MMOOpTHPOBAHEME IpPYDHX MOLVIEH
implicit none
OMMCaHMA TePeMeEHHEY M THIOE ITSHHBXN

contains
| JOMCAaHMA BHYTPEHHNMY OVHRIME M II00I00D 7SR

end module

Fig. 13. Code Snippet Sample

Consider the pivot table of the language services from Intel, PGI and FRIS (table 7).

Table 7. The Intel, PGI and FRIS language services comparison

Function Intel PGI FRIS
List Members No No Yes
Yes, excluding
overloaded Yes, only for
Parameter Info procedures and | intrinsic Yes
type bound | procedures
procedures
_ ;i(:Is d s exclud;gg _Yes_, _ only for
Quick Info rocedures of intrinsic Yes
g . procedures
erived types
Yes, only for
modules names, | Yes, only for
Complete Word functions names | keywords Yes
and subroutines | statements
names
Code Snippet [15] ;gf{u t():ztmrir;lr?d gﬁ No Yes. Snippets included
Support shortcut in Completion Lists
Documentation Yes. Documentation
No No . . -
comments support included in all tooltips
Support of user No No Yes

libraries

Thus, due to use of the developed general language service model, FRIS provides

extended support of a Fortran in Microsoft Visual Studio.

25

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

5. Conclusion

The report presents the general model of a language service for extended support of
a Fortran programming language developed by author. This model can be easily
applied not only to create new language services for other languages, but also to
create a language services in other IDEs.

All aspects that must be taken into account in development of a language service are
given in details, including the analysis of user requirements, the analysis of a data
sources for a language service, and the analysis of operation peculiarities of a
language service in a specific IDE.

As a result of executing described analysis kinds, in every particular case, the plan
of a language service development must be created. For a language service
development simplification, the general model of a language service is given and
each its block is described in details on example of its implementation in FRIS.

At last, the proof of proposed concept of constructing language services is given, on
example of comparison FRIS with existing language services from Intel and PGI.
The model that is used in FRIS provides its significant advantage over other
language services.

It especially should be noted that FRIS implements a model for supporting user
libraries. It includes a model of Fortran APl and a model of documentation
comments, developed by author. The Fortran API model allows not only to describe
the interfaces of any library in terms of Fortran, but also allows solving the inverse
problem, by known Fortran interfaces obtain APl for target language. The
documentation comments model allows user to document different Fortran elements
straight in the program text, and then obtain documentation in various types of
context help. The model of Fortran API in conjunction with the model of
documentation comments can be used to create a developer and/or user
documentation, for example with a Sandcastle tool.

References

[1]. The Fortran automatic coding system for the IBM 704 EDPM. Programmers reference
manual. IBM, 1956

[2]. 1SO. ISO/IEC 1539-1:2004 Information technology - Programming languages - Fortran -
Part 1: Base Language, pp. 569

[3]. Intel Fortran Composer (Visual Fortran) URL: http://software.intel.com/en-
us/articles/intel-fortran-composer-xe-2013-sp1-release-notes

[4]. PGI Visual Fortran URL: https://ww.pgroup.com/products/pvf.htm

[5]. Using IntelliSense URL.: http://msdn.microsoft.com/en-
us/library/hcw1s69b(v=vs.80).aspx

[6]. Language Services URL: http://msdn.microsoft.com/en-us/library/bb165099.aspx

[7]. Model of a Language Service URL: http://msdn.microsoft.com/en-
us/library/bb166518(v=vs.100).aspx

[8]. Eric Woodruff’'s Sandcastle Help File Builder Documentation URL:
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bbla-ce2135d3a909.htm

[9]. 1VsLanguagelnfo Interface URL.: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx

26

http://software.intel.com/en-us/articles/intel-fortran-composer-xe-2013-sp1-release-notes
http://software.intel.com/en-us/articles/intel-fortran-composer-xe-2013-sp1-release-notes
https://www.pgroup.com/products/pvf.htm
http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb165099.aspx
http://msdn.microsoft.com/en-us/library/bb166518(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/bb166518(v=vs.100).aspx
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bb1a-ce2135d3a909.htm
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx

W.C. Parkesnu. SI3bikoBoii ceprc FRIS st pacupennoii nojepxkn Fortran B Microsoft Visual Studio. Tpyast UCIT

PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

[10]. IVsColorizer Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx

[11]. Language Service Interfaces URL: http://msdn.microsoft.com/en-
us/library/bb164598(v=vs.80).aspx

[12]. Managed Package Framework Classes URL: http://msdn.microsoft.com/en-
us/library/bb164709(v=vs.80).aspx

[13]. W3C XML Schema Definition Language (XSD) 1.1 Part 1. Structures URL:
http://www.w3.org/TR/xmlschemall-1/

[14]. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes URL:
http://www.w3.0rg/TR/xmlschemall-2/

[15]. Creating and Using IntelliSense Code Snippets URL: https://msdn.microsoft.com/en-
us/library/ms165392(v=vs.80).aspx

f3bikoBoUu cepBUc FRIS ansa paclwumpeHHoOn
nopaepxku Fortran B Microsoft Visual Studio

U.C. Pamkesuu <ratkevichis@gmail.com>,
Poccutickuii @edepanvrviii Adepruiii Llenmp — Beepoccutickuti Hayuno
Hccreoosamenvckuii Hnemumym Dxcnepumenmanvroti Qusuxu,
607190, Poccus, Huscecopoockas oban., 2. Capos, np-m Mupa, 37

AHHoOTanms. B 1aHHO# cTaThe paccMaTpUBAIOTCS BOIPOCH! OCTPOEHUS S3bIKOBOTO CEpBUCA
JUISL PAcIIMPEHHOH IOJIEP)KKH s3bIKa MpOrpaMMHUpOBaHus FOrtran B HHTErpHpOBaHHOI
cpene paspabotku Microsoft Visual Studio. Ilpemmaraercs mMozens u OOmMA MOAXOA K
MOCTPOCHUIO SI3BIKOBBIX CEPBHCOB.

Ipemnaraemass oOmiast MOAENb S3BIKOBOTO CEPBHCA COCTOMT U3 MATH OnokoB: Oioka
MHTETpAllMi CO Ccpenoil paspaborku; Onoka aHanmm3a; OJNOKa XpaHEHHS pPACIIO3HAHHBIX
JJIEMEHTOB; OJIOKa Ceprai3allii/Aecepruali3allii SIEMEHTOB; OJI0Ka MOJIENTH TPEICTaBICHUS
9JIEMEHTOB.

Brox unterpammu ¢ IDE coeanHsier A361K0BOM cepBHC ¢ 6a30Boit nHOpacTpykTypoii IDE. On
OTBEYaeT 3a MOIIHCKY S3BIKOBOTO CepBHCAa HAa COOBITHS pEIaKTUPOBaHMS TEKCTa
HOJIb30BATENEM B PEIAKTOPE U 32 COOTBETCTBYIOIINE OTKIIUKH.

Biiok aHanu3a oTBeyYaeT 3a MPOBEJCHHE JISKCHYECKOT0, CHHTAKCHYECKOTO ¥ CeMaHTHYECKOTrO
aHanmm3a. OH coOupaeT BCIO HEOOXOmUMyK0 HHpOpMALUIO 00 DJJIEMEHTax s3bIKa
HPOrpaMMHPOBAHHUs U MOMEIIAET UX B OJIOK XpaHEHHs PAaclO3HAHHBIX AJIEMEHTOB. BTopoii
3aj1aueil JaHHOTO OJIOKa SABJISAETCS MPeJOCTaBIeHHE HH)OPMAIIHK IS TOACBETKH CHHTAKCHCA
PEAAaKTHPYEMOT0 TEKCTa IPOTrPaMMBIL.

B0k XpaHeHWs pacHO3HAHHBIX DJIEMEHTOB SBISIETCS CBOCOOpa3HON 0a30i MaHHBIX BCEX
3JIEMEHTOB, HEOOXOANUMBIX /Ul paboThI S3BIKOBOrO cepBuca. B o0mieM ciydae OH sIBIISETCS
Pa3HOBUAHOCTBIO TAaONHUIIEI CUMBOJIOB. HamoHeHre 6J10ka XpaHEeHHsT MOXKET BECTHCH U3 IBYX
MCTOYHUKOB: 13 OJIOKA aHANN3a, KaK pe3yJbTar pa3bopa (aiiinos ¢ TekcTamu mporpaMm, 1 U3
0J10Ka cepUanu3aluy/JecepruaIn3aliy JIEMEHTOB, KaK pe3yJIbTaT AeCepHalli3aluy U3 paHee
CYIIECTBYIOIIETO CIICIHAAIM3UPOBAHHOTO OMHCAHMS IPOTPAaMMBI, B CIydae HCIOJIB30BAaHHMS
mozemu API (Application Programming Interface) st npon3BosIbHEIX OHOIHOTEK.

Brnok cepnanmzanny/neceprann3anyuy 3JIEMEHTOB BEBINOJIHSET ABe (QYHKIMH. Bo-mepBrIX, OH
MO3BOJISIET COXPAHATH COAEPKUMOE ITPOrPaMMHEIX ITPoekToB B Buae XML ¢aiinos onucanus
APl m KOMMEHTapueB JOKYMEHTHUPOBAaHHMS K HHM. BoO-BTOpBIX, OH TO3BOJIET
BOCCTaHaBJIMBATh COJEPKUMOE IPOrPaMMHBIX IPOEKTOB U3 ux XML Mmoneneil.

27

https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164598(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164598(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164709(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164709(v=vs.80).aspx
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/
https://msdn.microsoft.com/en-us/library/ms165392(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/ms165392(v=vs.80).aspx

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

Brokx Monenu mpencTaBiICHHS SIEMEHTOB SIBISICTCS CBSA3YIOIIUM 3BEHOM, CBOEOOpa3HBIM
ajanTepoM, O3JIEMEHTOB OJOKa XpaHEeHWs, K TOMY BHAY, KOTOpPBI HEOOXOOUM IUIst
Hcrionb30BaHus B O10ke uHTerpannu ¢ IDE. Tak pacro3HaHHBIE 2I€MEHTHI MOTYT COAEPKATh
HEKOTOpYI0 MH(popMaImio, kotopas He TpeOyeTcs hyHKuusaM texnoioruu IntelliSense, wmu
Hao0OpOT, HE cojepXkaTb HyXHOH HH(opMaluu. B Moxenn NpeacTaBIeHHs 3JIEMEHTOB
OPraHHU3YIOTCS THIbI JaHHBIX — O0EPTKH UL SIEMEHTOB 0JI0Ka XpaHEeHHs, COOTBETCTBYIOIIIE
TpeboBanusaAM Onoka wuHTerpauumn c IDE. Taxke 3mech peanu3yroTcs BCEBO3MOKHBIE
(GyHKIMY BBIOOPKH U TOUCKA HE0OX01MMOM HHpOopMaIHy.

JlokazarenscTBO pabOTOCTIOCOOHOCTH IPEUIOKEHHOH 0000IEHHON MOJEIH IIPUBOJUTCS Ha
npuMepe pa3pabOTaHHOTO aBTOPOM s3bIKOBoro cepBuca FRIS. M3noxenHsit marepuan
MOXeT OBITh B paBHOH Mepe HCIOJIb30BaH U ITOCTPOSHHUS SI3BIKOBBIX CEPBUCOB, KaK IS
IPYTHX SI3BIKOB IIPOTPaMMHUPOBAHMS, TaK U JUISL IPYTUX CPEICTB Pa3padOTKH.

Karouessie ciioBa: FRIS; Fortran Intelligent Solutions; Fortran; Visual Studio Extensibility;
Language Service; Visual Studio

DOI: 10.15514/ISPRAS-2015-27(3)-1

Jns uurtupoBanmsi: ParkeBua U.C. f3bikoBoit cepsuc FRIS mis pacumpentoit moamepxku
Fortran 8 Microsoft Visual Studio. Tpyast UCIT PAH, Tom 27, Bbim. 3, 2015 ., ctp. 9-28 (Ha
anrsmiickoMm s3bike). DOI: 10.15514/ISPRAS-2015-27(3)-1.

Cnucok nutepatypbl
[1]. The Fortran automatic coding system for the IBM 704 EDPM. Programmers reference
manual. IBM, 1956
[2]. 1SO. ISO/IEC 1539-1:2004 Information technology - Programming languages - Fortran -
Part 1: Base Language, pp. 569
[3]. Intel Fortran Composer (Visual Fortran) URL: http://software.intel.com/en-
us/articles/intel-fortran-composer-xe-2013-sp1-release-notes
[4]. PGI Visual Fortran URL: https://www.pgroup.com/products/pvf.htm
[5]. Using IntelliSense URL.: http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.80).aspx
[6]. Language Services URL.: http://msdn.microsoft.com/en-us/library/bb165099.aspx
[7]. Model of a Language Service URL: http://msdn.microsoft.com/en-
us/library/bb166518(v=vs.100).aspx
[8]. Eric Woodruff’s Sandcastle Help File Builder Documentation URL:
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bbla-ce2135d3a909.htm
[9]. 1VsLanguagelnfo Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx
[10]. IVsColorizer Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
[11]. Language Service Interfaces URL: http://msdn.microsoft.com/en-
us/library/bb164598(v=vs.80).aspx
[12]. Managed Package Framework Classes URL: http://msdn.microsoft.com/en-
us/library/bb164709(v=vs.80).aspx
[13]. W3C XML Schema Definition Language (XSD) 1.1 Part 1. Structures URL:
http://www.w3.org/TR/xmlschemall-1/
[14]. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes URL:
http://www.w3.org/TR/xmlschemall-2/
[15]. Creating and Using IntelliSense Code Snippets URL: https://msdn.microsoft.com/en-
us/library/ms165392(v=vs.80).aspx

28

http://software.intel.com/en-us/articles/intel-fortran-composer-xe-2013-sp1-release-notes
http://software.intel.com/en-us/articles/intel-fortran-composer-xe-2013-sp1-release-notes
https://www.pgroup.com/products/pvf.htm
http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb165099.aspx
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bb1a-ce2135d3a909.htm
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164598(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164598(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164709(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164709(v=vs.80).aspx
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/
https://msdn.microsoft.com/en-us/library/ms165392(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/ms165392(v=vs.80).aspx

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

Pitfalls of C# Generics and
Their Solution Using Concepts

Julia Belyakova <julbel@sfedu.ru>,

Stanislav Mikhalkovich <miks@math.sfedu.ru>
Institute for Mathematics, Mechanics and Computer Science,
Southern Federal University,

344006, B. Sadovaya str., 105/42, Rostov-on-Don, Russia

Abstract. As was shown in earlier studies, in comparison with Haskell type classes
and C++ concepts such mainstream object-oriented languages as C# and Java pro-
vide much limited mechanisms of generic programming based on F-bounded poly-
morphism. Main pitfalls of C# generics are carefully considered in this paper. A
special attention is given to drawbacks of recursive constraints (F-constraints), am-
biguous semantics of interfaces, lack of language support for multi-type constraints
and retroactive interface implementation, and subtle problems of the Concept design
pattern, which is widely used not only in C#, but in Java and Scala as well. To solve
the problems of C# generics, extending C# language with concepts is proposed: as a
new language construct, concepts are to be used as constraints on type parameters
exclusively, with object-oriented interfaces being used as types. In contrast to basic
C++ concepts, C# concepts may include subtype and supertype constraints, allow
constraints aliasing and automatic generation of default models. The major differ-
ence of the concepts design proposed is language support for multiple models. The
latter feature is supported neither in C++ concepts, nor in Haskell type classes. In
conclusion, a mechanism of implementation of concepts via translation to basic C#
is outlined. The most important property of the translation is a possibility to recover
a source code in extended language from a compiled module.

Keywords: generic programming; (C++) concepts; generics; C# language; concept pattern;
recursive constraints; generic interfaces.

DOI: 10.15514/ISPRAS-2015-27(3)-2

For citation: Belyakova Julia, Mikhalkovich Stanislav. Pitfalls of C# Generics and Their
Solution Using Concepts. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-47.
DOI: 10.15514/ISPRAS-2015-27(3)-2.

29

mailto:julbel@sfedu.ru
mailto:miks@math.sfedu.ru

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

1. Introduction

Generic programming is supported in different programming languages by various
techniques such as C++ templates, C# and Java generics, Haskell type classes, etc.
Some of these techniques were found more expressive and suitable for generic pro-
gramming, other ones more verbose and worse maintainable [1]. Thus, for example,
the mechanism of expressive and flexible C++ unconstrained templates suffers from
unclear error messages and a late stage of error detection [2], [3]. A new language
construct called concepts® was proposed for C++ language as a possible substitution
of unconstrained templates. A design of C++ concepts? conforms to main principles
of effective generic tools design [1].

In comparison with concepts and Haskell type classes [1], [7], such mainstream
object-oriented languages as C# and Java provide much limited mechanisms of ge-
neric programming based on F-bounded polymorphism. Pitfalls of C# generics are
analysed in this paper in detail (Sec. 2): we discuss some known drawbacks and
state the problems of subtle semantics of recursive constraints (Sec. 2.2) and con-
straints-compatibility (Sec. 2.3). To manage the pitfalls considered, extending of C#
with concepts is proposed: a design of concepts is briefly presented in Sec. 4. We
also discuss a translation of such extension to standard C#.

C# language is used in this paper primarily for the sake of syntax demonstration. As
for the pitfalls of C# generics, they hold for Java as well with slight differences.
However, while the concepts design proposed in the paper could be easily adapted
for Java (and also for any .NET-language with interface-based generics), the tech-
nique of language extension translation (which we consider in Sec. 4) cannot be
applied for Java directly. Unlike Java Virtual Machine, .NET Framework preserves
type information in its byte code, this property being crucial for the translation
method.

2. Pitfalls of C# Generics

C# and Java interfaces originally developed to be an entity of object-oriented pro-
gramming were later applied to generic programming as constraints on generic type
parameters. There are several shortcomings of this approach.

2.1 Lack of Retroactive Interface Implementation

C# and Java interfaces originally developed to be an entity of object-oriented pro-
gramming were later applied to generic programming as constraints on generic type
parameters. There are several shortcomings of this approach.

1 Term “concept” was initially introduced in a documentation of the Standard Template Library
(STL) [4] to describe requirements on template parameters in informal way.

There were several designs of C++ concepts [3], [5], [6]; all of them share some general ideas.

30

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

Interfaces cannot be implemented retroactively, i. e. it is impossible to add the rela-
tionship “type T implements interface I” if type T is already defined. Consider a
generic algorithm for sorting arrays Soxr t <T> with the following signature:
Sort<T>(T[]) where T : IComparable<T>;

If some type F'oo provides an operation of comparison but does not implement the
interface IComparable<Foo>, Sort<Foo> is not a valid instance of
Sort<>. What one can do in this case? If type cannot be changed (it may be de-
fined in external .dll, for instance), the only way to cope with sorting is to define an
adapter class FooAdapter which implements Sort<FooAdapter>
interface, pack all Foo objects into FooAdapter ones, sort them and unpack
back to an array of F'oo objects. Apparently, there must be a better approach.
Fortunately, in the .NET Framework standard library the Array.Sort<T>
method [8] is provided with two “branches” of overloads:

1. For any type T which implements IComparable<T> interface
((s—1) example, Fig. 1).
2. For any type T with an external comparer of type TComparer<T>

provided ((s—2) example, Fig. 1).

Hence, if some type is already defined, values of this type can be compared, but this
type does not implement IComparable<> interface (as in the Foo example
above), Sort<> with IComparer<> (branch 2) is to be used. Thus one can
simulate retroactive modeling property (in Scala the similar approach is referred to
as a programming with the “concept pattern” [9]). Consequently, if retroactive
modeling is required, a programmer has to write a generic code twice — in “inter-
face-oriented” and in “concept pattern” styles. The amount of necessary overloads
grows exponentially: if one needs two retroactively modeled constraints on generic
type, corresponding generic code would consist of four “twins”, if three — eight
“twins” and so on.

(ICmp-1) interface IComparable<T> {int CompareTo (T other);}
(ICmp-2) interface Icomparer<T> {int Compare(T x, T y);}

(s-1) Sort<T>(T[]) where T : IComparable<T>;
(s-2) Sort<T> (T[], IComparer<T>);

Fig. 1. TComparable<T>/IComparer<T> interfaces and its applications

(1) interface IComparableTo<S> { int CompareTo (S other); }
(2) interface IComparable<T> where T : IComparable<T>
{ int CompareTo (T other); }

Fig. 2. IComparable<T> vs IComparableTo<S> example

interface IDataVertex<Vertex, DataType>
where Vertex : IDataVertex<Vertex, DataType>

31

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

{

IEnumerator<Vertex> OutVertices { get; } // (%)

}
interface IDataGraph<Vertex, DataType>
where Vertex : IDataVertex<Vertex, DataType> /7 (#)

{ e}

Fig. 3. IpataGraph<, > and IDatavertex<, > interfaces

2.2 Drawbacks of Recursive Constraints

Example 1. The following reason about the Sort<T> method for ICompa-
rable<T> may be not obvious. The notation of Sort<T> in (s—-1) ex-
ample (Fig. 1) looks a little bit redundant; such a recursive constraint on type T

might look even frightening, but it is well formed. Furthermore, the word “compa-
rable” in this context is very likely associated with the ability to compare values of
type T with each other. But the interface IComparable<T> ((ICmp-1),
Fig. 1) does not correspond this semantics: it designates the ability of some type
(which implements this interface) to be comparable with type T. The same problem
with Comparable<X> interface in Java is explored in [10]. The particular role
of recursive constraints in generic programming is explored in [11].

It would be better to split the single TComparalble<> interface into two dif-
ferent interfaces (Fig. 2):

1. IComparableTo<S> which requires some type (which implements
this interface) to be comparable with S.
2. IComparable<T> which requires values of type T to be comparable

with each other.
Note that the definition of the latter interface needs the constraint (g.v. Fig. 2):
where T: IComparable<T>

Example 2. As an another example consider a generic definition of graph with pe-
culiar structure: graph stores some data in vertices; every vertex contains infor-
mation about its predecessors and successors thereby defining arcs. A graph itself
consists of set of vertices instead of set of edges. Such kind of graph is suitable for a
task of data flow analysis in the area of optimizing compilers [12] because “move-
ment along arcs up and down” is intensively used action in an analysis of a control
flow graph.

Fig. 3 illustrates parts of the corresponding definitions: IData-
Graph<Vertex, DataType> describes interface of a data graph;
IDataVertex<Vertex, DataType> describes interface of a vertex
in such graph. While the graph interface really depends on type parameters Ver—
tex and DataType, we have to include Vertex as a type parameter into the

32

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

vertex interface TDataVertex<, > as well. Similarly to ITCompara-
b1e<> example the constraints (*) and (#) in Fig. 3 are not superfluous.
Suppose we have the following types:

class V1 : IDataVertex<Vl, int> { ... }

class V2 : IDataVertex<Vl, int> { ... }
Thanks to the constraints (*) and (#) the instantiation of graph IData-
Graph<V2, int> is not allowed, since type V2 does not implement inter-
face IDataVertex<V2, int>.Without these constraints we might accept
some inconsistent graph with vertices of type V2 which refer to vertices of type
V1.

Vertex and graph interface definitions are unclear and nonobvious. If programmers
might be used to use interface IComparable<>, itis more difficult to manage
such things as IDataGraph<, > example. In some cases one may prefer to
abandon writing generic code because of this awkwardness.

2.3 Ambiguous Semantics of Generic Types

When using flexible Sort <T> method with an external parameter (Fig. 1), a pro-
grammer has clear understanding of how elements are sorted, since such a comparer
is a parameter of an algorithm. But when one uses generic types, this information is
implicit. For instance, SortedSet<T> class takes Icomparer<T>
object as a constructor parameter, HashSet<T> class taking TEquali-
tyComparer<T>. Therefore, given two sets of the same generic type one
cannot check at compile time whether these sets are constraints-compatible (in case
of HashSet<T> “constraints-compatibility” means that the given sets use the
same equality comparer). And it seems that a programmer usually does not suppose
that objects of the same type can have different comparers (or addition operators,
coercions, etc). But they can, and it leads to subtle errors.

Suppose we have a simple function GetUnion<T> (q.v. Fig. 4) which returns a
union of the two given sets. If some arguments a and b provide different equality
comparers (e.g., case-sensitive and case-insensitive comparers for type string), the
result of GetUnion (a, b) would differ from the result of
GetUnion (b, a). Note that Haskell type classes do not suffer from such an
ambiguity because every type provides only one instance of a type class.

static HashSet<T> GetUnion<T> (HashSet<T> sl, HashSet<T> s2)
{

var us = new HashSet<T>(sl, sl.Comparer);
us.UnionWith (s2);
return us;

Fig. 4. Union of Hashset<T> objects
33

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

interface IObserver<O, S> where O : IObserver<O, S>
where S : ISubject<O, S>
{ void update (S subj); }

interface ISubject<O, S> where O : IObserver<O, S>
where S : ISubject<O, S>
{
List<0O> getObservers () ;
void register (O obs);
void notify();

Fig. 5. Observer pattern in C#

2.4 The Problem of Multi-Type Constraints

The well-known problem of multi-type constraints holds for C# interfaces. Re-
quirements concerning on several types cannot be naturally expressed within inter-
faces. The paper [10] deals with the example of Observer pattern in Java. The Ob-

server pattern connects two types: Observer and Subject. Both types has
methods which take the another type of this pair as an argument: the Observer pro-
vides update (Subject), the Subject — register (Observer).

Fig. 5 shows the interface definitions TObserver<O, S> for Observer and
ISubject<O, S> for Subject in standard C#. We need two different inter-
faces and have to duplicate the constraints on O and S in both definitions to estab-
lish consistent connection between type parameters O and S . And again we face
with recursive constraints on types O (which represents the Observer) and S (which
represents the Subject). This example looks even worse than the case of vertex and

graph interfaces presented in Fig. 3. But it is the only way to define a type fami-
ly [13] of Observer pattern correctly.

2.5 Constraints Duplication and Verbose Type Parameters

All constraints required by a definition of generic type are to be repeatedly specified
in every generic component which uses this type. Consider the generic algorithm
GetSubgraph<, , > depending on type parameter G which implements
IDataGraph<, > interface (q.v. Fig. 3).

G GetSubgraph<G, Vertex, DataType>(G g, Predicate<DataType> p)
where G : IDataGraph<Vertex, DataType>, new ()
where Vertex : IDataVertex<Vertex, DataType> { ... }

GetSubgraph<G, Vertex, DataType> method is not correct
without explicit specification of constraint on type parameter Vertex . This con-
straint is induced by the definition of IDataGraph<Vertex,

34

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

DataType> interface and should be repeated every time one uses Tdata-
Graph<, >.

Another property of GetSubgraph<. . .> definition is a plenty of generic
parameters. Clearly, vertex and data types are fully determined by the type of spe-
cific graph. At the level of Get Subgraph<. . .> signature vertex type even
does not matter at all. Such types are often referred to as associated types. Some
programming languages allow to declare associated types explicitly (SML, C++ via
traits, Scala via abstract types and some other), but in C# and Java they can only be
represented by extra type parameters. It makes generic definitions verbose and
breaks encapsulation of constraints on associated types. Issues of repeated con-
straints specification and lack of associated types are considered in [14], [1] in more
detail.

3. Related Work

We consider two studies concerning modification of generic interfaces in this sec-
tion:

1. [14] proposes the extension of C# generics with associated types and con-
straint propagation.
2. [10] generalizes Java 1.5 interfaces enabling retroactive interface imple-

mentation, multi-headed interfaces (expressing multi-type constraints) and some
other features.

Both studies revise interfaces to improve interface-based mechanism of generic
programming and to approach to C++ concepts and Haskell type classes, which are
considered being rather similar [7]. Some features of Scala language in respect to
problems considered in Sec. 2 will also be mentioned.

interface ObserverPattern[O, S] {
receiver O { void update (S subj); }
receiver S {
List<0O> getObservers() ;
void register (O obs) { getObservers().add(obs); }
void notify() { ... }

}
}
class MultiheadedTest {
<3,0> void genericUpdate (S subject, O observer)
where [S,0] implements ObserverPattern {
observer.update (subject) ;

Fig. 6. Observer pattern in JavaGl

35

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

3.1 C# with Associated Types and Constraint Propagation

Member types in interfaces and classes are introduced in [14] to provide direct sup-
port of associated types. A mechanism of constraint propagation is also proposed to
lower verbosity of generic components and get rid of constraints duplication as was
mentioned in Sec. 2-5. The example of Incidence Graph concept from the Boost
Graph Library (BGL) [15] is considered. It is shown that features proposed can sig-
nificantly improve a support of generic programming not only in C# language but in
any object-oriented language with F-bounded polymorphism.

But the problems of multi-type constraints and recursive constraints cannot be
solved with this extension. Thus, the code of Observer pattern (Fig. 5) cannot be
improved at all because of recursive constraints; the same holds for ICompara-—
b1le<T> interface. The issue of retroactive implementation is also not touched

upon in [14]: extended interfaces are still interfaces which cannot be implemented
retroactively.

3.2 JavaGl: Java with Generalized Interfaces

In contrast to [14], the study [10] is mainly concentrated on the problems of retroac-
tive implementation, multi-type constraints (solved with multi-headed interfaces)
and recursive interface definitions®. For instance, Observer pattern is expressed in
JavaGl with generalized interfaces as shown in Fig. 6 [10]. Methods of a whole in-
terface are grouped by a receiver type with keyword receiver. A syntax of an
interface looks a little bit verbose but it is essentially better than two interfaces with
duplicated constraints shown in Fig. 5. Moreover, JavaGl interfaces allow default
implementation of methods (as register and notify). Retroactive imple-
mentation of interfaces is also allowed, but it is possible to define only one imple-
mentation of an interface for the given set of types in a namespace.

It turns out that interfaces become some restricted version of C++ concepts [5], [16]
(in particular, they do not support associated types) and, moreover, they lose a se-
mantics of object- oriented interfaces*. JavaGl interfaces only act as constraints on
generic type parameters, but they cannot act as types, so one cannot use JavaGl in-
terfaces as in Java.

(s-s) def Sort[T : Ordering] (elems: Array[T]) { ... }
(s-u) def Sort[T] (elems: Array|[T]) (implicit ord: Ordering[T]) {...}

trait ObserverPattern([S, O] {
def update (obs: O, subj: S);
def getObservers(subj: S): Seq[O];
def setObservers(subj: S, observers: Seq[O]);

3 This problem is usually connected with so-called binary methods problem.

4 The way to preserve compatibility with Java code is considered in [10], but “real interfaces”
no longer exist in JavaGl.

36

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

def register(subj: S, obs: 0)
{ setObservers (subj, getObservers (subj) :+ obs); }
def notify(subj: S) { ... }
}
object MultiheadedTest {
def genericUpdatel[S, O] (subject: S, observer: 0O)
(implicit obsPat: ObserverPattern[S, 0O]) {
obsPat.update (observer, subject);

Fig. 7. sort [T] and ObserverPattern[s, 0] examples in Scala

3.3 “Concept Pattern” and Context Bounds in Scala

The idea of programming with “concept pattern” has been reflected in Scala lan-
guage [9]. Due to the combination of generic traits (something like interfaces with
abstract types and implementation), implicits (objects used by default as function
arguments or class fields) and context bounds (like T : Ordering inFig.7)
Scala provides much more powerful mechanism of generic programming than C# or
Java. Fig. 7 illustrates the examples of sorting and observer pattern.

Context bounds provide simple syntax for single-parameter constraints: the sugared
(s—s) wversion of Sort [T] algorithm is translated into (s—-u) one by
desugaring. Retroactive modeling is supported since one can define new Order-
ing[] object and use it for sorting. And one does not need to provide two ver-
sions of the sort algorithm as for C# language (q.v. Fig. 1): Sort [] with one
argument would use default ordering due to implicit keyword. Observ-
erPattern[S, O] looks rather similar to corresponding JavaGl interface
(Fig. 6). There is no syntactic sugar for multi-parameters traits, so the notation of
genericUpdate[S, O] cannot be shortened.

In respect to the constraints-compatibility problem discussed in Sec. 2-3 Scala’s
“concept pattern” reveals the same drawback as C#. Generic types take “concept
objects” as constructor parameters. In such a way TreeSet [A] [17] implicitly
takes Ordering [A] object, therefore, for instance, the result of intersection
operation would depend on an order of arguments if they use different ordering.

4. Design of Concepts for C# Language

4.1 Interfaces and Concepts

It seems that a new language construct for generic programming should be intro-
duced into such object-oriented languages as C# or Java. If we extend interfaces
preserving their object- oriented essence [14], a generic programming mechanism
becomes better but still not good enough, since such problems as retroactive model-
ing or constraints-compatibility remain. If we make interfaces considerably better

37

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

for generic programming purposes [10], they lose their object-oriented essence and
can no longer be used as types.

We advocate the assertion that both features have to be provided in an object-
oriented language:

1. Obiject-oriented interfaces which are used as types.

2. Some new construct which is used to constrain generic type parameters.
C++ like concepts are proposed to serve this goal.

Construct of extended language Construct of base language
Concept Abstract class

Concept parameter Type parameter

Associated type Type parameter

Concept refinement Subtyping

Associated value Property (only read)

Nested concept requirement Type parameter

Concept requirement in generic code Type parameter

Model Class

Fig. 8. Translation of C# extension with concepts

4.2 C# with Concepts: Design and Translation

In this section we present a sketch of C# concepts design. Concept mechanism in-
troduces the following constructs into the programming language:

1. Concept. Concepts describe a named set of requirements (or constraints)
on one or more types called concept parameters.
2. Model. Models determine the manner in which specific types satisfy con-

cept. Models are external for types; they can be defined later than types. It means
that a type can retroactively model a concept if it semantically conforms to this con-
cept. Types may have several models for the same concept. In some cases a default
model can be implicitly generated by a compiler.

3. Constraints are used in generic code to describe requirements on generic
type parameters.

Concepts support the following kinds of constraints:

. associated types and associated values;

. function signatures (may have default implementation);

. nested concept requirements (for concept parameters and associated types);
. same-type constraints;

. subtype and supertype constraints;

. aliases for types and nested concept requirements.

The main distinction of C# concepts proposed in comparison with other concepts
designs (C++ , G [16]) is the support of subtype constraints and anonymous models

38

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

(like anonymous classes). Concept-based mechanism of constraining generic type
parameters surpasses the abilities of interface-based one. At the same time interfaces
can be used as usual without any restrictions.

Concepts can be implemented in existing compilers via the translation to standard
Ct#. Fig. 8 presents correspondence between main constructs of extended and stand-
ard C# languages. To preserve maximum information about the source code seman-
tics, some additional metainformation has to be included into translated code. In
particular, one needs to distinguish generic type parameters in the resultant code as
far as they may represent concept parameters, associated types or nested concept
requirements. To resolve such ambiguities we propose using attributes.

The method of translation suggested is strongly determined by the properties of
.NET Framework. Due to preserving type information and attributes in a .NET byte
code, translated code can be unambiguously recognized as a result of code- with-
concepts translation. Moreover, it can be restored into its source form, what means
that modularity could be provided: having the binary module with definitions in
extended language one can add it to the project (in extended language either) and
use in an ordinary way.

Fig. 9 illustrates several concept definitions (in the left column) and their translation
to standard C# (in the right column). Basic syntax of concepts is shown: concept

declarations (start with keyword concept), signature constraints, signature con-
straints with default implementation (NotEqual in CEquatible[T]),
refinement (concept CComparable [T] refines CEquatible [T], ie. it
includes all requirements of refined concept and adds some new ones), associated
types (Data in CTransferFunction [TF]), multi-type concept COb—-
serverPattern[O, S], nested concept requirements (CSemilat-
tice[Data] inCtransferFun-ction[TF]).

concept CEquatible([T] [Concept] abstract class

{ // function signature (FS) CEquatible<[IsConceptParam]T>

bool Equal (T x, T y); {
// FS with default implementation public abstract bool Equal(T x, T y);
bool NotEqual (T x, T y) public virtual bool NotEqual(T x, T y)
{ return !Equal(x, y); } { return !this.Equal(x, y); }

} }

// refining concept [Concept] abstract class CComparable<

concept CComparable[T] [IsConceptParam]T> : CEquatible<T>

refines CEquatible([T] {
{ public abstract int Compare(T x, T y);

int Compare(T x, T y); public override bool Equal (T x, T y)

// overrides Equal from refined { ...}

// concept CEquatible[T] }

override bool Equal(T x, T y) [Concept] abstract class

{ ...} CTransferFunction<
} [IsConceptParam]TF, [IsAssocType]Data,
concept CTransferFunction[TF] [IsNestedConceptReq]CSemilattice_Data>
{ where CSemilattice Data

type Data; // associated type : CSemilattice<Data>, new()

// nested concept requirement {

39

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

require CSemilattice[Datal;
Data Apply(TF trFun, Data d);
TF Compose (TF trFunl, TF trFun2);

public abstract Data Apply(
TF trFun, Data d);
public abstract TF Compose (

} TF trFunl, TF trFun2);
}
concept CObserverPattern[O, S] [Concept] abstract class CObserverPattern<
{ [IsConceptParam]O, [IsConceptParam]S>
void UpdateSubject ({

O obs, S subj);
ICollection<0O> GetObservers (

public abstract void UpdateSubject (
0 obs, S subj);

S subj); public abstract ICollection<O>
void RegisterObserver (GetObservers (S subj);
S subj, O obs) public virtual void RegisterObserver (

{ GetObservers (subj) .Add (obs); }

void NotifyObservers (S subj) { GetObservers (subj) .Add (obs); }

{ ...} public virtual void NotifyObservers (
} S subj) { ...}

S subj, O obs)

Fig. 9. Concept examples and their translation to basic C#

Concepts are translated to generic classes. Function signatures are translated to ab-
stract or virtual (if implementation is provided) class methods. Concept parameters
and associated types are represented by type parameters (marked with attributes) of
a generic abstract class as well as nested concept requirements. For instance,
CSemilattice Data type parameter of CTransferFunction<>
denotes Csemilattice[Data] conceptrequirement because this parame-
ter is attributed with [IsNestedConceptReq], corresponding subtype

constraint being in a where-clause.

static void Sort<T> (T[] values)
where CComparable[T]
{ ...}

class BinarySearchTree<T>
// concept requirement with alias
where CComparable[T] using cCmp

{

private BinTreeNode<T> root;

private bool AddAux (
T x, ref BinTreeNode<T> root)

{

// refer. to concept by alias
if (cCmp.Equal (x, root.data))
return false;

[GenericFun] static void Sort<
[IsGenericParam]T,
[IsRequireConceptParam]CComparable T>

(T[] values) where CComparable T
: CComparable<T>, new() { ... }

[GenericClass]
[ConceptAlias ("CComparable T", "cCmp")]
class BinarySearchTree<[IsGenericParam]T,
[IsRequireConceptParam]CComparable T>
where CComparable T : CComparable<T>,
new ()
{ private BinTreeNode<T> root;

private bool AddAux (
T x, ref BinTreeNode<T> root)
{ ...
CComparable T cCmp = ConceptSingleton
<CComparable T>.Instance;
(cCmp.Equal (x, root.data))
return false;

if

}

Fig. 10. Generic code

and its translation to basic C#

// class for rational number
// with properties
// Num for numenator and Denom

class Rational { ... }
[ExplicitModel] class

Ccomparable_ Rational_Def : CComparable

40

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

// for denominator <Rational>
class Rational { ... } {
model CComparable[Rational] public override bool Equal (
{ Rational x, Rational y)
bool Equal ({ return (x.Num == y.Num)
Rational x, Rational y) && (x.Denom == y.Denom); }
{ return (x.Num == y.Num) public override int Compare (
&& (x.Denom == y.Denom); } Rational x, Rational y) { }
int Compare (Rational x, }

Rational y) { ... } R
} BST<Rational, CComparable Rational_ Def>
A rations /] *
BST<Rational> rations // * = new BST<Rational,
= new BST<Rational>(); CComparable Rational Def>();

*“BST” is used instead of “BinarySearchTree” for short.
Fig. 11. Model cComparable [Rational] and its translation to basic C#

Some examples of generic code with concept constraints are presented in the left
column of Fig. 10. Concept requirements can be used with alias (as CCompara-
ble [T] in the class of binary search tree). Note that a singular definition of generic
component is sufficient. Translated generic code (in the right column) demonstrates
significant property of translation: concept requirements are translated into extra
type parameters instead of extra method and constructor parameters (as it is in Scala
and G [16]). Therefore, constraints-compatibility can be checked at compile time,
methods and objects being saved from unnecessary arguments and fields.

Fig. 11 presents the model of concept CComparable [] for class Ration-—
al of rational number. It is translated to derived class CCompara-—
ble Rational Def of Ccomparable<Rational> and then used
as the second type argument of generic instance BST<, >. Fig. 12 demonstrates
using of anonymous model to find a number with a numerator equal to 5.

static bool Contains<T>(T x, IEnumerable<T> values)
where CEquatible[T] { ... }
static void TestContains
{
Rational[] nums = ...;
var hasNumer5 = Contains[model CEquatible[Rational] {
bool Equal (Rational x, Rational y) { return x.Num == y.Num; }
}] (new Rational (5), nums);

Fig. 12. Anonymous model example

5. Conclusion and Future Work

Many problems of C # and Java generics seem to be well understood now. Investi-
gating generics and several approaches to revising OO interfaces, we faced with
some pitfalls of these solutions which were not considered yet.

41

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

1. Recursive constraints used to solve the binary method problem appear to
be rather complex and often do not correspond a semantics assumed by a program-
mer.

2. The “concept pattern” breaks constraints-compatibility.

3. Using interfaces both as types and constraints on generic type parameters
leads to awkward programs with low understandability.

To solve problems considered we proposed to extend C# language with the new
language construct — concepts. Keeping interfaces untouched, concept mechanism
provides much better support of the features crucial for generic programming [1].
The support of these features in C# with concepts extension and its comparison with
some other generic mechanisms are presented in Fig. 13. The design of C# concepts
is rather similar to C++ concepts designs, but it supports subtype and supertype con-
straints.

We also suggested a novel way of concepts translation: in contrast to
G concepts [16] and Scala “concept pattern” [9], C# concept requirements are trans-
lated to type parameters instead of object parameters; this lowers the run-time ex-
penses on passing extra objects to methods and classes.

Feature G C++ CHext JGI Scala C#concept
multi-type constraints + +1 + 42 i
associated types Lo |+ | -] N
same-type constraints R e +
subtype constraints ‘ - ‘ _ ‘ + ‘ ‘ +
retroactive modeling ‘ + ‘ + ‘ 41 ‘ ‘ 43 +
multiple models ‘ ‘ - ‘ 41 ‘ - ‘ ¥ +
anonymous models ‘ ‘ | - | - | * +
concept-based overloading ‘ ‘ - - _
constraints-compatibility ‘ ‘ | - | + | - +
“CH™™ means C# with associated types [1] “CHONP means C# with concepts.

! partially supported via “concept pattern” 2 supported via “concept pattern”

3 supported via “concept pattern” and implicits 4 partially supported by prioritized overlapping implicits

Fig. 13. Comparison of “concepts” designs

Much further investigation is to be fulfilled. First of all, type safety of C# concepts
has to be formally proved. The design of concepts proposed seems to be rather ex-
pressive, but it needs an approbation. So the next step is developing of the tool for
compiling a code in C# with concepts. Currently we are working on formalization
of translation from extended language into standard C#.

6. Acknowledgement

The authors would like to thank the participants of the study group on the founda-
tions of programming languages Vitaly Bragilevsky and Artem Pelenitsyn for dis-
cussions on topics of type theory and concepts.

42

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

References

[1].

(2].

[3].

[4].

[5].

(6].

[71.

[8].

(9.

[10].

[11].

[12].

[13].

[14].

R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock, “An Extended Comparative
Study of Language Support for Generic Programming”, J. Funct. Program., vol. 17,
no. 2, pp. 145-205, Mar. 2007.

B. Stroustrup and G. Dos Reis, “Concepts — Design Choices for Template Argument
Checking”, C++ Standards Committee Papers, Technical Report N1522=03-0105,
ISO/IEC JTC1/SC22/WG21, October 2003.

G. Dos Reis and B. Stroustrup, “Specifying C++ Concepts”, in Conference Record of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ser. POPL *06. New York, NY, USA: ACM, 2006, pp. 295-308.

M. H. Austern, Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Boston, MA, USA: Addison- Wesley Longman Publish-
ing Co., Inc., 1998.

D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine, “Concepts:
Linguistic Support for Generic Programming in C++”, in Proceedings of the 21st Annu-
al ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages,
and Applications, ser. OOPSLA *06. New York, NY, USA: ACM, 2006, pp. 291-310.
B. Stroustrup and A. Sutton, “A Concept Design for the STL”, C++ Standards Commit-
tee Papers, Technical Report N3351=12-0041, ISO/IEC JTC1/SC22/WG21, Janu-
ary 2012.

J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz, “A Comparison of
C++ Concepts and Haskell Type Classes”, in Proceedings of the ACM SIGPLAN
Workshop on Generic Programming, ser. WGP ’08. New York, NY, USA: ACM, 2008,
pp. 37-48.

“System.Array.Sort(T) Method”,

URL: http://msdn.microsoft. com/library/system.array.sort.aspx.

B. C. Oliveira, A. Moors, and M. Odersky, “Type Classes As Objects and Implicits”, in
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA *10. New York, NY, USA: ACM,
2010, pp. 341-360.

S. Wehr, R. Lmmel, and P. Thiemann, “JavaGI: Generalized Interfaces for Java”, in
ECOOP 2007 Object-Oriented Programming, ser. Lecture Notes in Computer Science,
E. Ernst, Ed., vol. 4609. Springer Berlin Heidelberg, 2007, pp. 347-372.

B. Greenman, F. Muehlboeck, and R. Tate, “Getting F-bounded Polymorphism into
Shape”, in Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ser. PLDI ’14. New York, NY, USA: ACM, 2014,
pp. 89-99.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools (2Nd Edition). Boston, MA, USA: Addison- Wesley Longman Publishing
Co., Inc., 2006, ch. Code Optimization.

E. Ernst, “Family Polymorphism”, in Proceedings of the 15th European Conference on
Object-Oriented Programming, ser. ECOOP ’01. London, UK, UK: Springer-Verlag,
2001, pp. 303-326.

J. Jarvi, J. Willcock, and A. Lumsdaine, “Associated Types and Constraint Propagation
for Mainstream Object-oriented Generics”, in Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object- oriented Programming, Systems, Languages, and Ap-
plications, ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 1-19.

43

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

[15]. The Boost Graph Library: User Guide and Reference Manual. Boston, MA, USA: Addi-
son-Wesley Longman Publishing Co., Inc., 2002.

[16]. J. G. Siek, “A Language for Generic Programming”, Ph.D. dissertation, Indianapolis,
IN, USA, 2005.

[17]. “TreeSet[A] Class”,
URL.: http://www.scala-lang.org/api/current/ #scala.collection.mutable. TreeSet.

NMpo6nembl 0606weHun C# n cnocobbl nx
peleHnsi C NMOMOLLbIO KOHLENTOB

FO.B. Bensxosa <julbel@sfedu.ru>,
C.C. Muxanxosuy <miks@math.sfedu.ru>
Hucmumym mamemamuxu, Mexauuxu u komnviomepHulx Hayk um. M.1. Boposuua,
FOoicnviit hedepanvubiil ynusepcumem,
344006, Poccus, 2. Pocmos-na-/[ony, yr. b. Cadosas, 0. 105/42

Annoranus. Kak ObII0 MOKa3aHO B IPEIBIAYIIUX HCCIIEIOBAHMAX, TI0 CPABHEHHIO C
knaccamu tunoB Haskell n xonnentamn C++ Takne NpOMBIIUICHHBIE OOBEKTHO-
OpPHEHTHpOBaHHbIE A3bIKH Kak C# M Java mpenocTaBisioT HAMHOTO MEHEe BBIpa3u-
TENbHBIE MEXaHH3Mbl OOOOMIEHHOTO MPOrpaMMHpPOBaHMS Ha OCHOBe F-
OrpaHHYEHHOTo monuMopdu3ma. B 3T0#f cTathe mompoOHO paccMaTpUBAIOTCS OC-
HOBHBIE TIOJIBOJIHbIE KaMHHU 0000menuir C#. Ocoboe BHUMaHHE YAENSETCS HEIO-
CTaTKaM PeKypCUBHBIX orpann4eHuit (F-orpanndennit), He0JHO3HAYHOM CEMaHTHKE
UHTEP(EHCOB, OTCYTCTBUIO SI3BIKOBOW MOJACPIKKH JIJIsl OTPAaHUYEHHUH Ha HECKOJIBKO
TUIIOB M PETPOAKTHBHOH peanu3anuu HHTepdecoB, a Takxke IpodbieMaM maTTepHa
npoekTupoBaHus «KoHIenT», KOTOPhIM HIMPOKOH MpUMEHseTCs He Toibko B CH#, HO
TaKke ¥ B s3bIkax Java u Scala. J{ist pemrenus mpobiem o6o0mennit C# mpemiara-
€TCsl PaCIIUPUTh SI3bIK KOHLENTAMU: KOHIIENTHI, KaK HOBasl SI3bIKOBAs KOHCTPYKIIMA,
JIOJDKHBI MCIIOJIB30BAThCSA MCKIIOUUTENBHO B POJIM OTpPaHUYECHHUI HA TUIIOBBIE Mapa-
MeTpbl 0000IIEHHOTO KO/a, B TO BpeMs Kak MHTep(]EHCHl HCIOIB3YIOTCS B POJIH
TUIOB. B ommune ot 6a3oBbix koHnentoB C++, koHuentsl C# MOTYT colepiKaTh
OrpaHUYEHUs TMOATUIUPOBAHMSA U HAATUIHPOBAHUS, NOMYCKAOT CHHOHUMBI KOH-
enT-TpeboBaHN M BO3MOXKHOCTh aBTOMATHYECKOW reHepanuu mojeneid. OCHOB-
HBIM OTJIMYHMEM IIpeAjlaraeMoro In3aiiHa SBISIETCS TOMJIEPKKA MHOXKECTBEHHBIX
Mojienieil. OTa mocIeaHssS BO3MOXKHOCT HE MOAEPKUBAeTCA HU B KoHIenTax C++,
HU B Kiaccax tumnoB Haskell. B 3aximouenue odepueHbl OCHOBHBIE MPHUHIIMITHI pea-
JU3alliy KOHIIETITOB MyTEM TpaHCIAIMKU Kojga B 0azoBeiii C#. HambGonee BakHOM
YEepPTOH 3TON TPaHCISIIUK SIBJISICTCS BO3MOXKHOCTh BOCCTAHOBUTH MCXOJTHBIM KOJ Ha
PaCIIUPEHHOM SI3BIKE U3 CKOMITMJIMPOBAHHOTO MOAYJIS.

KmoueBbie ciioBa: generic programming; (C++) concepts; generics; C# language; concept
pattern; recursive constraints; generic interfaces.

44

mailto:julbel@sfedu.ru
mailto:miks@math.sfedu.ru

10.B. Bemnsikosa, C.C. Muxankoud. ITpo6nemsr 06001enuit C# 1 criocoObl HX PELICHHUs C TIOMOIBIO KOHIENTOB. Tpysist
UCII PAH, Tom 27, BBt 3, 2015 1, c. 29-46

DOI: 10.15514/ISPRAS-2015-27(3)-2

Jasa untupoBanmsi: [0.B. Bensxosa, C.C. MuxankoBud. [IpoGiemsr o6o0menuit C# u
crocoObl UX pelnreHus ¢ moMomnpio koHnentoB. Tpynet UCIT PAH, tom 27, Beim. 3, 2015 1,
crp. 29-46 (na annmmiickoM si3bike). DOI: 10.15514/ISPRAS-2015-27(3)-2.

Cnucok nutepartypbl

[1].

[2].

3].

[4].

[5].

(6].

[71.

[8].
(9]

[10].

[11].

[12].

R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock, “An Extended Comparative
Study of Language Support for Generic Programming”, J. Funct. Program., vol. 17,
no. 2, pp. 145-205, Mar. 2007.

B. Stroustrup and G. Dos Reis, “Concepts — Design Choices for Template Argument
Checking”, C++ Standards Committee Papers, Technical Report N1522=03-0105,
ISO/IEC JTC1/SC22/WG21, October 2003.

G. Dos Reis and B. Stroustrup, “Specifying C++ Concepts”, in Conference Record of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ser. POPL *06. New York, NY, USA: ACM, 2006, pp. 295-308.

M. H. Austern, Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Boston, MA, USA: Addison- Wesley Longman Publish-
ing Co., Inc., 1998.

D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine, “Concepts:
Linguistic Support for Generic Programming in C++”, in Proceedings of the 21st Annu-
al ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages,
and Applications, ser. OOPSLA 06. New York, NY, USA: ACM, 2006, pp. 291-310.
B. Stroustrup and A. Sutton, “A Concept Design for the STL”, C++ Standards Commit-
tee Papers, Technical Report N3351=12-0041, ISO/IEC JTC1/SC22/WG21, Janu-
ary 2012.

J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz, “A Comparison of
C++ Concepts and Haskell Type Classes”, in Proceedings of the ACM SIGPLAN
Workshop on Generic Programming, ser. WGP ’08. New York, NY, USA: ACM, 2008,
pp. 37-48.

“System.Array.Sort(T) Method”,

URL: http://msdn.microsoft. com/library/system.array.sort.aspx.

B. C. Oliveira, A. Moors, and M. Odersky, “Type Classes As Objects and Implicits”, in
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’10. New York, NY, USA: ACM,
2010, pp. 341-360.

S. Wehr, R. Lmmel, and P. Thiemann, “JavaGI: Generalized Interfaces for Java”, in
ECOOP 2007 Object-Oriented Programming, ser. Lecture Notes in Computer Science,
E. Ernst, Ed., vol. 4609. Springer Berlin Heidelberg, 2007, pp. 347-372.

B. Greenman, F. Muehlboeck, and R. Tate, “Getting F-bounded Polymorphism into
Shape”, in Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ser. PLDI *14. New York, NY, USA: ACM, 2014,
pp. 89-99.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools (2Nd Edition). Boston, MA, USA: Addison- Wesley Longman Publishing
Co., Inc., 2006, ch. Code Optimization.

45

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

[13]. E. Emst, “Family Polymorphism”, in Proceedings of the 15th European Conference on
Object-Oriented Programming, ser. ECOOP ’01. London, UK, UK: Springer-Verlag,
2001, pp. 303-326.

[14]. J. Jarvi, J. Willcock, and A. Lumsdaine, “Associated Types and Constraint Propagation
for Mainstream Object-oriented Generics”, in Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object- oriented Programming, Systems, Languages, and Ap-
plications, ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 1-19.

[15]. The Boost Graph Library: User Guide and Reference Manual. Boston, MA, USA: Addi-
son-Wesley Longman Publishing Co., Inc., 2002.

[16]. J. G. Siek, “A Language for Generic Programming”, Ph.D. dissertation, Indianapolis,
IN, USA, 2005.

[17]. “TreeSet[A] Class”,

URL: http://www.scala-lang.org/api/current/ #scala.collection.mutable. TreeSet.

46

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

Visual Parallel Programming as PaaS Cloud
Service with Graph-Symbolic Programming
Technology

Darya Egorova <dasharapova@mail.ru>,

Victor Zhidchenko <vzhidchenko@yandex.ru>
Software Systems Department, Information Science Faculty
Samara State Aerospace University (SSAU)
Samara, Russia

Abstract. Most computer programs are created in textual form. From high-level
programming languages to CPU instructions both programmer and computer work with
sequences of characters and words. Textual representation of the program combines
centuries-old tradition of writing as the universal form of fixing human thoughts with ease of
interpretation and analysis of text by computer. The sequential nature of text makes it suitable
for description of instruction sequences and sequential algorithms. At the same time the text
is inconvenient for clear representation of parallel programs. In such programs it is important
to depict instructions that can be executed concurrently. In this case the graphical (visual)
representation is more suitable.

In this paper we present the visual approach to parallel programming provided by Graph-
Symbolic Programming Technology. This technology uses text to represent small sequential
subprograms (mathematical expressions or small methods). Visual representation in graph
form is used to depict program logic and concurrency. The basics of this technology are
considered as well as advantages and disadvantages of visual parallel programming.
Synchronization primitives used in Graph-Symbolic Programming Technology and their
visual form are described. The method is proposed for compact and clear representation of
multiple similar parallel processes.

The technology is being implemented as a PaaS cloud service that provides the tools for
creation, validation and execution of parallel programs on cluster systems. The current state
of this work is also presented. We argue that visual programming and cloud technologies
provide the capability of shared development of programs and algorithms that text
programming lacks. The visual programming in such implementation gains the features of the
visual modeling.

Keywords: parallel; programming; visual; graph; tool; cluster; cloud

DOI: 10.15514/ISPRAS-2015-27(3)-3

For citation: Egorova Darya, Zhidchenko Victor. Visual Parallel Programming as PaaS
Cloud Service with Graph-Symbolic Programming Technology. Trudy ISP RAN/Proc. ISP
RAS, vol. 27, issue 3, 2015, pp. 47-56. DOI: 10.15514/ISPRAS-2015-27(3)-3.

47

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

1. Introduction

Text is traditionally used for describing computer programs. While programs are
sequential, it is convenient to express them as text, because the nature of text is
sequential. A sequence of letters comprises a word. A sequence of words comprises
a sentence. A sequence of sentences forms a text. An order of letters in a word, an
order of words in a sentence and an order of sentences in a text are very important.
Changing any of them can substantially change the text, especially when this text
describes some computer program.

On the other hand, when a program is parallel, its text representation becomes
inconvenient. In parallel program you want to see which parts of a program can run
concurrently and sequential text form can not show it. You have to imagine
interdependencies between different program parts and guess possible combinations
of their concurrent execution. When the program is large you have to scroll it up
and down to see the parts which actually can run concurrently.

This is where a graphical representation can help. A graphical or visual form is
usually bidirectional, so you can easily distinguish sequential and parallel parts of a
program. Another important factor is that visual representation is more suitable for
human comprehension then a text. When you want to explain something you often
get a piece of paper and begin to draw a scheme. The drawing is usually more
explanative than a text, it is more compact and is easier to remember.

There is also a substantial disadvantage in using graphics for parallel programs
representation. A parallel program often consists of hundreds or thousands of
threads or processes and the actual number of them is may be unknown prior to
program’s execution. Moreover, the number of threads can vary during execution.
When you write such a program in the text, it can be very compact. The clarity still
suffers but due to the compactness it is quite easy to imagine the threads structure.
Trying to depict such program graphically leads to more complex representation of
it. As you can not display thousands of threads on one picture, you have to replace
them with some abstract graphics structure. The clarity suffers as well as in the case
of the text. So instead of the intuitively clear picture you get some abstraction which
is less compact than text and whose usability depends on the chosen abstract form.
There are many ways the visual means are used in programming. Most of them are
auxiliary to the "traditional" text programming as they help to perform some
particular tasks like building class diagrams, dependency graphs or trace logs.
Natural visual programming is provided by visual programming languages. Most of
them represent a program as a graph which consists of nodes connected to each
other by some links (directed or undirected). Depending on the meaning of nodes
and links there are many different approaches to represent a program which can be
split into several sets:

e UML diagrams [1]
e Domain-specific Visual Languages
e Petri Nets

48

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

e Finite-state and Automata-based Programming [2]

e Data Flow Diagrams

e Control Flow Diagrams
In this paper we describe the present results of the work carried out during several
years in Samara State Aerospace University (SSAU) in developing methods and
tools for visual parallel programming. We use as a basis the visual programming
technology for sequential programming, which is called Graph-Symbolic
Programming Technology (GSP-technology) also developed in SSAU [3]. We have
extended this technology to describe parallel programs and have evolved it through
several desktop versions to development environment working with computing
cluster. Today we are working on migrating this technology to the cloud and
making PaaS service for visual parallel programming. The results of our work have
been used as methods and tools of parallel programming in the education process in
SSAU and in research activity in the area of numerical analysis.

2. The Basics of Graph-Symbolic Programming Technology

GSP-technology represents the program as a graph. The nodes of this graph are little
programs (modules), which perform simple operations on variables of project
domain. The set of variables form a data dictionary.
The nodes are connected with links. The links show the flow of control between the
nodes. Every link is provided with the predicate — a logic condition, which permits
or denies the flow of control by this link. This condition is a logical function,
defined on variables from the data dictionary.
There are situations, when several links going from one node have a true predicate.
To resolve this issue, each link has a priority. The link with the highest priority
defines the flow of control.
A graph may contain another graph as a node — so, the program is a graph hierarchy.
Fig. 1 shows an example graph that solves quadratic equations.
The benefits of GSP are:

e Clear and compact representation of the control flow in a program.

e Elimination of many programming errors as graphic representation is very
simple for a human and helps to see many logic errors and inconsistencies.

e Simplicity of the program modification.

e Automatic data flow between the nodes. A programmer is protected from
making an error on this stage.

e The program structure is stored into a database. It helps to perform many
automatic tasks, such as graph structure verification, measuring of graph
complexity, automatic control of graph hierarchy consistency, automatic
testing and convenient debugging of programs, automatic creating of
program documentation.

49

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

D=0 D =Thth - a==[

varc,

1] 2

Coraplex=1, Coraplex=0,
4 8 Ei]
H1="h2ia, L 1=(Cb-seprt A1=H2=ch;
L 2=zqrt(D2

Z2=(-htsqrh
] Predicates:
sprintf{si1," 1. a==0
- 2 2: D=0
i, 21,22,

m c 3: 1 (always TRUE)
3

Fig. 1. Graph of a program for solving quadratic equations

Being sequential by default, the GSP-technology was further developed for creating
parallel programs. GSP graphic representation of programs helps to solve main
parallel programming problems:

e Program's visualization.

e Complexity of the interprocess synchronization.
Many tasks have explicit parallelism. The trivial example is determination of real
roots of a quadratic equation. GSP graphic representation is very suitable for such
tasks. You can simply draw two (or several) parallel branches instead of thinking
how to put in order different tasks and how to represent them in a convenient
manner.
The graphic language of GSP-technology is expanded with two types of links:

e The parallel link (a link that shows the beginning of a parallel branch) is
labeled with the circle in the beginning.

e The terminating link (a link which determines the end of a parallel branch)
is labeled with inclined segment.

The program is divided into several processes, which can be performed in parallel.
Each process is represented as a separate branch - a set of nodes interconnected with
ordinary links and executed sequentially. The number of branches is unlimited. It is
forbidden to connect two nodes from different branches.
All branches operate on the same set of data defined in data dictionary. Sometimes,
for the purposes of performance optimization and convenience, it is necessary to
define local copies of the same data for each parallel branch. It is accomplished by
setting the flag "local" for the corresponding variable in data dictionary. The
variables with "local" flag set are created in each process separately during
execution.

50

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

Synchronization is accomplished with a semaphore technique. A special
“synchronization graph” is constructed together with the main program graph. The
nodes remain unchanged while the links represent nodes interdependences. A link,
drawn from Node; to Node,, means, that Node,’s execution depends on Nodei’s
state. Transmitting of Nodes’ state is made by means of messages.

Lc = [CNojo, Chisja, ... Climjir] is @ Message list, where C¥jj is a message with the
number k, sent to Node; from Node;.

If L contains C;j, then Node; informs Node; about the finish of its execution.

Every node checks messages addressed to it, before execution. A special semaphore
predicate is evaluated on these messages. In accordance with the previous example:

R;j = f(Ckioj, CXuj, ..., Ckimj) is a semaphore predicate of Node;. R; is a logical
function. If R; = TRUE, then Node; starts execution, in other case it waits for the
truth of R;.

If all data in a program are independent and there is no need to synchronize parallel
branches, the synchronization graph becomes unnecessary and is not built. When it
is necessary to synchronize some parts of parallel branches, the user draws
synchronization links between the corresponding nodes depicting the sources and
targets of synchronization messages. The rest of synchronization graph is implicit
and is built automatically.
The process of parallel program development in GSP-technology includes the
following steps:
o Data dictionary setup — determining types and variables, needed to solve a
problem.
e Modules generation. Modules are written in one of the programming
languages (C++ is now supported). They are executed sequentially.
e Drawing the program graph.
e Predicates generation. Predicates are written as boolean functions in the
same programming language as modules.
e Drawing the synchronization graph if necessary.
e Semaphore predicates generation for the nodes being synchronized.
e Program compiling and building an executable file.
Fig. 2 shows an example of the graph of the parallel program.
The programming environment of GSP-technology comprises the visual editor for
drawing of graphs and defining data and modules, the graph compiler for generating
C-source files from graphs and the C-compiler for generating of executable file.
Execution environment of GSP-technology uses Message Passing Interface (MPI)
for parallel programs execution. Programs generated with GSP-technology can
work on clusters and other systems with MPI support.

Each parallel branch is presented with dedicated MPI process.

51

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

————O 0
0 O
T r —||
Znl [0)=0.25 ol [0)=0.75 Kl [0]=0.75] Smd [0] =075
Hn0]=0.25 Kn2[0]=0.75 W [0]=0.75 n2[0]=0 75

Pl

Fig. 2. Graph of a parralel program for global optimizaion

To emulate shared memory model in MPI environment, a special memory manager
is developed. It allocates memory for data dictionary, initializes program’s
variables, transmits data to and from the processes and frees unused memory.
Memory manager is executed in dedicated MPI process. It is a program that
receives data requests from different processes and reads/writes data to or from the
memory. Memory manager eliminates memory conflicts between processes.

The parallel program can contain many processes. When there are hundreds or
thousands of processes it is inconvenient or just impossible to draw such number of
parallel branches on the graph. For such cases GSP-technology uses a special kind
of graph nodes called "multitop™.

Multitop is represented as one node on the graph and has three parameters
associated with it: the module or graph being executed with many processes, the
number of parallel processes (branches) represented by the multitop, and the name
of the variable which holds the sequence number of each process generated by the
multitop. The variable is used within the multitop’s module or graph to define its
actual function in the same manner as the process rank is used in MPI.

Fig. 3 shows an example of the graph which uses multitops to describe the program
similar to that on the Fig. 2 running on 500 processes.

52

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

Fig. 3. Graph of a parralel program for global optimizaion with multitops

Large number of processes in parallel program is usually used to perform some
similar tasks on different independent data without synchronization between the
processes. Representation of such tasks as a multitop seems to be a tradeoff
between the clarity and the compactness.

3. Present state and future development

For a long time the graph editor in GSP-technology was a desktop application. It
comprised graph compiler as a component and was dependent on external C-
compiler and database management system (DBMS). This had led to the difficulties
in deployment of the system. To install the system in some new location (for
example in laboratory classes) one should install the graph editor, then install and
properly configure an external C-compiler and DBMS. Using a cluster as a target
system for the programs built in GSP-technology requested the direct access to the
cluster through the SSH protocol.

To make the use of the GSP-technology easier the web-version of the graph editor
was developed. The web-server and DBMS were installed together on the same host
and provided remote access to the editor. The editor worked with the database
locally and had an SSH connection to the cluster. The main disadvantage of such a
system is that the web-interface applies some restrictions to the editor making it less
convenient for the users than a desktop application.

Cloud computing has made it possible to combine the rich interface capabilities of
desktop graph editor with the centralized management of the hole system for many
users. We are working on the development of the Platform as a Service (PaaS)
system which will provide visual parallel programming with GSP-technology. PaaS
system comprises one virtual machine which hosts the web-server and database and

53

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

has an SSH connection to the cluster. Many virtual machines can also be run in the
same cloud environment each hosting the desktop version of the graph editor. As
the database is the same for the web-based and desktop graph editors, it is possible
to work on the same project for the team of developers using both versions of
editors concurrently.

Some additions have been made to the desktop version of the system. The
registration and subsequent authorization of the users running the desktop version
was added. During the logon process the user can see the status of other users
(online/offline or working with the same project as the current user). All changes
made by the user during the session are logged to the database. It is necessary for
producing the snapshots - the states of the project development process when some
valuable results are achieved, for example, for saving the intermediate working
versions of the algorithm which is under development. Another goal of user activity
logging is to track the changes made by different users and by the same user in
different versions of the system. With logging it is much easier to remember what
exactly you have changed while working with the project from the other place (for
example, from home) or to understand (and also to explain) the changes made to the
graphic model of the program by some other person.

Visual programming can benefit from cloud computing as it provides the capability
of shared development that text programming lacks. With text programming the
basic tool of team software development is version control system. The concurrent
editing of the same file with source code is practically useless. The basic approach
is the division of project to smaller tasks, assigning them to different developers and
combining results with version control system. With visual programming tool
running in the cloud it becomes possible to work on the same graph concurrently.
Such shared work is meaningful and can be convenient due to the compactness of
visual representation. Editing the same graph concurrently you can easier develop
the proper solution of a problem or find the error in a program faster. The visual
editing process is similar to the process of discussing something, while graphically
illustrating the main ideas being discussed. The visual programming in such
implementation gains the features of the visual modeling.

The main issues to resolve in PaaS visual programming service being developed are
the following: concurrent work of several users with one project, versioning,
compiling and running parallel programs from the desktop virtual machines on the
cluster, optimization of the communication between the system and the cluster.
There are also many tasks in the development of the GSP-technology: dynamic
processes creation in MPI programs generated by GSP-technology, direct local data
exchange between the parallel branches, creation of graph compilers for other
parallel programming technologies like OpenMP and CUDA, making interfaces
with other programming languages, technologies and libraries in order to leverage
code reuse.

54

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

References

[1]. H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications with
UML," Addison Wesley Object Technology Series, Reading MA, 2000.

[2]. N.I. Polikarpova, A.A. Shalyto "Automata-based programming,” SPb.: Piter, 2009
[[MomkapmoBa H.M., Ilamsiro A.A. AromarHoe mnporpammupoBanue. CII6:ITutep,
2008. — 167 c.]

[3]. ANN. Kovartsev, V.V. Zhidchenko, D.A. Popova-Kovartseva, P.V. Abolmasov "The
basics of graph-symbolic programming technology," Proceedings of the Open semantic
technologies for intelligent systems (OSTIS-2013) 111 international conference, pp. 195-

204, 2013 [Kosapueg, AH. "[lpHHIUIIBL ~ TTOCTPOGHMS TEXHOJIOTHH
rpadocumBonyeckoro nporpammupoBanus’” / A.H. Kosapues, B.B. Xunuenxko, I.A.
TTonoBa-Koapuesa, IL.B. A6onmacoB // Tpyaet |l MexaynaponHoit HaydHO-

TeXHHUeCKOH KoH(pepeHmn «OTKPHITHIE CEMaHTHYECKHUE TEXHOIOTHH TIPOSKTHPOBAHUS
HHTEJUIEKTyalbHBIX cuctem». -2013. - C. 195-204.]

O6nayHbIn PaaS-cepBuc BU3yanbLHOro
napannesibHoOro nporpaMM1MpoBaHuA B
TexXHonorum rpaco-cMMBOSIMYECKOro
nporpamMmMupoBaHus

Hapws E2oposa <dasharapova@mail.ru>,
Bukxmop)Kuouenxo <vzhidchenko@yandex.ru>
Camapckuii 2ocyoapcmeennblil aspokocmuydeckuti yrusepcucmem (CIAY),
443086, Poccus, . Camapa, Mockosckoe uiocce, 34

Annortanusi. BOJIBIIMHCTBO mporpamMm cozfaercs B TeKCTOBOM Buae. OT SI3BIKOB
BBICOKOTO YPOBHSI JUIsS MALIMHHBIX UHCTPYKIUI TPOTPAMMHUCT U KOMITBIOTEP UMEIOT
JeI0 ¢ IOCIEeAOBAaTEIbHOCTAMH CHMBOJIOB UM cioB. TekcroBas Qopma
NPE/CTAaBICHUS] MPOTPaMMbl COueTaeT B ceOe MHOTOBEKOBBIE TpPaJAULHMU
MHCBMEHHOCTH KaK YHHMBEPCAJIBHOTO CIOco0a (pHKCALMU YETIOBEYECKUX MBICIIEH C
y0OCTBOM MHTEPIIPETAIMU U aBTOMATHYECKOTO aHAJIN3a TEKCTa BBHIYMCIUTEIbHBIM
ycrpoiictBoM. [locnenoBaTenbHas HpUpoja TEKCTa MAENAeT E€CTECTBEHHBIM €ro
NpUMEHEHWe AJsl ONHMCAaHWs IIOCIENOBAaTEeIbHOCTEH MHCTPYKIMH U
MOCJIEIOBATENBHBIX ~ aNropuTMoB. C Jpyroil CTOpPOHBI, OHAa MPEMATCTBYET
HarJIIIHOMY OIMCAHUIO TAapaiyIeNbHBIX IPOTpaMM, KOrAa BaKHO II0Ka3aTh He
MIOCJIE/IOBATENIbHBIE, @ OJHOBPEMEHHO HCIIOMHSIONINECS HHCTpYKuuu. it aTtnx
nesneii 6onee ynoOHsI rpaduueckue (BU3yalbHbIE) CPEACTBA.

B pabore mpeacTaBieH — BH3yaNbHBIA = NMOAXOX K IApaUIeIbHOMY
NPOTPaMMHUPOBAHHUIO, PEATM30BaHHBIH B TEXHOJOIMU rpado-CHMBOJIMYECKOTO
NpOrpaMMHUpPOBaHUsl. TEXHOJNOrHs HUCMONb3YeT TEKCT MAJsl ONMHCAHHs HEOOJbIIMX
MOCJIEIOBATENbHBIX (PparMeHTOB MporpaMmbl (MaTeMaTHYECKUX BBIPAKEHUH WU

55

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

HPOCTHIX OATIporpaMm). JJist HarJIAAHOTO N300PAKEHHS JIOTHKH NTPOTPaMMBbI U IS
ONMCaHMs Napajulesin3Ma NPUMEHSIETCs] BU3yallbHOE NPE/ICTaBICHUE B BHJE rpada.
B cratbe paccMOTpeHBI ~ OCHOBBI ~ TEXHOJOTHMH TIpado-CHMBOIMYECKOTO
NpOrpaMMHUPOBAaHUs, a TaKXKe IPEUMYIIECTBAa W HEIOCTaTKH BU3yaJbHOI'O
HapajulelIb-HOrO IporpaMMmupoBaHus. lIpuBegeHO — omMcaHHe MEXaHU3MOB
CHHXPOHHM3ALlMK, WCIIOJb3YEeMbIX B paccMaTpuBacMOM TEXHOJIOTHH, a TaKkke
BU3YaJIbHOTO IIPEACTABICHUS dTHUX MeXaHHW3MOB. [IpeaioxkeH crnocod HarisaHoro
M300pakeHHsT OOJBIIOr0 KOJIWYECTBA OAHOTHIHBIX IPOLECCOB HapallIeNbHOM
HPOTPAMMBEL.

OnmcaHo TeKymee COCTOSHHE paboT 10 peanu3alid TEXHOJOTHH Tpado-
CHMBOJIMYECKOI'O NIpOrpaMMHpOBaHMsS B BHAe oOnagHoro PaaS-cepsuca,
NPEJOCTaBISIONIEI0 CPEACTBAa MU CO3IaHMs, aHalu3a ¥ BBIIOJHECHUS
HapajuleJIbHBIX MPOTrpaMM Uil KJIacTepHbIX cucteM. [lokasaHo, uyTo oOnavHbIe
TCXHOJIOTUH B COUYCTaHHUU C BU3YyaJIbHBIM IMporpaMMUpPOBaAHNUEM JACIarT
BO3MOYKHBIM TPHHIUIINAIBHO HOBBIM MOAXOJ K KOJUICKTUBHOW pa3pabOTKe He
TOJIBKO IporpaMm, HO U aJI'OPUTMOB, HeI[OCTyHHI)Iﬁ B TpaAWMIHUOHHOM TEKCTOBOM
IMpOTpaMMHUpPOBaHUK. BusyanbHOe NporpaMMHpOBaHHME IIPH 3TOM INpHOOpETaeT
CBOMCTBa BU3YyaJIbHOTO MOZEIHPOBAHUSI.

Keywords: parallel, programming, visual, graph, tool, cluster, cloud
DOI: 10.15514/ISPRAS-2015-27(3)-3

Jas uurupoBanusi: Eroposa /[lapes, JKumuenko Bukrtop. OOmaunsnii PaaS-cepsuc
BU3YaJIbHOTO MNapaJUIeNbHOTO INPOTrPAaMMHUPOBAHUS B TEXHOJOTHU Tpado-CHMBOINYECKOTO
nporpammupoBanus. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ctp. 47-56 (Ha aHrmiickoM
azbike). DOI: 10.15514/ISPRAS-2015-27(3)-3.

Cnucok nutepartypbl

[1]. H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications with
UML," Addison Wesley Object Technology Series, Reading MA, 2000.

[2]. N.I. Polikarpova, A.A. Shalyto "Automata-based programming,” SPb.: Piter, 2009
[[Monmukapmosa H. W., Illaneito A. A. ABTomatHoe mporpammuposanue. CII6:ITurep,
2008. - 167 c.]

[3]. KoBapueB, A.H. "IIpuHUMIBI TOCTPOEHHS TEXHOJOTHH TIPadOCHMBOINIECKOTO
nporpammupoBanusa” / A.H. Kosapues, B.B. XKumguenko, /I.A. [TomoBa-Kosapruesa, I1.B.
Ab6ommacoB // Tpymst |l MexayHapoqHO# HaydHO-TEXHHYECKOW KOH(DEpeHIHH
((OTKprTbIe CEMAHTHYCCKHE TECXHOJIOTUH IPOCKTUPOBAHUA UHTEJUIEKTYaJIbHbIX

cucrem». -2013. - C. 195-204.

56

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

Seamless Development Applicability:
an Experiment

Alexandr Naumchev <a.naumchev@innopolis.ru>,
Innopolis University, Innopolis, Russian Federation

Abstract. Requirements and code, in conventional software engineering wisdom, belong to
entirely different worlds. The usual view in software engineering considers requirements
documents and source code as different artifacts, under the responsibility of different people.
This approach, however, introduces communication overhead, and raises the question of how
to keep the various artifacts consistent when either of them needs to change. A change
introduced to any of the mentioned artifacts needs to be synchronized with the others. At
some point the control is inevitably lost: for example, a critical bug is found during the
software operation, and the software developers dig into the fixing process directly, because
there is no time to wait until the requirements analysts and system architects update their
documents to let the developers actually fix the problem. Is it possible to unify the two
worlds? A unified framework could help make software easier to change and reuse. To
explore the feasibility of such an approach, the case study reported here takes a classic
example from the requirements engineering literature and describes it using a programming
language framework to express both domain and machine properties. The paper describes the
solution, discusses its benefits and limitations, and assesses its scalability.

Keywords: software engineering; requirements specifications; multirequirements; Eiffel
DOI: 10.15514/ISPRAS-2015-27(3)-4

For citation: Naumchev Alexandr. Seamless Development Applicability: an Experiment.
Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 57-72. DOI: 10.15514/ISPRAS-
2015-27(3)-4.

1. Introduction

Nowadays the dominating view on the software engineering discipline includes an
implicit assumption that engineering the requirements, designing the architecture
and implementing the code are all separate activities. “Separate” means that an
engineer performs only one of them at the same time and produces different artifacts
as the output. This implicit assumption is cultivated by the top software engineering
schools who promote the idea explicitly enough to push it to the students’
subconscious level.

57

mailto:a.naumchev@innopolis.ru

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

1.2 Problems with the Current Approach

The usual view in software engineering considers requirements documents
and source code as different artifacts, under the responsibility of different people.
This approach, however, introduces communication overhead, and raises the
question of how to keep the various artifacts consistent when either of them needs to
change. A change introduced to any of the mentioned artifacts needs to be
synchronized with the others. At some point the control is inevitably lost: for
example, a critical bug is found during the software operation, and the software
developers dig into the fixing process directly, because there is no time to wait until
the requirements analysts and system architects update their documents to let the
developers actually fix the problem. The problem is partially solved with
complicated configuration management, which is expensive and difficult to
maintain, and may serve as a source of evil as well: there are so called ”technical
commits”. Only senior developers are allowed to make them, and the basic idea is
that such commits do not have to be linked to some task, bug or user story (if the
team practices Agile). Quite often the technical commits contain basically whole
new features or big chunks of code not linked to any document.

Why should we try to minimize gaps between requirements and code? At the very
least because successful software evolves. The customers want more features, they
want to improve existing features, and they want to know how much money it will
cost and how much time it will take. If it is possible to relate the ideas to the
artifacts, then by comparing complexity of some new idea with an existing one,
already implemented, it will be possible to estimate the resources required for
implementing the new idea.

The list of the problems discussed above does not pretend to be exhaustive of
course, but it should be sufficient to start thinking about changing the overall
approach.

1.2 Existing Solutions

Typically the problems from Section 1.1 are resolved by carefully choosing
appropriate notations for every development life cycle phase. The selection criteria
include possibility of establishing traceability links between different notations.
Each phase requires the output of the previous phase on its input and on its output
produces the input for the next phase. In [2], authors give an example of applying
this approach. This work also contains an overview of the most popular notations
used in formal software development. For instance, the software development case
described in work [2] uses natural language for requirements document, RSML [7]
for specification document, Event-B [1] for developing software formal model,
formalizing the requirements and formally verifying the model against the
requirements. Finally, EventB2Java [8] generates executable Java source code
equipped with JML specs from a model expressed in Event-B. For moving from the
requirements document to the specification document the Problem Frames

58

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

Approach [5] is applied. The latter method produces a problem frames model on the
output.

Needless to say, such approach requires people with very rich set of skills: for
example, to produce a specification document expressed in RSML, the responsible
person also has to understand the Problem Frames Approach. In a similar fashion
the person responsible for modeling in Event-B also has to be proficient with
RSML, and so on.

As a software engineer we should not forget why there is a huge gap between
requirements and code at all. The fundamental reason is in limited expressive power
of programming languages compared to expressive power of any natural language.
That is why there are many “intermediate” notations serving for smooth transition
from natural language requirements to source code; that is why the coding phase
and the requirements engineering phase typically have tiny overlaps in time, and
there are other software development life cycle phases between them. If it was
possible to express any executable requirement using a subset of some programming
language, then the problem would disappear.

1.3 Unified View on Software: The Hypothesis

It is possible to design such a software development process that:
1. By specifying the requirements the analyst at the same time will
also design the solution
2. The resulting document may be linked in an intuitive way to an
algorithmic implementation
3. The resulting implementation will be formally provable against
the requirements specification
4. Small change in the requirements specification will cause
proportionally small change in the design and the
implementation
Parts 1, 2 and 3 promote consistency between the requirements,
design and implementation; part 4 promotes predictability of resources
estimations.

1.4 How to Test the Hypothesis
The following process seems to be feasible for testing adequacy of the
stated hypothesis:

1. Propose a candidate process

2. Select some real projects which are presumably prone to the
problems stated in section 1.1

3. Apply the proposed process to the selected projects and see how
it goes

59

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

In [11] Meyer sketched such a process based on using object
orientation for representing the relationships between the conceptual
objects mentioned in the requirements document. The basic idea was
to have an object-oriented code along with the natural language
description of a requirements item. Each code fragment in its turn may
be represented graphically as a BON diagram [15].

The main problem with [11] was the example used for the
demonstration purposes: it was self-referential. That is, it contains
“requirements for the requirements”.

Nevertheless, it demonstrates that object orientation contributes to
understanding the relationships between the objects. However,
requirements (in their general form) are beyond this: to specify
requirements, as described by Jackson and Zave in [6], is also to specify
all allowed sequences of events associated with a given problem area.
The present work provides an example of how one could combine
approaches from [11] and [6] by adding fully-fledged contracts, both in
their classical and model-based semantics, to the requirements
specification notation. More precisely, it contains every requirements
item from the Zoo Turnstile example discussed in [6] represented using the
model-based [13] contracts-equipped [10] object-oriented [9] notation
(Eiffel).

2. Theoretical and Technical Background

2.1 Design By Contract

A comprehensive description of Design By Contract is given in [10].
Design By Contract integrates Hoare-style assertions [3] within object-
oriented programs [9]. This concept assumes that each class feature
(member), is equipped with its pre- and postcondition, which are
predicates on the class. The postcondition has to hold whenever the
precondition held and the feature finished its computation before the next
feature is invoked. The class itself is equipped with an invariant
expression which holds in all states of the corresponding instantiated
objects.

2.2 Model-Based Contracts

If classical contracts are for constraining the data actually held by run-
time objects, model-based contracts are ”meta” contracts for constraining
the objects as mathematical entities (sets, sequences, bags, relations etc.),
and the corresponding mathematical representations are not actually
instantiated at run-time asparts of the objects. Model-Based Contracts
are needed when it is not possible to capture all the nuances by means

60

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

of classical contracts. Some examples of such situations and a
comprehensive description of the concept is given in the PhD thesis[13].

2.3 AutoProof

Object-oriented classes constrained with contracts (both classical and
model-based) may be formally verified using an automation called
AutoProof [14]. AutoProof traverses over the class features and proves
formally that the precondition conjuncted with the class invariant
ensures the postcondition together with the class invariant after the
feature application. If all the class features are verified, then the class is
considered verified.

3. Unifying the Two Worlds: an Example

This section shows the approach at work. It takes the example
introduced by Jackson and Zave in [6] in 1995 and specifies the example
using Eiffel programming language [16] as a formal notation. Originally
this example was used to demonstrate the process of deriving specifications
from requirements, and the unified approach captures all the nuances of
this process.

3.1 Example Overview

The authors of [6] start with giving the overall context: ”...Our small
example concerns the control of a turnstile at the entry to a zoo. The turnstile
consists of a rotating barrier and a coin slot, and is fitted with an electrical
interface...” This small paragraph describes mostly relationships between the
conceptual objectsand thus may be expressed in the style of work [11]:

deferred classZOO
feature

turnstile : TURNSTILE
end

deferred class TURNSTILE
feature
coinslot: COINSLOT
barrier : BARRIER
invariant
coinslot. turnstile = Current
barrier. turnstile = Current
end

deferred class COINSLOT
feature

61

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

turnstile : TURNSTILE
invariant

turnstile.coinslot = Current
end

deferred class BARRIER
feature

turnstile : TURNSTILE
invariant

turnstile.barrier = Current
end

Fig. 1: Expressing the context formally

Translating this code (fig. 1) back to English using the object-oriented
semantics results in almost the same initial description: "A ZOO has a
TURNSTILE turnstile; a TURNSTILE has a COINSLOT coinslot and a
BARRIER barrier so that coinslot has Current TURNSTILE as turnstile
and barrier has Current TURNSTILE as turnstile...” COINSLOT and
BARRIER hold references to the TURNSTILE instances in order to
capture the “electrical interface” phenomena: the word ”interface” means
something over which the parties are able to communicate with each
other; communicating means sending messages to each other, and to
send message to someone in the object-oriented world is to take the
corresponding instance and perform a qualified call. So at the very least
the parties should hold references to each other to be able to
communicate in two directions.

3.2 The Designation Set

After stating the problem context the authors of [6] describe a designation
set. Each designation basically corresponds to a separate type of events
observed in the problem area. The designations are provided in form of
the predicates:

e Push(e): In event e a visitor pushes the barrier to its intermediate
position

e Enter(e): In evente a visitor pushes the barrier fully home and so
gainsentry to the zoo

e Coin(e): Inevent e a valid coin is inserted into the coin slot

e Lock(e): In event e the turnstile receives a locking signal

e Unlock(e): In event e the turnstile receives an unlocking signal

62

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

The representation of this designation set provided below (fig. 2) uses
Eiffel features names as labels for the events types (entities introduced
earlier are not repeated afterwards). The aforementioned natural
language descriptions provide heuristics on which feature should be
added to which class (the association is highlighted with bold). Not only
different types of events, but also the history of the corresponding
events, are designed using Eiffel features. For example, enters
MML_SEQUENCE [INTEGER_64] is a sequence of moments in time
expressed in milliseconds when events of type enter took place. model
annotation says that enters feature will be used for expressing the model-
based part of the contract (model-based contracts were introduced in
section 2.2). MML_SEQUENCE is a class from the MML (Mathematical
Modeling Library) and denotes mathematical sequence. MML was
designed specially to express model-based contracts. Although it is
possible to instantiate some simple objects from these classes (like a
sequence containing one element), one cannot modify the instances.

note
model:entersdeferred class ZOO
feature
enter deferred ensure
enters.butlast”oldenters
enters.last >oldenters.last
end
enters : MML SEQUENCE[INTEGER_64]
end
note
model:locks,unlocks deferredclass
TURNSTILE feature
lock deferred ensure
locks.butlast~oldlocks
locks.last >oldlocks.last
end
unlock
deferred
ensure
unlocks.butlast ~ old unlocks
unlocks.last >old unlocks.last
end
locks: MMLSEQUENCE[INTEGER_64]
unlocks: MMLSEQUENCE[INTEGER_64]
end

63

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

note
model: coins
deferred class COINSLOT
feature coin deferredensure
coins.butlast 7 old coins
coins.last >o0ld coins.last

end

coins: MML SEQUENCE[INTEGER_64]
end
note

model: pushesdeferred class BARRIER
feature

push deferred ensure
pushes.butlast
old pushes.last
end
pushes: MMLSEQUENCE[INTEGER_64]
end

old pushespushes.last >

Fig. 2: Specifying the designation set formally

The deferred keyword is used to highlight that the events are only
specified formally, without specifying the corresponding operational
reactions of the software to the events. The ensure clause is used to specify
what conditions should be satisfied after reacting on an event. These
specifications are intuitively plausible: the events history should be
complemented with the new event occurrence, and the time of the new
event should be strictly bigger than the time of the previous event.

3.3 Shared Phenomena

The authors of [6] introduce the notion of shared phenomena that is, the
phenomena visible to both the world and the machine (the notions of the
world and the machine were introduced by Jackson in [4]). In the
present approach this notion is covered by using the “has a” relationships
between the ZOO and the TURNSTILE classes, accompanied with the
model-based contracts. Namely,since a ZOO has a turnstile as its feature,
it can see any phenomena hosted by the turnstile: locks, unlocks, coins,
pushes. And since a TURNSTILE does not hold any references to a ZOO, it
can not observe nor control the enter events modeled by ZOO.

3.4 Specifying the System

All the properties of the problem derived in [6] be they optative or
indicative descriptions can be conceptually divided into the three main
categories.

64

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

Properties which hold at any moment in time An example of such properties is
the OPT1 requirement saying that entries should never exceed payments
(the authors of [6] use OPT« for labeling properties expressed in an
optative mood). Within the present approach this requirement can be
expressed in the following way (fig. 3):

deferred class ZOO
feature
enters : MML SEQUENCE[INTEGER_64]
turnstile : TURNSTILE
invariant
enters.count <= turnstile.coinslot.coins.count
end

Fig. 3: Entries should never exceed payments

The ”something always holds” semantics fits perfectly into the semantics of
Eiffel invariant: ”something holds in all states of the object”.

Properties which hold depending on the type of the next event to occur The
indicative property IND2 saying that it is impossible to push the barrier
if the turnstile is locked will serve as an example. Below (fig. 4) is
the corresponding specification:

deferred class BARRIER
feature pushrequire
notturnstile.unlocks.is_.empty
notturnstile.locks.is_emptyimplies
turnstile.unlocks.last >turnstile.locks.last
deferred end
pushes: MML SEQUENCE[INTEGER_64]
end

Fig. 4: It is impossible to use locked turnstile

The initial description is divided into the two different claims: first, the
turnstile should be unlocked at least once, and second, if the turnstile has
ever been locked, the last unlock should have occurred later than the last
lock.

Real Time Properties The authors of [6] derive several timing constraints on
the events. For example, the OPT7 requirement says that the amount of
time between the moment when the number of the barrier pushes
becomes equal tothe number of coins inserted and the moment when the
turnstile is locked should be less than 760 milliseconds. It is possible to
make this property finer grained. First (fig. 5), if after the next push event
the number of pushes becomes equal to thenumber of coins, then after

65

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

reacting on the push event the turnstile should be locked at some point
before the next push event occurs.
deferred class BARRIER
feature
turnstile : TURNSTILE push
deferred ensure
(oldturnstile.unlocks.last >old turnstile.locks.last
and
pushes.count =turnstile.coinslot.coins.count)
impliesturnstile.locks.last >pushes.last

end
pushes: MML SEQUENCE[INTEGER_64]
end

Fig.5: The machine locks the turnstile timely

Second (fig. 5), if the last lock event occurred later than the last push
event, then thetime distance between them is smaller than 760.

deferred class TURNSTILE

feature
barrier : BARRIER
locks : MML SEQUENCE[INTEGER 64]unlocks: MML SEQUENCE[
INTEGER_64]

invariant -
locks.last >barrier.pushes. lastlmplles

(locks.last —barrier.pushes.last) <760
end

Fig.5: The machine locks the turnstile timely

3.5 Specifying the “Unspecifiable”

One of the requirements mentioned in [6] was OPT 2 saying that the visitors
who pay are not prevented from entering the Zoo. The authors give
only informal statement of this requirement:

w,m,n « ((Enter#(v,m) A Coin#(v,n) 4 (m <n)) ='The machine will
not prevent another Enter event'

The antecedent of this implication should be read like “number of entries is
less than the number of coins inserted”. In the present specification system
thisrequirement can be formalized easily (fig. 6).

66

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

deferred class ZOO
feature
enter
require
enters.count<turnstile.coinslot.coins.count
deferred end
enters : MML SEQUENCE[INTEGER_64]
end

Fig. 6: The turnstile let 7peop|e who pay enter

It works because semantically the require clause specified above is the
strongest precondition of the enter feature. That is, if some class inherits
from ZOO and redefines the enter feature, it will be allowed to redefine
the precondition by using only the require else clause that weakens the
precondition by ”or”-ing it with the original one. And so, if the enters.count <
turnstile.coinslot.coins.count condition is satisfied, the precondition of the
enter feature will always be satisfied,thus allowing an enter event to occur.
Not only this specification formalizes OPT 2 it also ensures satisfaction of
OPT 1 (together with the ensure clause for the enter feature introduced
earlier): indeed, if the number of enters is always strictly smaller than the
number of coinsinserted before any enter event occurrence, then after the
event occurrence the number of entries will not exceed the number of coins
inserted.

In the process of research the author of the present work identified that
the aforementioned reasoning about formalizing OPT 2 requirement is
farfetched and is not scalable. For example, if Zoo management decides to
install one more appliance for controlling Zoo entrance, and the
corresponding requirements will enrich the precondition of the enter
feature, the whole reasoning will be invalidated. The author found more
scalable and intuitively plausible way to formalize this requirement in
Eiffel. The corresponding formalism will be available in work [12].

4. Conclusion

The specification method discussed in this work is suitable not only
for formalizing statements which were also formalized in [6], but also for
formalizing statements which cannot be formalized with the classical
tools used in [6]. Not only the requirements specification items were
expressed, but also the object-oriented blueprint was built ready to equip
it with code actually doing something useful. Such implementation
exists and is available here: https://github.com/anaumche/Zoo-
Turnstile-Multirequirements.

67

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

4.1 Pros & Cons

It is necessary to evaluate the method against the characteristics of the
hypothesis introduced in section 1.3:

1.

Simultaneity of specifying the requirements and building the
design: indeed, all the code fragments corresponding to different
specification items merged together will bring a complete design
solution available at https://github.com/anaumche/Zoo-
Turnstile-Multirequirements (the classes ending with “ abstract™).

Traceability between the specification and the implementation:
the classesending with “ concrete” located at the resource given in
1 contain the implementation and are inherited from the
specification classes

Provability of the classes: this is the subject to further
investigation

Continuity of the solution: since Eiffel artifacts used in the
formalizations of the requirements items correspond to their
natural language counterparts directly, it is visible right away how
achange in one representation will affect the second one

4.2 Scalability

A formal representation of a requirements item specified with Eiffel is as
big as the scope of the item and its natural language description are, so
the overall complexity of the final document should not depend on the
size of the project. Anyway, this is something to test by applying the
method to a bigger project.

4.3 Future Work

The next steps include:

1.

68

To formally prove that the specification is consistent. In particular
to ensure that the features specifications preserve what is stated
in the invariants; to ensure that the expressions stated in the
invariants are consistent between each other: for example it should
not be possible for P(x) and —P(x) to hold at the same time

To formally prove that the implementation actually satisfies the
features specifications

To extend BON notation [15] so that it would be capable of
expressing model-based contracts

To design machinery for translating model-based contract-
oriented requirements to their natural language counterpart so
that the result would be recognizable by a human being.

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

5. Toapply the method to a bigger project

The AutoProof technology [14] may be utilized for automating the
aforementioned proofs. AutoProof is already capable of proving that a
feature implementation preserves its specification (the postcondition
holds after the feature invocation assuming the precondition), and it
should be empowered with the capabilities for working solely on the
specifications level so that completing the goal 1 will be possible.

As a result of implementing the aforementioned plans a powerful
framework for expressing all possible views on the software under
construction should emerge.

5 Acknowledgment

The author would like to thank his colleagues at the Innopolis University
Software Engineering Laboratory for their invaluable feedback and
guidance: Dr. Bertrand Meyer, Dr. Victor Rivera, Alexander Chichigin,
Dr. Manuel Mazzara.

References

[1]. Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[2]. R Gmehlich, K Grau, M Jackson, C Jones, F Loesch, and M Mazzara.
Towards a formalism-based toolkit for automotive applications. 2012.

[3]. Charles Antony Richard Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576-580,1969.

[4]. Michael Jackson. The world and the machine. In Software Engineering, 1995.
ICSE 1995. 17th International Conference on, pages 283—-283. IEEE, 1995.

[5]. Michael Jackson. Problem frames: analysing and structuring software development
problems. Addison-Wesley, 2001.

[6]. Michael Jackson and Pamela Zave. Deriving specifications from
requirements: an example. In Proceedings of the 17th international conference on
Software engineering, pages 15-24. ACM, 1995.

[7]. Nancy G Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon
Reese. Requirements specification for process-control systems. Software
Engineering, IEEE Transactions on, 20(9):684-707, 1994.

[8]. Victor Rivera and N. Catan'o. Translating Event-B to JML-Specified Java
programs. In 29th ACM Symposium on Applied Computing, Software Verification and
Testing track (SAC-SVT), Gyeongju, Korea, March 24-28 2014.

[9]. Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall
New York, 1988.

[10]. Bertrand Meyer. Touch of Class: learning to program well with objects and
contracts. Springer, 2009.

[11]. Bertrand Meyer. Multirequirements. Modelling and Quality in
Requirements Engineering (Martin Glinz Festscrhift), 2013.

[12]. Alexandr Naumchev, Bertrand Meyer, and Victor Rivera. Unifying
requirements and code: an example. The work is not published.

69

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

[13]. Nadia Polikarpova. Specified and verified reusable components. PhD thesis, Diss.,
Eidgenossische Technische Hochschule ETH Zu'rich, Nr. 21939, 2014, 2014.

[14]. Julian Tschannen, Carlo A Furia, Martin Nordio, and Nadia Polikarpova.
Autoproof: Auto-active functional verification of object-oriented programs.
arXiv preprint arXiv:1501.03063, 2015.

[15]. Kim Wald’enand Jean Marc Nerson. Seamless object-oriented software architecture.
Prentice-Hall, 1995.

[16]. Bertrand Meyer. Eiffel: A language and environment for software
engineering. Journal of Systems and Software, 8(3):199-246, 1988.

BecwoBHas pa3paboTka nporpaMmMHOro
obecneyeHUs: NPUMEHUMOCTb Ha NpumMepe

Anexcandp Haymues <a.naumchev@innopolis.ru>,
Yuusepcumem Hunononuc,
2. Unnononuc, Poccuiickas @edepayus

AHHOTamMsi. B paMkax TpaaWIMOHHON NpPOrpaMMHOM HWHXXEHEpHH TpeOOBaHUS U KOJX
pa3BUBAIOTCS B JIBYX HapauIeldbHBIX MHpax. OObMHAs TOYKa 3pEeHHsS Ha IPOrPaMMHYIO
HWHKCHEPHIO paccMaTpUBaeT TPeOOBaHMS M HCXOAHBIM KOA Kak pasHble apTedakTsl, 3a
KOTOpBIE HECYT OTBETCTBEHHOCTh Pa3HbIE JIIOAU. DTOT MOAXOM, OAHAKO, BIEUET HaKIIaJHbIC
pacxofsl Ha KOMMYHHKAIMIO W IOPOXKIAET MPOOIeMy MOJJEepKaHUs KOHCHCTEHTHOCTH
pa3IUYHBIX apTe()akTOB B CIlydae HEOOXOMMMOCTH BHECCHHUS M3MEHEHHH B OJWH W3 HHX.
V3meHeHne, BHECEHHOE B OJWH W3 YINOMSHYTHIX apTe(akToB, HEOOXOAMMO
CHHXPOHM3UPOBATh C OCTAJbHBIMH apTedakTamMH. B onpeneneHHbI MOMEHT CHTyalus
HEen30€)XHO BBIXOIUT M3-TIOJ KOHTPOJSI: HalpHMep, B Cliydae OOHapY)XEHHs KPHUTHYECKOTO
nedexTa BO BpeMsl OKCIUTyaTalMH pa3paboTYMKU Oe3 NpPOMEJICHUs NPHUCTYIAT K
HCTIPABIICHUIO Ie(eKTa, TOCKOJIbKY B TAKOH CUTYAI[MH HET BPEMEHH JKAATh, TIOKA CHCTEMHBIE
AQHAIUTUKA U APXUTEKTOPHI OOHOBAT CBOM IOKYMEHTHI, TO3BOJIMB pa3pabOTIMKaM BHECTH
HYXHBIC W3MEHEHHS B Koi. [IpoOmemMa YacTWYHO pemraeTrcsi CIOXHBIMH CHCTEMAMH
YIIPaBJIEHHS! BEPCUSIMH, KOTOPBIE JOPOTH B OOCITYXKMBAaHHH MU TPeOYIOT COOTBETCTBYIOUIEH
KBTM(UKaINK OOCITY)KHBAIOIIET0 TEXHHYECKOTO IepcoHana. BO3MOXKHO 1M 00BEIMHHUTH
MupbI TpeboBanuit U kona? Takoe oObeAMHEHHE YNPOCTHIO OBl M3MEHEHHE W MOBTOPHOE
HCIOJIb30BaHHWE MpPOTpaMMHOro obecneuenus. LlenecooOpa3sHOCTh IMPUMEHEHHsS HOBOTO
IOAXOAa HYXKAaeTcs B H3YYeHHH. B IpeAcTaBICHHOM HCCIEIOBAHUM PACCMOTPEH
KIIACCHYECKHH NpHMep M3 JIHMTepaTypbl B OOJACTH HPOEKTHpOBaHWs TpeGoBaHmil. s
crerpUKAINN MPeIMEeTHOH 00JIacTH, PaBHO KaK M KOHEYHOTO MPOTPAMMHOTO DEIICHUS,
HCTIONb30BaHa OJIHA U Ta JK€ HOTAIUs — SI3BIK IIPOTrpaMMHpOBaHus. JJaHHas paboTa COmep KUT
ONHCaHHe MOAXOMA, a TaKKe ONEHKY €ro MHpPeHMYIIECTB, BO3MOXHBIX OTPaHHUYCHUH U
MacmTabHpyeMOCTH.

Keywords: software engineering; requirements specifications; multirequirements; Eiffel
DOI: 10.15514/ISPRAS-2015-27(3)-4

70

mailto:a.naumchev@innopolis.ru

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

Jns nutupoBanusa: HaymueB Amekcanzap. bBecmoBHas pa3paboTka IporpaMMHOTO
obecrniedeHns1: npuMeHnMocTs Ha npumepe. Tpyast UCIT PAH, tom 27, Bem. 3, 2015 r., cTp.
57-72 (ua anrmuiickoM sizeike). DOI: 10.15514/ISPRAS-2015-27(3)-4.

Cnucok nutepatypbl

[1].
[2].
[3].
[4].
[5].
[6].

[7].

[8].

[9].
[10].
[11].
[12].
[13].

[14].

[15].

[16].

Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

R Gmehlich, K Grau, M Jackson, C Jones, F Loesch, and M Mazzara. Towards a
formalism-based toolkit for automotive applications. 2012.

Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576-580, 1969.

Michael Jackson. The world and the machine. In Software Engineering, 1995. ICSE
1995. 17th International Conference on, pages 283-283. IEEE, 1995.

Michael Jackson. Problem frames: analysing and structuring software development
problems. Addison-Wesley, 2001.

Michael Jackson and Pamela Zave. Deriving specifications from requirements: an
example. In Proceedings of the 17th international conference on Software engineering,
pages 15-24. ACM, 1995.

Nancy G Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon Reese.
Requirements specification for process-control systems. Software Engineering, IEEE
Transactions on, 20(9):684-707, 1994.

V’ictor Rivera and N. Catan”o. Translating Event-B to JML-Specified Java programs. In
29th ACM Symposium on Applied Computing, Software Verification and Testing track
(SAC-SVT), Gyeongju, Korea, March 24-28 2014.

Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall New
York, 1988.

Bertrand Meyer. Touch of Class: learning to program well with objects and contracts.
Springer, 2009.

Bertrand Meyer. Multirequirements. Modelling and Quality in Requirements
Engineering (Martin Glinz Festscrhift), 2013.

Alexandr Naumchev, Bertrand Meyer, and Victor Rivera. Unifying requirements and
code: an example. The work is not published.

Nadia Polikarpova. Specified and verified reusable components. PhD thesis, Diss.,
Eidgeno“ssische Technische Hochschule ETH Zu'rich, Nr. 21939, 2014, 2014.

Julian Tschannen, Carlo A Furia, Martin Nordio, and Nadia Polikarpova. Autoproof:
Auto-active functional verification of object-oriented programs. arXiv preprint
arXiv:1501.03063, 2015.

Kim Wald’en and Jean Marc Nerson. Seamless object-oriented software architecture.
Prentice-Hall, 1995.

Bertrand Meyer. Eiffel: A language and environment for software engineering. Journal
of Systems and Software, 8(3):199-246, 1988.

71

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

72

A.H. Kosapues, B.C. Cmupnos, C.B. CMupHOB. ParjnonanbsHoe NpoeKTHPOBaHUE MOJICIH, ONUCHIBAIONICH CTPYKTYpY
KJIaCCOB OOBEKTOB, Ha OCHOBE OHTOJIOTHYECKOT0 aHann3a AaHHbIX. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., c. 73-86

Intelligent Design of Class Structure Model
based on Ontological Data Analysis

IA.N. Kovartsev <kovr_ssau@mail.ru=>,
V.S, Smirnov <victorsmirnov92@gmail.com>
23.V. Smirnov <smirnov@iccs.ru>
1Samara State Aerospace University,
443086, 34 Moskovskoye shosse, Samara, Russia
2Institute for the Control of Complex Systems of RAS,
443020, 61 Sadovaya st., Samara, Russia

Abstract. This paper investigates a formal approach which supports a critically significant
step in object oriented analysis and software engineering. It is proposed to create an object
class structure model based on an Ontological Data Analysis of a targeted domain empirical
data. This technology is a development of the well-known method of Formal Concept
Analysis and is able to work with incomplete (contradictory, inaccurate, vague, etc.)
empirical information on domain, naturally supports the construction of arbitrary binary
relationships between classes of objects and takes into account available to researcher
information about the interconnection between actual for the designer domain objects
properties. Multi-valued vector logic models and means are usedin order to factor in the
realities of the empirical data accumulation.In concurrence with this a nonstrict formal
context is being formed to display the conceptual domain structure. In this context truth
values of basic semantic proposition of the form “x object has y property” are presented in a
vector form. Its transformation into a binary formal context, for which formal concepts output
effective algorithms are known, is done using intellectual alpha approximation algorithm
which takes into account typical relationships between the objects properties and, above all, a
conceptual conjugation of object properties arising from the fundamental cognitive designer’s
procedures — conceptual scaling of the objects properties detected. A properties inclusion
partial order between derived from the context formal concepts appears which is known as
inheritance of properties in object-oriented analysis. Determined by this ratio a formal
conceptclosed lattice is transformed into a model that describes an objects class structure,
according to a number of pragmatic design principles of this key software component.

Keywords: Object-Oriented Analysis and Design; Class Structure Model; Formal Methods;
Ontological Data Analysis.

DOI: 10.15514/ISPRAS-2015-27(3)-5

For citation: Kovartsev A.N., Smirnov V.S., Smirnov S.V. Intelligent Design of Class
Structure Model based on Ontological Data Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 73-86. DOI: 10.15514/ISPRAS-2015-27(3)-5.

73

AN. Kovartsev, V.S. Smirnov, S.V. Smirnov. Intelligent Design of Class Structure Model based on Ontological Data
Analysis. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 73-86

1. Introduction

Creating a Class Structure Model in object-oriented (OO) analysis and software
engineering still remains an expert’s experience realization subject [1-7]. Object and
classes are the basis for the all next steps of analysis, however they “are there just
for picking” (i.e. naturally appear in a statement of a problem) or are borrowed from
colleagues (with or without any modification) [5]. In other words in practice there is
no any systematic procedure or formalism supporting the critical for the further
software engineering step.

At the same time the majority of coryphaeus in OO methodologies pointed out the
necessity of a certain conceptual analysis of domain for “concepts” description.
That is why a strict mathematical theory Formal Concept Analysis (FCA) [8]
enthused object-oriented analysis and software engineering experts. Numerous
researches and developments using FCA for creating Class Structure Model were
accomplished. For example [9-11].

FCA is a theoretically well-founded and actively developing method of data
analysis, which reflects the classical approach to a concept as a fundamental
epistemological element defined by extent and intent.

Let’s illustrate FCA’s potential by an example of well-known OO methodologies
taxonomy generating in terms of their diagram techniques [10]. Table 1 describes
the match | between two sets: set of “objects” G — methodologies and set of
“attributes” M — techniques.

Table 1. OO methodologies and their techniques.

= =
Diagram g el & S
£ E g § gl 5 = g
i 5 o 8| 8| 5 = | £ c =
(=) IS & c K] S| © < < < o S =
S © = o & = = (o) = = = © <
= ° = Sl 2| | 5| 8| B 2| 58| | <
sl 2 @ IS €| S| g| 2| 5| 2| & 8| &| ©
2| 8 o s] | <€ = 3| © s| 5 ps
I o = ke = = o > j=2) = s = i
S| o g S| 8| S| 2| &| £| £| 8 8| 8
00 7 3 = 2| 2| €| & S| 2| & 2| &
: | = g S| 8| 8| 5| | E| 8| | 8| $| o
methodologies O] O (%) (8] h| <| ol ol F| a|] o] | | a
UML X X X X X X X X
Booch x x x X X X
Coad&Yourdon x x X
Jacobson X X x x X X
Martin&Odell x X x x X
Rumbaugh X X X X X
Shlaer&Mellor X X x X X X

The tuple K= (G, M, I) — Formal Context (FC) — puts together the basic data for
FCA. Particularly, using FCA methods we can establish from K:

o set of formal concepts B(K) = {(X, Y) IXcG,YcM X=Y',Y= X'}
wherein: (X, Y) — Formal Concept; X - extent and Y - intent of a concept;
74

A.H. Kosapues, B.C. Cmupnos, C.B. CMupHOB. ParjnonanbsHoe NpoeKTHPOBaHUE MOJICIH, ONUCHIBAIONICH CTPYKTYpY
KJ1acCOB OOBEKTOB, HA OCHOBE OHTOJIOTHYECKOro aHanu3a fanHbix. Tpyast ICII PAH, tom 27, Bem. 3, 2015 1., c. 73-86

«'» - Galois statements; X' ={m ImeM, Vg e X: glm} the set of attributes
common to all objects in X; Y'={g | g € G, Ym € Y: glm} the set of
objects that have all attributes from Y;

complete concept lattice (B(K); <), in which sub-/super concept relation
(X1, Y1) < (X2, Y2), iff X1 = Xz, (& Y12 Y2).

From context in Table 1 we can extract a set of formal concepts, shown in Table 2.
Meaningfully these are all generalizations of OO methodologies in the aspect of
diagram techniques. Partial order (“inheritance”) between extracted concepts is
shown in the grid in Fig. 1.

Therefore FCA delivers domain’s conceptual structure from available data in the
form “objects-attributes”. This structure was proposed by FCA’s protagonists as a
basis for creating a model describing the designed software class structure.
However, it emerged that FCA usability is limited.

Construction of arbitrary relationships between object classes is not
supported, except for the generalization relationship “is-a”.

Contradictions in the original data — a set of Basic Semantic Propositions
of the form “x object has y attribute” are prohibited. Especially the
possibility of taking into account the evidence “for” and “against” the truth
of such judgments.

Table 2. Formal concepts in domain “OO methodologies and their techniques”.

Name Extent Intent

Use case diagram, Class diagram, Sequence diagram,
Collaboration diagram, Statechart diagram, Activity diagram,

1 Component diagram, Deployment diagram, Timing diagram,
Data flow diagram, Object diagram, State transition graph,
Fence diagram, Domain chart
Use case diagram, Class diagram, Sequence diagram,

2 UML | Collaboration diagram, Statechart diagram, Activity diagram,
Component diagram, Deployment diagram

3 Booch Class diagram_, Collaboration diagram, Stateclflar_t diagram,
Component diagram, Deployment diagram, Timing diagram

4 UML, Booch Class diagram, Collaboration diagra_m, Statechart diagram,
Component diagram, Deployment diagram

5 Gz rd%?l?el;glt\)/? :I?Q; Class diagram, Statechart diagram, Data flow diagram

UML, Booch, Coad&Yourdon,
6 Jacobson, Martin&Odell, | Class diagram, Statechart diagram
Rumbaugh, Shlaer&Mellor

7 Jacobson Use case diagram, Class diagram, Sequence diagram,
Statechart diagram, Object diagram, State transition graph
Use case diagram, Class diagram, Sequence diagram,

8 LWL, dezaliser Statechart diagram

9 Martin&Odell Class diagram, Collaboration diagram, Statechart diagram,

Activity diagram, Fence diagram

75

AN. Kovartsev, V.S. Smirnov, S.V. Smirnov. Intelligent Design of Class Structure Model based on Ontological Data
Analysis. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 73-86

Class diagram, Collaboration diagram, Statechart diagram,

10 UML, Martin&Odell Activity diagram
UML, Booch, Martin&Odell, . L .

11 Rumbaugh, Shlaer&Mellor Class diagram, Collaboration diagram, Statechart diagram
Class diagram, Sequence diagram, Collaboration diagram,

12 R 2T Statechart diagram, Data flow diagram
Class diagram, Sequence diagram, Collaboration diagram,

13 AL, (Rl 22 Statechart diagram

14 UML, Jacobson, Rumbaugh | Class diagram, Sequence diagram, Statechart diagram
Class diagram, Collaboration diagram, Statechart diagram,

15 el Component diagram, Data flow diagram, Domain chart

16 UML, Booch, Shlaer&Mellor Class dlagrarr], Collaboration diagram, Statechart diagram,
Component diagram

17 Rumbaugh, Shlaer&Mellor Class diagram, Collaboration diagram, Statechart diagram,

Data flow diagram

Fig. 1. Line diagram of concept lattice “O0 methodologies and their techniques .

e Available to the designer information about the relationship between
attributes of objects is ignored — the so-called attributes’ “constraints of

existence”.

Although it is somewhat dampened the interest in FCA in software engineering, the
method continued to develop, especially in the field of ontological modeling, for
example [12, 13].
The main point of this paper is to draw developers’ (especially, class structure
model designers) attention to Ontological Data Analysis (ODA), the FCA evolution
which can process vague and controversial data of modeled reality, discover
arbitrary relationships between object classes and consider properties’ limits of
existence [14-16].

The topic of the article comes out in Fig. 2 diagram of ODA realization for class
structure model design.

76

A.H. Kosapues, B.C. Cmupnos, C.B. CMupHOB. ParjnonanbsHoe NpoeKTHPOBaHUE MOJICIH, ONUCHIBAIONICH CTPYKTYpY
KJIaCCOB OOBEKTOB, Ha OCHOBE OHTOJIOTHYECKOT0 aHann3a AaHHbIX. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., c. 73-86

= Available domain information —

v
| Generalized “object-attribute” incidence |

| Non-strict formal context |

| Binary formal context |

| Formal concept lattice |

| Class structure model design |

Fig. 2. Ontological Data Analysis diagram for domain class structure model design

2. Ontological Data Analysis and Formal Concept Analysis

ODA is a customization and a pragmatic readjustment of FCA.

For FCA primary source of initial data is a multi-valued context — “objects-
attributes” incidence (OAI) where observed domain objects’ attributes of
researcher’s interest are noted.

In ODA the format of OAI is getting more complicated in order to represent domain
empiric information, such as multiple independent object’s attribute records,
discovering the same attribute with procedure sharing, confidence differentiation for
different sources of information etc.

Besides that, as long as relations presence in ODA is treated as objects’ inner
attributes demonstration, in OAIl special associated attributes-valences pairs are
used to represent arbitrary binary relations. This approach allows us to naturally
“insert” a modeling of arbitrary relations between objects to FCA [15].

Only “weak” Basic Semantic Propositions' estimations for domain could be
extracted from such generalized OAI. These estimations form in ODA a non-strict
FC for conceptual framework extraction. Whereas for FCA usage a binary FC is
necessary. Therefore ODA offers an approach for generating such FC from initial
non-strict FC.

3. Non-strict Formal Context generation

In OAI (general scientific form for logging empirical information) rows correspond
to domain objects, columns correspond to set of objects’ attributes that are recorded
by measurement procedures available to the analyst. Table cells (matrix V) store the
measurement results:

o setofobjects G"={gi}i=1...r,r=|G" =1,
o setof attributes M = {mj}j=1,..s, S=|M| > 1,

o attributes measurement results V = (Vj)i=1,.... r;j=1,....s-
Generalized OAI is represented by tuple (G”, M, Se, Pr, A), where:

77

AN. Kovartsev, V.S. Smirnov, S.V. Smirnov. Intelligent Design of Class Structure Model based on Ontological Data
Analysis. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 73-86

o Se={Ji;Se; - the setof all series of measurements, |Se| = Zi'=1|Se(i)| =m
; Se) :{se(i)k}kzl,...q(i) , 0@ =1, 1=1,..., r—series of measurements,
applied to object gi € G™.

o Pr=Ji,Prj -arsenal of measurement procedures, |Pr|= Zj:l|Pr(j)| =n
; Priy :{pr(j)k}kzl,...p(j) P =1,j=1,...,s, - set of measurement

procedures used to estimate the value of the attribute m; ¢ M, where any
procedure pry has a degree of confidence in its results tg.

e A= (aj)i=1,...m j=1,... n— Matrix of measurements series results Se of
attributes M of objects from sample G*, made using measurement
procedures Pr. This matrix elements can be linguistic constants NM, None,
Failure and X:

None — a result that demonstrates a finding of a measured attribute value
outside of sensitivity threshold and the dynamic range of a measuring
instrument; it shows a “semantic mismatch” of the object and the
measuring procedure etc;
Failure — a result that records measurement failure (denial, measurement
means malfunction, abstention, etc);
NM (not measured) — a result indicating that as a matter of fact in this
series of measurements corresponding property was not measured;
X replaces any symbol of scales of dynamic ranges of measurement
procedures Pr.
Non-strict FC is a tuple (G*, M, 1), where G* - empirical training set of missile
defense, M - number of attributes of objects recorded by measuring procedures
available to the researcher, | - matrix estimates all the Basic Semantic Propositions,
each element bjj determined in accordance with the multi-valued logic V™" vector
(True, False) [17]:
[Ibil| = b%ij, b7i; b3, b7j € [0, 1],
wherein component True b*; formed certificate confirming the Basic Semantic
Proposition and the component False b~j; - denying it.
Building a non-strict incidence “objects-attributes” | begins with the transition from
the primary data, structured in the form of a matrix A, to their semantic
interpretation in the form of non-strict incidence “series-procedures” I";

={F=(0, 1), if a; = None; :
N=(05, 05), ifay; e{Failure, NM}

where T, F and N - truth constants V'F logic of “True”, “False” and ‘“Neutral”
respectively.

78

A.H. Kosapues, B.C. Cmupnos, C.B. CMupHOB. ParjnonanbsHoe NpoeKTHPOBaHUE MOJICIH, ONUCHIBAIONICH CTPYKTYpY
KJIaCCOB OOBEKTOB, Ha OCHOBE OHTOJIOTHYECKOT0 aHann3a AaHHbIX. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., c. 73-86

Then line I' is transformed into a non-strict incidence “objects-attributes” | by
combining the truth values of basic semantic judgments obtained for the object g; in
all series, and property m; - all procedures (taking into account confidence in each
procedure). Alignment is performed on various compositional rules V'F logic [17].

4. Creating a binary Formal Contexts

Incidence “objects-attributes” | of non-strict FC can be expanded in his binary
alpha-section, for example,

' :Ua*,a*e[o,1]<a+’ 0‘_>'|(a) :

p@ _)True, if bj >a" A bj <a;
Y |False in the opposite case

wherein the alpha-section 12 - normal (binary) level corresponding vector
a={da’, a).
In practice, alpha-section 12 usually used as an approximation of so called
«a-approximationy the original was not-strict incidence I. However, this method in
the problem of forming a binary FC on its lack of rigor prototype is generally
incorrect because the set of measured properties of M may exist a priori relationship
“constraints of existence”.
Characteristic types of this kind of binary relations are considered in [18]. So a
couple of properties mj, mc € M, j #Kk for each object data domain (and hence, for
vgi € G can be:
e inconsistent if, possessing property m;, object g; obviously does not have
property m, and vice versg;
o caused if, possessing property mj, object g; indisputably has the property
my, although the reverse may be wrong;
o interdependent if possessing property m;j, object g; definitely has the
property my, and vice versa.
The usual method of alpha-section is insensitive to such relations. Therefore, its
application to the formation of a binary FC original non-strict context may lead to a
violation of “constraints of existence.”
The idea of intelligent alpha-sectional non-strict FC is available for the
formalization of context “constraints of existence” as a single predicate “a-section
correctly” with argument “Threshold « of confidence in the source data” followed
by the identification of the tolerance range «, delivering such a predicate True.
In general, set the specified area for non-strict FC is very difficult; it is possible and
that it is empty. Therefore, to solve the problem correctly binary approximation
non-strict FC in the ODA path is a reasonable compromise. Work with a common
threshold of confidence o proposed to replace the manipulation of a set of

79

AN. Kovartsev, V.S. Smirnov, S.V. Smirnov. Intelligent Design of Class Structure Model based on Ontological Data
Analysis. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 73-86

thresholds of confidence in the data fragments that describe each object g; € G™ at
the level of each separately taken “constraints of existence”.

A very important case is when the inconsistently of attributes is the result of a
fundamental cognitive procedure, known in FCA as a conceptual scaling [8]. This
case is considered in [16], where proposed the method of rational alpha-section non-
strict FC.

5. Formation of Class Structure Model

Analysis of binary FC allows deduce all the formal domain concepts. Formal
concepts are partially ordered by inclusion of extensions (the extension of the
concept - a set of objects, which are described by means of this concept) and form a
complete lattice [8]. To use this result in the design of the software necessary to
transform formal concept lattice in Class Structure Model.

Formal concepts according to the formation of their extensions are divided into
three types:

e The concepts of the first type describe objects really exist in the analyzed
domain. These concepts define a class of objects that deserve the naming of
“fundamental”.

e The concepts of the second kind - only generalize other notions. In
software design these classes are known as “virtual”.

e The third type of concepts is characterized by combining these features
concepts first and second kinds.

When designing the Class Structure Model pragmatic considerations require confine
fundamental and virtual classes of objects. In general, you can specify the following
principles of formal concept lattice transformations in Class Structure Model:

o all the concepts of the lattice are candidates for fundamental classes of the
model;

o the fundamental class becomes the minimum (in the terminology of
lattices) concept containing the object in its extension;

e attribute is preserved to the maximum of the concepts contained this
attribute in its intension;

o the highest concept lattice (his sign - power extension equal to the of
objects) is certainly excluded from the model, if its intention is empty;

o the smallest concept lattice (his sign - the power intention equal to the
power set of attributes) are known to be excluded from the model if its
extension is empty;

o analysis of candidates in the fundamental classes begins with the smallest
concept, and conducted by levels nearest super-concepts.

Algorithm which follows those principles is shown in table 3.

80

A.H. Kosapues, B.C. Cmupnos, C.B. CMupHOB. ParjnonanbsHoe NpoeKTHPOBaHUE MOJICIH, ONUCHIBAIONICH CTPYKTYpY
KJIaCCOB OOBEKTOB, Ha OCHOBE OHTOJIOTHYECKOT0 aHann3a AaHHbIX. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., c. 73-86

Table 3 — Concept lattice conversion into a class structure model algorithm

Step

Operation

1

The original version of the model is formed as a copy of the formal concept lattice.

2

In the model is searched the greatest concept.
If the intension of this concept is empty, it is excluded from the model with break his ties with
sub-concepts.

In the model is searched the smallest concept.
If extension of the smallest concept is empty:

o this concept is excluded from the model with the breaking its ties with super-concept;

e aset of candidates in fundamental classes is formed of his closest super-concepts.
If extension of the smallest concept is not empty, then a set of candidates in fundamental classes
is formed of one smallest concept.

Loop through a set of candidates.

For each super-concept of the candidate under consideration excludes objects from
extension that are within the extension of this candidate (the extension super-concept is
always not less than the extension sub-concept).

4.2

In consideration of the candidate from the intension excludes any attribute that is part of
the intension of at least one super-concept (a combination of all super-concept’s intension
is always not more than concept intent, which they are).

43

If the candidate has no sub-concepts, it is recorded as the fundamental class. In such case
one of two alternatives is implemented:

e if the candidate has no sub-concepts, it is recorded straight as a fundamental;

o otherwise for this candidate creates a new sub-concept, in which the extension
is transferred (and only extension) of the candidate. This new sub-concept is
fixed as the fundamental class of objects. The intension of such fundamental
class is empty. The candidate is retained in the model as a virtual class with an
empty extension.

4.4

Promising set of concepts-candidates is unalterably filling with super-concepts of a
current candidate.

Promising set of candidates is being reduced: remains only root concepts of generalization
relationship, which is determined in a promising set of concepts-candidates.

If a set of promising candidates is not empty, then algorithm repeats from Step 4.

Classes with an empty extent and intent are excluded from a formed set. These could be only
intermediate (i.e. not root or node class) classes of developed taxonomy.

In Fig. 3 class taxonomy after converting the formal concept lattice, shown in
Fig. 2. Conspicuous is the fact that concepts 13 and 17 (highlighted in Fig.2) are
absent in this taxonomy. Both of these concepts are losing their extent and intent
after the conversion. Besides that in Fig. 3 the concept number 5 determines a
fundamental class (all similar classes are highlighted) in order to describe the intent
(and only intent) for which a special virtual class 05 implemented into the model.

81

AN. Kovartsev, V.S. Smirnov, S.V. Smirnov. Intelligent Design of Class Structure Model based on Ontological Data
Analysis. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 73-86

Fig. 3. Taxonomy of classes in domain “O0 methodologies and their techniques”.

5. Conclusion

Formal Concept Analysis (FCA) has shown its benefits in many application areas —
including the field of Software Engineering. Its use is especially valuable in the
early stages of software development associated with the identification of a domain
object types (classes) and relationships between these types.

Methodical equipment of the Ontological Data Analysis significantly expands and
strengthens these advantages:

o can deal with incomplete and contradictory information about the data
domain, namely a situation is typical for the beginning of the software life
cycle;

e organically describes and analyzes arbitrary relations between classes of
domain;

e take into account numerous priori known analyst relationship between the
properties of domain (actually an additional cognitive resource that did not
use the classic FCA).

Finally, the arsenal includes ODA pragmatically oriented algorithm for
transforming formal concept lattice model in describing the structure of the classes.
Formed model differs in that only describes two kinds of classes with a
fundamentally different technical realization.

Acknowledgment

This work was conducting research on the topic “Development of the basic theory
of intersubjective manage using ontological model of the situation” within the state
task Institute for the Control of Complex Systems of Russian Academy of Sciences
for 2013-2015, as well as public support of the Ministry of Education and Science
of the Russian Federation in the framework of implementation of the Program of
improving the competitiveness of Samara State Aerospace University among the
world’s leading research and education centers for 2013-2020.

82

AH

. Koapues, B.C. Cmupnos, C.B. CmupHoB. Panrionanbnoe poeKTHpOBaHHE MOJICIIH, OMHCBIBAIOIICH CTPYKTYpY

KJIaCCOB OOBEKTOB, Ha OCHOBE OHTOJIOTHYECKOT0 aHann3a AaHHbIX. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., c. 73-86

References

(1]

[2].
[3].
[4].

[5].
[6].
[71.
[8].
[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

. G. Booch. Object-Oriented Analysis and Design with Applications (2 ed.). Benjamin-
Cummings Publishing, 1994. 608 p.

P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, 1990. 223 p.

J. Martin and J. Odell. Object-Oriented Analysis and Design. Prentice Hall, 1992. 515 p.
S. Shlaer and S.J. Mellor. Object Lifecycles, Modeling the World in States. Yourdon
Press, 1991. 268 p.

B. Meyer. Object oriented software construction (2 ed.). Prentice Hall, 1997. 1296 p.
G.N. Kalyanov. CASE strukturnyj sistemnyj analiz (avtomatizacija i primenenie)
[CASE structural systems analysis (automation and application)]. Lori, Moscow, 1996.
242 p. (in Russian).

A.M. Vendrov. CASE-tekhnologii: sovremennye metody i sredstva proektirovanija
informacionnykh sistem [CASE-technology: modern methods and tools for the design of
information systems]. Finansy i statistika [Finance and Statistics], Moscow, 1998. 176 p.
(in Russian).

B. Ganter and R. Wille. Formal Concept Analysis. Mathematical foundations. Springer-
Verlag, Berlin-Heidelberg, 1999. 290 p.

R. Godin, H. Mili, G.W. Mineau, R. Missaoui, A. Arfi and T.-T. Chau. Design of Class
Hierarchies based on Concept (Galois) Lattices. Theory and Application of Object
Systems (TAPOS), 1998, 4(2), pp. 117-134.

S. Diiwel, W. Hesse. Bridging the gap between Use Case Analysis and Class Structure
Design by Formal Concept Analysis. In: J. Ebert, U. Frank (Hrsg.): Modelle und
Modellierungssprachen in Informatik und Wirtschaftsinformatik. Proc. “Modellierung
2000”. Folbach-Verlag, Koblenz, 2000, pp. 27-40.

W. Hesse and T. Tilley. Formal Concept Analysis Used for Software Analysis and
Modelling. Formal Concept Analysis (Foundations and Applications) / LNAI 3626.
Eds.: B. Ganter, G. Stumme and R. Wille. Berlin-Heidelberg, Springer-Verlag, 2005,
pp. 288-303.

H.-M. Haav. A Semi-automatic Method to Ontology Design by Using FCA. Proc. of the
CLA 2004 International Workshop on Concept Lattices and their Applications (Ostrava,
Czech Republic, 2004, September 23-24). Eds.: V. Snasel, R.Belohlavek. TU of
Ostrava, Dept. of Computer Science, 2004, pp. 13-24.

C. De Maio, L.V.Fenza and S. Senatore. Towards Automatic Fuzzy Ontology
Generation. In: Proc. of the 2009 IEEE Int. Conf. on Fuzzy Systems (Jeju Island, Korea,
2009, August 20-24), pp. 1044-1049.

S.V. Smirnov. Ontologicheskij analiz predmetnykh oblastej modelirovanija [Ontological
analysis of modeled domains]. lzvestija Samarskogo nauchnogo centra RAN [Proc. of
the Samara Scientific Center of RAS], 2001, vol. 3(1), pp. 62-70 (in Russian).

S.V. Smirnov. Postroenie ontologij predmetnykh oblastej so strukturnymi otnoshenijami
na osnove analiza formal'nykh ponjatij [Designing of ontologies by using Formal
Concept Analysis in domains with arbitrary relationships]. Znanija — Ontologii -Teorii:
Materialy Vserossijskoj konferencii s mezhdunarodnym uchastiem [Knowledge —
Ontology — Theory: Proc. of the National Conf. with international participation]
(Novosibirsk, Russia, 2011, October 3-5), vol. 2. Institut matematiki SO RAN [Sobolev
Institute of Mathematics], Novosibirsk, 2011, pp. 103-112 (in Russian).

V.P. Ofitserov, V.S.Smirnov and S.V.Smirnov. Metod al'fa-sechenija nestrogikh
formal'nykh kontekstov v analize formal'nykh ponjatij [Method alpha-section non-strict
formal contexts in Formal Concept Analysis]. Problemy upravlenija i modelirovanija v

83

AN. Kovartsev, V.S. Smirnov, S.V. Smirnov. Intelligent Design of Class Structure Model based on Ontological Data
Analysis. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 73-86

slozhnykh sistemakh: Trudy XVI mezhdunarodnoj konferencii [Complex System:
Control and Modeling Problem. Proc. the XVI Int. Conf.] (Samara, Russia, 2014,
June 30 — July 03). Samarskij nauchnyj centr RAN [Samara Scientific Center of RAS],
Samara, 2014, pp. 228-244 (in Russian).

[17]. L.V. Archinski. Vektornye logiki: osnovanija, koncepcii, modeli [Vector logic:
foundation, concepts and models]. Irkutsk: Irkutskij gosudarstvennyj universitet [Irkutsk
State University], 2007. 228 p. (in Russian).

[18]. N. Lammari and E. Metais. Building and maintaining ontologies: a set of algorithms.
Data & Knowledge Engineering, 2004, vol. 48(2), pp. 155-176.

PaunoHanbHoe NnpoeKkTupoBaHMe Moaenw,
onucbiBaloLWen CTPYKTYpPY KnaccoB
00BbEeKTOB, Ha OCHOBE OHTOJIOrM4eCKOro
aHanu3a faHHbIX

'4.H. Koeapyes <kovr_ssau@mail.ru>,
1B.C. Cmupnos <victorsmirnov92@gmail.com>
2C.B. Cuupros <smirnov@iccs.ru>
YCrAy (HHUY), 443086, Poccus, 2. Camapa, ya. Mockoeckoe wiocce, dom 34
2HITYCC PAH, 443020, Poccus, 2. Camapa, yn. Cadosas 61

AnHorammsi. PaccmarpuBaercss (OpPMaNbHBI METOJ, OOECICYMBAIONIMH MOAJICPIKKY
KPHTHUYECKH BAXXHOTO INara B OOBEKTHO-OPHEHTHPOBAHHOM aHAIHM3€ M IMPOCKTHPOBAHUH
nporpaMMHOro obecredenus. IlpemmoxeHo (OpPMHpPOBaTH MOJENb, ONMCHIBAIONLYIO
CTPYKTYPY KJIacCOB 0OBEKTOB, HA OCHOBE OHTOJIOTHIECKOTO aHAIHM3a SMIHPHIECKUX JaHHBIX
0 IeNneBOH IpeaMeTHOH OOJACTH MPOEKTHPOBAHHSA. DTa TEXHOJIOTHS SIBISIETCS PAa3BUTHEM
M3BECTHOTO METOJa aHanu3a (DOPMAIBHBIX MOHSATHI M crocoOHa padoTaTh C HEMOJHOW
(mMpOTHBOPEUYHBOM, HETOYHOMN, HEYETKOM U T.II.) SIMIUPHIECKON HHOpMAIKEil O MPEeIMETHOM
0o0nacTy, OpraHUYHO IOAJEP)KUBACT IIOCTPOCHHE IPOM3BOJIBHBIX OTHOLICHHUH MEXIy
KJ1accaMy OOBEKTOB M MMPUHHUMAET BO BHHUMAaHHE HMEIOIIUECS Y MCCIeI0BaTelsl CBEICHUS O
B3aUMOCBSI3M aKTyalbHBIX UISI MPOEKTHPOBIIUKA CBOHCTB OOBEKTOB IPEIMETHONH OOJIACTH.
Jlia ydera peanuil HaKOIUIEHHs 3MIMPUYECKUX IAHHBIX HUCIONB3YIOTCA MOJENIU U amlmapar
MHOTO3HA4YHOU BEKTOPHOMU JIoruky. IIpu 3TOoM 1714 3agaydl BBIBOAA MOHATHHHOW CTPYKTYpBI
TpeaAMeTHOH obmacTH opmupyeTcs HECTpOTHMH (QOpManbHBIA KOHTEKCT. Ero
npeoOpa3oBaHne B OWHapHBI (QOPMaJbHBIA KOHTEKCT, /I KOTOPOTO HM3BECTHBI
3¢ peKTHBHBIC aNTOPUTMBI BEIBOJIA HOPMAIIBHBIX MOHITHH, TPOU3BOIUTCS C HCHOJIB30BAaHUEM
MHTEJUICKTYyaJIbHOTO ~ alrOpUTMa aib(a-annpoKCUMaIlMK, yYUTHIBAIOIIETO THUIIMYHBIC
3aBHCHMOCTH MEXIYy CBOWCTBaMH OOBEKTOB U, TPEXJIE BCEro, KOHIENTYalbHYIO
CONPSDKEHHOCTh CBOWCTB OOBEKTOB, BO3HMKAIOUIYI0O B pe3ylbTaTe (yHIaMEHTaIbHON
M03HABAaTEIbHOM IpPOLEAYPbl IMPOEKTHUPOBLUIMKA — KOHLENTYalbHOIO ILIKAIUPOBAHUS
PETHCTPUPYEMBIX CBOMCTB OOBEKTOB. MeXIy BBIBEICHHBIMH U3 ()OPMAIBHOIO KOHTEKCTA
MOHATUSIMA (PUKCUPYETCSl YaCTHUUYHBIM IOPSJOK [0 BJIOXKCHUIO CBOMCTB, W3BECTHBIH B
00BEKTHO-OPHEHTHPOBAHHOM aHalM3e KakK HaclefoBaHHMEe CBOicTB. Ompenensemas 3THM

84

A.H. Kosapues, B.C. Cmupnos, C.B. CMupHOB. ParjnonanbsHoe NpoeKTHPOBaHUE MOJICIH, ONUCHIBAIONICH CTPYKTYpY
KJIaCCOB OOBEKTOB, Ha OCHOBE OHTOJIOTHYECKOT0 aHann3a AaHHbIX. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., c. 73-86

OTHOIICHUEM 3aMKHyTasl penieTka (OpMalbHBIX IOHATHH TpaHCHOpMHpPYETCS B MOJETb,
OIUCHIBAIONIYIO CTPYKTYPY KJIACCOB OOBEKTOB, B COOTBETCTBHH C PSJIOM IIPAarMaTHYECKUX
MPUHIUIIOB TPOEKTUPOBAHMS 3TOTO KII0YEBOT0 KOMIIOHEHTA IPOrPaAMMHOT0 00€CIEeYEeHHs.

KiioueBble c¢10Ba: OOBEKTHO-OPUEHTHPOBAHHBIA aHAIM3 M HPOCKTHPOBAHHE; MOACIb,
OITHCHIBAIOLIAs CTPYKTYPY KIIACCOB; (OPMAITbHBIC METO/Ibl; OHTOJIOTMYCCKUIA aHAIN3 TaHHBIX.

DOI: 10.15514/ISPRAS-2015-27(3)-5

Jna uutupoBanusi: Kosapues AH., Cmupnos B.C., CmupnoB C.B. Panuonamsnoe
MPOEKTUPOBAHHE MOJEIH, ONHUCHIBAIONIEH CTPYKTYpy KJIaccoB OOBEKTOB, Ha OCHOBE
OHTONIOrHYecKOoro ananu3a AaHubix. Tpyast UCIT PAH, tom 27, Bem. 3, 2015 r., crp. 73-86
(na anrmmiickom s3bike). DOL: 10.15514/ISPRAS-2015-27(3)-5.

Cnucok nutepartypbl

[1].
[2].
[3].
[4].

[5].
[6].

[7].
[8].
[9].

[10].

[11].

[12].

[13].

G. Booch. Object-Oriented Analysis and Design with Applications (2 ed.). Benjamin-
Cummings Publishing, 1994. 608 p.

P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, 1990. 223 p.

J. Martin and J. Odell. Object-Oriented Analysis and Design. Prentice Hall, 1992. 515 p.
S. Shlaer and S.J. Mellor. Object Lifecycles, Modeling the World in States. Yourdon
Press, 1991. 268 p.

B. Meyer. Object oriented software construction (2 ed.). Prentice Hall, 1997. 1296 p.
I''H. KansnoB. CASE CTpyKTypHBIH CHCTEMHbBIH aHaian3 (aBroMaru3anus |
npumerenue). — M.: Jlopu, 1996. 242 c.

AM. BeagpoB. CASE-TeXHONOTHH: COBpEMEHHBIE METOABI W CpEACTBa
MPOEKTUPOBaHUS HHYOPMAMOHHBIX cHCTeM. — M.: duHAHCH U cTaTtucTrKa, 1998. 176 c.
B. Ganter and R. Wille. Formal Concept Analysis. Mathematical foundations. Springer-
Verlag, Berlin-Heidelberg, 1999. 290 p.

R. Godin, H. Mili, G.W. Mineau, R. Missaoui, A. Arfi and T.-T. Chau. Design of Class
Hierarchies based on Concept (Galois) Lattices. Theory and Application of Object
Systems (TAPOS), 1998, 4(2), pp. 117-134.

S. Diiwel, W. Hesse. Bridging the gap between Use Case Analysis and Class Structure
Design by Formal Concept Analysis. In: J. Ebert, U. Frank (Hrsg.): Modelle und
Modellierungssprachen in Informatik und Wirtschaftsinformatik. Proc. “Modellierung
2000”. Folbach-Verlag, Koblenz, 2000, pp. 27-40.

W. Hesse and T. Tilley. Formal Concept Analysis Used for Software Analysis and
Modelling. Formal Concept Analysis (Foundations and Applications) / LNAI 3626.
Eds.: B. Ganter, G. Stumme and R. Wille. Springer-Verlag, Berlin-Heidelberg, 2005,
pp. 288-303.

H.-M. Haav. A Semi-automatic Method to Ontology Design by Using FCA. Proc. of the
CLA 2004 International Workshop on Concept Lattices and their Applications (Ostrava,
Czech Republic, 2004, September 23-24). Eds.: V. Snasel, R.Belohlavek. TU of
Ostrava, Dept. of Computer Science, 2004, pp. 13-24.

C. De Maio, L.V.Fenza and S. Senatore. Towards Automatic Fuzzy Ontology
Generation. In: Proc. of the 2009 IEEE Int. Conf. on Fuzzy Systems (Jeju Island, Korea,
2009, August 20-24), pp. 1044-1049.

85

AN. Kovartsev, V.S. Smirnov, S.V. Smirnov. Intelligent Design of Class Structure Model based on Ontological Data
Analysis. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 73-86

[14].

[15].

[16].

[17].

[18].

86

C.B. CmupHOB. OHTOJIOTHYECKHH aHaIW3 INPEAMETHBIX o0aacTeil MonenupoBaHus //
WsBectus Camapckoro Haygnoro nentpa PAH, 2001, T. 3, Nel, c. 62-70.

C.B. CmupHOB. IlocTpoeHne OHTOJNIOTHH TNpEAMETHBIX 00]acTel CO CTPYKTYPHBIMH
OTHOIICHMSIMIA Ha OCHOBE aHalM3a (GopManbHBIX MOHATHH // 3HaHmsA — OHTOIOTHH —
Teopun: Martepuansl Bceepoccuiickoit koHG. € MEXKIyHApPOJHBIM yJ4acTHEM
(3-5 0okrs6pst 2011 1., HoBocubupck, Poccus). T.2. Hosocubupck: WHCTHTYT
matematuku CO PAH, 2011, ¢. 103-112.

B.II. O¢unepos, B.C. CmupuoB, C.B. CmupHoB Meton anbda-cedeHuss HECTPOTHX
(hOpMaTBHEIX KOHTEKCTOB B aHann3e (GpopManbHbIX oHsTHI // [IpobiaeMs! yrpaBieHus 1
MOJZENMPOBAHMS B CIOXHBIX cucteMax: Tpynst XVI mexaynaponnoii kond. (30 nrons -
03 nronst 2014 r., Camapa, Poccust). — Camapa: Camapckuii Hay4unsii nientp PAH, 2014,
c. 228-244.

JI.B. ApminHckuii. BekTopHBIC JIOTHKH: OCHOBAaHUS, KOHLENIMHU, Mozenu. - MpkyrTck:
Wpxyrckuii rocynapcTBeHHbIH YH-T, 2007. 228 c.

N. Lammari and E. Metais. Building and maintaining ontologies: a set of algorithms.
Data & Knowledge Engineering, 2004, vol. 48(2), pp. 155-176.

Oubra Yersepuna. Kiaccugukanus nporenyp s Beidopa crparerun ontumusaimu. Tpyast ICIT PAH, Tom 27, Bbin.
3,2015., c. 87-100

Procedures Classification for Optimizing
Strategy Assignment

O.A. Chetverina <chetverina_o@mcst.ru >,
ZAO MCST, Leninskii prospect, 51, Moscow, 119991, Russian Federation

Abstract. Optimizing compilers make significant contribution to the performance of modern
computer systems. Among them VLIW architecture processors are the most compiler-
dependent, since their performance is ensured by effective compile time scheduling of
multiple commands in a single clock. This leads to an eventual complication of VLIW
compilers. Taking as an example optimizing compiler developed for the Elbrus family
processors, it runs consequently over 300 stages of code optimization in basic mode. Such an
amount of stages is needed to obtain decent performance, but it also makes compilation quite
time consuming. It turns out that the main reason for compilation time increase when using
high level compilation is applying some aggressive unreversable code transformations, which
eventually leads to code size increase that is also unwanted. In addition, there remains the
problem of using a number of optimizations that are useful for rare contexts. To reach the
objectives, namely increasing performance, decreasing compilation time and code size, it is
reasonable to choose an appropriate strategy on an early compilation stage according to some
procedure specific characteristics. This paper discusses the procedures classification
problems for this task and suggests several possible solutions.

Keywords: optimizing compiler; optimizing phases sequence; performance tuning; reducing
compilation time; procedures classification.

DOI: 10.15514/ISPRAS-2015-27(3)-6

For citation: O.A. Chetverina. Procedures Classification for Optimizing Strategy
Assignment. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 87-100. DOI:
10.15514/ISPRAS-2015-27(3)-6.

1. Introduction

To obtain decent performance modern optimizing compilers apply a huge sequence
of code transformations. Usually compilers use a fixed optimization sequence for all
procedures according to optimization level (-O0, -O1, -O2, -03) and each
optimization stage tries to improve performance of available code segments using
statistically proven heuristics which leads to suboptimal results in most cases [1, 2].
In order to achieve the best possible performance for a given program it is important
to find the most suitable optimization sequence for each procedure. This could be

87

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 87-100

done with iterative approaches, which compile procedures in a given program using
different optimization sequences with either executing the resulting code [3,4] or
estimating the execution time [5] and choosing the best one. Although both
techniques achieve good performance results on a number of tasks, their weak spots
is a need of a large compilation time which is not always acceptable and a necessity
to execute tasks on appropriate input data so that the training runs would match the
further execution in terms of branch probabilities and code coverage. The
importance and difficulty of constructing a good training input data can be
demonstrated with profiling data that was collected using train execution of the
spec2000 benchmark [6] using Elbrus compiler. It was found out for this benchmark
that applying a low-optimizing sequence to the procedures with zero train profile
data leads to a 6% performance degradation of CFP tasks of spec2000 on average.
The biggest decelerations occurred on 179.art (-18%) and on 301.apsi (-47%),
where the reason for 301.apsi degradation is that one of its main procedures never
executes during train run. As for huge applications it is often too difficult to
generate good train data, which will cover all important parts of code, moreover, for
some types of code like libraries or operational system it is nearly impossible. Also
it should be mentioned that in most cases high compilation time corresponds with
the resulting code size growth, this happens because most time-consuming phases
including hyper-blocks construction, scheduling and loop software pipelining are
located in the end of optimization line and the time they work corresponds with the
size of the intermediate code that was made as result of different aggressive loop
and acyclic transformations such as splitting, peeling, tail duplication etc.

Earlier researches in the field of iterative compilers [7,8] offer techniques that allow
to construct a set of optimization sequences that cover the given procedures space
rather well. In those works to minimize the needed execution time authors choose a
possibly small set of options or sequences that show performance increase on most
tests. To reach good performance results with affordable compilation time and
resulting size of code and avoid the need of training executions it is reasonable to
try to choose a compilation sequence from such a set on an early compilation stage
using some characteristics of the procedure. The main goal of this research is to
explore and construct the possible methods of procedures classification that would
allow to perform this objective.

First of all it would be shown that to make a good selection of optimization
sequences for a set of procedures using characteristics a compilation quality
functional is needed (section 2). It would also be explained how to construct a
functional to take several factors into consideration, like execution time,
compilation time, resulting code size and other possible limits. Then the task of
predicting good sequences selection for a given number of procedures would be
formulated in terms of minimizing constructed quality functional (section 3). After a
list of main existing methods of classification and clusterizations would be
described and given a possible one that allows to solve the task. In section 4 some
experimental results would be provided.

88

Oubra Yersepuna. Kiaccugukanus nporenyp s Beidopa crparerun ontumusaimu. Tpyast ICIT PAH, Tom 27, Bbin.
3,2015., c. 87-100

2. Compilation quality functional

To make a statistical solution of procedures types selection a large training set is
needed. For this purpose all procedures of spec2000 benchmark with a full input
data were used. The reason for this pack choice is that it is well balanced in terms of
different types of tasks and is used as a performance benchmark for most high-
performance computers. The steps for solution is to choose the best sequences
assignment for the training set using full statistic on compilation, execution or other
important characteristics and then to make an attempt to predict it using only
procedures information available on early compilation stage.

Any type of classification and clusterization methods perform allocation of areas in
parameters space, which are then respectively called classes or clusters and could be
used to make some assignment of type, in our case an assignment of optimization
sequence. Using an example from table 1 it could be easily seen that a need to
construct a quality functional comes up even when the only goal of classification is
to minimize execution time.

Table 1. Example of sequence choice

Sequence 1 time Sequence 2 time Best sequence
Procedure 1 100 50 2
Procedure 2 95 100 1
Procedure 3 100 105 1
Sum time 295 255 2

Suppose there are 3 procedures that hit the same area in parameters space, in the
shown example the best sequence choice for 2 out of 3 procedures would lead to
decrease of performance both in sum and on average. It could be assumed that
procedures with different optimal sequences should be in different areas but actually
this assumption is wrong because even the same procedure with different input data
could lead to different best choices results. This means that there is a need to
construct a numerical evaluation method that would qualify the sequences
assignments on the whole set of procedures. The most common technique to
formalize the understanding of the best choice is to construct a functional, which
reaches minimum at decision point. In this case the domain for such functional is an
assignment space for procedures:

P = {p,, ...p,} —all procedures in a set

L = {l,, ... [, .} — the list of optimization sequences,

F(l(py), .- l(py))— R — afunctional defined on the space L™, where [: P — L

To minimize the execution time the following functionals could be chosen:

exe(p;, l(p;)) - execution time of procedure p; when compiled using [(p;)
sequence, then

89

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 87-100

F(l(py), . U(pn)) = Tiexe(py, L(p) (1)

F(l(py), .. 1(py)) = I; exe(p;, () (2)

A functional that considers not only the execution time, but also compilation time
could be constructed:

comp(p;, l(p;)) - compilation time of procedure p; when compiled using I(p;)
sequence

F(I(p), - Upn)) = (T exe(py, Lp)))" (X comp (pi, L(pi)) (3)

This functional describes the acceptable ratio of performance loss and compilation
gain, larger values of “r”” mean higher importance of performance over compilation.
Though even with infinite value of r compilation could be reduced in case if 2
sequences produce the same code in terms of execution time. Other important
limitation as code size could be introduced into quality functional similarly.

3. Functional minimizing classification

Suppose a quality functional was already chosen, then classification task could be
formulated in the following terms:

P = {py, ...pn} — all procedures in a set

L = {l, ... l;;} — the list of optimization sequences,

H- the space of procedures characteristics

Ch: P — H —assignment of characteristic vector for procedures

F(l(py), ---L(py))— R is defined on the space L, where [: P - L

Then the classification is an allocation of areas S in the space H with a sequence
vector in L that produces a constant assignment for each area S, that is:

VS I(Ch™Y(S)) = const

The goal is to make a classification (with some minimal number of training
elements in the area = q), that minimizes the given functional:

F(I(p1), .- Lpy)) > min (4)

To substantiate the statistical approach it is reasonable to require for each procedure
py having a locality D in characteristic space containing at least g points for which

90

Oubra Yersepuna. Kiaccugukanus nporenyp s Beidopa crparerun ontumusaimu. Tpyast ICIT PAH, Tom 27, Bbin.

3,2015 1., c. 87-100
_(lp)pED
Hp) = {defalt,P ep ©

F(H(py), ... H(py)) < F(default, ... def ault)

3.1 Procedures characteristics

As was mentioned earlier the major use of such early compilation stage sequence
prediction is expected on codes that for some cases are not suitable for training
execution. So the goal is to choose a number of characteristics that work well
enough to predict a good optimization sequence and do not depend on precise
profile information. To choose the best set different characteristics were considered
and using correlation matrix the most valuable were picked and normalized. The
best characteristics that were found to predict the optimal compilation sequence
with no train profiling information are:

e number of operations in the procedure;

e average node size, which in some sense stand for the branch frequency;

e number of call operations;

e maximum loop level in a procedure;

e average operation counter, which could also be considered as procedure

density;

e percentage of operation of field reads;

e percentage of operations with floating point;

e percentage of operations that calculate an address for a read.
Most of those are profiling data independent, though the average operation counter
is not. In case of no train profile information Elbrus compiler uses a predicted

profiling based on statistical information. It was found to be good enough to use this
static profiling for classification.

3.2 |deal theoretical solution

First of all for the given training space that includes all characteristics, which are
used in quality functional, an optimal solution that stands for the minimum
functional point could be calculated. For the chosen functional (3) and the
considered lines finding the minimum required making about 2*n steps of gradient
descent, that is 2*n steps, where on each we make a change of a coordinate in
assignment vector that gives the maximum functional value decrease. To check the
stability of the resulting vector in L™ several starting points with the constant
assignment of each line for all set of procedures were used. The solution is a vector
with n coordinates where n is the number of procedures in the training set:

Iy, lp, - 1p,) (6)

91

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 87-100

Sequence vector (6) would be called the optimal theoretical vector of sequences for
procedures P, where [, is the optimal theoretical sequence for procedure p;. It

should be noted that [, would not always afford the best performance or

performance with compile time result on procedure p;. It is optimal only in sense of
the whole set of considered procedures, which is due to functional minimum.

As it would be shown in experimental section solution (6) doesn’t always lead to
best results on a real run when assigning the corresponding compilation sequences
for all procedures in program, and therefore it is declared theoretical. This occurs
because statistical information for each procedure is collected with simultaneous
sequences assignment for other procedures in the program, modification of those
procedures sometimes leads to other memory usage interaction and as a result to
different execution time. The only way to completely avoid this effect is to collect
statistical information for all possible configurations, which is not feasible and even
to be partially used requires availability of information for all additionally
executable procedures to make the right choice for the given one. Therefore, it was
decided to drop out this fact in the currently constructed solution, though keep it in
consideration for future researches in case of —fwhole-program compilation mode.

3.3 Existing classification and clusterization methods

Unlike to methods of clusterization [9] in this situation it is impossible to construct
a metric that would determine the valuable in terms of our needs distance between
procedures. The reason is that the distance between couples of procedures would
depend on the other procedures in same cluster. For this case the clusterization
methods allow to selects areas according to only characteristic metrics, but it is
possible only with appropriate characteristics normalization. The uniform
normalization by itself works out bad for this task, thought probably some
techniques that use functional value movement with characteristic change could be
developed.

Classification methods (support vector machine - SVM, Bayesian network) don’t
require to construct a metric that would divide classes. But as was mentioned before
it is not enough to increase the possibility of picking the best sequence when using
procedures characteristics for prediction. Though in the first attempt to make a
classification solution a Bayesian network [10] has been tried. Although it showed a
high percent of an optimal sequence prediction (above 95%) the resulting execution
time of training tasks set increased by 21% on average. It was found out that the
most frequently optimal sequence reduced the performance of some weighty
procedures, which required a number of aggressive transformations to achieve
acceptable performance. Due to this reason even a small percent of mistakes leaded
to unacceptable result. Other considered methods have the same problem - the
maximum that they allow is to add a weight to the mistake when choosing the
wrong solution, which in our case means not optimal, but they don’t differ the value
of a mistake.

92

Oubra Yersepuna. Kiaccugukanus nporenyp s Beidopa crparerun ontumusaimu. Tpyast ICIT PAH, Tom 27, Bbin.
3,2015., c. 87-100

3.4 Procedures classification
To solve this problem a cluster error minimization algorithm was developed. First
we construct the full error table. For each sequence [;, and for each procedure p;
the minimization error is the following

err(pe. i, | =10g(F(ly, . liy -1y,)/F (Ip, Lo, - 1p,) (7

For optimal sequence of procedure p, functional

F(lp, by o lp,) = F(lpy Ly, o1y,
so error (7) is zero for the optimal sequence and could be zero or positive for the
other sequences.
The main idea is to allocate on each step an area with new sequence assignment that
would give a good functional value decrease comparing to the current. Which in
terms of calculated errors would mean minimizing the summary error.
The clusters construction:
e Start.
e Assign the default sequence for each procedure. Calculate sum error W for
all procedures.
e Repeat:
o Choose not marked procedure p with maximum current error and
the optimal sequence L, .
o Calculate the distances to all characteristics borders. Calculate
sum error for all space with 1, .
o Define it as a current cluster.
o Repeat for each characteristic:
= Repeat until cluster size > q and the calculated error
decrease: with coefficient t; < 1.0 decrease the distance
to one of the borders of the cluster
= Repeat until the calculated error decrease: with
coefficient t, < 1.0 increase the distance to one of the
borders of the cluster
o Accept the cluster if it decreases error by dW > t; = W. Mark the
starting procedure with the flag.
e End.
The constructed areas are g — dimesional rectangles and could intersect. To
choose the sequence for a procedure with the set of constructed cluster borders we
take the sequence that corresponds with the last cluster that procedure belongs to.
Parameters t,, t,, t; are heuristically chosen so borders movement would capture
enough procedures to get more precise direction of error change.

93

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 87-100

Classes’ construction can be started with any sequence; in proposed algorithm the
default sequence was chosen because it is optimal on average. Also was made an
attempt to start cluster construction with all procedures and choose the one that
gives the highest minimization of functional value.

The received clusters with both attempts are very similar, though the last one is
much more time-consuming. The other variant that was tested is the binary search
of boundaries. This gave also a close result, and this mechanism could be assumed
preferable because of no border parameters need.

The possible weakness of proposed classification is the absence of functional
monotony by parameter coordinates; this could lead to inaccurate border
calculation. Parameters t1, t2 or binary search of boundaries should reduce this
effect because in both cases first steps in parameter space are big in terms of
considered procedures number thus are statistically proven. One more limitation of
constructed classes is that they are g — dimesional rectangles, though with the
allowed intersection could actually take other forms. This could perform less
accurate area selection but further significantly reduces required time for compiler
to compute the proper class for a procedure.

4. Experimental results

The proposed clusterization was implemented in Elbrus compiler. As the training
set 9183 procedures of spec2000 benchmark were used. The whole amount of
procedures in the given pack is much greater but it was possible to use only the
procedures with a measurable execution time. In all cases the clusterization was
constructed using full information on execution and compilation time corresponding
with each sequence assignment to each procedure, then the solver, that computes
procedures characteristics on early compilation stage and chooses the cluster
according to calculated borders, was developed in the compiler. The assignment
takes place in the end of interprocedural compilation stage, thus the time required
for the sequences selection is included in whole task compilation time and is
counted in the recieved compilation speedup.

As was already explained, the effectiveness of sequences assignment depends not
on the highest probability of choosing the best line for procedure alone but on
integral characteristic for the whole set. So to show the quality of constructed
clusterization it is reasonable to consider all the tasks and not procedures separately.
For this purpose results of implementing sequences assigned by optimal and
clusterization selections were compared on whole spec2000 benchmark tasks. In
this case we used functional that minimizes only performance time(l) and
constructed 7 clusters. The result is shown on fig. 1. As it was already discussed in
section IIT “Ideal theoretical solution” the optimal solution for the tasks was
combined of optimal theoretical sequence for each procedure. It was noted that
because of the memory interaction some tasks, for example, 200.sixtrack, slowed
down even with applying this optimal solution. As the result the real measure of
optimal solution gained almost 5% less performance increase than it was supposed

94

Oubra Yerepuna. Knaccudukaipms npouenyp Juist Beioopa crparernu ontuMusanud. Tpyast UCIT PAH, Tom 27, BbirL.
3,2015 ., c. 87-100

to be according to theoretical calculations. The same comparison with functional (3)
— considering both execution and compilation time yielded worse clusterization
results, it occurred mainly because a large amount of procedures are not executed
and optimal solution gave much better compilation time results on them.

0,.00%

50.00%

2000,
0, 00w,
o = |. W _ L ll .

-*“_“i,.quﬂ‘_;d,;‘f‘,ﬂ "'fq‘ fﬂd&# ,\t_?x

:m-m 'F ++
B THECRETICAL OPTIMAL REAL EXECUTION SPEEDUPF
B 7 CLUSTERS SOLUTION SPEEDUP

Fig. 1. Optimal and cluster solution, spec2000, 7 clusters.

L3000
30,00
Ll

4D 00

=l h. ;

.
P qj,o e ,e“" # %«"L s ‘;Iﬁi, ot

o '\.I l}

-2000%

WEXECUTION SPEEDLP B COMPILATION SPEEDUP

Fig. 2. Spec2000 no train execution, 5 clusters.

95

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,

vol. 27, issue 3, 2015, pp. 87-100

When using functional (3) most effect was achieved after constructing first 5
clusters. The corresponding sequence assignment for those clusters reduced
compilation time by 17% on average and increased performance by 8.5% on the
training set. fig. 2 shows the improvement obtained on certain tasks of spec2000
benchmark. As a test pack for the clusterization spec95 [6] benchmark was used.
The execution and compilation result for this pack is shown on fig. 3. The average
increase of performance reached 3% and the average compilation time decrease was
over 16%.

Measured results prove effectiveness of classification algorithm, though due to the
absence of functional coordinate monotony it is not proved that the best possible
solution is received. Another question is the quality of available procedures
characteristics choice, which showed to be good enough for the considered set of
compilation sequences but could appear not to be representative to make quality
selection from different set of sequences.

B0, 00%

T0,00%

B0, 00%

S0, 00%

A0, 00%

30, 00%

. - - - J -
. B oA & aly W sl LT
4 B ¥ o 45 g o g Q‘_@:“? iy
- 5 5 o
.'_wxjs‘ Q{eﬁ " & ap gt BT T
e eF g Ll S o =
Sy

WEXECUTION SPEEDUP N COMPILATION SFEEDUP

Fig. 3. Spec95 no train execution, out of train set, 5 clusters.

5. Future works

Results presented in experimental section show the possibility of good sequence
prediction using classification methods. But some questions should be cleared and
researches to be done. First, it could be possible to make hierarchical clustering if
inserting some metric that would allow to avoid problems with sporadic points that
give inaccurate values for some reasons, this could allow better cluster borders
calculation. Another question is how to construct the best training set in sense of
avoiding procedures execution interaction. As it can be seen on Figure 1 the
execution profiling of the whole task with one sequence can lead to errors in future

96

Oubra Yersepuna. Kiaccugukanus nporenyp s Beidopa crparerun ontumusaimu. Tpyast ICIT PAH, Tom 27, Bbin.
3,2015., c. 87-100

procedure sequence selection. Also it could be more effective to combine sequences
construction with some estimation of future prediction possibility using available
procedures characteristics. Finally, there could be done some researches on
ascertainment if the found procedure characteristics are good enough to provide
maximum possible potential in best classes allocation.

6. Conclusion

This paper introduces problems that come up on the way to develop automatic
optimizing sequence selector that provides performance increase and reduces the
needed compilation time for each procedure. Necessity of a quality functional on the
space of all possible assignment is explained. Also it should be mentioned that such
functional could include any possible limitations besides compilation and execution,
in some cases it could be valuable to limit code size increasing or reduce the number
of registers that are allowed for code planning. The last limit could be useful to
lower register spill fill blocking between the calls and returns from large procedures.
An effective algorithm that can be used to select clusters in the procedures
characteristics space is suggested.

The classification methods were implemented in Elbrus compiler. It was shown that
a good optimization sequence could be chosen even when it is impossible to execute
the code and no train profiling information is available. The results were achieved
and introduced using spec2000 and spec95 benchmarks.

References

[1]. Prasad A. Kulkarni, W.Zhao, H.Moon, et al. Finding Effective Optimization Phase
Sequence. [A]. Proc. of ACM SIGPLAN 2003 Conference on Languages, Compilers
and Tools for Embedded Systems, US: 2003.

[2]. Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, David |. August.
Compiler optimization-space exploration. Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization,
March 23-26, 2003, San Francisco, California.

[3]. Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika
Subramanian, Linda Torczon, Todd Waterman. ACME: adaptive compilation made
efficient. LCTES '05 Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on
Languages, compilers, and tools for embedded systems, Pages 69 — 77

[4]. Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson. Evaluating Heuristic
Optimization Phase Order Search Algorithms. Proceedings of the International

Symposium on Code Generation and Optimization, p.157-169, March 11-14, 2007

[5]. Prasad A. Kulkarni, Michael R. Jantz, David B. Whalley. Improving both the
performance benefits and speed of optimization phase sequence searches. LCTES'10
Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages,
compilers, and tools for embedded systems, April 2010

[6]. Standard Performance Evaluation Corporation, http://www.spec.org/

[7]. Suresh Purini, Lakshya Jain. Finding good optimization sequences covering program
space. Transactions on Architecture and Code Optimization (TACO), January 2013.

97

http://www.spec.org/

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 87-100

[8]. M. Haneda, P. M. W. Knijnenburg, H. A. G. Wijshoff. Generating new general compiler
optimization settings. Proceedings of the 19th annual international conference on
Supercomputing, June 20-22, 2005, Cambridge, Massachusetts

[9]. Jain, Murty and Flynn. Data Clustering: A Review. ACM Comp. Surv., 1999.

[10]. Judea Pearl, Stuart Russell. Bayesian Networks. UCLA Cognitive Systems Laboratory,
Technical Report (R-277), November 2000.

Knaccudpukaumsa npoueanyp ans Bbioopa
cTpaTtermm ontTuMmsauumm

Onvea Yemesepuna <chetverina_o@mcst.ru>
340 MICT, Jlenunckuii npocnexm, 51,
Mocksa, 119991, Poccus

AHHoTanus. ONTHMH3NPYIOMNE KOMITHIISITOPEI BHOCST CYIIECTBEHHBIH BKJIAJ B IIOBBIIICHHE
IIPOU3BOAUTEIILHOCTU COBPEMEHHBIX BBIUUCIIUTENBHBIX CHCTEM. Haubonee
YYBCTBUTEJIbHBIMH K Ka4eCTBY KOMIMJISILIUY SABJIAIOTCS Ipoueccopsl ¢ VLIW apxutekrypoi,
HOCKOJIBKY B 3TOM Clly4ae HPOU3BOJUTEIBHOCTb 00ECIIeUnBaeTCs 3a CUET OJHOBPEMEHHOTO
UCIIOJIHEHUS! B OJHOM TAaKT€ HECKOJbKUX CTAaTMYECKU CIUIAHUPOBAHHBIX KOMaHI, 3TO
npuBOIUT K ycnoxHeHuto VLIW xommunstopoB. Tak, xoMmnuiastop it ceMeicTBa
mporieccopoB DnpOpyc B pexkume —O3 BemmonHseT mocienoBarenbHo Oonmee 300
ontummupyomux (a3. Takoe KOIMYIECTBO 7TAmoOB HEOOXOAMMO JUI JTOCTIDKEHHUS
TpeOyeMoil IPOU3BOANUTENFHOCTH HTOTOBOTO KOJa, HO SIBISIETCS 3aTPAaTHBIM II0 BPEMEHH
KOMIWIALUY. 3HAYUTEIbHOE YBEIUMUEHHE BPEMEHH KOMIIWIALMU NPU BBICOKOYPOBHEBOU
ONTHMH3AIMH B IIEPBYIO OYepeb BBI3BAHO NMPUMEHEHUEM psijia arpeCCUBHBIX HEOOPAaTHMBIX
npeoOpa3oBaHui, NMPUBOSNIMX K TAKKe HEXKENATeIbHOMY POCTY MUTOroBoro koma. Kpome
TOT0, OCTaeTcs MpoliemMa HCIOJIb30BaHMS HEKOTOPBIX IOJIE3HBIX TOJBKO ISl OTIEIBHBIX
KOHTEKCTOB ONTUMH3aUui. [OJHOBPEMEHHOTO Yyd4era TpeOOBaHWH MOBBIIICHUS
TIPOM3BOIUTENIFHOCTH, YMEHBIICHHUS BPEMEHH KOMIWIALMHM M pa3Mepa HTOTOBOTO KOJa
HMEeT CMBICI BEIOpaTh MOAXOMSIIYI0 ONTHMHU3HPYIONIYIO MOCIEOBaTEIbHOCTh Ha PaHHEM
JTane KOMIWIIOUE B 3aBHCHMOCTH OT CHEHNU(UUECKNX XapaKTePHCTHK IPOIeaypsl. B
NPEACTaBICHHONH cTaThe oOCyxnaercs mnpoOieMa KiaccuUKalMuM —HpOLEAyp Uit
OCYIIIECTBIICHHS TAKOTO BEIOOpA M MPEATIAraeTcsl psiJ CIOCOOO0B €€ PeIIeHUS.

KaroueBnie cioBa: optimizing compiler; optimizing phases sequence; performance tuning;
reducing compilation time; procedures classification.
DOI: 10.15514/ISPRAS-2015-27(3)-6

Jas nutupoBanus: Onbra Yersepuna. Kiaccudukanus npoueayp 11 BeIOOpa CTpaTeruu
ontummszanuu. Tpynst UCIT PAH, Tom 27, Bem. 3, 2015 r., ctp. 87-100 (Ha anrnmiickom
s3bike). DOI: 10.15514/ISPRAS-2015-27(3)-6.

98

Oubra Yersepuna. Kiaccugukanus nporenyp s Beidopa crparerun ontumusaimu. Tpyast ICIT PAH, Tom 27, Bbin.
3,2015., c. 87-100

Cnucok nutepartypbl

[1].

[2].

[3].

[4].

[5].

[6].
[7].

(8.

[9].
[10].

Prasad A. Kulkarni, W.Zhao, H.Moon, et al. Finding Effective Optimization Phase
Sequence. [A]. Proc. of ACM SIGPLAN 2003 Conference on Languages, Compilers
and Tools for Embedded Systems, US: 2003.

Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, David |. August.
Compiler optimization-space exploration. Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization,
March 23-26, 2003, San Francisco, California.

Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika
Subramanian, Linda Torczon, Todd Waterman. ACME: adaptive compilation made
efficient. LCTES '05 Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on
Languages, compilers, and tools for embedded systems, Pages 69 — 77

Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson. Evaluating Heuristic
Optimization Phase Order Search Algorithms. Proceedings of the International

Symposium on Code Generation and Optimization, p.157-169, March 11-14, 2007
Prasad A. Kulkarni, Michael R. Jantz, David B. Whalley. Improving both the
performance benefits and speed of optimization phase sequence searches. LCTES'10
Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages,
compilers, and tools for embedded systems, April 2010

Standard Performance Evaluation Corporation, http://www.spec.org/

Suresh Purini, Lakshya Jain. Finding good optimization sequences covering program
space. Transactions on Architecture and Code Optimization (TACO), January 2013.

M. Haneda, P. M. W. Knijnenburg, H. A. G. Wijshoff. Generating new general compiler
optimization settings. Proceedings of the 19th annual international conference on
Supercomputing, June 20-22, 2005, Cambridge, Massachusetts

Jain, Murty and Flynn. Data Clustering: A Review. ACM Comp. Surv., 1999.

Judea Pearl, Stuart Russell. Bayesian Networks. UCLA Cognitive Systems Laboratory,
Technical Report (R-277), November 2000.

99

http://www.spec.org/

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 87-100

100

Oneitnnk ITagen IerpoBny. YHndHUIMpOBaHHAS MOJEIh TECTHPOBAHHS HHCTPYMEHTOB Pa3paboTKU 0OBEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

Unified Model for Testing Object-Oriented
Application Development Tools

Pavel P. Oleynik <xsl@list.ru=>,
Shakhty Institute (branch) of Platov South Russian State Polytechnic University
(NPI), Rostov-on-Don, Russia

Abstract. The paper presents a unified model for testing tools for object-oriented application
development. Based the available papers were identified shortcomings of existing work and
identified the following optimal criteria, which shall comply the resulting model:

. To deep inheritance hierarchies

. To presents of multiple inheritance hierarchies

. To presents of abstract classes in the hierarchy

. To presents of multiple (n-ary) associations

. To presents of associations with attributes

. To presents of a composition between classes

. To presents of recursive associations

. To presents of associations between classes belonging to the same inheritance hierarchy

. To presents of association classes

10. To presents between the association class and other classes

11 To presents enumerations in model

With a unified graphical language UML class diagram unified model testing. The paper we
verified compliance with the resulting implementation of the selected criteria was presented.
Currentlythe implementation of applications using object-oriented programming languages
and relational databases. To overcome the object-relational mismatch it is necessary to
implement object-related mapping patterns presents. The paper presents three methods used
to represent the class hierarchy highlighted the advantages and disadvantages of each method.
For test the feasibility a unified model chosen development environment SharpArchitect
RAD Studio which is designed object applications in C# and are implementing a relational
database. The paper presents the developed object model in the form a class diagram showing
the interfaces and inheritance relations diagram containing all the tables and columns the
resulting database.

In the conclusion recommendations on the areas for further development work and identified
the need of implement a unified model with other approaches proposed by the authors was
used.

O©CoOo~~NOUIThWNE

Keywords: UML, Object modeling, Design of Information Systems, Databases, Object-
oriented design, Object-Relational Mapping Patterns, Impedance Mismatch

DOI: 10.15514/ISPRAS-2015-27(3)-7

101

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

For citation: Oleynik Pavel P. Unified Model for Testing Object-Oriented Application
Development Tools. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 101-114.
DOI: 10.15514/ISPRAS-2015-27(3)-7.

1. Introduction

At the moment there are many tools provide object approach to application
development. Despite the existence of their own advantages and disadvantages the
main goal is provide the advantages of the developer of object-oriented paradigm.
The paper are describes in detail the unified model test tools development of object-
oriented applications for demonstration, graphical Unified Modeling Language
which used. The practical implementation of the model is demonstrated by the use
of classical methods (patterns) object-relational mapping (ORM) in the tool,
developed the author. The object model is put into a relational database
environment. This approach is most justified from the point of view the author,
because the RDBMS is the most popular type of database management systems
now.

2. Design of the unified testing model

When designing a unified testing model used the same approach as in the
description of the design patterns in [1]. This approach is involves the description of
reusable solutions widespread problems in software development without reference
to particular domain. The main task of this section — is a description of the model
and the structural elements (classes and associations), and not the correctness of the
model and the accuracy of its fitness for a particular domain area.

Standard graphical language modeling various aspects of object systems is the
language UML. This language is namely structural class diagrams will be discussed
in this paper. As a result under the unified model test tools development of object-
oriented applications we mean a class diagram, consisting of classes and attributes
and containing common practice relationship classes.

The idea of the article is not new and there are works of similar subjects. In [2] has
attempted to construct a unified model testing. However, there were no multiple (n-
ary) associations and association with attributes that are an integral part of any
complex information system.

In [3] presented test model to study the design of object-oriented databases. But the
model is relatively simple, which is justified by its purpose. This article used dignity
previously existing works and corrected drawbacks of them.

Before designing a unified model testing were nominated optimality criteria (OC) is
representing the requirement of a certain structural elements in the class diagram,
and which must comply with the finished implementation. Have been put forward
the following requirements for the unified model test tools development of object-
oriented applications:

102

Oneitnnk ITagen IerpoBny. YHndHUIMpOBaHHAS MOJEIh TECTHPOBAHHS HHCTPYMEHTOB Pa3paboTKU 0OBEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

1. Must have deep inheritance hierarchies. In realworld applications, very often
there are deep hierarchy, is the relational of inheritance and combining
transitive least three classes.

. To presents of multiple inheritance hierarchies. This will show a variety of
options and modes available in the development tool.

. To presents of abstract classes in the hierarchy. Abstract classes cannot have
instances in the system and described as a container for attributes and
methods used in the inherited (instantiated) classes.

. To presents of multiple (n-ary) associations. In applications that automate
realworld domains, often an association involving three or more classes.
Such a relationship is called multiple or n-ary associations.

. To presents of associations with attributes. Many domains contain attributes
that do not belong to certain entities (classes), and their values appear only
in the organization of associations between instances of classes. The
designing unified model should have associations with attributes.

. To presents of a composition between classes. Composition - an association
between the classes which are Part and Whole. The peculiarity is that the
class represents a Part can belong to only one instance of the class that
represents the Whole. In this class represents the Whole manages the life
cycle is a class represents a Part. When removing the Whole all Parts also
deleted. This peculiarity of behavior is very important for many application
domains.

. To presents of recursive associations. Recursive call the association, the
ends of which bind the same class. These relationships allow you to
implement a hierarchy of subordination.

. To presents of associations between classes belonging to the same
inheritance hierarchy. In terms of implementation is necessary to provide
the implementation of the association, the edges of which are associated
classes belonging to the same inheritance hierarchy, are represents the base
class and the child together.

. To presents of association classes. Association class - an association which
at the same time a class. Especially the use of that class association
represents a unique association, i.e. combination of instances of classes in
this association is unique.

10. To associationed between the association class and other classes. From a

theoretical point of view, the association class is a class, so it can
participate in other associations. From the point of view of the
implementation of the class association presents a class that contains the
attributes (fields or properties of the programming language) that refer to
other classes. In turn, for the organization of the association with the class
association necessary depending class to create an attribute whose type
supports class association.

103

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

11. To presents enumerations in model. From a theoretical point of view,
enumeration is a set of predefined constants, and the user can not extend
this set by adding new values.

In accordance with the selected criteria was implemented hierarchy shown in Fig. 1.

Post | |L'IEF:.‘|"'!|'|'|I?'|'|I. |Cc\'.*.'rage.'r! — Telephone Address
Naman = |N:|'n|'- |N:|'1||'- 1.4 Numbar Country
) o i - P ') City
|,,]- = Sireaq
A h e ["!-'I--d_l‘l e Bailding
{E‘u&-ll.:‘_!b - Worker Company [g.+ |Tebephonekind Ctfich
o 1t J
) ™~ I | DateCiBirth | ;"-""-' |
ExperencePos]] [T |1 1 :'\ll"::'h"""'
MinExparMonth Rt | Employee|o.* - | CompanyAddrass
11 [ED 7 .
; 0. e S
Salary T . o Employeafddress

ScientificPost i 'Manager —
— a1

IsRegatened

AcademicRank Value

Fig. 1. Unified model for testing object-oriented applications development tools

Consider the appointment of the main classes of diagrams are presented. As
mentioned earlier this class diagram is a fictional and is not intended to describe a
particular domain therefore contains some illogical (fictional) classes and
associations.

For representation of employees and organizations assigned to the base abstract
class Contragent. Inherited Company class is present organizations and the class
Worker is the base for the employee of organization. Inherited Employee class is an
employee and an attribute EID, representing the employee unique number. Class
Manager is the staff who are heads of other workers.

Post an abstract class is a position that can be occupied by staff. Inherited class
ExperiencePost is a position that requires a minimum amount of experience of the
applicant, expressed as number of months (attribute MinExperMonth). The second
class is implemented ScientificRank describes the position of the applicant, which
requires the presence of a scientific degree, whose name is value in the attribute
AcademicRank.

For presentation departments of organizations and entering into an n-ary association
a class of Department was introduced. Salary class is paid wages, accrued to
employees occupying positions represented by a complex association which called
Position.

Class Telephone allows saving the number of phone of company. Phone type (like
Home, Personal, Work) represented by enumeration TelephoneKind. For
presentation address used by the base abstract class Address. Two derived class
CompanyAddress and EmployeeAddress used to represent the address of the
organization and address of the employee, respectively.

104

Oneitnnk ITagen IerpoBny. YHndHUIMpOBaHHAS MOJEIh TECTHPOBAHHS HHCTPYMEHTOB Pa3paboTKU 0OBEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

Check the conformity of the model presented previously selected criteria of
optimality. The need for a deep class hierarchy, represented by at least three
transitive inherited classes, described OC; and implement a class Contragent,
Worker, Employee, Manager. In addition to this, there are two hierarchies: 1) Post,
ExperiencePost (ScientificPost); 2) Address, CompanyAddress (EmployeeAddress).
l.e. the model contains multiple inheritance hierarchies, therefore, the condition
OCo,. The presence of abstract classes in the hierarchy due OC3 and holds classes
Post, Contragent and Address.

OC. requirements are also performed as there are n-ary association Position,
combining classes Post, Department, Worker, Company. Described association has
an attribute Rate, which implemented class association and binary association
between Employee and EmployeeAddress classes also contains an attribute
(IsRegistered) it can be argued that the requirement OCs fulfilled.

Each contractor represented derived from Contragent classes, a list of telephone
numbers represented instances of Telephone, and both classes related with
composition, OCs requirement is satisfied. Unified model allows you to store
information about a group of companies, organize the tree structure using a
recursive association connects Company class with a same. The presence of
recursive association dictated OCy.

In OC;g written requirement for associations between classes belonging to the same
inheritance hierarchy. Figure 1 between classes Employee and Manager provides
this association satisfying OCg. As previously noted, the models have a association
class Position, which corresponds OCs. Described association class is linked with
addition association with Salary class. This is a consequence of the implementation
OCio. The presence of the models listed due to the implementation of OC;1. Of the
present disclosure can be seen that the unified model is fully consistent with all
previously selected criteria of optimality. Therefore we can move on to the
implementation of the unified model.

3. The classical object-relational mapping patterns

To implement of this model development environment software systems based on
the organization of the metamodel object system presented in [4-5] was used. This
development environment is called SharpArchitect RAD Studio and as storage of
information uses a relational DBMS. Because information system is designed in
terms of object-oriented paradigm, and implemented in a relational database
environment, there is a so-called "object-relational impedance mismatch” to
overcome the consequences of which object-relational mapping patterns are used.
The most commonly used patterns for represent the class hierarchy.

In SharpArchitect RAD Studio implemented three classic patterns for implementing
object-oriented inheritance relationships of classes in a relational structure
(relational tables), presented in Fig. 2 [2, 4].

105

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

Consider the basic patterns is presented in more detail. Single Table Inheritance
pattern physically represents an inheritance hierarchy of classes in a single relational
database table whose columns correspond to the attributes of all classes within the
hierarchy and allows you to display the structure of inheritance and to minimize the
number of joins that must be performed to extract information. In this pattern each
instance of the class represented by one row of the table. When you create the object
values are entered only in the columns of the table that match the attributes of the
class, and all the rest are empty (have a null-value).

The pattern has advantages:

 In the structure of the database contains only one table are representing all
classes of whole hierarchy.

» To selection of instances of classes hierarchy do not need to make the joins
of tables.

* Move fields from a base class to a derived (as well from the derivative in
the base) does not require changes to the structure of the tables.

The pattern has disadvantages:

« In the study of the structure of the database tables can cause problems,
because not all the columns in the table are intended to describe each
domain class. This complicates the process of refining the system in the
future.

» If you have a deep inheritance hierarchy with a large number of attributes,
many columns can have empty values (null-values). This leads to
inefficient use of the available space in the database. However, modern
DBMS can compress strings containing a large number of null-values.

« Table may be too large and contain a huge number of columns. The main
way to optimize the query (to reduce the execution time) is created a
covering index. However, the index set and a large number of queries to a
single table can lead to frequent blockages that will have a negative
impact on the performance of software applications.

An alternative pattern is called Class Table Inheritance, representing a hierarchy of
classes for one table for each class (as an abstract and concrete). Class attributes are
mapped directly on the columns of the corresponding table. With this method, the
key is the task of joins the respective rows of several database tables that represent a
single object of domain.

The pattern has the following advantages:
« Each table contains a field, the corresponding attribute of a certain class.

The therefore tables are easy to understand and take up little space on your
hard drive.

» The relationship between the object model and relational database schema
is simple and clear.

106

Oneitnuk IaBen IerpoBuy. YHuduUIMpoBaHHas MOEIb TECTHPOBAHHSI HHCTPYMEHTOB Pa3paboTKH 0OBEKTHO -

opueHTHpoBaHHBIX npunoxennit. Tpyasr UCIT PAH, Tom 27, Beim. 3, 2015 1., €. 101-114

BaseClass
{abstract class)
Adtribatert (Aocmemmeees : TableClass
Ji'; f e eaeaaan . (table)

[' vt .- BaseField
ChildClass1 + |ChildClass2| - - %] ChidiFie2
[concrete clasds) : [eoncrls class) : = = 3 SuBChild21Fiskdd
Attribata? faf------ Attribute -t .

SubChildClass21| .
(concrete class) :
Attributed -
Single Table Inheritance pattern
BaseClass TableBase
(absiract class) (tabda)
Atribute 1 f==msmmsnaanan] Fiald1
1‘ Frresmrssesecaseen TablaChild
. ' [tabia)
1 . L :
ChildClass1 + | ChildClass2 e
tooncreln class) " [comorpbe class |
: TableChild2
Atribute? - - - Attributed faf- - - - itable)
-? .] Freid3
SubChildClass21 TableSubChild2 1
{concrete class) {table)
Atributed - - - | Fialdd
Class Table Inheritance
BazeClass TablaChild1
{abstract class) {tabla)
Attribute 1 L e R R w-p Flald
¢ b 4l FildZ
; ? | : TableChild2
ChildCl 1 : ChildClass2 : (s
ildClass : ildClass .
{concrotn class) o | zoncrese class) * 3 Figld1
H # e | Fialdl
Altribute? - ---- Adiribuded e - - -r
f'['l ++ [TableSubChild21
SubChildClass21] :)
1] I a5 W E
{concrete class) o+ Fisld]
t - e Figldd
Atributesd ol - - - | Fieldd

Fig. 2. Classical object-relational mapping patterns which used to represent the class

Concrete Table Inheritance

inheritance in the form of a relational structure (relational tables)

107

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

However, there are disadvantages:

When you are create an instance of a particular class you want to upload
data from several tables, which requires either their natural joins or a
plurality of database calls followed by join results in memory.

Move the fields in the derived class or base class requires changes in the
structure of several relational tables.

Base class table can become weaknesses in performance, since access to
such tables will be carried out too often, leading to a variety of locks.

High degree of normalization can be an obstacle to the implementation of
unplanned advance queries.

The Concrete Table Inheritance pattern present is an inheritance hierarchy of classes
using one table for each concrete (non-abstract) class of the hierarchy. From a
practical perspective, this pattern assumes that each instance of the class (object),
which is in memory, will be shown on a separate row in the table. In addition, each
table in our case contains columns corresponding to attributes as a particular class,
so all of his ancestors.

The advantages are that:

Each table not contains extra fields, so that it is convenient to use in other
applications that do not use object-relational mapping tools.

When creating objects of a certain class in the application memory and
retrieve data from a relational database sample is made of a single table,
i.e. is not required to perform relational joins.

Access to the table is carried out only in the case of access to a particular
class, thus reducing the number of locks imposed on the table and spread
the load on the system.

There are disadvantages:

108

Primary keys can be inconvenient by handling.

There is no ability to model relationships (association) between abstract
classes.

If the class attributes are moved between base classes and derived classes
needed to change the structure of several tables. These changes are not as
often as in the case of Class Table Inheritance pattern, but they cannot be
ignored (as opposed Single Table Inheritance pattern in which these
changes are absent).

If in base class to change the definition of at least one attribute (for
example, change the data type), it will require to change the structure of
each table representing a derived class because a superclass fields are
duplicated in all tables of its derived classes.

In implementing the method of searching for data in the abstract class is
required to view all the tables represents an instance of the derived
classes. This requires a large number of database calls.

Oueiinuk IMasen IletpoBiy. YHU(DHIMPOBaHHAS MOJEIb TECTHPOBAHUS HHCTPYMEHTOB Pa3paboTKU 00BEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

Selection of an required ORM-pattern depends on the initial logical model, i.e. from
the class hierarchy of the domain. At the same time can be used two or more ORM-
patterns, which is associated with the need to optimize the structure of a relational
database and reduce the number of tables used, which will increase the speed of data
retrieval queries.

After describing SharpArchitect RAD Studio object-relational mapping patterns
which are available to the developer we can start implementing the unified model
for testing tools.

4. Implementation of the unified testing model

In order to simplify the implementation of the three existing class hierarchies in Fig.
1 will separate in available ORM-patterns. The result is shown in Fig. 3.

Paost Departmant Confragen' fe = Telephone Addrass
Mame 12 Mame Mame 1 Pumibar Country
! o L — = 1 City
i Strapl
Ny ey Building
\-.r"-"F"*-‘_"_.'- Wlorker Company (g, - |Telephonakind _I'_.‘_.‘_!‘,:g._l.- B

-) - K
kil DateDiBinn Home
.] | |-| T Persoral

ExperiencePost] 3 Wiork —_—
B | . 1 . .
H .HI'IE 2 pent M | Hate Empiloyes|o, - - 1.I‘:.r|:lmﬂal'l:r’-‘!'ﬂﬂl'e55l

1 .J . EID h | L)
Sa-'ar','] - T o EI'ILI|IJ'|"1.=".!-"'II.'|I.'|".;$::]
SoenlilicPos! 1 Manager
| = =1 Cates — 1 li
Walue lsRegistered |
H Singhe Tablo Inhenlanoe Class Tabla Inharilancs Concrets Tabke inhertance

Fig. 3. The using of the classical ORM-patterns for the implementation of the unified model
for testing object-oriented applications development tools

The Single Table Inheritance for the class hierarchy Post, ExperiencePost
(ScientificPost) was used. As a result, it is assumed that in the RDB will create one
single table (relational table), which will be retained instances of all listed non-
abstract classes. For the class hierarchy with classes Contragent, Worker
(Company), Employee, Manager uses the Class Table Inheritance pattern. I.e. for all
classes regardless of whether he or abstract concrete will create a separate table in
RDB. Address class is abstract and has no association with other classes in model,
so it will not create a separate table in the RDB. And for child classes will be
created two tables (one for each heir). l.e. in hierarchy Address, CompanyAddress
(EmployeeAddress) was used Concrete Table Inheritance. For other classes outside
the hierarchy described, will be created on a separate relation table.

One of the main features of SharpArchitect RAD Studio support multiple
inheritance is implemented by means of interfaces C# language construction, as
described in detail in [4]. Used C# language does not support this syntax as an
association. To represent the binary associations, regardless of the multiplicity was

109

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

used properties (property construction), containing a single value or collection of
values.

Multiple n-ary association are represents a separate class, the attributes of these
associations (as well as the attributes of binary associations) are converted into
property of classes. To simplify information searching and extraction of all the
associations are bidirectional both ends of the relevant classes there are properties
whose type corresponds to the opposite end of the class association. All of the above
arguments are presented graphically in Fig. 4.

In implementing the interfaces used language C#, so it is impossible italics abstract
classes. Bidirectional associations are shown corresponding arrows connecting
classes. In implementing the association used the following approach. From the
"one" was declared property, which is a type of list (C# type IList<>), containing
the elements, which is a type of class, located on the side "to-many”. From the "to-
many" is declared in the class property whose type is a class, located on the side
"one". Association of the "many-to-many" (without attributes) can be represented by
two lists is declared in class antagonisms. In a SharpArchitect RAD Studio
development environment has a number of base classes that implement the most
common functionality. For example, the class IBaseRunTimeDomainClass is the
root of all domain classes. To implement the tree structure will enough inherited
from IBaseRunTimeTreeNodeDomainClass. At the time code generation will
automatically generate additional attributes Nodes and Owner, allow you to save a
reference to the parent and subnodes, respectively. It is implemented in such a way
recursive association. For submission to the transfers and sets used syntax
construction "enum®.

Applying the classical ORM-patterns was obtained relational database schema of
the unified model now. Fig. 5 is depicts the result.

.
]
¢
wewww7 Ff

Fig. 4. Then unified model for testing object-oriented application development tools,
implemented in SharpArchitect RAD Studio in C#

110

Oneitnnk ITagen IerpoBny. YHndHUIMpOBaHHAS MOJEIh TECTHPOBAHHS HHCTPYMEHTOB Pa3paboTKU 0OBEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

Popat 'Iw Contragee F o |
T g
(Imitin . [.
i Weorkar . i-'l-‘wrw
I i | Pl A e Rt
Erewbeee
) " . Urpdrprridiree.
i ol

Fig. 5. Then unified model for testing object-oriented application development tools,
implemented in SharpArchitect RAD Studio in C#

Figure requires is explanation. For all posts submitted by three classes of Post,
ExperiencePost and ScientificPost, created one single table Post, which has all the
attributes of classes. Additionally, there is a column in the table OID, representing
an object identifier (primary key in a relational model). ObjectType column
contains the identifier of the class whose objects are stored in the form of table
rows. This value by the application to create a class of object-oriented programming
language and to load the attribute values is used.

In implementing Class Table Inheritance pattern have been created for the table
Contragent for abstract class and table Worker, Company, Employee, Manager for
the concrete classes. Instances of classes are physically stored in multiple database
tables. A copy of the Manager class is stored in all tables.

In implementing the Concrete Table Inheritance pattern is applicable for classes
Address, CompanyAddress and EmployeeAddress, was created two tables:
CompanyAddress and EmployeeAddress, because CompanyAddress class is
abstract. All abstract class attributes stored in tables physically specific classes.

For an n-ary association Position create a separate table as well as for the binary
association linking the Employee class and EmployeeAddress, for that created the
table EmployeeEmployeeAddress, containing foreign keys.

Note that for the enumeration Telephone-Kind separate table is not created. An
approach representations enumeration values as a bit mask and store it in the form
of an integer value, where appropriate attributes are used. So the table has a column
Telephone TelephoneKind, SQL-type is Integer.

After analyzing of the above it can be argued that shown in Fig. 5 implementation,
created in a development environment SharpArchitect RAD Studio, fully consistent
with the unified model for testing object-oriented application development tools,
presented in Fig. 1.

111

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

5. Conclusion
Further development of the unified model is to test the feasibility of a variety of
application development environments. In this alternative implementation is

planned and using the approach presented by other authors dealing with similar
scientific problems.

References

[1]. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, USA, 1994, 395 pp.

[2]. Oleynik P.P. A unified model for testing object-relational mapping tools // Object
Systems — 2011: Proceedings of the Third International Theoretical and Practical
Conference. Rostov-on-Don, Russia, 10-12 May, 2011. Edited by Pavel P. Oleynik. -
65-69 pp. (In Russian),
http://objectsystems.ru/files/Object_Systems_2011 Proceedings.pdf

[3]. Oleynik P.P. Test model for training in design of object-oriented databases // Object
Systems — 2014: Proceedings of the Eighth International Theoretical and Practical
Conference (Rostov-on-Don, 10-12 May, 2014) / Edited by Pavel P. Oleynik. — Russia,
Rostov-on-Don: Sl (b) SRSPU (NPI), 2014. — pp 86-89. (In Russian),
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.pdf

[4]. Oleynik P.P. The Elements of Development Environment for Information Systems
Based on Metamodel of Object System // Business Informatics. 2013. Ne4(26). — pp. 69-
76. (In Russian),
http://bijournal.hse.ru/data/2014/01/16/1326593606/1B1%204(26)%202013.pdf

[5]. Oleynik P.P., Computer program "The Unified Environment of Rapid Development of
Corporate Information Systems SharpArchitect RAD Studio®, the certificate on the state
registration Ne 2013618212/ 04 september 2013 (In Russian).

YHudmumpoBaHHaa mogenb TeCTUPOBaHUA
MHCTPYMEHTOB pa3paboTKu 00 bEeKTHO-
OPUEHTUPOBAHHbIX NPUITOXKEHUN

Oneiinux Ilasen [emposuu <xsl@list.ru>,
Hlaxmunckuii uncmumym (guauan) FOaxcno-Poccutickozo eocyoapcmeennozo
noaumexuuyecko2o ynueepcumema um. M 1. [lnamosa, Poccusa, Pocmog-na-/ony

AHHoOTanusi. B jmaHHON cTaThe mpencTaBieHa YHU(UIMPOBaHHAS MOJETb TECTUPOBAHMS
HHCTPYMEHTOB Pa3pabOTKH OOBEKTHO-OPUEHTHPOBAHHBIX TNpuiokeHnil. Ha ocHose
HMMEIOIIUXCS JINTEPATyPHBIX HCTOYHUKOB OBUTH BBIJENICHBI HEJJOCTATKH UMEIOIIUXCS padoT
OIIPE/ENICHBI CIEAYIONINe KPUTEPHH ONTHUMAIBHOCTH, KOTOPBHIM JOJDKHA COOTBETCTBOBATH
TIOTy4eHHAsT MOJIETIb:

1. Heo6xoaumMo Hanmuuue riy0OKuX uepapXxuil Hacsie10BaHus

112

http://objectsystems.ru/files/Object_Systems_2011_Proceedings.pdf
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.pdf
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202013.pdf

Oueiinuk IMasen IletpoBiy. YHU(DHIMPOBaHHAS MOJEIb TECTHPOBAHUS HHCTPYMEHTOB Pa3paboTKU 00BEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

. I[IpucyTcTBHE HECKONBKUX HepapXUil HACIICIOBAHUS

. Hanmmane abCTpakTHEIX KIIaCCOB B MEPapXUU

. I[IpucyTcTBHE MHOXECTBEHHBIX N-apHBIX aCCOLMAINI

Hammame acconmanuii ¢ arpubyramu

IIpucyTcTBHE KOMIO3UIMK MEXIY KIaccaMu

Hanuuue pexypcuBHBIX accouanui

Hanuuune acconuanuii Mexxay KilaccaMu, BXOIAIIMME B OJHY HEPAPXHIO HacIeJOBAHHS

. [IpucyrcTBUE KIacca-accouanum

10. Hanmmuue acconumanuii Mexy KjlacCOM-accollanuet 1 IpyruM Kiaccom

11. IlpucyrcTBUE B MOJICIIH NEPEUNCIICHUI

C mnomompio rpaduueckoro yHuduimpoBanHoro s3sika UML Opnra mpexpcraBieHa
JuarpaMMa KJIacCoB YHH(UIMPOBAaHHOW MOJENIHM TecTHpoBaHUS. B pabore mnpoepeHO
COOTBETCTBHUE IOJIyIEHHON pean3aliil BbIICICHHBIM KPHTEPHSIM.

B Hacrosmee BpeMs AN peaNM3aldM [OPWIOKEHHH UCIONB3YIOT OOBEKTHO-
OpUEHTHPOBAHHBIE S3BIKA IPOTPAMMHUPOBAHUS M PpEIUUOHHBIC 0a3pl NaHHBIX. Jlis
MPEOIOICHUS 0OBEKTHO-PEIISIIHOHHOTO HECOOTBETCTBUS HEOOXOAUMO PEan30BaTh METOMBI
(marTepHpl) OTOOpakeHHWs. B cTarbe oOmmMCaHbl TpU METOJA, HCHOIB3YEMBIX JUIA
HpEJICTAaBICHHUS HePapXHUHU KJIACCOB, BBIIEIEHbBI JOCTONHCTBA M HEJOCTATKH KaXKIOT0 METO/Ia.
Jnst mpoBepKH peanu3yeMOCTH YHHU(HIMPOBAHHON MoJenH BEIOpaHa cpela pa3paboTKu
SharpArchitect RAD Studio, B K0TOpo#i CIIPOEKTUPOBAHO OOBEKTHOE TPHUIIOKEHUE HA A3bIKE
C# u peanu3oBaHa CTpyKTypa pensinuonHoit BJ[. B craThe mpesicrarieHa pa3paboTaHHas
00BEeKTHAs MOJENh B BHIE OMAarpaMMBI KJIACCOB, Ha KOTOpPOW IIOKa3aHO HAaclelOBaHHE
nHTEpdENcoB U AHarpaMMa OTHOIICHHH, COAeprKamas Bce TaOIHUIBI M CTOJIOIBI OITYIeHHOM
BJ.

B 3axmovennn JaHbl peKOMEHIANNH 110 HAINIPaBIEHUSAM JalbHEHIIEro pa3BUTHA PaOOTHI, 1
olpesieNieHa He0OXOAUMOCTh Peann30BaTh YHH(HIMPOBAHHYIO MOJENb C IIOMOIIBIO JIPYTHX
MOAXO/IOB, NPEAJI0KESHHBIX aBTOPAMH.

O P R R

KaroueBbie cJIoBAa: UML, O0BeKTHOE MO/JICITUPOBAHHE, [IpoekTupoBanue
HUHGPOPMAIIMOHHBIX CHCTeMBI, ba3bl 1aHHBIX, OGBEKTHO-OPUEHTUPOBAHHOE MTPOSKTHPOBAHHE,
Mertoapl (maTTepHBl, MAONOHEI) OOBEKTHO-PEIANMOHHOTO oToOpaxkeHus, OOBEKTHO-
PENSLMOHHOE HECOOTBETCTBHE

DOI: 10.15514/ISPRAS-2015-27(3)-7

Jns uurupoanusi: Oneitank [Masen [erpoBry. YHNQUIPOBaHHAsS MOIENb TECTHPOBAHHS
MHCTPYMEHTOB Pa3pabOTKu 00BEKTHO-OPUEHTHPOBaHHBIX mpuioxenuil. Tpynsr MCIT PAH,
toMm 27, Beim. 3, 2015 1., ctp. 101-114 (na anrmmiickom si3sike). DOI: 10.15514/ISPRAS-
2015-27(3)-7.

Cnucok nutepatypbl

[1]. Tamma D. u ap. [Ipuémbl 0GBEKTHO-OPHEHTHPOBAHHOTO MPOCKTHPOBaHHUs. [1aTTEPHBI
npoektupoBanus, CII6: ITurep, 2001. — 368 c.. wmn (Cepus «bubmmorexa
HPOTPaAMMHUCTa»)

[2]. Oneitnux TLII. VHuduuupoBaHHas MOJETAb I TECTHPOBAHUS HHCTPYMCHTOB
00BEKTHO-PEIIIMOHHOTO 0TOOpaxeHus / O0bekTHBIE cucTeMsbl - 2011: matepuasr 111
MexayHapoaHoi Hay4HO-TIpakTHueckoi kKoHpepenuuu (Pocto-na-Zlony, 10-12 mas
2011 r.) / Hox obm. pen. ILIL. Omeiinuka. - Pocro-na-lony, 2011. - C. 65-69.,
http://objectsystems.ru/files/Object_Systems_2011 Proceedings.pdf

113

http://objectsystems.ru/files/Object_Systems_2011_Proceedings.pdf

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

(31

[4].

[5].

114

Oneitauk TLIT. TectoBas Monens Uit OOyYeHHs NMPOCKTHPOBAHHIO OOBEKTHO-
OpPUCHTUPOBAHHBIX 0a3 HaHHEBIX // O0bekTHBIC crucTeMbl — 2014: Matepuanst VI
MexryHapoaHOH HayqHO-IIpaKTHIecKoi koHpeperntmu (Pocros-na-/lony, 10-12 mas
2014 r.) / Hox o6m. pex. ILII. Oneiinuxka. — Pocros-na-dony: 1111 (¢) FOPTIIY (HIIN)
uMm. M.U. TInarosa, 2014. - C. 86-89.,
http://objectsystems.ru/files/2014/Object_Systems_2014 Proceedings.pdf

Onmneitauk I1.II. DnemeHTH cpenpl pa3pabOTKU MPOrpaMMHBIX KOMIUIEKCOB Ha OCHOBE
OpraHu3aldy MeTamonenn OoObeKkTHOW cuctembl // busHec-undpopmaruka. 2013.
Ne4(26). — C. 69-76.

Oneitnuk [1I1., mporpamma aus OBM "VYHudummposanHas cpezna ObICTpoi pa3padoTku
KOPIIOpaTUBHBIX ~ MHGpOpMarmoHHBIX cucreM SharpArchitect RAD Studio”,
CBHIETENBCTBO O TocyAapcTBeHHOH peructpanuu Ne 2013618212 ot 04 cents6ps 2013
T.

http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.pdf

H.B. Bounos, I1./1. Ipo6unues, 1.B. Hukudopos, B.IT. Kotaspos, A.B. Komuun. Meroa aBromaTudeckoi
KOHKPETH3aLNH CHMBOJIMYECKUX TeCTOBHIX cueHapues. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., €. 115-124

Method of Symbolic Test Scenarios
Automated Concretization

INikita V. Voinov <voinov@ics2.ecd.spbstu.ru>
!Pavel D. Drobintsev <drob@ics2.ecd.spbstu.ru>
Ygor V. Nikiforov <igor.nikiforovwv@gmail.com>
Ysevolod P. Kotlyarov <vpk@ics2.ecd.spbstu.ru=>
2Alexander V. Kolchin <shurik@iss.org.ua>
!Peter The Great Saint-Petersburg Polytechnic University
Politehnicheskaya str., 29, Saint-Petersburg, Russia
2Glushkov Institute of Cybernetics NAS Ukraine
Academika Glushkova avenue, 40, Kiev, Ukraine

Abstract. When providing correctness checking for the models of software systems which
include data types with wide range of values, a single symbolic behavioral scenario may
cover a set of equivalent scenarios with concrete values. This feature is especially useful for
systems with integer data types. However symbolic scenarios cannot be used as executable
tests, they shall be concretized prior to execution. On the other hand, modern industrial
software projects may contain many thousands of tests with nontrivial dependencies between
their parameters. Manual selection and insertion of concrete values is impossible which
requires full automation of the process. Besides, the actual experience in modern testing
shows that efforts on bugs detection decrease significantly when directed method of selecting
values is used instead of random selection of values. Concretization process shall follow a
test plan prepared by tester. Such plans shall be flexible and generated based on standard
templates or plans modified by user.

Method of symbolic test scenarios automated concretization which resolves mentioned issues
is described in the article. It allows to control coverage of boundary test parameters values
which increases the quality of developed software.

The developed method was successfully integrated into single complex technology of
verification and testing which includes creation of a formal model based on initial
requirements, automated symbolic verification, generation and concretization of symbolic
behavioral scenarios, generation of test sets based on concretized scenarios and analysis of
tests execution verdict. Results of method application within integrated technology are also
shown.

Keywords: concretization; symbolic behavior scenario; software testing

DOI: 10.15514/ISPRAS-2015-27(3)-8

For citation: Voinov N.V., Drobintsev P.D., Nikiforov I.V., Kotlyarov V.P., Kolchin A.V.
Method of Symbolic Test Scenarios Automated Concretization. Trudy ISP RAN/Proc. ISP
RAS, vol. 27, issue 3, 2015, pp. 115-124. DOI: 10.15514/ISPRAS-2015-27(3)-8.

115

N.V. Voinov, P.D. Drobintsev, I.V. Nikiforov, V.P. Kotlyarov, A.V. Kolchin. Method of Symbolic Test Scenarios
Automated Concretization. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 115-124

1. Introduction

In the scope of software lifecycle the cost of software defects increases dramatically
in accordance with development stage [1]. Avoiding defects on the stage of
requirements gathering and detecting them on early stages of project lifecycle
reduces the amount of corrections in the software and overall cost of development.
This makes usage of methods and tools for model-based verification and testing
extremely valuable [2,3]. However in the toolsets which mainly resolve problems of
model-based approach (automation of requirements formalization, creation of
behavioral models, verification of generated model-based scenarios, requirements
coverage analysis [4-7]) arises the combinatorial explosion problem of possible
behavioral scenarios which shall be tested [8-11].

Methods of symbolic verification are very effective to reduce the behavioral space.
It is possible to specify ranges of possible parameters values in symbolic scenario.
Each symbolic scenario represents a set of concrete scenarios with equivalent
behavior (with same sequence of events). This means that to provide required
coverage of complete model behavior it is enough to select several specific
scenarios from each group of behavioral equivalence instead of having to check all
possible parameters values. This allows to significantly reduce the number of
scenarios covering the functionality of application in the scope of selected coverage
criteria. However for code generation of executable tests only scenarios with
concrete values of parameters are needed. Given that modern industrial software
requires many thousands of tests with complex dependencies of parameters values it
is impossible to manually count and insert appropriate concrete values based on
ranges in symbolic scenario. The concretization process shall be completely
automated.

This paper describes the automated concretization process for symbolic test
scenarios in the scope of VRS/TAT toolset [12] providing automated generation of
test scenarios based on requirements specifications formalized with basic protocol
notation [13], which is a representation of Hoare triple [14].

2. Overall Scheme of Concretization

VRS includes symbolic trace generator STG [15] which observes the formal model
behavioral space and creates traces — linear sequences of events in the model. Model
states are also saved in traces. The mail tool for concretization is called Trace
Concretization Tool (Fig. 1). It consists of three modules — Concretizer,
ValueCalculator and Concretization View which interact between each other.

116

H.B. Bounos, I1./1. Ipo6unues, 1.B. Hukudopos, B.IT. Kotaspos, A.B. Komuun. Meroa aBromaTudeckoi
KOHKPETH3aLNH CHMBOJIMYECKUX TeCTOBHIX cueHapues. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., €. 115-124

I.,-.:_ncr:tlz:n:u Table ValueCaloultar
|signals, parameters,

b
types, ranges) T\\. |
] %
—

v

Concretizer

/

Camcrete Valoes CancretizationView

7\

Fig. 1. Scheme of concretization

For each symbolic trace Concretizer generates concretization table with names of
parameters, signals, data types and allowed ranges of values. Then while trace
bypassing it calls for ValueCalculator to get concrete value for the current
parameter. ValueCalculator calculates concrete value based on received commands,
test plan and allowed ranges of values and returns it to Concretizer.

The implemented tools Concretizer, ValueCalculator and ConcretizationView are
integrated into single concretization process which is a component of industrial
software automated testing technology.

3. Steps of Concretization Algorithm

Concretization process is iterative, on each step a single parameter is concretized.
The process terminates after concretization of the last parameter in the trace.

Below some definitions are introduced. Transition in the formal model in VRS
terms is a basic protocol representing parameterized transition from one model’s
state into another. Basic protocol B(x) is represented by the following expression:

Vx(a(x) >< P(x) > (X))

where x is a list of protocol’s parameters; «(x), (x) — a formula of basic logic

language, which are called precondition and postcondition respectively; P(x) — a
process of basic protocol (in current case — a sequence of parameterized signals in
MSC format). Trace parameters are parameters of its signals. Formula of basic
language may contain variables and constants, arrays of elements of simple types,
functional types. Variables which may change their values during system execution
are represented by attributes and attribute expressions.

Trace is a sequence of the following type:
S, —2te) g BO) _, g

n

where S are model’s states, B — basic protocols, x — lists of their parameters.
The following steps of concretization algorithm can be specified:
e restore of initial symbolic trace

117

N.V. Voinov, P.D. Drobintsev, I.V. Nikiforov, V.P. Kotlyarov, A.V. Kolchin. Method of Symbolic Test Scenarios
Automated Concretization. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 115-124

e obtain ranges of allowed values for basic protocol’s parameters

e interactive concretization of trace parameters

e save concretized trace.
All steps except interactive concretization are executed automatically by internal
means of VRS and hidden from outside. The most interesting for the user are
implemented tools of the concretization which provide the control of concretization

process and make the technology flexible enough for testing all modes of software
functionality.

4. ValueCalculator Tool

This tool implements automatic calculation of concrete values for symbolic
parameters within test scenarios. One or several rules can be used for calculation:
left value of the range, middle value or right value. Examples of values calculated
based on ranges and selected rule are shown in the table below:

Calculated

Type Range Rule Value
integer [1;9] L 1
integer [1;9] M 5
integer [1;9] R 9

enumerated | vall,val2,val3,val4 L Vall

enumerated | vall,val2,val3,val4 M Val2

enumerated | vall,val2,val3,val4 R Val4

Possible values for each parameter on each step of behavioral trace are calculated
automatically by the means of VRS. Selection of the rule for value calculation is
provided by corresponding set of options (Fig. 2):

Concretization Gaw arv w
Default-bound
(] Left
L] Middle

] Right

Fig. 2. Options for selecting concretization rule

Based on calculated values of symbolic parameters the STG creates traces with
concrete values which can be executed on the model. When two or three rules are
selected there will be two or three concretized traces generated for each symbolic
scenario.

118

H.B. Bounos, I1./1. Ipo6unues, 1.B. Hukudopos, B.IT. Kotaspos, A.B. Komuun. Meroa aBromaTudeckoi
KOHKPETH3aLNH CHMBOJIMYECKUX TeCTOBHIX cueHapues. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., €. 115-124

An example of tool execution is shown below. Test scenario contains a signal which
turns on a radio station on the car radio. Radio station number is the signal’s
parameter (Fig. 3):

1 1
Responsibility
ChannelSelect; prot_no=1; loc_vars={UNDEFINED); guide pos=2

Req Channel

channel number
Fig. 3. A part of symbolic test scenario

If overall number of radio stations is 9, ValueCalculator will calculate the following
values for the channel_number parameter depending on selected concretization rule:
“1” (for the Left rule), “5” (for the Middle rule) and “9” (Right rule). If all three
options are selected (Fig. 2), there will be three concretized traces generated with
different values of channel_select parameter. A part of concretized trace with Right
rule value selection is shown below (Fig. 4):

| |

Responsibility
ChannelSelect; prot_no=1; lec_vars=(channel_number=9)

Req Channel
9

Fig. 4. A part of concretized trace with right value selected

The user can select default concretization rules and repeat generation of concretized
traces with corresponding values or use ConcretizationView tool to create own test
plan.

5. ConcretizationView Tool

This tool provides the ability to specify any concrete values from the possible range
for one, several or all parameters in test scenario. The tool is implemented as a View
element in Eclipse IDE. It allows to display the contents of concretization table and
specify desired values of symbolic parameters. This is performed by adding “C”
symbol on the row with required parameter in the “Rule” column and desired value
in the “Value” column.

Continue with the example of turning on a radio station of the car radio. If the range
of parameter’s possible values varies between 1 and 9, then for example value 7 is
neither left, nor middle, nor right value of the range. The only possible way to
concretize a trace with this value is to explicitly specify it using ConcretizationView
tool (Fig. 5):

119

N.V. Voinov, P.D. Drobintsev, I.V. Nikiforov, V.P. Kotlyarov, A.V. Kolchin. Method of Symbolic Test Scenarios
Automated Concretization. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 115-124

£ Properties E Console %, TraceManager [ConcretizationTable 52

ID | Parameter name Signal name Type Range Rule Value
0 iRad Radio.curr_voi | range(s)

c 17
2 | channel_number | Res_Channel ; | range({l<=channel_number&channel_number<=3)

Fig. 5. ConcretizationView user interface

As a result the concretized trace with value 7 will be generated (Fig. 6):

BASIC_SCENARIO
ChannelSelect{Rad,Radio); prot_no=1: loc_vars=(channel_number=7}

Reqg Channel
7

Fig. 6. A part of concretized trace with user-defined value

Applying ValueCalculator and ConcretizationView tools together the user can
obtain all tests required to satisfy specific test criteria. For example, a set of tests
covering all possible values of one parameter and only boundary values of another
parameter. The concretization process terminates when the complete set of tests
required for execution is obtained.

6. Results

Created tools were applied for preparing tests in telecom software projects.
Symbolic scenarios of possible systems behaviors contained up to several hundred
of basic protocols. For testing process all symbolic parameters in generated
scenarios shall be concretized which is extremely time consuming without tools of
automation. For example, using described approach to concretization in a small
project with 11 basic protocols allowed to concretize all traces in 2 minutes. For a
project with 151 basic protocols the concretization took about 20 minutes. While
manual concretization of such project takes about 3 working days. Clear that in
projects with several thousand of basic protocols it is impossible to concretize
symbolic scenarios without automation toolset. The table below shows the
comparison between manual and automated approaches to concretization:

Number of Basic Manual Automated
Protocols in the Concretization Concretization
project (staff days) (minutes)
11 0,3 2
151 3 20
464 5 25
759 8 28

120

H.B. Bounos, I1./1. Ipo6unues, 1.B. Hukudopos, B.IT. Kotaspos, A.B. Komuun. Meroa aBromaTudeckoi
KOHKPETH3aLNH CHMBOJIMYECKUX TeCTOBHIX cueHapues. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., €. 115-124

7. Conclusion

Integration of verification and testing allows to achieve desired level of software
quality due to joining results of model static analysis after symbolic verification
with number of experimental results after testing which is especially important for
testing systems with wide ranges of possible values.

It is also important that symbolic scenarios can not be used for execution on the
model. They shall be concretized prior to generating test code for target platform.
Implemented tools which are integrated into single chain of concretization in the
scope of test automation technology [16], successfully resolve a very time-
consuming problem of symbolic scenarios concretization. Also the technology
allows to control coverage of boundary test parameters values which increases the
quality of developed software.

References

[1]. Boehm B., Software Engineering Economics, Prentice Hall,Inc.Englewood Cliffs,New
Jersey, N.Y. 1981. — 767 p.

[2]. Utting, M. and Legeard, B., Practical Model_Based Testing: A Tools Approach,
Morgan_Kaufmann, 2010.

[3]. Burdonov, I., Kosachev, A., Ponomarenko, V., and Shnitman, V., Review of
Approaches to Verification of Distributed Systems, M.: ISP RAS, 2006.

[4]. TestOptimal // www.testoptimal.com

[5]. Qtronic // www.conformig.com

[6]. Test Designer // www.smartesting.com

[7]. Spec Explorer: Microsoft Research // http://research.microsoft.com/specexplorer

[8]. Primeneniye metoda evristik dlya sozdaniya optimalnogo nabora testovykh stsenariyev /
N. V. Voinov, V. P. Kotlyarov // Nauchno-tekhnicheskiye vedomosti Sankt-
Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika.
Telekommunikatsii. Upravleniye. — 2010. — T.4 — Ne 103. — S. 169-174.

[9]. Grindal M. Handling Combinatorial Explosion in Software Testing. Department of
Computer and Information Science, Linkdpings universitet, 2007.

[10]. C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput.Surv., vol. 43,
no. 2, pp. 11:1-11:29, Feb. 2011.

[11]. J. McGregor, “Testing a software product line,” in Testing Techniques in Software
Engineering. Springer, 2010, vol. 6153, pp. 104-140.

[12]. Baranov S.N., Drobintsev P.D., Kotlyarov V.P., Letichevsky A.A. Implementation of an
integrated verification and testing technology in telecommunication project. Proceedings
/I IEEE Russia Northwest Section. 110 Anniversary of Radio Invention conference.
S.Petersburg, 2005. 11 p.

[13]. Letichevsky J., Kapitonova A., Letichevsky Jr., Volkov V., Baranov S., Kotlyarov V.,
Weigert T. Basic Protocols, Message Sequence Charts, and the Verification of
Requirements Specifications // Computer Networks. 2005. 47. P. 662-675.

[14]. Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, 1985.

[15]. Letichevsky Jr., A. and Kolchin, A., Test scenarios generation based on formal model,
Programming Problems, 2010, nos. 2-3, pp. 209-215.

121

N.V. Voinov, P.D. Drobintsev, I.V. Nikiforov, V.P. Kotlyarov, A.V. Kolchin. Method of Symbolic Test Scenarios
Automated Concretization. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 115-124

[16]. Drobintsev P. D., Kotlyarov V. P., Nikiforov I. V., Letichevsky A. A., Incremental
approach to the technology of test design for industrial projects, Modeling and Analysis
of Information Systems, 2014, VVolume 21, Number 6, 144-154.

MeTon aBTOMaTM4€CKOM KOHKpPEeTU3aLuuum
CUMBOJIMYECKMNX TECTOBbIX CLleHapueB

'Huxuma Bounoe (voinov@ics2.ecd.spbstu.ru),
asen Jpobunyes (drob@ics2.ecd.spbstu.ru),
Uz0py Huxugopos (igor.nikiforovw@gmail.com),
'Bcesonod Komaapos (vpk@ics2.ecd.spbstu.ru)
2Anexcanop Koruun (shurik@iss.org.ua)
YCanxm-Ilemep6ypackuii Ilonumexnuueckuii Yuueepcumem Ilempa Benuxozo,
195251, Poccus, e.Canxkm-Ilemepoype, yn.Ilonumexnuueckas, 29
2Uncmumym xubepuemuxu um.B.M.Tnywxoea HAH Yrpaunol,
03680, Ykpauna, 2. Kues, np.Axademuxa I niywxosa, 40

Annortamus. [Ipu mpoBepke KOPPEKTHOCTH MOJENECH MPOTPaMMHBIX CHCTEM C THITAMH
JaHHBIX, BKIIOYAIOIIUMU OOJIBIION AUANa30H 3HAUEHHH, OJUH CHMBOJIBHBIN MOBEICHUYCCKUM
CIICHApUII MOJKET IMOKPHIBATh MHOXKECTBO CIICHAPHUEB C KOHKPETHBHIMH 3HAUYCHHSMH. JTO
CBOUCTBO 0COOCHHO 3((EKTHBHO HCHONB3YETCS OISl CHUCTEM, HCIIONB3YIOMIUX YHCIIOBBIC
TUTBI JaHHBIX. OTHAKO CUMBOJIbHBIC CLICHAPHHU B HICXOJAHOM BHU/I€ HEIIPUTOAHBI ISl CO3TaHUs
MO HUM HCIIOJIHUMBIX TECTOB, JIJIsI UCTIONHEHHUS TECThI TOJDKHBI OBITh KOHKPETH3HpOoBaHbI. C
JPYroii CTOPOHBI, B COBPEMCHHBIX MPOMBIILICHHBIX MPOEKTaX KOJMYECTBO TECTOB
HCUUCISICTCS] THICSYaMM, a 3aBHCHMOCTh MEXIy 3HAYCHUSAMH IapaMeTPOB HETPUBHAIbHA.
OCyIeCTBISATh BPYYHYIO BBIOOp M TIOJCTAHOBKY B3aMMOCOTJIACOBAHHBIX KOHKPETHBIX
3HAYCHUH MPaKTHUYECKH HEBO3MOXKHO, IMO3TOMY IPOIecC KOHKPETH3AIMU JOJDKEH OBITh
MOTHOCTBIO ~ aBTOMaTHYeCKHMM. Kpome Toro, peampbHas MpaKkTHKa TECTUPOBAHUS
CBHUJIETETILCTBYET 00 YMEHBIICHHH TPYIOEMKOCTH MOWCKAa Ne(EKTOB IMpH HaNpaBICHHOM
BBIOOpE 3HAYCHUH 0 CPAaBHEHHUIO CO cirydaitHoM BeIOOpoM. [Tpu moacraHOBKaX HEOOXOIMMO
CJIC[IOBAaTh TUIAaHY TECTHPOBAHUS, MOATOTOBICHHOMY 3apaHee TeCTHPOBIIUKOM. [TomoGHbIe
TUIaHBI JIOJKHBI OBITh THOKMMH, OCHOBHAs HMX YacTh JOJDKHA TCHEPUPOBATHCS HAa OCHOBE
CTaHIAPTHBIX II1a0JIOHOB WJIM TEPEUCIIONb30BaTh OTPEIAKTHPOBAHHBIC MOJIB30BATEICM
TUTaHBI.

B pabote ommcaH MOJHOCTHIO aBTOMATH3MPOBAHHBIA METOJ KOHKPETHU3AIlMHA CHMBOJIEHBIX
CIICHAPUEB, PEIIAIOMINN YIOMSHYTBIE MpoOiaeMbl. MeTOoa TMO3BOJSIET KOHTPOJIHPOBATH
TTOKPHITHE TPAHWYHBIX 3HAUCHHUH MapaMeTPOB TECTa, YTO B Pe3yibTaTe NAeT BO3MOKHOCTH
MTOBBICHTH KaY€CTBO CO3/IaBAEMOT'0 TECTOBOTO Habopa.

Pa3pa60TaHH1>1ﬁ METOL 6bIJ'I ycnemHo HUHTCTPUPOBAH B em«my}o TCXHOHOFI/IL{GCKY}O uenom(y
BepH(UKALMK U TECTUPOBAHMS, BKIIOYAIONIYIO CO3aHue (OpMaIbHON MOJAEIU CHCTEMBI IO
HCXOJHBIM Tpe6OBaHI/I$[M, aBTOMaTI/I‘leCKy}O Cl/IMBOJ'IbHy}O Bepn(bnxaumo, reLepaiguro 1
KOHKPETU3AUIO0 CUMBOJIBHBIX MMOBEACHYCCKHUX CLHCHAPUEB, TCHEPALIUIO TECTOBBIX Ha60p03 o
KOHKPETH3HPOBAaHHBIM CIICHAPHUSAM, a TaKKe CPEICTBA aHAM3a PE3YJIbTATOB HCIOJHEHHS

122

mailto:shurik@iss.org.ua

H.B. Bounos, I1./1. Ipo6unues, 1.B. Hukudopos, B.IT. Kotaspos, A.B. Komuun. Meroa aBromaTudeckoi
KOHKPETH3aLNH CHMBOJIMYECKUX TeCTOBHIX cueHapues. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., €. 115-124

TecToB. Takxke MIPOACMOHCTPUPOBAHBI PE3YJIbTAThl IIPUMCHCHUST TEXHOJIOTHYECKOU IEMOYKHU
C UHTETPUPOBAHHBIM METOAOM aBTOMAaTHUYECKOM KOHKPCETU3alluU.

Keywords: concretization; symbolic behavior scenario; software testing
DOI: 10.15514/ISPRAS-2015-27(3)-8

Jas nurupoBanusi: Bounos H.B., [Ipo6unues I1.J[., Hukudopos U.B., Kormsapos B.IL,,
Komuma A.B. Meron aBTOMAaTHYECKOH KOHKPETH3alMH CHMBOJHYECKHX TECTOBBIX
cuenapueB. Tpynet UCIT PAH, tom 27, Bem. 3, 2015 ., ctp. 115-124 (Ha aHrmmMiickom
s3pike). DOI: 10.15514/ISPRAS-2015-27(3)-8.

Cnucok nuteparypbl

[1]. Boehm B., Software Engineering Economics, Prentice Hall,Inc.Englewood Cliffs,New
Jersey, N.Y. 1981. — 767 p.

[2]. Utting, M. and Legeard, B., Practical Model_Based Testing: A Tools Approach,
Morgan_Kaufmann, 2010.

[3]. 1.B.Bypmonos, A.C.Kocauyes, B.H.ITonomapenko, B.Illuutman. “OG30p MOIXOIOB K
Bepudukanuu pacnpeaencHusix cucrem” // UCIT PAH, npenpust 16, M., 2006.

[4]. TestOptimal // www.testoptimal.com

[5]. Qtronic // www.conformig.com

[6]. Test Designer // www.smartesting.com

[7]. Spec Explorer: Microsoft Research // http://research.microsoft.com/specexplorer

[8]. HB.Bounos, B.Il.Komisipos. “TIlpuMeHeHHe MeTola 3BPUCTHK Uil CO3IaHHS
OIITUMAJIBHOI'O Ha60pa TCCTOBBIX cueHapHeB” // HaquO-TeXHI/IlIeCKPIe BCAOMOCTHU
CIIoI'TIY. Nndopmaruka. TenekommyHukaruu. Ynpasienue. — 2010. — T.4 — Ne 103. —
c. 169-174.

[9]. Grindal M. Handling Combinatorial Explosion in Software Testing. Department of
Computer and Information Science, Linkdpings universitet, 2007.

[10]. C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput.Surv., vol. 43,
no. 2, pp. 11:1-11:29, Feb. 2011.

[11]. J. McGregor, “Testing a software product line,” in Testing Techniques in Software
Engineering. Springer, 2010, vol. 6153, pp. 104-140.

[12]. Baranov S.N., Drobintsev P.D., Kotlyarov V.P., Letichevsky A.A. Implementation of an
integrated verification and testing technology in telecommunication project. Proceedings
/I |EEE Russia Northwest Section. 110 Anniversary of Radio Invention conference.
S.Petersburg, 2005. 11 p.

[13]. Letichevsky J., Kapitonova A., Letichevsky Jr., Volkov V., Baranov S., Kotlyarov V.,
Weigert T. Basic Protocols, Message Sequence Charts, and the Verification of
Requirements Specifications // Computer Networks. 2005. 47. P. 662-675.

[14]. Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, 1985.

[15]. Letichevsky Jr., A. and Kolchin, A., Test scenarios generation based on formal model,
Programming Problems, 2010, nos. 2-3, pp. 209-215.

[16]. Drobintsev P. D., Kotlyarov V. P., Nikiforov I. V., Letichevsky A. A., Incremental
approach to the technology of test design for industrial projects, Modeling and Analysis
of Information Systems, 2014, VVolume 21, Number 6, 144-154.

123

N.V. Voinov, P.D. Drobintsev, I.V. Nikiforov, V.P. Kotlyarov, A.V. Kolchin. Method of Symbolic Test Scenarios
Automated Concretization. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 115-124

124

A.C. Kamkun, A.C. Ipouenko, A.Jl. TatapHukoB. MeTO IeHepalii TECTOBBIX MPOTPaMM Ha OCHOBE (hOPMabHBIX
crienuduKanuii MexaHu3MoB KkammupoBanus... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., c. 125-138

An Approach to Test Program Generation
Based on Formal Specifications of Caching
and Address Translation Mechanisms

A. Kamkin <kamkin@ispras.ru=>,
A. Protsenko <protsenko@ispras.ru=>,
A. Tatarnikov <andrewt@ispras.ru>,
Institute for System Programming of the Russian Academy of Sciences,
25 Alexander Solzhenitsyn Str., Moscow, 109004, Russian Federation

Abstract. A memory subsystem is one of the key components of a microprocessors. It
consists of a number of storage devices (instruction buffers, address translation buffers,
multilevel cache memory, main memory, and others) organized into a complex hierarchical
structure. Huge state space of a memory subsystem makes its functional verification
extremely labor consuming. Nowadays, the main approach to functional verification of
microprocessors at a system level is simulation with the use of automatically generated test
programs. In this paper, a method for generating test programs for functional verification of
microprocessors’ memory management units is proposed. The approach is based on formal
specification of memory access instructions, namely load and store instructions, and formal
specification of memory devices, such as cache units and address translation buffers. The use
of formal specifications allows automating development of test program generators and
makes functional verification systematic due to clear definition of testing goals. In the
suggested approach, test programs are constructed by using combinatorial techniques, which
means that stimuli (sequences of loads and stores) are created by enumerating all feasible
combinations of instructions, situations (instruction execution paths) and dependencies (sets
of conflicts between instructions). It is of importance that test situations and dependencies are
automatically extracted from the formal specifications. The approach was used in several
industrial projects on verification of MIPS microprocessors and allowed to discover critical
bugs in the memory management mechanisms.

Keywords: microprocessors; memory management; caching; address translation; functional
verification; formal specifications; test program generation; instruction stream generation.

DOI: 10.15514/ISPRAS-2015-27(3)-9

For citation: Kamkin A., Protsenko A., Tatarnikov A. An Approach to Test Program
Generation Based on Formal Specifications of Caching and Address Translation
Mechanisms. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138. DOI:
10.15514/ISPRAS-2015-27(3)-9.

125

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address
Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

1. Introduction

A computer memory is known to be a complex hierarchy of data storage devices
varying in volume, latency and price [1]. In addition to registers and main memory,
microprocessors include a multi-level cache memory and address translation
buffers. The set of devices responsible for handling memory accesses is referred to
as a memory subsystem or a memory management unit (MMU). Being one of the
key microprocessor components, the memory subsystem is strongly required to be
correct and reliable. Due to the complicated structure of the memory, the number of
situations that can occur in processing load and store instructions is huge; this
makes it improbable to verify the subsystem “manually”.

In the current practice, tests — programs in the assembly language of the
microprocessor under test — are created in an automated way with the intensive use
of random generation. A tool that constructs test programs is called a test program
generator (TPG) or an instruction stream generator (ISG) [2]. In a typical use case,
a TPG accepts probability distributions for instructions types and operand values as
well as other parameters and produces a set of programs in compliance with the
settings. Though the randomization-based approach is able to find “high-quality”
bugs, it is not systematic and does not guarantee the verification completeness.

In the present work, an approach to generate test program for memory subsystems
of single-core microprocessors is discussed (the multi-core issues, such as memory
consistency and cache coherence [3], are out of the scope of the paper). The
proposed approach complements the random-based testing and enables thoroughly
checking situations in the MMU behavior. It uses specifications of memory access
instructions, i.e. load and store instructions, and specifications of memory devices
including, first of all, caches and address translation buffers. The formal
specifications serve as a source of test coverage information and allow
automatically extracting instruction-level situations and dependencies. Test
programs are built by composing possible situations and dependencies for
instruction sequences of bounded length.

The rest of the paper is organized as follows. Section Il is a primer on
microprocessor memory organization. Section Il provides a brief overview of the
related work. Section IV describes in detail the mentioned approach to test program
generation. Section V considers industrial applications of the described approach.
Finally, Section VI concludes the paper and outlines directions for future research
and development.

2. Memory Subsystem

In a nutshell, a memory subsystem of a microprocessor is intended for handling
memory accesses, namely instruction fetch requests, data loads and data stores. Its
functions include translation of virtual addresses into physical ones, memory
protection, code and data caching, etc. [1]. Let us consider the essential concepts of
the memory management.

126

A.C. Kamkun, A.C. Ipouenko, A.Jl. TatapHukoB. MeTO IeHepalii TECTOBBIX MPOTPaMM Ha OCHOBE (hOPMabHBIX
crienuduKanuii MexaHu3MoB KkammupoBanus... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., c. 125-138

From a programmer’s perspective, a computer memory is a linear array of bytes.
However, the underlying mechanisms and techniques — usually referred to as a
virtual memory — are rather sophisticated. A virtual address space, i.e. a range of
the byte array indices available for programs to use, is commonly divided into
disjoint segments. Given a segment and a virtual address, the MMU acts as follows.
If the microprocessor mode satisfies the segment’s privilege level, the virtual
address is translated into the physical address, and an access to the physical memory
is performed; otherwise, an address error exception is thrown.

Segments are divided into mapped and unmapped; the latter, in turn, are subdivided
into cached and uncached. Addresses of mapped segments are translated with the
help of translation lookaside buffers (TLB), which store the mapping between
virtual page numbers (VPN) and physical frame numbers (PFN). If there is a match,
the VPN bits of the virtual address are replaced with the PFN bits, and the process
continues. Otherwise, a TLB refill exception is thrown, which triggers the operating
system to look up the page table and update the TLB. Unmapped addresses are
translated directly with no use of the buffers. Accessing cached segments, as
opposed to uncached ones, activates the caching mechanisms.

A cache is an intermediate storage responsible for speeding up access to frequently
used data. An average microprocessor has two- or three-level cache memory.
Typically, an L; cache stores a subset of Li+1 contents; the highest-level cache is the
largest one; it interacts immediately with the main memory. A cache works as
follows. As soon as data are requested, the cache controller checks whether they are
in the buffer. If they are (it is said to be a cache hit), the data are taken from there
and returned to the requester. Otherwise (it is said to be a cache miss), the controller
chooses a victim among the data blocks stored in the buffer and replaces it with the
data loaded from the higher-level cache or the main memory.

In the general case, a cache comprises a number of sets; each set consists of a
number of lines; each line includes data and a tag. Let S = 2° be the number of sets;
W be the number of lines in a set; B = 2° be the size of a data block. Depending on
the values of S and W, the following types of cache memory are recognized: (1) a
direct-mapped cache (W =1); (2) a fully associative cache (S=1); (3) a set-
associative cache (W >1 and S>1). The bit representation of an address is
interpreted as follows: the bits [0, ..., b—1] refer to a byte inside a data block;
[b, ..., b+s-1] identify a set; [b+s, ..., m-1], where m is the address length, define a
tag. To determine whether the cache contains data for a given address, first, the set
is identified; then, the tags of the set’s lines are concurrently compared with the tag
extracted from the address. If there is a match, then the requested data are available
in the cache.

3. Related Work

There are several TPG tools based on formal specifications of memory subsystems.

DeepTrans (IBM Research) [4] is one of them. The approach is targeted at testing

address translation mechanisms and uses a special-purpose modeling language. A
127

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address
Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

process of address translation is depicted as a directed acyclic graph whose vertices
correspond to the process stages and whose edges relate to the transitions between
the stages. A path from the source of the graph to the sink defines a particular
situation in the address translation. Such situations can be referred from high-level
descriptions of test programs, so-called templates. The latter are processed by the
Genesys-Pro generator [2], which formulates constraints on instruction operands,
solves them and transforms the results into the instruction sequences. The major
advantage of the approach is the use of the highly developed languages for
modeling address translation and describing test templates. The disadvantage is that
the tool is not able to automatically extract conflicts and dependencies between
instructions. Verification engineers have to manually specify such kind of
information in test templates.

In [5], the Java programming language coupled with a specialized library is used to
specify MMU. As in DeepTrans, the situations correspond to the paths in the graph
describing the subsystem under test; here is an example: {Mapped (data are
requested via a mapped segment), TLBHit (there is a TLB hit), TLBValid (the
matched TLB entry is valid), —L1Hit (a miss in the first-level cache occurs)}. In
addition, the approach provides means for specifying instruction dependencies; an
example is as follows: {—TLBEqual (instructions use different TLB entries),
LlIndexEqual (data are mapped to the same set of the first-level cache),
—L1TagEqual (data belong to different cache lines)}. Test templates are constructed
automatically by combining situations and dependencies for short sequences of
instructions. Building templates and creating programs on their basis is done by the
MicroTESK generator (ISP RAS) [6]. The strength of the approach is systematic
test enumeration that takes into consideration instruction execution paths as well as
dependencies between instructions. The principal weakness is underdeveloped
specification facilities.

4. Approach Description

The main goal of the presented research is to combine the advantages of the
methods [4] and [5] as well as to avoid their drawbacks. It can be achieved by using
formal specifications. Accordingly, microprocessor instructions, an MMU and test
templates are described in formal domain-specific languages. Specifications are
analyzed to extract testing knowledge, that is, situations and dependencies. The
information having been extracted is used to automatically generate test programs
from templates as well as to automatically construct templates in a systematic way.
The suggested method is supported by the MicroTESK TPG [7].

4.1 Formal Specifications

Formal specification of a microprocessor under test touches on the instruction set
and the memory subsystem. Instructions are described in the nML language [8].
Descriptions declare the registers and define the assembly syntax, binary image and

128

A.C. Kamkun, A.C. Ipouenko, A.Jl. TatapHukoB. MeTO IeHepalii TECTOBBIX MPOTPaMM Ha OCHOBE (hOPMabHBIX
crienuduKanuii MexaHu3MoB KkammupoBanus... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., c. 125-138

the semantics of the instructions. Semantics is specified in the usual imperative form
by means of the bit-vector and floating point operations. Here is an nML
specification of the MIPS [9] integer addition instruction (ADD):

op ADD (rd: REG, rs: REG, rt: REG)
syntax = format ("add %s, %s, %s",
rd.syntax, rs.syntax, rt.syntax)
image = format ("000000%s%s%s00000100000",
rs.image, rt.image, rd.image)

action = {
temp = rs<31>::rs<31..0> +
rt<31>::rt<31..0>;
if temp<32> != temp<31> then
exception ("IntegerOverflow") ;
else
rd = coerce (DWORD, temp<31l..0>);
endif;

}

Being rather simple, nML does not have adequate facilities to describe memory
management. Though the language is powerful enough to specify caching and
address translation mechanisms, pure nML specifications of MMU are awkward and
hardly analyzable; in particular, it is difficult to extract testing knowledge to
automate test program generation. In that situation, a domain-specific language has
been introduced. A memory access instruction is described in nML in an intuitive
manner by reading or writing data from or to the byte array representing the
physical memory. Every access to the array triggers the MMU logic specified in a
separate file. An nML specification of the MIPS load byte instruction (LB) may
look as follows:
op LB (rt: REG, offset: SHORT, base: REG)

syntax = format ("lb %s, %d(%s)",
rt.syntax, offset, base.syntax)

image = format ("100000%s%s%s",
base.image, rt.image, offset)

action = {
rt = MEM|[base + offset];
}

where MEM is an array declared as mem MEM[2**36, BYTE]; 2**36 (that is 2%)
is the memory size in bytes. Note that notwithstanding the array is specified as the
physical memory, it is accessed through the virtual address.

Memory management is described in a special language. MMU specifications
include address types, memory segments, buffers, such as TLB and caches, and
detailed algorithms for handling load and store instructions. Addresses and
segments are described straightforwardly; buffers are specified with the following
parameters: the associativity (ways), the number of sets (sets), the entry (line)
format (entry), the index calculation function (index), the tag calculation function
(tag) and the data eviction policy (policy). Here is a description of the virtual and

129

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address
Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

physical addresses (VA and PA correspondingly), user segment (XUSEG), address
translation buffer (TLB) and the first-level cache memory (L1) of a MIPS

microprocessor:

address VA (64)
address PA (36)
segment XUSEG (va: VA)
range = (0x0, OxOOffFFFFffff)
buffer TILB (va: VA)
ways = 64
sets =1
entry = (VPN2: 27, VO: 1, PENO:
index = 0
tag = va<39..13>
policy = NONE
buffer L1 (pa: PA)
ways =4
sets = 128
entry = (TAG: 24, DATA: 256)
index = pa<l1l..5>
tag = pa<35..12>
policy = LRU

24, ...)

Processing of loads and stores is specified by requesting the buffers and handling
their responses. The syntax is similar to nML though allows using such conditions
as XUSEG(va).hit (the address va belongs to the segment XUSEG) and L1(pa).hit
(the buffer L1 contains the data for the address pa). Here comes an example:

mmu MEM (va: VA)

read = {
if XUSEG(va).hit then
if TLB(va).hit then

tlbEntry = TLB(va);
else

exception ("TLBRefill") ;
endif;
if va<l2> == 0 then

v = tlbEntry.Vo0;

pfn = tlbEntry.PFNO;
endif;
if v == 1 then
pa = pfn::va<ll..0>;
else
exception ("TLBInvalid");
endif;
endif;
if L1 (pa).hit then
11Entry = L1l (pa);
data = 1llEntry.DATA;

130

A.C. Kamkun, A.C. Ipouenko, A.Jl. TatapHukoB. MeTO IeHepalii TECTOBBIX MPOTPaMM Ha OCHOBE (hOPMabHBIX
crienuduKanuii MexaHu3MoB KkammupoBanus... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., c. 125-138

endif;

}

write = { ... }

4.2 Coverage Extractor

Formal specifications are parsed and the control flow graph (CFG) is build. A
coverage extractor traverses the CFG and constructs the set of all possible
execution paths (the graph is assumed to be acyclic). A single path, so-called a
situation, describes processing of an individual request and finishes either with a
memory access or with an exception (incorrect address, TLB refill, etc.). Each
transition of the path is labeled with a guard, i.e. a condition that enables the
transition, and an action to be performed. Here is an example of a load situation (for
the sake of simplicity, the transition actions are omitted): {XUSEG(va).hit,
TLB(va).hit, va<12> =0, v = 1, L1(pa).hit}.
Given a pair of execution paths, the coverage extractor may be demanded to
construct the set of all possible dependencies. A dependency is a map from the set
of buffers common for the two given execution paths to the set of conflicts.
Speaking formally, a dependency is a partial map d: B — C, where B is the set of
buffers and C is the set of conflicts. The following types of buffer usage conflicts
are predefined in the tool:
e AddrEqual — using the same data;
e AddrNotEqual — using different data:
o IndexEqual — using data of the same set:

= TagEqual — using data of the same line;

= TagReplaced — using data of the replaced line;

= TagNotReplaced — otherwise;

o IndexNotEqual — using data of different sets.

To illustrate the concept, let us consider two simple situations: the first one is {...,
TLB(vai).hit, ..., L1(pai).hit}; the second is {..., TLB(vay).hit, ..., L1(paz).miss,
...}. The situations share two buffers, namely TLB and L1. A possible dependency
is {TLB.TagEqual, L1.IndexNotEqual}, that is, two instructions access the same
TLB entry (vai<39..13>=vay<39..13>), but wuse different L1 sets
(pai<1l..5> = pa,<11..5>).

4.3 Template Iterator

A template is a sequence of situations linked together with a number of
dependencies. A template iterator systematically enumerates templates to cover a
representative set of cases of the memory subsystem behavior. Let S be the set of
situations; D be the set of dependencies; n be the length of templates. Formally, a
test template of the length n is a pair (o, A), where o =(s1, ..., Sn) € S" is the
template skeleton and A = {d;}, where i =1, ...,n-1 and j = i+1, ..., n, is the template
ligaments. An example of a two-situation template is given below:

131

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address
Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

s1: {XUSEG(vay).hit, TLB(vas).hit, va;<12> =1, vy = 1, L1(pas).hit};

s2: {XUSEG(vay).hit, TLB(vay).hit, vay<12> =0, v, = 0};

di2: {TLB.TagEqual (va;<39..13> = va,<39..13>)}.

The main, but not the only, approach supported by the tool is combinatorial
generation. Test templates are constructed by enumerating all possible skeletons of
the given length and creating all possible ligaments for each of them. The template
iterator checks whether the produced templates are consistent. For each template, it
formulates the set of constraints and invokes a solver [10]; if the constraints are
unsatisfiable, the template is discarded. Here is an example of an inconsistency:
si:{..,vai<12>=0,v1 =1, ..};

s2: {..., vax<12> =0, v» = 0};

d12: {TLB.TagEqual (va1<39..13> = va,<39..13>)}.

TLB.TagEqual implies that both instructions access the same TLB entry, whereas
vai<l12> =0 and vay<12> =0 result in v = v, = tIbEntry.VO, which contradicts to
v1:1ande:0.

To avoid the combinatorial explosion, special heuristics are in use. Among them,
factorization of situations and limitation of the depth of dependencies are essential.
Description of the heuristics are out of the scope of the paper.

4.4 Test Data Generator

Templates are symbolic representation of test programs. To produce a test program
from a template, the latter should be instantiated. A test data generator plays the
key role in this activity. Test data, in a sense, are a solution to the constraints
stipulated in the template. They include virtual addresses to be used by the
instructions as well as some auxiliary information intended for setting up the state of
the microprocessor under test such as indices of TLB entries, VPN-to-PFN
mappings, sequences of addresses to be accessed to load or evict data to or from the
buffers, etc.

The test data generator acts in compliance with one of the following strategies: (1)
heavyweight template elaboration with an attempt to find an exact solution to the
problem or (2) lightweight processing targeted at constructing an approximate
solution. In the main, our approach follows the second strategy. Detailed analysis of
templates makes sense only for accurate MMU specifications, while instruction-
level models are rather abstract. Another argument is that the lightweight approach
gives a significant benefit in terms of performance, while the quality of testing is
comparable.

Given a template {(sy, ..., Sn), {dij}), consider how test data are generated. First, for
each situation s; of the template, a united dependency depj: B x C — 2{t 11} jg
built. For each buffer b and conflict ¢, depj(b, c) contains indices i <j such that
b € dom(d;j) and dij(b) = c, that is, the situations s; and s; access the buffer b and
there is the access conflict ¢. Then, the template’s situations are processed one after

132

A.C. Kamkun, A.C. Ipouenko, A.Jl. TatapHukoB. MeTO IeHepalii TECTOBBIX MPOTPaMM Ha OCHOBE (hOPMabHBIX
crienuduKanuii MexaHu3MoB KkammupoBanus... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., c. 125-138
another. Given a situation s;, the buffers affected in s; are sequentially inspected. For
each buffer b, the actions listed below are performed:
o if depj(b, AddrEqual) = &, then
data(s;).addr < data(s;).addr,
where data(s;) denotes the test data associated with s;; addr is the virtual or
physical address depending on the b type; i is any index from
depj(b, AddrEqual);
o otherwise, if depj(b, IndexEqual) = &, then
data(s;).addr<I> « data(s;).addr<I>,
where | is the bit range given in the index section of the b specification;

o if depj(b, TagEqual) # &, then
data(s;).addr<T> « data(s;).addr<T>,
where T is the bit range given in the tag section of the b specification;
o if depj(b, TagReplaced) = &, then
data(sj).addr<T> « tagp(data(s;).addr<I>),
where tagp(index) is a previously unused tag of b for the given index;
o otherwise (if depj(b, IndexEqual) = &),
data(s;).addr<I> « indexs,
where index, is a previously unused index of b.

TagReplaced conflicts — referred to as dynamic conflicts — are handled in a special
way. As soon as all other constraints, including hits and misses (see the next
paragraph for details), are resolved, the created sequence of instructions is simulated
on a simplified model derived from the MMU specifications. This enables the
generator to predict the lines being evicted and replaced with recently accessed data.
If there is a TagReplaced conflict between two instructions (template situations, to
be more precise), the evicted tag having been predicted for the first instruction is
copied into the address of the second one.

In between static Equal/NotEqual and dynamic Replaced conflicts, hits and misses
are considered. For a hit, an access to the designated address is appended to the
template test data: hit(b).add(data(s;).addr), where hit(b) is a set-separated data
structure that stores sequences of addresses targeted at loading data into the buffer
b. For a miss, an address sequence w is added: miss(b).add(w), where miss(b) is a
storage of addresses used to evict data from b, and o = {addrs, ..., addrw} is a so-
called evicting sequence, that is, addn<I> = data(s).addr<I>, addr<T> =
data(sj).addr<T> and addr.<T> = addri<T> for all k, | € {1, ..., W} such that k =1;
W is the b associativity. Note that appending an address to the hit(b) structure may
require adding evicting sequences for the preceding buffers with the miss constraint
having been set.

133

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address
Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

4.5 Test Data Adapter

Indeed, test data concretize symbolic templates, but being instruction set
independent they are still too general to be immediately applied to testing. It is a test
data adapter who translates a template coupled with test data into a sequence of
specific instructions, so-called a test case. Such a sequence usually consists of two
parts: a preparation, which sets up the microprocessor state, and a stimulus, which
performs a series of memory accesses to stress the microprocessor’s MMU.
Making a stimulus is straightforward: each situation of the template skeleton is
converted into a load or a store depending on the specification section, read or
write, the execution path belongs to. A particular type of the instruction, i.e. the size
of a data block being accessed, is either derived from the template / specifications or
randomized. The instruction is allowed to use any registers from the user-defined
set. Note that the procedure requires a mapping from
{read, write} x {byte, word, ...} to the set of memory access instructions
implemented in the design.
Constructing a preparation sequence is more intricate. The main problem is that
placing data into a buffer may change the state of others. Here is how the problem is
solved. First, virtual address based buffers, e.g., TLB, are handled before buffers
accessed by physical addresses, e.g., L1 and L2. Initialization of the latter can be
carried out by using unmapped addresses, which does not affect the former. Second,
the “largest buffer first” strategy is applied. Typically, a set of lines of a smaller
buffer maps several sets of lines of a larger one, which gives a possibility to change
the smaller buffer with no tangible effect to the larger one. Given a buffer, the
preparation sequence is cut into pieces corresponding to particular sets of the buffer.
Each piece is the catenation of the miss and hit sequences. It is implied that each
buffer is provided with a code pattern to be used to place data for a given address.
Here comes a simplistic test case for the MIPS architecture:

// Preparation:

// Fill TLB: VPNO=0x4, VO0=1, PFN0=0x10222

tlbwi ...

// Fill L1l: VA=0x80261026 (PA=0x261026)

lui t0, 0x8026

ori t0, t0, 0x1026

1b tO0, 0(t0)

// Address 0: VA=0x80261026 (PA=0x261026)

lui s0, 0x8026

ori s0, s0, 0x1026

// Address 1: VA=0x4059 (PA=0x10222059)
ori sl, zero, 0x4059

// Stimulus:

// KSEGO.hit (Mapped=0), Ll.hit

1b a0, 0(s0)

// XUSEG.hit (Mapped=1), TLB.hit, VA[12]=0, V=1
sb al, 0(sl)

134

A.C. Kamkun, A.C. Ipouenko, A.Jl. TatapHukoB. MeTO IeHepalii TECTOBBIX MPOTPaMM Ha OCHOBE (hOPMabHBIX
crienuduKanuii MexaHu3MoB KkammupoBanus... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., c. 125-138

The instructions here are as follows [9]: TLBWI writes a TLB entry; LUI loads a
constant into an upper half of a word; ORI does a bitwise OR with a constant; LB
loads a byte from memory; SB stores a byte to memory.

Preparations may be of significant length, but the tool is able to reduce the volume
of such kind of code. It keeps track of the microprocessor state during test
generation and skips useless initialization (e.g., it does not load data into a buffer if
they are already there). Moreover, the generator can choose a data tag so as to fit the
desired event, a hit or a miss. On the other hand, preparation sequences are of
interest as they — as our experience shows — can stress the memory subsystem and
discover “high-quality” bugs.

5. Industrial Application

The proposed approach is implemented in the MicroTESK test program generator
[6, 7]. Since 2006, different versions of the tool — including one described in [5] —
have been applying to functional verification of several industrial microprocessors
with the MIPS architecture [9]. MMU specifications take into account such buffers
as a JTLB (a joint TLB), a DTLB (a micro TLB used to speed up data address
translation), an L1 (a first-level cache) and an L2 (a second-level cache). Besides,
they involve mapped and unmapped memory segments (XUSEG, KSEGO, KSEG1
and XKPHYS), TLB control bits (Valid, Dirty and Global) and cache policies
(various combinations of Write-Through, Write-Allocate and Write-Back flags).
Stimuli are composed from load and store instructions. The approach has allowed
revealing a great number of critical bugs (e.g., reading incorrect data from memory)
in the MMU designs, which had not been detected by randomly generated test
programs.

6. Conclusion

Functional verification of a microprocessor MMU is surely a hard nut to crack.
Automation facilities are undoubtedly of high value and importance. Our work
contributes its mite to improving verification quality and productivity. The proposed
solution is based on the memory subsystem specification, i.e. on formal descriptions
of caching and address translation. The distinctive features of the approach are high
automation and systematicness. The suggested method is implemented in the
MicroTESK test program generator, which is freely distributed open-source
software. The tool has been used and is being used in industrial projects on
microprocessor development. A bad news is that the recent release has no support
for multicore designs. Avoiding this shortcoming is a priority task for the nearest
future. More particularly, we are going to extend the approach to multiprocessor
systems with distributed memory.

135

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address
Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

References

[1] BryantR.E., O’Hallaron D.R. Computer Systems: A Programmer’s Perspective.
Pearson, 2010. 1080 p.

[2] Adir A., Almog E., Fournier L, Marcus E., Rimon M., Vinov M., Ziv A. Genesys-Pro:
Innovations in Test Program Generation for Functional Processor Verification. Design &
Test of Computers, 2004. pp. 84-93.

[3] SorinD.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.

[4] Adir A., Fournier L., Katz Y., Koyfman A. DeepTrans — Extending the Model-based
Approach to Functional Verification of Address Translation Mechanisms. High-Level
Design Validation and Test Workshop, 2006. pp. 102-110.

[5] Vorobyev D., Kamkin A. Generatsiya testovykh programm dlya podsistemy upravleniya
pamyat'yu mikroprotsessora [Test Program Generation for Memory Management Units
of Microprocessors]. Trudy ISP RAN [Proceedings of ISP RAS], 2009, vol. 17. pp. 119-
132 (in Russian).

[6] Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. Spring/Summer Young Researchers’ Colloquium on
Software Engineering, 2012, pp. 64-69.

[7] MicroTESK page — http://forge.ispras.ru/projects/microtesk

[8] Freericks M. The nML Machine Description Formalism. Technical Report TR SM-
IMP/DIST/08, TU Berlin CS Department, 1993.

[9] MIPS64™ Architecture For Programmers. MIPS Technologies Inc.
[10] Fortress page — http://forge.ispras.ru/projects/solver-api

MeTop reHepaumm TeCToBbIX NPOrpamMmm Ha
ocHoBe hbopManbHbIX cneuudukaumm
MEeXaHM3MOB K3LWUPOBAHUA U TPaHCNALUUN
appecoB

A.C. Kamxun <kamkin@ispras.ru>.
A.C. Ilpoyenxo <protsenko@ispras.ru=>.
A.JI. Tamapnuxos <andrewt@ispras.ru>
Hnemumym cucmemnozo npoepammupoganus PAH,
109004, Poccus, . Mockea, yn. A. Conicenuyvina, 0om 25.

AHHOTaIH/lSl. l_[O}lCI/ICTeMa namMsaTu ABJIACTCA OJHHM H3 KIIOYCBBIX KOMIIOHCHTOB
MuKponporieccopa. OHa COCTOMT W3 3alOMHHAIOIINX YCTPOWCTB pa3sHOTO Ha3HAYCHHS
(O6ydepoB wmHCTpyKIHIA, OypepoB TpaHCISINHA aqpecoB, MHOTOYPOBHEBOW KAMI-MTAMSTH,
OCHOBHOHM TNaMATH M JPYIHX), OOBEAWHEHHBIX B CIOXHYIO HEPapXHUYECKYyI0 CTPYKTYpY.
Yucino BO3MOMKHBIX COCTOSIHMM IIOJCHCTEMBbI IIAMATH KpaWHE BEJIMKO, YTO JENAcT €€
(GYHKIMOHATBHYIO BepH(HUKALMIO YPE3BBIYANHO TPYIOEMKO# 3amaueil. B Hacrosmiee Bpemst
OCHOBHBIM MOAXOA0M K (QyHKIIMOHAIBHON BepU(UKAILIMU MHKPOIPOIIECCOPOB HA CUCTEMHOM
YPOBHE SIBISIETCS MMHTAllMOHHOE MOJEIUPOBAHUE C HCIOJIb30BAHHEM AaBTOMATHUECKU
CTeHEpUPOBAHHBIX TECTOBHIX IporpaMM. B manHOl paboTe mpemaraercsi METO TeHEPAUN

136

A.C. Kamkun, A.C. Ipouenko, A.Jl. TatapHukoB. MeTO IeHepalii TECTOBBIX MPOTPaMM Ha OCHOBE (hOPMabHBIX
crienuduKanuii MexaHu3MoB KkammupoBanus... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., c. 125-138

TECTOBBIX MPOrpaMM Ui (YHKUMOHAIBHON BepU(MKALMU MOIYJICH YIpPaBICHHS HaMSATBIO
MHKPOIIPOIIECCOPOB. B 0cHOBE MpeaioxkeHHOro MeToza JIeXaT GpopManbHbIe CenUpHUKAIAT
MHCTPYKIMI JOCTyIa K MaMsATH, a MIMEHHO WHCTPYKIMH YTCHUS W 3alHCH, U (pOpMajbHBIE
crier(UKAINN YCTPOHCTB MaMSITH, TAKUX KaK MOIYJIH K3MI-TIAMATH B Oy(depsl TpaHCIIIN
anpecoB. Mcrnomp3zoBanne (OpMaIBHEIX CIEMU(UKAIUA IT03BOJISICT aBTOMAaTH3HPOBATH
pa3pabOTKy TeHepaTOpOB TECTOBEIX MporpaMM M O0ecledynBaeT CHCTEMaTHYHOCTh
(GyHKIMOHATBHOW BepU(HKAIMK 33 CYET YETKOrO OMpPEACNeHUs Liefiell TecTHpoBaHus. B
NpPEIOKEHHOM MOAXOAE TECTOBBIE IPOTrpaMMBl KOHCTPYHPYIOTCS C ITOMOIIBIO
KOMOMHATOPHBIX TEXHHK, TO €CTh TECTOBBIE BO3JEHCTBUSI (ITOCIEA0BATENLHOCTH HHCTPYKIUiL
YTEHMS U 3aIHCH) CO3JAI0TCA MyTeM Mepebopa BCeX BO3MOXKHBIX KOMOMHAIMM MHCTPYKIHH,
curyanuii (IyTeil WCIOMHEHMS WHCTPYKLIUH) M 3aBHCHMOCTEH (MHOXXECTB KOH(IMKTOB
MEXIy HHCTPYKIUsIMH). BakHOH 0COOEHHOCTBIO MeTona SIBIS€TCS TO, YTO TECTOBBIE
CUTyalluM M 3aBHCHMOCTH aBTOMATHYECKH H3BJICKAIOTCS W3 (POPMAJBHBIX CHELM(UKAIIIA.
IIpemioskeHHBIE NOAXOJ IPUMEHSUICS B HECKOJIBKUX IPOMBIIUIEHHBIX IPOEKTaX I10
BepU(UKaINE MHUKPOIIPOLECCOPOB apXUTEKTypsl MIPS 1 mo3Bosmi BBISIBUTH KPUTHUECKHE
OUIMOKH B MEXaHM3MaX YIPaBJIeHHs HaMSIThIO.

KnioueBble cj10Ba: MUKPOIIPOLIECCOPHI; YIpPaBIeHHE NaMAThIO; KIIIUPOBAHUE; TPAHCIIALUSL
azpecoB; (yHKUMOHaJbHAas BepuUKanys, QopManpHble cHenU(pUKANUK; TeHeparus
TECTOBBIX IPOTPaMM; TeHEpaIHs HOTOKAa HHCTPYKLIUI.

DOI: 10.15514/ISPRAS-2015-27(3)-9

s nuruposanusi: Kamkun A.C., [Iponenko A.C., Tarapaukos A.Jl. Merox reHepauuun
TECTOBBIX IPOrPaMM Ha OCHOBE (hOpPMaJbHBIX CrieNU(pHKAIMI MEXaHU3MOB KIILHPOBAHUS U
tpaHcsanuu agpecoB. Tpyaer UCIT PAH, tom 27, Bem. 3, 2015 r., crp. 125-138 (ma
anrimiickom sizpike). DOI: 10.15514/ISPRAS-2015-27(3)-9.

Cnucok nutepatypbl
[1] BryantR.E., O’Hallaron D.R. Computer Systems: A Programmer’s Perspective.
Pearson, 2010. 1080 p.

[2] Adir A., Almog E., Fournier L, Marcus E., Rimon M., Vinov M., Ziv A. Genesys-Pro:
Innovations in Test Program Generation for Functional Processor Verification. Design &
Test of Computers, 2004. pp. 84-93.

[3] SorinD.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.

[4] Adir A., Fournier L., Katz Y., Koyfman A. DeepTrans — Extending the Model-based
Approach to Functional Verification of Address Translation Mechanisms. High-Level
Design Validation and Test Workshop, 2006. pp. 102-110.

[5] I.H.Bopo6weB, A.C.Kamkun. I'eHepaudss TECTOBBIX IPOTPAMM JUISl MOIACHCTEMBI
ynpasieHus namsthio Mukpomnpoueccopa. Tpynst UCIT PAH, 17, 2009. c. 119-132.

[6] Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. Spring/Summer Young Researchers’ Colloquium on
Software Engineering, 2012, pp. 64-69.

[7] Crpanuua uacrpymenta MicroTESK — http://forge.ispras.ru/projects/microtesk

[8] Freericks M. The nML Machine Description Formalism. Technical Report TR SM-
IMP/DIST/08, TU Berlin CS Department, 1993.

[9] MIPS64™ Architecture For Programmers. MIPS Technologies Inc.
137

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address
Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

[10] Crpanuua 6ubmorexu Fortress — http://forge.ispras.ru/projects/solver-api

138

B.H. Kynesoxn, A.H. Memikos, M.IT PsixoB, I1.B. ®poos. IToxxo k BepHpUKAIME MOJYJIs HPSAMOTO JOCTYIIA K
namsitu. Tpynast ICIT PAH, tom 27, Beim. 3, 2015 1., €. 139-148

An Approach to Direct Memory Access
Module Verification

V. Kutsevol <kutsevol v@mcst.ru>,
A. Meshkov <alex@mcst.ru>,
M. Ryzhov <ryzhov@mcst.ru=>,
P. Frolov <opium@mcst.ru>,
ZAO MCST, 24 Vavilova Str., Moscow, 119334, Russian Federation

Abstract. A method of direct memory access subsystem verification used for “Elbrus” series
microprocessors has been described. A peripheral controller imitator has been developed in
order to provide a flexible way to simulate a wide range of workloads of the direct memory
access system without a need for computational overhead caused by simulation of the
initialization and operation of the southbridge and its controllers. The imitator has been
implemented as synthesizable Verilog module used in verification both with the RTL model
and with the FPGA prototype. It can be integrated as a replacement of the 1/O link connecting
the integrated northbridge with the southbridge thus eliminating the need to simulate extra
hardware. This connection method allowed to use a single implementation of the imitator
with a complete series of microprocessors compatible with respect to the 1/0 link interface.
The model of the imitator was also included into the functional machine simulator. A
pseudorandom test generator for verification of the direct memory access subsystem based on
the simulator. The test generator has been developed using library version of the functional
machine simulator that allowed to use the simulator as a reference model during the test
generation. The consistency of the programming interface of the imitator provides ability to
execute generated tests unmodified on the functional machine simulator, the RTL model, the
FPGA prototype and even the fabricated microprocessors when integrated in the FPGA 1/0
link controller. Employment of this method allowed to find a significant number of bugs in
“Elbrus” series microprocessors being developed.

Keywords: system verification, functional model, direct memory access, pseudorandom test
generation.
DOI: 10.15514/ISPRAS-2015-27(3)-10

For citation: Kutsevol V., Meshkov A., Ryzhov M., Frolov P. An Approach to Direct
Memory Access Module Verification. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 139-148. DOI: 10.15514/ISPRAS-2015-27(3)-10.

139

mailto:alex@mcst.ru
mailto:opium@mcst.ru

V. Kutsevol, A. Meshkov, M. Ryzhov, P. Frolov. An Approach to Direct Memory Access Module Verification. Trudy
ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 139-148

1. Introduction

Modern computer systems require very intensive data exchange between the
peripheral devices and the random-access memory. In the most cases this exchange
is performed by the direct memory access (DMA) subsystem. The increasing
demands for the performance of the subsystem lead to an increase in its complexity,
therefore requiring development of effective approaches to DMA subsystem
verification [1,2].

This article is based on a result of a comprehensive project than combined
implementation of a three co-designed verification techniques based on the
consecutive investigation of the DMA subsystem employing one the three models:
1) a functional model written in C++ that corresponds to behavior of the subsystem
in the environment determined by a real computer system configuration, 2) RTL
model in Verilog and 3) FPGA-based prototype. This article describes the first
method that enables verifying correctness of the design at an early stage of the
verification and eliminate a large quantity of bugs using simple tests.

\ RAM \ \ RAM

— CPU — CPU

I--Northbridge B -

h Northbridge iatn Al

1

Core 0 <——r>{' Memory controllers
1

Core 1 Interprocessor links

Commutator
Host controller
Core N !

1

: DMA imitator
! |

1

Core 0

Core 1

Commutator

G

Core N

L

1
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
1
|
|
|
|
|

—— Southbridge

Peripheral controller 1

Commutator 4—»{ 10 link controller

Peripheral controller N

1

a). b).
Figure 1. The structure of the computer systems:
a). Real configuration.
b). Model configuration (integration of the DMA imitator into the northbridge).

The most important problem that significantly affects the quality of the subsystem
verification is the exhaustiveness of the representation of the external devices
connected to it and input vectors they generate. In this case, the problem has been

140

B.H. Kynesoxn, A.H. Memikos, M.IT PsixoB, I1.B. ®poos. IToxxo k BepHpUKAIME MOJYJIs HPSAMOTO JOCTYIIA K
namsitu. Tpynast ICIT PAH, tom 27, Beim. 3, 2015 1., €. 139-148

solved by introducing a device imitating a peripheral controller and capable of
generating a comprehensive range of DMA subsystem interaction patterns into the
functional model. The basic aspects of DMA imitator implementation are presented
in the second section.

The exhaustiveness of the subsystem in question verification is achieved with a test
generator allowing to provide necessary inputs using the imitator. The generator
produces a test program that performs the DMA imitator scenarios setup for all of
its agents, launches their concurrent execution, provides memory access by the CPU
cores during the DMA access scenarios execution and checks the final memory
state. The generator operation principles are described in the fourth section of the
paper.

The generation of final memory state checking code requires a golden model of the
memory subsystem being available for the generator. A functional model library
that will be described in the third section has been reused from previous projects in
order to fulfill this requirement.

2. Peripheral device imitator

Considering the computer system containing the subsystem (fig.1a) in question it
should be noted that difficulties connected to precise modeling of the south bridge
devices caused by the usage of the complex device drivers can be avoided via
imitating behavior of the real DMA agents. A masked DMA copy operation has
been used as a basic operation that allows to implement the significant number of
the direct memory access scenarios. In order to achieve a high-speed test execution,
the imitator is integrated into the 10 link between the northbridge and the chipset
(south bridge, fig.1b). The positioning of the imitator as a standard 10 controller
allowed to apply this scheme to any modern Elbrus series processor.
The imitator represents a simplified version of the southbridge. It includes
adjustable number of identical agents (fig.2), each capable of working in normal or
table modes. In the table mode the memory access scenario specification is
simplified by providing them via tables placed in the memory.
Agent is capable of the following operations:

e copying data from one area of the memory to another in normal and table

modes,
e reading copy operation parameters from memory,

o (data transformation.
The imitator is implemented as a PCl-compatible device, each agent is an
independent device that is controlled by a common bus via load and store operations
to the configuration space. Agents can perform an exchange with the memory using
standard read and write packets. The commutation between the agents is performed
by the DMA Switch module.

141

V. Kutsevol, A. Meshkov, M. Ryzhov, P. Frolov. An Approach to Direct Memory Access Module Verification. Trudy
ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 139-148

store_data A store_conf
load_data load_conf
— Imitator
DMA Switch
dev 0 dev 1 dev N
DMA DMA | DMA
agent 0 agent 1 agent N

Figure 2. The structure of the DMA-imitator.

The structure of the DMA-agent is shown at this fig.3. ConfigResigters
module is an array of configuration space registers containing setup operation
modes, base addresses and other parameters. In the normal mode the addresses are
written to the ConfigRegisters are used to access the memory. In the table
mode the TMHandler module uses written address to fetch and process the table
with address of reads and writes. The Format module is responsible for masking
the data and correct merging of data in the table mode. The DMAEngine module is
implemented as a FIFO buffer that performs loads and stores of the data using the
DMA write and DMA read functions provided by the functional model.

Config Registers 1

TMHandler

DMA Engine 1
[4

store from chipset | load to chipset
A\ 4

Figure 3. The DMA-agent.

142

B.H. Kynesoxn, A.H. Memikos, M.IT PsixoB, I1.B. ®poos. IToxxo k BepHpUKAIME MOJYJIs HPSAMOTO JOCTYIIA K
namsitu. Tpynast ICIT PAH, tom 27, Beim. 3, 2015 1., €. 139-148

3. Functional model of the DMA imitator

The approach to the problem is based on presenting the direct memory access as
two independent modules: the simulator, that imitates the work the computer system
architecture objects that are directly employed in the process, and a test generator
that provides the modes and parameters for the direct memory access, sets up the
logic of the these objects and controls the correctness of the outcome (fig.4). The
structural and functional independence of these modules significantly increases the
flexibility of the system in such aspects as content and interaction of objects under
study, the spectrum of generated inputs and results checking.

The configuration of the simulator that has been developed contains four processor
each one containing several general-purpose cores and a northbridge, the
southbridge and an imitator that consists of an array of peripheral devices and their
interfaces [3]. According to the second section the communications of the imitator
and the north bridge are performed by the functions of the programming model
described in the PCI standard.

—— Simulator
Core O
Core 1 Northbridge Imitator
Core N
|
I: CPUO Generator interface
CPU 3
callback step()
— Generator ‘&
Memory model Generator core
Library control and
Static Code area communication
initialization P> <>
code | Code generators |
Data area | Data generators |

Figure 4. Components of the DMA subsystem functional model.

143

V. Kutsevol, A. Meshkov, M. Ryzhov, P. Frolov. An Approach to Direct Memory Access Module Verification. Trudy
ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 139-148

The simulator works according to interpretation principle [4]. In each virtual tick
execution of one command in each of the processor cores is performed. In addition,
different asynchronous actions in respect to the commands execution actions such as
counter and timer ticks and external interrupt handling are also performed during a
single tick.

In order to enable the communication of the simulator with the generator it has been
decided to implement a working cycle of the simulator available through a set of
library functions.

4. Test generator

The generator contains the static initialization code, the memory model and the core
of the generator. The initialization code is a sequence of instructions that performs
the initial setup of the hardware performed by the test.

The core of the generator contains the library control and communication module as
well as the code and data generators [5]. The library control and communication
module is responsible for interaction with the simulator. It invokes the step ()
function that implements execution of instructions of the modeled hardware and the
analysis the result of its execution. The code generator writes the code that controls
the operation of each of the DMA-agents and the data generator writes the blocks of
the data to be send. The flexibility of the DMA-imitator parameterization is fully
supported by the pseudorandom test generator that sets up pseudorandom
parameters for the DMA-exchange such as addresses of the memory buffers, ranges
of the DMA-packet sizes as well as different transfer modes.

Both static initialization code and dynamically generated code is placed into the
code area that is one of the components of the memory model. When code fetch
takes place during the program execution the requests are directed by the callback
function to the code area of the generator. The data area that is another memory
model component is handled in a similar manner. The requests for the data --- the
loads and stores can be initiated by both the CPU cores and the DMA-agents. All of
the requests are redirected to the data structure containing the array dynamically
allocated by the data generator.

The step-by-step algorithm of the simulator main modules interaction with the
generator is presented in the fig.5.

The general scenario of working with the DMA-imitators has the following outline:
the basic system initialization, the initialization of the DMA buffers with the data
designated for transmission, the configuration of the DMA-imitator and the launch
of the DMA-exchange. Such system parameters as number of processors and
available physical address ranges can be varied in a random way to create different
DMA routing scenarios. The system initialization procedure can also turn on
input/output memory management unit (IOMMU) and fill translation table with
random entries.

144

B.H. Kynesoxn, A.H. Memikos, M.IT PsixoB, I1.B. ®poos. IToxxo k BepHpUKAIME MOJYJIs HPSAMOTO JOCTYIIA K
namsitu. Tpynast ICIT PAH, tom 27, Beim. 3, 2015 1., €. 139-148

Memory ranges

selection
¢ Model (including
Library initialization DMA-imitator)
startup
]

Invoking step()

Is all the data
required for the
step avaliable?

callback function

Memory access
request decoding

Code/data Instruction
genration execution
Test termination
code found?
Writing test file. Exit
Generator Model

Figure 5. The control flow of the generator that employs DMA subsystem functional model.

The initialization of the DMA buffers is performed by the CPU cores causing the
data for the transfer to be located at different levels of the coherent memory
hierarchy that includes both caches and memory [6]. During the configuration of the
imitator the specification of the operation mode and the base address of the memory
to be processed are determined. The DMA exchange is performed while the CPU
cores access memory regions that intersect with the DMA buffers. After the
completion of the exchange the reference values are generated based on the contents
of the memory final state. These values are used to perform self-checking during
test execution on the target model or device. Any test produced by the generator can
be executed on either the RTL model, the simulator or the FPGA-based prototype
without any additional test modification. The test generator provides an opportunity
to use any device connected to real southbridge instead of the DMA imitator such
an Ethernet controller as a source of DMA-packets.

145

V. Kutsevol, A. Meshkov, M. Ryzhov, P. Frolov. An Approach to Direct Memory Access Module Verification. Trudy
ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 139-148

5. Conclusion

In this study the problem of the direct memory subsystem verification when applied
to “Elbrus" series microprocessors has been investigated. Employment of the test
generator built using the approach described in this paper allowed to find 45 bugs in
three different “Elbrus” series microprocessors: 24 in a single-cores low-power
CPU and no cache coherence support, 16 in a eight-core CPU supporting up to 32
core per ccNUMA system with coherent DMA and 5 in the next generation eight-
core CPU with ccNUMA and updated coherence protocol. These bugs were found
in spite of rigorous stand-alone verification of the DMA subsystem modules
performed during the generator development. In order to enable the execution of
sufficient number of tests and speeding up the development of the test generators
and bug analysis a method of verification based on the replacement of DMA-
capable real devices with imitator device with a simple programming interface and
ability to completely consume the bandwidth of the direct memory access data path
was introduced. The application of the developed method enables to achieve the
operation modes of the DMA subsystem analogous to the real-world ones. The
unification of the DMA imitator interface for the RTL-model, the computer
complex simulator and the FPGA-based prototype allows to increase the pace of
DMA subsystem tests generator development.

References

[1]. Grosso, M. et al. Functional Verification of DMA Controllers - Journal of Electronic
Testing: Theory and Applications Volume 27 Issue 4, August 2011, Pages 505-516.

[2]. AK. Kim, M.S.Mikhailov, V.M.Fel’dman. Podsistema vvoda-vyvoda dlya sistem na
kristalle “MCST-4R” i “Elbrus-S” na osnove mikroskhemy kontrollera periferiinykh
interfeisov. Voprosy radioelektroniki, seriya EVT, vypusk 3, 2012. (In Russian)

[3]. Gurin K.L., Meshkov A.N., Sergin A.V., Yakusheva M.A. Razvitie modeli podsistemy
pamyati vychislitel’nykh kompleksov serii EI’brus. Voprosy radioelektroniki, seriya
EVT, 2010, vypusk 3. (In Russian)

[4]. Nohl, A., Braun, G., Schkiebusch, O., Leupers, R., Meyr, H., A Universal Technique for
Fast and Flexible Instruction-Set Architecture Simulation, DAC2002, June 10-14, New
Orleans, Louisiana, USA, 2002.

[5]. Frolov P.V. Generatsiya sluchainykh testov sistemnogo urovnya dlya mikroprotsessorov
s arkhitekturoi El’brus. Voprosy radioelektroniki, seriya EVT, 2014, vypusk 3. (In
Russian)

[6]. I1saev M.V., Polyakov N.Yu. Primenenie kesha i spravochnika DMA- obmenov v
NUMA-sistemakh dlya povysheniya proizvoditel’nosti pod- sistemy vvoda-vyvoda.
Pervaya vserossiiskaya nauchno-tekhnicheskaya konferentsiya Raspletinskie chteniya :
sb. tez. dokl. Moskva, 2013. S. 169-170. (In Russian)

146

B.H. Kynesoxn, A.H. Memikos, M.IT PsixoB, I1.B. ®poos. IToxxo k BepHpUKAIME MOJYJIs HPSAMOTO JOCTYIIA K
namsitu. Tpynast ICIT PAH, tom 27, Beim. 3, 2015 1., €. 139-148

Noaxon k Bepucpumkaumm moaynsa npsamMoro
AOoCTyna K namsitn

B.H. Kyyeson <kutsevol_v@mcst.ru>,
A.H. Mewxos <alex@mcst.ru=>,
M_IT Poioicoe <ryzhov@mcst.ru=>,
I1.B. ®poros <opium@mcst.ru=>,
340 «MILCTy, 119334, Poccus, 2. Mocksa, ya. Basunosa, 0. 24.

AnHoOTammsi. B crathe omucaH MeTon BepH(UKAnMM IOJCHUCTEMBI NMPSIMOTO JOCTyNA K
MaMATH, MPUMEHEHHBIH K CEeMEWUCTBY MHKPOIPOIECCOpoB «Inbdpycy». na obecredeHus
BO3MOXXHOCTH MOJEIHPOBAHUS IIHPOKOTO CIHEKTPA PEKUMOB PabOTHI MOACHCTEMBI IPIMOTO
JOCTyIa K maMsATH 0e3 HeoOXOAMMOCTH MOJENHPOBATh WHHUIHAIN3AINIO U paboTy F0KHOTO
MOCTa M €ro KOHTPOJUIEPOB OBUI pa3pabOTaH HWMHTATOP MEpUPEPUHHBIX KOHTPOJUICPOB.
Mmurarop ObUT peann3oBaH Kak CHHTE3HPYeMBIH Moxyib Verilog ¥ HCHONB30BaJICS NpH
Bepudukanuu kak RTL-monmenu, tak u ocHoBanHoro Ha I[IJIMC mpototuma. WHTepdeiic
HMHUTATOpa MO3BOJIMI BCTPOMTh €ro BMECTO KaHajla BBOJA-BBIBOJAA, COEAUHSIOILETO
MHTETPUPOBAHHBII CEBEPHBII MOCT C IPOLECCOPOM, YTO TAKXKE COKPAIAeT HEOOXOANMOCTh
MOZENUPOBATh AONOIHUTENbHOe obopymoBaHwe. Takas cxema MOAKITIOUEHHS HMHUTATOpPA
Tafoke TIIO3BOJIMJIO HCIIONB30BAaTh OAHY pealHM3alMio HMHTAaTOpa Cco Bced cepueit
MPOIECCOPOB, COBMECTHMBIX OTHOCHTEIHHO IPOTOKOJNA KaHajla BBOJA-BBIBOAA. Mozenb
UMHUTaTOpa MepH(EepUHHBIX KOHTPOJUIEPOB OblIa Takke BKIIOYEHA B (YHKIMOHAIBHBII
CHMYJIATOP BBIYUCINTENFHOTO KoMIUIekca. Ha ocHOBe (yHKIMOHAmBHOW Mozenn ObuT
pa3paboTaH TeHepaTop MCEBIOCTyYalHBIX TECTOB, IPEIHA3HAUCHHBIX U1 BepHUKALN
MOJACUCTEMBI NPSIMOTO JOCTYIa K HaMsATH. ['eHeparop pa3pabOTaH C HCIOJIb30BaHHEM
O6ubMOTeUHON Bepcuu (YHKIIMOHAIBHON MOJIEH, HCIONb3YeMOil B KayeCcTBE AITATOHHOM
MOZENM BO BpeMs TeHepaluu Tecta. YHH(uKanus mnporpaMmHOro wuHTepdeiica Bcex
peanu3aniii HMMHTaTOpa IIO3BOJIMIIA HCHONHATH TECTHl B HEH3MEHHOM B BHJIE Ha
(hyHKIMOHATPHON MOJENH BBIYHCIHTENBHOTO Komiuiekca, RTL-momenn, ocHOBaHHOM Ha
IINIMC nporotume, a Takke MPOMU3BEICHHOH MHKpPOCXeME MpH MOMOIIY HHTETPaliH
nmuTatopa B peaimm3oBanHylo Ha [IJIMC Bepcuro KOHTpoiulepa JHMHKAa BBOJAa-BBIBOJA.
Hcnonp3oBaHHe OMMCAHHOTO MOAXOAA MO3BOJMIO OOHAPYXKUThH CYIIECTBEHHOE KOJIMYECTBO
oIMOOK B pa3pabaThIBaeMBIX MUKPOIIPOIIECCOpPax ceMeHcTBa «DIB0pycy.

Keywords: system verification, functional model, direct memory access, pseudorandom test
generation.
DOI: 10.15514/ISPRAS-2015-27(3)-10

s uutupoBanus: Kyneson B.H., Memkos A.H., PeoxoB M.II, ®ponos I1.B. ITogxon x
Bepudukanun Moxys npsiMoro nocrymna k namsata. Tpynst UCIT PAH, tom 27, Beim. 3, 2015
r., c1p. 139-148 (na anriuiickom s3bike). DOIL: 10.15514/ISPRAS-2015-27(3)-10.

147

mailto:alex@mcst.ru

V. Kutsevol, A. Meshkov, M. Ryzhov, P. Frolov. An Approach to Direct Memory Access Module Verification. Trudy
ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 139-148

Cnucok numepamypbl

[1].

[2].

[3].

[4].

[5].

[6].

148

Grosso, M. et al. Functional Verification of DMA Controllers - Journal of Electronic
Testing: Theory and Applications Volume 27 Issue 4, August 2011, Pages 505-516.
A.K.Kum, M.C.Muxaiinos, B.M.®enpaman. IToacrucreMa BBOAa-BBIBOAA IS CHCTEM Ha
kpuctamre "MILICT-4R" u "Dnpbpyc-S" Ha OCHOBE MHKPOCXEMBI KOHTpOJIIEpa
nepudepuiHbIX HHTEpQelcoB. — Bonpocs! paauoanekTponuky, cepust BT, Beimryck 3,
2012.

TI'ypun KJI, Memxos A.H., Ceprun A.B., SIxkymea M.A. Pasputue Mmopenu
MOJCUCTEMBl TAMATH BBIYUCIHUTENBHBIX KOMIUIEKCOB cepuu «Qmp0pyc». — Bompockr
panuoanexTponuky, cepust OBT, 2010, Beimyck 3.

Nohl, A., Braun, G., Schkiebusch, O., Leupers, R., Meyr, H., A Universal Technique for
Fast and Flexible Instruction-Set Architecture Simulation, DAC2002, June 10-14, New
Orleans, Louisiana, USA, 2002.

®pono II.B. T'enepanust ciyyailHBIX ~ TECTOB CHCTEMHOTO YpPOBHS JUis
MHKPOIIPOIIECCOPOB € apXUTEKTypoH «npdpycy. — Bompockl panmosneKkTpoHHKH,
cepust OBT, 2014, Beimyck 3.

Hcaes M.B., IlonskoB H.}O. Ilpumenenue xdma u crnpaBouyHuka DMA-oOMeHOB B
NUMA-cucTemMax a1 HOBBIIICHUS MPOU3BOAUTEIHLHOCTH MOJCHCTEMBI BBOJA-BBIBOAA.
IlepBas Bcepoccuiickas HaydHO-TeXHHUYECKas KoHpepeHuus ‘‘PacruieTnHckue yreHus
¢0. Te3. moki., ctp. 169-170, 2013.

A.C. Kamkun, M.B. ITerpouenkos. ITogxox K NOCTPOEHHIO TECTOBBIX 0PAKYJIOB /JIsl OJACHCTEM MAMSITH
MHOTOsI/IEPHBIX MHKpoONponeccopoB Ha ocHoBe Moeeii. Tpyast UCIT PAH, Tom 27, Bbin. 3, 2015 1., C. 149-160

A Model-Based Approach to Design Test
Oracles for Memory Subsystems of
Multicore Microprocessors

! Alexander Kamkin <kamkin@ispras.ru=,
2 Mikhail Petrochenkov <petroch_m@mcst.ru=,
Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
ZMCST, 24 Vavilov st., Moscow, 119334, Russia.

Abstract. The paper describes a method for constructing test oracles for memory subsystems
of multicore microprocessors. The method is based on using nondeterministic reference
models of systems under test. The key idea of the approach is on-the-fly determinization of
the model behavior by using reactions from the system. Every time a nondeterministic choice
appears in the reference model, additional model instances are created and launched (each
simulating a possible variant of the memory subsystem behavior). When the testbench
receives a reaction from the subsystem under test, it terminates all model instances whose
behavior is inconsistent with that reaction. An error is detected if there is no active instance of
the reference model. A reference model and the test oracle are divided into three levels: (1)
the operation level, (2) the cache line level, and (3) the memory subsystem level. An
operation oracle checks whether processing of a single request of the corresponding type is
correct. A cache line oracle is comprised of the operation oracles and responsible for
checking requests to the given cache line. The memory subsystem oracle combines cache line
oracles and performs overall evaluation of the device behavior. To be implemented
efficiently, the method implies the following two restrictions on the memory subsystem under
test: (1) requests to different cache lines are executed independently; (2) requests to the same
cache line are serialized (at most one request to a cache line is executed at each moment of
time). The suggested method with slight modifications was used for verifying the L3 cache of
the Elbrus-8C microprocessor; as a result, three bugs were found.

Keywords: multicore microprocessors; cache memory; memory consistency; coherence
protocols; functional verification; model-based testing; testbench automation; test oracle;
Elbrus-8C.

DOI: 10.15514/ISPRAS-2015-27(3)-11
For citation: Kamkin A., Petrochenkov M. A Model-Based Approach to Design Test

Oracles for Memory Subsystems of Multicore Microprocessors. Trudy ISP RAN/Proc. ISP
RAS, vol. 27, issue 3, 2015, pp. 149-160. DOI: 10.15514/ISPRAS-2015-27(3)-11.

149

mailto:petroch_m@mcst.ru

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore
Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

1. Introduction

A key feature of modern microprocessor architectures is multicoreness, which is
implementation of several processing units, so-called cores, on a single chip. To
reduce time to access data from the main memory, each core has a local cache, often
with two levels, L1 and L2; in addition, all cores can share the L3 cache. Presence
of several data storages makes it possible to have multiple copies of the same data
within the system and requires special mechanisms to ensure the storages to be in a
coherent state. At the heart of such mechanisms is a coherence protocol, a set of
rules that governs interactions between storage devices and guarantees memory
consistency for all possible data access scenarios [1].

State-of-the-art coherence protocols are complicated; their implementations in
hardware is difficult and error-prone. Accordingly, thorough verification of memory
subsystems is required [2]. A widely accepted approach to ensure correctness of
complex hardware designs is simulation-based verification, or testing. A test system,
also known as a testbench, solves two main tasks: first, it generates a stream of
stimuli; second, it checks whether the design behavior satisfies the requirements [3].
This paper addresses the second problem, i.e. checking reactions of a memory
subsystem in response to an arbitrary series of stimuli; it introduces a method for
constructing test oracles (reaction checkers) based on high-level reference models
of memory subsystems.

The rest of the paper is organized as follows. Section 2 reviews the existing
techniques for designing test oracles. Section 3 suggests an approach to the
problem. Section 4 describes a case study on using the suggested approach in an
industrial setting. Section 5 concludes the paper.

2. Related Work

A memory subsystem as an object of testing has a number of distinctive features that
should be taken into consideration when designing a test oracle. First, it consists of
many devices that work in parallel and can receive requests (stimuli) and send
responses (reactions) through several input and output channels (interfaces with the
microprocessor cores). Second, its behavior essentially depends on the order of
requests to separate data blocks (cache lines); which, in turn, depends on the time of
the requests initiation as well as on the subsystem’s microarchitecture. Third,
requests to a single cache line are processed mostly one at a time (in other words,
requests are serialized).

It is also to be considered how reference models of memory subsystems are
developed. Many implementation details, like request execution timing, are
typically ignored: operations are described as atomic actions, while interactions
between blocks are modeled by “zero-time” function calls. Such kind of models are
often called functional models. The simplified nature of reference models makes
them more tolerant to changes in the subsystem implementation, but at the same

150

A.C. Kamkun, M.B. IlerpouenkoB. IT1oaxo1 K HOCTPOEHHIO TECTOBBIX OPAKYJIOB /ISl IOACUCTEM HAMSATH
MHOTOsI/IEPHBIX MHKpoONponeccopoB Ha ocHoBe Moeeii. Tpyast UCIT PAH, Tom 27, Bbin. 3, 2015 1., C. 149-160

time makes building test oracles more difficult task. Models of that kind cannot
predict the exact order of request execution basing solely on the request timestamps.
In this sense, functional models are surely nondeterministic. The problem of
building test oracles from nondeterministic models is well known; there are several
approaches to solve it.

In [4], a reference model (specification) and a system under test (implementation)
are represented as Partial Order Input/Output Automata. In such an automaton, each
transition is labeled not by a “stimulus-reaction” pair, but by a partially ordered
multiset (multiple stimuli and reactions are allowed). An implementation is said to
conform to its specification if for each specification trace there is an implementation
trace of the same length, in which the order of events corresponds to the order given
in the specification trace. The similar approach is presented in [5], where a model of
Asynchronous Finite State Machine is used. In both methods, checking is carried out
some time after the last stimulus (the time should be long enough to allow all
reactions to occur and the implementation to enter in a stationary state). The scheme
is applied under the assumption that a stimulus generator is “idle” every now and
then during testing.

In [6], a similar concept of correspondence is used, but the approach focuses on
“continuous” event flows (with no stops in stationary states). A test oracle is based
on a so-called trace matcher, which acts as follows: it receives reactions from the
specification and the implementation and adds them into the corresponding partially
ordered multisets (Y is for the specification, and Z is for the implementation); before
adding reactions, the minimal (in a sense of the precedence relation) events
(min(Y) N min(Z)) are removed from both multisets; if the amount of time a reaction
stays in a multiset exceeds some predefined limit, an error is indicated. As compared
with [4] and [5], the method requires more deterministic reference models: order of
implementation reactions may not be the same as of specification ones, but sets of
specification and implementation reactions should coincide (this requirement can be
weakened by marking some reactions as being optional). To apply the approach to a
complex system, a testbench needs to use “hints” from the implementation that help
to decide, what functionality of the reference model is to be executed [7].

Our work tries to combine [4] and [6]: it allows using nondeterministic models
without restrictions on test sequences and without using “hints” from
implementations. A general approach is as follows. As soon as there are several
possible ways to continue execution of the reference model (such a situation is
referred to as a nondeterministic choice), additional instances of the model are
created and launched (the base instance goes on with one of the branches). When
the testbench receives a reaction from the device under test, the reaction itself and
its characteristics (such as a response type, message data, etc.) are used to determine
what behavior is infeasible and what instances to terminate. If there is no active
instance of the reference model, an error is reported. Obviously, in the general case
the number of states (and variants of behavior) grows exponentially with the

151

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore
Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

number of decision points. However, for memory subsystems the suggested scheme
can be effectively implemented: first, requests to different cache lines are almost
independent (existing dependencies can be neglected); second, requests to a single
cache line are serialized.

3. Suggested Approach

Let us clarify what kind of reference models are used by test oracles for checking
behavior of memory subsystems. Stimuli are divided into two groups: primary
stimuli, which are requests from clients (cores, controllers, etc.) to perform certain
operations with the memory, and secondary stimuli, which are responses of the test
environment to some reactions of the memory subsystem (every reaction and every
secondary stimulus is caused by some primary stimulus). A memory subsystem
model is decomposed into a number of operation models, one for each type of
primary stimulus. An operation model has the following interface (the detailed
structure is not of importance):

o p <« start(x) — the model creates a process p that handles the primary
stimulus x;

e p.receive(x) — the process p receives the secondary stimulus x from the
environment;

e p.send(y) — the process p sends the reaction y to the environment (a
callback function);

o p.finished() — the model checks whether the process p has completed.

From the structural point of view, a memory subsystem model consists of cache line
models and a switch. Given a stimulus, the switch determines what cache line is
addressed and sends the stimulus to corresponding model. A cache line model
works as follows. To preserve the order of requests from the same client, it has a set
of request queues, Qq, ..., Qn, where N is a number of clients (only requests from the
heads of the queues can be processed). Additionally, it contains a state model,
which represents data stored in the cache line and auxiliary information that affects
behavior of the operation models. A cache line model is nondeterministic and can
be described by the following pseudo-code:
while true do

wait vi-an (Qi = D)

Q « {(head(Qi),) |i € {1, ... N} A (Qi = D)}

(x, 1) « select(Q)

dequeue(Qi)

pi < start(x)

wait pi.finished()

end

If there are requests from clients (vi-1n (Qi = &)), a set of candidates for processing
(Q) is built. After that, one of the requests is nondeterministically selected ((x, i) <
152

A.C. Kamkun, M.B. ITerpouenkos. ITogxox K NOCTPOEHHIO TECTOBBIX 0PAKYJIOB /JIsl OJACHCTEM MAMSITH
MHOTOsI/IEPHBIX MHKpoONponeccopoB Ha ocHoBe Moeeii. Tpyast UCIT PAH, Tom 27, Bbin. 3, 2015 1., C. 149-160

select(Q)). The chosen request is removed from the corresponding queue
(dequeue(Qy)), and its processing is initiated (pi < start(x)). When the process is
completed (pi.finished()), the procedure described above is repeated.

A cache line model has the following interface methods:

o receive(x, i) = enqueue(Qi, x) — the model receives the primary stimulus x
from the client i;

e receive(x) = p.receive(x) — the model receives the secondary stimulus x
from the environment.

Cache Line Oracle

receive(stimulus, i)

Request Queue Request Queue
of Client 1 of Client N

start(stimulus) start(stimulus)

cancel()

Stimulus Operation Oracle Operation Oracle Subsystem
Generator (environment) (environment) under Test
Primary
Operation State Operation Reactions
Stimul — <
— Model N Model >l Model
Secondary
Stimuli receive(stimulus) get(state) receive(stimulus)
send(reaction) sel(state) send(reaction)
finished() finished()
check(stimulus) check(stimulus)
check(reaction) " check(reaction)
enabled() enabled()
check(stimulus) i check(reaction)
matcher

Verdict

Figure 1. Structure of a cache line oracle

The test oracle structure follows from the reference model structure: one can
distinguish a memory subsystem oracle, a cache line oracle and an operation oracle.
An oracle of each type is built upon a model of the corresponding type. Thus, a
memory subsystem oracle consists of cache line oracles and a switch; a cache line
oracle includes request queues, operation oracles, a state model and a message
matcher (functions of this component will be described later on); an operation
oracle contains an operation model. It should be noted that there is a distinction
between oracle and model switches: an oracle switch routes not only stimuli but also
reactions. Design of a cache line oracle based on operation oracles is of the most
interest (see Fig. 1).

An operation oracle checks the correctness of reactions (and possibly validity of
secondary stimuli) for the individual operation (provided that this operation is
processed by the memory subsystem). A cache line oracle does not impose any
restrictions on how operation oracles are implemented. If a set of reactions caused
by the operation depends solely on the cache line state, the approach presented in

153

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore
Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

[6] can be applied. In the simplest case, checking is carried out as follows. Every
time the operation model invokes send(y), the reaction y is added to the multiset Y.
When receiving a reaction z from the implementation, the check(z) method of the
operation oracle is called. It checks whether z belongs to Y: in case of the positive
answer, z is removed from Y; otherwise, the error is indicated. Also, the operation
oracle overrides the finished() method of the operation model: in addition to
checking the operation completion, it tests whether the set Y is empty.

The model does not provide enough information to determine the exact order, in
which requests from different clients are handled. A cache line oracle launches the
operation oracles for all possible request choices in parallel (only one request is to
be processed by the memory subsystem, but for now, one cannot decide which one).
The cache line oracle is described by the following pseudo-code (pi refers to an
operation oracle for the client i):

while true do
wait vi-1y enabled(Qj)
Q « {(head(Qi), i) | i € {4, ..., N} A enabled(Qi)}
for (x,1) e Q do
dequeue(Qj)
pi < start(x)
end
end

enabled(Q;) = (Qi # &) A ((pi = null) v p;.finished())

The message matcher analyzes implementation reactions (and possibly secondary
stimuli) and identifies the request being executed by the memory subsystem. Having
received a reaction z from the implementation, the check(z) method of the message
matcher is invoked, which, in turn, calls check(z) in all active ((pi = null) A
~pi.finished()) operation oracles.

count < 0
forie {1,...,N}do
if (pi = null) A ~pi.finished() then
if pi.check(z) then
count < count + 1
else
pi.cancel()
pi < null
push(Qi,)
end
end
end
assert (count # 0)

154

A.C. Kamkun, M.B. IlerpouenkoB. IT1oaxo1 K HOCTPOEHHIO TECTOBBIX OPAKYJIOB /ISl IOACUCTEM HAMSATH
MHOTOsI/IEPHBIX MHKpoONponeccopoB Ha ocHoBe Moeeii. Tpyast UCIT PAH, Tom 27, Bbin. 3, 2015 1., C. 149-160

If an operation oracle (pi) returns the negative verdict (pi.check(z) = false), the
oracle process is forcibly stopped (pi.cancel()), and the primary stimulus having
initiated the process is returned to the head of the corresponding queue (push(Qj, x)).
If there are no active processes (count = 0), then the cache line oracle returns the
negative verdict. Secondary stimuli are handled in a similar way; a difference is that
if an operation oracle’s verdict is positive (pi.check(x) = true), the stimulus is
transmitted to the operation model (pi.receive(x)).

To construct a test oracle in the suggested way, a system under test is expected to
meet the following conditions (in addition to request serialization): first, behavior of
each operation is unambiguously defined by the system state at the operation start
time; second, each operation changes the global state of the system just before its
completion; third, a client being served can be unambiguously identified by
matching primary requests with reactions.

4. Case Study

The presented method for designing test oracles was used to develop a test system
for the L3 cache of the Elbrus-8C octal-core microprocessor (total volume — 16 MB;
size of a cache line — 64 B; number of banks — 8; bank associativity — 16) [8]. The
L3 cache is a point of serialization for the read and write requests from the
microprocessor cores and the snoop requests (auxiliary requests for maintaining
cache coherence) from the system interface controller. For each message it is
possible to identify the affected cache line; for this purpose, the oracle switch stores
a relation between primary request addresses and resource identifiers used in
reactions and secondary stimuli. In general, the cache line oracle follows from the
suggested scheme, but has some particular features described below.

First of all, operations on cache lines of the same set (cache lines located at the same
index) are surely dependent: inclusion of a cache line might trigger eviction of
another one. It should be emphasized that a victim line cannot be determined
without using a cycle-accurate reference model and without getting “hints” from the
implementation. To solve this problem and to make all cache lines to be served
independently, we assume that any cache line (whose state is not Invalid) can be
evicted at any moment. This assumption is implemented by adding a virtual client
Eviction to all cache line oracles (such a trick is legal, because eviction requests are
serialized like any other stimuli).

In most of the cases, a requesting client can be identified based on reactions, but
there are two exceptions. First, writing data with eviction from L2 (Write-Back) — if
the data are not in the L2 cache, the request is canceled (it completes without
sending any reaction and without changing the state). Second, prefetching data into
L3 (Prefetch) — if the data are in the L3 cache, the request is canceled. The first
situation is solved by forcibly stopping a model of the Write-Back operation as soon
as it is known that the core (the L2 cache of the core) has no data (such a solution is
correct, because requests from cores cannot load data into other cores; requests from

155

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore
Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

the requesting core cannot be chosen until the Write-Back operation is completed).
The second problem is solved by “detaching” the prefetch requests from the cores
and moving them to additional clients (completion of a prefetch request is detected
indirectly by identifying completion of one of the following requests from the same
core).

If a cache line (stored in the L3 cache) is in the Shared state and no core has its copy
in the L2 cache, the line can be evicted (become Invalid) without sending messages
to the environment. Therefore, if a cache line model is in the Shared state, it means
that the corresponding cache line of the implementation is either Shared or Invalid.
Being executed in the Shared state (without copies of the data in the cores), an
operation oracle spawns two operation models: one operates in the assumption that
the line is Shared; the other operates in the assumption that the line in Invalid.

It should be noted that L3 under test has no strict requirements on serialization of
so-called special operations (noncoherent reads and uncacheable writes). It is
allowed to concurrently process any number of such operations over the same cache
line. This exception does not complicate the test oracle structure: first, special
requests are permitted only in the Invalid state (otherwise, an eviction starts);
second, special operations do not change the state of the cache and do not affect
other operations.

The use of the suggested approach allowed to discover three errors in the L3 design.
The first one concerns the operation of reading data with storing them in L3 (R32L3
and R64L3) — the internal directory erroneously marks the line as having been stored
in the L2 cache of the requesting core. The second one consists in an unnecessary
delay in data eviction caused by a special operation. Finally, the third one relates to
the reading of invalid data from the write-back buffer.

4. Conclusion

Memory subsystems of multicore microprocessors are extremely complex devices;
their implementation should be thoroughly tested. Test oracles play key role in
testbench automation; the main part of an oracle is a reference model, i.e. a
simplified software implementation of the device under test. Models of memory
subsystems are usually nondeterministic in a sense that given a set of stimuli, one
cannot accurately determine a set of reactions. In this article, we have proposed the
method for designing test oracles for memory subsystems based on reaction-driven
refinement of the set of behavior variants. An error is reported if the refinement
process leads to the empty set of variants. The suggested approach has been applied
to the verification of the L3 cache of the Elbrus-8C microprocessor and allowed to
find three errors.

References

[1]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.

156

A.C. Kamkun, M.B. ITerpouenkos. ITogxox K NOCTPOEHHIO TECTOBBIX 0PAKYJIOB /JIsl OJACHCTEM MAMSITH
MHOTOsI/IEPHBIX MHKpoONponeccopoB Ha ocHoBe Moeeii. Tpyast UCIT PAH, Tom 27, Bbin. 3, 2015 1., C. 149-160

[2]. Kamkin A., Petrochenkov M. Sistema podderzhki verifikatsii realizatsii protokolov
kogerentnosti s ispol'zovaniem formal'nykh metodov [A system to support formal
methods-based verification of coherence protocol implementations]. Voprosy
radioelektroniki, seriya EVT, 2014, 3. p. 27-38.

[3]. BergeronJ. Writing Testbenches: Functional Verification of HDL Models. Kluwer
Academic Publishers, 2000. 354 p.

[4]. von Bochmann G., Haar S., Jard C., Jourdan G.V. Testing Systems Specified as Partial
Order Input/Output Automata. ICTSS, 2008. p. 169-183.

[5]. Kuliamin V., Petrenko A., Pakoulin N., Kossatchev A., Bourdonov I. Integration of
Functional and Timed Testing of Real-Time and Concurrent Systems. PSI, 2003. p. 450-
461.

[6]. Chupilko M., Kamkin A. Runtime Verification Based on Executable Models: On-the-
Fly Matching of Timed Traces. MBT, EPTCS 111, 2013, p. 67-81.

[7]. Baratov R., Kamkin A., Maiorova V., Meshkov A., Sortov A., Yakusheva M. Trudnosti
modul'noi verifikatsii apparatury na primere bufera komand mikroprotsessora «El'brus-
2S» [Difficulties of the unit-level hardware verification on the example of the instruction
buffer of the Elbrus-2S microprocessor]. Voprosy radioelektroniki, seriya EVT, 2013, 3.
p. 84-96.

[8]. Kozhin A., Kozhin E., Kostenko V., Lavrov A. Kesh tret'ego urovnya i podderzhka
kogerentnosti mikroprotsessora «El'brus-4S+» [L3 cache and cache coherence support in
«Elbrus-4C+» microprocessor]. Voprosy radioelektroniki, seriya EVT, 2013, 3. p. 26-
38.

Moaxon K NOCTPOEHUIO TECTOBbLIX OPaKynoB
ANSA NOACUCTEM NaMATN MHOrosiAepPHbIX
MUKpPOMNpOLIeCCOPOB Ha OCHOBE MoaerneMn

! Anexcanop Kamxun <kamkin@ispras.ru=,
2 Muxaun Iempouenxoe <petroch_m@mcst.ru>,
Y Unemumym cucmemmozo npozpammuposanus PAH,
109004, Poccus, e. Mockea, yn. A. Conowceruyvina, oom 25
2340 «MIICT», 119334, Mocxkea, Poccus, yia. Basunosa, 0. 24.

AnHoTanusi. B paGoTe npezcraBieH METO IOCTPOCHHSI TECTOBBIX OPAKyJIOB I MOACHCTEM
NaMATH MHOTOSJEPHBIX ~ MHUKpOIIPOLECCOPOB. MeToJ OCHOBaH Ha HCIOJIB30BAaHUU
HEJIeTepMUHIPOBAHHON STaJIOHHOH MOJIENN TECTHPYeMOH cHCTeMEL. Vmest moaxoma COCTOHUT
B JAMHAMHMYECKOM YTOUHEHHM IOBEJCHHUS MOJETM HAa OCHOBE PEAKIUM, MOTYYEHHBIX OT
cuctembl. IIpn BO3HUMKHOBEHHM HEAETEPMHHUPOBAHHOTO BHIOOpAa B ITAJOHHOH Mopenu
CO3/IAlOTCS U 3aIyCKAIOTCSl JOMOJHUTENbHbIE SK3EMIUIIPbl MOJETH, KaKAbIH U3 KOTOPBIX
MOZENUPYET BO3MOXHBII BapHaHT MOBEJCHUS MOACHUCTEMBI MamATH. llpu momydeHun
pEaKIMu OT TECTUPYEMOH MOJCHUCTEMBI 3aBEPIIAIOTCSA 3K3EMILISIPHI MOJETH, JUISI KOTOPBIX

157

mailto:kamkin@ispras.ru
mailto:petroch_m@mcst.ru

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore
Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

JaHHAsl PpeaKIus SBISETCS HEKOPPeKTHOH. IIpu3HakoM OMMOKH SBISETCS OTCYTCTBHE
AKTUBHBIX SK3eMIUDIPOB ATAJIOHHOW MOJENH. ODTaJOHHAs MOZAENb M IIOCTPOEHHBI Ha ee
OCHOBE TECTOBBII OpaKys pasJielieHsl Ha Tpu ypoBHs: (1) ypoBeHB omeparmud, (2) ypoBEeHb
KOII-CTPOKK H (3) ypoBeHB IMoAcHcTeMBl mamsaTH. Opakya ypoBHS OIEpaIuy IIpOBepseT
KOPPEKTHOCTh 0OpaOOTKH OTHAENBHOTO 3alpoca COOTBETCTBYIOIIEro Tuma. Opakya ypOBHSA
K3II-CTPOKH COCTOHMT M3 OPaKyJOB ONepalMii W MpeqHa3HadeH IS MPOBEPKU 3alpocoB K
3a7laHHON K3mI-cTpoke. Opakysl ypoBHSI MOACHCTEMBI MaMSTH OOBEIUHSIET OPAKYIbI KdIII-
CTPOK U TMPOU3BOAUT OOLIyI0 OIEHKY MOBeaeHust ycrpoitctBa. s 3¢ dekTuBHON
peanu3anuy MeToxa HeoOX0quMO, YTOOBI TECTHpyeMas ITOJCUCTEMA NaMSITH YAOBJIIETBOpsIa
CIIEIYIOINM JBYM OrpaHmdeHuHsM: (1) 3ampocsl K pasHBIM KAII-CTPOKaM HCIIOJHSIOTCS
HE3aBUCHMO JIPYT OT Apyra; (2) 3ampockl B OIHY KIMI-CTPOKY CEpHANIU3YIOTCS (B KaKIbIH
MOMEHT BPEMEHH WCIIONHSCTCS He Oojee OJHOTO 3ampoca K OJHOM KOII-CTPOKE).
IpennoxeHHBIH MeTOX C HEOONBIIMMH W3MEHEHHSMH HCIOJB30BAICS IS BepH(UKAILNH
KOII-IAMATH TPETBETO YPOBHS MHKporporeccopa «ap0pyc-8C»; B pesynpTare OBLIO
HaliIeHO TP OIIHMOKH.

KiroueBble c€/10Ba: MHOTOSAEPHBIE MHUKpPOIPOLECCOPBI; KAII-NIAMATh, KOHCHUCTEHTHOCTh
HaMsITH; TPOTOKOJBI KOTEPEHTHOCTH; (PyHKIMOHANbHAs BepH(UKalus,; TECTUPOBAHHE HA
OCHOBE MOJIeJICH; aBTOMATH3aLHsl Pa3pabdOTKU TECTOB; TECTOBBIN opaKyi; « D1Ibp0opyc-8C»

DOI: 10.15514/1ISPRAS-2015-27(3)-11

Jas uutupoBanusi: Kamxua A.C., IlerpouerkoB M.B. Iloaxon kK MOCTPOSHHIO TECTOBBIX
OpaKyJoB Ul MOJCUCTEM INaMATH MHOTOSJEPHBIX MHUKPOIIPOLIECCOPOB Ha OCHOBE MOjENeil.
Tpynst UCIT PAH, Tom 27, Bein. 3, 2015 1., ctp. 149-160 (na anrmwmiickoM s3bike). DOI:
10.15514/ISPRAS-2015-27(3)-11.

Cnucok nutepaTtypbl

[1]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.

[2]. A. Kamkun, M. IlerpouenkoB. Cucrema MOMAEPKKH BepH(pUKALUK peanrnu3amuii
IIPOTOKOJIOB KOTEPEHTHOCTH C HCIOJIb30BAHUEM (1)0pMaIIBHI)IX MCTOJ0B // BOHpOCLI
paauosnexTpoHuky, cep. OBT. 2014, Bem. 3, c. 27-38.

[3]. BergeronJ. Writing Testbenches: Functional Verification of HDL Models. Kluwer
Academic Publishers, 2000. 354 p.

[4]. von Bochmann G., Haar S., Jard C., Jourdan G.V. Testing Systems Specified as Partial
Order Input/Output Automata. ICTSS, 2008. p. 169-183.

[5]. Kuliamin V., Petrenko A., Pakoulin N., Kossatchev A., Bourdonov I. Integration of
Functional and Timed Testing of Real-Time and Concurrent Systems. PSI, 2003. p. 450-
461.

[6]. Chupilko M., Kamkin A. Runtime Verification Based on Executable Models: On-the-
Fly Matching of Timed Traces. MBT, EPTCS 111, 2013, p. 67-81.

[7]. baparos P.A., Kamkuu A.C., Maiioposa B.M., MemkoB A.H., Copros A.A.,
SxymeBa M.A. TpyaHocT MOIynbHOU BepuHUKaLuy annapaTypsl Ha puMepe Oydepa
KOMaH/| MUKportpoieccopa «Dabpbpyc-2S» // Bonpocs! paanosnekrponuku, cep. BT,
2013, B 3. c. 84-96.

158

A.C. Kamkun, M.B. IlerpoyenkoB. IToaxo1 K HOCTPOEHHIO TECTOBBIX OPAKYJIOB /ISl IIOACUCTEM NAMSATH
MHOTOsI/IEPHBIX MHKpoONponeccopoB Ha ocHoBe Moeeii. Tpyast UCIT PAH, Tom 27, Bbin. 3, 2015 1., C. 149-160

[8]. Koxun A.C., Koxun E.C., Kocrenko B.O., JlaBpoB A.B. Kam Ttpersero ypoBHS u
HOJEp)KKa ~ KOTEPEeHTHOCTH — MHKporpoueccopa «Qmpbpyc-4C+» // Bompocsl
paguoanexTpoHuky, cep. BT, 2013, Bem. 3. c. 26-38.

159

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore
Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

160

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test
Generation for Hardware Designs

1. Melnichenko <igor.melnitxenko@gmail.com>,
2 A. Kamkin <kamkin@ispras.ru=,
2S. Smolov <smolov@ispras.ru=,
LINEUM, 24 Vavilova st., Moscow, 119334, Russian Federation
ZInstitute for System Programming of the Russian Academy of Sciences,
25 Alexander Solzhenitsyn st., Moscow, 109004, Russian Federation

Abstract. Model-based test generation is widely spread in functional verification of hardware
designs. The extended finite state machine (EFSM) is known to be a powerful formalism for
modelling digital hardware. As opposed to conventional finite state machines, EFSM models
separate datapath and control, which makes it possible to represent systems in a more
compact way and, in a sense, reduces the risk of state explosion during verification. However,
EFSM state graph traversal problem seems to be nontrivial because of guard conditions that
enable model transitions. In this paper, a new EFSM-based test generation approach is
proposed and compared with the existing solutions. It combines random walk on a state graph
and directed search of feasible paths. The first phase allows covering “easy-to-fire”
transitions. The second one is aimed at “hard-to-fire” cases; the algorithm tries to build a path
that enables a given transition; it is carried out by analyzing control and data dependencies
and applying symbolic execution techniques. Experiments show that the suggested approach
provides better transition coverage with shorter test sequences comparing to the known
methods and achieves a high level of code coverage in terms of statements and branches. Out
future plans include some optimizations aimed at method’s applicability to industrial
hardware designs.

Keywords: hardware design; hardware description language; simulation-based verification;
test generation; modelling; extended finite state machine; graph traversal; random walk;
backjumping; symbolic execution; constraint solving

DOI: 10.15514/ISPRAS-2015-27(3)-12

For citation: Melnichenko 1., Kamkin A., Smolov S. An Extended Finite State Machine-
Based Approach to Code Coverage-Directed Test Generation for Hardware Designs. Trudy
ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182. DOI: 10.15514/ISPRAS-2015-
27(3)-12.

161

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

1. Introduction

Functional verification is a labor-intensive and time-consuming stage of the
hardware design process. According to [1], it spends about 70% of the effort, while
the number of verification engineers is usually twice the number of designers.
Moreover, the “verification gap”, i.e. a difference between verification needs and
capabilities, seems to grow over time [2]. In such a situation, improvement of the
existing verification methods and development of new ones is of high value and
importance. Simulation-based verification, often referred to as testing, is a widely
accepted approach to hardware verification. It requires a testbench [1], a special
environment that generates inputs, so-called stimuli, vectors or patterns, and
optionally observes the outputs, so-called reactions.

Among the methods for stimulus generation, model-based approaches are of
interest. Being formal representations of designs under test, models serve as a
valuable source of “testing knowledge”. There are a lot of model types used for
specifying hardware: finite state machines (FSM) [3], extended FSM (EFSM) [4],
Petri nets [5], etc. The key distinction of the EFSM formalism is clear separation of
data and control flows. It is worth mentioning that EFSM models can be
automatically extracted from HDL descriptions making it possible to generate code
coverage-directed tests [6].

This article advances the FATE approach to EFSM-based functional test generation
(FTG) [7]. The main feature of FATE is backjumping: if an EFSM traverser fails to
cover a transition, it tries to detect a cause of the failure (that is, a transition which
must be traversed in order to enable the target one) and constructs a path directly
from the found transition. Another important part of the approach is a special
heuristic addressing counters and loops. However, FATE is hardly applicable to
hardware designs with complicated data and control dependencies.

The rest of the paper is organized as follows. Section Il defines the EFSM model
and briefly describes an EFSM extraction method having been used. Section Il
considers the original FATE approach, while Section IV introduces a number of
improvements to it. Section V proposes a new EFSM-based FTG method and shows
how it works by the example of two simple EFSMs. Section VI contains an
experimental comparison of the abovementioned approaches. Section VI concludes
the paper and outlines directions for future improvement of the suggested algorithm.

2. EFSM Model and HDL-to-EFSM Extraction

Let V be a set of variables. A valuation is a function that associates each variable
with a value from the corresponding domain. The set of all valuations over V is
denoted as Dy. A guard is a Boolean function defined on valuations (Dy —
{true, false}). An action is a transformation of valuations (Dyv — Dy). A pair y — 8,
where v is a guard and & is an action, is called a guarded action. When we speak
about a function, it is implied that there is a description of the function in some

162

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

formal language (thus, we can reason about the function’s syntax, not only the
semantics).

An EFSM is a tuple M=(Sw,Vm Tm), where Su is a set of states,
Vm = (Iw U Om U Rw) is a set of variables, consisting of inputs (Im), outputs (Om)
and registers (Rw), and Tw is a set of transitions (all sets are supposed to be finite).
Each transition t € Tw is a tuple (s, yi—0, S't), where s; and s’ are respectively the
initial and the final state of t, whereas y; and &; are respectively the guard and the
action of t. A valuation v € Dvy is referred to as a context, while a pair
(s, v) € Sm x Dy is called a configuration. A transition t is said to be enabled for a
configuration (s, v) if st = s and yi(v) = true.

Given a clock C (a periodic event generator) and an initial configuration (So, vo), the
EFSM operates as follows. In the beginning, it resets (initializes) the configuration:
(S, v) < (S0, vo). On every “tick” of C, it computes the set of enabled transitions
E«—{teTm | st=s A y(v)=true}. A single transition t € E (chosen non-
deterministically) fires; the EFSM changes the configuration (updates the context
and moves from the initial state to the final one) (s, v) < (s'y, 8i(Vv)).

In this paper, we do not discuss in detail the way the EFSM models are extracted. At
the experimental phase, we use an implementation of the method introduced in [8].
The method deals with HDL descriptions written in synthesizable subsets of VHDL
and Verilog [9]. The major advantage of the approach is high automation — it
requires no information except HDL code. The method uses heuristics for
identifying states and clock signals and extracts the EFSM from the control flow
graph-based representation. For every process defined in the HDL description, a
single EFSM is usually built; all EFSM models of the description are defined over
the same set of variables. It should be emphasized that EFSM actions have the “flat”
syntax, which means that each action is a linear sequence of assignments.

We have enhanced the cited method by adding a new heuristic aimed at recognizing
the initial configuration. A guarded action y — &, is said to be resetting if the
following properties hold: (1) yr depends on exactly one clock signal, which is
called a reset; (2) & consists solely of assignments of the kind v=c, where
v e (OmURM) and c is a constant expression. Provided that there is only one
resetting action, that action is supposed to lead to the initial EFSM configuration.

3. The Original FATE Algorithm

The aim of the FATE algorithm is to generate a test that covers all transitions of a
given multi-EFSM system. A test is a set of test sequences, i.e. sequences of test
vectors. A test vector is a valuation over the joint set of the EFSMs’ inputs. The
algorithm includes three phases: an EFSM analysis, a random traversal and a
directed traversal.

163

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

3.1 EFSM Analysis

In the beginning, for each EFSM of the system, data and control dependencies
between its transitions are derived. Let t and t be transitions and v be a variable. v is
said to be defined in t (v € Defy) if 8; contains an assignment to v; v is said to be used
in t (v e Usey) if v appears either in y. (v € Use,) or in the right hand side of 5.
(v € Uses,). It is said that t is data dependent on t (via v) if there exists a variable v
such that v e (Def; n Uses.) and there exists a path P = {t;}]=, fromtto t (st =Su
and s'y, = s;) that does not define v. To keep the data dependency between t and t, if
v e Def;, there should be &:’s assignment with Vv in the right hand side that precedes
the assignments to v. It is said that < is control dependent on t (via v) if there exists a
variable v such that v e (Defi n Use,.) and there exists a path from t to t that does
not define v.
The derived data and control dependencies are represented by the directed graphs
whose vertices are the transitions and arcs are the dependencies. Thus, each EFSM
is associated with two such graphs (one is for the control dependencies; another is
for the data dependencies).
The second step of the analysis is counter detection. A register r is said to be a
counter if there is a loop in the EFSM such that: (1) there is a transition t that
defines r; (2) r is defined recurrently (the current value depends on the previous
one); (3) there is a transition t’ that is control dependent on t via r. For each counter,
all data dependency loops are saved.
Let us consider an EFSM M with Ry = {x, y} such that there is a loop which
consists of the following transitions:

1. y=true;d={x=yvy}

2. y=trug;6={y=x+1};

3. y=true;d={x=1};

4. y=(y=3)8={}
In this example, y is considered as a counter with a data dependency loop consisting
of transitions 1 and 2.

3.2 Random Traversal
After the analysis, the random traversal phase is launched. The phase is
parameterized with two values, L and N, where L is the length of a test sequence and
N is the number of test sequences in the test. The random traversal is described by
the following pseudo-code ({M; = (S;,V, T;)}1~, are the EFSMs being tested; result
is the generated test):

result <«

coverage <«

while |result| < N A coverage # U; T; do

reset ({Mi})

164

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

sequence <«
while |sequence| < L do
vector « @
for i € {1, ..., m} do
out <« {t € T; | st = Si}
while out # J do
t <« choose (out)
out <« out \ {t}
constraint <« refine(y., vector U v)
if isSAT (constraint) then
vector <« vector U solve(constraint)
coverage < coverage U {t}
break
end
end // while out
end // for i
apply (vector, {Mi})
sequence <« sequence - {vector}
end // while sequence
result <« result U {sequence}
end // while result
The pseudo-code above is based on the following functions: reset({M;}) initializes
the configurations of the models {Mi}; choose(T) returns a random item of the non-
empty set T; refine(y, v) replaces variables of the formula y with their values
according to the partial valuation v; iSSAT(y) checks whether the constraint y is
satisfiable; solve(y) returns a valuation v such that y(v) = 1; apply(v, {Mi}) assigns
the inputs of the models {M;} according to the partial valuation v and executes the
enabled transitions (uninitialized inputs are randomized). The symbols s; and v
denotes respectively the current state of the model M; and the context (shared among
all models).
Being defined over the same set of variables, the EFSM models may affect each
other while being co-executed. To minimize the influence, the following technique
is applied. Each EFSM M; is supplied with two parameters, Fi and A;, where F; is a
constant inversely proportional to the number of inputs used in the M;’s guards (the
more such inputs M; has, the more models are expected to be affected by M;) and A,
is a so-called aging factor (initially set to zero). The sum (Fi + Aj) is supposed to be
the priority for choosing the model M;. The priorities specify the order in which the
models are handled (fori e {1, ..., m} do...end). The main idea with the aging
factor is as follows. If test vector generation for M; fails (isSSAT(constraint) returns
false for an outgoing transition), A; is increased by a constant AA. Note that [7] has

165

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

no particular definition of AA; we use the value AA = mini=1m Fi. After the model
selection loop, the aging factor of the most priority model is set to zero.

3.3 Directed Traversal

If there are uncovered transitions after the random traversal, FATE proceeds with
the directed generation. Before describing the phase, let us make a remark. The
procedure below, applies Dijkstra’s algorithm for finding a shortest path in a
graph [10]; it is assumed that an arc weight is the number of registers used in the
transition’s guard. The directed traversal is performed separately for each EFSM.
Here is the pseudo-code (M is the EFSM being tested; result is the generated test):

targets « Ty \ coverage
while targets # J do

t <« choose(targets)
covered = false
for prefix € reach (M, s:) do
reset (M)
sequence <«
for vector € prefix do
apply (vector, M)
sequence <« sequence - {vector}
end // for vector
constraint <« refine(y:, V)
if isSAT (constraint) then
vector <« solve(constraint)
apply (vector, M)
sequence <« sequence - {vector}
result <« result U {sequence}
coverage <« coverage U {t}
covered < true
break
end
end // for prefix
if "covered then
if "process (M, t) then
warning “The transition t cannot be reached”
end
end
targets <« targets \ {t}
end // while targets
Besides the auxiliary functions defined above, this pseudo-code uses reach(M, s),
which returns the set of known test sequences reaching the state s of the model M,

166

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

and process(M, t), which tries to cover the transition t of the model M by taking into
account the control dependencies (it will be described later on). Note that if targets
includes transitions outgoing from the covered states, choose(targets) returns one of
them; transitions whose initial states has not been reached are selected only if there
are no others. Here is the description of process(M, t):

registers <« Ry M Useyp
for reg € registers do
defines « {t € Tu | reg € Def:}
for def € defines do
for prefix € reach (M, sgr) do
reset (M)
sequence <«
for vector € prefix do
apply(vector, M)
sequence <« sequence - {vector}
end
path <« shortestPath(M, s'ges, St)
path <« path - {t}
if isCounter (reg) then
constraint <« refine (Yger, V)
vector <« solve (constraint)
apply (vector, M)
sequence <« sequence - {vector}

loop <« processCounter (M, s'gesr, t, reqg)
if loop = null then
return false

end

path <« loop - path
else

path <« {def} - path
end

covered <« true
for p € path do
if reg ¢ Def, v p = t then
Y < VP
else

Y < Yo A Ytireg[Op]
end

constraint <« refine(y, v)
if isSAT (constraint) then

167

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

vector <« solve (constraint)
apply (vector, M)
sequence < sequence - {vector}
else
covered <« false
break
end
end // for p
if covered then
result <« result U {sequence}
coverage < coverage U {t}
return true
end
end // for prefix
end // for def
end // for reg
return false
The following notations are used: shortestPath(M, s, s') finds the shortest path
between the states s and s’ of the M’s state graph using Dijkstra’s algorithm;
isCounter(reg) checks whether the register reg is a counter; yy denotes the minimal
sub-constraint of the constraint y that depends on the variable v such that y — yy
holds; y[d] stands for the constraint produced from y by applying the substitution
corresponding to the action 3.

Let y=(x=const; A y=const;) and 6 ={x =z}, where x, y, and z are variables,
while const; and const, are constants. In this case, yx=(x=const;) and
v[8] =(z = const; A 'y = consty).
Here is the pseudo-code for processCounter(M, s, t, reg).
if Yejreg(v) then
return {}
end
loop ¢ null
loopIterator <« createlLoops (M, s, reqg)
while ™Yt|req (V) do
while hasNext (loopIterator) do
tempContext <« Vv
tempSequence <« sequence
loop ¢« next (looplterator)
for 1 € loop do

constraint <« refine(yi, v)
if i1isSAT (constraint) then

168

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

vector <« solve (constraint)
apply (vector, M)
sequence < sequence - {vector}
else
v « tempContext
sequence <« tempSequence
loop « null
break
end
if loop # null A Ytjreq (V) then
return loop
end
end // for loop
end // while hasNext
end // while 7y
return null
The pseudo-code utilizes three special functions: createLoops(M, s, r) constructs all
possible elementary loops in the M’s state graph that start from the state s and
include transitions dependent via the register r and returns the iterator that combines
a bounded number of elementary loops into complex ones (the elementary loops are
constructed by using Dijkstra’s algorithm to connect dependent transitions);
hasNext(i) checks whether the iterator i can produce more loops; next(i) returns the
next loop and updates the iterator i. Note that the limit on the loop length is chosen
individually for each design.

4. The FATE+ Algorithm

We have implemented a slightly modified version of the original FATE algorithm,
so-called FATE+. Let us consider the changes having been made.

4.1 Transition Selection

In FATE+’s random traversal, choose(T), where T is a non-empty set of transitions,
works a bit differently. If there exist uncovered transitions, the function randomly
chooses one of them; otherwise, it returns an arbitrary item of T. Our experiments
show that this minor change significantly increases the effectiveness of the random
generation phase.

4.2 Symbolic Execution

FATE implements an approximate method for checking whether a given path is
feasible (for p € path do ... end). Let P be a path, t be the last transition of P, r be a
register used in y;, and v be a context. Given a transition p of P, the algorithm
checks whether p defines r. If it does, the following constraint is constructed and

169

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

tried to be satisfied: y < vp A yyr[8p]. 1t is worth reminding that vy, is the minimal
conjunctive member of y; that includes all occurrences of r, while yy[dp] is the
formula produced from yyr by applying the forward substitution corresponding to
the action dp. The method looks inadequate in the sense that if y is unsatisfiable for
some p, it does not really mean that P is infeasible.
We suggest replacing the approximate approach with full-scale symbolic execution
that takes into consideration all the variables defined and used along the path. To be
more precise, we suggest using the well-known method for computing the weakest
precondition of a loop-free program, i.e. a sequence of guarded actions, with respect
to a postcondition [11]. The main idea is as follows. Let y = true. Starting from the
end of P, for each transition p, including t, the following transformation of y is
performed: y < v A 7[8p]. Note that the input variables are renamed in such a way
that each transition refers to a unique copy of the inputs. As soon as P is processed,
all occurrences of the registers are replaced by the values taken from wv:
y < refine(y, v). P is feasible if and only if vy is satisfiable. A test sequence can be
constructed by solving the constraint.
Let us consider an EFSM M with Iy = {i0, i1, i2} and Rm = {X, vy, z} such that there
is a path which consists of the following transitions:

1. y=true; 6={z=i0};

2. y=(i1=1);6={x=2z};

3. y=true; d={y=i2};

4 y=(x=4ny=2);5={}
For this path, y = (i0[0] =4 A i1[1] =1 A i2[2] = 2) is produced.

4.3 Test Reduction

In FATE, there is a frequent situation where multiple test vectors cover the same
transition. To overcome the issue, we have introduced a simple test reduction
technique. While generating tests, each test sequence is associated with the
transitions having been covered. At the end of the process, the set of test sequences
W and the set of covered transitions Ty are available. The technique is as follows.
First, the transitions reached by unique test sequences are identified. Each test
sequence that covers at least one such transition is moved from W to the reduced test
R; all transitions covered by the sequence are excluded from Tcoy. Then, while Teoy is
not empty, the following actions are performed. The test sequences that cover
largest subsets of T, are determined; among them, a shortest one is chosen. The
selected sequence is moved from W to R, while the covered transitions are removed
from Teov.

5. The RETGA Algorithm

The algorithm proposed in this paper is called RETGA (Retrascope EFSM-based
Test Generation Algorithm). It has the same phases as FATE; moreover, the EFSM

170

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

analysis phase is identical to FATE’s one. As FATE+, it uses the modified
choose(T) function and applies the test reduction. Let us consider the main phases in
more detail.

5.1 Random Traversal

As in FATE, the EFSM models are processed one-by-one; though a different
arbitration principle is used. The priority of a model depends on the coverage
having been achieved: the better the coverage is, the less the priority is. Such a
strategy is to avoid a situation when a covered EFSM of the highest priority
prevents generating inputs for poorly covered models.
The pseudo-code for the random traversal is as follows (as before, {M; =
(S;,V,T;)}i2, are the EFSMs being tested; result is the generated test):
result « ¢
coverage « O
ignored <« O
Lo« (Zi 1T:el) / (25 1Sil)
while ignored < L
reset ({M;i})
sequence <«
usefulSequence <« false

A coverage # U; T; do

transitions <«
buffer «
while |buffer| < L do
vector <« @
usefulVector <« false
for i € {1, ..., m} do
out <« {t € Ty | st = si}
while out # & do
t <« choose (out)
out <« out \ {t}

constraint <« refine(y., vector U v)
if isSAT (constraint) then

vector <« vector U solve(constraint)
if t ¢ coverage then
usefulSequence <« true

coverage < coverage U {t}
end

if t ¢ transitions then
usefulVector <« true

transitions <« transitions U {t}
171

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

end
break
end
end // while out
end // for i
apply (vector, {M})
buffer <« buffer - {vector}
if usefulVector then
sequence < sequence - buffer
buffer «
end
end // while sequence
if usefulSequence then
result <« result U {sequence}
else
ignored <« ignored + 1
end
end // while result

5.2 Directed Traversal
Before describing the directed traversal phase, let us give some definitions. A
piecewise path is a sequence of paths, so-called pieces, for which there is a path
including all of the pieces (with no overlaps) in the given order. Given a register r, a
partial definition path is a piecewise path that propagates at least one input to r and
has no transitions not taking part in the propagation.
The propagation of an input to a register is inductively defined as follows. If there
exist a transition t and a variable r* such that &; contains an assignment to r" that
involves x, then x is said to be propagated to r* along the piecewise path {{t}}. If
(1) x is propagated to r* along the path P, (2) t is data dependent on t, the last
transition of the last piece of P, via r", and (3) 8. contains an assignment to r which
involves r, then x is said to be propagated to r along the path P - {{t}}.
The directed traversal is performed separately for each EFSM. Here is the pseudo-
code (M is the EFSM being tested; result is the generated test):
targets « {t € (Tu \ coverage) | reach(M, s:) # J}
while targets # J do

t <« choose(targets)

path <« shortestPath” (M, s:)

path <« path - {t}

if isFeasible (M, path) then

sequence < solve (M, path)
result <« result U {sequence}

172

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

coverage <« coverage U {t}
else
if "process (M, t) then
warning “The transition t cannot be reached”
end
end
targets « (targets \ {t}) U {1t € Ty | st = st}
end // while targets
Here, shortestPath*(M, s) returns a shortest (in terms of the number of transitions)
path from the initial state of the model M to the state s; isFeasible(M, P) constructs
the weakest precondition of the path P with respect to true and checks whether it is
satisfiable in the initial context of the model M; solve(M, P) satisfies the constraint
and converts the solution to the test sequence (uninitialized inputs are randomized).
The process(M, t) function looks as follows:
for counter € {r € Ru N Usey | isCounter(r)} do

loops <«
{{{t:i}}: | {ti}: € dataDeploops (M, counter)}
if processLoops (M, t, counter, loops) then
return true
end
end // for counter
for define € partialDefPaths (M, Ru M Usey) do
if processPieces (M, t, define) then
return true
end
end // for define
return false
In the pseudo-code above, dataDepLoops(M, c) denotes the set of data dependency
loops for the counter ¢ of the model M (each loop starts with the transition that
defines the counter). As you can see, loops is the set of piecewise paths relating to
the data dependency loops. partialDefPaths(M, R) returns the set of partial
definition paths for M’s registers of the set R. Here is the description of
processLoops(M, t, counter, loops):
groups < groupLoops (loops, counter)
for group € groups do
loopIterator <« init (M, group)
while hasNext (loopIterator) do
loop <« next(looplterator)
if processPieces (loop - {{t}}) then
return true
end
end //while hasNext
173

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

end // for group

return false
Here, groupLoops(L, counter) splits the set of loops (piecewise paths) L into disjoint
subsets according to the first transition (which defines the counter register). The
loop iteration scheme is similar to FATE’s one, though each result is a piecewise
path. The pseudo-code for processPieces(M, t, {P;}¥_,) is shown below:

if reach(M, s:) = & then

return false

end
path <« shortestPath” (M, start (Pi))
for i € {1, ..., k-1} do

path <« path - P;
if "isFeasible (M, path) then
return false
end
path’ «
path - shortestPath (M, end(P;), start (Pi:1))
failed « true
if isFeasible (M, path’) then
path <« path’
failed <« false
else
for bridge € paths (M, end(P;), start(Pi:1)) do
path’ « path - bridge
if isFeasible (M, path’) then
path <« path’
failed « false
break;
end
end // for bridge
end // if isSAT
if failed then
return false
end
end // for i
path <« path - Px
if "isFeasible (M, path) then
return false
end
sequence < solve (M, path)
result <« result U {sequence}

174

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

coverage < coverage U {t}

return true
In the pseudo-code, start(P) and end(P) return respectively the initial and the final
state of the piecewise path P; paths(M, s, s") returns the list of cycle-free paths
between M’s states s and s’ sorted by length.

5.3 Examples

Let us consider how the RETGA algorithm works on the example of two models,
namely EFSM-1 and EFSM-2. Both models correspond to the cases that are difficult
for FATE.

Fig.1. EFSM-1

In EFSM-1 (see Fig. 1), the random traversal is unlikely to cover the transition 3—4
as it requires, first, walking through the path 0—1—2—3 and, second, assigning
i0 « 4 (while traversing 0—1) and i2 « 2 (while traversing 2—3). The random
traversal is most likely produce two input sequences that cover 0—1—2—3 and
0—1—3. As for the directed traversal of 3—4, the following partial definition paths
are found for the registers x and y used in the transition’s guard:

1. 0—1—-3(i0 is propagated to x via z);

2. 0—1—-2 (i0is propagated to x via z);

3. 23 (i2 is directly assigned to y).
The first path does not initialize y and has no continuations that could do that. For
the second one, the pieces {0—1—2, 3—4} are composed and supplemented by the
only “bridge” 2—3. For the third path, the “prefix” 0—1—2 explored at the random
traversal phase is put before the partial definition path. In both cases, the path
0—1—2—3—4 is constructed. To check whether the path is feasible, the weakest
precondition is computed: i0[1] =4 A i1[2] = 1 A i2[3] = 2 (the indices in the square

175

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

brackets refer to the positions of the test vectors in the test sequence). It is
satisfiable; the solution is as follows:

1. i0=4;iland i2 are randomly valued;

2. i1=1;i0and i2 are randomly valued;

3. i2=2;i0and il are randomly valued;

4. i0, il and i2 are randomly valued.

y: true y: il ==
0:x0=1i0 0: x3 =x2

Fig.2 EFSM-2

In EFSM-2 (see Fig. 2), a transition of the interest is 1—2. The shortest path that
reaches the transition is 0—1—1—1—2 with the assignment i0 <~ 4 on the first
step. There is only one partial definition path for x3, namely 0—1—1—1. The path
can be supplemented only with the target transition, which gives 0—1—1—1—-2.
The weakest precondition is i0[1] =4 A i1[2] =0 A i1[3] =0 A i1[4] =0 A i1[5] =0
and it is satisfiable.

6. Experimental Results

The RETGA algorithm has been implemented as a part of the Retrascope [12]
project. It uses the Fortress [14] library together with the Z3 [15] solver for
representing expressions and solving constraints. To compare the algorithm with
FATE and FATE+, the ITC'99 benchmark [13] was utilized.

Table | shows the characteristics of the EFSMs extracted from some ITC'99’s
designs. As it has been already said, we used the extended variant of the method
described in [8] to build the models, though all of the presented approaches do not
depend on the way EFSMs are produced.

Table I. Characteristics of the Extracted EFSMs

Design | Number of States | Number of Transitions
b01 8 24
b02 7 17
b04 3 29
b06 7 33

176

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

Design | Number of States | Number of Transitions
b07 8 21
b08 4 12
b10 11 38

Table Il and Table 111 show the test generation results. All generators achieve 100%
coverage for b01, b02, b04 and b06 and 95% coverage for b07 (there is an infeasible
transition). The difference in coverage reached by RETGA and FATE / FATE+ for
b08 is due to the fact that FATE and FATE+ handle data dependencies in a simpler
way; in particular, they do not try different “bridges”. The difference in coverage
reached by FATE and FATE+ for b08 and b10 demonstrates the advantage of the
symbolic execution over the simplified approach used in FATE. The difference in
size of the tests generated by FATE and FATE+ relates to the test reduction
technique applied in FATE+. The RETGA'’s tests are usually shorter since it rejects
redundant random vectors.

It is significant to note that the L and N parameters (which are related to the random
traversal phase of FATE and FATE+) were set to Y72, |S;| and 272, |T;| / 2724 |Si]
respectively. The loop iteration limit (which is relevant for all of the generators) was
set to 8 (this value is enough for b07 and b08, whereas other designs have no
counters).

Table Il. Number of Test Vectors in the Tests

FATE | FATE+ | RETGA
b01 | 115 70 49
b02 62 48 33
b04 | 104 104 36
b06 | 198 100 76
b07 | 246 208 166
b08 31 31 52
b10 | 173 170 135

Table I11. Transition Coverage Achieved by the Tests

FATE | FATE+ | RETGA
b01 | 100% | 100% 100%
b02 | 100% | 100% 100%
b04 | 100% | 100% 100%
b06 | 100% | 100% 100%

177

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

FATE | FATE+ | RETGA
b07 | 95% 95% 95%
b08 | 75% 83% 100%
b10 | 89% 100% 100%

The tests generated by RETGA were applied to the designs by using the Questa
simulator [16]. The source code coverage having been achieved is presented in
Table IV (each column corresponds to some metric of the Questa coverage report).
It can be seen that the code coverage is rather high.

Table IV. Source Code Coverage Reached by RETGA

Statements | Branches | FSM States | FSM Transitions
b01 100% 100% 100% 100%
b02 100% 100% 100% 100%
b04 100% 100% 100% 100%
b06 100% 100% 100% 100%
b07 93.93% 94.73% 100% 100%
b08 100% 100% 100% 100%
b10 100% 100% 100% 100%

7. Conclusion

In this paper, an EFSM-based test generation algorithm has been proposed. The
approach allows reaching better transition coverage with less number of test vectors
than the known methods. However, the research is still in progress; there are many
issues to be solved. Let us mention some of them. First, the approach is hardly
applicable to complex hardware designs involving a great number of tightly
connected EFSMs. It uses a simple coverage-based heuristic to decide which EFSM
to handle next, whereas advanced techniques are expected to rely on the semantics
of a system under test. Second, the method for searching “bridges” needs to be
optimized. Being irrelevant for simple EFSMs (as ones presented in Section V1),
this issue is of high value and importance for real-life hardware. Third, in the
current implementation, each guard (each constraint, in general) is viewed as an
indivisible entity and solved as a whole. It is not an issue as long as the goal is to
cover EFSM transitions, but it may lead to poor expression coverage as there are
many ways to satisfy a constraint. Finally, the quality of testing strongly depends on
the models being used. It seems to be useful to formalize a notion of a “good”
model.

178

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

References

[1].
[2].

13].

[4].

[5].
[6].

[71.

[8l.

[9].
[10].

[11]
[12]
[13]
[14]
[15]
[16]

Bergeron J. Writing Testbenches: Functional Verification of HDL Models, Kluwer
Academic Publishers, 2003.

Blyler J. Are Best Practices Resulting in a Verification Gap?
(http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-
verification-gap).

Jusas V., Neverdauskas T. FSM Based Functional Test Generation Framework for
VHDL. Proceedings of International Conference on Information and Software
Technologies (ICIST), 2012. pp. 138-148.

Duale A.Y., Uyar M.U. A Method Enabling Feasible Conformance Functional Test
Sequence Generation for EFSM Models. IEEE Transactions on Computers, 53(5), 2004.
pp. 614-627.

Lazarev V.G., PijlI' E.l. Sintez upravljajushhih avtomatov. Energoatomizdat, Moscow,
1989. 328 p. (in Russian)

Cheng K.T., Krishnakumar A.S. Automatic Generation of Functional Vectors Using the
Extended Finite State Machine Model. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 1996. pp. 57-79.

Di Guglielmo G., Di Guglielmo L., Fummi F., Pravadelli G. Efficient Generation of
Stimuli for Functional Verification by Backjumping Across Extended FSMs. Journal of
Electronic Functional testing: Theory and Application, 27(2), 2011. pp. 137-162.
Kamkin A. Smolov S. The Method of EFSM Extraction from HDL: Application to
Functional Verification. Proceedings of the Conference on Problems of Perspective
Micro- and Nanoelectronic Systems Development, Part 11, 2014. pp. 113-118.

Navabi Z. Languages for Design and Implementation of Hardware. W.-K. Chen (Ed.).
The VLSI Handbook. CRC Press, 2007. 2320 p.

Dijkstra EIW. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1, 1959, pp. 269-271.

Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976, 217 p.

Retrascope toolkit. http://forge.ispras.ru/projects/retrascope

ITC’99 benchmark. http://www.cad.polito.it/tools/itc99.html

Fortress library. http://forge.ispras.ru/projects/solver-api

Z3 solver. http://z3.codeplex.com

Questa simulator. http://www.mentor.com/products/fv/questa/

179

http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-verification-gap/
http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-verification-gap/
http://forge.ispras.ru/projects/retrascope
http://www.cad.polito.it/tools/itc99.html
http://forge.ispras.ru/projects/solver-api
http://z3.codeplex.com/

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

Noaxopa K reHepauumn TecToB, HauesleHHbIX
Ha NoKpbiTUe Koga HDL-onucaHun
annapaTtypbl, HaA OCHOBE pacCLUMPEHHbIX

KOHEe4YHbIX aBTOMaToB

L U. Menvuuuenxo <igor.melnitxenko@gmail.com=>,
2 A. Kamxun <kamkin@ispras.ru=,
2C. Cmonos <smolov@ispras.ru=,
Y 0AO0 «Uncmumym snexmponnwix ynpaensiowux mawun um. 4.C. Bpykay,
119334, Mocxaa, yn. Basunosa, 24
2 Uncmumym cucmemnozo npozpammuposanus PAH,
109004, Mocxea, yn. Anexcandopa Condicenuyvina, 25

AHHoOTanus. ['eHepals TeCTOB MO MOJEISIM IIMPOKO HCHONIB3YeTCs M (QyHKIMOHAIBHON
BepuduKkanuu anmapatypsl. PacmmpenHble koHeuHble aBTomaThl (extended finite state
machines, EFSM) — yno0Hslii opmanusm s MOIeIupoBanus HuppPOBBIX ycTpoicT. B
OTJINYUE OT OOBIYHBIX KOHEYHBIX aBTOMaToB, B EFSM-Monensax ynpapisioniue CHTHAIBI U
JaHHbIE pa3IeNeHbl, YTO IO03BOJET OIMCHIBATH CHCTEMBI B 0ojiee KOMIIAaKTHOH (opme,
YMEHbIIasi B HEKOTOPOM CMBICIIE PUCK KOMOMHATOPHOTO B3pbIBa IpH Beprudukanuu. OgHaKo
o0xon rpada cocrosHNt EFSM-Moznenu sBisieTcss HETPUBHAIBHOW 3a/1aueii M3-3a HAHMYUS
YCJIOBHI Ha BBINOJHUMOCTH MEPEX0/10B. B maHHOM cTaThe MpeAcTaBIeH METO]| TeHeparun
tectoB 1o EFSM-mozmenssM W TIpOBEAEHO €ro CpaBHEHHE C APYTHMH TOIXOJaMH.
IIpemmaraemplii MeToZ codeTaeT CiydailHeIi 00Xoa rpada COCTOSHHH aBTOMara |
HaIpaBJICHHBIA TOHMCK peanu3yeMbix myteil. IlepBas m3 yka3aHHBIX (a3 HampapieHa Ha
MOKPBITHE «IIPOCTBIX» IEPEXOJ0B, BTOPas — «CJIOXKHBIX». [lo CI0XKHOCTBIO NEPexonoB
3/1eCh MIOHUMAETCsl HaJIMYhe 3aBHUCUMOCTEH OXpaHHBIX YCIOBHUH NMEpexof0B OT BHYTPEHHHUX
nepeMeHHbIX. [Ipu HampaBJIeHHOM IMOWCKE MCIHOJB3yeTcs WH(OpPMAIHsA O 3aBHCUMOCTSX 110
JaHHBIM W YIPABICHUIO MEXIy IMEepexofaMu aBTOMAaTa M 3aJeHCTBYeTCS CHMBOIMYECKOE
WCTIONIHEHNE. BBITO BBEIMONHEHO CpaBHEHHE IPEATaraeMoro MeToja C CYIIECTBYIOIUMU
QHAJIOTAMH ITyTEM COIOCTAaBIECHUs MTapaMEeTPOB TECTOB, CTECHEPHPOBAHHBIX JUIS 3aJaHHOTO
Habopa ommcaHuit MoAynel mnudpoBoi ammapaTypsl. Bo Bcex ciydasix B KadeCTBe BXOIHBIX
MaHHBIX HcHoab30Bamuch EFSM-Momenn, aBTOMATHYECKH M3BJIEUYEHHBIE W3 KOJA.
HOqueHHble JAaHHBIE II0Ka3bIBalOT, YTO B CPAaBHCHUHU C JPYIrUMH IIOAXOJaMU METON
oOecrieuynBaeT JIydllne MoKa3aTelad NOKPBITUI UCXOJHOTO Koaa Gojiee KOPOTKUMH TECTaMH.
B Oynymiem raHupyeTcsi peaan30oBaTh psj ONTHMH3AIMH, HAPABICHHBIX HA IPHMEHEHHE
MeTo/1a K mpombinuieHHbIM HDL-onucanusm.

KiioueBble cjI0Ba: TPOSKTHPOBAHHE amlmapaTrypbl;, S3bIK ONMCAHHS aNmapaTyphl;
HMHUTAITUOHHAA Bequ)I/IKaLlHﬂ; resepanus TECTOB, MO}ICJ’II/lpOBaHI/le; paCIJ.IPlpCHHbIﬁ
KOHEYHBIH aBTOMAT; 00X0x rpada; cirydaiiHblil 00X0.I; OUCK C BO3BpATaMH; CUMBOJIMYECKOE
HCIIONIHEHNE; Pa3pelIeHHe OTPaHNICHHUI.

DOI: 10.15514/ISPRAS-2015-27(3)-12

180

N.B. Menbunuenxo, A.C. Kamkun, C.A. Cmoros. IToaxo k reHepaluy TeCTOB, HAalleJICHHBIX Ha MOKpbITHE Kojga HDL-
OIMCAHHH aNmapaTypbl, HA OCHOBE PACIIMPEHHBIX KOHeuHbIX... Tpyast UCIT PAH, tom 27, Bem. 3, 2015 1., . 161-182

Jas uutupoBanusi: Mensuuuenko U.B., Kamkun A.C., Cmonos C.A. Iloaxon k renepauuu
TECTOB, HAlCJICHHBIX Ha MNOKpbiTue Kkojga HDL-onucanmii anmaparypbl, Ha OCHOBE
pacuMpeHHbIX KoHeuHbIX aBroMaToB. Tpynasl UCIT PAH, tom 27, Bemm. 3, 2015 r., ctp. 161-
182 (na anrmuiickom s3bike). DOT: 10.15514/ISPRAS-2015-27(3)-12.

Cnucok nutepaTtypbl

[1].
[2].

3.

[4].

[5].
(6].

[71.

(8.

[9].
[10].

[11].
[12].
[13].
[14].
[15].
[16].

Bergeron J. Writing Testbenches: Functional Verification of HDL Models, Kluwer
Academic Publishers, 2003.

Blyler J. Are Best Practices Resulting in a Verification Gap?
(http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-
verification-gap).

Jusas V., Neverdauskas T. FSM Based Functional Test Generation Framework for
VHDL. Proceedings of International Conference on Information and Software
Technologies (ICIST), 2012. pp. 138-148.

Duale AlY., Uyar M.U. A Method Enabling Feasible Conformance Functional Test
Sequence Generation for EFSM Models. IEEE Transactions on Computers, 53(5), 2004.
pp. 614-627.

Jlazapes B.I'., Ilwiine E.1. CuHTE3 yHpaBISIOIIKAX aBTOMATOB. JHepzoamomuzoam,
1989. 328 c.

Cheng K.T., Krishnakumar A.S. Automatic Generation of Functional Vectors Using the
Extended Finite State Machine Model. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 1996. pp. 57-79.

Di Guglielmo G., Di Guglielmo L., Fummi F., Pravadelli G. Efficient Generation of
Stimuli for Functional Verification by Backjumping Across Extended FSMs. Journal of
Electronic Functional testing: Theory and Application, 27(2), 2011. pp. 137-162.
Kamkin A. Smolov S. The Method of EFSM Extraction from HDL: Application to
Functional Verification. Proceedings of the Conference on Problems of Perspective
Micro- and Nanoelectronic Systems Development, Part 11, 2014. pp. 113-118.

Navabi Z. Languages for Design and Implementation of Hardware. W.-K. Chen (Ed.).
The VLSI Handbook. CRC Press, 2007. 2320 p.

Dijkstra EW. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1, 1959, pp. 269-271.

Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976, 217 p.

Hucrpyment Retrascope. http://forge.ispras.ru/projects/retrascope

Tecroseriit Habop 1TC’99. http://www.cad.polito.it/tools/itc99.html

BubGnnoreka Fortress. http://forge.ispras.ru/projects/solver-api

Petarens orpannuenuii Z3. http://z3.codeplex.com

Cumynsatop Questa. http://www.mentor.com/products/fv/questa/

181

http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-verification-gap/
http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-verification-gap/
http://forge.ispras.ru/projects/retrascope
http://www.cad.polito.it/tools/itc99.html
http://forge.ispras.ru/projects/solver-api
http://z3.codeplex.com/

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

182

Bunagumup Bypenkos. O peannsanuyu GpopMaabHOTO METO/1a BEPH(PUKAIME MaCIITAOUPYEMbIX CHCTEM ¢ KOTePEHTHOM
namsteio. Tpyast ICII PAH, tom 27, Beim. 3, 2015 1., ¢. 183-196

On the Implementation of a Formal Method
for Verification of Scalable Cache Coherent
Systems

Vladimir Burenkov <burenkov_v@mcst.ru>,
Bauman Moscow State Technical University,
105005, Moscow, Russian Federation, 2" Baumanskaya st., 5
MCST, 119334, Moscow, Russian Federation, Vavilov st, 24

Abstract. This article analyzes existing methods of verification of cache coherence protocols
of scalable systems. Analyzed methods include model checking, deductive verification,
methods that extend these two methods: compositional verification methods and abstraction-
based methods. Based on the research literature, the paper describes a method of formal
parameterized verification of safety properties of cache coherence protocols. The method is
based on syntactical transformations of Promela models. First, a mathematical model
(transition system) of cache coherence protocols is described. Second, the corresponding
abstract model is presented according with the concrete model transformations. These
transformations lead to abstract model that is independent of the number of processors in the
system under verification. The paper proposes a design of a verification system for cache
coherence protocols. The main part of the design is a Promela translator and abstract
transformations subsystem that obtains an internal representation of a Promela model and
modifies it according to the transformations. The article analyzes the method in terms of
development and examination of the corresponding Promela model of the German cache
coherence protocol. Examples of the syntactic transformations are shown. In order to
demonstrate the method’s ability to find bugs, verification results of two buggy versions of
the German protocol obtained from the literature are presented and analyzed. Drawbacks of
the method are presented. In particular, the usage of a limited Promela subset leads to
unnecessary complications and unnatural models. The paper discusses extension and
automation of the method needed to adapt it to verification challenges of the Elbrus
MiCroprocessors.

Keywords: formal verification; model checking; deductive verification; cache coherence
protocol; Elbrus
DOI: 10.15514/ISPRAS-2015-27(3)-13

For citation: Burenkov Vladimir. On the Implementation of a Formal Method for
Verification of Scalable Cache Coherent Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 183-196. DOI: 10.15514/ISPRAS-2015-27(3)-13.

183

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

1. Introduction

Modern microprocessor systems are scalable — the number of cores per chip
increases and chips are combined into clusters. Each processor of the system has
access to the shared address space. However, memory is physically distributed
among the processors in order to increase the bandwidth and reduce the latency to
local memory. Thus, access to the local memory is faster than access to the remote
memory. To decrease the memory bandwidth demands of a processor, processors
are equipped with multilevel caches. Caching of shared data introduces the problem
of cache coherence.

To solve the problem, computer architects often use hardware mechanisms that
implement cache coherence protocols. Concurrent work of many hardware devices
(for example, cache and main memory controllers), which exchange information in
accordance with a cache coherence protocol, results in a colossal size of the
protocol’s state space. This, in turn, makes verification of cache coherence protocols
an extremely hard task.

To work out the problem, scientists have been conducting research in the direction
of formal methods for the past few decades and achieved a level of success.
However, scalable verification is still an issue.

Scalability leads to the need for formal verification methods that are capable of
adapting to it. As the size of systems increases, the fully automated method of
model checking reaches its limits and can no longer be used due to the state space
explosion problem.

As a rule, existing formal approaches to verification are either inapplicable to
industrial-strength microprocessor systems or require an enormous amount of
manual work.

2. Primary Verification Methods

Formal methods provide a mathematical proof of the correspondence between a
model of the object under verification and the object’s specification, that is, a set of
properties it is supposed to satisfy. A mathematical model of reactive systems — and
cache coherence protocols are examples of reactive systems — that allows to
systematically represent systems components, their coordination and interaction, is a
transition system [1].

The main approaches to formal verification are model checking and deductive
verification.

The method of model checking [2] systematically explores the finite state space of
the protocol under verification by means of specific algorithms. The advantages of
model checking are full automation and generation of counterexamples that help us
find the sources of bugs. The main disadvantage is the state space explosion
problem. Modern cache coherence protocols have too many states for an effective
state space inspection to be feasible.

Let us consider verification of safety properties, which are described by linear
temporal logic (LTL) formula Gp, where p is an assertion — a formula constructed
184

Bunagumup Bypenkos. O peannsanuyu GpopMaabHOTO METO/1a BEPH(PUKAIME MaCIITAOUPYEMbIX CHCTEM ¢ KOTePEHTHOM
namsteio. Tpyast ICII PAH, tom 27, Beim. 3, 2015 1., ¢. 183-196

by applying logical connectives to variables of the model. If the assertion is true in
each state of the model, then p is an invariant of the model. According to the
method of deductive verification, in order to prove Gp, it is necessary to develop an
auxiliary assertion ¢, which is an over-approximation of the state space, and then
show that ¢ implies p (i.e., that ¢ is stronger than p). The method is based on the

following inference rule [1]:

I1. @is truein the initial states of the model
12. All transitions preserve ¢
3. p—>p

Gp

An assertion ¢ is called inductive if it satisfies the premises 11 and 12. An inductive

assertion is always an over-approximation of the set of reachable states. If p is an
invariant of the system under verification, then there always exists an inductive
assertion ¢ stronger than p [1]. The initial assertion p is rarely inductive. As a rule,

the verification engineer must develop an auxiliary assertion and check the validity
of the premises 11-13.

Deductive verification allows us to work with systems with infinite number of
states. Theorem provers assist in using formal logic for reasoning about
mathematical objects. Popular tools are ACL2, PVS, Isabelle. The underlying logics
of theorem provers vary substantially. However, all theorem provers support rich
and expressive logics. In general, expressiveness of a logic leads to its
undecidability. That means that there is no automatic procedure that, given a
formula, can always determine if there exists a derivation of the formula in the
logic. The use of theorem proving presumes interaction with an expert user and is a
complicated creative process. When the theorem prover cannot find the derivation
of a formula given a proof outline, it is very hard to find the actual bug in the system
under verification.

Reference [3] describes the experience of using the PVS theorem prover for
parameterized verification of the FLASH cache coherence protocol. During the
proof construction, authors manually looked for candidates for inductive assertions
many times. When they failed to prove their inductiveness, they analyzed the
reasons for that and devised additional conditions that transformed the assertion into
an inductive one. This process is extremely laborious, which is why methods that
are solely based on theorem proving can only find a limited usage in verification of
cache coherence protocols.

3. Verification Methods for Scalable Systems

Development of verification methods for scalable systems may be carried on in
several directions: 1) improvement of methods based on model checking; 2)

185

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

improvement of methods based on deductive verification; 3) combination of the
methods from the first and the second groups.

Methods of verification of cache coherence protocols deployed in industrial-strength
microprocessor systems must satisfy a number of requirements: 1) possibility of
conducting verification in a reasonable amount of time; 2) high level of automation;
3) ability to provide information about sources of bugs.

Model checking or deductive verification on their own do not meet these needs.
Consequently, building a general infrastructure that would combine and further
develop methods of model checking and deductive verification seems to be the most
promising approach to verification of scalable systems.

4. Abstraction and Compositional Model Checking

The main approaches allowing the application of model checking to verification of
scalable systems are abstract model checking and compositional verification [2].
Abstraction methods diminish the number of states of the model under verification
and preserve the properties of interest at the same time.

Equivalence relations, which guarantee that the models will have the same
behaviors, usually do not decrease the number of states sufficiently. Instead,
simulation relations, which relate models to their abstractions, are used. The
simulation guarantees that every behavior of a model is a behavior of its abstraction.
However, the abstraction might have behaviors that are not possible in the original
system.

Abstract state spaces may be obtained by means of under-approximation methods,
which remove behaviors, or over-approximation methods, which add new
behaviors. Thus, in case of under-approximation, a bug in the abstract model
implies a bug in the concrete model, and in case of over-approximation, correctness
of the abstract model implies correctness of the concrete model. Further in this
article we only consider over-approximations, also known as conservative
abstractions.

Developing abstract models involves finding a compromise between two conflicting
goals: 1) generation of small abstract models that can be model checked; 2)
generation of precise abstract models.

Usually, the smaller the model, the more behaviors it allows. This may lead to
spurious counterexamples that are not present in the concrete model. There are at
least two ways out: 1) construction of precise abstract models; 2) analysis of
counterexamples and modification of the abstract model according to the acquired
information (counterexample-guided abstraction refinement).

Methods that create precise abstract models (for example, based on counter
abstraction or environment abstraction [4]) lead to models of big size in case of
complicated protocols.

The idea of compositional verification [5] is to exploit the natural decomposition of
a distributed system into processes. Processes are verified individually (with a

186

Bunagumup Bypenkos. O peannsanuyu GpopMaabHOTO METO/1a BEPH(PUKAIME MaCIITAOUPYEMbIX CHCTEM ¢ KOTePEHTHOM
namsteio. Tpyast ICII PAH, tom 27, Beim. 3, 2015 1., ¢. 183-196

generalized environment), then the results are combined, and a verdict about
correctness of the initial model is made. A compositional approach must provably
lead to simplified models satisfying the properties of the initial model.

5. A Method of Compositional Model Checking

5.1 General Idea

The method described in this paper adapts the method [6] to work with a subset of
Promela. The method is based on a combination of model checking and theorem
proving. The choice of Spin is motivated by the fact that Spin is a modern and
constantly evolving tool that supports many optimizations and verification modes.
The Promela language is convenient for description of distributed systems,
including cache coherence protocols. Moreover, Spin may be used as the basis for
generators of test programs the purpose of which is verification of implementations
of cache coherence protocols [7].

The method shows how to build an abstract model that simulates a given concrete
model of a cache coherence protocol. The construction is performed by means of
syntactic transformations of the concrete Promela model.

5.2 A Mathematical Model of Cache Coherence Protocols

Cache coherence protocols may be seen as asynchronous systems of communicating
processes in which a process is a finite automaton. Then a mathematical model of a
cache coherence protocol is a system of communicating finite automata.

A Promela model specifies the behavior of a set of asynchronously executing
processes in a distributed system. Each Promela process defines an extended finite
automaton. Thus, Promela is suitable for describing models of cache coherence
protocols.

By simulating the execution of a Promela model we can build a digraph of all
reachable states of the model. Each node in the graph represents a state of the
model, and each edge represents a single possible execution step by one of the
processes. This graph is always finite [8].

Safety properties can be interpreted as statements about the presence or absence of
specific types of nodes in the reachability graph.

Let us consider the transition system corresponding to the reachability graph. The
following discussion considers a subset of Promela.

A transition system is a triple TS =(S, Sy, E) , where S is a finite non-empty set of
states, S, < S is a non-empty set of initial states, E < SxS is a transition relation

on S such that

(vseS) (3s'eS): (s,8')eE

187

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

In order to be able to formally define syntactic transformations of a Promela model,
we will represent models by means of a triple P=(V, ®, R), where

e V isasetof variables of the model, each variable is of its own type;
e O isthe initialization predicate;
e R is the set of transition rules represented as guarded commands

consisting of a condition and a set of assignments:

cond >{v; =t;;...;v, =t },

where cond is the condition (predicate), v; eV are model variables, each t; is a
term of the same type as v;; := denotes assignment.

An interpretation of a set of typed variables V is a mapping that assigns to each
variable v; eV a value in the domain of v;.

A triple P=(V,®,R) determines a transition system TS =(S,Sy, E) in the
following way. Each state s S is an interpretation of the set V . For every term t
we write s(t) for the value of t in the state s. For a predicate ¢, we denote s|=¢
if and only if s(¢)=true. A predicate ¢ is an invariant of a model P, denoted by
Pl=gp,if VseS:sl=¢. S, is the set of states s S such that s|=0.

There exists a transition s — s', which means (s,s') € E , if there exists a transition
rule

cond »>{v; =t;; ... ;v =t 7},

such that sj=cond and s' is a state in which

(Viefl,...,k}) (s'(vi) =s(t;))
and

(Vv eV v, ..., v) (8'(vj) =s(v))) -

5.3 The Abstract Model

Let N={p;,..., p,} be a parameter set, where p,,..., p, are constants of the type

used to represent processes in the model and n is a natural number defined by the
number of cache agents in the system.

188

Bunagumup Bypenkos. O peannsanuyu GpopMaabHOTO METO/1a BEPH(PUKAIME MaCIITAOUPYEMbIX CHCTEM ¢ KOTePEHTHOM
namsteio. Tpyast ICII PAH, tom 27, Beim. 3, 2015 1., ¢. 183-196

Let P=(V,®, R) be a symmetric model [9] and M ={p,,..., p,} be a subset of
the set N={p;,..., p,}, m=<n. Let abs be the element that is an abstraction of
elements py.q,..., P, and M,,s=M u{abs}. We define the abstract model
Paps = (V, Oaps, Raps) With the parameter set M, as follows.

Let S be the set of states of the model P and S, be the set of states of the model
PabS'
The predicate ®,,, is obtained by the syntactic transformations Transp .
The transition rules R, are obtained by syntactic transformations Transg that
include transformations of conditions Transp, and transformations Trans, of the
assignments that appear in the rules:

Transg(cond - {v; =t;;...; v =t }) =

Transe (cond) »> {Trans, (v; =t,);...; Trans, (v, =1t,)}
The transformations of terms Trans; are defined in the following way.

Trans; (v) =vforeachveV,

p; fori<m,

Tran)=
sr(P) {abs fori>m
Trans; (c) = c for all other constantsc .

This definition is extended inductively to work with composite term expressions.
Suppose o(t;, ..., t,) is a predicate, i.e., a logical combination of t;,...,t, . Then

Trans; (p(ty, ..., t,)) is the same logical combination of Trans; (t;), ..., Trans; (t,)
. Define Transy (¢) to be the same logical combination of t';, ..., t", , where

ti y |f TranST (tl) = ti y
t';=qtrue, if Trans; (t;) = t; and t; occurs positively in ¢,
false, if Trans; (t;) = t; and t; occurs negatively in .

Now let us define the transformations of assignments Trans,. Denote by & the
absence of assignment and let

pe t, if Trans; (t) =t,
- any value in the domain of t, otherwise '

189

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

Table 1 lists the allowed types of assignments and their corresponding
transformations. Define Array to be a Promela array and f,:N — M, to be a

mapping that maps py, ..., p, to themselves and maps p,,.4, ..., p, to abs.
The abstract set of transitions is defined as follows:

Raps ={Transg (r)| r e R}.

Table 1. Syntactic Transformations of Assignments

Type of assignment Assignment
transformation

vi=t v=t'

Array[p;] =t @, ifi>m
Array[p;]=t,if i<m

Array[t] = p; Arraylt] = f,(p;)

5.4 Justification of the Abstraction Rules
It can be shown [9] that the abstraction map «:S — S, preserves transitions, that
is
VseS:(s—>s)=(a(s) > als))
Then, safety properties are preserved: If a state is reachable in the concrete model, it

is reachable in the abstract model. In other words, the abstraction map is a
simulation relation.

5.5 The Method

The verification method is based on two observations. The first one is the fact that
the abstraction map is a simulation relation. The second one is the guard
strengthening principle [9] that makes the following strategy correct.

Given a model P and a predicate ¢, in order to prove that P|=¢: 1) add ¢ to the
conditions of transition rules of P by means of conjunction; 2) prove that ¢ is an
invariant of the newly acquired model.

The method consists of the following steps. Input objects are a symmetric model P
with parameter set N ={p, ..., p,} and a safety property ¢ .

1. Construct P, using the syntactic transformations from section 5.3. Let
Q= Paps-
2. If Q|= ¢, the verification is finished: we conclude that P|=¢.

190

Bunagumup Bypenkos. O peannsanuyu GpopMaabHOTO METO/1a BEPH(PUKAIME MaCIITAOUPYEMbIX CHCTEM ¢ KOTePEHTHOM
namsteio. Tpyast ICII PAH, tom 27, Beim. 3, 2015 1., ¢. 183-196

Otherwise, examine a counterexample provided by Spin, devise an invariant and
modify Q as described in [9]. Set ¢ =@ Ay . Go to step 2.

6. Desigh of a Cache Coherence Protocols Verification System

The syntactic transformations described in section 5.3 can be fully automated.
Performing them by hand is tedious and impractical, especially in an industrial
setting. Therefore, in order to alleviate this problem, a tool may be developed,
which would build an internal representation of the concrete Promela model, modify
it according to the transformations, and produce the abstract model. An abstract
syntax tree may be the internal representation.

The transformations of Promela models are shown in Fig. 1.

The question of automating the refinement transformations is significantly harder.
Further research is needed in this direction.

Promela translator and abstract
transformations subsystem

Concrete Interntalt_ Modified |rt]t(te_rnal Abstract
Promela model representation representation Promela model

Figure 1. The transformations of Promela models

7. Verification of the German Cache Coherence Protocol

| developed a Promela model of the German protocol. The model is written in the
style of [10]. The model implements the algorithm of memory access requests

processing shown in Fig. 2.
Cache with a
shared copy

3. Coherent answer —
invalidate_ack

2. Coherent request -
invalidate

1. Initial request

Processor core Home processor

2. Coherent request -
invalidate

Cache with a
shared copy

3. Coherent answer —
invalidate_ack

4. Access grant -
grant

Figure 2. Processing of the read/write requests of the German cache coherence protocols
191

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

A processor core and the corresponding cache controller are represented by the
Promela process core and the home-processor is represented by the process home.
Thus, the model consists of one process home and N processes core where N is a
natural number. Interaction between the processes is accomplished by means of the
three Promela arrays channell, channel2, and channel3 (see Fig. 3).

The array channell is for the initial requests req * sent by a processor to the
home processor. The array channel?2 is for the snoop requests invalidate sent
by the home processor to cache controllers and for grants grant *. The array
channel3 is used for coherence answers sent by cache controllers to the home
processor (invalidate ack).

The German protocol uses three main states of a cache line: Invalid, Exclusive, and
Shared.

According to the transformations described in section 5.3, | developed the initial
version of the abstract model. The abstract model contains one process home, two
processes core, and one abstract process home abs. One of the most complicated
parts of creating the abstract model — the transformation of assignments — is
depicted in Table 2. Table 2 shows examples of the corresponding transformations
of the German cache coherence protocol Promela model.

channell

channel2
Process core Process home

channel3

Figure 3. Communication channels between processes in the Promela model of the German
cache coherence protocol

Table 2. Examples of the syntactic transformations of the Promela model of the German

protocol
Assignment Assignment
transformation
curr command curr command
= re& shared = rec} shared
sharer list[i] g, ifi>m

=t - .
e sharer_list[i] = true, if i <m

curr client = i curr client = i
in a concrete process

curr_client = abs
in the abstract process

The verified property stated that it is impossible for a cache line to be in state
Exclusive in one cache and in state Shared in some other cache. For example:

192

Bunagumup Bypenkos. O peannsanuyu GpopMaabHOTO METO/1a BEPH(PUKAIME MaCIITAOUPYEMbIX CHCTEM ¢ KOTePEHTHOM
namsteio. Tpyast ICII PAH, tom 27, Beim. 3, 2015 1., ¢. 183-196

never { do :: assert((! (cache[0] == exclusive && cache[1l]

== shared))) od }

This property did not hold on the initial abstract model. According to section 5.5, |
performed the refinement process. Two additional invariants were developed and
the verification process was finished due to the absence of counterexamples. The
refinement process was similar to that described in [6].

For the experimental check of the method’s ability to find bugs, I verified two
buggy versions of German described in [4]. In the first buggy version, after the
home processor grants exclusive access to a cache, it fails to set the
exclusive granted Variable to true. Thus, when another cache requests shared
access, it gets the access even though the first cache holds it in exclusive state. In
this case Spin issues a counterexample because the assertion

assert((! (cache[0] == exclusive && cache[l] == shared)))

is violated.

In the second buggy version, the home processor grants a shared request even if
exclusive granted variable is true. In this case Spin issued a counterexample
because of the violation of one of the invariants found during the abstraction
process.

8. Conclusion and Directions for Future Work

Formal methods for verification of cache coherence protocols fall into two groups:
methods based on model checking and methods based on deductive verification.
Model checking is fully automated but suffers from the state space explosion
problem. Deductive verification is scalable but requires a lot of expert’s hand work.
Combination of the two approaches seems promising because of its potential ability
to lead to a scalable method that requires an acceptable amount of hand work.

On the basis of existing literature, a method that is such a combination is described.
Although the method can be used for parameterized verification, it has some
drawbacks. It supports a very limited subset of Promela constructs and poses
unnecessary limitations on the way verification engineers should write their
Promela models. The style of the Promela model used in this paper is less intuitive
than the style of the model described in [7]. The model from [7] was obtained by a
natural decomposition of the Elbrus system-on-chip under verification and
organizing process communication through Promela channels. The model was
successfully used in verification of several Elbrus systems.

Future work directions include provable extension of the Promela subset that can be
dealt with by the verification method, the examination of the impacts of different
styles of descriptions of cache coherence protocols, and development of tools that
would automate parts of the verification process. The verification process will be
applied to Elbrus microprocessors.

193

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

References

[1]. Z. Manna, A. Pnueli, “The temporal logic of reactive and concurrent systems:
specification,” Springer-Verlag, 427 pp., 1992.

[2]. EM. Clarke, O. Grumberg, D. Peled, “Model checking,” MIT Press, 314 pp., 1999.

[3]. S. Park, D. Dill, “Verification of FLASH cache coherence protocol by aggregation of
distributed transactions,” Proceedings of the 8th annual ACM symposium on parallel
algorithms and architectures, pp. 288-296, 1996.

[4]. M. Talupur, “Abstraction Techniques for Parameterized Verification,” PhD Thesis,
2006.

[5]. E. Clarke, D. Long, K. McMillan, “Compositional model checking,” Proceedings of the
fourth IEEE symposium on logic in computer science, 1989.

[6]. C. Chou, P. Mannava, S. Park, “A simple method for parameterized verification of cache
coherence protocols,” Formal methods in computer-aided design, vol. 3312, pp. 382—
398, 2004.

[7]. V. Burenkov, “Generator testov dlya verifikatsii protocola cogerentnosti kesh pamyati
[A test generator for cache coherence protocol verification],” Voprosi radioelektroniki,
seria EVT, 3, pp. 56-63, 2014.

[8]. G. Holzmann, “The Spin model checker: primer and reference manual,” Addison-
Wesley Professional, 608 pp., 2003.

[9]. S. Kirstic, “Parameterized system verification with guard strengthening and parameter
abstraction,” Automated verification of infinite state systems, 2005.

[10]. A. Pnueli, S. Ruah, L. Zuck, “Automatic deductive verification with invisible
invariants,” Tools and algorithms for the construction and analysis of systems, vol.
2031, pp. 82-97, 2001.

O peanusauuun dpopmanbHOro metoaa
Bepucpukaumm macwtabmpyembix CUCTEM C
KOrepeHTHOM NamMATbI0

Braoumup Bypenxos <burenkov_v@mcst.ru>,
Mocxkosckuii cocyoapcmeennviii ynusepcumem umenu H.D. baymana, 105005,
Mocksa, Poccuiickas pedepayus, 2-s baymanckas ynuya, 5
MICT, 119334, Mocksa, Poccuiickas ®@edepayus, ya. Basunosa, 24

AnHoTtammusi. B paboTe mpuBeneH aHaNM3 CYMIECTBYIONIMX METONOB BepH(HUKAINN
MPOTOKOJIOB KOTEPEHTHOCTH K3II-MIAMATH MACIITabupyeMbIX CHCTEM. PacCMOTpEHBI METOIBI
MIPOBEPKH MOJEINICH U AeAyKTUBHOM BEpU(PHUKAIINK, METOIbI KOMITO3HIIMOHHON BepH(DUKAIINH
M METO/IbI, OCHOBAaHHBIC Ha abcTpakuusax. Ha ocHoOBaHUM nuTepaTyphl U3M10KeH (POPMAIIBHBIN
METO]] ITapaMeTPHU30BaHHOH IPOBEPKH CBOMCTB 0€30IIaCHOCTH IPOTOKOJIOB KOT€PEHTHOCTH.
IIpennoskeHHBI METOX OCHOBAaH Ha CHHTAKCHYECKHX IpeoOpaszoBaHmsx Promela-moneneii.
PaccmoTpena maremaTudeckass MOJENb MPOTOKOJOB KOTE€PEHTHOCTH KAUI-MAMATH B BHAE

194

Bunagumup Bypenkos. O peannsanuyu GpopMaabHOTO METO/1a BEPH(PUKAIME MaCIITAOUPYEMbIX CHCTEM ¢ KOTePEHTHOM
namsteio. Tpyast ICII PAH, tom 27, Beim. 3, 2015 1., ¢. 183-196

cucteMbl nepexonoB. [IpexcraBmena abcTpakTHas MOJENb IPOTOKOJIOB HApSLy C
TpaHchOpPMalMsIMA HCXOAHOH MOJENH, KOTOpBIE IIO3BOJLIIOT €€ MONy4YuTh. Pa3mep
aOCTPaKTHOW MOJENM HE 3aBHCHT OT KOJHMYECTBA MPOLECCOPHBIX Y3JI0B BepH(UIMpyeMOit
cucteMsl. [Ipemioxkena apXuUTeKTypa CHCTEMBI BEpHU(HKAIMU MPOTOKOJIOB KOT€PEHTHOCTH.
JaHHas cucteMa MMEET LeNbl0 OOBEIMHHUTH pa3iM4HbIC 3Talbl Hpoliecca BepHpHKaLUK
BOCIMHO M aBTOMAaTH3MPOBAaTh BBHIIOJHCHHE TPYJOEMKHMX 3aJad, PELICHHE KOTOPBIX JIETKO
HOJIYYUTh AITOPUTMHUYECKH, a HOIBITKU CAENIATh 3TO BPYUHYIO UpPEBAThl BHECEHUEM B MOJEIb
omnOok. OCHOBHOW 4YacThIO ApXUTEKTYphl SIBISETCS TpPaHCHATOp s3bika Promela Bo
BHYTPECHHES TIIpPEICTaBlICHHE W IIOACHCTEMa aHaIM3a M MOJU(UKANH BHYTPEHHETO
npencraBieHus. OmnncaHO NpPHMEHEHHWE MeToja K Bepudukamuu mnpoTtokona German,
MOCTPOCHHE ¥ AaHaIU3 CcooTBeTcTByromed Promela-monmenn. IlpuBeneHsl npuMeps!
aOCTpakTHBIX TpeoOpa3oBaHWi. IIpoaHaNM3HpOBaHBI pPE3yNbTaTHl IPOBEPKH JBYX
omMOOYHBIX BepcHii mporokosma (German, INPEACTaBICHHBIX B JIMTEpaType. YKa3aHbI
HEJOCTaTKH PAacCMOTPEHHOro Merona. Hampumep, HCIONB30BaHHE OrPAHMYCHHOTO
HNOAMHOXECTBa s3blka Promela co3maer pa3zpaboTyMkaM Mopeneidl JOMONHHUTEIbHbIC
TPYAHOCTH M NPHBOAUT K HEECTECTBEHHBIM MojensiM. ChopMyanpoBaHbl HANPABICHUS IO
YIAY4LICHHIO, B YaCTHOCTH, PACLIMPCHUIO Habopa IOJJepKUBAEMBIX KOHCTPYKIMII sI3bIKa
Promela, u aBromMarm3amuu MeToJa, HEOOXOIWMBIE [UII NPOBENCHUS BepHHUKAIN
MHOTOSIICPHBIX

Keywords: formal verification; model checking; deductive verification; cache coherence
protocol; Elbrus

DOI: 10.15514/ISPRAS-2015-27(3)-13

Jdnsi murupoBanmsi: BypenkoB Bmamumup. O peamusanmm QopmansHOro Merona
Bepu(UKAIUU MaCIITAOUPYEMBIX CHCTEM ¢ KorepeHTHOU mamsaTeio. Tpyast MUCIT PAH, Tom
27, Bem. 3, 2015 1., ctp. 183-196 (Ha anrmmiickoM s3bike). DOIL: 10.15514/ISPRAS-2015-
27(3)-13.

Cnucok nutepaTtypbl

[1]. Z. Manna, A. Pnueli, “The temporal logic of reactive and concurrent systems:
specification,” Springer-Verlag, 427 pp., 1992.

[2]. E.M. Clarke, O. Grumberg, D. Peled, “Model checking,” MIT Press, 314 pp., 1999.

[3]. S. Park, D. Dill, “Verification of FLASH cache coherence protocol by aggregation of
distributed transactions,” Proceedings of the 8th annual ACM symposium on parallel
algorithms and architectures, pp. 288-296, 1996.

[4]. M. Talupur, “Abstraction Techniques for Parameterized Verification,” PhD Thesis,
2006.

[5]. E. Clarke, D. Long, K. McMillan, “Compositional model checking,” Proceedings of the
fourth IEEE symposium on logic in computer science, 1989.

[6]. C. Chou, P. Mannava, S. Park, “A simple method for parameterized verification of cache
coherence protocols,” Formal methods in computer-aided design, vol. 3312, pp. 382—
398, 2004.

[7]. B.C. Bypenkos. 'eneparop TecToB st Bepr(HKAILUK TPOTOKOJIA KOTEPEHTHOCTH K3II-
namstu // Borpocs! pannoanexrponnkn, cepus OBT, 2014, Beimyck 3, . 56-63.

195

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

[8]. G. Holzmann, “The Spin model checker: primer and reference manual,” Addison-
Wesley Professional, 608 pp., 2003.
[9]. S. Kirstic, “Parameterized system verification with guard strengthening and parameter
abstraction,” Automated verification of infinite state systems, 2005.
[10]. A. Pnueli, S. Ruah, L. Zuck, “Automatic deductive verification with invisible
invariants,” Tools and algorithms for the construction and analysis of systems, vol.
2031, pp. 82-97, 2001.

196

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

The Application of Coloured Petri Nets to
Verification of Distributed Systems
Specified by Message Sequence Charts*

S.A. Chernenok <chernenoksergey@gmail.com>,
V.A. Nepomniaschy <vnep@iis.nsk.su>,
A.P. Ershov Institute of Informatics Systems of the Siberian Branch of the RAS,
6 Lavrentjev pr., Novosibirsk, 630090, Russian Federation

Abstract. The language of message sequence charts (MSC) is a scenario-based specification
language widely used at the design stage to describe the interaction of components in
distributed systems. However, the existing methods and tools for validation of MSC diagrams
are underdeveloped. They have such limitations as a small set of supported diagram elements,
restrictions on the behavior of elements and on the set of analyzed properties. This paper
describes a method for translation of MSC diagrams into coloured Petri nets (CPN), which is
applied to the property analysis and verification of these diagrams. The translation method
consists of three main stages: generation of the MSC internal representation called a partial
order graph, processing of the partial order graph and translation of the graph into CPN. The
result of the translation is a hierarchical coloured Petri net in a format compatible with the
known CPN Tools system. Besides the basic elements of the MSC standard, the considered
set of diagram elements includes diagram elements with data (messages, local actions and
conditions with data), the elements of UML sequence diagrams (synchronous messages,
combined fragments) and compositional MSC diagrams (partial-defined messages). The
translator from MSC diagrams into CPN is implemented on the basis of the translation
method. The properties of the resulting CPN are analyzed and verified using the system CPN
Tools and the CPN verifier based on the SPIN tool. If an analyzed property is violated during
the verification process and a counterexample is generated, then an error can be localized
inside the verified MSC. To localize the error, an MSC trace leading to a broken state is
constructed, which is a sequence of diagram events and variable states of each process. The
application of the translation method and tools for analysis and verification is illustrated with
an example of Alternating Bit Protocol (ABP).

Keywords: specification; translation; verification; distributed systems; communication
protocols; message sequence charts; UML sequence diagrams; coloured Petri nets

DOI: 10.15514/ISPRAS-2015-27(3)-14

For citation: Chernenok S.A., Nepomniaschy V.A.. The Application of Coloured Petri Nets
to Verification of Distributed Systems Specified by Message Sequence Charts. Trudy

! This work is partially supported by RFBR grant 14-07-00401
197

mailto:vnep@iis.nsk.su

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

ISPRAN/Proc. ISP RAN, 2015, vol. 27, issue 3, pp. 197-218. DOI: 10.15514/ISPRAS-2015-
27(3)-14.

1. Introduction

One of the major issues that arise in the process of software development is a
validation problem. Over the last few years, a large number of methods and tools
have been developed for the analysis and validation of systems at the stages of their
design and development. However, these methods are not so powerful as compared
to the formal methods of software analysis and verification. Therefore, an important
goal of software validation is to improve the existing validation methods used in
practice by means of integration of well-studied analysis and verification formalisms.
The scenario-based languages are a popular way to describe program specifications
at the design stage of software development. They have an expressive graphical
representation and are easy to use. One of the most popular scenario-based
languages is the language of Message Sequence Charts (MSC) standardized by the
ITU-T [1]. MSC diagrams are widely used for specification of communication
protocols. The sequence diagrams of the UML standard (UML SD) [2], inspired by
the MSC, made the interaction diagrams popular in the wide fields of software
development. The application area of MSCs includes documentation, requirements
specification, simulation, test case generation, etc.

Triggered by the increasing popularity of MSC diagrams several new dialects and
extensions of the MSC language emerged. One of the important extensions increasing
the expressive power of the MSC is Compositional MSC diagrams (CMSC) [3, 4]. The
use of CMSC diagrams allows us to cope with the restrictions of the MSC language in
order to describe a certain type of interactions, such as sliding window protocols.

It is known that at the early stages of software development the cost of errors is the
highest. Therefore, the program models specified by MSCs should be valid and
error-free. In practice there are tools for analysis and validation of MSC
specifications. Among them are the following.

The UBET system [5, 6] can check the race conditions and timing violations for a
created MSC diagram. The system also provides an automatic test case generation
feature and a conversion of MSCs into the Promela language code. UBET only
supports the elements of the basic MSC diagrams.

The software tools Cinderella MSC [7] and IBM Rational / Telelogic Tau [8] are visual
modeling tools for analysis, specification and testing of systems described by the
interaction diagrams. The system [7] supports the generation of MSC diagrams from a
user application, the generation of test cases from MSCs, and the conversion of diagrams
into other analysis systems. The toolkit [8] allows one to create program models based
on the UML sequence diagrams, to perform the automated error checking of the UML
SD syntax and semantics, and to convert UML SD diagrams into the SDL modeling
language for further analysis. These tools are limited by a small set of available verified
properties and do not support many of the diagram elements.

198

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

The PragmaDev analyzer [9] allows one to analyze the specific properties of MSC
diagrams (analysis and comparison of MSC specifications and analysis of time
properties) and also some temporal logic properties defined in Property Sequence
Charts. The project is under development and currently only a part of MSC
elements is supported.
The problem of analysis and verification of interaction diagrams is investigated by
several authors.
Papers [10, 11, 12] describe the modeling of UML SD diagrams using high-level
Petri nets. The paper [10] deals with the translation of UML SD diagrams into CPN.
This paper describes the translation rules for a limited set of diagram elements and
element compositions. Also, structural restrictions are imposed on the message
elements (i.e. only the synchronous messages and strict sequential composition
between structural fragments are considered) and on the interpretation of conditions.
The paper [11] provides an extension of SD diagrams for the purpose of simulation
and analysis of embedded systems. The authors describe formal translation rules for
most standard elements. But some composition constructs are not considered. The
paper [12] provides the semantics of SD diagrams in terms of extended Petri nets.
This work deals with most of the UML SD standard elements except the elements
for scenario composition. Note that the translation of the elements strict, break
and critical is not considered in the papers [10, 11, 12].
Papers [13, 14] present the translation of UML SD diagrams into the input
languages of the verifiers SPIN [15] and NuSMV. The authors consider most of the
diagram elements, including the combined fragments of UML SD. References and
high-level MSC diagrams are not considered.
Note that most of the related work imposes restrictions on the diagram elements that
do not allow one to specify and analyze the distributed systems with independent
components. In addition, these papers do not consider messages and local actions
with dynamic data. The translation of CMSC diagram elements into Petri nets in the
papers is not considered.
Thus, analysis and verification of MSC and UML SD diagrams is an urgent
problem. Our paper is aimed at investigation of this problem.
This paper describes a method for analysis and verification of MSC diagrams of
distributed systems based on the translation of diagrams into coloured Petri nets
(CPN) [16]. The resulting CPN are analyzed and verified using the well-known
formal methods. The choice of coloured Petri nets as a formal semantic model of
interaction diagrams based on the fact that the behavioral model of CPN naturally
fits the behavioral model of MSC, allowing us to simulate different types of the
event composition and expressions in the MSC data language. Also, CPN are well
studied and there are methods and tools for analysis and verification of net models.
The paper is organized as follows. Section 2 contains a brief description of
interaction diagrams. The translation method from MSCs into CPN is given in
Section 3. Section 4 describes the translation of UML SD elements. The translation
of MSC elements with data is given in Section 5. In Section 6, a translation
199

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

algorithm of CMSC elements is described. Section 7 contains the size estimation of
the resulting CPN generated by the translation method. The case study is described
in Section 8. Section 9 contains our conclusion.

2. Overview of the MSC language

In 1992, the MSC standard [1] was developed by the ITU-T in order to obtain a
simple and expressive scenario-based specification language to describe interactions
in distributed systems. The significant update of the standard MSC-2000 brought
new diagram elements, and the concepts of data and time. As a result, the current
MSC standard can be used for description of system models at a higher level of
formalization.

UML 2.0 Sequence Diagrams developed by the OMG [2, 17] are strongly inspired
by the MSC. Therefore, the basic ideas, visual representation, and the set of
elements in the UML SD language are very similar to MSC. The main difference is
that the SD diagrams are an integral part of the UML standard. This means that all
objects used in SD diagrams (processes, variables, messages, etc.) are described in
various UML diagrams to detail the specific aspects of the objects behavior. On the
other hand, the stand-alone MSC standard has its own syntax and can be used
independently of other modeling languages in the ITU-T family. Another difference
of SD diagrams is that they usually represent the control flow of an object-oriented
program, whereas MSCs traditionally describe the behavior of distributed systems.
Interaction diagrams depict communication between system components (instances,
processes, objects, etc.) by means of messages. Each diagram represents a particular
scenario of the system, or a set of scenarios.

All instance events are ordered along the vertical instance axis independently of
other instances. The interaction between instances is performed via messages which
determine the relationships between events of these instances. In the MSC standard
all messages are asynchronous. This means that a message output and a message
input are two different asynchronous events. The UML SD standard also has a
synchronous type of messages. MSCs impose a partial ordering on the set of events.
Besides the message input and output events, there are other basic MSC elements
including local actions, conditions, instance creation and termination events,
message gates and others [18, 19]. Also, the MSC standard provides structural
elements that allow us to determine different kinds of event composition for several
instances. So, MSC inline expressions (combined fragments in UML SD) provide
the parallel, alternative or loop composition of events. Reference expressions and
High-level MSC diagrams (Interaction Overview Diagrams in UML SD) allow us to
perform the synthesis and composition of several diagrams. Note that the MSC
standard defines that the connections of all structural elements within diagrams are
made by means of a weak sequential composition.

Consider the example of a UML SD diagram in Fig. 1. This diagram describes the
scenario of interaction between the User and Server instances. All messages

200

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

except sendData (depicted with a message arrow of different type) are
asynchronous. The operations of the user login and interaction with the server are
placed in separate operands of the strict sequential composition operator strict,
which are separated by a dotted line. This means that further interactions with the
server are impossible until all events corresponding to the user login operation are
executed. After logging in, the user sends the synchronous message sendData and
executes some local action 1ocalWork. After receiving message from the user, the
server checks a session state. This is made in the break operator. If the user
session has expired, the 1ogout message is sent to the user and then further
execution of all events within strict operator is terminated. Otherwise, the data
transmitted to the server are stored and

the user is L@ @ notified about it.
strict)] login()

createSession()

localWork()

break
[isSesgionExpired |

logout()

saveDatall goauson

Fig. 1. An example of a UML Sequence diagram which contains the synchronous
message sendData and two combined fragments strict and break.

3. A method for translation of MSC diagrams into Coloured Petri
Nets
Let us introduce the following definitions which are used in the translation
algorithms of this paper.
A structural fragment of MSC is a subset of MSC events, which is defined by the
following rules:
e a regular MSC diagram and a reference MSC diagram is a structural
fragment;
e each inline expression of MSC (a combined fragment of UML SD) is a
structural fragment.

Thus, an MSC diagram can be represented as a set of structural fragments connected
by means of a weak sequential composition.

We define the start events of a structural fragment as MSC events which can be
executed first among all events of this structural fragment. By analogy with start

201

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

events, we also define the final events of a structural fragment. These are the events
that can be executed last among all events within this structural fragment.

Then, a set of MSC traces is a set of event execution sequences in the diagram,
where each event execution sequence begins with a start event. The end of each
event execution sequence can be either a final event, or an event after execution of
which the MSC will not contain dynamically legal execution traces of events.

Below we present a general method to transform the MSC diagrams into CPN. The
input of the translation method is an MSC, HMSC, or MSC document given in the
text notation according to the MSC standard. For UML SD and CMSC elements the
additional syntax is incorporated to the existing grammar of the MSC language. The
output of the algorithm is a coloured Petri net in a format compatible with the CPN
Tools system. In this paper we use the CPN definition given in [16]. Note that the
algorithm output is a hierarchical CPN if the original specification was defined by
HMSC, or if the input MSC contains MSC reference expressions.

It can be considered that the translation method has three main stages.

At the first stage an input MSC is processed to build its internal representation
called a partial order graph. The graph is generated as follows. For each event in
the MSC, a node in the partial order graph is created. This node stores some
information about the event. Nodes in the generated graph are connected with each
other via directed arcs. The connection between nodes is equal to the connection
between the corresponding events in the input diagram.

At the second stage, processing of the partial order graph (creating auxiliary graph
nodes, unfolding MSC references, etc.) is performed.

At the third stage, the partial order graph is translated into CPN. The resulting net
can be described as follows. Each node of the partial order graph corresponds to a
transition of CPN. Each arc connecting two nodes of the partial order graph
corresponds to a place and two oriented arcs connecting two transitions of CPN.
The orientation of the generated arcs in the resulting Petri net coincides with the
arcs orientation in the partial order graph. The places used to transfer control
between MSC events are marked by a UNIT colour type. The execution of an MSC
event corresponds to firing of a transition in the resulting CPN. The start events of
MSC correspond to the transitions with start input places which have an initial
marking 1" (). The final events of MSC correspond to transitions with the end
output places and without outgoing arcs.

The translation method described above builds a CPN which simulates all possible
event traces of the input MSC. In other words, the set of all possible MSC traces
will coincide with the set of all possible event sequences (firing of transitions) of the
resulting CPN. An initial transition of each firing sequence in the resulting CPN is a
transition that corresponds to a start event of the input diagram.

Note that in this paper we do not consider the time concept of the MSC and UML
SD standards. We also do not consider the following UML SD elements: neg,
assert, ignore and consider. These elements do not change the set of

202

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

diagram traces and hence do not affect the CPN generated by the translation
method.

4. Translation of UML SD elements

Since the standard of UML sequence diagrams is based on the MSC standard, most
elements were adopted from MSC. In [20], the comparison of UML SD and MSC
elements is made.

Several UML SD elements have different names in regard to the MSC standard
terminology. For example, the instances in MSC diagrams correspond to lifelines in
UML SD diagrams; local actions correspond to execution occurrences; MSC
references correspond to interaction occurrences. In the translation algorithms
described below, we will use the terminology of the MSC standard.

Note that some UML SD elements which are not in the MSC standard can be
modeled by the MSC elements already discussed in [18, 19]. These elements are
continuation (can be modeled by setting and guarding conditions of the MSC),
interaction constraint (can be modeled by predicate conditions of the MSC), state
invariant (can be modeled by the condition MSC element described in [18]),
conditional message (can be modeled by a regular message within an optional
operator opt), operation calls / replies (can be modeled by synchronous and
asynchronous messages).

Below we consider the translation algorithms for the UML SD elements which are
not modeled by the MSC elements earlier discussed.

4.1 Synchronous messages

These are the messages for which the output and input events are synchronized.
This means that the sender of a synchronous message has to wait for the response
from the receiver. This response will indicate what the input message processing is
finished by the receiver, and the sender can continue the event execution.

The translation algorithm for the synchronous message msg can be described as
follows. First, two transitions Out msg and In msg are created in the output
CPN. These transitions correspond to the output and input events of msg. The
transition Out_msg is connected to the transition In_msg via a place and directed
arcs similarly to the translation rules for a regular message. Next, the transition
Reply msg is created which means that suspension by the process that sends the
message msq is finished. The transitions Out msg and In msg are connected
with the transition Reply msg through the place and two directed arcs as usual.
Figure 2 shows the CPN which is the result of translation of the UML sequence
diagram (see Fig. 1) with the synchronous message sendData.

4.2 The strict operator
This operator represents a strict sequencing between several sets of diagram events.

203

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

We define a synchronizing event Es of an MSC diagram for the instances P1, P2,
..., Pn (n > 1) as an event which can be executed only when all events from P1, P2,
..., Pn located before Es have been already executed.

The translation of the strict operator is performed as follows.

1.

2.

All events within the strict operator are translated to a CPN using the
common algorithm for MSCs from Section 3.

For every strict operator with n (n > 1) operands, (n-1) auxiliary
transitions are created in the CPN. Each created transition simulates a
synchronizing event between instances involved in the strict operator.

The synchronizing transitions Ti (0 < i < n) created in the previous step are
placed at the joint of strict operands according to the following rules.
All transitions corresponding to final events of the operand i are connected
via places to the synchronizing transition Ti. The synchronizing transition
Ti is in turn connected to all transitions corresponding to start events of the

operand (i+1). Thus, in the resulting CPN, firing of transitions
corresponding to events from the operand (i+1) of the strict operator is
possible only after firing of all transitions corresponding to events from the
operand i.

In_sendData I- I- Out_sendData
-I.

Fig. 2. CPN which is the result of translation of UML SD shown in Fig. 1.

A more detailed description of the translation of synchronizing events is given in
[18]. Figure 2 shows the CPN which is the result of translation of the UML SD
diagram (see Fig. 1) containing the strict operator.

204

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

4.3 The break operator

Semantics of this operator is similar to that of the break statement in many
programming languages. If the break operator is performed in a sequence
diagram, then execution of all events remaining in the enclosing (parent) structural
fragment is skipped. In the UML SD standard structural fragments are called
interaction fragments. It should be noted that the break operator is slightly
different from the exceptional case operator exc of the MSC language [18]. In the
MSC standard, the exc operator finishes execution of a current diagram.

The break operator belongs to combined fragments of UML SD. This fragment
has one operand and should cover all instances of the parent interaction fragment. If
the operand has a guard condition and the condition is true, then all events of this
operand can be executed, and all remaining events of the parent fragment are
ignored. If the guarding condition is false, the break operand is ignored and the
rest of the enclosing interaction fragment is chosen.

The break operator can be represented as the alternative choice expression alt of
the MSC language, where the first operand is equivalent to a single break operand,
and the second operand is a part of the diagram that follows the parent fragment of
the break operator.

Note that in the MSC and UML SD languages the use of the alt operator and its
special cases (opt, exc, break) attached to several instances can lead to the
problem of non-local choice in diagrams [1, 17, 21]. The problem is that the
standards do not define which instance checks the guards, and who decides which
branch should be chosen if multiple guards are true.

In our work this problem is resolved by creating the synchronizing events for each
execution branch of an alt operator containing non-local choice. A more detailed
description of the translation of an alternative expression with a non-local choice is
given in [18]. The same approach is used when translating the break operator.

The translation algorithm of the break operator consists of the following steps.

1. Input and output auxiliary nodes are created for all structural fragments of a
current diagram during the generation of a partial order graph.

2. ldentifiers of current and parent fragments are assigned to all nodes in the
partial order graph.

3. Each break fragment is translated to the output CPN according to the
translation rules for a1t operators as follows. The alt operator has two
fixed operands. For each operand the synchronizing nodes are created to
simulate a local choice. Final events of the first operand are connected to
output auxiliary nodes of the parent fragment in the partial order graph (this
simulates an exit from the parent fragment). Start nodes of the second
operand of the alt operator will be output auxiliary nodes of the break
fragment (this simulates the skipping of the break operator).

205

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

Figure 2 shows the CPN which is the result of translation of the UML SD (see Fig.
1) containing the break operator.

4.4 Critical Region

The critical operator is an atomic block of events. The block atomicity is defined
by two conditions. Firstly, all events within the critical region cannot be interrupted by
other events of the SD diagram which are located on the same instances as this critical
region. Secondly, the atomicity of events inside the critical region cannot be broken
even if it is contained within the parallel execution operator par.

An example of the UML SD diagram containing the critical operator is shown in
Fig. 3. In this diagram, when the processes Userl and Server enter the critical
region by the first branch of a parallel execution, the interaction with these
processes in other parallel branches will not be allowed until the execution of the
critical region for these processes has been finished.

(Semer) (Dserx] [erz)
EBF ,I
critical] create(data)
save(data)
) get(data2)
| I] data2
- - -

Fig. 3. An example of the UML Sequence Diagram which contains a critical region inside a
par combined fragment.

To satisfy the first condition, it is necessary to create the synchronizing input and
output events for each critical operator which are attached to instances
involved in the critical region. The second condition is satisfied by introduction of
additional places of the output CPN with flags for all events within a parent
fragment par. Thus, an event of an instance can be executed if the flag for this
instance is true. The flags for all instances involved in the critical region will be set
to false when an entrance to the critical region occurs. The flags will be set to true
when an exit from the critical region occurs. Note that the critical operator
increases the size of the generated CPN in the case when this operator is placed to a
par-expression with a large number of events.

206

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

colset CRITICALSTATE = record S:BO0L ~ UL:BOOL = U2:B00OL;

{S=false, 1 1
Ul=false, @ @
U= # U2 criticalState) }

Cntical BEGIN_S U1

critical State -
[(¥ 5 criicalState) andalse
(FUL criticalStake)]

CRITICALETATE

{Smbrue,
Ul=true,
UZs(=UZ criticalStabe) }

Fig. 4. The fragment of CPN which is the result of translation of critical region from the

UML SD shown in Fig. 3.

The detailed translation algorithm of the critical region can be described as follows.

1.

Synchronizing transitions are created at the beginning and end of each
critical region.

If the critical region is not contained within a par operator, then the
algorithm is finished.

If the critical region is contained within a par operator (if there are several
nested par operators then we consider the highest level of nesting), then
the next step is performed.

The fusion place Critical with a special colour type CRITICALSTATE is
created. The place is defined as a CPN ML record «record P1: BOOL * ...
* Pn: BOOL», where P1, ..., Pn are the names of diagram instances. This
place will store the information about flags for each instance, signalizing
about entering/finishing the critical region. The place Critical has an initial
marking «1° {P1=true, ..., Pn=true}». If a flag is true for a particular
instance, this means that the instance is in a normal mode of execution.
Otherwise, it is assumed that the instance has entered a critical region.

For each transition corresponding to an event within a higher-level par
operator with a critical region and belonging only to instances that are
involved in this critical region, the next actions are made. A bidirectional
arc marked by criticalState (the variable criticalState has the colour type
CRITICALSTATE) is created. This arc connects the place Critical with the
current transition. The transition is marked by the CPN ML guard function
«[(#P1 criticalState) andalso ... andalso (#Pk criticalState)]», where P1,
..., Pk are the instance names to which the current event is attached. If the

207

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

transition already has a guard function, then the above guard expression
with the prefix «andalso» is added at the end of this function.

6. The synchronizing transition which simulates entering the critical section
for the instances P1, ..., Pk, (k <= n) is connected to the Critical place as
follows. An incoming arc is marked by criticalState. An outgoing arc is
marked by the expression {Pl=false, .., Pk=false, .., Pn=(#Pn
criticalState)}. This expression means that the flags of the instances
involved in the critical region are reset to false, thereby preventing other
events of these instances to run outside the region. This synchronizing
transition is also marked by the guard function from step 5.

7. The synchronizing transition which simulates the finishing of the critical
section for the instances P1, ..., Pk, (k <= n) is connected to the Critical
place as follows. An incoming arc is marked by criticalState. An outgoing
arc is marked by the expression {PI=true, ..., Pk=true, ..., Pn=(#Pn
criticalState)}. This expression means that the flags of the instances
involved in the critical region are reset to true.

Figure 4 shows the CPN fragment which is the result of translation of the
critical operator from the UML SD diagram shown in Fig. 3.

5. Translation of diagram elements with data

An important feature of MSC and UML SD diagrams to consider them as precise
and formal specifications of software systems is the data concept.

Both standards do not impose restrictions on the data notation, so any data language
can be incorporated into MSCs and UML sequence diagrams. In the MSC standard
data declarations are placed in the MSC document. In the UML standard data
declarations are placed in the Class Diagrams and Communication Diagrams.

In this paper we only consider the case of data declarations in the MSC document
[19]. We also assume that the MSC data language allows simple types — Boolean,
Integer and String — and the composite type Enumeration. An expression
in the data language consists of variables, literals, parentheses, arithmetic and
assignment operators, and comparisons.

The MSC document in addition to data type and variable declarations also describes
the signatures of all messages with data used in the diagrams. The message
signature N(T1, T2, ..., Tn) is a set of a message name N and the ordered set of
parameter types Ti which defines the data tuples transmitted by this message. For
example, the message signature frame(Integer, Boolean) means that a diagram
contains a message with the name frame. This message transmits a data tuple with a
content of Integer and Boolean types.

The data in diagrams are used in messages, local actions and conditions. Data
expressions in messages and local actions can contain only variable assignment
operations. A data expression in conditions cannot contain an assignment operator

208

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

and can be a statement with a Boolean return value. An example of an MSC
diagram containing messages with data is shown in Fig. 5.

The translation algorithm of events with data consists of two stages.

At the first stage, the colour type and variable declarations in the CPN ML language
are generated from the input MSC document. These declarations will be used in the
CPN obtained by translation of MSC with data events.

Generation of the colour types and variables for MSC elements with data is as
follows:

1. Data types declared in the data block of the MSC document are converted
into the corresponding colour types of CPN ML.

2. Local variables declared for each instance in the inst block of the MSC
document are converted to variables of CPN ML with the same name and
with the colour type resulting from the transformation at step 1.

3. Message signatures declared in the msg block of the MSC document are
used to simulate message buffers in the resulting CPN. The signature N(T1,
T2, ..., Tn) is translated to a product colour type of the CPN ML
language: colset pT1T2...Tn = product T1 * T2 * ... * Tn. To simulate the
buffer which contains messages with the same signature N(T1, T2, ..., Tk),
the 1ist colour type is used: pT1T2...TkList = list pT1T2...Tk.

4. For colour types generated at step 3, auxiliary variables pT1T2...Tn_var
and pT1T2...TnList_var of types pT1T2...Tn and pT1T2...TnList are created.

At the second stage, the translation of an MSC diagram which uses data declared in
the MSC document is performed.

The translation of local actions and conditions with data is described in [19]. Below
we describe the translation of messages with data. The MSC and UML SD
standards imply that communicating instances send messages through the buffer
which is local regarding to messages. This means that there is one FIFO buffer for
every message in a diagram. Buffers which contain MSC messages with data are
modeled by places of the 11 st colour type in the resulting CPN. The list is a queue
of records (CPN product types), where each record contains the set of transmitted
data values. Thus, the translation algorithm for messages with data is as follows:

1. For each message msg_i(T1, T2, ..., Tn) in the diagram, a place in the
resulting CPN is created to simulate the message buffer as follows. The
name msg_i and the colour type pT1T2...TnList are assigned to the place.
The initial marking for this place is set up to the value 1°[], which indicates
that the buffer is empty.

2. The input and output events of the message msg_i are translated into the
corresponding transitions of the CPN.

3. Each transition corresponding to the input/output events of the message
msg_i is connected to fusion places modeling the variable states. The
details of variable state simulation in the resulting CPN are given in [19].

209

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

4. For a transition corresponding to an output event of the message msg_i, an
input arc from the place msg_i is created with the inscription
pT1T2..TnList_var. Also the output arc is created with the inscription
pT1T2..TnList_var ™ [(VarT1, VarT2, ..., VarTn)], where VarTi are the
variable names with data transmitted from the sender instance. This
expression describes the addition of a tuple with a message content into the
buffer.

5. For a transition corresponding to an input event of the message msg_i, an
input arc from the place msg_i is created with the inscription
«pTIT2..Tn_var :: pTIT2..TnList var». This expression means that a
head element and a tail part of the buffer are got and saved to the specified
variables. Also, the output arc is created for this transition with the
inscription pT1T2...TnList_var, which is used to simulate the removal of
the upper buffer element.

6. The process of obtaining and saving the transmitted data by the receiver
instance is modeled in the resulting CPN as follows. The fusion places are
created for each variable listed in the actual parameters of the message
signature msg_i. These places are used to store the transmitted data of the
message msg_i into the local variables of the receiver process (see the
translation of local actions with the data for full details [19]). The transition
corresponding to the input event of the message msg_i is connected to the
created fusion places. The outgoing arcs from each fusion place are marked
by the corresponding variable names. The arcs coming into the fusion
places are marked by the inscription «Tj_var = #j pT1T2...Tn_var», where
Tj_var is the j-th variable name of the receiver in the signature msg_i, and
the expression «#j pT1T2 ... Tn_var» means that the j-th element from the
tuple variable pT1T2 ... Tn_var is got.

Figure 6 shows the CPN which is the result of translation of the MSC from Fig. 5
containing non-regular messages with data introduced in the next section.

6. Translation of compositional MSC elements

The non-standard extension of MSC diagrams called Compositional Message
Sequence Charts (CMSCs) [3, 4] has been developed to increase the expressive
power of the MSC language and to describe scenarios with complex parallel
communication of processes.

In [3, 4], the authors show that the expressiveness of MSC diagrams is not sufficient
for the specification of a certain type of interactions, such as sliding window
protocols. In the CMSC language it is possible to describe this kind of protocols
using partial-defined messages. The use of this type of messages, on the one hand,
allows messages to be decomposed into several diagrams. On the other hand, such
messages use a different buffer type which is similar to the buffer model in the
communicating finite-state machines or SDL language.

210

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

by

megpnetFr = inFr, $8uft =; rBat)
—_—

!

msgnEtFr, shuffer)

Fig. 5. The HMSC diagram with two MSCs which contain the unmatched message msg.

The CMSC language is defined as the MSC language, except for the definition of
messages. In Compositional MSC diagrams, the input and output message events
are partially defined. This means that for the partial-defined message there are
multiple input events for a single output event and vice versa. Such messages in a
CMSC are called unmatched messages.
Unmatched send message events and unmatched receive message events use a new
buffer model. This buffer is local relative to the two instances involved in the
message exchange (this is a so-called pair buffer).
An example of the CMSC diagram is shown in Fig. 5. Unmatched messages are
shown as arrows with a dotted part. The CMSC shows the decomposition of the
unmatched message msg which is contained in two different reference MSC
diagrams.
Below we describe the translation algorithm for unmatched messages.

1. Each input and output event of the unmatched message umsg_i(T1, T2, ...,

Tn) is converted to the corresponding transition of the CPN.
2. If the message does not contain any data then the following steps are made.

2.1 The fusion place simulating a buffer is created with the UNIT
colour type and the name «CMSC P1-to-P2», where P1 is the
name of the instance that sends the message umsg_i and P2 is the
name of the instance that receives this message. Note that the
name of the created place is unique for the couple of instances P1
and P2 which communicate in the direction from the first to the
second instance.

2.2For each transition corresponding to the output unmatched
message event from P1 to P2, an output arc is created. This arc is
connected to the place «<CMSC P1-to-P2».

211

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

2.3 For each transition corresponding to the input unmatched message
event from P1 to P2, an input arc is created. This arc connects the
place «CMSC P1-to-P2» with the current transition.

3. If the message contains data then the following steps are made.

3.1 The fusion place simulating a buffer is created as follows. The
place type is set to pT1T2...TnList. The place name is set to
«CMSC P1-to-P2-umsg_i», where P1 is the name of the instance
that sent the message with data, P2 is the name of the instance that
receives this message, and umsg_i is the message name. The place
is marked by 1°[]. Note that the name of the created place is
unique for the couple of instances P1 and P2 with a given type of
the message signature. Thus, the unmatched messages with the
same signature will be sent by P1 through a common buffer. The
same is true for the receiving of unmatched messages.

3.2 The processing of transitions corresponding to the output events of
unmatched messages with data is carried out by the translation
rules of step 4 of the previous section.

3.3 The processing of transitions corresponding to the input events of
unmatched messages with data is carried out by the translation
rules of steps 5 and 6 of the previous section.

Figure 6 shows the CPN which is the result of translation of the CMSC (see Fig. 5)
with the unmatched message msg.

1 startPort_S 1 startPort_R

CMSC S-to-R-msa] .
10

S-to-R-msg-R

PINTINTList

infr INT 449

pINTINTList_var

In_msg

>

PINTINT var::pINTINTList var

¥ PINTINTList_var~~
[(nextFr, sBuff)]

pINTINTList_var

PINTINTList
11

¥ CMSC S-to-R-msg v
(endPort_S) CendPort_R)

Fig. 6. The CPN which is the result of translation of the HMSC shown in Fig. 5.

212

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

7. Size estimate of the resulting CPN
Below we consider the estimate of the number of transitions, places, and arcs in the
CPN, given as the result of translation algorithms described in our paper.
Let us consider the MSC diagram with N events, M messages and the number P of
instances containing events.
Introduce the following notation: s is the number of start and final MSC events; AC
is the number of local actions and conditions; 1P is the number of parallel operators
par; IL is the number of 1oop operators; N, is the maximum number of events
among par operators of the diagram; BR is the number of break operators; ST is
the number of st rict operators; OPg. is the maximum number of operands among
strict operators of the diagram; CR is the number of critical operators
within par operators; VAR is the number of variables defined in the MSC.
Then the upper bound T of the number of transitions in the resulting CPN will be:
T <N+ 2P-(IP + IL) + ST-(OPgr - 1) + P-BR + 2CR.
The upper bound P of the number of places in the resulting CPN has the following form:
P<N+M+ S+ VAR + 2P (IP + IL) + ST (OPg — 1) ‘P + P'BR + 2CR.
The upper bound 2 of the number of arc in the resulting CPN has the following form:
A < 2N + 4M + 2 -VAR-(AC + 2M) + 4P (IP + IL) + 2ST: (OPg
- 1) P + 2P 'BR + 2CR ‘Ny;.
As we can see, a significant contribution to the size estimate of the resulting CPN is
made by the operators par, loop, break and critical.

8. Case study: Alternating Bit Protocol

Let us consider an example of the property verification for the MSC specification of
a protocol known as the Alternating Bit Protocol (ABP) [22].

This protocol is bidirectional. This means that the data between the two
communicating machines are transmitted in both directions. The protocol operates
as follows. The sender sends a sequence of data frames to the receiver. Each data
frame consists of two parts: a one-bit frame number and a portion of data. When a
data frame arrives to the receiver, it sends to the sender an acknowledgment frame
that contains the number of the received frame. Both processes use a timer to wait
for the next frame. Thus, the sender is sending a current data frame continuously
until it receives an acknowledgment from the receiver with the current frame
number. On the other hand, after getting a data frame, the receiver is sending an
acknowledgment frame to the sender continuously until it receives a new data frame
from the sender.

The MSC specification of the ABP protocol is presented in [23]. In the
specification, the par operator and CMSC elements are used to describe the
distributed interaction between two machines. The timer execution events of
communicating processes are modeled in the resulting CPN by firing of transitions

213

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

corresponding to these timer events. The transmitted data in the protocol are a
sequence of integers from 1 to 4.
To reduce the state space of the resulting CPN and apply the CPN verifier based on
SPIN [24], the initial MSC specification should be rewritten into a quasi-regular
form in which diagrams do not contain unlimited loops [19]. To do this, we
introduced additional restrictions on the protocol model without loss of generality:
the frame number that can be lost during transmission is limited by a constant.
For analysis and verification of the ABP model, the following properties of a proper
behavior are formulated:

1. The sequence of the received data is equal to the sequence of the sent data.

2. The receiver does not accept the same message twice.

3. The sender does not send a new message before a previous one was

acknowledged.
4. The sequence of the received frames is a prefix of the sequence of the sent
frames.

The property 1 is a postcondition. For the protocol model, it means that if the event
execution of the MSC specification ends at its endpoint, then this property is
satisfied. For the CPN model of the protocol, it means that the resulting net should
not have dead markings except the markings corresponding to the endpoint of the
MSC specification. Properties 2, 3 and 4 are specified by linear temporal logic
(LTL) formulas [23].
The analysis of the model properties was made in the CPN Tools (property 1) and in
the automated verification system developed in 1IS SB RAS on the basis of SPIN
(properties 2, 3 and 4). Verification of the properties described above showed that
they are satisfied for the ABP protocol model.
The property validation was also made for the ABP protocol model containing
errors. In the first case, we considered a protocol model in which one of the
processes can send a new message non-deterministically, without waiting for
reception of the previous one. In the second case, we considered a protocol model in
which the sender can send non-deterministically a frame with incorrect data. During
verification of these ABP models, the following property violations were detected.
In the first case, property 3 was violated (and property 4, consequently). In the
second case, property 4 was violated.
For the violated properties, the counterexamples were generated which contain
traces in the MSC specification leading to a broken state. The file with a
counterexample is a sequence of CPN transitions and net markings.
Using the counterexamples, the errors were localized in the original MSC
specification. Since each transition corresponds to a concrete event in an MSC, and
the MSC variables state is calculated by the values of places with the same name as
original variables, the localization of errors in a diagram by a counterexample is
straightforward.

214

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

9. Conclusion

The scenario-based specification languages are a convenient and expressive way to
describe a system behavior during the design and development stages. The most
popular in practice among them are the MSC and UML SD languages. Despite a
wide application of these notations, the methods of analysis and verification are still
underdeveloped.

In this paper we describe the method for translation of MSC diagrams into coloured
Petri nets. To the best of our knowledge, our method is the first to cover a large set
of the MSC and UML SD diagram elements with minimal restrictions on the
considered elements. Unlike the related papers, the translation method fully
supports the diagram elements with dynamic data and elements of compositional
MSC diagrams. The consideration of all elements listed above, on the one hand,
allows us to apply the translation method for most interaction diagrams used in
practice. On the other hand, this allows us to use the method for verification of
distributed systems with complex object interactions.

A CPN given as a result of the translation method can be analyzed and verified by
the known verification methods and program tools. In particular, one can analyze
some properties of MSC diagrams using the CPNTools, and verify properties
specified by LTL formulas using the method [24].

The software tool was implemented on the basis of the translation algorithms. The
translator has been tested on various examples of communication protocols. In
particular, the alternating bit protocol specified by MSCs has been considered. For
the protocol, the CPN model was generated. Some properties of the resulting CPN
was analyzed by the CPN Tools and verified by the CPN verifier [24].

In our further work we plan to develop the approach for formal justification of
correctness of the translation algorithms. We will study other MSC extensions
intended for specification of distributed systems. Also, we plan to use the translator
for verification of other examples of distributed systems and communication
protocols.

References

[1]. ITU-T Recommendation Z.120 (02/2011): Message Sequence Charts (MSC), 2011.

[2]. Unified Modeling Language (UML) 2.5. Object Management Group, 2013.
(http://lwww.omg.org/spec/UML/2.5/Beta2/)

[3]. Genest B. Compositional Message Sequence Charts (CMSCs) Are Better to Implement
Than MSCs. TACAS 2005, LNCS 3440, 2005. P. 429-444.

[4]. Genest B., Muscholl A., Peled D. Message Sequence Charts. Lectures on Concurrency
and Petri Nets, LNCS 3098, 2003. P. 537-558.

[5]. Rajeev Alur, Holzmann G.J., Peled D. An Analyzer for Message Sequence Charts.
TACAS 96, LNCS 1055, 1996. P. 35-48.

[6]. UBET (MSC/POGA) toolset — http://cm.bell-labs.com/cm/cs/what/ubet/index.html

[7]. Cinderella MSC computer tool — http://www.cinderella.dk/msc.htm

[8]. IBM Rational Tau system — www.ibm.com/software/products/en/ratitau

215

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

[9].
[10].

[11].

[12].

[13].

[14].
[15].
[16].
[17].

[18].

[19].

[20].
[21].
[22].
[23].

[24].

Gaudin E., Brunel E. Property Verification with MSC. SDL 2013, LNCS 7916, 2013. P.
19-35.

Fernandes J.M., Tjell S., Jorgensen J.B., Ribeiro O. Designing Tool Support for
Translating Use Cases and UML 2.0 Sequence Diagrams into a Coloured Petri Net.
SCESM '07: Proc. of the Sixth International Workshop on Scenarios and State
Machines, Washington, DC, USA, 2007. P. 2.

Yang N., Yu H., Sun H., Qian Z. Modeling UML sequence diagrams using extended
Petri nets, Telecommunication Systems, Springer, 2012. V. 51, N. 2-3, P. 147-158.
Eichner C., Fleischhack H., Meyer R., Schrimpf U., Stehno S. Compositional Semantics
for UML 2.0 Sequence Diagrams Using Petri Nets. SDL-Forum 2005, LNCS 3530,
2005. P. 133-148.

Lima V., Talhi C., Mouheb D., Debbabi M., Wang L., Pourzandi M. Formal verification
and validation of UML 2.0 Sequence Diagrams using source and destination of
messages. Electron. Notes Theor. Comput. Sci., 2009. V. 254, P. 143-160.

Shen H., Robinson M., Niu J. Model Checking Combined Fragments of Sequence
Diagrams. Software and Data Technologies, Springer, 2013. V. 411, P. 96-111.
Holzmann G. The Spin model checker: primer and reference manual. Addison Wesley,
2003. 608 p.

Jensen K., Kristensen L.M. Coloured Petri Nets: Modeling and Validation of Concurrent
Systems, Springer, 2009. 384 p.

Micskei Z., Waeselynck H. The many meanings of UML 2 Sequence Diagrams: a
survey. Software and Systems Modeling, Springer, 2011. V. 10, N. 4, P. 489-514.
Chernenok S.A., Nepomniaschy V.A. Analysis of Message Sequence Charts of
Distributed Systems Using Coloured Petri Nets, Preprint 171, Institute of Informatics
Systems, Novosibirsk, 2013 (in Russian). http://www.iis.nsk.su/files/preprints/171.pdf
Chernenok S.A., Nepomniaschy V.A. Analysis and Verification of Message Sequence
Charts of Distributed Systems with the Help of Coloured Petri Nets. Modeling and
Analysis of Information Systems, 2014. V. 21, N. 6, P. 94-106 (in Russian).

Haugen O. Comparing UML 2.0 Interactions and MSC-2000. 4th International SDL and
MSC Workshop, LNCS 3319, 2005. P. 65-79.

Abdallah R., Gotlieb A., Helouet L., Jard C. Scenario Realizability with Constraint
Optimization. FASE 2013, LNCS 7793, 2013. P. 194-209.

Tel G. Introduction to distributed algorithms. Cambridge University Press New York,
USA, 2000. 612 p.

Chernenok S. A. Examples of Analysis and Verification of Message Sequence Charts.
Appendix, 2015. (http://bitbucket.org/chernenok/msc-verification)

Stenenko A.A., Nepomniaschy V.A. Model Checking Approach to Verification of
Coloured Petri Nets, Preprint 178, Institute of Informatics Systems SB RAS,
Novosibirsk, 2015 (in Russian). http://www.iis.nsk.su/files/preprints/178.pdf

NpumeHeHue packpalueHHbIX ceTeu MeTpum

216

ana sepudumkaumum pacnpeaerneHHbIX
cucrtem, cneunpuLupoBaHHbIX
MSC-anarpammamm

Cepreii Yepnenok. [Ipumenenne packpaiieHHsix cereii Iletpu uis BeprdHKaIii pactpe/ie]ICHHbIX CHCTEM,
cneruuupoBanasix MSC-anarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 .., ¢. 197-218

Cepzeii Yepnenox <chernenoksergey@gmail.com>,
Banepuit Henomnsiyuii <vnep@iis.nsk.su=>,
Hnuemumym cucmem ungpopmamuru um. A.11. Epwosa CO PAH,
630090, Poccus, . Hosocubupck, ya. Jlaspenmoesa, 0. 6.

AHHOTamMsA. S3BIK JWarpaMM TociefoBaTesnbHOCTe coobmenuit (MSC-auarpamm)
SBJAETCS CIIEHAPHO-OPHEHTHPOBAHHBIM SI3BIKOM cHenudukanuii, KOTOpHIl IIMPOKO
HCTIONB3YeTCsT Ha JTale NPOEKTHPOBAHHS ISl ONHCAHWS B3aHMMOZIEHCTBHS KOMIIOHEHT B
pacipeneneHHBIX cucTeMax. OJHAaKO, CYIIECTBYIONIIME METOABl M CPEICTBA HPOBEPKU
KoppektHocTH MSC-muarpamMMm HEIOCTaTO4YHO pas3BUTHL. K MX OCHOBHBIM HEZOCTAaTKaM
OTHOCATCA HeOonpIIOW HabOp MOANEepKHMBaeMbIX KOHCTpykuuil ~ MSC-auarpamm,
OTpaHMYCHHUS HA ITIOBEACHHE 3JIEMEHTOB JHarpaMM M Ha HAOOp aHAIM3HMPYEeMBIX CBOWCTB.
JlaHHas cTaThs ONMHUCHIBaeT MeTOA TpaHcminuu MSC-anarpaMM B pacKpalleHHBIE CETH
Ilerpu (CPN), koTOphIli HCHONB3yeTCsl A aHanM3a W BepuduKanuu cBoiHcTB MSC-
auarpaMM. MeToJ TpPaHCISAIMU COCTOMT M3 TPEeX OCHOBHBIX OJTaloB: IIOCTPOCHHE
BHyTpeHHero mnpencrapieHuss MSC-muarpamMMel B Bujae rpada YaCTHYHOTO IOpPSIKa,
obpaboTka y3moB rpada u mpeoOpasoBanHue rpada B CPN. Pesymprarom TpaHCIsAImu
SIBJIICTCS] HepapXuieckasl pacKpaleHHas ceTb [leTpu B opmare, COBMECTHMOM C N3BECTHOM
cucremoii MmogpenupoBanust u aHammza CPN Tools. Kpome »1eMEHTOB M3 OCHOBHOTO
crangapra MSC paccMaTpuBarOTCs Cleayronirne KOHCTpYyKuuu MSC-auarpamMm: 3JIeMEHTH
s3b1ka JaHHBIX MSC (cooOImmeHus, JOKaIbHbIe eHCTBHUS M YCIOBUS C TAHHBIMH), 3J€MEHTHI
Iuarpamm B3amMozeiictBuil crangapra UML (CHHXpOHHBIE COOOUICHUS, KOMOMHUPOBAHHBIE
(parMeHTbl) U KOHCTPYKIUH KOMIO3UIMOHHBIX MSC-nuarpaMm (4acTH4HO-OIpeeIeHHbIe
coobmenus). Ha ocHoBe 3TOro Meroja TpaHCISIIMM pealn3oBaH TpaHciaiaTtop u3 MSC-
muarpamm B CPN. CaoiictBa pesysnbrupyronmx CPN aHanmu3upyroTcs U BepUDUIHPYIOTCS
npu nomoun cucteMsl CPN Tools n Bepudukaropa CPN Ha ocHoBe cuctemsl SPIN. Eciu B
pe3ynbraTe BepH(HKAIMHA IPOBEPSIEMOE CBOWCTBO OKA3bIBACTCSl JIOKHBIM UM HAHJeH
KOHTPIPUMEP, TO MECTO OIIMOKH MOXKET OBITh JIOKaln30BaHO B wucxomHoit MSC-
cnenudukanuy. s 3Toro Ha OCHOBE KOHTPIIPHMepa TreHepupyercs Tpacca B MSC 1o mecra
OIIMOKH, MPEACTABIIIONAs COO0H MOCIETOBATENHHOCTh COOBITHI AMAarpaMMbl U COCTOSTHHI
MEepPEeMEHHBIX KaXJO0ro mporecca. [IpuMeHeHre MeTosa TPaHCISIIMU U CPEICTB aHajiu3a U
BepH(HKanuy MpoIeMOHCTPUPOBAHO HA MpHUMepe ceTeBoro nporokona ABP (Alternating Bit
Protocol).

Keywords: specification; translation; verification; distributed systems; communication
protocols; message sequence charts; UML sequence diagrams; coloured Petri nets

DOI: 10.15514/ISPRAS-2015-27(3)-14

Jas uutupoBanusa: Yeprenok Cepreil. Ilpumenenne packpamenHbix cereil Iletpu ams
BepH(UKALMK paclpeeNeHHbIX cucTeM, crnenuduunpoBadusix MSC-nuarpammamu. Tpyast
UCII PAH, Tom 27, Bem. 3, 2015 r., crp. 197-218 (ua aurmmiickom s3eike). DOI:
10.15514/ISPRAS-2015-27(3)-14.

Cnucok numepamypbl

[1]. ITU-T Recommendation Z.120 (02/2011): Message Sequence Charts (MSC), 2011.
[2]. Unified Modeling Language (UML) 2.5. Object Management Group, 2013.
(http://www.omg.org/spec/UML/2.5/Beta2/)

217

mailto:vnep@iis.nsk.su

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

[31
[41.
[5].
[6].
[71.
[8].
[9].

[10].

[11].

[12].

[13].

[14].
[15].
[16].
[17].

[18].

[19].

[20].
[21].
[22].
[23].

[24].

218

Genest B. Compositional Message Sequence Charts (CMSCs) Are Better to Implement
Than MSCs. TACAS 2005, LNCS 3440, 2005. P. 429-444.

Genest B., Muscholl A., Peled D. Message Sequence Charts. Lectures on Concurrency
and Petri Nets, LNCS 3098, 2003. P. 537-558.

Rajeev Alur, Holzmann G.J., Peled D. An Analyzer for Message Sequence Charts.
TACAS 96, LNCS 1055, 1996. P. 35-48.

UBET (MSC/POGA) toolset — http://cm.bell-labs.com/cm/cs/what/ubet/index.html
Cinderella MSC computer tool — http://www.cinderella.dk/msc.htm

IBM Rational Tau system — www.ibm.com/software/products/en/ratitau

Gaudin E., Brunel E. Property Verification with MSC. SDL 2013, LNCS 7916, 2013. P.
19-35.

Fernandes J.M., Tjell S., Jorgensen J.B., Ribeiro O. Designhing Tool Support for
Translating Use Cases and UML 2.0 Sequence Diagrams into a Coloured Petri Net.
SCESM '07: Proc. of the Sixth International Workshop on Scenarios and State
Machines, Washington, DC, USA, 2007. P. 2.

Yang N., Yu H., Sun H., Qian Z. Modeling UML sequence diagrams using extended
Petri nets, Telecommunication Systems, Springer, 2012. V. 51, N. 2-3, P. 147-158.
Eichner C., Fleischhack H., Meyer R., Schrimpf U., Stehno S. Compositional Semantics
for UML 2.0 Sequence Diagrams Using Petri Nets. SDL-Forum 2005, LNCS 3530,
2005. P. 133-148.

Lima V., Talhi C., Mouheb D., Debbabi M., Wang L., Pourzandi M. Formal verification
and validation of UML 2.0 Sequence Diagrams using source and destination of
messages. Electron. Notes Theor. Comput. Sci., 2009. V. 254, P. 143-160.

Shen H., Robinson M., Niu J. Model Checking Combined Fragments of Sequence
Diagrams. Software and Data Technologies, Springer, 2013. V. 411, P. 96-111.
Holzmann G. The Spin model checker: primer and reference manual. Addison Wesley,
2003. 608 p.

Jensen K., Kristensen L.M. Coloured Petri Nets: Modeling and Validation of Concurrent
Systems, Springer, 2009. 384 p.

Micskei Z., Waeselynck H. The many meanings of UML 2 Sequence Diagrams: a
survey. Software and Systems Modeling, Springer, 2011. V. 10, N. 4, P. 489-514.

C.A. Yeprenok, B.A. Hemomusimuii. Anamu3 MSC-nuarpamm pacrpeeNeHHBIX CHCTEM
¢ momomiplo packpameHHbix cereit [letpm // Ilpempunr 171, UCHU CO PAH,
Hosocubupck, 2013. http://www.iis.nsk.su/files/preprints/171.pdf

C.A. Yepuenok, B.A. Henomusmmuii. Anamu3 u Bepuduranus MSC-guarpamm
pacrpeaenéHHBIX CHCTEM C TIOMOIIBIO pacKpaleHHbIx ceteit [letpu // MoaenupoBaHue
¥ aHanu3 nHpopMaoHHbIX cuctem, 2014 r., T. 21, N 6, c. 94-106.

Haugen O. Comparing UML 2.0 Interactions and MSC-2000. 4th International SDL and
MSC Workshop, LNCS 3319, 2005. P. 65-79.

Abdallah R., Gotlieb A., Helouet L., Jard C. Scenario Realizability with Constraint
Optimization. FASE 2013, LNCS 7793, 2013. P. 194-209.

Tel G. Introduction to distributed algorithms. Cambridge University Press New York,
USA, 2000. 612 p.

Chernenok S. A. Examples of Analysis and Verification of Message Sequence Charts.
Appendix, 2015. (http://bitbucket.org/chernenok/msc-verification)

A.A. Crenenko, B.A. Henomusmmii. Bepudukauus packpamenusix cereit Ilerpu
MeronoM npoBepku Mozeneit / Ipenpunt 178, UICU CO PAH, HoBocubupck, 2015.
http://www.iis.nsk.su/files/preprints/178.pdf

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

Carassius: A Simple Process Model Editor

N. Nikitina <nmnikitina@edu.hse.ru>,
A. Mitsyuk <amitsyuk@hse.ru=>,
PAIS laboratory, National Research University Higher School of Economics,
125319, Kochnovsky, 3, Moscow, Russia

Abstract. Process models of different types and graphs are commonly used for modeling and
visualization of processes in information systems. They may represent sets of objects, tasks or
events involved in process linked with each other in some way. Wide use of process models
in various notations engenders necessity of software tools for creating, editing, and analysing
them.

This paper describes the process model editor which allows for dealing with classical graphs,
Petri nets, finite-state machines and systems of communicating automata. Additionally, the
tool is armed with the following list of useful features: process simulation based on a Petri net
token-based replay, import and export of process models in different persistent formats,
various model layouts and other process visualization abilities. Moreover, Carassius is a
modular tool which can be extended with additional process model notations, processing,
import and export possibilities.

In the paper one can find a detailed description of a couple of layout algorithms already
implemented in the tool. These algorithms for visualization of Petri nets and graphs can be
used as a base point for further development of more refined process visualization
approaches. Carassius might be useful for educational and research purposes because of its
simplicity, range of features and variety of supported notations.

Keywords: graph; Petri net; finite-state machine; process model; process model
visualization; process model editor

DOI: 10.15514/ISPRAS-2015-27(3)-15

For citation: Nikitina N., Mitsyuk A. Carassius: A Simple Process Model Editor. Trudy ISP
RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 219-236. DOI: 10.15514/ISPRAS-2015-
27(3)-15.

1. Introduction

The modern world is full of information systems working in different business
domains. One of the most developed concepts is process-aware information systems
[1]. A wide variety of different notations has been developed to model processes.

219

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

In this paper we present a new tool for editing and simulating process models in
different notations. Our goal is not to build yet another complicated model
simulator.

Our ambition was to develop a model editor which may be used for educational
purposes. Thus, the decision was made to implement a simple and extensible model
editor for different modeling notations. In particular, a modular architecture of
Carassius allowed us to implement simulation modules in addition to different
editors.

The remainder of this work is organized as follows. Section 2 gives a description of
the tool, implemented approaches and algorithms. Furthermore, the description of
the tool’s features is provided.

In section 3 we consider other tools with similar functionality. The advantages and
disadvantages of these tools are provided. Section 4 concludes the paper.

2. Tool Overview

2.1 Functionality

Here one can see the brief description of all features implemented in Carassius.

In this paper we present a tool which intended to help researchers and other people
easily make and edit models of different types. Carassius works with graphs of 3
types: classical graphs, Petri nets and finite-state machines. First of all, it permits to
edit process models by hand. Besides, the tool supports several markup languages
(PNML [2], [3], GraphML [4], [5] and FSAML) and can read and save models from
and into these formats. FSAML is a new XML format we developed for storing a
finite state machines system.

The working area has a grid helping users position the nodes. The tool can
automatically arrange model elements according to the grid. Users may set or
change all the possible properties of the whole model or its parts (for example: node
names, arc weights etc.) The tool can arrange models using different layout
algorithms: for graphs and finite-state machines it uses the force-directed algorithm,
whereas for Petri nets it uses the layering algorithm developed for Carassius. Both
of them are described in details in subsection Visualization refinement.

In addition, Carassius has features for a Petri net simulation. The tool supports step-
by-step token-game of a process model [6]. Moreover, there is a special coloring
mode that shows the real way of tokens during the simulation. Because of these
features, the tool can be used successfully in educational purposes.

2.2 Supported Notations
This section describes the modeling notations supported by Carassius.

220

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

2.2.1 Petri Nets

Fig.1. A Petri net editing.

The main supported formalism is Petri nets. Petri nets are widely used in process
modeling [6], [7]. A Petri net is a directed bipartite graph with two types of nodes:
transitions (denoted by rectangles) and places (denoted by circles). There are
directed arcs between places and transitions (denoted by arrows). Places can contain
so-called tokens inside, which determine the current state of a net and its marking.
Petri nets offer a graphical notation for step-by-step processes that include choice,

iteration, and concurrent execution. Execution of a process is depicted by tokens
flow.

2.2.2 Graphs

] S y— —
L R Tt TR
Ll
2 - aas
- . ":’ 1
™ b — L |
T, L S
'S 1_.--!_- _'-\.
b A, 4
|
e {L
\ 9 A
. i | .a-
o, _ s
o

Fig.2. A graph editing.

Carassius is also works with classical graphs. Both directed and undirected edges
are supported. It is possible to assign weights of edges. Process of graph editing is
quite simple. However, a possibility to deal with directed graphs and store them
using GraphML format is very useful.

221

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

2.2.3 Finite-State Machines

] - =y
5 Mk P ok -]
2R nas
Q ,»:} a
i -
—~ ¥
L=, T
!
l::.L .'5 . -
— O—L 7
L "'\-\.__\. (

Fig.3. A finite-state machine editing.

A finite-state machine (FSM, finite-state automaton [8]) is an abstract machine that
can be in an only one of a finite number of states at a point of time.

FSM recognizes or accepts certain word of some language with finite alphabet. It
can move from one state to another by triggering a transition with the same label as
a next letter of an input word. If a FSM stops in a state from the set of so-called
acceptance states, then it accepts a word. This is not always the case. Therefore, any
FSM forms a language consisting of the words accepted by this FSM.

A particular FSM is defined by a list of its states and transitions. States are usually
depicted by circles, and transitions are depicted by labeled directed arcs. There are
two special types of states: a single starting state and a set of final (accepting) states.
A starting state is depicted by a circle with an arrow from anywhere going into the
circle (see figure 3). Each accepting states is depicted by a double circle.

2.2.4 Systems of Finite-State Machines

Systems of communicating FSMs are also supported by Carassius. A system of
Finite-State Machines may be useful for modeling processes which appear at the
same time and have causal dependencies. A Finite-State Machine System deals with
some number of FSMs and relations between them. These relations may be of two
types: (1) synchronous (two transitions from the FSMs may fire only at the same
time) and (2) asynchronous (there is a special state in-between the FMSs called the
channel state). Synchronous relations are denoted by simple lines between two
models, which hold the information about transitions which are fired
simultaneously. Asynchronous - by sequence of arrow, place and another arrow,
meaning that some action performed in one fsm may have consequences in another.

222

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

[Y T R—— =

Fig.4. A system of finite-state machines editing.

2.2.5 Import and Export Formats

Carassius provides different import and export formats to facilitate work with
models. It deals with several convenient markup language formats for import:
PNML for Petri nets, GraphML for graphs, and FSAML for finite-state machines
and their systems. All of them are XML-based interchange formats. In addition, one
can easily export a model to png-picture or tikz-picture to import model to a TEX
file.

2.2.5.1 Markup language formats

PNML and GraphML formats are well-known in the world of modeling and have
been in use for a long time. Both of them have a clear specification and will be
described further. On the contrary, FSAML (Finite-State Automaton Markup
Language) has been developed recently by the authors of this paper and has not
been formally described yet.

A detailed explanation of a PNML format can be found in [9]. A typical PNML file
contains information about a net, a number of pages, lists of places, transitions and
arcs. A lot of additional information is available such as names of nodes,
dimensions etc. PNML is an extensible format. So, it is possible to make different
extensions for particular modeling aspects. It is impossible to cover all extensions.
That is why Carassius deals with PNML files according to the recent version of the
core standard (ISO/IEC 15909-2:2011).

GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a
language core for describing the structural properties of a graph. A detailed
description can be found in [10]. Carassius, in turn, supports only simple graphs
(directed, undirected and mixed) without any additional features.

223

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

FSAML is a format allowing exchange of finite-state machines and their systems.
The development of this format is still in progress. However, there is a working
alpha implementation of it in Carassius.

The structure of the file according to the format is following: the main node
(fsasystem) consists of its name (name), a number of finite-state machines (fsa),
synchronous (syncs) and asynchronous (channels) relations between them. In turn, a
fsa node contains a number of states (state) and transitions (transition). Each of
them has an attribute id holding unique id. Each state has its type: general, initial or
final, therefore there is an inner node statetype containing this information. The
second inner node is graphics representing the data about position and dimension of
a node. Transitions have their source states (source) and target states (target)
represented as attributes. The channels node consists of several channels (channel),
which, in turn, have two nodes: from and to containing information about fsa and a
corresponding state. The syncs node has the same structure except the fact that
relation is between two transitions, not states.

An example of the file in the FSAML format is shown on figure 5.

aml version scodings UTF-§ textxgenerale! tony

Fig.5. The FSAML format.

2.2.5.2 TEX and PNG export
The tool has features for TEX and PNG export. Carassius may generate a code to
import picture using tikz-package into your TEX file. Figure 6 shows a simple Petri

224

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

net edited with Carassius and exported directly into TEX. This feature has been
implemented with help of N. Chuykin (a student at HSE).

1

® f O D O

B
Fig.6. A picture compiled with tikz package.

2.3 Visualization refinement

The presented tool has several features to make model visualization better. There
are two special algorithms for the directed graphs and for Petri nets, which can
arrange nodes to make model easier to understand. Graphs and Petri nets can be
processed in different ways. The tool also provides a grid for working area which
helps placing nodes more accurately. Finally, Carassius provides possibility to
hide/show grid as well as node labels. This section describes the layout algorithms
in detail.

2.3.1 Petri Net layout

Firstly, the layout refinement algorithm for Petri nets is described. It is a layered-
based algorithm which was developed especially for Petri nets. Layered-based
algorithms are a group of layout algorithms which work with directed graphs and
take their hierarchical structure into account [11]. We chose this approach as the
most suitable for Petri nets as they are directed, and bipartite. The structure of the
Petri nets notation is quite suitable for a layered representation. The main scheme of
the layered-based approach is described in [12]. These algorithms are aimed to
cover the list of aesthetic points:

1) single edges direction,

2) occupied area minimization,

3) uniform nodes allocation,

4) long edges avoidance,

5) edges-crossing minimization.
Although some of these points may conflict with each other, the approach is viable.
It works using three steps:

1) allocation of nodes on layers in a way which ensures that edges have single

direction;

2) choice of the nodes order on layers with the aim of edges-crossing
minimization;

3) determination of node coordinates on layers with the aim of edges-length
minimization.

225

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

In the presented algorithm these three ideas are used, but some features are added
and changed as well.

The algorithm in Carassius takes into account: (1) a biparticity of Petri nets, (2) the
fact that they have directed arcs, and (3) a presence of initial places.

Data: List of all nodes as nodes

Result: All podes are amanged

it modeiNumber = 1

while exch mode dovsn’t belong to any model do
Node firstNode » findNode WithoutModeINumbert);
depthFirstScarchi firstNode, modelNumber),
modeINumber++;

end

foreach model do
List<Node > modelNodes »
getAlIMode INodes(modeINumber),

. List<Node > mitialNodes =

scarchForinitialNodes(modelNodes),

- e ..

" sctColumnForStartingNodes(starting Nodes)
" 1ColumnForEachNodet mode INodes);

” setY coordinate ForEachNodet mode INodes);
" seiSpaceBetweenColumns(),

1 oend

14 visualized),
e returm coond)

Alg.1. Petri net layout algorithm.

Generally, it determines connected components of a model (a number of individual
graphs in one model), applies layered-based approach for each component and then
gathers components together to visualize an overall model. We use so-called
‘columns’ to represent layers. Due to the Petri nets biparticity the content of
columns alternates from places to transitions. We start from the first column with
places. When several steps of the algorithm are made, each node has its column
(using breadth-first search), and we can arrange nodes in each column separately
(set them y-coordinate). The overall algorithm 1 shows all the steps.

Data: Inial pode m sode, nembor of model s modeiNum
Resabt: All nodes of the model ave marked

1 Torench Are are bn node thisAres da

x| N amk - Data: List of all nodes & nodes
o becicden o Yo: e Result: List of isitial nodes as initsalNodes

: be oo 1 List<Node > isstialNodes = new List< Node > () foreach Node
che :

. next w arc Froar, wode in nodes do

\ nd 2 W nodethishres, Cowmt wo O then

. scrlmodeiNumber » model Num ’ mitialNodes. Addnode)

. sl ivChecke e . e

- Sorvach An 1 in next thisdAres do ' bood haslagoiagArcs = Ll

" Node . foreach Arc are in nede thisAres do

" If wrcl To wm mode then ? I e To ww monde then

" oent] = arch Te . haskngosng Arcs = true;

“ ol . becak

" ’r\'\'.l = arct From .- end

[o

= — = - el " end

ad s et el craliezccd " If AustupoingArcs == false then

~ next] modeiNumber » modeiNum 0 initial Node Addinode);

- depthFerstSeanchs next |, madelNam u end

n ond 1 end

1 end w end

» oend o retuen oredand Node s

Alg.2. Determination of all nodes in a model. Alg.3. Search of initial nodes.

226

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

In order to arrange nodes the tool makes the following steps:

(a) Determines connected components of the models. A Petri net model
may consist of several individual connected components, so we have to detect them.
Also, for each set of nodes we have to assign the number used for component
identification.

Next steps are done for each connected component of the model:

(b) Finds all initial nodes (both transitions and places). A node considers as
initial if it doesn’t have any ingoing arcs.

(c) Sets columns for the initial nodes. This step is needed because these
nodes will become starting points to move through the graph.

(d) Sets a column for each node. This algorithm is layered-based, thus, we
need to distribute nodes among columns.

(e) Sets a y-coordinate for each node. At this step we want to place each
node in some place at a column. To make the model layout more compact we locate
nodes symmetrically from the center of a column (mean value between minimal and
maximal y-coordinate of nodes in a column).

(f) Sets margin between columns. There may be very few or, on the
contrary, too many arcs between the nodes in two adjacent columns. So, these
distances should depend on a number of arcs between neighbor columns.

(9) Visualizes the whole model. The whole model is visualized using all
information derived at the previous steps.

The listing 2 shows the algorithm which divides a model into several connected
components. To obtain the list of initial nodes the algorithm 3 is used.

Data: List of all sodes as sodes

am't wnn do
Limt<Node > cuneaeColumnNodes = new List< Nodie >(
‘ foreach Nowle node |

I monde, column

currentColumn
ond
. end
foreach Arc are in node thisAres do
. Node wmp
" I o To mevde 1hen
: temp = arc.From
ohw
“ et = are.To
ond
I monde, colamm 0 then
n node.column » currentColuna » |
ool
" ol
» currestColumnse +

Alg.4. Search of a column for each node.

The distribution of all nodes in columns is shown in the algorithm 4.
Algorithm 5 arranges each node for its place (y-coordinate) in a column.

227

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

column as column, maximum nsmbor of
del
of all nodes i one mode! as

Data: Curn
cheny
masNumberOfElements, st
modeiNodes

Reswlt: Each sode in ¢

it numberOfElementsls

R% B0 Cobummn fow all ¢

® has its own y-Coordinase

forcach Node nexde in n odex do
Il node codamn colwme then

‘ namberOfEle monts ++

. end

. end

s double cooedY = celiHeight / 2 * (maxNumberOfMEkments
oumberOfElements)

v Forvach Node nade in eolumn do

. aode Y = cooed Y

" coordY = cellHeight

ooend

Alg.5. Setting of a position for each node in a column.

2.3.2 Graph layout

In this subsection the layout algorithm for graphs is described. Carassius contains
implementation of the existing algorithm from [13] with little changes. It is a force-
directed algorithm aspired to achieve several goals:

(1) nodes should not be too close to each other,
(2) edges should have more or less equal length and do not cross each other too

often.

This algorithm does a number of iterations to achieve the best arrangement of a
graph. It is done by assigning so-called forces and velocities among the set of edges
and the set of nodes, based on their relative positions.

228

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

Data: List of all sodes in one model as sodes, list of all acs in
oo model as arcs
Result: All nodes in one model are aranged
1 dowble oldX, oMY, newX, newY,
2 foreach Node node in ndes do
' # nextDouble returns 2 real sumber from 0 %0 | node X =
2000 + pextDoubled) * 300
. pode Y = 100 + nextDoublel) * 200,

s« end

s do

? for « « 0 to nodes. Count do

. podes|i) netForce X » nodes|i) netForce Y = 0

. for j « O to nodes. Count do

- ii==)then

" coatinue,

H end

o double squaredDistance =
(nodeli]. X — node[3). X)7 +
(rodels]. Y node(31.Y)%:

“ nodes{i]netForce X += 200 * (nodes]il X -
nodes|j).X) / squasedDistance;

" nodes| i) netForce Y ow 200 * (nodes]i) Y -
nodes|f].Y) 7 squared Distance;

i el

” foreach Arc arc in urcs do

= Node tempNode;

" I are. From == nodesfi] then

> sempNode » arc.To;

n ehve

FH kmpNode = arc. Fromx

B3] end

£ nodesi] netFoeceX 4= 006 * (lempNode X -
nodes]i) X\

2 nodes|i] netForce Y o= 0.06 * (tempNode. Y
nodes[t).Yr

EN end

n modes|ipveloctyX = (nodes{i] velocityX +

modes] i) setForceX) * 0,85
B sodes|i) velocityY = (nodes|i] welocity Y +
modes|i] metFoeceY) * 085

> end

» oldX = nodes]0].X;

n oldY = nodesiD)Y;

) foreach Nowle node in novdes do
" pode X += node, velockyX
“ pode. Y 4= node velocity Y.
" end

~ pewX = nodes{0]X:
” mwY = nodesfOL Y,
» while oldX '= newX | oldY = newY,

Alg.6. Force-based algorithm for a graph model layout.

An algorithm for graph layout in Carassius consists of two main steps:

(a) The force-directed algorithm (see algorithm 6) itself. It is applied for each
connected component. Constants used in the algorithm were selected experimentally
based on application Ul configuration.

(b) A movement of all nodes on fixed distances. Nodes can have negative
coordinates after applying the algorithm, so we need to move them because working
area shows only those which have positive coordinates. We also need to do some
movements to place models in such a way in order to save a distance between them.

2.4 Simulation

Petri nets are not only simple bipartite graphs but also a powerful tool able to
represent a process flow. There are ‘tokens’ (markers inside places), reflecting

229

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

current state of a net. They can change their places by the transitions firing. A
transition may be fired if all places which have outgoing arcs to this transition have
enough tokens inside (equal or more than weight of a corresponding arc). At each
step only one transition is fired (may be chosen by hand or randomly). When a
transition is fired it consumes the required number of tokens and passes a token to
each outgoing place. The simulation ends when there is no transition able to be
fired.

Simulation of an example Petri net made in Carassius is shown in figure 7.

Fig.7. Simulation of a Petri net.

2.4.1 Wave coloring

Simulation of a net in our tool may also be done in a waving mode. During
simulation nodes are colored in a specific way. A movement of a token from one
place to another will be considered as a single step. Nodes engaged in the last step
have deep blue color, whereas nodes used in previous steps are colored in light blue.
In other words, the later a step is made, the darker a node is colored, the earlier — the
lighter. This coloring allows for easily understanding of a process direction,
determining which nodes were visited and which were not.

230

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

! Uy
) ¥ 1l
e o Jo =
- ' - - L] »
- d d o
[— -
> x aHe L .-
~ g 288 g<gn — -

24 o o{olc{o;clo

4

Fig.8. Wave coloring during simulation of a Petri net.

Figure 8 shows how wave coloring of a simulation works in Carassius. The top part
of the picture shows simulation at the intermediate step. The bottom part shows a
window when the simulation has been ended.

2.5 Architecture

The tool is built as a standalone windows application using C#. We used the
Windows Presentation Foundation (WPF) platform to build our application because
of its functionality, extensibility and convenience. The WPF provides user controls
as a mechanism for reusing blocks of the Ul elements. The main window of
Carassius consists only of one user control, which may be easily moved to another
application as a component.

231

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

3. Related work

A variety of model editors are available now. Nevertheless, all of them did not fully
meet our two main requirements (simplicity and extensibility). This section
describes the closest existing tools which support model editing in a desirable way.
a) CPN Tools (see [14]): CPN Tools is a tool for working with Colored Petri nets. It
allows users to edit, simulate, and analyze them. CPN Tools has an interesting,
original interface which uses a lot of small inner windows for each type of editing.
However, at first a user can get stuck because the GUI is not very intuitive and the
user needs to read the help to understand what he should do in order to start
working. In addition, the tool works only with colored Petri nets and you cannot
work with simple ones.

b) Yasper (see [15]): Yasper, as authors say, is the yet another smart process editor.
It is a quite simple, but useful tool which supports editing and simulation of Petri
nets. It has rather user-friendly and easy to use interface, but it is still unevident how
to do some actions. Fortunately, its help paper is very useful and provides a lot of
information about usage of the tool. However, Yasper has a significant drawback - it
does not support the current version of the PNML format, so the user just cannot
download new PNML files and cannot work with exported files from the tool
anywhere else.

¢) Tina (see [16]): Tina is a tool for working with classical P/T and Time Petri nets.
It has features for editing and analysis of Petri nets. Tina’s interface is very simple,
but at the same time easy to understand. Editing functionality is not very wide, but
the tool provides several analysis techniques, which work well. Tina’s disadvantage
is that it cannot simulate Petri nets in a visual way and has a small number of
functions.

We can see that several tools for working with Petri nets are already exist, but all of
them have certain drawbacks. In our tool we endeavored to take into account all
disadvantages we found in other tools, and at the same time to add new
functionality. We tried to do interface easy to use and learnable, intuitive to work; to
provide support of different export and import formats; to implement all main tasks
which can be done with Petri nets; and, finally, to incorporate some new features
(e.g. several visualization refinement algorithms).

4. Conclusion

A lot of features and several modes are already implemented in Carassius. One can
use it to deal with graphs, Petri nets, Finite-State Machines. Due to modularity of
the tool we want to extend it with other modeling formalisms. The most difficult
thing is to preserve the simplicity of the software while adding new features.

Our tool has been used in different other projects at PAIS Lab [17], [18]. We hope it
will also be useful for other researchers (see [19]).

Of course, there is still a lot of work to do. Our main goal is to improve the FSM
aspect of the tool. This functionality is involved in other projects of our group.

232

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

Complete definition of the FSAML format is the key point of the future work.
Moreover, we intend to add simulation functionality for the finite-state machines.
Another aim is to carry out a number of user tests in order to find and eliminate
bugs in the tool. In addition, we are going to do usability testing to make Carassius
more intuitive to use and work with. There are several possible improvements of
GUI we want to implement.

Acknowledgment

We would like to thank members of the PAIS Lab for their support. Research
assistants 1. Shugurov and A. Begicheva tested the tool and reported lots of bugs.
Dr. A. A. Kalenkova and prof. I. A. Lomazova gave us a valuable advice on the
GUI design and the required features.

Also we would like to thank Nikolay Chuikin, who implemented the TEX-export
used in the tool.

This work is output of a research project implemented as part of the Basic Research
Program at the National Research University Higher School of Economics (HSE).

References

[1]. M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede, Process-aware
Information Systems: Bridging People and Software Through Process
Technology. New York, NY, USA: John Wiley & Sons, Inc., 2005.

[2]. M. Weber and E. Kindler, “The petri net markup language,” in Petri Net
Technology for Communication-Based Systems - Advances in Petri Nets, 2003,
pp. 124-144.

[3]. J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer, L.
Petrucci, R. Post, C. Stehno, and M. Weber, “The petri net markup language:
Concepts, technology, and tools,” in Applications and Theory of Petri Nets
2003, 24th International Conference, ICATPN 2003, Eindhoven, The
Netherlands, June 23-27, 2003, Proceedings, 2003, pp. 483-505.

[4]. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall,
“Graphml progress report structural layer proposal,” in Graph Drawing, ser.
Lecture Notes in Computer Science, P. Mutzel, M. Jnger, and S. Leipert, Eds.
Springer Berlin Heidelberg, 2002, vol. 2265, pp. 501-512.

[5]. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall,
“Graphml progress report,” in Graph Drawing, 2001, pp. 501-512.

[6]. W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[7]. T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[8]. . A. Anderson, Automata theory with modern applications. Cambridge
University Press, 2006.

233

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

[9]. L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves, “A primer on the
petri net markup language and iso/iec 15909-2,” Petri Net Newsletter, vol. 76,
pp. 9-28, 2009.

[10]. U. Brandes, M. Eiglsperger, and J. Lerner, “Graphml primer,” Online:
http://graphml. graphdrawing. org/primer/graphml-primer. html [29.05.2007],
2004.

[11]. G. D. Battista, P. Eades, R. Tamassia, and |. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[12]. V. Kasianov and V. Evstigneev, Grafi v programmirovanii. BHV - Peterburg,
2003. (In Russian)

[13]. S. G. Kobourov, “Spring embedders and force directed graph drawing
algorithms,” arXiv preprint arXiv:1201.3011, 2012.

[14]. M. Westergaard and L. M. Kristensen, “The access/cpn framework: A tool for
interacting with the cpn tools simulator,” in Applications and Theory of Petri
Nets. Springer, 2009, pp. 313-322.

[15]. K. van Hee, O. Oanea, R. Post, L. Somers, and J. M. van der Werf, “Yasper: a
tool for workflow modeling and analysis,” in Application of Concurrency to
System Design, 2006. ACSD 2006. Sixth International Conference on. IEEE,
2006, pp. 279-282.

[16]. B. Berthomieu*, P.-O. Ribet, and F. Vernadat, “The tool tina — construction of
abstract state spaces for petri nets and time petri nets,” International Journal of
Production Research, vol. 42, no. 14, pp. 2741-2756, 2004.

[17]. A. K. Begicheva and I. A. Lomazova, “Checking conformance of high-level
business process models to event logs,” in Proceedings of the Spring/Summer
Young Researchers Colloquium on Software Engineering, vol. 8, 2014.

[18]. A. A. Mitsyuk and 1. S. Shugurov, “On process model synthesis based on event
logs with noise,” Modeling and analysis of information systems, vol. 4(21), pp.
181-198, 2014.

[19]. N. Nikitina and A.Mitsyuk, “Carassius: A Simple Petri Net Editor,” accessed:
2015-04-01. [Online]. Available: www.pais.hse.ru/research/projects/carassius

Pepaktop moaenen npoueccoB «Carassius»

H. Huxumuna <nmnikitina@edu.hse.ru>,
A. Muyiox <amitsyuk@hse.ru>,
HYJI IIOUC, Hayuonanvuwiti Uccredosamenvckuil Yuueepcumem Boicwas [Lxona
Oronomuku, 125319, Poccus, e. Mockea, np. Kounosckuil, 0. 3.

AHHOTammsA. Mozenu u rpadbl IPOLECCOB PA3TUYHBIX TUIOB LIMPOKO HCIONB3YIOTCS AT
MOJEIMPOBAaHMS ¥ BU3yaNU3ally MPOLECCOB B HHPOPMAIIMOHHBIX CHCTeMaX. Takue MOAEIH
NPEACTAaBISAIOT B3aMMOCBA3M MEXIY OOBEKTaMHM, 3aJa4aMd WM COOBITHSMH B paMKax
nporecca. Vcrnonp3oBaHne OONBIIOTO KOJUYECTBA MOJENCH MPOIECCOB B Pa3HOOOPa3HBIX

234

mailto:nmnikitina@edu.hse.ru

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

HOTAIMAX BBI3BIBACT HEOOXOMUMOCTH pa3pabaTeiBaTh HPOTPaMMHBIC HHCTPYMEHTHI,
obecrieunBaroIye KOHCTPYHPOBaHUE, PEIAKTUPOBAHNE U aHATIN3 MOJIENIeH TIPOIIECCOB.
JlanHast paboTa ONHCHIBAET WHCTPYMEHT Ui PENAKTHPOBAHHS MOJENCH IIPOIECCOB,
obyaaromuii GyHKIMAMA Uit pabOThl ¢ MOIESIMH B BHAE KiaccHdyeckux rpados, cereit
IleTpu, KOHEYHBIX aBTOMATOB U CHCTEM B3aUMOJIEHCTBYIOMINX KOHEUHBIX aBTOMaToB. Kpome
3TOT0, IPOrpaMMa UMeET CIEAYIOUIUit HaOOp MOJIe3HBIX QYHKIMI: CUMYIISIIUS IPOIECCOB Ha
0aze ucnonHeHus ceteil IleTpu ¢ MCIONB30BaHMEM TOKEHOB, UMIIOPT M 3KCIIOPT MoJenel
MPOIIECCOB B Pa3lIMYHBIX (popMaTax XpaHEHHs, Pa3sHOOOpa3HbIe CIIOCOOBI aBTOMAaTHYECKOTO
rpadu9IecKoro pasMelleHns] MoJeneil Ha INIOCKOCTH, allTOPUTMbI BH3YaIH3alliH IIPOIECCOB.
Bonee Toro, monympHas apxurekrypa Carassius IO3BOJSET pacIIUpSATh HHCTPYMEHT,
JI00aBysisl TOANEPXKKY MOIOJNHUTENBHBIX HOTAMH MOZENeH IPOIecCOB, alrOpPUTMOB
00pabOTKM W BH3yalmu3alWM MoOJENel, X HMIOpTa M JKcrmopTra. B maHHOW craTbe
HpeUIarafoTcsl ABa airoputMa rpadudeckoro pasmemenus cereit Ilerpm u rpadoB Ha
IUIOCKOCTH, IPUBOJUTCS OMMCAHUE HX PEATU3AIMU B MPOrpaMMHOM obecrieueHnn Carassius.
OTH aNrOPUTMBI MOTYT CIYXXHTh OCHOBOH Ui pa3pabOTKU APYrHX, 0Ojee COBEpLICHHBIX
AJITOPUTMOB BU3yaIIN3aLIH Pa3HbIX aCIIEKTOB IIPOIIECCOB.

B xome mnpoektupoBaHus u pazpaboTku HHCTpyMeHTa Carassius oco0oe BHHUMaHHE
YIeISUIOCh OOECIIEUEHHIO MPOCTOTHI WCIOJNB30BaHMS, BHYTPEHHEro YCTpOiCTBa W
pacumpsieMocTH. biaromaps 3TOMy IpelCTaBIE€HHOE IPOrpaMMHOE 00ECICYEHHE MOXKET
HCIOJIb30BaThCs B 00Pa30BaTENIbHBIX U HCCIIEIOBATEIBCKUX LIEIIAX.

KmioueBbie ciaoBa: rpad; cerp Ilerpy; KOHEUYHBIH aBTOMAT; MOJENb IIpOIEcca;
BU3YaITH3aIIs MOJIENIeH IPOIIECCOB; PEIAKTOP MOEINICH IPOIIECCOB

DOI: 10.15514/ISPRAS-2015-27(3)-15

s untupoBanusi: Hukutiaa H., Mumok A. Pemaktop Mopneneii mpoueccoB «Carassiusy.
Tpynst UCIT PAH, Tom 27, Bem. 3, 2015 1., c1p. 219-236 (Ha anrmmiickoM s3bike). DOI:
10.15514/ISPRAS-2015-27(3)-15.

Cnucok numepamypsbl

[1]. M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede, Process-aware
Information Systems: Bridging People and Software Through Process
Technology. New York, NY, USA: John Wiley & Sons, Inc., 2005.

[2]. M. Weber and E. Kindler, “The petri net markup language,” in Petri Net
Technology for Communication-Based Systems - Advances in Petri Nets, 2003,
pp. 124-144.

[3]. J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer, L.
Petrucci, R. Post, C. Stehno, and M. Weber, “The petri net markup language:
Concepts, technology, and tools,” in Applications and Theory of Petri Nets
2003, 24th International Conference, ICATPN 2003, Eindhoven, The
Netherlands, June 23-27, 2003, Proceedings, 2003, pp. 483-505.

[4]. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall,
“Graphml progress report structural layer proposal,” in Graph Drawing, ser.
Lecture Notes in Computer Science, P. Mutzel, M. Jnger, and S. Leipert, Eds.
Springer Berlin Heidelberg, 2002, vol. 2265, pp. 501-512.

235

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

[5]. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall,
“Graphml progress report,” in Graph Drawing, 2001, pp. 501-512.

[6]. W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[7]. T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[8]. J. A. Anderson, Automata theory with modern applications. Cambridge
University Press, 2006.

[9]. L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves, “A primer on the
petri net markup language and iso/iec 15909-2,” Petri Net Newsletter, vol. 76,
pp. 9-28, 20009.

[10]. U. Brandes, M. Eiglsperger, and J. Lerner, “Graphml primer,” Online:
http://graphml. graphdrawing. org/primer/graphml-primer. html [29.05.2007],
2004.

[11]. G. D. Battista, P. Eades, R. Tamassia, and |. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[12]. Kacesinos B. H., EBcturaees B. A. I'padsr B nporpammuposatuu //Q6paboTka,
Bu3yanuzaius 1 npumenenne. bXB-Ilerepoypr. — 2003.

[13]. S. G. Kobourov, “Spring embedders and force directed graph drawing
algorithms,” arXiv preprint arXiv:1201.3011, 2012.

[14]. M. Westergaard and L. M. Kristensen, “The access/cpn framework: A tool for
interacting with the cpn tools simulator,” in Applications and Theory of Petri
Nets. Springer, 2009, pp. 313-322.

[15]. K. van Hee, O. Oanea, R. Post, L. Somers, and J. M. van der Werf, “Yasper: a
tool for workflow modeling and analysis,” in Application of Concurrency to
System Design, 2006. ACSD 2006. Sixth International Conference on. IEEE,
2006, pp. 279-282.

[16]. B. Berthomieu*, P.-O. Ribet, and F. Vernadat, “The tool tina — construction of
abstract state spaces for petri nets and time petri nets,” International Journal of
Production Research, vol. 42, no. 14, pp. 2741-2756, 2004.

[17]. A. K. Begicheva and 1. A. Lomazova, “Checking conformance of high-level
business process models to event logs,” in Proceedings of the Spring/Summer
Young Researchers Colloquium on Software Engineering, vol. 8, 2014.

[18]. A. A. Mitsyuk and I. S. Shugurov, “On process model synthesis based on event
logs with noise,” Modeling and analysis of information systems, vol. 4(21), pp.
181-198, 2014.

[19]. N. Nikitina and A.Mitsyuk, “Carassius: A Simple Petri Net Editor,” accessed:
2015-04-01. [Online]. Available: www.pais.hse.ru/research/projects/carassius

EE)

236

H. Hlyrypos, A. Mutok. Iskra: MHCTpyMeHT mounHku Mozeneit mponeccos. Tpyast UCIT PAH, tom 27, Beim. 3, 2015
r., C. 237-254

Iskra: A Tool for Process Model Repair

I. Shugurov <shugurov94@gmail.com>,
A. Mitsyuk <amitsyuk@hse.ru=>,
Laboratory of Process-Aware Information Systems, National Research University
Higher School of Economics, 3 Kochnovsky Proezd, Moscow, Russia

Abstract. This paper is dedicated to a tool whose aim is to facilitate process mining
experiments and evaluation of the repair algorithms. Process mining is a scientific area which
provides solutions and algorithms for discovery and analysis of business processes based on
event logs. Process mining has three main areas of interest: model discovery, conformance
checking and enhancement. The paper focuses exclusively on the tasks of enhancement. The
goal of the enhancement process is to refine existing process models in order to make them
conform to given event logs. The particular approach of enhancement, which is considered in
the paper, is called decomposed model repair. It is assumed that event logs describe correct
and up-to-date behavior of business processes, whereas process models may be erroneous.
The proposed approach consists of several independent modules implementing different
stages of the repair process. This architecture allows for more flexible repair configuration.
Moreover, it allows researchers to conduct experiments with algorithms used by each module
in isolation from other modules. Although the paper is devoted to the implementation part of
the approach, theoretical preliminaries essential for domain understanding are provided.
Moreover, a typical use case of the tool is shown as well as guides to extending the tool and
enriching it with extra algorithms and functionality. Finally, other solutions which can be
used for implementation of repair schemes are considered, pros and cons of using them are
mentioned.

Keywords: Process model, Petri net, Model repair, Process mining.

DOI: 10.15514/ISPRAS-2015-27(3)-16

For citation: Shugurov |., Mitsyuk A. Iskra: A Tool for Process Model Repair. Trudy ISP
RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 237-254. DOI: 10.15514/ISPRAS-2015-
27(3)-16.

1. Introduction

In this paper, a tool for modular process model repair is presented. Architectural
features and usage examples are provided.

Process mining [1] is a research area which deals with analysis of information
systems or business processes by studying corresponding event logs and building

237

mailto:amitsyuk@hse.ru

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 237-254

process models. The basic idea is that there can be significant improvements of
existing systems, business operations if event logs and their content are studied
more thoroughly. Three main aims of process mining are process discovery,
conformance checking and enhancement [2].

The goal of Process discovery is to create a process model, based on an event log.
That constructed model has to adequately describe the behavior observed in the
event logs. The process of construction is typically called mining. As a model it is
possible to use, for example, Petri nets. The challenge of process discovery is the
hard truth that event logs reflect only a fraction of the overall process. It means that
there may be activities, events, conditions, decision forks which exist in the initial
process model, but they are not seen in event logs. For example, rare events in
processes such as activities undertaken in emergency situations at nuclear power
stations. Such activities exist, they are strictly regulated by rules and legislation,
they influence the overall process a lot, but they are extremely uncommon so if an
event log of a nuclear station is considered they are likely not to be present. Another
serious issue concerning event logs is errors in them. Some events may be not put
down in logs, log records might contain incorrect information about actually
occurred events (i.e. wrong time stamp, event name) or they might be deliberately
distorted.

Conformance checking is aimed to check whether a model fits a given event log.
Because of the reasons presented in the description of process discovery, perfect
fitness is almost not feasible in practice. Therefore, when discrepancy between a
model and corresponding event logs occurs, it is desired to assess the significance of
the deviation and highlight model parts where deviations take place [3, 4]. Some
types of conformance checking algorithms support assigning weights to skipping
and adding of events, that somehow indicates the significance of these deviations.
The reason for applying Enhancement is to improve already existing models by
using information stored in event logs. Hence, the task here is to alter model, not to
create an absolutely new one. Typical input parameters for the enhancement
algorithms are a model and a corresponding event log. According to the presented
definition, the approach the tool implements is categorized as an enhancement
approach.

The remainder of this work is organized as follows.

In section Process model repair basic ideas behind model repair are described.
Modular repair approach section explains what modular repair is and how tools
implementing this approach should be organized in order to achieve the goals.

In section Tool overview a summary of the tool functionality is reported.

Section Tool architecture contains information on the framework used during the
development process, domain analysis and the architecture of the tool.

Section Use case shows step-by-step usage of the tool. In section Related work
other tools are considered.

Section Conclusion concludes the paper.

238

H. Hlyrypos, A. Mutok. Iskra: MHCTpyMeHT mounHku Mozeneit mponeccos. Tpyast UCIT PAH, tom 27, Beim. 3, 2015
r., C. 237-254

2. Process model repair

In the field of process modeling not all the processes are of best quality. Usually
process models are made by experts or obtained as a result of using automated
model construction algorithms. In the field of process mining a lot of methods have
been developed to discover models from process logs [1]. Real-life processes in
information systems are complex and permanently changing. Thus, it is a very hard
problem for experts and engineers to keep process models up to date.

The goal of model repair is to improve the quality of a model. In this paper, fitness
is understood as a metric of model quality. Fitness is measured using technique
described in [3]. Model repair has been introduced in [5]. As input for model repair
a process model M and an event log L are used. If model M conforms to L, then
there is no need to change M. If M partially does not conform to L, repair method
has to repair non-conforming parts of M. Conforming parts of the model are kept as
is. The result is the repaired model A1,

3. Modular repair approach

The implementation of the modular repair approach is the foundational goal of this
work. The key idea is to make a general model repair scheme which will consist of
several cells connected with strong links. A cell is understood as a placeholder
where a user can put one of the appropriate algorithms. Cells are of the following
types: (1) conformance checking cell, (2) decomposition cell, (3) selection cell, (4)
repair cell, (5) composition cell, (6) final evaluation cell. Each cell type corresponds
to the step in the modular repair.

Conformance checking cell is used to evaluate current progress of the repair process
and indicate whether a current model quality is sufficient. An algorithm in a
decomposition cell, as it is clear from its name, is responsible for dividing an entire
model into smaller parts, which are easier to understand, analyze and repair.
Decomposition for process mining is described in [6]. A selection cell includes an
algorithm whose aim is to run conformance checking for each model part and
decide which of them are sufficiently fit. A repair cell can be either a process
discovery algorithm or some enhancement algorithm; although for generalization
reasons they are called repairers in the paper. Once the decomposed parts are
repaired they ought to be merged in order to form a single model. It is done by an
algorithm located in a composition cell. An algorithm located in a final evaluation
cell is executed after completion of the entire repair task. At this step several metrics
are measured in order to assess the quality of the model and the repair. Moreover,
similarity of the initial and the final models is checked. In the future, visualization
of model differences will be incorporated.

At the first step the tool checks whether a model and a log conform to each other.
The second step is one of the model decomposition methods, which allows for
splitting the model into parts [7]. At the third step the tool selects conforming and
non-conforming parts by application of conformance checking method to each part,

239

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 237-254

obtained at the second step with the projection of the event log onto set of activities
corresponding to this part. The fourth step is the repair step. At this step the tool
applies a repair algorithm. It can be, for example, simple re-discovery algorithm. By
applying it the tool obtains a new model from the log part corresponding to a non-
conforming part of the initial model. At the fifth step the tool composes all parts of
the model into the final model using an appropriate method. The sixth step is the
final evaluation of the repaired model. Usually, each algorithm has to be wrapped in
additional code in order to be embedded in a particular cell of the tool.

This work will not consider the aspects of the methods which can be placed into
cells. There is a theory behind each step of the repair process. Methods offer a lot of
settings and options. Because of that, it will be impossible to put all the details in
one text. The main goal of this work is to propose a software architecture that
allows for exploring different algorithms and their features in the context of model
repair.

4. Tool overview
The main functionality provided by the tool implies the following aspects:

e The tool allows users to select a decomposition method which, in their
opinion, is the most suitable for a given model.

e The tool makes it possible to choose a repair algorithm. The choice of the
algorithm is typically based on the properties of the algorithm and a model
it produces. The task of choosing the best repair algorithm is basically an
attempt to find appropriate alternative between time needed for the
algorithm to do its work, presence or absence of so-called silent transitions
(i.e. transitions that do not correspond to any events observed in an event
log, but considered to be present because they somehow explain the model
behavior) and conformance between a given model and an event log.

e One may specify importance of each metric for a particular repair task.
This step is essential for automatic evaluation of how well the tool helps
researchers achieve the desired repair result.

e Numeric results of the final model evaluation can be stored in CSV file
either manually or automatically. CSV files are chosen because a lot of
tools support this format, therefore, it significantly simplifies the further
analysis or visualization. The evaluation process assesses the following
metrics: fitness (two approaches for fitness measurement are employed),
conformance, complexity and a similarity coefficient.

e The tool is responsible for visualization of each step the tool performs and
a final model. In the future, the tool will also be fitted with a convenient
visualization of the difference between an initial and a final model.

e The tool makes it possible to significantly modify logic the cells use, thus
extending the tool or adjusting it to a particular circumstance.

240

H. Hlyrypos, A. Mutok. Iskra: MHCTpyMeHT mounHku Mozeneit mponeccos. Tpyast UCIT PAH, tom 27, Beim. 3, 2015
r., C. 237-254

It goes without saying that despite the existence of some theoretical guidelines,
choosing the right decomposition and repairing algorithms as well as their settings
can be extremely complicated and mean, in the worst-case scenario, brute-force
seeking the right methods. Because of that, one of the tool's aims is to facilitate this
very tedious process. Moreover, if one is developing or evaluating a repair
algorithm, it will imply a lot of repetitive executions of it. Hence, the tool facilitates
this process a lot and is likely to significantly reduce time spent on such tasks.

4. Tool overview

4.1 ProM

The tool is being developed using Java 6 Standard Edition and ProM 6.4
Framework [8]. ProM 6.4 is an open source framework specially designated for
implementing process mining algorithms in a standardized way. ProM 6.4 consists
of the core part and disjoints parts called plugins. The core part of the framework is
responsible only for uploading available plugins, handling plugins’ life cycle,
interaction between plugins and basic functions for dealing with graphical user
interface. Hence, programmers focus exclusively on implementation of algorithms,
working with file system and visualization of results. The framework is distributed
under GNU Public License, although some plugins are distributed under different
licenses.

Once a plugin is properly configured, ProM automatically finds and uploads it, then
this plugin is added to the list of all available plugins. In addition, the list of plugins
demonstrates parameters required by each plugin. By doing this, the framework
simplifies providing parameters needed for plugins. Nowadays, almost all data types
for working with Petri nets have been implemented and supplied with visualizers, so
researchers and developers are eliminated of necessity to implement them from
scratch.

Each plugin has so-called context. Context acts as a bridge between plugin and the
framework because it is the only way plugins can interact and collaborate with
ProM. For every context child contexts may be created, each of which is designated
for a specific task. Thus, it is possible to construct a hierarchy of plugin calls from a
parent plugin.

Plugins may run either with or without graphical user interface. The former provides
a rich possibility to interact with user or visualize data, whereas the later enables to
call other plugins in the background simultaneously with user interaction in the
main plugin. ProM encourages developers to write extendable and loose coupled
software, providing a rich set of tools. One of such tools, extensively used in the
tool, is a mechanism for finding all classes annotated in a special way. Arguably the
most common way to use annotations is to mark Java classes that contain
algorithms. One creates an interface for a set of related algorithms, and then
annotates each of them. After that, they can be easily found and used via
annotations.

241

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 237-254

Interaction between plugins is accomplished by using a plugin manager. The plugin
manager provides API for invoking plugins, makes sure that correct context is
configured for a called plugin. The plugin manager enables not only to invoke
known plugins but also to look for plugins with specific signature, to invoke them
and to obtain results of their executions. Despite its promising flexibility and
convenience, in practice it is generally easier to use conventional method
invocations, because the API exposed by the plugin manager is a bit unintuitive.
Furthermore, direct methods calls ensure more readable code. Because of these
reasons, the direct methods call are preferred in the tool and used wherever possible.
The core part of a typical ProM processing plugin is a class which contains at least
one public method. This method must have a special annotation which registers it in
the ProM framework as a plugin. The name, input and output parameter lists are
listed inside the annotation. Particular plugin context of a current ProM session have
to be among the other parameters of the method.

The tool, which implements the approach presented in this work, is built as a plugin
for the ProM Framework; therefore architecture of the tool has to fulfill all the
aforementioned requirements for ProM plugins. We decided to use such an
approach because the framework already has plugins which take care of discovery
of Petri nets, event logs import and export, conformance checking as well as
decomposition plugins, and provides further opportunities to work with the resulting
data.

4.2 Preliminary domain analysis

This section is completely devoted to the analysis of the existing plugins for
decomposition and model repair, because their usage involved extensive and from
time to time tricky interaction with ProM and ProM plugin manager. In addition, the
way how decomposition and repair model plugins are used is of high importance
because it influences whether the tool is easy to extend. Detailed explanation of how
conformance checking, final evaluation and the overall infrastructure are made is
left to the following subsection.

The core implementation task of this project was to incorporate a dozen of available
plugins for model repairing, decomposition and conformance checking, that have
different authors, coding styles and settings. One of the main requirements for the
resulting architecture was to make it as straightforward and comprehensive as
possible, though ensure that it is flexible. In addition, we wanted to reuse as much
of the existing code as possible. It meant that before the development of the tool
could be started there was a need to scrutinize source code files of existing projects
which we intended to use. This analysis was focused on 3 most important questions:
(1) Does the architecture of each plugin follow MVC pattern [9]? (2) How heavily
does each plugin use ProM-specific classes, tools? For example, can it be easily
retrieved from ProM and used as some sort of standalone application? Do any of
plugin show graphical user interface? (3) What set of parameters is required for
each plugin?

242

H. Hlyrypos, A. Mutok. Iskra: MHCTpyMeHT mounHku Mozeneit mponeccos. Tpyast UCIT PAH, tom 27, Beim. 3, 2015
r., C. 237-254

The conducted analysis of repair algorithms revealed that the source code had been
written in inconsistent way, the majority of plugins do not follow the MVC
principles, which increased efforts needed for using them. As a result, plugins we
intended to use were separated into 3 groups according to their coupling with ProM
and the simplicity of their reuse:

e Plugins whose execution needs requesting via the plugin manager of ProM.
Hence, in order to call them we supply plugin name, a list of required
parameters and types of expected output. Then the plugin manager seeks
the requested plugin and executes it. Examples of such plugins are Alpha
miner [10] and ILP Miner [11].

e Plugins whose execution can be initiated via usual Java method calls
without need to delegate this task to the ProM plugin manager. Genetic
miner [12] and Heuristics miner [13] are placed in this group of plugins.

e Plugins whose architecture follows the MVC pattern. They are
characterized by clear separation of actual algorithm and ProM-specific
parts. Such plugins are more desirable because their usage and extension
requires less time and effort. Unfortunately, Inductive miner [14] is the
only plugin which falls into this category.

The subsequent step was to determine the ways which would allow users of the tool
to specify parameters for repair algorithms if users wish to do it, otherwise default
parameters would have to be set. The study of the plugins showed that only Alpha
miner does not show GUI, whereas others do but have only one screen with settings,
which allows for significant simplification of the resulting design decisions.

The situation with decomposition algorithms is a bit easier despite some nuances.
First of all, they are highly sensitive to the input data. Event logs may include a lot
of information in order to simplify further log analysis and error detection. ProM
plugins responsible for projection a net on a log are aware of this information and
try to make full use of it while projecting a net. By projection in this paper the
process of extracting events which correspond to a particular model part from the
entire event log is understood. Despite its high purpose, it is prone to produce rather
unexpected outcome. It seems they work better and give correct result if event logs
contain information only about event names. Concerning this issue it is absolutely
essential to apply some kind of model and event log preprocessing techniques
before trying to decompose and project a model. Furthermore, model decomposition
is typically not a one-step process — it requires a number of consequent plugin calls,
but for the sake of simplicity, covering up this circumstance from the main logic of
our tool was on the list of the goals.

On the other hand, all decomposer plugins may be executed without showing GUI.
In fact, only SESE decomposer [15] has one. Nevertheless, the possibility of
existence of GUI was considered thoroughly due to extendibility and flexibility
matters.

243

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 237-254

4.3 Usage of decomposition and repair algorithms

Judging by the results of the analysis of repair plugins we came up with a detailed
plan on how to abstract from specific implementation details and provide a common
interface for using these plugins. Of course, each of 3 plugin types (model repairing,
model decomposition and conformance checking) has its own interface, unique for
its specific nature. So, the final decision was to write "wrapper" interfaces and
classes for required plugins. Wrapper is understood as a class which defines a
common interface and hides the details how actual plugin is invoked. In fact, the
concept of the adapter pattern [16] was exploited. The tool works only with such
wrappers without any knowledge how inter-plugin communication is carried out.
Furthermore, wrappers apply an idea of using annotations, which allows for
complete deliverance from dependencies of the tool on wrappers and, hence, on
external plugins. This approach also facilitates extension of the tool: those who are
willing to incorporate new algorithms do not need gaining access to the source code
of the tool. The only thing that has to be done is to create a Java class that extends
either IskraDecomposer or IskraRepairer and marked by the corresponding
annotation (either @IskraDecomposer or @IskraRepairer). Then ProM will detect
this class and our tool will add it to the list of available algorithms. One important
constraint is that wrappers must have an empty constructor. If a wrapper does not
have it, the wrapper will not be available.

AbstractiskraPlugin

i)
IskraRepairer

repair(PluginContext, Log): Petrinet
eetSettingsComponent() : JComponent
saveSettings():void

Inductive Repairer ILPRepairer

Fig. 1. Repairers hierarchy

Figure 1 and figure 2 depict the design of repairers and decomposers. Class
AbstractiskraPlugin is a common superclass for all implemented wrappers. It
encapsulates plugin's name and indicates that it is a plugin after all. Then, there are
two abstract classes IskraRepairer and IskraDecomposer which provide a common
interface respectively for repairers and decomposers. The tool uses only links to
these classes, not to their subclasses. The architecture has been implemented and

244

H. Hlyrypos, A. Mutok. Iskra: MHCTpyMeHT mounHku Mozeneit mponeccos. Tpyast UCIT PAH, tom 27, Beim. 3, 2015
r., C. 237-254

proved to be viable. InductiveRepairer, ILPRepairer, SESEDecomposer,
PassageDecomposer [17] are examples of actual (not abstract) classes. In order to
save space and make a picture more comprehensible only these classes are shown,
however half a dozen of others adhere to the architecture and available in the tool.

AbstractlskraPlugin

A
FA

IskraDecomposer

decompose(PluginContext, Model): DecomposedModel
getSettingsComponent() : JComponent
saveSettings():void

/ ‘;{
SESEDecomposer PassageDecomposer

Fig. 2. Decomposers hierarchy

The typical scenario of using wrappers is:
1. Method getSettingsComponent is invoked.
2. If the value returned after the invocation getSettingsComponent is not null,
then received GUI is displayed to a user.
3. GUI demonstration means having to save setting by invoking saveSettings
method.
4. At this point a plugin is properly configured and is ready to be used. Only
one thing left to get result — to invoke either repair or decompose.
It must be mentioned that steps 1-3 are arbitrary. If a user is either satisfied with
default setting or does not want to show GUI then according to the contract, a
wrapper supplies defaults settings to a corresponding plugin. If a plugin does not
have any graphical elements for settings, then getSettingsComponent returns null
and steps 2-3 are skipped. In case of repair algorithms an object of type
DecomposedModel, which holds parts of the initial model and an event log for each
of the parts, is returned.

4.4 Usage of decomposition and repair algorithms

A number of algorithms for conformance checking is really limited in ProM. There
are only 2 prominent algorithms: conformance by replay and conformance using
alignments, others are mainly variations of mentioned. Thus, there is no urgent need
to provide really flexible solution. Both of these algorithms are used in the tool. The
algorithm described in [3] is used as a main conformance algorithm in the tool, it is
placed in Conformance checking cell. In order to allow convenient and user-friendly

245

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 237-254

usage of this algorithm, the corresponding plugin has been changed slightly. The
plugin was partly separated from ProM in order to ensure its robustness. Moreover,
parameters of the plugin include information on a model which is about to be used
and the original parameter creation mechanism does not permit to create it silently,
without showing GUI. Because of that reason, parameter classes were supplemented
with "copy constructors” which take a new model and copy an existing parameter
adhering it to the new model. Another algorithm is provided as an optional add-on
and used in a final evaluation cell. The usage of this plugin required to slightly
change classes related to user interface.

All discussed cells are parts of the abstraction called repair chain. A repair chain
represents the very nature of the decomposed repair approach. Each chain implies
algorithms which correspond to the cell types and then it makes plugin calls in the
specified order ensuring the work of the tool. The goal of designing repair chains
was to make a good level of abstractions from which algorithms (cells) are used,
how they are used, in which order; and to execute every chain with different models
without need to reconstruct the chain. In order to achieve these objectives, the idea
of dependency injections is heavily exploited. Decomposition and repair plugins are
supplied via constructor injection, whereas a model, an conformance checking
algorithm and its parameters are provided as a method parameters. This discrepancy
has rather ordinary explanation. Decomposition and repair algorithms represent
something stable which can be reused over and over again with different models in
a handy manner. In contrast, a model, a conformance checking algorithm and
conformance checking parameters are volatile and tightly coupled.

Introducing a new data type which encapsulates cells tend to make the tool more
flexible and easier to modify, maintain and extend because of the following reasons.
Using abstract data types and dependency injection during the development ensured
that each particular chain may be implemented in a way which differs a lot from
others. For instance, repair chains may use different triggers to decide when a
repaired model is good enough, although the main reason for having separate repair
chains is a fact that there are a few of possible strategies of how to choose a model
part to be repaired. Some strategies are straightforward — just take a part with the
worst fitness, whereas others may use sophisticated techniques, preprocessing and
more intelligent choice. However, details, ins and outs of these strategies are out of
scope of the paper due to their theoretical nature, the main point here is to establish
that different repair chains are possible and that the tool has to provide capability of
introducing new repair chains.

It allows users to create several chains which differ in algorithms used in cells and
then run all of them at a time. The feature makes testing of several algorithms and
their parameters against the same model a lot faster. In order to achieve it 2 plugins
are available. One of them, Iskra chain generator is responsible for creating repair
chains — one selects desired repair chains, algorithms and their parameters. In
contrast with a main plugin which creates a chain and then immediately executes it,
chain generator returns a list of configured chains to the ProM resource pool rather

246

H. Hlyrypos, A. Mutok. Iskra: MHCTpyMeHT mounHku Mozeneit mponeccos. Tpyast UCIT PAH, tom 27, Beim. 3, 2015
r., C. 237-254

than execute them. At the moment when all desired chains are built, one may supply
them to Iskra chain runner plugin. This plugin takes an arbitrary number of repair
chains, a model and a corresponding event log, after that the plugin configures
settings of conformance checking and sequentially executes each chain. This
functionality has already been implemented, although it needs some refinement and
improvements.

In order not to have hard-coded chains and plugins around chains a mechanism of
annotations and reflective calls was introduced, as used for decomposition and
repair wrappers. It enriches the tool with the ability to load repair chains
dynamically. Moreover, it lets other developers and researcher to develop new
chains, incorporate them in the tool. A Java class which implements repair chain
logic has to extend RepairChain interface and be annotated with @Chain.

4. Use case

As an example of a usage a simplified version of an iteration of a typical agile
development process is considered. All activities of the developers are recorded in
event log, thus allowing for keeping track of what the team does and analysis of the
development process. Initial business process involves writing and running tests
after writing code is completed. Then, a developers team informally decides to try
test-driven development [18], thus creating tests before writing code. These changes
are reflected in event logs. After a while a conformance checking algorithm is
applied and it reveals that the actual process does not conform to what a company
considers as an actual process. Hence, it is necessary to apply repair algorithm in
order to learn what has changed and build a proper model of the process.

Develop tests Code
Fig. 3. lllustration of repair

247

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 237-254

In order to repair a model one needs to select appropriate plugin and supply an
existing model and an event log. Plugin's graphical interface used for specifying
settings is shown in figure 4. Then one selects desired algorithms of decomposition
and repair. Moreover, one sets minimal fitness a repaired model should have. In the
example, desired fitness is 0.98. The next step is to select an appropriate repair
chain from the list of chains. Afterwards, one is asked to specify setting of each
selected algorithm, and after that repair process is executed. Once it is finished, a
screen with results is shown; it looks like in figure 3. This screenshot demonstrates
the result of repair and final evaluation of the considered example of agile iteration
and clarifies where the change took place and what exactly has changed. As a
modeling language Petri nets are applied. It is clear from the screenshot that fitness
increased from 0.7689 to 1, which means that the repair model perfectly fits the
given event log and the goal of achieving fitness not smaller than 0.98 has been
successfully accomplished. Furthermore, values of others metrics are shown on this
screen.

Decomposition plugins Repair plugins
SESE Decomposer ne Alpha miner
Passages decomposer Genetic miner
Maximal decomposer Heuristic miner
Recomposer ILP Miner

Stub decomposer Inductive miner

Fitness fitnessThreshold

Greedy chain
Naive chain

Advanced chain

Fig. 4. Plugin settings

5. Related Work

The idea of providing a way to chain executions of several plugins or algorithms in
a handy way, which is explored in this paper, is also similar to scientific workflow
systems. Two of such systems capable of dealing with process mining are
considered here.

First tool is RapidProM [19] which is a ProM extension for RapidMiner [20]. It
allows users to build plugin chains in a visual way. Quite a number of ProM Plugins
are available in this extension, however not all of them. It can easily be installed via
RapidMiner Marketplace. The only question is its ability to be extended.

248

H. Hlyrypos, A. Mutok. Iskra: MHCTpyMeHT mounHku Mozeneit mponeccos. Tpyast UCIT PAH, tom 27, Beim. 3, 2015
r., C. 237-254

RapidProM does not support native ProM plugins and ProM mechanism for loading
plugins, therefore plugins come only from the authors of RapidProM, which makes
the objective of creation and execution of schemes, such as those discussed in the
paper and possible in the presented tool, much harder.

Then comes DPMine Workflow Language [21] and DPMine/P framework which
provide a new modeling language which natively supports notion of execution.
Implementation of the ideas defined in the language is written in C++ with usage of
Qt library. Process models can be constructed using convenient graphical user
interface. Furthermore, the solution is intended to be easily extended by adding
plugins. The advantage of using C++ is possibility to utilize resources in more
effective and flexible way and provide better performance, which is of high
importance in the era of Big Data, but the downside is that it cannot be integrated
with ProM, so it is deprived of algorithms the ProM system offers.

6. Conclusion

In this paper, a tool for decomposed model repair is described. Decomposed model
repair is used as a way of model enhancement. The tool is implemented as several
plugins for the ProM Framework, which guarantees that the tool can be easily
distributed and used by both researchers and developers within ProM community.
The way the tool is written allows for fast improvement and enhancement of it.
While developing the tool advantages and disadvantages of existing tools were
examined. The tool does not have some drawbacks typical for its counterparts.
However, there is still room for improvements. In the future the tool will be fitted
with more sophisticated mechanism of repair chains. Furthermore, a handy
visualization of differences between initial and repaired models, some kind of
recommender systems which suggests better repair options according to properties
of a model and an event log will possibly be developed and incorporated.

Acknowledgement

This work is output of a research project implemented as a part of the Basic
Research Program at the National Research University Higher School of Economics
(HSE). Authors would like to thank all the colleagues from the PAIS Lab whose
advice was very helpful in the preparation of this work.

References

[1]. Wil M. P. van der Aalst. Process mining: discovery, conformance and enhancement of
business processes. Springer, 2011.

[2]. IEEE Task Force on Process Mining. Process mining manifesto. Business Process
Management Workshops, ser. Lecture Notes in Business Information Processing, F.
Daniel, K. Barkaoui, and S. Dustdar, Eds., vol. 99. Springer-Verlag, Berlin, 2012, pp.
169-194.

249

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,

2015,

pp. 237-254

(31

[41.
[5].

[6].
[7].

[8].
[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

250

W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen. Replaying history on
process models for conformance checking and performance analysis. Wiley Interdisc.
Rew.: Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 182-192, 2012.

A. Rozinat and W. M. van der Aalst. Conformance checking of processes based on
monitoring real behavior. Information Systems, vol. 33, no. 1, pp. 64-95, 2008.

D. Fahland and W. van der Aalst. Repairing process models to reflect reality. Business
Process Management, ser. Lecture Notes in Computer Science, A. Barros, A. Gal, and E.
Kindler, Eds. Springer Berlin Heidelberg, 2012, vol. 7481, pp. 229-245.

W. M. P. van der Aalst. Decomposing petri nets for process mining: A generic approach.
Distributed and Parallel Databases, vol. 31, no. 4, pp. 471-507, 2013.

W. M. Van Der Aalst. A general divide and conquer approach for process mining.
Computer Science and Information Systems (FedCSIS), 2013 Federated Conference on.
IEEE, 2013, pp. 1-10.

Prom framework. [Online]. Available: http://www.promtools.org/doku.php, accessed
2015-06-25.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented
Software Architecture: A System of Patterns. New York, NY, USA: John Wiley & Sons,
Inc., 1996.

W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering, vol.
16, no. 9, pp. 1128-1142, 2004.

J. van der Werf, B. van Dongen, C. Hurkens, and A. Serebrenik. Process discovery using
integer linear programming. Applications and Theory of Petri Nets, ser. Lecture Notes in
Computer Science, K. van Hee and R. Valk, Eds. Springer Berlin Heidelberg, 2008, vol.
5062, pp. 368-387.

W. van der Aalst, A. de Medeiros, and A. Weijters. Genetic process mining.
Applications and Theory of Petri Nets 2005, ser. Lecture Notes in Computer Science, G.
Ciardo and P. Darondeau, Eds. Springer Berlin Heidelberg, 2005, vol. 3536, pp. 48—69.
A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros. Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP, vol.
166, pp. 1-34, 2006.

S. Leemans, D. Fahland, and W. van der Aalst. Discovering blockstructured process
models from incomplete event logs. Application and Theory of Petri Nets and
Concurrency, ser. Lecture Notes in Computer Science, G. Ciardo and E. Kindler, Eds.
Springer International Publishing, 2014, vol. 8489, pp. 91-110.

J. Munoz-Gama, J. Carmona, and W. M. van der Aalst. Single-entry single-exit
decomposed conformance checking. Information Systems, vol. 46, pp. 102 — 122, 2014.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

W. van der Aalst. Decomposing process mining problems using passages. Application
and Theory of Petri Nets, ser. Lecture Notes in Computer Science, S. Haddad and L.
Pomello, Eds. Springer Berlin Heidelberg, 2012, vol. 7347, pp. 72-91.

Beck. Test Driven Development: By Example. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

Rapidprom. [Online]. Available: http://www.rapidprom.org/, accessed 2015-06-25.
Rapidminer. [Online]. Available: https://rapidminer.com/, accessed 2015-06-25.

http://www.promtools.org/doku.php
http://www.rapidprom.org/
https://rapidminer.com/

H. Hlyrypos, A. Mutok. Iskra: MHCTpyMeHT mounHku Mozeneit mponeccos. Tpyast UCIT PAH, tom 27, Beim. 3, 2015
r., C. 237-254

[21]. S. Shershakov. DPMine/C: C++ library and graphical frontend for DPMine workflow
language. Proceedings of the Spring/Summer Young Researchers Colloquium on
Software Engineering, vol. 8, 2014.

Iskra: UHCTpYyMEHT NOYUHKN Moaenen
npoueccos

HU. llyeypos <shugurov94@gmail.com>,
A. Muyrox < amitsyuk@hse.ru=>,
Jlabopamopus npoyeccro-opueHmuposanHtbix UHQOPMAYUOHHBIX CUCTEM,
Hayuonanenouii Hccreoosamenvckuii Yuusepcumem «Buvicwas Llxona
Oxonomukuy, Poccus, . Mocksa, Kounoeckuii np., 0. 3.

AnHoTaums. B nanHoil paGoTe npencraBieHa nporpaMma JUist IIPOBEACHUS SKCIIEPUMEHTOB
B 00JIaCTH process mining ¥ TECTUPOBAHUS AITOPUTMOB MOYMHKH Mozeneil. ccnenoBarenn
B obOmactu Process mining pa3pabaTbIBalOT W HPUMEHSIOT AJTOPUTMBI M TIOAXOABI JUIA
U3BJICUCHUS U aHANM3a OM3HEC MIPOIECCOB, KOTOPHIE OCHOBAHBI HAa aHAIIM3€E JIOTOB COOBITHI.
BrienstoT Tpu OCHOBHBIX 00JaCTH B paMKax process mining: HM3BICYCHHE MPOLECCOB,
HpOBEPKa COOTBETCTBUS MOJENICH M JIOrOB COOBITHH M YCOBEpIICHCTBOBaHHME Mopenel. B
JAHHOM CTaTb€ pPacCMaTPUBAETCS OOWH W3 CIOCOOOB YCOBEPIICHCTBOBAHMS MOJEICH,
Ha3bIBaeMBIll TIOYMHKOW Mojelneil mpoueccoB. [lounHka Monenu mpoliecca HeoOXoauMa B
ClIydasX HEJJOCTATOYHOIO COOTBETCTBHS CYLIECTBYIOLIEH MOJENH 3a1aHHBIM JIOTaM COOBITHI
peanbHOro mpouecca. Ilpearonaraercs, 4YTO JIOTH COOBITHH OTpakaeT HPaBUIBHOE U
aKTyaJbHOE TTOBEAEHHEe OM3HEC-TPOIEeccoB, B TO BPeMsl KaK MOJEIH MPOIecca MOTYT OBITh
ommO0ouHBIMU. B cTaTthe paccMaTpuBaeTcs peanu3ays MOXYTBHOTO MOJXOAA JUIS TIOYHMHKH
Mozenedt. Ilpemnaraemplii moaxoa mpennoyiaraeT peanu3alnuio MporpaMMBbl, COCTOSIIIEH M3
HECKOJBbKNX HE3aBHCHMBIX MOIYJIEH, PEaH3YIONINX Pa3INIHbIe JTaIlbl MpoIecca MOYHHKI
Mozenu mnpouecca. IlogoOHas apxuTeKTypa MHO3BoJIsieT J00uThCcA Oojee ruOKoi
KOH(bl/IpraLll/Il/I IMOYHMHKH, a TaKXKEC O6eC1’le‘[I/IBaeT BO3MOXXHOCTb IPOBECACHHUSA SKCIIEPUMEHTOB
0 BBIOOPY QJITOPUTMOB, NPUMEHSIOIINXCS B KAKOM-JIHOO MOJyIe, B H30JISILIMU OT APYTHX
moynell. HecMOTpst Ha TO, YTO OCHOBHOMH II€NIbIO CTaThbM OBUIO OMHCAaHHE OCOOEHHOCTEH
peanu3anuy MporpaMMBbI, TEOPETHUECKHE OCHOBBI MOIYJIFHOH ITOYHHKHI MOJENEH IPOLEcCoB
paccMOTpPEHBI Ha YPOBHE, JOCTATOYHOM JUIS TIOHUMAHMS 1T01X01a. bonee Toro, paccMOTpeHEI
CIEHAPUH HWCIIONB30BaHUS TNPOTPAaMMBI M ONMCAHBI CIOCOOBI €€ pacHIMpeHus
JOTIOJTHUTENHBIMA QJITOPUTMAMH U (yHKIHOHATOM. I[IpuBeneH 0030p CyIIECTBYIOMNX
MOIYJBHBIX pemel-mﬁ, KOTOpBIE MOTYT OBITH HCIOJIb30BAHBI JUI yCOBEPULICHCTBOBAHUSA
MOJEINeH MPOIECcCOB, 00CYXKICHBI MX JOCTOMHCTBA U HEJJOCTATKH.

Keywords: Process model, Petri net, Model repair, Process mining.

DOI: 10.15514/ISPRAS-2015-27(3)-16

251

mailto:amitsyuk@hse.ru

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 237-254

Jas nutupoBanus: lllyrypos M., Mumox A. Iskra: MHCTpymMeHT moumHKH Mozeneit
nporeccoB. Tpynst UCIT PAH, Tom 27, Bem. 3, 2015 r., ctp. 237-254 (Ha aHIMICKOM
s3pike). DOI: 10.15514/ISPRAS-2015-27(3)-16.

Cnucok nutepaTtypbl

[1]. Wil M. P. van der Aalst. Process mining: discovery, conformance and enhancement of
business processes. Springer, 2011.

[2]. IEEE Task Force on Process Mining. Process mining manifesto. Business Process
Management Workshops, ser. Lecture Notes in Business Information Processing, F.
Daniel, K. Barkaoui, and S. Dustdar, Eds., vol. 99. Springer-Verlag, Berlin, 2012, pp.
169-194.

[3]. W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen. Replaying history on
process models for conformance checking and performance analysis. Wiley Interdisc.
Rew.: Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 182-192, 2012.

[4]. A. Rozinat and W. M. van der Aalst. Conformance checking of processes based on
monitoring real behavior. Information Systems, vol. 33, no. 1, pp. 64-95, 2008.

[5]. D. Fahland and W. van der Aalst. Repairing process models to reflect reality. Business
Process Management, ser. Lecture Notes in Computer Science, A. Barros, A. Gal, and E.
Kindler, Eds. Springer Berlin Heidelberg, 2012, vol. 7481, pp. 229-245.

[6]. W. M. P. van der Aalst. Decomposing petri nets for process mining: A generic approach.
Distributed and Parallel Databases, vol. 31, no. 4, pp. 471-507, 2013.

[7]. W. M. Van Der Aalst. A general divide and conquer approach for process mining.
Computer Science and Information Systems (FedCSIS), 2013 Federated Conference on.
IEEE, 2013, pp. 1-10.

[8]. Prom framework. [Online]. Awvailable: http://www.promtools.org/doku.php, accessed
2015-06-25.

[9]. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented
Software Architecture: A System of Patterns. New York, NY, USA: John Wiley & Sons,
Inc., 1996.

[10]. W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering, vol.
16, no. 9, pp. 1128-1142, 2004.

[11]. J. van der Werf, B. van Dongen, C. Hurkens, and A. Serebrenik. Process discovery using
integer linear programming. Applications and Theory of Petri Nets, ser. Lecture Notes in
Computer Science, K. van Hee and R. Valk, Eds. Springer Berlin Heidelberg, 2008, vol.
5062, pp. 368-387.

[12]. W. van der Aalst, A. de Medeiros, and A. Weijters. Genetic process mining.
Applications and Theory of Petri Nets 2005, ser. Lecture Notes in Computer Science, G.
Ciardo and P. Darondeau, Eds. Springer Berlin Heidelberg, 2005, vol. 3536, pp. 48—69.

[13]. A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros. Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP, vol.
166, pp. 1-34, 2006.

[14]. S. Leemans, D. Fahland, and W. van der Aalst. Discovering blockstructured process
models from incomplete event logs. Application and Theory of Petri Nets and
Concurrency, ser. Lecture Notes in Computer Science, G. Ciardo and E. Kindler, Eds.
Springer International Publishing, 2014, vol. 8489, pp. 91-110.

[15]. J. Munoz-Gama, J. Carmona, and W. M. van der Aalst. Single-entry single-exit
decomposed conformance checking. Information Systems, vol. 46, pp. 102 — 122, 2014.

252

http://www.promtools.org/doku.php

W. llyrypos, A. Muriok. Iskra: MHCcTpyMeHT nounHku Mojeneit npoueccos. Tpyast UICIT PAH, tom 27, Bbim. 3, 2015

r., . 237-254

[16]. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[17]. W. van der Aalst. Decomposing process mining problems using passages. Application
and Theory of Petri Nets, ser. Lecture Notes in Computer Science, S. Haddad and L.
Pomello, Eds. Springer Berlin Heidelberg, 2012, vol. 7347, pp. 72-91.

[18]. Beck. Test Driven Development: By Example. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[19]. Rapidprom. [Online]. Available: http://www.rapidprom.org/, accessed 2015-06-25.

[20]. Rapidminer. [Online]. Available: https://rapidminer.com/, accessed 2015-06-25.

[21]. S. Shershakov. DPMine/C: C++ library and graphical frontend for DPMine workflow
language. Proceedings of the Spring/Summer Young Researchers Colloguium on
Software Engineering, vol. 8, 2014.

253

http://www.rapidprom.org/
https://rapidminer.com/

1. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 237-254

254

Cepreii BanoB, Anna Kanenkosa. CpaBHeHHe Mojeneit 6usnec-mponeccos B popmare BPMN 2.0 XML. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 255-266

Comparing Process Models in the BPMN 2.0
XML Format

Sergey Ivanov <syuivanov@gmail.com>,
Anna Kalenkova <akalenkova@hse.ru>,

PAIS laboratory, National Research University Higher School of Economics,
125319, Kochnovsky, 3, Moscow, Russia

Abstract. Comparing business process models is one of the most significant challenges for
business and systems analysts. The complexity of the problem is explained by the fact there is
a lack of tools that can be used for comparing business process models. Also there is no
universally accepted standard for modeling them. EPC, YAWL, BPEL, XPDL and BPMN
are only a small fraction of available notations that have found acceptance among developers.
Every process modeling standard has its advantages and disadvantages, but almost all of them
comprise an XML schema, which defines process serialization rules. Due to the fact that
XML naturally represents hierarchical and reference structure of business process models,
these models can be compared using their XML representations. In this paper we propose a
generic comparison approach, which is applicable to XML representations of business
process models. Using this approach we have developed a tool, which currently supports
BPMN 2.0 [1] (one of the most popular business process modeling notations), but can be
extended to support other business process modeling standards.

Keywords: business process modeling, business process comparision, BPMN 2.0 (Business
Process Model and Notation), XML (eXtensible Markup Language), process mining.

DOI: 10.15514/ISPRAS-2015-27(3)-17

For citation: Ivanov Sergey, Kalenkova Anna. Comparing Process Models in the BPMN 2.0
XML Format. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 255-266. DOI:
10.15514/ISPRAS-2015-27(3)-17.

1. Introduction

The availability of methods and tools capable to compare process models is crucial
for business process analysts. Thus, for example, there can be a need to use
comparing methods in order to find duplicates in repositories of process models.
Finding duplicates is an essential task for those process analysts who wish to add a
new process model to a process repository or even merge two repositories. The
other obvious example is a comparison of a real and a reference process models. A

255

Sergey Ivanov, Anna Kalenkova. Comparing Process Models in the BPMN 2.0 XML Format. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 255-266

challenge here is to obtain a real process model. This problem can be solved in
several ways, but the most effective known approach is a process model discovery.
A new scientific discipline, process mining, can be applied for this purpose. The
first type of process mining techniques, discovery, is used to construct models from
event logs created by information systems [2].

Since the process model is discovered, we have a reference and a real process
models. After that, we can move to the comparison of these two process models

(Fig. 1).

Fig.1. Conformance checking between two process models

The following approaches for comparing business process models are currently
known: lexical matching, structural matching, and behavioral matching.

Lexical matching is based on the comparison of element labels. Labels comparison
may include syntactic and semantic metrics for determining the accuracy between
labels. Moreover, techniques for computing the string edit distance, such as the
Hamming distance [3], the Levenshtein distance [4, 5], or the Damerau-Levenshtein
distance [6] can be used. Each of these metrics is defined as a minimal number of
operations needed to transform one string into the other using deletion, insertion,
substitution of a single character, or transposition of two adjacent characters.

Also, a business process model can be transformed to a graph or a net. Therefore,
process models can be compared as graphs by applying the graph-edit distance
metric [7] (structural matching).

The behavioral matching is an approach, based on comparing the behavioral
components of models. An algorithm based on causal footprints was suggested in
[8]. A causal footprint provides a definition of a set of conditions on the order of
activities that hold for the model.

Our approach is based on the fact that process models, which need to be compared,
should be represented in XML format. Although this approach is described and
implemented for process models represented in BPMN XML 2.0, it can be extended
to compare process models defined using other XML formats due to the hierarchical
nature of XML.

Note that we didn’t find any special tool for comparison of two XML files in
accordance with their XML schema.

256

Cepreii BanoB, Anna Kanenkosa. CpaBHeHHe Mojeneit 6usnec-mponeccos B popmare BPMN 2.0 XML. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 255-266

2. Structure of XML schema

The structure of XML schema is a key factor for understanding the comparison
algorithm proposed. In this section we will discuss the structure of XML schema by
an example of the BPMN 2.0 XML schema format [9].

XML schema defines elements contained by an XML document and their types.
Fig. 2 shows that BPMN 2.0 XML schema is represented by a list of elements
descriptions and their complex (compound) and simple types.

—|-{zz xsd:=chema

! el elementFormDefault "qualified

75 attributeFormDefautt “Ungualiied

i wmins "hittp:/ pec,/BPMN/20100524/MODEL
o xmins xsd “hitp /20017 ¥MLSchema

"_‘*i“ targetMamespace "http./ S omg.org/spec,/BPMN/201 00524,/ MODEL
(€35 wsdelement

{3 xzd:complexType

{25 xsdelement

-{z3 xsd:complexType

{25 xsdelement

-3 wsdcomplexType

-{¢3 xsd:simpleType

.. [- [- [[

Fig.2. BPMN 2.0 XML schema

Let us consider a description of the element «subProcess» (Fig. 3).

<xsd:element name="subProcess"
type="tSubProcess"
substitutionGroup="flowElement"

/>

Fig.3. «subProcess» BPMN 2.0 XML element

Subprocesses in terms of BPMN represent multiple tasks that work together to
achieve certain goals. The composite nature of subprocesses is reflected in a
corresponding complex XML type (Fig. 4).

The type «tSubProcess» extends an abstract type «tActivity» with sets of lanes
(containers used to logically organize activities within a subprocess), flow elements,
which represent all the elements contained, and artifacts, which stand for the
comments to subprocess elements. Attributes «minOccurs» and «maxOccursy,
indicating the minimum and maximum number of occurrences of an element, show
that each inner element can be presented zero or more times within a subprocess.

257

Sergey Ivanov, Anna Kalenkova. Comparing Process Models in the BPMN 2.0 XML Format. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 255-266

Thus, to compare subprocesses we need recursively compare all the contained
elements.

<xsd:complexType name="tSubProcess">
<xzsd:complexContent>
<xsd:extension base="tActivity">

<xsd: sequence>
<xsd:element
ref="laneSet"
minOccurs="0"
maxOccurs="unbounded' />
<xsd:element
ref="flowElement"
minCccurs="0"
maxOccurs="unbounded' />
<xsd:element
ref=rartifact"
minOccurs="0"
maxOccurs="unbounded" />

</xsd:segquence>

<zsd:attribute

name="triggeredByEvent"

type="xsd:boolean"

default="false" />

</xzsd:extension>
</xsd:complexContent>
</xsd:complexType>

Fig.4. «subProcess» BPMN 2.0 XML element

The other element to be considered is a sequence flow (Fig. 5). Sequence flows are
usually depicted as directed arcs and used to show the order, in which activities will
be performed within a process. For each sequence flow identifiers of the source and
the target nodes are specified using attributes of a special IDREF type. This should
be taken into account during the comparison. Sequence flows and other connecting
elements should be compared according to their source and target nodes, but not
according to the identifiers of these nodes. In other words, two sequence flows
coincide if their source and target nodes coincide, while nodes identifiers usually
differ. This fact distinguishes our algorithm from other XML comparison
algorithms, which don’t consider element references.

Another important fact that should be taken into account is that XML schema
contains abstract elements. Abstract elements are unavailable for end users, but used
for inheritance. Their main purpose is to make language more extensible and allow
adding new elements inheriting some parameters from their parents.

258

Cepreii BanoB, Anna Kanenkosa. CpaBHeHHe Mojeneit 6usnec-mponeccos B popmare BPMN 2.0 XML. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 255-266

<xsd:element name="sequenceFlow"
type="tSequenceFlow"
substitutionGroup="£flowElement"/>
<xsd:complexType name="tSequenceFlow">
<xsd:complexContents>
<xsd:extension base="tFlowElement">
<xsd:seguence>
<xsd:element name="conditionExpression"
type="tExpression"
minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="sourceRef"
type="xsd:IDREF" use="required"/>
<xsd:attribute name="targetRef"
type="xsd:IDREF" use="required"/>
<xsd:attribute name="isImmediate"
type="xsd:boolean" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Fig.5. «sequenceFlowy element and «tSequenceFlowy type

3. Comparison algorithm

Now let us turn to the description of the comparison algorithm. First we have to
define the notion of equivalent elements. Two XML elements are equivalent if and
only if:

¢ they have the same names;

o for each attribute of the first XML element there exists one and only
attribute of the second XML element, which has the same name and the
same value and vice versa; Note that for IDREF attributes corresponding
linked XML elements must be equivalent;

o for each nested element of the first XML element there exists one and only
one equivalent nested element of the second XML element and vice versa.

First let us impose restrictions on the structure of XML documents. Assume that
elements with IDREF attributes don’t have nested elements; assume also that there
are no IDREF links to these elements from other XML elements. Note that these
restrictions are justified for XML documents, containing information on hierarchical
process structure (e.g. subprocesses) and sequence flows connecting arbitrary
process nodes. The algorithm consists of three steps.

259

Sergey Ivanov, Anna Kalenkova. Comparing Process Models in the BPMN 2.0 XML Format. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 255-266

3.1 The first step

The first step includes generation of a set of elements that are directly nested in the
root element «definitions» for each model (Fig. 6).

<definitions xmlns;xsd="http://www.w3.01g/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/200 1/ XML Schema-instance" id="1"
targetNamespace="http://www.bizagi.com/definitions/1"
xmlns="hitp://www.omg.org/spec/ BPMN/20100524/MODEL">

Fig.6. XML element «definitions»

3.2 The second step
Now we have two sets of BPMN elements for two models at the first level. For each
element from the first set we perform the following steps:
o select all elements with same name from the second set;
e if no elements were selected add an «error» message to the result of
comparison;
e set the correspondence between the element from the first set and each
selected element if:
e they don’t have nested elements and IDREF attributes, but they have
the same sets of attributes with coinciding names and values;
o there are correspondences between their nested elements and
attributes, which can be obtained recursively using Step B.
If there are remaining elements from the second set with no corresponding elements
add an «error» message to the result of comparison.

3.3 The third step
Consider all the elements with IDREF attributes for both models:

e set the correspondence relation between them if and only if linked XML
elements are in correspondence relations and not-IDREF attributes
coincide as well;

e remove redundant correspondences, which are not supported by IDREF
attributes.

This algorithm assists in determining equivalent elements, but generally speaking
there is no guarantee that equivalence relations will be constructed if multiple
corresponding elements can be obtained for some element.

The algorithm was extended with an ability to specify relevant and non-relevant
attributes.

260

Cepreii MBanoB, Anna Kanenkosa. CpaBHenue Mojeneii 6usuec-nporeccos B popmare BPMN 2.0 XML. Tpyxst UCIT
PAH, tom 27, Beim. 3, 2015 1., c. 255-266

The result of the comparison can consist of three types of messages, which describe
main information about comparison:

e «error» - an error message;

e «warningy» - an alert message;

e «infoy» - an information message.

A message takes an «error» status if the algorithm cannot find an equal element in
another model. If for some reasons the algorithm cannot compare the non-relevant
attributes of elements, a message should be added to a «warnings» list. A message
should be added to an information list, if an element from the first model has more
than one equal element from the other model.

4. Implementation

After the structure of the XML schema is analyzed, the BPMN XML schema can be
disassembled and transformed into an object-oriented model, which is implemented
using some programming language.

We have developed our algorithms on the basis of ProM framework [10]. The ProM
framework is a free open source product developed by the Eindhoven University of
Technology. The algorithm for comparison two business process models in the
BPMN 2.0 XML format was successfully implemented in ProM and can be used by
business process analysts. Further, the main steps for applying a ProM plugin for
comparing process models are shown.

4.1 Importing resources

First, the following resources should be imported to ProM:

e Modell.bpmn - the first business process Model
e Model2.bpmn - the second business process Model
e Schema.xsd — BPMN XML schema
After importing, these resources are displayed in the «Workspace» tab (Fig. 7).

Fig.7. List of imported resources

261

Sergey Ivanov, Anna Kalenkova. Comparing Process Models in the BPMN 2.0 XML Format. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 255-266

4.2 Selecting and applying plugin

After importing resources the user selects a necessary plugin from the plugin list in
the «Actions» tab. «XML BPMN 2.0 Comparator» plugin should be selected in our
case (Fig. 8).

N Actions

&5 e

XML BPMN 2.0 Res BPMN 2.0 Comparator

XML BPMN 2.0 Re:

Fig.8. Selection of the « XML BPMN 2.0 Comparator» plugin

4.3 Analysis of the results

The results of the plugin’s work are represented in an information window with the
results which are divided into three groups: «error», «warning», «info» on the
«Viewsy tab (Fig. 9).

The final report with results can be exported from the ProM in .txt and .html
formats.

Result of comparison

Content of Separate BPMN Comparator Resuit
First XML BPMN 2.0 model: Model2bpmn
Second XML BPMN 2.0 model: Model1.bpmn
Similar: false

Errore:
Element <task id="ld_61a77233-4064-4939-a603-685107ceefd3” name="Tlony4eHne 0GPaTHOI CBA3N OT KHeHTa™> was notfound in another model

Warnings

Info:

Was found several equivalent elements for. <definitions id="_2014102709106" “hitpJhwww. bizagi 20141027091
Was found several equivalent elements for <definitions id="_2014102709106™ hitp: /W, bizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ Nt /www.Dizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ hitp:/www.Dizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106" hitp:/www.bizagi 20141027091
Was found several equivalent elements for <definitions id="_2014102709106™ hitp: /W, bizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ Nt /www.Dizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ hitp:/www.Dizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106" hitp:/www.bizagi 20141027091
Was found several equivalent elements for <definitions id="_2014102709106™ hitp: /W, bizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ Nt /www.Dizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ hitp:/www.Dizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ Dtp:IWWW.DiZa gl [20141027091
Was found several equivalent elements for <definitions id="_2014102709106™ hitp: /W, bizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ Nt /www.Dizagi. 20141027091
Was found several equivalent elements for. <definitions id="_2014102709106™ hitp:/www.Dizagi. 20141027091

Fig.9. The result of the comparison of two models in the XML BPMN 2.0 format

5. Example

Suppose we have a shopping process model (Fig. 10). This model includes start, end
events and the following tasks: checking order information, saving an order to
database, receiving of payment, delivering the goods. The delivery service is
responsible for delivering an order. Delivering an order is a subprocess, which
includes the following steps: collect order, test order, pack order, and deliver order.
After a model is discovered from an event log, there is a need to compare the real

262

Cepreii BanoB, Anna Kanenkosa. CpaBHeHHe Mojeneit 6usnec-mponeccos B popmare BPMN 2.0 XML. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 255-266

process model of e-shop (Fig. 10) with a reference process model (Fig. 11). These
models should be imported to ProM framework and compared with «XML BPMN

2.0 Comparator» plugin.

New order
is received

Database
Checking order
information

Receiving of
payment

ol (L (o (o)
O— e f— = = —0

Delivery service

Shopping Site

New order

Fig.10. A real shopping process model

As a result plugin reported that an element with type «Task» and name «Testing» in
the subprocess «Delivery service» was not found in a reference model. Also, a
complete list of attributes, which were not found the document starting from the
root element, was produced. According to the comparison results, analysts can find
errors, modify and improve process of organization.

o

Mew order
is received

Database

Checking order .
H H Saving order
information

Delivery service

. Colleckorder Packing Order]—)[Deliver DrderH |

Shopping Site

News order

Fig.11. A reference shopping process model

6. Conclusion

Nowadays, system and business analysts face a problem of process models
comparison due to the changes in processes occurring under influence of various
factors. Therefore, there is a real demand for tools capable to compare process

models.
This paper introduces a novel approach for process models comparison, which uses

their XML representations.

263

Sergey Ivanov, Anna Kalenkova. Comparing Process Models in the BPMN 2.0 XML Format. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 255-266

We have proposed an algorithm that can be used to compare process models in
XML format. This algorithm was described by the example of BPMN 2.0 XML
format. The BPMN format was chosen as the most popular format for modeling
business processes.

The results of the research were successfully implemented in the ProM framework
and can be further used by business process analysts.

Acknowledgment

This study was supported by Russian Fund for Basic Research (project 15-37-
21103).

References

[1]. Stephen A. White. Introduction to BPMN [Online]. Available:
http://www.omg.org/bpmn/Documents/Introduction_to BPMN.pdf

[2]. W. M. P. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of
Business Processes, Springer-Verlag, Berlin, Germany, 2011.

[3]. D.Sanko and J. Kruskal, Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, Addison-Wesley, 1983.

[4]. V. Levenshtein, Binary codes capable of correcting spurious insertions and deletions of
ones. Problems of Information Transmission, 1965, pp. 1-17.

[5]. V. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady, pp. 10-707, 1966. Original in Russian in Doklady Akademii
Nauk SSSR, 1965, pp. 163-848.

[6]. F. Damerau. A technique for computer detection and correction of spelling errors.
Comm. of the ACM, 1964, pp. 7-176.

[7]. Xinbo Gao, Bing Xiao, Dacheng Tao, Xuelong Li, "A survey of graph edit distance" in
Pattern Analysis and Applications, vol. 13, 2010, pp. 113-129.

[8]. B.F. van Dongen, J. Mendling, and W.M.P. van der Aalst, "Structural Patterns for
Soundness of Business Process Models” in EDOC 2006 — International Enterprise
Distributed Object Computing Conference, Hong Kong, 2006, pp. 116-128.

[9]. Object Management Group, "BPMN 2.0," [Online]. Available:
http://www.omg.org/spec/BPMN/2.0/

[10]. Process Mining Group, Eindhoven Technical University, "ProM 6," [Online]. Available:
http://www.promtools.org/

264

http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf
http://www.omg.org/spec/BPMN/2.0/
http://www.promtools.org/

Cepreii BanoB, Anna Kanenkosa. CpaBHeHHe Mojeneit 6usnec-mponeccos B popmare BPMN 2.0 XML. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 255-266

CpaBHeHUue moaerneun bMsHec-npoLeccoB B
c¢opmate BPMN 2.0 XML

Cepeeii Heanoe <syuivanov@gmail.com>
Anna Kanenxosa <akalenkova@hse.ru>
HYJI [IOUC, Hayuonanvuwiti Uccnedosamenvckuil Yuusepcumem Buvicwas Llxona
Oronomuku, 125319, Poccus, e. Mockea, np. Kounosckuil, 0. 3.

AHHoTanus. Ha ceromHAmHMH A€Hb Pa3IMYHBIM OPTaHM3ALUsIM IPHXOMUTCS BCE dYalle
CTaJIKUBATHCS C MOJEIMPOBAHMEM CBOMX OW3HEC-TIPOILIECCOB JUIS COKPAIICHUS M3AEPKEK U
Jutsl obecriedeHrs] YeTKOTO MOHUMaHUsI IPOLECCOB, KOTOPHIE HCIIOIB3YIOTCSI B OpTaHU3aINH.
Ho u3-3a m3MeHeHHs 3aKOHOIATENILCTBA, BHEAPECHIS HHHOBALUH U IPYruX (akTopoB OM3HEC-
HPOLECCHl KOMITAaHWM IIOCTOSHHO M3MEHSIOTCS. B cBOIO odepenb CHCTEMHBIM M Ou3HEC
AQHAIUTHUKaM, KOTOpPBIE 3aHMMAIOTCS MOJEIUPOBAHHEM OW3HEC-TIPOIIECCOB, HYXKEH
MHCTPYMEHT IUIsI CPaBHEHHS MOJENEH OM3HEeC-TIPOIECCOB U OMPENEeNeHUs WX Pa3Inddi.
CHOXHOCTh pELICHUs] [aHHOW TMpoOJeMBbl OOBSCHAETCSA HEIOCTAaTKOM HHCTPYMEHTOB,
KOTOpBIE MOTYT OBITH HCIIOIB30BAaHBI JUIS CPaBHEHUs Mojeneil Om3Hec-mporeccoB. Takxke
HEeT oOIlIenpu3HaHHOTO cTaHaapta s Monenuposanus. EPC, YAWL, BPEL, XPDL u
BPMN Tonbpko HeOosbIIas YacTh LIMPOKO HCIIOJB3YEMBIX HOTALMH, KOTOpHIE HAIUIH
NpU3HaHWE cpenu pa3paborTumkoB. Kaxmas HoTanuss HMeEeT CBOM IIPEHMYIIECTBAa M
HEJJOCTaTKHM, HO TIOYTH BCE M3 HUX OMHUCaHbI ¢ moMomiblo XML-cxemsl, koTopast onpezaenser
MpaBUJIa CepHaln3alin. B 3Toil cTaThe mpemioskeH oOmui MOAX0 K CPABHEHHIO MOJIENEH
Om3Hec-TIpoIIeccOB, KOTOpHIN ommpaercs Ha XML npexncrasnenus moneneid. [1pennoxeHHbII
MOOXON pealn3oBaH B BHIE IUIATWHa M ¢peiiMBopka ProM, KkoTopelii aKkTHBHO
UCTIONB3yeTCs aHAIUTUKAMU M HCCIIENOBAaTeNsIMH B PaMKaX HOBOW HAayYHOW AMCIUIIIMHBI
process mining.

Keywords: business process modeling, business process comparision, BPMN 2.0 (Business
Process Model and Notation), XML (eXtensible Markup Language), process mining.
DOI: 10.15514/ISPRAS-2015-27(3)-17

Jnsi umrupoBanusi: VsaHoB Cepreii, KanenkoBa Anna. CpaBHeHue Mopeneit OusHec-
nporeccoB B ¢popmare BPMN 2.0 XML. Tpynst UCIT PAH, Tom 27, Bem. 3, 2015 1., cTp.
255-266 (na anrmuiickoM si3bike). DOL: 10.15514/ISPRAS-2015-27(3)-17.

Cnucok nutepartypbl

[1]. Stephen A. White. Introduction to BPMN [Online]. Available:
http://www.omg.org/bpmn/Documents/Introduction_to BPMN.pdf

[2]. W. M. P. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of
Business Processes, Springer-Verlag, Berlin, Germany, 2011.

265

http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf

Sergey Ivanov, Anna Kalenkova. Comparing Process Models in the BPMN 2.0 XML Format. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 255-266

(31
[4].

[5].

[6].
[7].

[8l.

[9].

[10].

266

D.Sanko and J. Kruskal, Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, Addison-Wesley, 1983.

V. Levenshtein, Binary codes capable of correcting spurious insertions and deletions of
ones. Problems of Information Transmission, 1965, pp. 1-17.

V. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady, pp. 10-707, 1966. Original in Russian in Doklady Akademii
Nauk SSSR,1965, pp. 163-848.

F. Damerau. A technique for computer detection and correction of spelling errors.
Comm. of the ACM, 1964, pp. 7-176.

Xinbo Gao, Bing Xiao, Dacheng Tao, Xuelong Li, "A survey of graph edit distance" in
Pattern Analysis and Applications, vol. 13, 2010, pp. 113-129.

B.F. van Dongen, J. Mendling, and W.M.P. van der Aalst, "Structural Patterns for
Soundness of Business Process Models" in EDOC 2006 — International Enterprise
Distributed Object Computing Conference, Hong Kong, 2006, pp. 116-128.

Object Management Group, "BPMN 2.0," [Online]. Available:
http://www.omg.org/spec/BPMN/2.0/

Process Mining Group, Eindhoven Technical University, "ProM 6," [Online]. Available:
http://www.promtools.org/

http://www.omg.org/spec/BPMN/2.0/
http://www.promtools.org/

K. Mayutauues, H. Tlakynun, YaaneHHOe 00CITy)KMBaHHE CHCTEMHBIX BHI30BOB B MHKPOSICPHOM ruriepBusope. Tpybt
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 267-278

Remote Service of System Calls
in Microkernel Hypervisor

1Kurbanmagomed Mallachiev <mallachiev@ispras.ru>,
Nikolay Pakulin <npak@ispras.ru=
Lomonosov Moscow State University,
Faculty of Computational Mathematics and Cybernetics,
119991, Leninskie Gory, 1, Moscow, Russia
2 Institute for System Programming of the Russian Academy of Sciences,
109004, A. Solzhenitsina, 25, Moscow, Russia

Abstract. This paper presents further development of Sevigator hypervisor-based security
system. Original design of Sevigator confines users’ applications in a separate virtual ma-
chine that has no network interfaces. For trusted applications Sevigator intercepts network-
related system calls and routes them to the dedicated virtual machine that services those calls.
This design allows Sevigator protect networking from malicious applications including high-
level intruders residing in the kernel.

Modern microkernel-based hypervisors opened the door to redesign of Sevigator. Those hy-
pervisors are small operating systems by nature, where management of virtual machines as
well as most of hardware operations are isolated in processes with low priority level. Com-
promising such a process does not result in compromising the whole hypervisor.
In this paper we present an experimental design of Sevigator based on NOVA hypervisor
where system calls of trusted applications are serviced by a dedicated process in the hypervi-
sor rather than a separate VM. The experiment shows about 25% performance gain due to
reduced number of context switches.

Keywords: virtualization, hypervisor, security, microkernel
DOI: 10.15514/ISPRAS-2015-27(3)-18

For citation: Mallachiev Kurbanmagomed, Pakulin Nikolay. Remote Service of System
Calls in Microkernel Hypervisor. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 267-278. DOI: 10.15514/ISPRAS-2015-27(3)-18.

267

mailto:npak@ispras.ru

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

1. Introduction

The main purpose of the project is to develop a security facility that protects data
confidentiality on a computer connected to the Internet and managed by an untrust-
ed operating system. We assume that malicious code can get unlimited access to all
hardware and software system resources through vulnerabilities or backdoors in
system software.

Today popular modern operating systems (such as Linux or Windows) are based on
monolithic kernel, where all components of kernel have equally high privileges. In
this case if malicious code penetrates OS kernel, then there is a risk of losing control
over any OS resources including application in-memory data, confidential infor-
mation in file storage, etc. Integrity and confidentiality of data transmitted over the
network are also threatened, even in the case when cryptography is used.

The question is whether it is possible to protect unmodified applications that run
under unmodified commodity OS like Windows or Linux on a commodity work-
station with x86 CPU. Protection systems located in kernel, such as antivirus, fire-
wall, intrusion detection, can themselves be attacked by privileged malicious code.
Possible way of protection from those attacks is the transfer of protection to more
privileged level.

The answer is “probably yes”: a prototype called Sevigator [3, 4, 5] protects appli-
cations in Linux from malware and comprised kernel. It uses hardware-assisted vir-
tualization [1, 2] to secure operating memory of applications and control access to
communication hardware (network interface card). It allows to launch OS under
control of virtual machine monitor (VMM, also called hypervisor). Hypervisor is
much smaller than OS, fully isolated from it, and has higher privilege than OS.
Hardware virtualization is supported by most modern processors, making the wide-
spread use of security systems based on hypervisors possible.

Sevigator provides isolation of untrusted OS from network, but keeps operability of
trusted application. For them, and only for them, an access to network resources is
granted. An important feature of this approach is that there is no need to modify or
recompile any applications or OS.

Within Sevigator approach OS resides in a virtual machine, while protection system
is located in hypervisor. It provides facilities to isolate untrusted applications from
network access; to prevent data leaks due to code intrusion or memory attacks it
controls memory integrity of the applications under protection. The hypervisor pro-
vides simultaneous execution of two completely isolated from each other virtual
machines. The first one called user is the primary one, user interacts with it, and it
believes that network adapter is physically absent. The second VM called service is
service system which has unlimited access to network. Network support for trusted
processes in user machine is provided by hypervisor through remote execution of
required (limited) set of system calls in the service virtual machine. Full description
of security algorithms can be found in [3, 4, 5].

268

K. Mayutauues, H. Tlakynun, YaaneHHOe 00CITy)KMBaHHE CHCTEMHBIX BHI30BOB B MHKPOSICPHOM ruriepBusope. Tpybt
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 267-278

" uservM [ServiceVM
Trusted
process

A
~ /.'
rd I —"
l."lr Kemel module . Kemal module
)

| - s AN s =/

| \ /
ll'l"\ | by J
\J HW

Figl. Sevigator architecture

We refer to this scheme as remote servicing of system calls since the hypervisor
intercepts parameters of a system call in the user VM and transfer them to the ser-
vice VM, where the actual code is executed.

The scheme with two VMs was motivated by the following considerations: isolation
networking operations from user machine and minimization the risk of hypervisor
compromise in the case of compromised network component. Isolation makes net-
work access possible only for trusted application. Execution within service VM
means that compromise of the VM will not lead to compromise of hypervisor ker-
nel.

Sevigator system originally was based on hypervisor KVM (Kernel-based Virtual
Machine), and using the second VM was the only possible solution to satisfy the
constraints. Later Sevigator without changes of its architecture was ported to NOVA
microkernel hypervisor [6].

Our work shows that using hypervisor based on the microkernel architecture allows
us to replace the second virtual machine with a process in hypervisor with the same
functionality. This is possible because microkernel isolates processes and executes
them at lower privilege level than the microkernel. And this change significantly
reduces overhead of having dedicated OS only for remote execution of service calls.

2. Hypervisors Overview

There is a lot of hypervisors and they use different ideas. We chose NOVA [7] to
port Sevigator because it was the only one that satisfied own requirements for origi-
nal Sevigator design (requirements and hypervisor comparison can be found in [6]).
And when we ported Sevigator, NOVA architecture gave us idea how we can rede-
sign Sevigator to reduce overhead but keeping security.

269

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

With new design of Sevigator, where dedicated process is responsible for servicing
system call, we again looked if it can be implemented in different hypervisor be-
sides NOVA. The following hypervisors were considered: BitVisor[8], SecVisor[9],
Xen[10], Qubes OS [11]. All of them are distributed under open source licenses and
don't require existence of a host operating system.

BitVisor is hypervisor and virtual machine monitor (VMM), designed to ensure
security of computer systems. BitVisor provides encryption of network connections
and data on disk. Ensuring confidentiality of network and disk data is transparent to
the operating system. BitVisor designed to create minimal overhead on encryption
and decryption of data.

Bitvisor doesn't separate VMM and kernel of the hypervisor, so performed at the
same privilege level. BitVisor supports exactly one virtual machine - this is done in
order to minimize the overhead on the interaction of the guest OS with the devices,
primarily input and output devices. Bitvisor based on parapass-through architecture:
hypervisor intercepted memory access and 1/0O access, and pass-through anything
else. Bitvisor intercept accesses to protect hypervisors from the guest OS, and en-
force security functionalities. Bitvisor cannot execute processes at lower privilege
level. Therefore Bitvisor didn’t satisfy the requirements.

SecVisoris a very small hypervisor (about 10 times smaller than NOVA) which goal
is protecting OS kernel against an attacker who controls everything but the CPU, the
memory controller, and system memory chips.

SecVisor provides a lifetime guarantee of the integrity of the code executing with
kernel privilege. In other words, SecVisor prevents an attacker from either modify-
ing existing code in a kernel or from executing injected code with kernel privilege,
over the lifetime of the system. SecVisor ensures that only code approved by the
user can execute with kernel privilege. SecVisor also executes all its parts at the
same privilege level.

Xen is a very popular virtualization platform, which is widely used to build cloud
services. Xen virtualization platform includes a hypervisor, virtual machine monitor
for guest OS, dedicated virtual machine dom0 to work with devices and specialized
drivers to access the device via the dom0. These drivers are called paravirtualized as
they "know" that the OS is running under Xen and effectively interact with the hy-
pervisor and domoO.

Xen hypervisor implements the minimum set of operations: management of RAM,
processor status, real time clock, interrupt processing and control of DMA (IOM-
MU). All other functions, such as the implementation of virtual devices, creation
and deletion virtual machines, moving VMs between servers in the cloud, etc. is
implemented in a dedicated virtual machine dom0.

All functions related to network, disk drives, video cards emulation and other devic-
es are placed outside the hypervisor. Typically, the request handling devices consist
of two parts. Driver in the guest operating system translates requests from the OS to
program handler in domO. To increase the security of the system servers, virtualize

270

K. Mayutauues, H. Tlakynun, YaaneHHOe 00CITy)KMBaHHE CHCTEMHBIX BHI30BOB B MHKPOSICPHOM ruriepBusope. Tpybt
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 267-278

devices run as separate processes in OS dom0. Failure in such a program leads to a
denial of only one virtual device in one VM and does not affect the work of other
copies of the server.

Xen architecture requires using dedicated virtual machine for servicing network-
releated system calls and this is a big overhead. Furthermore, Xen codebase is large
and nearly impossible for thorough security analisys.

Qubes OS is a hypevisor based on Xen. Qubes implements a security—by-isolation
approach. In Qubes, the isolation is provided in two dimensions: hardware (separat-
ed network domain, storage domain, GUI) and software (domain with different lev-
els of trust e.g. work domain — most trusted, shopping domain, random domain —
less trusted). Domains are separated by executing within different virtual machines.

3. Original Sevigator Design

3.1 General Architecture

Among the applications running in the OS, the protection system identifies several
applications that are considered as trusted. All others applications are considered as
untrusted. The security problem is to prevent the leakage or compromising of confi-
dential data of trusted applications. Trusted applications for the normal functioning
may require access to the public network. This network connection can be used by
malicious code in the OS kernel for the leakage of sensitive data.

The solution is based on use of hardware virtualization technology, execution of an
OS in the virtual machine (VM), and implementation protection system in the body
of a virtual machine monitor (hypervisor) [3]. The hypervisor provides simultaneous
execution of two completely isolated from each other virtual machines (fig. 1). Both
are running the same untrusted OS. The first VM, we will call it user, is the primary
one. It is there where critical data resides and applications (both trusted and untrust-
ed) are executed processing those data. Hypervisor blocks access to the network
interface for user VM and its guest OS believes that the network adapter is physical-
ly absent. Thus, even if malicious code managed to gain access to critical data, it
will not be able to transfer them to the outer world.

Network access for trusted applications is supplied by the second VM called ser-
vice. It has free access to the network. However, due to VMs isolation provided by
the hypervisor the software in the service VM (including OS kernel) cannot gain
access to data residing within the user VM.

Network support for trusted processes is implemented through remote servicing of
required set of system calls in the service VM. The hypervisor intercepts network-
related system calls invoked by a trusted process, analyzes the data and, when nec-
essary, transmits them to the service VM. Note that the remote service of the system
call is made transparent for a trusted process and an OS.

271

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

3.2 NOVA based architecture

NOVA is a microkernel for hypervisor. NOVA itself is only a kernel, for running
virtual machines you should use one of the environments, built atop of it: NUL,
NRE or Genode. We use NUL because NRE still misses some NUL features, and
Genode is much larger.

Because of microkernel design, only the NOVA kernel runs with the highest priority
and every process of NUL is executed as user space process with priority level
CPL3 (lowest on Intel 1A-32 architecture).

NUL is an experimental operational environment and it is still work in progress. It
contains a number of simplified components, e.g. direct access to host PCI devices
works unstable. As a result VMM (Virtual Machine Monitor) has to emulate hard-
ware devices for the guest virtual machine. And if the emulated model needs access
to a host device, than a driver in NUL is required for that device. For networking
NUL provides a small number of drivers, most notable is the classic NE2000 net-
work card. For our experiment we used NE2000-compatible network card
RTL8029AS, for which NUL has a driver.

The port of Sevigator architecture to NOVA hypervisor uses two virtual machines
[13] to service network-related system calls of trusted users’ applications. As an
example Fig. 2 shows how servicing send system call works.

" Uservm Y [Service VM

Trusted _ Driver for NIC
process | 7 maded
A |

Kemel module Kemal module |
— T+]
2 4 5 & 8 10
S ' O T O N et T
i
VM WMo | reainic
NOWVA microkamel

Fig2. Path of send message in original design Sevigator

Yellow colored boxes are processes in NOVA. Interaction with and between pro-
cesses always imply calling NOVA kernel, but for simplicity we don’t show them
on the figure.

When trusted process executes send system call the Sevigator module in OS kernel
intercepts it (1), forms special fixed size message and free size vault and executes
the hypercall (2). VMM passes (3) the message and the vault to another VMM. This
VMM sends (4) the message to service VM kernel module. Module finds vault size
272

K. Mayutauues, H. Tlakynun, YaaneHHOe 00CITy)KMBaHHE CHCTEMHBIX BHI30BOB B MHKPOSICPHOM ruriepBusope. Tpybt
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 267-278

in message, allocates memory, asks (5) for vault and receives (6) it. Module forms a
new message and sends it to Linux kernel, which calls (7) network driver for net-
work card emulated by VMM. The driver sends (8) bytes to the network card mod-
el, which passes (9) them to driver of the actual card. And finally the driver in the
hypervisor sends bytes to the network card.

As we can see the path that passes network messages is really long. In the next
chapter we will show how to achieve a shorter pass.

4. New Sevigator Design

Microkernel based hypervisor allows us to redesign Sevigator. Those hypervisors
have well isolated parts. Only a small kernel has highest priority level. Most of
hardware operations as well as management of virtual machines are isolated in pro-
cesses with low priority level.

The idea of the redesign is to move servicing system calls of trusted applications to
hypervisor applications. Having dedicated processes in hypervisor we keep all plus-
es of using dedicated virtual machine such as isolation of servicing system calls in
code and securing the risk of compromise the system by reduction of priority level.
It means that compromising such a code doesn’t mean compromising the whole
hypervisor. But redesigning gives more: it reduces trusted code base from millions
of lines of code (LoC) for service VM to tens of thousands LoC for dedicated appli-
cations in hypervisor. And also we reduce overhead of context switching: rede-
signed system doesn’t need at least context switching between VMM and service
VM; so we increase performance of the whole system.

In our paper we present a proof of concept of the new approach to servicing system
calls of trusted applications in dedicated environment.

We selected networking system calls for study. Fig. 3 presents the idea: networked
system calls are serviced in the dedicated process over NOVA microkernel. The
application is based on popular embedded TCP/IP stack called IwlIP[12]. The appli-
cation is a wrapper around IwlIP that parses the parameters of remote system calls
and invokes corresponding IwlIP operations. In the following text we will refer to
this application as “IwIP”.

Fig.3 shows servicing of send message in redesigned system. Here we will only
discuss difference of redesigned system. Steps (1) and (2) are the same as in the
original design. VMM sends (3) message and vault to LwIP process, which analyses
the message, understands what system call was called, and forms a packet, that will
be sent (4) to driver. Driver sends bytes to the real network card.

We can see that in the new design the path is much shorter, and one can expect that
the new design should work faster. We present the performance study in the in the
next section. In order to support the concept of socket used by trusted application
we implemented a small glue layer over IwlP. The prototype implementation sup-
ports socket create and close, socket bind and connect, send and recv for TCP and
UDP. Raw sockets (e.g. for ICMP messages) are not supported yet.

273

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

User VM

Trusted
process

—

‘ Kernel module ‘

VMM LWIP Driver for

Fig 3. Path of send message in redesigned Sevigator

5. Performance

We conducted an experiment to measure network performance of the redesigned
system. During experiment we compared performance of the original design with
two VMs, and the new design with the dedicated process. As the reference point we
used native Linux running on hardware without hypervisor and ran hypervisor with
pure IwlIP application without VMM.

All measurements were performed on the same machine with AMD Phenom Il x4
980 3.7 GHz CPU, 16 GB RAM. As network card we used once popular
RTL8029AS card. It is ne2000 compatible and is one of the few cards supported by
NOVA/NUL. The card is 10Mbit/s. We use this old card because other cards sup-
ported by NOVA turned out to be much harder to find.

For testing, we run test application in Linux, which executes 1000 times sendto sys-
tem call, sending UDP packets to the network. We were sending short 60 bytes
message. The destination workstation received the packets, identified lost packets
and measured time between the first and the last packets. We did not measure time
at the guest virtual machine because return from sendto call does not mean that the
corresponding packet was actually sent.

Fig.4 shows the test performance difference between original and new architectures
and pure Linux.

The experiments showed that replacing the virtual machine with a dedicated appli-
cation increased performance by 26%. The overhead compared to the native Linux
execution was reduced from almost 100% to 29%.

Comparing with pure IwlP case shows that current overhead for transfer system call
in IwIP is only 1.4 ps. For 10 Mbit/s network this is insensitive. The bottleneck of
current realization is lwlP and NE2000 driver. The NE2000 driver in NOVA is far
from perfection and careful queuing of pending packets may reduce the total over-
head even more.

274

K. Mayutauues, H. Tlakynun, YaaneHHOe 00CITy)KMBaHHE CHCTEMHBIX BHI30BOB B MHKPOSICPHOM ruriepBusope. Tpybt
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 267-278

TIME, MS
140 M Pure Linux
120
100 B LwIP in NOVA
80 -
IwlP based
60 - Sevigator
40 - M Public VM based
20 - Sevigator
0 .

Fig4. Time for sending 1000 UDP packets

Servicing of system calls in an application compared to a dedicated VM simplifies
the flow control. Removing the second VM resulted in omitting:

interrupt injection in the service VM (required to notify the VM that there are pack-
ets pending);

VM exit to pass frames from service OS to NIC model in the VMM,;

IPC calls between VMM and NIC driver in the hypervisor.

Another important gain is significant reduction of the trusted code base required for
servicing network-related system calls. The design with two virtual machines im-
plied that we have to trust the whole Linux kernel, i.e. millions lines of code due to
the monolithic nature of that kernel. When system calls are serviced by the IwlIP
application, the trusted computing base shrinks to about 70,000 LoC, the size of
IwlP.

6. Future Work

In future we want to develop NUL drivers for modern network cards and make ex-
periments on them. Also because NOVA UserLand was made as a test project and is
not fully stable for now, we have encountered problems with memory management,
and have errors while working with big packets. We want to find the causes the re-
vealed problems and fix it.

Finally, we will port guest modules to modern Linux kernel and see if there are any
changes in performance.

7. Conclusion

Our work shows that using microkernel-based hypervisors opens new perspectives
and facilitates new approach to servicing OS system calls in hypervisor.

275

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

Using microkernel hypervisor allow us to redesign system by moving system call
servicing in hypervisor application. Those applications are executed as processes
with low priority, so compromising of an application doesn’t lead to compromising
of the whole hypervisor.

We were able to move servicing of network-related system calls to such a process. It
significantly reduces overhead for servicing network-assisted system calls and
speeds up execution: new design makes network connection 30% faster. Further-
more, it reduced trusted code base by two orders of magnitude, and this is very im-
portant for security system, because it makes audit or verification of system simpler.

References

[1].
[2].
[3].

[4].

[5].

[6].
[7].

[8].

(9]

[10].

276

Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes
3A, 3B, and 3C: System Programming Guide.

AMDG64 Architecture Programmer’s Manual Volume 2: System Programming PDF,
2011

I. Burdonov, A. Kosachev, P. lakovenko Virtualization-based separation of privilege:
working with sensitive data in untrusted environment. 1st Eurosys Workshop on Virtual-
ization Technology for Dependable Systems, New York, NY, USA, ACM. 2009. P. 1-6.
D. Silakov. Using Hardware-assisted Virtualization in the Information Security Area.
pp. 25-36. Proceedings of ISP RAS, volume 20, 2011. ISSN 2220-6426 (Online), ISSN
2079-8156 (Print)

P. lakovenko. Transparent mechanism for remote system call execution. pp. 221-242.
Proceedings of ISP RAS, volume 18, 2010. ISSN 2220-6426 (Online), ISSN 2079-8156
(Print)

K. Mallachiev, N. Pakulin. Protecting Applications from Highly Privileged Malware Us-
ing Bare-metal Hypervisor. DOI: 10.15514/SYRCOSE-2014-8-10.

U. Steinberg and B. Kauer. 2010. NOVA: a microhypervisor-based secure virtualization
architecture. In Proceedings of the 5th European conference on Computer systems (Eu-
roSys '10). ACM, New York, NY, USA, 209-222.

T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano, K.
Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato. 2009. BitVi-
sor: a thin hypervisor for enforcing i/o device security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments (VEE
'09). ACM, New York, NY, USA, 121-130.

A. Seshadri, M., Ning Qu, and A. Perrig. 2007. SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes.SIGOPS Oper. Syst. Rev.41, 6, 335-
350. DOI=10.1145/1323293.1294294 C. Takemura and L. S. Crawford. The Book of
Xen. 2009, 312 pp. ISBN-13 978-1-59327-186-2,

J. Rutkowska. Software compartmentalization vs. physical separation. Invisible Things
Lab, 2014
http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_
physical_separation.pdf

http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf

K. Mayutauues, H. Tlakynun, YaaneHHOe 00CITy)KMBaHHE CHCTEMHBIX BHI30BOB B MHKPOSICPHOM ruriepBusope. Tpybt
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 267-278

[11]. A. Dunkels IwlIP, a small independent implementation of the TCP/IP protocol suite.
http://www.nongnu.org/lwip

YpnaneHHoe o6¢cnyXuBaHue CUCTEMHbIX
BbI3OBOB B MUKPOSiZIePHOM runepBu3ope

K. Mannauues <mallachiev@ispras.ru> |
2H. Haxynun <npak@ispras.ru>
Mockoeckuii 2ocyoapcmeennviil ynusepcumem umenu M.B.Jlomonocosa,
Gakynomem GLIYUCIUMETLHOU MAMEMAMUKU U KUDEPHEmUuKu
119991, Poccus, e. Mockea, Jlenunckue eopul, 0. 1
2Unemumym Cucmemmozo Ipozpammupoeanus PAH,
109004, Poccus, e. Mockea, yn. A. Conowcenuyvina, 0. 25.

AHHoTanms. B naHHO# paboTe omuchiBaeTcs NanbHEHImIas pa3paboTKa CHCTEMbI 3aIlUThHI
Sevigator, HCIOIB3YIOIIEH aNmapaTHYI0 BUPTyalIu3aluio. [3HadalbHOE YCTPOHCTBO
Sevigator COCTOMT B HCIIOJIHEHUH IOJIb30BATEIBCKUX MPHUIOKEHUIT B OTAENBHOI BUPTYyab-
HOW MalInHe, Y KOTOPOW OTCYTCTBYET ceTeBOW mHTepdelic. [y JOBEpEHHBIX MPHIIOKEHUH
Sevigator mepexBaTaeT CHCTEMHbIE BBI3OBBI, CBS3aHHBIE C OIEpPALUSIMHU C CEThIO, U MepeHa-
HpaBIsIeT X Ha OOCITy)KMBaHUE B BBIACIECHHYIO BUPTYaTbHYIO MAamUHy. Takoe ycTpoicTBO
HO3BOJIIET cCUCTEME Sevigator 3allUIaTh CETeBOE B3aUMOJCHCTBHE OT BPEIOHOCHBIX MPHIIO-
JKeHHUH, BKIIIOYas 3T0HAMEPEHHBIH KO/l Ha CaMOM BBICOKOM ypoBHe mpuBmiernit B sape OC.
Hcnonp30BaHne COBPEMEHHBIX THIIEPBU30POB, IIOCTPOSHHBIX 110 MHUKPOSIEPHOH apXUTEKTY-
pe, MO3BOJISIET N3MEHHTh apXUTEKTYpy cucTeMbl Sevigator. Takue rUmepBH30pEI IO CBOEH
HPHUPOJIE SIBISAIOTCS MAJICHPKOH OIEPAllMOHHOM CHCTEMOH, B KOTOPOH OONBIIMHCTBO amma-
paTHbIX onepauni/'l U ynpasJ€HUE BUPTYAJIbHBIMU MallMHaAMU U30JIUPOBAHHO B IIPOLIECCHI C
HHU3KHM YpOBHEM IpHopureTa. Kommpomerarus Takux IpOIECCOB HE NPHUBENET K KOMIIPO-
METaluH BCEro THIIEPBH30PA.

B naHHO# paboTe MbI IPelOCTaBIAeM SKCIEPUMEHTAIBHYIO apXHTEKTYpy Sevigator-a, OCHO-
BaHHYIO Ha runepsu3ope NOVA, B paMKkax KOTOPOIl CHCTEMHBIE BEI30BHI JOBEPEHHBIX IIPH-
J0KeHnit 00pabaThIBaOTCs B OTACIBFHOM MPOLIECCe B TUIIEPBU30PE, @ HE B OTICIBHON BUPTY-
QIPHOM MamMHe. JTOT 3KCIEePUMEHT Mokasal 25% HpHpPOCT MPOHM3BOJUTEILHOCTH IPH
YMEHBIICHUU KOJINUECTBA nepexmouex—mﬁ KOHTCKCTOB.

KiroueBble cji0Ba: BUpTyalu3aLus, THIEPBU30p, 0€3011aCHOCTb, MUKPOSIIPO
DOI: 10.15514/ISPRAS-2015-27(3)-18

277

http://www.nongnu.org/lwip

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

Jas nutupoBanus: Mamraunes K., [Takymuun H. Ynpanennoe oOcimyXnBaHHE CHCTEMHBIX

BBI30BOB B MuKposiaepHoM rumepsusope. Tpyast UCII PAH, tom 27, Beimn. 3, 2015 r., cTp.
87-96 (Ha anrmuiickoM s3bike). DOI: 10.15514/ISPRAS-2015-27(3)-18.

Cnucok nutepaTtypbl

[1].
2.
[31.

[4].

[5].

(6].
[71.

[8].

(9.

[10].

[11].

278

Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes
3A, 3B, and 3C: System Programming Guide.

AMDG64 Architecture Programmer’s Manual Volume 2: System Programming PDF,
2011

I. Burdonov, A. Kosachev, P. lakovenko Virtualization-based separation of privilege:
working with sensitive data in untrusted environment. 1st Eurosys Workshop on Virtual-
ization Technology for Dependable Systems, New York, NY, USA, ACM. 2009. P. 1-6.
J.B. Cunaxos. Mcnosip30BaHne anmapaTHOW BHPTyaJU3aldd B KOHTEKCTE WH(POPMAIIH-
onHoit 6e3onacHoctH, Tpyast UCIT PAH tom 20. 2011 r. ctp.25-36. ISSN 2220-6426
(Online), ISSN 2079-8156 (Print)

T1.H. SIkoBenko. [Ipo3pauHblii MEXaHU3M yIAIICHHOTO OOCTYKUBAHUS CHCTEMHBIX BBI30-
BoB. Tpymst UCIT PAH Towm 18. 2010 r. Crp. 221-242. ISSN 2220-6426 (Online), ISSN
2079-8156 (Print)

K. Mallachiev, N. Pakulin. Protecting Applications from Highly Privileged Malware Us-
ing Bare-metal Hypervisor. DOI: 10.15514/SYRCOSE-2014-8-10.

U. Steinberg and B. Kauer. 2010. NOVA: a microhypervisor-based secure virtualization
architecture. In Proceedings of the 5th European conference on Computer systems (Eu-
roSys '10). ACM, New York, NY, USA, 209-222.

T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano, K.
Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato. 2009. BitVi-
sor: a thin hypervisor for enforcing i/o device security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments (VEE
'09). ACM, New York, NY, USA, 121-130.

A. Seshadri, M., Ning Qu, and A. Perrig. 2007. SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes.SIGOPS Oper. Syst. Rev.41, 6, 335-
350. DOI=10.1145/1323293.1294294 C. Takemura and L. S. Crawford. The Book of
Xen. 2009, 312 pp. ISBN-13 978-1-59327-186-2,

J. Rutkowska. Software compartmentalization vs. physical separation. Invisible Things
Lab, 2014
http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_
physical_separation.pdf

A. Dunkels IwlIP, a small independent implementation of the TCP/IP protocol suite.
http://www.nongnu.org/lwip

http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://www.nongnu.org/lwip

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

Constructing Private Service with
CRYP2CHAT Application

Andrey Kiryantsev <reyzor2142@gmail.com>,
Irina Stefanova, <aistvt@mail.ru>,
Volga Region State University of Telecommunications and Informatics, 77
Moskovskoe sh., Samara, 443090, Russian Federation

Annotation. The article contains the description of a private service with the client-side data
encryption and data decryption. Owing to the Onion Router (TOR) technology, anonymous
network connection protected from interception becomes possible. Users in TOR network
may remain anonymous while visiting websites, uploading materials, sending messages and
working with other applications that use TCP protocol. Traffic security is ensured by the
distributed network of onion routers. The focus of the article is on the direct client-to-client
connection. Nowadays messengers — programs for on-line messages exchange — place
metadata on the central server without encryption, which provides an opportunity to learn (if
required) the information about the common users, time of their communication, the number
of messages they send within a session. To solve the problem the authors offer CRYP2CHAT
program for client-side encryption. Sending messages through TOR network is performed by
asymmetric encryption, e.g. by RSA method that enables other encryption algorithms as well.
The article provides the algorithm for work of the programs. The authors describe the
methods of protection from some network attacks, such as MITM and the experiment of
prototype work. They check clean access server and use self-destruction of messages after the
session end. Additionally, the authors consider some potential dangers of an external
character that can violate confidential communication data, for instance, change of the
application code, password attack or private key theft. The article illustrates the way the
Onion Router technology works. It allows to protect from MITM attacks, to remain
anonymous and to proxy. Moreover, there is a comparative analysis of Cryp2Chat qualitative
characteristics and its analog.

Keywords: cryptography; encryption; encoding; MITM-attack; end2end encryption; node.js;
cryprico; java script

DOI: 10.15514/ISPRAS-2015-27(3)-19

For citation: Kiryantsev Andrey, Stefanova Irina. Constructing Private Service with
CRYP2CHAT Application. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-
290. DOI: 10.15514/ISPRAS-2015-27(3)-19.

279

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

1. Introduction

Modern society is characterized by the exchange and buffering information in
electronic form. While processing the information, we may need to react
immediately on constantly emerging problems with data protection and security of
data centers.

The problem is now becoming more urgent considering declarations and current
publications by Edward Snowden, the former system administrator for the Central
Intelligence Agency. He reports on the fact that the National Security
Agency (NSA) operates global surveillance programs with the cooperation of
telecommunication companies and European governments through the existing
communication networks.

Nowadays to exchange information on-line special programs — messengers — are
used. They are particularly useful for transmission of text messages, sound signals,
images, video and games as well as for organization of teleconferences by coding
messages of on-line users. Messengers usually operate in coordination with a server,
and they are defined as client-side programs with their own rules of work and
peculiarities in operating, e.g. 1ICQ, Skype. The main drawback of these programs is
that while using them, we leave metadata on a hosting server as non-encrypted data
flow, which provides an opportunity to learn (if required) the information about the
common users, time of their communication, the number of messages they send
within a session.

2. Description of CRYP2CHAT program

To eliminate the defect we develop a model to run a program that allows coding the
data on the client side with the help of Cryp2Chat Application
Currently existing Internet messengers fail to perform the following functions:

- to check for MITM (Men in the middle)-attacks;

- to provide a ‘clean’ (data free) server;

- to destruct messages automatically after the session is over.
MITM-attack is the most wide-spread way to attack for stealing the data of some
users. This type of attack presupposes that the attackers are able to read and alter
messages of a sender and a receiver as they wish. Additionally, neither a sender nor
a receiver sees any hints of the attacker to be in the channel. It is the matter of no
importance if SSL cryptographic protocol is applied or not. The attacker hooks into
a channel between users and interferes actively with the communication protocol.
He/ she may delete, falsify data or provide the false ones.
The term ‘clean’ server implies that the communication between two users leaves
no information on the server. In this case the server functions as a repeater and
simply translates the encrypted message between the clients. After the session is
over, the access to the data of the on-line chart is lost without any opportunity for
return.

280

http://en.wikipedia.org/wiki/System_administrator
http://en.wikipedia.org/wiki/Central_Intelligence_Agency
http://en.wikipedia.org/wiki/Central_Intelligence_Agency
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/Global_surveillance
http://www.multitran.ru/c/m.exe?t=3431053_1_2&s1=%EA%F0%E8%EF%F2%EE%E3%F0%E0%F4%E8%F7%E5%F1%EA%E8%E9%20%EF%F0%EE%F2%EE%EA%EE%EB
http://www.multitran.ru/c/m.exe?t=3432975_1_2&s1=%E7%E0%F8%E8%F4%F0%EE%E2%E0%ED%ED%EE%E5%20%F1%EE%EE%E1%F9%E5%ED%E8%E5

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

The described problems with messengers could be solved if we use a new
application — Cryp2Chat.

Cryp2Chat application has been developed to minimize the drawbacks of the
Internet messengers, i.e. it leaves no metadata on the central server. The client is the
only person who can decode the incoming message. The client possesses data de-
encryption key, and the key does not go further.

The program operation procedure is the following (fig. 1). A server receives a list of
network user’s contacts. A data encryption key is generated on the side of a sender.
Further the public key is sent to the server and, finally, to a receiver. The private
part of a key remains on the user’s (sender’s) side.

S ... S
server
o
'y et

sender -
receiver

Fig. 1. An Example of Cryp2Chat Application Running

When a user (a receiver) sends back a message, the operation is realized within
three main stages:

1. He/she receives a public key of a receiver from the server;

2. The message is encrypted by a public key;

3. The cryptographed message is sent to the server.

RSA method is employed for encryption; the key length includes 1024 bit.
However, the possibility to use other algorithms of encryption is also provided.

The server created as a prototype of this application is written in Node.js
programming language (advanced JavaScript) on the basis of Socket.lO library.
Cryp2Chat application is an original service designed to exchange rapidly-changing
messages. It supports End2End encryption.

To enable the program to use proxy servers (to protect the client’s computer from
some network attacks) and to increase the reliability of a channel, we offer the use
of network of TOR (The Onion Router). On the computer of a client a proxy server
connected to the network of TOR starts its work [1]. It involves a multilevel
encryption. The process of message transmission in a network is schematically
presented on fig. 2.

281

http://www.multitran.ru/c/m.exe?t=5416562_1_2&s1=%EA%EB%FE%F7%20%F8%E8%F4%F0%EE%E2%E0%ED%E8%FF%20%E4%E0%ED%ED%FB%F5
http://www.multitran.ru/c/m.exe?t=5416562_1_2&s1=%EA%EB%FE%F7%20%F8%E8%F4%F0%EE%E2%E0%ED%E8%FF%20%E4%E0%ED%ED%FB%F5
http://www.multitran.ru/c/m.exe?t=1805601_1_2&s1=%F8%E8%F4%F0%EE%E3%F0%E0%EC%EC%E0

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

Ef) How Tor Works: 2 3 Tornode

« « 4 unencrypted link
- encrypted link

Alice

_S N

Step 2: Alice's Tor client
picks a random path to

destination server. Green - -
links are encrypted, red - _ - s : T oy

links are in the clear. : Jane
— | [+ [—
Dave = e — Bob

Fig.2. Schematic Presentation of TOR Work
Before transmitting the data packet to the server, it goes through three random
computers. Before being sent, the package is encrypted by three keys: for each of
the three computers respectively. In addition, the TOR network can provide
anonymity for servers.
Network users start TOR multi-level (“onion™) proxy server on their machine. It
connects to the TOR servers, periodically forming a chain through the TOR network
that uses a multi-level encryption. Every packet entering the system passes through
three different proxy servers - server nodes that are randomly selected. Before being
sent, the package is sequentially encrypted by three keys: first, in the third node,
then in the second node, and, finally, in the first node. When the first node receives
a packet, it decrypts the "upper" layer encryption (similar to how we clean the
onion) and gets the information where to send the packet to. The second and the
third servers do the same. At the same time, the software multi-level (“onion"
proxy server provides a SOCKS-interface.
SOCKS (SOCKet Secure) are the programs, running on the SOCKS-based
interface. Their work could be configured through the TOR network. The TOR
network creates multiplexed traffic and sends data through a virtual chain of the
TOR network, thus, providing anonymous web surfing.
Inside the TOR network the traffic is forwarded from one router to another, and
finally it reaches the exit point from which the pure (unencrypted) data package
comes to the original recipient address (server). The traffic from the receiver is sent
back to the exit point of the TOR network [2].
The server prototype of this application is written in Node.js (advanced JavaScript)
with the help of the library for web sockets - Socket.1O.

282

https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BA%D0%B5%D1%82_(%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BD%D1%8B%D0%B9_%D0%B8%D0%BD%D1%82%D0%B5%D1%80%D1%84%D0%B5%D0%B9%D1%81)

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

Node.js is a programming platform founded on V8 database engine that translates
JavaScript into the machine code. In this way it transforms JavaScript from the
higly-specialised language into the common language for users. The client part is
realized on Html and JavaScript with the help of Cryprico library.

Node.js has not been chosen by chance. This is one of the few servers that
work quickly and productively with a single-threaded code. For instance,
being the programming language it does not need to create a new thread to
transmit a stream of query parameters and to interpret the code.

Node.js is the aggregate of the V8 database engine used in Google Chrome and in
the abstraction to access the file system and similar server modules.

To shift away from the standard web 2.0 scheme of data transmission we used Web-
Sockets and their implementation for node.js servers in the form of Socket.lO
library. It should be mentioned that Web-Socket is a Protocol intended for
exchanging messages between the browser and the web server in real time.

At the same time, the Socket.1O library provides a good level of abstraction above
the sockets that are implemented in JavaScript. With its help you can easily pass
objects to the server and from the server, without serializing them.

The structure of the server part is the following: the server accepts the message. If it
is a command, the server performs certain actions. If it is simply a message, the
server sends it to the client.

The JavaScript language, which is used in the prototype, is currently the most
common cross-platform language. It is commonly used as an embedded language
for program access to the application objects. The JavaScript language is widely
used in browsers as a scripting language to add interactivity to the web-pages.

The JavaScript language may be distinguished by its main architectural features:
dynamic typing, weak typing, automatic memory management, prototype
programming, and functions as the first class objects.

The only requirement for JavaScript work (and it is present by default in all
operating systems) is the availability of the browser. It does not need to be rewritten
when migrating from one operating system to another. We write the script and run it
in the place where there is a browser on an electronic device.

Over the last decade JavaScript turned from the applied language for checking how
the blanks are filled, into a language that can provide the programmer a powerful
tool to tackle any kind of problems. The JavaScript library is constantly updated
with new scripts and styles.

Now there are many add-in settings for JavaScript as its possibilities are constantly
growing, but the syntax and its architecture is not changed. A simple example is
CoffeeScirpt language, which allows you to write more compact code compared to
JavaScript. It helps to solve some architectural omissions such as the lack of OOP
(object oriented programming), collbecki (CallBacks) — callback and syntactic
‘sugar’ (code lines that improve the way the program looks like). All this makes the
language more convenient for the programmer.

283

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

3. Prototype work

As an example, we may consider the fragments of scripts in Cryp2Chat prototype.
Below there is a fragment of the script that implements the simultaneous exchange
of encryption keys between clients:

socket.on('key1',function(data)

keys[0] = data.key;
¥
)i
socket.on('key2',function(data){
keys[1] = data.key;
chat.emit('key’, { keyl: keys[1], key2: keys[0], stats: "ok™});
}
)i
When the client sends his/her first client key ‘keyl’, it is immediately saved.
However, while sending the second client key ‘key2’, the handshake happens. The
handshake process is asynchronous exchange of public keys to encrypt data between
two clients.
In Cryp2Chat prototype the transmission of the incoming message is presented
through the following scrip:
socket.on('msg’, function(data)

{
socket.broadcast.to(socket.room).emit(‘receive’, {msg: data.msg, user:

data.user, img: data.img});

}

)i
Next, when the server receives an incoming message, the server sends it to the
second client with the help of the socket.io library.
The public RSA key is generated in the following lines of script:

var myRSAkey = cryptico.generateRSAKey(PassPhrase, 512);

var PublicKeyString = cryptico.publicKeyString(myRSAkey);
The decryption of the cryptogram and its presentation in the client side is
represented by the lines of the script:

var msgs = cryptico.encrypt(textarea.val(),roomKey);

socket.emit (‘'msg',{msg: msgs, user: name, img: img});
The client is the only one who can decrypt the transmitted message, as the private
key never leaves the client side. The connection is made directly from client to
client.

socket.on('key',function(data)

console.log(data);
console.log(yourName.val());
console.log(hisName.val());

284

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

if(myld == 1)

console.log("roomKey" + roomKey);
roomKey = data.keyl;

}

else
console.log("roomKey" + roomKey);
roomKey = data.key?2;
}

}

);

Encrypt Message

!

Send to server

!

Receiving encrypted
message

Yes
Have certificate ?

L J

h 4

Sending a message

Refusal to send the to the recipient
message l

Getting the message
recipient

!

Encrypt message

an recipient

|
Fig. 3. Generalized Algorithm of Cryp2Chat Application

285

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

The script describes the client-side function that implements handshake. The
generalized algorithm of the Cryp2Chat application is illustrated in Fig. 3.

As shown in the flowchart, from the moment of receiving the encrypted message
and till the moment the message is sent to the recipient, the server undertakes the
only action — certificate (i.e. license) verification. All the other steps associated with
encryption, key generation, the transmission of the cryptogram to the recipient and
decrypting of the cryptogram by the recipient, occur at the clients and in their
browsers.

4. Experiment procedure

Experimental study of the application was conducted on a typical mobile phone,
where Cryp2Chat program was installed. Mobile phone is Nexus 5 with the
processor speed 2260 MHz and with the operating system Android 4.4.4. This
operating system supports novelties related to the safe operation in the browser.
When a user opens an application, it verifies the certificate on the sender’s device.
In case of a successful verification the sender chooses a receiver. In case the
connection is completed, the receiver’s public key and a signature are taken from
the browser local database, or they are requested from the server.

Next the program encrypts the message and the sender's signature key. The message
is sent to the server, and it verifies this signature on the basis of the contacts list. If
the sender's signature exists in the server database, the latter immediately transmits
the message to the recipient. In case of an incoming message the signature of the
recipient is verified and it is decrypted with a secret decryption key.

The experimental results with Cryp2Chat prototype are shown on Figures 4 - 7.

et =0

Oops, there are no other people in this chat! Chat with Andrey

Andrey FRIEND

hitlp:iacalnost BOB0VChal 603708 allayhi con|

Fig. 4. Introducing the Users

286

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

Andrey

Andrey

Andrey Andrey
FRIEND FRIEND

Fig. 5. Exchange with Test Messages

NhVeNtTrxd@xkPr3veDhS 2 PEUT 1P xkiXcZV0==
ViugNtTrx40xkPr3veDhS2POUI 1P xkXcZVQ

TcbeK1IqUfviFaYQIDptNpguSGtNEUIQOw==

Fig. 6. Console of the First Client

On the console of the first client and on the server console one could see only the
encrypted string. This way the information is transmitted to the server (Fig. 7).
Additionally, the recipient - the second client - is the only one who possesses the
key to decrypt it.

D0kGo7uR
vYm7huqJHro

Fig. 7. Console of the Server

Further we conducted an experiment for a group of 20 users. Especially for this
purpose we launched the site in the cloud Azure that hosts Cryp2Chat application -
http://cryp2chat.azurewebsites.net/. Based on the experiment we have had the
following results:

- high speed of response from the client’s side as well as from the server side;

- a sufficiently high contact capacity of the program, as all 20 users managed
to establish contacts with their subscribers simultaneously.

287

http://cryp2chat.azurewebsites.net/

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

Fig. 8 is a table of qualitative indicators of Cryp2Chat application along with its
analogues. In the table the following conventional symbols are employed:

@WhatsApp
mmum ‘
cryp2chat SnapChat | WhatsApp
End2End encrypting Vv
Support of crypto signs Vv
Business version v
Oriented onto the Russian v
Federation and CIS market
Audio & Video translation v
Crossplatform v
Self-destruction of messages Vv
The ability to work withouta v
server

Fig. 8. Cryp2Chat Application and its Analogues

v — activated functional features of the program,

— inactivated functional features of the program,

— business version. There exists a business version, but it is patented under a
different name and it might be a slightly different product.
Figure 8 illustrates the following advantages of Cryp2Chat application:
1) The application corresponds to all the parameters;
2) It provides a cross-platform messaging and self-destruction of messages;
3) It uses translator servers, i.e. working on peer2peer scheme.

5. Potential dangers

While designing the application three possible potential dangers were considered:

1. Brute force. Kaspersky blog has been used to assess the possibility of selecting
passwords [3]. The program has shown that the selection of the password with a key
of about 50 characters length, including special characters, will take more than
100,000 years. Even on a powerful botnet Conficker a password will be sorted out
for ten thousand centuries.

2. Key theft. It is impossible for two reasons:

— If it is android application, the "sandbox" - a tightly controlled set of
resources for the execution of the guest program - will not give to another
application access to the files with a password,

— If it is web application, the call to a variable is impossible, as a pointer to an
element is deleted, and it is only the inner code that can refer to this variable.

3. The application code cannot be changed because:

— If it is web application, then the downloaded code is stored when you start
the application for the first time and it cannot be downloaded when you run,
288

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

— If it is the native application, changes in a code from the server side does not
lead to a change of the client application code.
The transfer of potentially dangerous information (acts of terrorism, drug sales) is
prevented because control data exchange is carried out with the use of an electronic
signature. While registering the user generates a signature. This is a RSA key that is
passed to the server, stored there and never changed.
When sending a message, the server checks the signature and if this signature is
missing on the server, this message is not sent. Also, the signature may be
withdrawn from server storage due to violation of the license agreement or similar
cases. Thus, it is possible also to control the transmission of messages. Though we
do not know what is encrypted in the message, we may deny the user in the network
communication services.

6. Conclusion

In the future, we plan to rewrite the project from scratch and to implement it as a
complete business solution with further access to the market. Additionally we plan
to develop graphical password and voice authentication function. In addition, the
plan is to transfer video, audio and other files.

References

[1] Tor — The Onion Router. Wikipedia, the free encyclopedia/ URL:
https://ru.wikipedia.org/wiki/Tor#.D0.90. [08.08.2014]

[2] Tor: Overview URL: www.torproject.org/about/overview.html.en

[3] Blog.kaspersky URL.: blog.kaspersky.com/password-check.

Cos3paHue npuBaTHOro cepBuca c
ucnornb3oBaHMEM NMPUIOXKEHUA
CRYP2CHAT

Anopeit Kupvanyes <reyzor2142@gmail.com>,
Hpuna Cmegpanosa <aistvt@mail.ru>
Tlosonxcckutl 2ocyoapcmeennblil yHugepcumen meieKoMMYHUKayuil u
ungpopmamuxu I1I'YTH, 443090, Poccus, . Camapa, Mockosckoe wiocce, 0. 77

AnHotaumsi. CraThs COJICP)KMT ONMCaHWE IIPUBATHOTO cepBuca ¢ IIM(POBaHUE WU
pacmudpoBaHEeM JaHHBIX Ha CTOPOHE KIMEHTa ¢ TMojuepkkoi TexHosormu The Onion
Router (TOR), koTopas NO3BONSET YyCTaHABIMBAaTh AHOHMMHOE CETEBOE COCIUHEHHE,
3aIuIieHHoe oT npociynmBanusa. C nomomnrsio cetn TOR monb3oBaTeny MOTyT COXpaHATh
AQHOHMMHOCTbH TIPH IIOCEUICHUH Be0O-CaliTOB, MyOIMKALUN MaTepHAaIOB, OTIIPABKE COOOIIEHUI
U TIpH paboTe ¢ APYTUMH MPUIOKEHUAMH, ncroys3yomumu nporokon TCP. bezomacHocTs

289

http://www.torproject.org/about/overview.html.en
http://blog.kaspersky.com/password-check
mailto:reyzor2142@gmail.com

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

Tpaduka obecrednBaeTcsl 3a CUET MCHONB30BAaHMS paclpeelEHHON ceTH cepBepoB (onion
routers). B craree ommcaHo mpsiMoe coeiMHEHHME - KIMEHT K KineHTy. CoBpeMeHHEIe
MECCCHXKEphl — IPOrpaMMbl Ui OOMEHa COOONICHHH B PEAbHOM BPEMEHH OCTaBIISIOT
MEeTalaHHbIe Ha IICHTPAJbHOM cepBepe B He3allM(pOBAaHHOM BHUJE, YTO MO3BOJIIET Y3HATH
uHpopmalro 00 abOHEHTax, BPEMEHH M KOJMYECTBE COOOIICHHWI B cecCHH. ABTOpaMHU
npeanaraeTcsl mporpaMma IMUGpoBaHUS TaHHBIX Ha KnueHTckod cropoHe CRYP2CHAT,
KOTOpasi ycTpaHseT STOT HexocTarok. OrtmpaBieHne cooOmenus uepe3 cetb TOR
OCYIIECTBIISICTCS C UCTIOIb30BAaHNEM aCHMMETPHYHOTO IH(POBaHNUS COOOIIEHNS, HalIpUMep,
MeTo oM RSA ¢ BO3MOKHOCTBIO HCIIONB30BAaHUS M APYTHX AITOPUTMOB mudpoBaHus. B
CTaThe MPUBEICH AITOPUTM PAabOTHI IPOrpaMMBI, OIHCAHBI CIIOCOOBI 3aIIUTEl OT HEKOTOPBIX
ceTeBbIX arak 1o tumy MITM, npoBepka HAIMYHS «IHCTOTO» CepBepa, CaMOYHHYTOXKECHHE
COOOWIEHUsT TOCTE 3aKPBITHS CECCHM, a TaK JKe OKCIEPHMEHT pabOThl MPOTOTHIA.
PaccMoTpeHBl TOTEHIMATbHBIE ONACHOCTH BHEIIHEr0 XapakTepa B BHAE ITOJMEHBI
CEpPBEPHOT0 KOJa, 000pa Mapoist M Kpaku MPHUBATHOTO KIF0Ya, KOTOPBIE MOTYT HOBIHUAThH
Ha KOH(MAECHINATBHOCTh Mepeadn JaHHBIX. Tak e ONucaH MpuMep paboThl TEXHOIOTHH
The Onion Router, xoTopas mo3BomseT AoOuThca 3ammTel 0T MITM, aHOHMMHOCTH H
npoxcudukanuu. Kpome Toro, B crathe NpUBOIMTCS CPAaBHEHNE KAaUyeCTBEHHBIX I0OKa3aTelel
Cryp2Chat ¢ ero anamoramu.

Knroueswie cnosa — kpunmozpagus, wugposanue, end2end wugposanue, node.js, cryprico,
java script, MITM-amaxa

DOI: 10.15514/ISPRAS-2015-27(3)-19

Jas uutupoBanms: KupbsHueB Awxgpeii, CredanoBa HMpuna. Co3maHue NpHBaTHOTO
cepBuca ¢ ucnoiab3oBanueM npuwioxkenuss CRYP2CHAT. Tpynet UCIT PAH, Tom 27, BeIm. 3,
2015 r., ctp. 279-290 (na anrauiickom s3bike). DOI: 10.15514/ISPRAS-2015-27(3)-19.

Cnucok nutepartypbl

[1] Tor — The Onion Router. Wikipedia, the free encyclopedia / URL:
https://ru.wikipedia.org/wiki/Tor#.D0.90. [08.08.2014]

[2] Tor: Overview URL: www.torproject.org/about/overview.html.en

[3] Blog.kaspersky URL: blog.kaspersky.com/password-check.

290

http://www.torproject.org/about/overview.html.en
http://blog.kaspersky.com/password-check

B. Tapacos, E. MeseHuea, /1. Kap6aes. CoBMeleHHbIH KinaccudukaTop uist GriibTpaimu cooOieHnii Ha Be6 caiitax.
Tpyast UCIT PAH, Tom 27, BB 3, 2015 1., €. 291-302

Combined Classifier for Website Messages
Filtration

Veniamin Tarasov< tarasov-vn@psuti.ru>,
Ekaterina Mezenceva <katya-mem@mail.ru>,
Danila Karbaev <danila@karbaev.com>
Volga Region State University of Telecommunications and Informatics, 77
Moskovskoe sh., Samara, 443090, Russian Federation

Abstract. The paper describes a new approach to website messages filtration using combined
classifier. Information security standards for the internet resources require user data
protection however the increasing volume of spam messages in interactive sections of
websites poses a special problem. Spam messages vary significantly in content, however the
common feature of these messages is that they are usually of little interest to the majority of
the recipients. Many filtering approaches are based on the Naive Bayesian classifier - an
effective method to construct automatically anti-spam filters with high performance. Unlike
many email filtering solutions the proposed approach is based on the effective combination of
Bayes and Fisher methods, which allows us to build accurate and stable spam filter. In this
paper we consider the organization of combined classifier according to determined
optimization criteria based on statistical methods, probability calculations and decision rules.
We consider the optimization criteria for grading messages basing on statistical methods. The
classifiers normally admit the compromise between the acceptable level of false-positive and
false-negative errors, and use the threshold values for decision-making, which may vary. In
order to receive more valid results of spam detection we need to analyze multitudes of results
of various filters and a subset of their overlaps. The approach we suggest is to construct
classifier organization, which presumes the combined use of Bayes and Fischer methods for
improved the filtration quality based on the analysis of subsets and set overlaps identified by
both methods (spam, non-spam, false triggering and spam leaks).

Keywords: combined classifier; spam filter; optimization criterion.

DOI: 10.15514/ISPRAS-2015-27(3)-20

For citation: Tarasov V., Mezenceva E., Karbaev D. Combined Classifier for Website
Messages Filtration. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 291-302.
DOI: 10.15514/ISPRAS-2015-27(3)-20.

291

mailto:tarasov-vn@psuti.ru
mailto:tarasov-vn@psuti.ru

V. Tarasov, E. Mezenceva, D. Karbaev. Combined Classifier for Website Messages Filtration. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 291-302

1. Introduction

The constantly growing volumes of data, number of uses as well as groups devoted
to various subjects significantly decrease the effectiveness and the authenticity of
communicated information. In this regard the task of increasing the efficiency of
statistical data filtration and authentication algorithms becomes undoubtedly topical.
The history of this subject in computer science accounts for more than 20-30 years
and the trend is becoming more urgent. We can say that right now the antispam
features of interactive sections of websites rest in the very initial stage of
development.

The subject of message filtration in emails is widely developing, manual antispam
methods are being used, and the issue of automated antispam protection of corporate
websites becomes a priority on the agenda (including comments, forums and other
interactive sections). In practice there are no universal software solutions to protect
all types of interactive website sections from spam. There are only small number of
specialized tools which prevent automatic messages posting. Some of them are
designed for a particular content management system, such as WordPress in form of
plugins: Akismet, Quiz, Spam Karma etc. These modules have some disadvantages:
the distribution model “as is” do not include the statistical base, most of online
services do not provide multilingual filtration and are limited only by the support of
the English language. The other blog comment hosting services such as
IntenseDebate, Disqus, Livefyre do not provide self-hosted option, except
Discourse.

Thereby the spam filtering software solution should have the following properties:
the use of multiple filtering methods, both formal and linguistic, united by a
common intellectual decision making core; high speed and precision of the method;
easy installation and use.

This work describes a new approach to spam filtration involving the combined use
of Bayes and Fischer methods, allowing to significantly reduce the number of false
triggering and increase spam detection.

2. Calculation of combined probabilities of conditions

The main idea of message classification is based on selection of all conditions,
calculation of probabilities of select conditions, and further combination of all
calculated probabilities into one value for the studied message. Messages with a
large number of spam attributes and little non-spam attributes will have a value
close to 1, and the messages with a large number of non-spam attributes and little
number of spam attributes will gain a value close to 0.

We will build a classifier of messages received by the website to grade the incoming
messages into three categories (spam, non-spam, unidentified). In this respect, we
need to identify all conditions (words and word combinations) in the message to be
analyzed, calculate statistical probabilities for some select conditions and combine
all probabilities into one value for the whole message. In most cases the probability

292

B. Tapacos, E. MeseHuea, /1. Kap6aes. CoBMeleHHbIH KinaccudukaTop uist GriibTpaimu cooOieHnii Ha Be6 caiitax.
Tpyast UCIT PAH, Tom 27, BB 3, 2015 1., €. 291-302

of assigning a message to a certain category is a lot higher than to others, which
results in further grading of such message.

Before calculating the combined probabilities of conditions, we need to calculate
the probability of assigning a certain condition to a specific category. For this we
can divide the identified number of messages with condition i in this category by the
total number of messages in the same category, but we would rather use another
method described below.

Let’s assume:

Fai is the number of messages with condition i in the spam group;
Fpj is the number of messages with condition i in non-spam group.

Then the statistical probability of appearance of i in a spam message can be
calculated as follows:

Pai =— 8)
Fai + Fpi
and the probability of appearance of I condition in a non-spam message, as follows:
Fpi
Poi =———=— 2
Fai + Fpj

Thus, the number of messages with condition i in one category will be divided by
the total number of messages featuring this condition i .

The use of (1) and (2) takes into account the fact that with time the number of
messages in both categories may be equal, i.e. these formulas do not depend on the
number of messages in a specific category.

Note that formulas above give accurate result only to those conditions, which filter
is used in both categories. As the result the spam filter becomes too sensitive on
early stages of learning applying to rare words. To solve this problem we need to
calculate new probability with expected a priori probability (Pex) and applied weight
(w), then according to (1) and (2) add calculated probabilities.

If the probability Pex = 0.5 and the weight of expected probability equals to one
word (w = 1), we estimate weighted probabilities using (1) and (2):

o _ (W*Pex) + Pai *(Fai +Fpi)

Pai w4+ Fgi + Fpj ’
P = (W*Pex) + Pbi *(Fai + Fpi)
! W+ Fgj + Fpj '

This approach allows to avoid division by zero in the following formulas and to take
into account rare words.

To obtain combined probabilities of the whole document (message) we will use the
dictionary, which is built on the step of filter learning. We introduce the following

293

V. Tarasov, E. Mezenceva, D. Karbaev. Combined Classifier for Website Messages Filtration. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 291-302

events: A — document is spam, B — document is non-spam. We assume that the
probabilities are independent, thus the multiplication is allowed:

P(A):Qx?azx...x PaM 3
- for the probability of words co-occurrence in spam;
P(B) = Pp1x Pp2 X..-X PpM (4)

- for the probability of words co-occurrence in non-spam [[1]].

3. Decision rules based on bayes theorem

To estimate the probability that word belongs to one of three categories (spam, non-
spam, unidentified messages) we consider the two methods of classification. In this
case we apply Bayes formulas using a priori knowledge [[1]].

We introduce two hypotheses for any given message:

H p if the message is a spam,

H g if the message is a non-spam.

Further, we introduce the following notation:

Fa is the total quantity of spam messages;

Fb is the total quantity of non-spam messages;

F . . - .
Pa = a__ jsapriori probability that a message is a spam;
Fo . . - .
pp = ——— is a priori probability that a message is not a spam;
Pa . - - - -
a= 1 p is a priori expectations that a message will be a spam;
—Fa
Op = 1 P is a priori expectations that a message will be a non-spam.

Then basing on Bayes theorem using a priori knowledge we obtain:
P(A)xOg4

P(Hpa)= - a posteriori probability that a message is a
) =5mx0, +PE)<0, 2 ° P Y J
spam;
P(B)xO
P(Hg)= (B)xOp - a posteriori probability that a message is non-
P(A)xO4 + P(B) x Oy
spam.

The probabilities P(A) and P(B) are estimated according to (3) and (4).
Given algorithm is implemented in spam detection and filtering system for websites.

[21]-
294

B. Tapacos, E. MeseHuea, /1. Kap6aes. CoBMeleHHbIH KinaccudukaTop uist GriibTpaimu cooOieHnii Ha Be6 caiitax.
Tpyast UCIT PAH, Tom 27, BB 3, 2015 1., €. 291-302

4. Decision rules based on fisher’s method

According to Fisher method all probabilities are multiplied together in a similar
manner to Bayes method, then the natural logarithm is taken of the product and the
result is multiplied by -2. To do this we introduce variable hisqv, which is estimated
by the following expressions:

hisqv=-2*In(P(A)) or hisqv=-2*In(P(B)),

where probabilities P(A) and P(B) are calculated according to (3) and (4).

Fisher proved that if the set of independent and random probabilities (3) and (4) is

given, the value —2*In(P(A)) follows the distribution of XZ with 2n degrees of
freedom (n — the number of words in the document):
xtn—le—t /2
F(X) = |——dt (5)
0o 2"r(n)
where I'(n) is the gamma function.

In view of foregoing using a representation of the gamma function of even argument
(5) can be written as:

X
F(x):;jxn_le_)(/zdx | x = hisqv (6)
2"(n=1)!g
The calculation of the factorial and the integrand in (6) could cause the overflow
error due to floating point numbers range in PHP programming language. Thus the
recurrence formula is used in the calculation algorithm. Calculation the probability
of (6) is implemented by Gaussian quadrature formula with 15 nodes:

b
jroa=""2 3 A1)

where tj =(b+a)/2+(b—a)xj/2, and X; are the nodes of Gaussian quadrature
formula;
A; are the Gaussian coefficients, (i =1 2,...,15)[[3]]. In our case a=0, b = hisgv

The value returned by the function F(hisqv) is low if a text contains many spam
conditions. We need the opposite result to rate the message correctly. For this
purpose we subtract the value from 1. The use of this subtraction for a large number
of non-spam conditions allows us to get the probability that message is not spam.
However the Fisher method is not symmetrical. We need to combine the probabilities
of spam and non-spam into a single value in the range between 0 and 1. For this we
use the Fisher index:

295

V. Tarasov, E. Mezenceva, D. Karbaev. Combined Classifier for Website Messages Filtration. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 291-302

_1+P(HA)-P(HB)
2

P(H) =1-F(-2In(P(A)) is the probability that a document belongs to spam;

P(Hg) =1-F(=2In(P(B)) is the probability that a document belongs to non-spam
(411

5. Optimization criteria for grading messages based on
statistical methods

Let’s assume that all set of conditions is divided into classes A and B, where A —
class of spam messages, and B — class of non-spam messages. The task of assigning
a message to any of these classes is not directly connected to the statistical
verification of the following hypotheses: simple hypothesis HA: X A against the
alternative HB: X B, where X is the message qualifying condition. As we know
from the math statistics, if a message appertains to class A and it was qualified as
class B, it will result in 1st type error with the conditional probability of - level of
importance. It will be an error of the alternative hypothesis selection HB instead of
the correct HA. If HB hypothesis is fair but, nevertheless, HA was selected, the 2nd
type error will occur with the conditional probability of.

The 1st type error or false-negative error occurs if the spam filter erroneously leaks
an undesired message through identifying it as non-spam (spam leakage or
insufficient method completeness). Whilst the spam filter is capable of identifying a
large share of undesired messages, the task of minimizing the number of faulty
filtering of desired (non-spam) messages may become a higher priority, i.e. the task
of 2nd type of error minimization.

The 2nd type error or false-negative error occurs if the spam filter erroneously
classifies a legitimate message as spam (faulty triggering or method accuracy). The
spam filter will be efficient with a lower number of such errors, i.e. with minimal
2nd type error level. However currently all antispam systems demonstrate
correlation between 1st and 2nd type errors.

The classifiers normally admit the compromise between the acceptable level of 1st
and 2nd type errors, and use the threshold values for decision-making, which may
vary. This results in the “strictness” or “softness” of the classifier. The level of
significance set during the statistical hypothesis verification is taken as the threshold
value. Whereas, the increase of the filter sensitivity leads to the increased
occurrence of 1st type errors (spam leaks), and decrease of sensitivity — to increased
occurrence of 2st type of error (false triggering).

| , Where:

6. Bayes optimization criterion

We need to consider the losses related to 1%t and 2" type errors for evaluating the
classification quality. For this we need to split the space of condition X into two
semispaces Xa and Xg with point Xo Let’s define ¢; as the conditional price of 1%

296

B. Tapacos, E. MeseHuea, /1. Kap6aes. CoBMeleHHbIH KinaccudukaTop uist GriibTpaimu cooOieHnii Ha Be6 caiitax.
Tpyast UCIT PAH, Tom 27, BB 3, 2015 1., €. 291-302

type error and ¢, — conditional price of 2" type error, P(A) — a priori probability of
A class, P(B) — a priori probability of class B, P(A) + P(B) = 1. The values c; and ¢
depend on the price matrix coefficients Caxe={c jj} and on the 1% and 2" type errors:

Ci1=Ci2 0ot Cnn (1 - 0!) (7)

C2=Ca1 i+ Co2 (1 -) 8
These values are also called conditional risks with proven fairness of hypotheses Ha
and Hsg, respectively.

According to the decision making theory, we introduce the decision rule of
classification, which minimizes the function of losses (risk) [[3]]:

R =c1P(A) +coP(B) ©)
where ¢; and c; are determined by (7) and (8).

Function (9) represents the average risk, which depends on the threshold value Xxo,
because the values ¢; and ¢, depend on the xo value through type | and type 11 errors,
therefore these errors are correlated.

Minimum value Rmin Of risk function (9) at the point xo is called Bayes risk.
f1(X) _ca1-cp P(B)
f2(X) c2-ci1 P(A)

where f,(X) and f,(X) are the probability density distributions of X condition on

A and B classes respectively.
The right part in (10)

(10)

C21—Co22) P(B)

is called likelihood ratio, which is constant for the selection of
c12 —c11 P(A)

f1(X) _cor—cpp P(B)
fz(x)> oo —c11 P(A)
X s related to A class; if the inequality
f1(X) car—cop P(B)
fz(x)< cio—c11 P(A)
f1(X) cor-cpp P(B)
f,(X) cr2-c11 P(A)

one of the classes A or B. The latter expression is the equation for the boundaries of
A and B classes. This decision rule is related to Bayes rules [[5]].

The technique can be applied to many practical problems formulated in terms of
statistical decision making theory with assumption that probability densities fl(X)

cij. Thus, if the inequality is true, the observable vector

is true, then observable vector X is related to B class. If

the equality is true, the observed vector X is related to

and f?_(X)are known. In most practical cases functions f,(X) and fz(X) are not

297

V. Tarasov, E. Mezenceva, D. Karbaev. Combined Classifier for Website Messages Filtration. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 291-302

known, and we need to determine estimations f, (X), f,(X) on training sets using

approximation method [[5]], which can cause the classifier to slow down.
Considering this fact we use the following approach: on the stage of filter learning

the estimations f, (X), f,(X) are determined on small training sets of 100-200

elements, and the optimality criterion to get such estimations can be excluded
excluded from the program flow.

Results of numerous tests on training selections allowed identifying optimal
threshold values for decision-making:

XH =0,95 for higher threshold and x|_=0,4 for lower threshold.

Thereby we set strict limits for spam and regular for non-spam messages. Such
threshold values provide minimum leakage of desired messaged into spam, i.e.
minimum false triggering. However, it’s notable that any system administrator will
be able to easily set more convenient threshold values to suit his needs.

7. Combined filter

In order to receive more valid results of spam detection we need to analyze
multitudes of results of various filters and a subset of their overlaps.

We suggest exactly this kind of approach to classifier organization, which presumes
the combined use of Bayes and Fischer methods for improved the filtration quality
based on the analysis of subsets and set overlaps identified by both methods (spam,
non-spam, false triggering and spam leaks).

Let’s assume S={si} (i=1+M) — multitude of documents (messages), including both
desired and spam messages; Sg — S and Sk — S — multitude of documents, identified
by Bayes and Fischer classifiers, respectively. Then the subset resulting from the
overlap Sg N S¢ against all indicated categories may be used for evaluating the
quality of the combined filter operation (see Fig. 1).

Fig. 1. lllustration of overlap degree of two subsets SB and SF.

The completeness of such overlap Sg N Sg will also grade the subsets Sg\S¢ and
Sr\Sg. As a measure of overlap degree of two sets Sg and Sg we suggest to use the
absolute measure N(Sg N Sg) — number of shared documents in these subsets. Thus,
the maximum value of measure of | category (spam, non-spam, false triggering and
spam leaks) will be used as the optimality criterion for spam filter self-teaching
evaluation:

Nj (S NSE) - max.
298

B. Tapacos, E. MeseHuea, /1. Kap6aes. CoBMeleHHbIH KinaccudukaTop uist GriibTpaimu cooOieHnii Ha Be6 caiitax.
Tpyast UCIT PAH, Tom 27, BB 3, 2015 1., €. 291-302

Once the best values of sets Sg and Sk overlap are reached across all categories, the

administrator will be able to choose a filter for further application (see Fig. 2).

)

increase of K

1]

Self-teaching of
combined filter up to K
messages

Measure identification
Ni(S3 0 Sp)
[-category (spam/non-
spam, false triggering
and spam leaks)

continuous
learning

All N, -optimal?

Combined filter
triggered on K
messages

_________l__________l

1. Filter B

2. Filter F

3. Combined
Filter

Filter selection

Filter B

Fig. 2. The algorithm of combined filter accuracy evaluation.

Filter F

Combined Filter

()

As a benefit of the combined filter implementation the evaluation of all components
of the overall picture became possible:

- spam messages caught by both filters;

299

V. Tarasov, E. Mezenceva, D. Karbaev. Combined Classifier for Website Messages Filtration. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 291-302

- spam filters caught only by Bayes or only Fischer filters;

- simultaneous false triggering of both filters;

- false triggering of each individual filter;

- simultaneous spam leaks by both filters;

- spam leaks of each individual filter.

Before testing filter was trained on 1100 messages (400 spam and 500 non-spam).
The tests were run on the flow of 1223 messages. The Bayes method showed 2.9
percent of the false triggering, 9.8 percent of spam omission. The Fisher method

showed 1.5 and 4.5 percent accordingly. The combined filter showed the best result
with 1.0 and 4.5 percent.

The experimental results confirmed the feasibility of using the selected filtering
algorithms. Only having a whole picture, we will be able to make a reasonable
comparison of the combined filter self-teaching quality.

References

[1]. E. Mezenceva, V. Tarasov. “Securing computer networks. The method of multi-module
spam filtering on websites,” Information Technologies, 2012. vol. 6, P. 18-22 (in
Russian).

[2]. E. Mezenceva. “The software system of recognition and spam filtering on the sites,”
Certificate of state registration of the computer program Ne2011619160, [Registered in
the Computer Program Registry, Moscow, on November 25th, 2011] (in Russian).

[3]. S. Nikolskiy. Quadrature Formulas. “Nauka”, Moscow, 1974. 224 p. (in Russian).

[4]. E. Mezenceva, V. Tarasov. “Computer networks security. Web programming of the
multi-module spam filter,” Software Engineering, 2012. vol. 4, P. 27-32 (in Russian).

[5]. E. Mezenceva, V. Tarasov. “An optimal filter construction based on combining
statistical classifiers,” Information and communications technologies, book 1, 2013. vol.
4, P. 53-57 (in Russian).

CoBMeLleHHbIN KnaccudmkaTop ans
¢umnbTpaummn coobeHnn Ha Be6 cantax

Benuamun Tapacos< tarasov-vn@psuti.ru>,
Examepuna Mesenyesa <katya-mem@mail.ru> ,
Hanuna Kapbaes <danila@karbaev.com>
@I'OFY BIIO Iosonsicckuti 20cy0apcmeeHuvlll yHUGepcumem meieKoOMMYHUKayui
u ungpopmamuxu, 443090, Poccus, Camapa, Mockosckoe wocce 0. 77.

AnHoTanus. B pabore paccMOTpeH HOBBIH MOAXO K GHIBTpAUK COOOIICHUN Ha caifTax ¢
HCTIOJIE30BAaHAEM COBMEIICHHOIO KIIACCH(HUKATOpa. YPOBEHb 3aIUTHI MOJIB30BATEIBCKUX
JTAHHBIX OTIPEJICIICH CTaHIapTaMu MH()OPMAMOHHOH Oe30macHoCTH st THTepHEeT-pecypcoB,
KpOME TOTO TIOCTOSTHHO PacTeT YMCIIO CIaM-COOOIICHUI B HHTCPAKTUBHBIX pa3zieiax caiToB.

300

mailto:tarasov-vn@psuti.ru
mailto:tarasov-vn@psuti.ru

B. Tapacos, E. MeseHuea, /1. Kap6aes. CoBMeleHHbIH KinaccudukaTop uist GriibTpaimu cooOieHnii Ha Be6 caiitax.
Tpyast UCIT PAH, Tom 27, BB 3, 2015 1., €. 291-302

IIpeqnaraemelii MoaxoA, B OTIMYUE OT PACIPOCTPAHEHHBIX PELICHUM Uil 3JIEKTPOHHON
HOYTHl, OCHOBAaH HA COBMECTHOM HCIIOJIb30BaHUM MeTonoB baileca u ®umepa, uro
MO3BOJMIIO pa3paboraTh 3¢QeKTHBHOE NPOrpaMMHOE pelleHHe (QMIBTPAlMy —Cliama.
OcHoOBHasl upesl KIacCH(UKAIMN COOOIIEHUH 3aKII0YaeTcsl B BHIIEICHHH BCEX NMPU3HAKOB,
BBIYMCIICHUSI BEPOSTHOCTEH JUI OTAEHbHBIX IPH3HAKOB, M 3aTeM OOBEJMHEHUS BCEX
BBIYMCIICHHBIX BEPOSITHOCTEH B 3HAU€HHE AN BCEro cooOIeHus. PaccMOTpeHbI KpuTepuu
ONTHMAJIBHOCTU MPU KIACCUPUKAILMU COOOLICHHI HAa OCHOBE CTATHCTHYECKHX Mojeneil. B
KauecTBe NMpHUMepa ObLIM YCTaHOBJIEHBI MOPOTOBBIE 3HAUCHHUS, 0OECEeUNBAIONIEe MUHIMYM
IpPOITyCKa B CIAaM HYXHBIX COOONIEHWH, T.. MHHHMYM JIOXKHBIX cpabareiBaHuil. [l
HoNy4deHus Ooyee TOCTOBEPHBIX Pe3yNIbTATOB BBIABICHHUS cllaMa HEOOXOIMMO HPOBOIHUTH
aHaIM3 MHOXKECTB pPE3yJbTATOB pabOTHl OTACNBHBIX (MIBTPOB ¥ ITOJMHOXKECTBA HX
nepecedyeHnidi. B pabore paccMoTpeH TOIXOJ K IIOCTPOEGHHIO COBMEIIEHHOTO
KJIacCU(HUKATOpa, YHOBIECTBOPSIOIIETO KPUTEPUSIM ONTUMAIBHOCTH M 00ECHeYHBAOIIEro
NPUHATHE PEUICHUH NMpU KIacCH(HUKAMN COOOIIEHNI Ha OCHOBE CTATUCTHYECKUX METOJOB.
Hamm mpemmaraercss MMEHHO TakoW MOAXOJ K OpPTaHU3alUU Kiaccu(UKaTopa, KOTOPBI
3aKJII04aeTCs B COBMECTHOM HCIIONIB30BaHUU MeTon0B baiieca m dumiepa A1 NOBBILICHUS
KauecTBa (UIBTpAIMM HAa OCHOBE AaHalInW3a IOAMHOXKECTB MEPECCUCHUS] MHOXKECTB,
pacro3HaHHBIX 00OMMH MeTojaMH (criaM\He CraM, JIOKHBIC CpabaThiBaHHS U MPOIYCK
criama). braronmapst peanu3anuyu COBMEIIEHHOTO (HIBTPAa MOXXHO OOOCHOBAaHHO CPAaBHHBATH
KaueCcTBO OOYYEHHOCTH COBMEIIEHHOTO (GUIIBTpa.

Ki1roueBbie ¢j10Ba: COBMEIIECHHBIH KIacCH(PHUKATOP, ClIaM QIIIBTP, KPUTEPUI ONTUMH3ALIUH.
DOI: 10.15514/ISPRAS-2015-27(3)-20

Jnsa umrupoBanmsi: TapacoB B., Mesennesa E., Kapbaes J[I. CoBmerieHHbII
KiIaccudurarop s ¢puisTpanuy cooduieHnit Ha BeO caiitax. Tpynst UCIT PAH, Tom 27,
BoIm. 3, 2015 1., ctp. 291-302 (na anrnumiickom sizbike). DOI: 10.15514/ISPRAS-2015-27(3)-
20.

Cnucok nutepaTtypbl

[1]. E]M. Me3senuesa, B.H. Tapacos. “Opranu3anust 3aliuTbl KOMITBIOTEPHBIX ceTeil. MeTo
MHOTOMOAYJIbHOW (uibTpanmuu crmama Ha Web-caiitax,” WHpopmarmoHHbIe
texHonoruu, 2012 r., Ne 6, ¢.18-22.

[2]. EM. Me3sennesa. “TIporpammHasi CHCTeMa paclo3HaBaHWsi M (PUIBTpalMu criama Ha
caiitax,” CBUAETENLCTBO O T'OCYAAapPCTBEHHOW perucrpaunuu nporpammsl aas OBM Ne
2011619160, [Pocnarent, Mocksa, 25.11.2011].

[3]. C. M. Hukosbckuit. KBamparypusie Gpopmyisl. “Hayka”, Mocksa, 1974. 224 c.

[4]. EM. Mesennea, B.H. TapacoB. ‘3Bammra KOMIBIOTEPHBIX ceTeil. Beb
MPOrPaMMHUPOBaHHE MHOTOMOAYJBbHOTO crmam (uibsTpa,” IIporpamMMmHas HHKEHEpHS,
2012 1., Ne 4, c. 27-32.

[5]. E.M. Me3enuesa, B.H. Tapacos. “TlocTpoeHre ONTHMAIBHOTO criaM (GHIbTPa Ha OCHOBE
COBMEIIEHMSI CTaTHUCTHYECKMX Kiaccudukaropo,” MH(DOKOMMYHHKAIMOHHEIE
TexHoyoruu, Tom 1, 2013r., Ne 4, ¢.53-57.

301

V. Tarasov, E. Mezenceva, D. Karbaev. Combined Classifier for Website Messages Filtration. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 291-302

302

Bennamun Tapacos, Cepreit Manaxos. IIporpamMma craTHCTHYECKO# 06paboTKH JaHHBIX aHanu3aTopa wireshark u
uccienosanue Bxopsuero tpaduka. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 303-314

Statistical Data Handling Program of
Wireshark Analyzer and Incoming Traffic
Research

Veniamin Tarasov <tarasov-vn@psuti.ru>,
Sergey Malakhov <malakhov-sv@psuti.ru>
Volga Region State University of Telecommunications and Informatics, 77
Moskovskoe sh., Samara, 443090, Russian Federation

Abstract. The identification of the distribution laws of intervals is particularly sophisticated
problem, at the same time the traffic as a random process tends to be constantly changing.
Therefore it is important to know the numerical characteristics of these intervals or their
moments. In this paper we propose to use the Wireshark analyzer to determine such
characteristics. The paper presents a plugin to the Wireshark traffic analyzer to calculate the
moments of the random variable — the interval between packets of incoming traffic. The
article also presents the analytical solution for the average waiting time for a QS type
H2/M/1. Here H2 is the 2nd order hyperexponential distribution law of the input flow time
intervals. The final result is obtained as a solution of Lindley’s integral equation using the
method of spectral decomposition. It is shown that in this case the distribution laws of
intervals between input flow requirements can be approximated at the level of their three first
moments. The joint use of these results allows to fully analyze the incoming traffic by
queuing methods. The obtained results demonstrate the fact that the classical M/M/1 system
shows optimistic results in comparison with the considered system. Therefore, the approach
can be successfully applied in the modern teletraffic theory where packet delays in the
incoming traffic are significant.

Keywords: traffic analyzer, wireshark program, numerical characteristics of random
variables, Lindleys equation, method of spectral decomposition.

DOI: 10.15514/ISPRAS-2015-27(3)-21

For citation: Tarasov Veniamin, Malakhov Sergey. Statistical Data Handling Program of
Wireshark Analyzer and Incoming Traffic Research. Trudy ISP RAN/Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 303-314. DOI: 10.15514/ISPRAS-2015-27(3)-21.

1. Introduction

The identification of the distribution laws of intervals is particularly sophisticated
problem, at the same time the traffic as a random process tends to be constantly

303

Veniamin Tarasov, Sergey Malakhov. Statistical Data Handling Program of Wireshark Analyzer and Incoming Traffic
Research. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 303-314

changing. It is known, the queuing theory is based on the laws of distribution of
intervals between income and service requirements. Therefore it is important to
know the numerical characteristics of these intervals or their moments. In this paper
we propose to use the Wireshark analyzer to determine such characteristics [[1]].

2. Description of the program Wireshark

Wireshark (previously, Ethereal) is a traffic analyzer for Ethernet computer
networking technology and some others. In June 2006 the project was renamed
Wireshark due to trademark issues [[1]].

The functionality provided by Wireshark is very similar to the capabilities of the
tcpdump program, but Wireshark has a graphical user interface and additional
features for sorting and filtering information. The program allows the user to view
all the traffic through the network in real time, shifting the network card to
promiscuous mode. (Eng. Promiscuous mode) (Fig. 1).

Wireshark is an application that can display the structure of a wide variety of
network protocols, and therefore allows parsing network packets, showing the value
of each field protocol at any level. The use of Pcap packet capture library allows
capturing data only from those networks that are supported by this library.
However, Wireshark can work with multiple formats of input data an open data files
captured by other programs that enhances the capture.

The features include:

o deep analysis of hundreds of protocols, with the regular addition of new
ones;

e capturing network traffic in real time, followed by analysis at any time;
o standard three-pane packet browser (standard package has three regions);

o cross-platform: there are versions for most types of UNIX, including
Linux, Solaris, FreeBSD, NetBSD, OpenBSD, Mac OS X, as well as for
Windows;

e The captured from network information can be viewed by using the
graphical user interface or by using the TTY-mode utility TShark;

o the most powerful sorting and filtering in the industry;
e agreat opportunity to VolP analysis;

o read / Write a large number of file formats capture: tcpdump (libpcap),
Pcap NG, Catapult DCT2000, Cisco Secure IDS iplog, Microsoft Network
Monitor, Network General Sniffer® (compressed and uncompressed),
Sniffer® Pro, and NetXray®, Network Instruments Observer, NetScreen
snoop, Novell LANalyzer, RAD-COM WAN / LAN Analyzer, Shomiti /
Finisar Surveyor, Tektronix K12xx, Visual Net-works Visual UpTime,
WildPackets EtherPeek / TokenPeek / AiroPeek, and many other;

o capture files that compressed with gzip can be unpacked immediately;
304

Bennamun Tapacos, Cepreit Manaxos. IIporpamMma craTHCTHYECKO# 06paboTKH JaHHBIX aHanu3aTopa wireshark u
uccienosanue Bxopsuero tpaduka. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 303-314

e capturing real-time data can be effected via Ethernet, IEEE 802.11, PPP /
HDLC, ATM, Bluetooth, USB, Token Ring, Frame Relay, FDDI, and the
other (depending on the platform);

e decoding support for many protocols, including IPsec, ISAKMP, Kerberos,
SNMPv3, SSL / TLS, WEP, and WPA / WPA2;

¢ Highlighting rules can be applied to the package list for quick, in-
intuitively analysis;

e output data can be exported to XML, PostScript®, CSV, or plain text.

fe x

File Edit View Go Capture Anslyze Statistics Telephony Iocls Internals Help

@ iNd BERXSZ Qe+ Ti B QAR #EBX B
Filter: Expression... Clear Apply Save

No. Time Source Destination Protocel Length Info -~
6618 88.121305000 54 1.249.159 192.168.1.236 TCP 60 https
6619 88.218070000 79.111.108.119 192.168.1.236 uppP 130 source
6620 88.218160000 192.168.1.236 79.111.108.119 uppP 62 Source
6621 88.218231000 192.168.1.236 79.111.108.119 uppP 616 Source
6622 88.243631000 192.168.1.236 5.164.166.217 uppP 72 Source
6623 88.293833000 79.111.108.119 192.168.1.236 uppP 205 Source
6624 B88.293884000 192.168.1.236 79.111.108.119 uppP 62 Source
6625 B88.312648000 54.221.249.159 192.168.1.236 TLSV1 507 applic
6626 88. 334514000 192.168.1.236 108.160.165.138 TLSV1 912 aApplic
6627 B88.362880000 192.168.1.236 54.221.249.159 TCP 34 24018
6628 88.366853000 feB0::e437 :b6ce:e723:85¢el ffoz::1:3 LLMNR 84 stand:
6629 88.366866000 feB0::e437 :b6ce:e723:85¢el ffoz::1:3 LLMNR 84 stand:
6630 88. 366909000 192.168.1.236 224.0.0.252 LLMNR 64 stand:
6631 88.366928000 192.168.1.236 224.0.0.252 LLMNR 64 stand:
6632 88.369789000 2001:0:5ef5:79fd:1830:1720:d1ff:dd97 2001:0:9d38:6ab8:38cf:12c5:e0¢IPVE 98 IPV6 1
6633 88.369799000 2001:0:5ef5:79fd:1830:1720:d1ff:dd97 2001:0:9d38:6abd:3027:30b0:b0:IPVE 98 IPV6 1
6634 88.369800000 2001:0:5ef5:79fd:1830:1720:d1ff:dd97 2001:0:5ef5:79fd:38ea:3356:a0cIPVE 98 IPVE 1
6636 88.398093000 192.168.1.236 192.168.1.255 NENS 92 Name ¢
6637 B88.406468000 79.111.108.119 192.168.1.236 uppP 62 Source
6638 88.406520000 192.168.1.236 79.111.108.119 uppP 62 Source
6639 88.426222000 79.111.108.119 192.168.1.236 uppP 62 Source
6640 88. 566740000 108.160.165.138 192.168.1.236 TCP 60 https

>

Frame 1: 84 bytes on wire (672 bits), 84 bytes captured (672 bits) on interface 0

Ethernet II, src: Giga-Byt_c7:3b:83 (1c:6f:65:c7:3b:83), Dst: IPVGMCAsT_00:01:00:03 (33:33:00:01:00:03)

Internet Protocol version 6, src: fe80::e437:b6ce:e723:85el (feB0::e437:b6ce:e723:85el), Dst: ff02::1:3 (ff02::1:3)

User Datagram Protocol, Src Port: 63067 (63067), Dst Port: Tlmnr (5335)

Link-Tocal multicast Name Resolution (gquery)

0000 33 33 00 01 00 03 1c 6Ff 65 c7 3b 83 86 dd 60 00

0010 00 00 00 le 11 01 fe 80 0O 00 00 00 00 00 e4 37

0020 b6 ce e7 23 85 el ff 02 00 00 00 OC 00 0O 0O 00

0030 00 00 00 01 00 03 6 5b 14 eb 00 le 53 bb c2 25

0040 00 00 00 01 00 QO 00 Q0O QO 00 Q4 77 70 &1 &4 00

0050 00 1c 00 01 v

() [Ethernet: <live capture in progress> Files C:\Us: | Packets: 6640 - Displayed: 6640 (100,0%) Profile: Default

—

Fig. 1. The example of a network traffic capture by Wireshark.

CSV is one of the formats of data export, convenient for viewing (Fig. 2). This file
can be opened in any text editor or spreadsheet editor for analysis and calculation of
performance.

However, it is difficult to process the data in case of intense traffic even in the
spreadsheet editor. Furthermore the traffic data can be stored in more than one file.
This article describes a software solution for the calculation of the numerical
characteristics of packet arrival intervals. The main advantage of this analyzer is his
work on a small scale of time (microseconds), in contrast to the same program
NetFlow Analyzer, which captures packets-per-minute rate.

305

Veniamin Tarasov, Sergey Malakhov. Statistical Data Handling Program of Wireshark Analyzer and Incoming Traffic
Research. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 303-314

3. Determination of the moments of the interarrival time of
incoming traffic

The program developed by the authors of the present paper allows, in addition to the
analyzer, to retrieve the packet arrival times, isolated the incoming traffic from the
entire data set received by Wireshark. Next, using the well-known formulas of
mathematical statistics, it can be defined the moment characteristics of the timing.
We use the statistics to the third order statistical properties, which provides
representations of the distribution of the intervals.

For example, the coefficient of variation shows the difference from a Poisson traffic
flow and with asymmetry gives an indication of the degree of weight in the
distribution tails.

The average value of the interval between adjacent packets

1 N
T ZWZ(tkﬂ_tk)

k=0

where t, — packet arrival times, N — the number of intervals analyzed.

Custom dispersion D =t?>—72,

N
1 .
where t? -3 E (t,.;—t, ¥ — the second initial moment.
k=0

The coefficient of variation c=o /7 ,where o =,/D .

Asymmetry A = t-3-t>.7+27%)/6°,

— N
where t3 =%Z(tk+l_tk)3 .
k=0

®aiin [paeka ®opmar Bua Cnpaeka

"No.","Time","Source”,"Destination”, "Protocol”,"Length”,"Info" [a)
0.0eopeoeRR","80.77.174.170","192.168.1. 236", "UDP","128","Source port: camac Destination port: 59615"
©.0020220008","212.142.72.19@","192.168.1.236" "62","Source port: 26294 Destination port: 58259"
0.082144e00","192.168.1.236","212.142.72.198"

, s s
N N N ,"1464" ,"Source port: 58259 Destination port: 26294"
©.002180008","192.168.1.236","212.142.72.198"," ',"1464" ,"Source port: 58259 Destination port: 26294"
"@.002204000","192.168.1.236","212.142.72.198"," ',"1464" ,"Source port: 58259 Destination port: 26294"
"0.802227000","192.168.1.236","212.142.72.190","UDP","1464", "Source port: 58259 Destination port: 26294"
, s s s

, s s

, s s

"@.002264000","192.168.1.236","212.142.72.190"," ","1464" ,"Source port: 50259 Destination port: 26294
0.083363000","212.142.72.1908","192.168.1.236"," 62","Source port: 26294 Destination port: 50259"

©.083467000","192.168.1.236","212.142.72.192"," ","1464" ,"Source port: 50259 Destination port: 26294
"9.883585088","192.168.1.236","212.142.72.198", "UDP", "1464" , "Source port: 58259 Destination port: 26294"

1","0.803530000","192.168.1.236","212.142.72.19@", "UDP", "1464","Source port: 58253 Destination port: 26294"
v

< >

Fig. 2. The example of the data exported to the CSV format.

If a large amount of data is divided into several blocks, then these formulas are
determined by the average group, and then their mean values.

306

Bennamun Tapacos, Cepreit Manaxos. IIporpamMma craTHCTHYECKO# 06paboTKH JaHHBIX aHanu3aTopa wireshark u
uccienosanue Bxopsuero tpaduka. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 303-314

4. Time data analysis software and Results

To calculate the moments of the interval between adjacent packets, we developed a
program, which selects only the data related to the inbound packet from the input
file, containing the capture of a network traffic data, and calculates intervals and
moments.

The features include:
o sample timing of the data packets arrived at said host;
o calculation of the time intervals between the incoming packets;
o calculation of the torque characteristics for intervals of received packets;
e saving time of the data packets arrived in binary and text format;
e saving data packet arrival intervals in binary and text formats;

e output and saving torque characteristics in a text format.
The program handles text files containing the data as shown in Fig. 2 or similar.
For the program the two classes (in terms of object-oriented programming) are
developed:

o TrafficLogParams — stores the packet arrival time, their intervals and
calculates the torque characteristics. Also provides the methods to store and
download the data from files;

e LogParser — static class that produces an analysis of the input file and adds
data to the TrafficLogParams class.

The input of LogParser main method is the file name and IP-address of the host.
Each line of the source file is processed and from the selected data on the time and
two IP-address - the address of the sender and the recipient's address. If the recipient
field matches the host IP-address, then the packet arrival time is added to the array
such times in TrafficLogParams class.

public static TrafficLogParams TextFileParser(string fileName, string ip, bool
isincoming)

{
TrafficLogParams log = new TrafficLogParams();
StreamReader file = new StreamReader (fileName);
string[] currentLine;
int lineNumber = 0;
int ipIndex;
if (islncoming)
ipIndex = 2;

else
ipIndex = 1;
while (!file.EndOfStream)

307

Veniamin Tarasov, Sergey Malakhov. Statistical Data Handling Program of Wireshark Analyzer and Incoming Traffic
Research. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 303-314

{
currentLine = GetDataArray (file.ReadLine().Trim());
lineNumber++;
try
{
if (Minimizelp (currentLine[ipIndex]) == Minimizelp (ip))
{
log.AddTime(ParseDouble(currentLine [0]));
}
}
catch (FormatException ex)
{
MessageBox.Show(string.Format("{0}\nCrpoxa = {1}", ex.Message, lineNumber));
}
}
file.Close();
return log;
}

The second most important method of LogParser splits the input string into
elements, checking every element belonging to the format of time or IP-address, and
returns them as an array.
private static string[] GetDataArray(string input)
{
string[] data = new string[3];
string currentValue = "";
int symbollndex = 0;
int valuelndex = 0;
while (symbolindex < input.Length && valuelndex < 3)
{
while (symbolindex < input.Length && (char.IsDigit(input[symbolindex])
|| 1sSeparator(input[symbolindex])))

{

currentValue += input[symbolindex];
symbolindex++;

}
if (currentVValue !'="")
{
if ((IsDouble(currentValue) || Islp(currentValue)))
{

308

Bennamun Tapacos, Cepreit Manaxos. IIporpamMma craTHCTHYECKO# 06paboTKH JaHHBIX aHanu3aTopa wireshark u
uccienosanue Bxopsuero tpaduka. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 303-314

data[valuelndex] = currentValue;
valuelndex++;

}

currentValue = "";
if (valuelndex >= 3)

{
symbolindex = input.Length;

}

}
while (symbolindex < input.Length && !Ichar.IsDigit(input[symbolindex])

&&
lsSeparator(input[symbolindex]))
{

symbolindex++;

}
¥

return data;

}

The method checks if the input symbol is a separator "." or ",". Such testing is
important only for the time data, as in some countries, the fractional part is
separated by a comma (for example, in Russia), rather than a point. It is for the
reason, when a string representation of a number is converted to its equivalent real
number denoting the time, the standard method is not used programming language,
and its modification depends on the regional settings.

private static double ParseDouble(string value)

if (Culturelnfo.CurrentCulture .NumberFormat.NumberDecimalSeparator == ".")
{

value = value.Replace(',’, .");

}

else

{

value = value.Replace(.", '");

return double.Parse(value);

¥

When comparing the IP-address of the host with the IP-address on the current line

of the log file to minimize the usual pro-1P-address to the general form. In other

words, IP-address will be equal 010,014,000,011 10.14.0.11.

The program was used to analyze the data file of the traffic coming to the proxy

server of the university with almost an hour-long data set. The input file contains
309

Veniamin Tarasov, Sergey Malakhov. Statistical Data Handling Program of Wireshark Analyzer and Incoming Traffic
Research. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 303-314

more than 2150000 rows, which could not be processed manually. Were obtained
the following results (Fig. 3):

File Help

Initial moment of the 1st order: 5,097781e-003
Initial moment of the 2nd order: 3,325837e-004
Initial moment of the 3rd order: 5,505049e-005
Dispersion: 3.065963e-004
Variation coefficient: 3.434807e+000
Asymmetry: 1,025441e+001
Packets count: 628183

Ready!

Fig. 3. The result of the analysis program log files.

5. Research of queuing system h2/m/1

The data indicate that the analyzed traffic differs from a Poisson (coefficient of
variation ¢ = 3,43 instead of 1), the asymmetry value As = 10,25 indicates that the
distribution of intervals between the packets of traffic relates to a heavy-tailed
distributions. For example, for Poisson flow of As = 2. The calculation of the
characteristics of such traffic requires appropriate mathematical apparatus. For the
analysis of such traffic the authors of [[2]] proposed the new results for the system
H2/M/1. We will describe the basic results from the article.

It is known, as example from [[3]], to study queuing systems (QS) G/G/1 the
integral equation of Lindley is used:

W) [WO-uc) y=o o
o, y<0

where W(y) is the probability distribution function (PDF), the waiting time in line
requirements C(u) is the PDF limiting random variable, U = lim U,, = X, —t,.4,

n—o
and X, is the time of the n-th service requirement C,, and is the time interval
between the t,; arrival of the requirements C, and C,,; .

To solve (1), a spectral method is used that reduces to using the expression
A*(~s)-B*(s)—1 and finding a representation as a product of two factors, which

would give a rational function of s [3]. Thus, to find the latency distribution, the
following spectral decomposition is used:

310

Bennamun Tapacos, Cepreit Manaxos. IIporpamMma craTHCTHYECKO# 06paboTKH JaHHBIX aHanu3aTopa wireshark u
uccienosanue Bxopsuero tpaduka. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 303-314

A*(=s)-B*(s)-1= v.(s) @)

v_(s)
where ,(s) and y_(s) are rational functions of s, which can be factored. The
functions \|1+(s) and y/,(s) must satisfy certain conditions [3]:
1. For Re(s)>0, the function \y+(s) is analytic without zeros in the half-plane.
2. For Re(s)< D, the function y/_(s) is analytic without zeros in the half-plane, (3)
where D is a positive constant determined from the following condition:

_alt)
tll_rﬂgﬁ < 0.

Moreover, the functions i/, s) and z//_(s) must have the following properties:
for Re(s)>0 lim v.(s) =1
‘S‘—)oo S

(4)
for Re(s)<D lim y/_(s):_l_

‘S‘—)oo S

We know that all the main characteristics of QSs are derived from the average
waiting time, and therefore all subsequent calculations will be performed with
respect to the average waiting time in the queue requirements.

Consider QS H2/M/1, where H2 designates the hyperexponential distribution 2nd
order arrival time requirements in a density function

a(t)= pae™ + (L p)ie™ 5)
and M — notation exponential law services with a density function
b(t)= e (6)
The Laplace transform of (5) has the form
Py A
A*(s)=p—L—+(1- :
() ps+k1 (p)s+k2 U

and function (6):

B*()= 51 ®)

Now we define (2) for the distributions (5) and (6) from (7) and (8):

311

Veniamin Tarasov, Sergey Malakhov. Statistical Data Handling Program of Wireshark Analyzer and Incoming Traffic
Research. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 303-314

vilS) | A g)t | g
v (5) | h-s ¢ p)ﬂq—s wrs
_ [pA(2 =)+ (= p)p(=] =y~ 5Ny =sku+s))

(A=) =s)u+s)
_ lag—ay8)~ (4 ~s)A ~s)u+5)
(h=s)r=shu+s)
where the coefficients ay = 44, , 8 = pA +(1— p)i,.

The numerator of the right side of (9) is a third degree polynomial 5(82 —C,S— Cl)

, and it remains to determine the coefficients for the decomposition of the factors.
The coefficients of the polynomial are:

q:u[ﬂi(l— p)+22p]—/11/12, C,=A4+A —u. Then the expression (9) can be
factored:

v sloes-e) _ slrsks—s)

v(s) (s-aNl—shu+s) (s—aNrz—sku+s)’

where —S, =—(y/C,” /4+¢, —C,/2) is the negative root of the quadratic

equation in the numerator, and isthe s, = \1022 +¢; +C, /2 positive root.

Further, omitting some calculations, we obtain the Laplace transform of the density

_Sils+u)
u(s+s)

function of the waiting time: W *(s) Hence

AW *(5) _ syl +5)-5,(+

. Using the properties of the Laplace transform,

ds Wi(s+sf
we find that the average waiting time is
o * 2 2
W =- aw (S)| = Sl’u;z'u > :i—i . Finally, the average waiting time is
ds |s:o LS| S M
— 1 1
W=—-— 10
s a (10)

where s, =+/c3/4+¢, —C,/2, & = tl(L— P)+ Pl-Ada, = A+ — it

6. Practical use of the results

Consider the result (10) for example, the input distribution, with a heavy tail (fig. 3).
Using the Laplace transform (7) we can determine the initial moments of the
distribution (5):

312

Bennamun Tapacos, Cepreit Manaxos. IIporpamMma craTHCTHYECKO# 06paboTKH JaHHBIX aHanu3aTopa wireshark u
uccienosanue Bxopsuero tpaduka. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 303-314

;ﬂ _%_'_ (1_ p)
—_2p 20-p)
Tﬂ =75 + > .

A A
—_6p _ 6(-p)
A A

Next, substituting the results obtained in step 1 from the initial moments of the
distribution of intervals between bursts to determine the unknown parameters of the

input distribution (5): 4;, 4, and p, we obtain the following system of equations:

4=P) 5 oor8e- 003

2(
(1
2

o
T

N
©

p)

)

+

=3.3258¢ - 004 (11)

|
KN

[}
©
o2}
|
o

+ =5.5050¢€ - 005

|

The solution of (11) in the package Mathcad yields the following results: p~ 0.950,
21~ 417.985, 4,~17.556.

In case of load of the channel equals to 0.4, intermediate parameters: C, ~ 10999,4;

C,~-54.655, S, ~135.707 and the average waiting time W ~5.329 1073s.

For comparison, let us look to the average waiting time for an M/M/1 system. In this
case, the intensity of service equals to x=~490.196 , and the channel loading
p=04.

plu 04/490.19
1-p 1-0.4
Thus the queuing model taking into account the distribution and its weight in the tail
of the input, gives a delay about four times larger than the classical model.

Then the average waiting time of packets W = =1.36-10"s.

7. Conclusion

This paper has presented how optimistic are the results given by classical M/M/1
system in comparison to the system in the case of high H2/M/1 weightiness tail of
the distribution of the input stream. Therefore, the approach can be successfully
applied in the modern teletraffic theory where packet delays in the incoming traffic
are significant.

Note that the distribution, which contains three unknown parameters 4, 1, and p,
allows to use the moment equations to approximate the unknown input distribution
in the first three moments.

313

Veniamin Tarasov, Sergey Malakhov. Statistical Data Handling Program of Wireshark Analyzer and Incoming Traffic
Research. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 303-314

References

[1]. Wireshark official web-site URL: http://www.wireshark.org/

[2]. Tarasov V.N., Bakhareva N.F., Gorelov G.A. Mathematizheskaya model trafica s
tyazhelohvostnym raspredeleniem na osnove sistemy massovogo obsluzhivaniya
H2/M/1. [Mathematical model of traffic from heavy-tailed distributions with based
queuing system H2/M/1]. Infocommunicationye tehnologii, 2014, no. 3, pp.36-41.

[3]. Kleinrock L. Queueing Theory. Tran. from English. edited by V.I. Neumann. M.
Mechanical Engineer-ing, 1979.

NMporpamma ctaTucTnyeckom oopaboTku
AaHHbIX aHanu3aTopa wireshark n
uccnepnoBaHue Bxoasiwero tpaduka

Benuamun Tapacos <tarasov-vn@psuti.ru> ,
Cepeeit Manaxos <malakhov-sv@psuti.ru>
HT'YTU, 443090, Poccus, e.Camapa, Mockosckoe wi., 0 77

AnHotammsi B pabore mpesicraBieHa mporpamMMa-IoOIOJHEHHE K aHauu3aTopy Tpaduka
Wireshark mms pacuera MOMEHTOB ciydaifHOM BENMYMHBI - MHTEpBAJa MEKAY MaKETaMHU
Bxogsmero tpaduka. IIpHBENEHO aHANTUTHYECKOE pEIIeHHe Ui CPEAHEro BPEeMEHH
oxumanna s CMO tuma Hy/M/1. 3pece H; - TUNEpIKCIOHEHIMANBHBIA 3aKOH
pacrmpeneneHus 2-ro Hopsi/ika HHTEPBaJIOB BPEMEHH BXOJHOTO MOTOKa. KOHEeUHbIH pe3ynbrar
HONY4YeH IYTeM pElICHUs HWHTerpaIbHOTO ypaBHEHMS JIMHIIM METOJOM CIEKTPalIbHOTO
paznoxkenns. [lokazaHo, YTO B 3TOM Ciydae 3aKOHBI PaclpeleieHHs HHTEPBAJIOB MEXKTY
TpeOOBaHUSAMH BXOJHOTO IOTOKAa MOXKHO alPOKCUMHUPOBATh Ha YPOBHE MX TPeX HEpBBIX
MoMeHTOB. COBMECTHOE HCIOJIb30BaHME JTHX pE3YJIBTaTOB MO3BOJSIET MOJHOCTBIO
AQHAIM3UPOBATH BXOAAIIHMI TpahUK METOJAMH MAacCOBOTO OOCITY)KHBAHHUSL.

KuroueBs! ciioBa: ananusarop tpaduka, nporpamma Wireshark, ducioBbie xapakrepucTuku
CIy4aifHONM BENWYHMHBI, WHTETpAJbHOE ypaBHeHWe JIMHIUIM, METOX CHEKTPaIbHOTO
Pa3IOKEHHUSL.

DOI: 10.15514/ISPRAS-2015-27(3)-21

Jia nutupoBanus: Tapacos Bennamun, ManaxoB Cepreil. I[Iporpamma craTucTHYecKOH
00paboTKH JaHHBIX aHanmu3atopa wireshark m mccnemoBanue Bxopsmero tpaduka. Tpymst
HCIT PAH, tom 27, Bem. 3, 2015 r., crp. 303-314 (na anrimiickoMm s3bike). DOI:
10.15514/ISPRAS-2015-27(3)-21.

Cnucok nutepartypbl

[1]. Wireshark official web-site URL: http://www.wireshark.org/

[2]. B.H. Tapacos, H.®. Baxapesa, I'.A. T'openoB «Martemaruueckasi MOJelb Tpapuka C
TSDKEJIOXBOCTHBIM PAaclpeieliecHHeM Ha OCHOBE CHCTEMBI MacCOBOTO OOCIY)KHBAaHHS
Hy/M/1» // NudokommyHHKaHoHHbIe TexHoornu, 2014 1., Ne3, ¢.36-41.

[3]. Kueitupox JI. Teopust maccoBoro obcnmy:kuBanus. [lep. ¢ anri. moxa pemakuueii B.U.
Heiimana. M. MammHoctpoenue, 1979. — 432 c.

314

http://www.wireshark.org/
http://www.wireshark.org/

W.I1. Bononypuna, JI.1. TTapdpénos. Db dekTHBHOE HCIIONB30BAHUE PECYPCOB PACIIPE/ICICHHOMN MIIaT(HOPMBI 00TaUHBIX
BBIYHCIICHHUIT 171 obecriedeHns kayectBa MynbTumMeanitaeix.. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., . 315-328

Effective Use of Resources Distributed
Cloud Computing Platform for Providing
Quality Multimedia Services

Irina Bolodurina <prmat@mail.osu.ru>,
Denis Parfenov <fdot_it@mail.osu.ru>
Orenburg State University
460018, Pobedy avenue, 13, Orenburg, Russia

Abstract. Existing approaches to the use of cloud computing resources is not efficient.
Modern multimedia services require significant computing power, which are not always
available. In this paper, we introduce an approach that allows more efficient use of limited
resources by dynamically scheduling the distribution of data flows at several levels: between
the physical computing nodes, virtual machines, and multimedia applications.

Keywords: cloud computing, cloud system, computing node, computing resource, highload
information systems, load balancing, quality of multimedia services, virtual machine, virtual
resource component.

DOI: 10.15514/ISPRAS-2015-27(3)-22

For citation: Bolodurina Irina, Parfenov Denis. Effective Use of Resources Distributed
Cloud Computing Platform for Providing Quality Multimedia Services. Trudy ISP RAN/Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 315-328. DOI: 10.15514/ISPRAS-2015-27(3)-22.

1. Introduction

The information flows between computing nodes in local and global networks has
been steadily increasing each year. It is true not only for large data processing
centers, but also for locally datacenters (DC) specializing in industry, economy,
health and so on. An important area to use local DCs is education. Universities are
increasingly using their own DCs to support integrated automated information
systems (IAIS), providing end users with network multimedia services.

The need for more resources is one of the problems of high-loaded IAIS. The
consumption of resources unlike the available volumes grows exponentially. [5].
The analysis of request flows to 1AIS services shows their structure heterogeneity
[1]. Modern IAIS services are based on the concept of cloud computing. However,
the problem of limited resources used for cloud systems remains relevant [4].

315

Irina Bolodurina, Denis Parfenov. Effective Use of Resources Distributed Cloud Computing Platform for Providing
Quality Multimedia Services. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 315-328

The use of virtualization and cloud computing allows to consolidate several online
services located on virtual machines (VM). It reduces the number of physical
servers. But to effectively deploy applications on VM it is necessary to solve the
problem of resource planning based on variable loads and service level agreement
(SLA) [3]. The most flexible architecture of cloud computing is the infrastructure as
a service (laaS). This architecture allows the user to control a pool of computing
resources. This approach can imply the start of operating systems and applications,
and the creation of virtual machines and networks. Thus, cloud computing leads to
significant cost savings due to the increased load density [2].

However, the above is not enough to consolidate computing power, to reduce the
infrastructure overheads and to reach optimal performance of cloud systems. To use
the cloud infrastructure effectively new methods and algorithms should be
developed to control components of cloud systems. It demands determining the
formal structure of a cloud system [6].

2. Model of resource virtualization of cloud systems

In our research, we have developed a model of computing resources of cloud
systems. The conception of virtualization of computing resources is based on
abstractions representing the tuples of relations between the interconnected elements
of subsets.

The cloud system can be represented as a set of interconnected objects. They are
computing nodes (Snode), system storages (Sstg), network attached storages (Shas)
and scheduling servers (Srasp). The number of objects and the content of each set
may vary depending on the cloud’s size and its use.

Each compute node can run multiple instances of virtual machines represented as a
set:

Snodeiz{VMi,l, VMi,Z, ceey VMi,k}, (1)
where Kk is the number of virtual machines on a compute node i, i = 1...1 (I — humber
of nodes).

Each virtual machine belonging to the set (1) can support several applications and
services represented as a set:

VM;={App; 1, APP;2; --., APPjn}, @
where n is the total number of applications and services, j=1... m (m - number of
VMs).

The network attached storage includes a set of predefined VM images.
Snasy={VMimgy,1, VMimgy,, ... VMimgy,p}, ?3)
wherey =1 ... z (z - number of network attached storages).

Each VM image contains an operating system with preinstalled software and
predetermined hardware parameters.

VMimgy,z:{OS]_, OSZ, e OSr}, (4)

316

W.I1. Bononypuna, JI.1. TTapdpénos. Db dekTHBHOE HCIIONB30BAHUE PECYPCOB PACIIPE/ICICHHOMN MIIaT(HOPMBI 00TaUHBIX
BBIYHCIICHHUIT 171 obecriedeHns kayectBa MynbTumMeanitaeix.. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., . 315-328

The work of entire cloud system is performed using the planning system for certain
operations defined by the scheduling servers.

Srasp={Rtaski, Rtask, ... Rtasks}, ®)
The distributed storage system wusually consists of failover RAID arrays
Sstgi={RDsik1, RDsikz, ..., RDsikq} containing the information for multimedia
services

RDsiks={Data;, Data,, ..., Datas}, (6)

In addition, the cloud system also contains virtual and physical switches for
interconnection between all the components in a network.

Each component of a cloud system Shcn={Snode, Snas, Srasp, Sstg, VM ...} has the
following characteristics:

Shcn=(State, Mem, Disk, Diskn, Core, Lan), ©)
where State € {“on”,“off”} is the state of the component;

Mem eN is the size of RAM;

Disk eN is the disk capacity for storage;

Diskn eN is the number of storage devices;

Core €N is the number of processor cores;

Lan eN is maximum bandwidth of the network adapter;

The set of virtual machines can be divided into subsets VMnode={Snode, Snas,
Sstg,... } to isolate computing resources for different services from each other.

The cloud system is a dynamic object changing at time t. Its state can be formalized
in an oriented graph form:

Shen(t) = (Node (t), Connect(t), App(t)) , (8)
where Node(t)={Node;,Node,, ..., Node,} are active elements included in one of the
sets Snode;, Sstg;, Snask, Sraspm;

Connect(t)={ Connect1, Connecty,..., Connect,} are active connections by users to
the virtualized applications;

App(t)={App1, App>,... Appn} are active instances of applications running on virtual
resources.

So we determine the structure of a cloud system and mechanisms of its component
interaction. In such a system simultaneous servicing heterogeneous user requests is
not trivial task.

To optimize the mechanism of access to information system resources it is
necessary to analyze the main data flows transferred within the cloud system.

Model of data flows in highload information systems based on cloud computing

For flows analysis in our study, we used information systems of educational
institutions. For analysis the most popular multimedia services have been
determined. The research considered distance education systems (DES) consisting
of different interactive applications.

317

Irina Bolodurina, Denis Parfenov. Effective Use of Resources Distributed Cloud Computing Platform for Providing
Quality Multimedia Services. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 315-328

In our research has built a level classification of applications:

o Level 1: The subsystem for monitoring the students' knowledge in real
time;
o Level 2: The subsystem of the electronic library;

e Level 3: The subsystem of webcasts and webinars.

In our study, we have determined the general features of the use of the local DC’s
equipment.

o the load on the key resources is periodic and irregular;
e requests to multiple types of resources come at the same time;

o load distribution is not optimal, which results in loss of service at peak
loads;

e up to 90% of the load is predetermined, as pre-registration is used for
access to resources;

e up to 70% of the load arises due to multimedia educational resources.
Information flows at each level have their own characteristics. The intensity of
servicing requested flows in the information system depends on the target
application level. In a study we use the statistical analysis of the load on the most
popular applications used in information systems of the university. Evaluation time
for requests to various applications allow to forecast flows and ensure efficient
allocation of resources. We using the goodness of fit chi-square Pearson to obtain
data to test the hypothesis of distribution laws requests for incoming flow. In
general, the intensity of incoming and service of a request flow for each class of
applications is determined by the distribution function, which is described by the
following distribution laws:

o for level 1 - Chi-squared distribution;
o for level 2 - Weibull distribution;

o for level 3 - Pareto distribution.
Flows of data transmitted in the 1AIS are usually processed in several phases. At the
same time in each phase several similar elements can be used providing balancing
and load sharing between the components of the information system. The number of
components in each phase depends on the functionality of the information system
and the number of applications included in its composition. Suppose an information
system has the form:

IS={S,.....S,} 9)

where S; - a component that performs data processing on the basis of the incoming

flow of user requests, i = 1..r (r — the total number of components of the information
system). The number of phases f in the flow path of user requests in an information
system depends on its architecture.

318

W.I1. Bononypuna, JI.1. TTapdpénos. Db dekTHBHOE HCIIONB30BAHUE PECYPCOB PACIIPE/ICICHHOMN MIIaT(HOPMBI 00TaUHBIX
BBIYHCIICHHUIT 171 obecriedeHns kayectBa MynbTumMeanitaeix.. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., . 315-328

The purpose of each phase according to its location in the processing sequence is:

The first phase is the distribution of data flows between the 1AIS resources in the
cloud;

The second phase is the dynamic scaling of the computing resources in the cloud;

The third phase is data processing by user applications using storage systems and
databases.

The components of the third phase include nodes of storage systems and database
management systems for providing access to multimedia services in the cloud.

In detail the set of components of an information system is represented in form:
1S={SYy,...,8%, $%4,...,8%m,S%, ..., 5% }, (10)
where Si; is the i component of the j phase;

meN, neN, keN are the numbers of components included in the system for the
respective phases f.

We also introduce the input components S% which transmit data flows into an
information system, and output components S% receiving data flows from the cloud
infrastructure. Consequently, the set describing the information system is
transformed to:

|S:{301, ...,SO|,811, ...,Sln, 321, ...,SQm,Ssl, ...,Sek 541, ...,S4p}, (11)

where peN, IeN are the numbers of components in the input and output of cloud
information system.

Each component Sij of the information system at any time can service multiple

requests from different users. In the process of the user request data flows are
generated upstream and downstream of the component. Their individual
characteristics vary in time.

We designate all the incoming flows of component Sij as Xij , and the outcoming
as Yij , where i is the number of the components at the j service phase. Each request
flow can be described as a set of characteristics. Suppose, there are Iij incoming
flows and pij outcoming flows for a component Sij .

Then for the incoming flow v=1.. Iij , We introduce a set of characteristics:

X0 @y = (0 @), x0 0)f (12)
where

Xl('{-‘v) is the intensity of receiving requests in each incoming flow v of the
component S, ;

Xé‘ji'v) is the service time of the request flow v of the component Sij ;

319

Irina Bolodurina, Denis Parfenov. Effective Use of Resources Distributed Cloud Computing Platform for Providing
Quality Multimedia Services. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 315-328

Xé"i"') is the intensity of servicing requests of the request flow v of the component
st
Xflfi'") is the service discipline of the flow v of Sij , which determines the order of

service in accordance with the prioritization algorithm in the information system;

Xéj“’) is the service class of the flow v of Sij ;
Xéj’v) is the number of requests received from the flow v of Sij g

For outcoming flow #=1.. pij of the component Sij the feature set includes:

Y020 = (v @), v) -

The service path for each flow can be dynamically changed. The number of unique
flows depends on the number of components in each phase.

A set of incoming flows at each phase j can be represented as:

U
X! =Xy (14
i=0
where j is the number of the service phases, n; is the number of flows at phase j.
Consequently, all the incoming flows of the information system can be represented
as:

X=X/ (15)

-

0

]

where f is the number of service phases.
For output flows the similar conditions are used:

LU LI
vi=Uy' =y =y’ (16)
i=0 j=0

To effectively serve user requests forming data flows in the information system,
there must be an single-valued mapping of the formR: X —Y .

In addition, for service of any request at each moment of time the matrix H of
transitions between the phases of service is constructed depending on the class of
the request and the current load of the system.

The graph of transitions between phases can be built using the function:
Y =R(XY), Y)tey a7)

320

W.I1. Bononypuna, JI.1. TTapdpénos. Db dekTHBHOE HCIIONB30BAHUE PECYPCOB PACIIPE/ICICHHOMN MIIaT(HOPMBI 00TaUHBIX
BBIYHCIICHHUIT 171 obecriedeHns kayectBa MynbTumMeanitaeix.. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., . 315-328

where e is the component of phase j-1 directing data flow v to component Sij of
phase j, v=1.. Iij.
Then for any component Sij the set of all the input flows received from component

Sij‘1 located in the previous phase is represented in the form:
xiJ'J_lzR;l[Yij_lmR(xi])J (18)
where j is the phases of service.

Then effluents element Sij directed to the element Sij+1 represented in the form:

Yoy AR(X,T (29)

n . m .
So X1 = UX;" and Y = JY;' can describe the incoming and outcoming flows
i=0 i=0
of phase j respectively.
In real systems, outcoming flows can overlap and get serviced on the same
computing node that results in the formation of internal queues at each service
phase.
To describe this process it is necessary to determine the connections between output

flows of component Sij at phase j and all the components at phase j +1.

Considering the above the set Y I pecomes:

Y= veu Uy (20)

sj sit

For a description of intersecting incoming flows within one phase two functions are
introduced:

X1t =Ql(Y) (21)
Yt =Ql(y 1) (22)

where QJ (Y j*) characterizes input intersecting flows and QJ \ j*) characterizes

output intersecting flows for phase j +1.
Similarly, a set of input flows entering the phase of service can be defined. The
flows of user requests can also intersect.

Consequently, an input data flow arriving on the component Sij at phase j from all
the components at phase j-1 can be represented as:

321

Irina Bolodurina, Denis Parfenov. Effective Use of Resources Distributed Cloud Computing Platform for Providing
Quality Multimedia Services. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 315-328

X" =\ xi’*OU(Uxi“‘lJ (23)

s sit
To describe the intersecting flows from the phase we introduce two functions:
XM =PJ(X 1) (24)
vy =pl(x) (25)

where PJ(X J'*) characterizes intersecting input flows, and Pyj(X J'*)

characterizes intersecting output flows from phase j -1.

Thus, the functions (21) and (25) describe the data flows between phases of service
in an information system within a cloud.

To describe the whole multiphase information system we formalize the description

of flows in each phase in the form R? : X} Y,
Thus data flows in an information system within a cloud can be represented as:

R(X1), XJex!

YJ <RI =R (X), Xj*eu{x‘jlou[ux‘jyjlﬂ 20

sit

QL) YJ*eU{YH”U(UYi““H

s st
Data flows and their characteristics may change over time and our representation
thereof should also include time t.
The description of an information system should include both internal and external
factors so the parameter of external influence F should be introduced.

Then data flows in a cloud system can be described in the form:
Y =RI(X/,t,F) @7

3. Cloud system virtual resources control algorithm

The above models allow to determine the most appropriate computing nodes of the
information system and the virtual machines that contain the required instances of
multimedia applications. The control system should provide uninterrupted user
service and effective virtual resource control in case of limited physical resources.
The main task of the control system is scheduling of computing resources at each
moment of time. For highload information systems effective scheduling is important
because the load on the services may vary greatly within short time intervals. In a
cloud system there is a need to plan resource consumption optimally to prevent
resource exhaustion for the application already running.

322

W.I1. Bononypuna, JI.1. TTapdpénos. Db dekTHBHOE HCIIONB30BAHUE PECYPCOB PACIIPE/ICICHHOMN MIIaT(HOPMBI 00TaUHBIX
BBIYHCIICHHUIT 171 obecriedeHns kayectBa MynbTumMeanitaeix.. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., . 315-328

As distinct from other information systems the flow of user requests in the
educational environment is predictable due to the subscriptions for multimedia
services. The control algorithm for user access to virtual information resources
consists of two interconnected processes.

One of these processes is scheduling. The scheduling algorithm collects data on the
incoming requests and classifies them by the levels determined with the priorities of
applications for business processes. The input data for the algorithm are the
applications described according to the template that includes a virtual machine
image with the given configuration of hardware and software and user session
characteristics.

Based on this template and data analysis of connections the algorithm calculates the
configuration to deploy the required service. In the case of identical sets of VM
software the already stored images are used. To optimize the use of computing
resources the algorithm generates three variants of virtual machine configurations.
The first variant provides reserve performance in the case of unexpected increase in
the number of users. The scaling factor in this case is calculated dynamically.

The second variant provides a predetermined low performance of virtual machines
for the given number of users. This approach is most effective for small special
purpose user groups. It allows to reduce the overhead in case few working users, the
number of subscribers being large.

The third variant uses user-predetermined characteristics, including a fixed number
of running instances of virtual machines regardless of the number of users. In this
case the algorithm is only used to limit the computing resources. It calculates the
maximum number of virtual machines that are available in the configuration
selected by the user.

The second process within the algorithm is direct service of user requests and
resource scaling during the work of applications. The algorithm considers the total
number of requests from each source which allows to predict the load on the
running applications within the cloud. Then the algorithm migrates virtual machines
between computing nodes based on the collected data in accordance with a
predetermined plan, thereby scaling the work of applications.

For efficient use of resources within the above processes, additional instances of
virtual machines are created in the online storage of images for support the
applications providing an access for the minimum amount of users.

In the case of predicted load increase on a certain service, the algorithm deploys a
full image of the media resource and analyzes the incoming user requests. If the
load does not exceed the number of queries in an ordinary flow, the algorithm
switches the load to the appropriate image and turns off the virtual machine.

The scheme of an integrated approach to optimization using cloud computing, is
presented in figure 1.

323

Irina Bolodurina, Denis Parfenov. Effective Use of Resources Distributed Cloud Computing Platform for Providing
Quality Multimedia Services. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 315-328

8

internal
internal

Virtual machines with applications and
services

@ -
K f Controller cloud system
Ey) contrdl system
L By ’ database

ampus
\ campu = Algorithm for
campus Allocation algorithm

2 managing virtual
S e and dynamic load

resources and ,/»‘.
balancing woplications = Q Video Sharing|
applica = l

The control system

/(] Ey of knowledge @
The optimiza A
/ oad bala ——s
/ algorithm of Yosd balencing

g y algorith data
I ’ § migration datain | 2/0fithm for data Electronic
3 : access cloud storage!
i’ the cloud storage Q Library
3 system
: system L=
campus
d: campus
@ @ Storage System
@ internal internal Communication node (local cloud data center)

users users users

Fig.1 Scheme of optimizing access to information system based on cloud computing

Our approach allows to consider the physical limitations of computing resources
and organize the work of a cloud information system adjusting the number of
instances of running applications based on the incoming flow of user requests.

4. Experimental part

We have studied the work of the cloud information system with different parameters
to evaluate the effectiveness of our virtual resource control algorithm. We have used
the standard algorithms from the cloud system OpenStack [5] as reference for
comparison in the experiment.

In the experiment, we used the flow of requests similar to the real flow within the
information system of distance learning. The number of concurrent requests
received by the system was about 10,000, which is equal to the maximum number
of potential users of the system.

All the user requests are classified into six user groups corresponding to the types of
user behavior. The requests from the first three user groups directed to the allocated
application using other applications at the same time. The groups from 4 to 6
simulate the work of the application in the case of computing resource shortage
because of an excess number of concurrent requests.

The intensity of using the system components (video portal, testing system, and
electronic library) and the amount of the requested data were assigned for each user
group. Experiment lasted for one hour which corresponds to the longest period of
peak load in the real system. Experimental results are presented in the Table 1.

324

W.I1. Bononypuna, JI.1. TTapdpénos. Db dekTHBHOE HCIIONB30BAHUE PECYPCOB PACIIPE/ICICHHOMN MIIaT(HOPMBI 00TaUHBIX
BBIYHCIICHHUIT 171 obecriedeHns kayectBa MynbTumMeanitaeix.. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., . 315-328

TABLE 1. Service efficiency of user requests

Systems Testing ele_ctronic video testing ele_ctronic video
system library portal | system library portal
Experiment 1 3
Number of requests 8000 1000 1000 1000 1000 8000
Volume of information 32650 9330 10340 4750 8210 92300
Number of serviced requests 5443 622 517 592 643 4320
(without load balancing) (4352) (418) (356) (465) (512) (3985)
The intensity of service 90,71 10,36 8,61 9,8 10,71 72
(72,53) (6,96) (5,93) | (7,75) (8,5) (66,4)
Experiment 2 4 5 6
Number of requests 1000 8000 1000 10000 10000 10000
Volume of information 4250 67200 10670 | 41700 87600 108000
Number of serviced requests 632 5384 560 6753 6351 5860
(without load balancing) (525) (4625) (376) (5642) (5215) (4129)
The intensity of service 10,5 89,73 9,3 112,5 105,85 97,6
(4,2) (77,08) (6,26) | (94,03) (89,91) (68,81)

The results of the experiments show a decrease of 12-15% of the number of service
denials in accessing to multimedia services with limited resources. Within the
experiment in the OpenStack cloud system we compared the consumption of virtual
resources by the number of virtual servers for each of the subsystems.

Our control algorithm provides collaborative work of all running instances of
applications in accordance with user requirements due to the optimal allocation of
resources on each computing node. So the optimization algorithms may release 20
to 30% of the allocated resources (virtual servers) (Fig. 2).

[

B 0

£

T 40

a

o

S 201

o

-

S 0

2 1 2 3 4 5 6 7 8 9
—e— OLD 14,15094|33,01887 52,83019| 19,18605|31,97674| 48,83721| 17,7966 31,77966|50,42373
—_ NEW 0 |4716981|52,8301953,80222] 0 |46.10778] 0 |47,87234|52,12766

Virtual nodes
Fig. 2 Load balancing between nodes in the cloud system

5. Conclusion

Thus, the effectiveness evaluation of the algorithm for control of virtual resources of
the cloud system shows a performance boost from 12 to 15% compared to the
standard. Our algorithm is very effective for high-intensity requests.

325

Irina Bolodurina, Denis Parfenov. Effective Use of Resources Distributed Cloud Computing Platform for Providing
Quality Multimedia Services. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 315-328

Besides the reduction of the number of allocated virtual resources allows to scale a
cloud system more efficiently and provides a reserve for the case of increase in the
intensity of using applications.

Authors thank for support the Russian Foundation for Basic Research (project 13-
07-00198 A).

References

[1]. Qingjia Huang, Kai Shuang, Peng Xu, Jian Li, Xu Liu, Sen Su Prediction-based
Dynamic Resource Scheduling for Virtualized Cloud Systems Journal of Networks, Vol
9, No 2 (2014), 375-383, Feb 2014. http://doi:10.4304/jnw.9.2.375-383

[2]. S.J. E. C. L. C. Clark, K. Fraser and A. Warfield, "Live migration of virtual machines, "
In Proc. NSDI, 2005.

[3]. N. Bobroff, A. Kochut, and K. Beaty, "Dynamic placement of virtual machines for
managing SLA violations," in Integrated Network Management, 2007. IM'07. 10th
IFIP/IEEE International Symposium on. IEEE, 2007, pp. 119-128.

[4]. Q. Huang, S. Su, S. Xu, J. Li, P. Xu, and K. Shuang, "Migration-based elastic
consolidation scheduling in cloud data center," in Proceedings of IEEE ICDCSW 2013.

[5]. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster
file system S Toor et al 2014 J. Phys.: Conf. Ser. 513 062047

[6]. Corradi, M. Fanelli, and L. Foschini. VM Consolidation: a Real Case Based on
OpenStack Cloud. Future Generation Computer Systems, In Press.

AdhekTMBHOE MCNONb30OBaHNE pecypcoB

pacnpegeneHHon nnatgopmMbl 06MaYHbIX

BbIYUCNEHUN ANnA obecnevyeHUsa KayecTBa
MyNnbTUMEeAUNHBLIX YCNYr

U I1.Bonooypuna <prmat@mail.osu.ru>,
.U apghénos<fdot_it@mail.osu.ru>
Openbypeckutl 20Cy0apc@enHblll YHusepcumem,
460018,Poccus, Openbype, np. Ilobeowl, 0. 13

AnHoTtanusi. [IpoBoanMoe HCClieOBaHHWE HAMpPaBICHO Ha MOBbIMIEHHE S(PPEKTHBHOCTH
HCIIONB30BAHMS BHICOKOHAIPY)KEHHBIX HH()OPMAIIMOHHBIX CHCTEM, Pa3BEPHYTHIX B 00Ja4HOI
cucteme. JIns 9STOro InIaHMpyercs pa3pabOTaTh MOJEIH, OIMCHIBAIOIIAE OCHOBHBIC
0COOEHHOCTH O0CIY’)KMBAaHHUs IIOTOKOB C Y4€TOM TOIOJIOTHMH CHUCTEMBI, CETEBBIX CEPBHCOB M
CYLIECTBYIOIIMX CHUCTEM IUIAHUPOBAHMA 3aJad, a TaKKe METOIbl YNPABJICHUS MOTOKaMU
JAHHBIX MEXJy MPOIECCaMH BBIYMCIUTENBHBIX 3a/ia4. B paMkax NaHHOM cTaThu peliaercs
3ajaya MCCIel0oBaHUs OOJaYHOM cUCTeMBl M OleHKa 3((EKTUBHOCTH CXEM YIPABICHHUS C
Y4eTOM pa3iIMYHBIX aIrOpUTMOB IUIaHHpoBaHUs. C 3TOH Ienbio pa3paboTaHBL: MOIENb

326

mailto:fdot_it@

W.I1. Bononypuna, JI.1. TTapdpénos. Db dekTHBHOE HCIIONB30BAHUE PECYPCOB PACIIPE/ICICHHOMN MIIaT(HOPMBI 00TaUHBIX
BBIYUCIICHHH U1 00ecreueHus kadecTa MynbTuMequitHeiX.. Tpyast UCIT PAH, tom 27, Bemm. 3, 2015 1., €. 315-328

Oo0JIaYHOH CHCTEMBI, METPHKH JS(Q(PEKTHBHOCTH ¥ METOIUKA HKCICPHMEHTAIHHOTO
UCCIEI0BaHMsl aITOPUTMOB IUIAHMPOBAaHMSA U METOJOB YIPaBJICHHS HMOTOKAMHU J[AHHBIX.
Mogenu ornpenensioT GpyHKIMOHAIB! BEIMHUCIUTENBHBIX Y37I0B M CBSI3aHHBIX IIOTOKOB MEXIY
CcepBUCaMHU BCeHl cHCTEeMBI B 1€IOM. MeToAMKa SKCHCPUMEHTAIBHOIO HCCIECI0BAHUS
HpENonaraeT oueHKy 3p()eKTHBHOCTH COBMECTHONW PabOThl BUPTYaIbHBIX MALIUH C y4E€TOM
AJITOPUTMOB IUIAHHPOBAHUS M METOJOB YINPABIECHHSA MOTOKAMU AAHHBIX IO ONHCAHHBIM
MeTpukaM. llpeanoskeHHble B paMKax [JaHHOM CTaThbU pPEIIEHUS SBIAIOTCA OCHOBOM
pa3pabOTaHHOTO CHMYJISITOpa 00JIAaYHOH CHCTEMEI.

Keywords: oOmnauHble BBIYHCICHHS, OOJayHbIC CHCTEMBI, BBIYHCIUTCIBHBIC Y3IIbI,
BBIYMCIIUTENBHEIL ~ PECypChl, BBICOKOHATPY)KEHHBIE HH(QOPMAIMOHHBIE CHUCTEMBI,
GanmaHCHpPOBKA HArpy3KH, KadeCTBO MYyIbTUMEIMIHBIX YCIYyT, BUPTyaJbHBIC MAIIUHBI,
BUPTYaJbHbIE KOMIOHEHTEHI.

DOI: 10.15514/ISPRAS-2015-27(3)-22

Jnsi nurupoBanus: Bomomypuna I.II., Tlapdpéno M. DddexTnBHOE HCHOIB30BaHHE
pecypcoB pacnpeeNeHHOH miaTGopMbl 00JIauHBIX BHIYUCICHUH s 00eCIeueHHs KauecTBa
mynbTEMequiHbIX yeiayr. Tpyasr UCIT PAH, tom 27, Bem. 3, 2015 r., ctp. 315-328 (Ha
anrsmiickom s3eike). DOI: 10.15514/ISPRAS-2015-27(3)-22.

Cnucok numepamypbl

[1]. Qingjia Huang, Kai Shuang, Peng Xu, Jian Li, Xu Liu, Sen Su Prediction-based
Dynamic Resource Scheduling for Virtualized Cloud Systems Journal of Networks, Vol
9, No 2 (2014), 375-383, Feb 2014. http://doi:10.4304/jnw.9.2.375-383

[2]. S.J. E. C. 1. C. Clark, K. Fraser and A. Warfield, "Live migration of virtual machines, "
In Proc. NSDI, 2005.

[3]. N. Bobroff, A. Kochut, and K. Beaty, "Dynamic placement of virtual machines for
managing SLA violations," in Integrated Network Management, 2007. IM'07. 10th
IFIP/IEEE International Symposium on. IEEE, 2007, pp. 119-128.

[4]. Q. Huang, S. Su, S. Xu, J. Li, P. Xu, and K. Shuang, "Migration-based elastic
consolidation scheduling in cloud data center,” in Proceedings of IEEE ICDCSW 2013.

[5]. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster
file system S Toor et al 2014 J. Phys.: Conf. Ser. 513 062047

[6]. Corradi, M. Fanelli, and L. Foschini. VM Consolidation: a Real Case Based on
OpenStack Cloud. Future Generation Computer Systems, In Press.

327

Irina Bolodurina, Denis Parfenov. Effective Use of Resources Distributed Cloud Computing Platform for Providing
Quality Multimedia Services. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 315-328

328

Haranus Jlumanosa, Makcum CetoB. MeToj1 moncka peKBH3UTOB (HH3HUYECKUX JIHI[B 6a3aX JaHHBIX HA OCHOBE
nHeuétkoro cpaBHenus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 1., €. 329-342

Searching Method of Personal Details on
the Basis of Fuzzy Comparison

Nataliia Limanova <Nataliya.l.Limanova@gmail.com>,
Maxim Sedov <SedovMN@inbox.ru>
Povolzhskiy State University of Telecommunications and Informatics,
443010, L. Tolstogo, 23, Samara, Russia

Abstract. During the information exchange from one department to another there is a
problem of personal identification. This problem concerns people who have partially or
completely not coinciding personal details. For the correct comparison of personal data in
databases of the source and the receiver it is necessary to perform intellectual search of such
data and to bind them to an existing personal identification number. In the article the method
and the algorithm of fuzzy search of personal details in databases are offered. The method is
based on the modified Levenshtein metrics with use of three operations with symbols: inserts,
replacements and removals where all three operations have identical weight. The general
flowchart of the algorithm of the fuzzy search with the detailed description of its operation
and features is submitted. The developed procedure of identification can be considered as part
of the decision-making support system. Procedure doesn't require the operator intervention,
gains experience and trains in the process of operation, allowing to exempt specialists
completely from low-profile, inefficient, manual operations directly with the sets of personal
details which are stored in databases. The built-in system of details priority allows to identify
the person in such cases as change of the surname, name, moving and mistakes at manual
data input, and in case of partially absent details. Results of technical and economic
indicators comparison of the offered method with existing are given. The algorithm is
implemented in PL-SQL in the Oracle database 11g and is used since 2007 in commercial
operation at the automated information processing in several municipal authorities of the
Samara region. In the long term the offered method has potential of successful introduction in
systems of global merging of the state or commercial organizations storages for maintaining
the uniform database of population of any country of the world. The logical structure of the
developed algorithm gives the chance to implement it in any programming language. Features
of the offered method allows to apply program procedures on its basis both in small
organizations, and in large corporations, everywhere, where is the register of physical persons
data.

Keywords: interdepartmental exchange of information; indistinct matching; search of
personal details; function of intellectual matching; personal identification number (PIN).

DOI: 10.15514/ISPRAS-2015-27(3)-23

329

mailto:Nataliya.I.Limanova@gmail.com
mailto:SedovMN@inbox.ru

Nataliia Limanova, Maxim Sedov. Searching Method of Personal Details on the Basis of Fuzzy Comparison. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 329-342

For citation: Limanova Nataliia, Sedov Maxim. Searching Method of Personal Details on
the Basis of Fuzzy Comparison. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015,
pp- 329-342. DOI: 10.15514/ISPRAS-2015-27(3)-23.

1. Introduction

In the course of the interdepartmental information exchange there is an approval
problem of the main personal details (full name, birth date, address, passport data,
etc.) in databases of various departments. The problem of personal identification has
the greatest relevance for physical persons who have partially or completely not
coinciding personal details.

For optimum control of big data files, in which the information about physical
persons is included, it is necessary to provide centralized storage regulations of such
personal details as full name, birth date, address, passport data, etc. Recently various
departments — holders of local databases have aimed to combine these arrays for
simplification and improvement of work quality. But there is a problem of personal
details comparison in different databases. In such cases the elaborated intellectual
algorithm of data search in databases or, in the other words, the algorithm of
identification of physical persons comes to the aid.

For convenience of data processing to each set of details the so-called personal
identification number (PIN) is assigned. In the cases of handling or transferring of
physical person data all binding is performed to this PIN. Unfortunately, in Russia,
there is no uniform database with personal details of all residents, and therefore in
each department the separate register of physical persons is kept, and own PINs are
given. The problem arises in the case of residents’ information exchange between
the organizations. So it is necessary to execute a binding of the entering personal
data to the already available information. For an unambiguous binding it is
necessary to execute intellectual search of physical person in base receiver which
shall consider a set of factors: the mistakes in the case of manual input in the
database, the absent or obsolete personal details and etc. It is reasonable to assume
that similar search must be implemented in the form of the specialized software [1].

2. Automated search problem

Traditionally this problem is solved by the analysis of identity of the main personal
details. There are several details: name, surname, middle name, date of birth, series,
passport number and address. Having unambiguously determined coincidence of the
existing and new details, it is possible to execute identification of personal details in
a database [1][2]. This method of search is carried out manually only in that case
when the amount of the transmitted data is small (number of personal details is no
more than 30). In case of large volumes of transmitted data the computer
comparison of identity of details is used. Such approach allows to determine (50 —
60) % of total number of identifiable personal details. The remained (40 — 50) % is
the personal data in which the details in parts or in full don't match. It is more
difficult to handle such information manually. Accordingly, the computer search

330

Haranus Jlumanosa, Makcum CetoB. MeToj1 moncka peKBH3UTOB (HH3HUYECKUX JIHI[B 6a3aX JaHHBIX HA OCHOBE
nHeuétkoro cpaBHenus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 1., €. 329-342

task is divided into three subtasks depending on the type of input data. As a result of
comparison the following three types of results can turn out.

1. The person is found. This conclusion can be created as a result of direct
comparison of details, and equality of sets of certain key data. In this case the
personal details are attached directly to the corresponding PIN.

2. The person is ambiguously determined. This result is displayed in the presence of
mistakes, both in new data, and in the earlier received one. For example, the
operator's mistakes in the case of manual input of the main details are possible, data
corruption during transmission, incorrect work of package requests in case of
information processing, etc. In this case the list of PINs which main details are
mostly approached to identifiable data is displayed.

3. The person isn't found. This case shows that this personal details is absent in the
database and for a binding of this person to the PIN it is necessary to add him to the
available data set with assignment of a new PIN.

When creating an automated complex software, which yields above-mentioned
results, the most important was to determine borders between the first and second
cases, and also between the second and third. The software working without similar
differentiation will put down PINs to all found persons unambiguously, and those
whose data are determined ambiguously, are removed in the report for manual
handling by the operator. Thus all not found persons will be added to base with
assignment of a new PIN. Now let us imagine that in case of any discrepancy of the
main details, the data will be provided to the report, or that is even worse, will be
added as new. For example, the woman name is Nataliia, she got married,
respectively she has replaced her surname, she has moved to other residence and she
has changed the passport. Besides, in the database she is registered under the name
of Natalya, and in her birth date there is a mistake, an incorrectly specified number.
When handling such data the program will decide that it is the new person and will
add them with assignment of a new PIN. Of course, any task will set to a new PIN
in compliance. As a result it turns out that data on one personal detail is doubled and
different PINs of one person operate with different tasks. If the error is not
corrected immediately, the number of incorrect data will grow up in the geometric
progression. On correction of consequences of operation of such software a large
number of competent employees of organization will spend a lot of time and forces
[31[4][5]-

The wrong identification can also lead to a large number of data in the report of
manual working off, to assignment of the PIN to incorrect person and to addition of
excessive data. At worst case the consequences of such mistakes can completely
paralyze work of organization for indefinite time, at the best case — to take away
more than 10% of working hours of specialists for errors correction. The analysis of
the existing software showed that there is no single identifier; the universal
algorithm of identification is also absent.

331

Nataliia Limanova, Maxim Sedov. Searching Method of Personal Details on the Basis of Fuzzy Comparison. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 329-342

3. Mathematical model of searching method on the basis of
fuzzy comparison

Some types of the metrics reflecting intuitive concept of similarity of lines are
known. The most common are Hamming’s distance, Levenshtein’s metric and
distance editing [6][7]1[8].

Hamming's distance is determined for lines of identical length and is set as number
of line items in which symbols don't match. In fact, Hamming's distance is
calculated as minimum price of transformation of one line in another when the only
one transaction of editing lines — replacement is possible.

In a case when it is required to make comparison of lines of different length,
Levenstein's metrics or distance editing are used. These two metrics are very similar
on creation and actually are the same metrics, little modified for each case. For
example, Levenstein's metrics is determined as minimum price of transformation of
one line in another with the use of three transactions: inserts, replacements and
removals of a symbol, and all three transactions have identical weight.

The distance editing is modification of Levenstein’s metrics in the case when only
two transactions are allowed: insert and removal.

Due to the above, Levenstein’s general metrics which supports all three transactions
with line was chosen. For further operation the linguistic variable "similarity of
lines" was constructed. It is decided to allocate the following terms: "lines match”,

"lines almost match", "lines are similar", "lines are similar and dissimilar at the
same time", "lines aren't similar".

In the result of the analysis of functions of accessory of linguistic terms there was a
need to modify the method of calculation of Levenstein’s metrics. It was required to
modify metrics so that the distance between lines depended on length of the
compared lines.

Theorem 1:

We will designate by means of size p(s1,52) Levenstein's metrics, and size ||si|| —
length of line si. Then function:

p(sl’sz) (l)

r(sl'SZ): ’
max{[[s, [l.II's, II}

is the metrics.

Proof (not strict proof):

Because p(s1,S2) is a metrics, we have:

p(s1,52) > 0,

P(s1,52) = p(s2,51),

P(s1,52) + P(s2,83) = p(s1,53)

for any lines s1, sand s3. Considering these ratios and equality (1) we come to a
conclusion that r(si1,sz) satisfies to the first two axioms determining metrics. It is

332

Haranus Jlumanosa, Makcum CetoB. MeToj1 moncka peKBH3UTOB (HH3HUYECKUX JIHI[B 6a3aX JaHHBIX HA OCHOBE
nHeuétkoro cpaBHenus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 1., €. 329-342

necessary to prove that for any lines si1, s; and s3 function r(si,s;) satisfies to a
triangle inequality:

r(s1,s2) +r(s2,Ss) >r(s,Ss).

Write this inequality in the form:

P(sps) , P(s,.S5) PGLS) L

max{l|s, [llIs, I}~ max{lls, LlIs; 11} max{lls, [Llls I}

The following cases are possible:
L. Isall < [Is2l < [[ssl|
2. [|szf| < [[ssl| < |sall
3. [Issf| < [[sall < [|sll
4. |Iszl| < [[safl < [lssll
5. [Isaf| < [ssl| < [|sll
6. [Iss]| < [[szl| < ||sll
Consider the first case. We have:

POuS,) , PGS) PBELS) _ PGLS,)
max{[s, [LIIs, Il} max{ls, [llIs; I} max{ls, [l I} I, I

PG,8s) PELSs) 1
Iss1l Assl 1lssll

Thus, for the first case the triangle inequality is carried out. As the second case is

similar to the first one, based on similar calculations we draw a conclusion that for

the second case the triangle inequality is also carried out.

We will turn to consideration of the third case. So, in the third case we have:

(p(slvsz)+ p(sz 1Sg)_ p(s1|53)) 20.

151,82)+ 106518,)~ 16,8,)= (16,8,)+ 155,85) ~ o165, 5,) @
II's, I Is 1l
We’ll consider a question when the minimum of the function which is in the right
part of this equality is reached. It is clear that if expression of r (s1,52) + r(s2,8s)
reaches the minimum, and r(s1,53) reaches the maximum, the value of all
expression will be minimum. The two specified conditions can be satisfied at the
same time if two following statements are carried out at the same time:

- lines s; and s3 have no common symbols,

- lines s; and sz are included as sublines in s;. Then:

r(s1,83) = max{]| sall,|| ssl[}=l sal,

r(s1,2) = | ss|l + lICIl, r(sz,ss) = sall + [ICI,

thus, the minimum value of expression (2) will register in a form:

ISs I+ NCH+s M+ICH sl IC1l
s+ ls I+ICH sl sy lI+lls I+ ICl

333

Nataliia Limanova, Maxim Sedov. Searching Method of Personal Details on the Basis of Fuzzy Comparison. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 329-342

Therefore, in the third case for function r(si1,s3) a triangle inequality is also carried
out. Other cases are similar to the already considered. Thus, function r(sy,s2) is the
metrics, defined in the set of lines. The theorem is proved.

Note: function r(s1,s2) belongs to the interval [0,1] for any lines s; and s,.

In the offered algorithm this metrics is applied for operation with line personal
details which includes full name, address, document, etc. Therefore the linguistic
variable constructed with use of this metrics allows to process requests of search for
the person similar to other person in details. Having accepted such request from the
user, we actually receive two values: the value of a required detail and the radius of
search.

4. Algorithm of the searching method on the basis of fuzzy
comparison
The Fig. 1 shows the integrated flowchart of developed algorithm of searching

method on the basis of fuzzy comparison. The offered algorithm is presented in the
form of process of Data Mining and includes the following stages [9]:

1. analysis of subject domain;

. problem definition;

. preparation of data;

. creation of models;

. check and assessment of models;

. model choice;

. application of model;

. correction and updating of model.
Consider these steps in details.

1. The subject domain represents data sets with the main personal details in the
different organizations and departments.

2. The task of search consists in conditions of single personal identification number
absence to search of the details set in one database according to personal details in
the other database.

3. Preparation of data represents the organization of the integrated selection
including about 300-500 sets, remotely similar to the required. The code fragment
organizing programmatically such selection is given below:
CURSOR persons

IS SELECT p.person_id, p.lastname, p.firstname, p.patronymic, p.birthdate

FROM work.person p

WHERE (((SOUNDEX(TO_TRANSLIT(p.lastname)) =
SOUNDEX (TO_TRANSLIT(fo_Lastname)))

AND (SOUNDEX (TO_TRANSLIT(p.firstname)) =
SOUNDEX(TO_TRANSLIT(fo_Firstname))))

O N o o wDN

334

Haranus Jlumanosa, Makcum CetoB. MeToj1 moncka peKBH3UTOB (HH3HUYECKUX JIHI[B 6a3aX JaHHBIX HA OCHOBE
nHeuétkoro cpaBHenus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 1., €. 329-342

OR ((SOUNDEX(TO_TRANSLIT(p.lastname)) =
SOUNDEX(TO_TRANSLIT(fo_Lastname)))

AND (SOUNDEX(TO_TRANSLIT(p.patronymic)) =
SOUNDEX(TO_TRANSLIT(fo_Patronymic))))

OR ((SOUNDEX(TO_TRANSLIT (p.firstname)) =
SOUNDEX(TO_TRANSLIT(fo_Firstname)))

AND (SOUNDEX(TO_TRANSLIT(p.patronymic)) =
SOUNDEX(TO_TRANSLIT(fo_Patronymic)))));

Database choice
(Determination of variables for
dynamic requests)

l

Request of number of identical
people in a database

Inquiry of the PIN of the of the PIN to
identical person the natural person

i > number of people?

Request of the list of PINS
of identical people.
i=1

Record at line PIN.
i=i+l

Block of formation of the
massit of similar people

No i

Search of people in the
massif,
i=1

Y
i > number of people?

No

Number = 0? Conclusion of the list of

identical PINS

Assignmentof the PINto |
the natural person

One similar PIN Y
is found?

No

The block of comparison : "
> ke Conclusion of the list of
of details on the basis of
" . similar PINS
alternative choice

he similar person
is found?
Record at line PIN. END
=i+l

i=i+l

Fig. 1. The integrated flowchart of developed algorithm of search method on
the basis of fuzzy comparison.

335

Nataliia Limanova, Maxim Sedov. Searching Method of Personal Details on the Basis of Fuzzy Comparison. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 329-342

4. Creation of models consists in detection of regularities in the analysis of data,
obtained as the result of step 3, shown in this data set and perhaps suitable for future
sets.

5. Check and assessment of models represent testing of regularities for quantity of
data sets satisfying with them. The more sets are suitable for specific models the
more valuable are revealed regularly.

6. The choice of model consists in detection of the most significant regularities for
further using in case of identification procedure future starts.

7. The model application represents regularity using received and approved in case
of last start of identification procedure in the current data sets.

8. Correction and updating of models consist in the analysis of result of regularity
appendix to a new data set, and, if necessary, correction of model for circle
expansion of suitable sets by fuzzy search of personal details compliance.
Programmatically it looks approximately like this (with use of dynamic SQL):
-- Perform fast identification
OPEN cur_Ref _fast_ident
FOR 'SELECT t.||v_Col_pin||'
FROM '||v_Table||' t
WHERE UPPER(TRIM(t.||v_Col_lastname||)) =
UPPER(TRIM("||fo_Lastname]||"))
AND UPPER(TRIM(t."|lv_Col_firstname||')) =
UPPER(TRIM("||fo_Firstname||"))
AND NVL(UPPER(TRIM(t.||v_Col_patronymic||)), " ") =
NVL(UPPER(TRIM("||fo_Patronymic|")), "_")
AND t.||v_Col_birthdate||' =
"||TO_CHAR(fo_Birthdate, ‘dd.mm.yyyy"||"";
FETCH cur_Ref _fast_ident BULK COLLECT
INTO c_fast_ident;
CLOSE cur_Ref _fast_ident;
-- Depending on the number of pins of identical persons
IF (NVL(c_fast_ident.count, 0) = 1) THEN
fout_Pin :=c_fast_ident(1);
ELSIF (NVL(c_fast_ident.count, 0) > 1) THEN
FOR i IN c_fast_ident.first..c_fast_ident.last LOOP
fout_Pin_list:=fout_Pin_list|TO_CHAR(c_fast_ident(i))||" ";
END LOOP;
-- If fast identification didn't yield results
ELSIF (NVL(c_fast_ident.count, 0) = 0) THEN
-- write down data from the cursor in collection
OPEN cur_Ref _full_ident FOR v_Cur_ident;

336

Haranus Jlumanosa, Makcum CetoB. MeToj1 moncka peKBH3UTOB (HH3HUYECKUX JIHI[B 6a3aX JaHHBIX HA OCHOBE
nHeuétkoro cpaBHenus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 1., €. 329-342

FETCH cur_Ref_full_ident BULK COLLECT
INTO c_full_ident;
CLOSE cur_Ref full_ident;
IF (NVL(c_full_ident.count, 0) > 0) THEN
FOR i IN c_full_ident.first..c_full_ident.last LOOP
-- Perform complete identification
-- The block of comparison of details on the basis of
alternative choice (see Fig. 1)
CASE

WHEN (UPPER(TRIM(c_full_ident(i).ima)) = UPPER(TRIM(fo_Firstname))
AND UPPER(TRIM(c_full_ident(i).oth)) = UPPER(TRIM(fo_Patronymic))
AND ((analyzer_two_number(TO_NUMBER

(TO_CHAR(c_full_ident(i).dtr, 'ddmmyyyy")),
TO_NUMBER(TO_CHAR(fo_Birthdate, 'ddmmyyyy"))) = 1

AND analyzer_two_number(c_full_ident(i).nom, fo_Passport_number) = 1) OR
((analyzer_two_number(TO_NUMBER

(TO_CHAR(c_full_ident(i).dtr, 'ddmmyyyy")),
TO_NUMBER(TO_CHAR(fo_Birthdate, 'ddmmyyyy"))) = 1
OR analyzer_two_number(c_full_ident(i).nom,
fo_Passport_number) = 1)
AND c_full_ident(i).dom = fo_House
AND c_full_ident(i).kva = fo_Flat)))
THEN fout_Pin_list := fout_Pin_list||TO_CHAR(c_full_ident(i).pin)||" ;

WHEN (UPPER(TRIM(c_full_ident(i).fam)) = UPPER(TRIM(fo_Lastname))
AND UPPER(TRIM(c_full_ident(i).ima)) = UPPER(TRIM(fo_Firstname))
AND analyzer_two_string(c_full_ident(i).oth, fo_Patronymic) = 1)

THEN v_Pin_list_sim :=v_Pin_list_sim||[TO_CHAR(c_full_ident(i).pin)||" "

ELSE NULL;

END CASE;

In developed implementation of algorithm in PL-SQL DBMS Oracle 11g [10]
language, key functions are allocated for logically selected procedures ANALYZER
TWO STRING and ANALYZER TWO NUMBER, created on the basis of the
modified method calculation of Levenstein’s metrics which allow carrying out
intellectual comparison of two similar lines or numbers, taking into account possible
inaccuracies or errors of input. These procedures can be applied not only for
identification of details, but also everywhere where full text search with fuzzy set
input data is required.

337

Nataliia Limanova, Maxim Sedov. Searching Method of Personal Details on the Basis of Fuzzy Comparison. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 329-342

5. Technical and economic indicators of proposed algorithm

For the comparative analysis of developed algorithm consider technology of
identification on the basis of direct comparison. Using this technology the emphasis
goes on speed of records handling, but not on quality of decision making by system.
As a result, after completion of procedure on the basis of direct comparison, there
are many data (about 20-30% of total quantity of the lines) not connected with
initial which need to be fulfilled manually that is extremely difficult in the case of
large volumes of the processed data.

When comparing working indicators of two algorithms it is revealed:

Algorithm of direct comparison:

Data processing speed: ~ 100 000 lines per hour;

Identification accuracy (probability of exact searching method): ~ 80%

Algorithm of identification on the basis of fuzzy comparison:

Data processing speed: ~ 80 000 lines per hour;

Identification accuracy (probability of exact searching method): ~ 99,9%

It is possible to draw a conclusion that, operator’s work in manual operation of
results is minimized in developed algorithm i.e. though the speed of handling is
slightly less, but the algorithm allows to significantly unload operators at the
expense of intellectual system of decision making that can't offer algorithm of direct
comparison. When comparing economic characteristics of the developed software
on the basis of described algorithm with procedure of direct comparison for annual
amount of identification of 1 200 000 physical persons the following data were
obtained: labor costs on information processing by the method of fuzzy comparison
in comparison with method of direct comparison are reduced by 6,7 times, absolute
decrease in labor costs constituted 1 446 hours, annual costs when using the fuzzy
comparison method decreased by 3 times in comparison with the similar period of
application of the direct comparison method, annual economic effect exceeded 580
000 rub. For descriptive reasons some cost indicators which are created when using
the software developed and applied are displayed on the chart provided on Fig. 2.
Sizes of costs are postponed on ordinate axis in rubles.

1000000
800000
600000 OSalary fund
400000 @ Overhead costs
200000
0 OTotal costs

Direct Fuzzy
comparison comparison

Fig. 2. The chart for the comparative analysis of cost indicators when using
methods of direct and fuzzy comparison.

338

Haranus Jlumanosa, Makcum CetoB. MeToj1 moncka peKBH3UTOB (HH3HUYECKUX JIHI[B 6a3aX JaHHBIX HA OCHOBE
nHeuétkoro cpaBHenus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 1., €. 329-342

6. Conclusions

The considered method and algorithm are based on fuzzy comparison and on the
metrics of Levenshtein. The algorithm, developed in the form of Data Mining
process, allows defining people quickly according to earlier carried out search. The
built-in system of personal details priority gives the opportunity to identify person
in such cases as changing of surname, name, moving, mistakes from manual data
input and if personal details are partially absent also.

Self-training systems allow releasing human resources for accomplishment of
creative tasks. In this area the Data Mining technology provides a full range of
theoretical and practical means for choice, development or use of intellectual
computer systems.

The procedure of identification from this article can be
considered as part of the system of decision support. The procedure does not require
the operator intervention, gains experience and learns in the process of operation,
allowing to completely exempt specialists from low-profile, inefficient, manual
operation directly with the sets of personal details which are stored in databases.

The developed method and algorithm show good results when fields with different
information inside (name, address, postcode, phone etc) are compared. Indeed, any
symbolical value, whether it be full name, number of the passport or address, it is
possible to present in the form of string. In the course of two strings comparison
with the help of the offered algorithm, the distinctions of these lines are revealed,
such as the admissions of separate symbols or incorrect single symbols which can
arise at typographical errors in a manual data set. l.e., from the point of view of
symbol-to-symbol comparison, there is no difference between comparison of two
passport numbers or two surnames.

In long terms, this algorithm has the possibility of successful implementation in
systems of global merger of storages of the state or commercial organizations, for
maintaining a single database of the population of any country of the world. The
logical structure of developed algorithm allows realizing it in any popular
programming language. Features of algorithm allows applying program procedures
on its basis both in small organizations, and in large corporations, everywhere,
where the register of physical persons data is conducted and staticized. Possible
examples of use: portal of state services, medical electronic systems, personnel and
accounting systems of accounting of employees, bank systems of data storage on
clients, etc.

The algorithm was carried out by PL-SQL of Oracle 11g database management
system. The developed software realized the offered method of the computer search
of personal data on the basis of fuzzy comparison was implemented and
successfully operates since 2007 in the municipal institution «City information
center» in Togliatti town of Samara region.

339

Nataliia Limanova, Maxim Sedov. Searching Method of Personal Details on the Basis of Fuzzy Comparison. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 329-342

References

[1]. Selection of materials on the international experience of legislative regulation of use of
systems of the personality’s identification
(http://lwww.kongord.ru/Index/Prison/SViP.htm).

[2]. The report on accomplishment of research, developmental work "Development of
mechanisms of unambiguous identification of data on the physical persons and real
estates which are stored in various information systems of public authorities and local
government (http://www.nisse.ru/business/article/article_464.html).

[3]. Regulations on personal identification number of the citizens of the Russian Federation
living or staying in the territory of St. Petersburg
(http://iac.spb.ru/shablon.asp?subpage=171&id=40&dir=0).

[4]. The "Moscow Social Card" project (http://www.soccard.ru).

[5]. The collection of theses of city scientific and practical conference of students, graduate
students, teachers of higher education institutions and specialists of local government
offices of Tolyatti “Informatization in the social sphere" (http://it-
exclusive.ru/idperson/docs/stat.doc).

[6]. Hamming R. V. The theory of coding and the theory of information, trans. Edited by BS
Tsybakov, Radio and Communications, 1983.

[7]. Levenstein V. I. Binary codes with correction of losses, inserts and replacements of
symbols, reports of Academy of Sciences of the USSR vol.163, 1965.

[8]. Boytsov L.M. Analysis of lines, http://itman.narod.ru/articles/infoscope/string_search.1-
3.html.

[9]. Chubukova I.A.,"Data Mining", training course, publishing house of Internet university
of information technologies (http://www.intuit.ru/), 2006.

[10]. Scott Urman, "ORACLE 9i - Programming in PL / SQL", tutorial, Oracle Press —
publishing house "Lory", 2004.

MeToa nomcka peKBU3UTOB (pU3NYECKUX
nuy B 6a3ax AaHHbIX HA OCHOBE HEYETKOro
CpaBHeHMA

Hamanus Jlumanosa <Nataliya.l.Limanova@gmail.com>,
Maxcum Ceoos <SedovMN@inbox.ru>
THosonoicckuii 2ocyoapemeennblil yHusepcumem meieKOMMYHUKAYULL U
uHpopmamuxu,
443010, Poccus, e. Camapa, yn. JI. Torcmoeo, 0. 23.

AnHoTtanus. [Ipu nepenade JaHHBIX OT OJHOTO YPESKACHUS K JPYroMy BO3HHKAeT npobiema
HEePCOHAILHON MICHTU(GUKAMN HU3NUECKHX JIUL, Y KOTOPBIX YaCTHYHO WM IOJHOCTBIO HE
COBIIAIAIOT PEKBU3UTHL [MPaBHIEHOTO CONOCTABIICHUS IEPCOHAIBHBIX TAHHBIX B 6a3ax
JAHHBIX UCTOYHHKA M MPUEMHHUKA HEOOXOANMO BHIITOIHUTH HHTEIUICKTYAIBHBIA ITOMCK TAKUX

340

mailto:Nataliya.I.Limanova@gmail.com
mailto:SedovMN@inbox.ru

Haranus Jlumanosa, Makcum CetoB. MeToj1 moncka peKBH3UTOB (HH3HUYECKUX JIHI[B 6a3aX JaHHBIX HA OCHOBE
nHeuétkoro cpaBHenus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 1., €. 329-342

JAHHBIX U NPHUBSA3KY K YK€ HMEIOIIUMCS NTePCOHANBHBIM HASHTH(HUKAIIMOHHBIM HOMepaM. B
CTaThe MPEUIararoTCsl METOX U AITOPUTM HEYETKOTO IONCKA PEKBU3UTOB (PU3HMUECKUX JINI] B
6azax maHHBIX. MeTox OCHOBaH Ha MOAMGHUIMPOBAHHON MeTpuke JleBeHIITelHHa C
HCIIONB30BaHUEM TpEX OIepalyil: BCTaBKM, 3aMEHBI M YNAJICHHS CHMBOJIOB, TAE BCE TPHU
ollepaluy MMEIOT OJUHAKOBBI Bec. [IpencraBneHa oOmmias cxeMma aaropuTMa MOMCKa Ha
OCHOBE HEUETKOTO CpPaBHEHHUS C TOAPOOHBIM OMNMCaHWEM ero paboTel U OCOOEHHOCTEH.
PaspaboTanHyi0 Iponeaypy MACHTH(OUKALWK MOXKHO PAacCMaTpUBaTh KaK 4YacTh CHCTEMBI
HOJICP)KKH TIpUHATHS pemieHuit. Ilponeaypa He TpeOyeT BMeLIAaTENLCTBA ONEpaTopa,
HaKaIUIMBAaeT ONBIT M caMooOydaeTrcss B Ipomecce padoThl, IIO3BOJSS, TEM CaMBIM,
MOJHOCTBI0 OCBOOOAWTH CHELUAINCTOB OT HHU3KONPOQHIGHOH, Hed((hEKTUBHOH pydHOI
paboTHl HampsIMyI0 ¢ HabOpaMH PEKBU3HTOB (DM3MUECKUX JHI, XpaHAIIMMHCSI B 0azax
JaHHBIX. BCTpoeHHas cucTeMa NPHOPUTETa PEKBH3HTOB II03BOJISIET HICHTH(HIMPOBATH
YeJoBeKa B TaKMX CIydasx, Kak cMeHa (aMWINH, UMEHH, Iepee3]l, OUIMOKH NpH PYyYHOM
BBOJIC IaHHBIX, @ TaKXKe IPH YaCTUYHO OTCYTCTBYIOLIMX PEKBH3HUTAX. IIpUBEICHBI
pe3yNbTaThl CPaBHCHUS TEXHHYECKMX M OSKOHOMHYECKHX IOKa3aTelel IpeUI0KeHHOro
METO/Ia C CYHIECTBYIOMUME. AroputM peannzoBad Ha s3bike PL-SQL 8 CYB/] Oracle 11g u
ucnonssyercs ¢ 2007 roga B MPOMBIIUICHHOW 3KCIUTyaTallid HpPU aBTOMATH3MPOBAHHOM
oOpaboTke WMHGOpPMAIMK B HECKONBKUX MYHHIMIIAIBHBIX yupexaeHusx Camapckoit
obnactu. B mepcrextuBe NpeIOKEHHBI MeTox 00J1aJaeT BO3MOXHOCTBIO YCHEIIHOTO
BHEJPEHUsI B CHUCTEMBI TIJO0AIBHOTO OOBEIUHEHUS XPAHWIMIL TOCYHapCTBEHHBIX WIIN
KOMMEpUYECKUX OpPTaHM3alMil JUIsl BeACHHs eANHOM 0a3bl JaHHBIX HACENCHUs JII0OOH CTpaHbI
mupa. Jlornueckas CTpyKTypa pa3pabOTaHHOTO aJrOpHTMa JaeT BO3MOMKHOCTH PEaIM30BaTh
ero Ha J000M f3bIKE MPOrpaMMHUpOBaHHA. MacmTabMpyeMOCTh ajirOpHTMa IO3BOJISET
HPUMEHSTh IPOTPaMMHBIE TTPOLEAYPHl Ha €r0 OCHOBE, KaK B MAJIbIX OPTraHH3alusiX, TaK U B
KPYIHBIX KOPIOPANMsX, Be3Je, I/ie BEAETCS M aKTYaIU3HPYETCs PEeecTp MHepCOHAbHBIX
JAHHBIX (PU3MYECKUX JIHIL.

Keywords: interdepartmental exchange of information; indistinct matching; search of
personal details; function of intellectual matching; personal identification number (PIN).

DOI: 10.15514/ISPRAS-2015-27(3)-23

Jasi uutupoBanms: JlumanoBa Haramus, CenoB Makcum. Meroa moucka pEeKBHU3UTOB
¢dusnyeckux Ji B 6a3ax JaHHBIX Ha oCHOBe HeuéTkoro cpaBHenus. Tpyast ICIT PAH, Tom
27, Boi. 3, 2015 r., ctp. 329-342 (na anrmmiickoMm si3eike). DOI: 10.15514/ISPRAS-2015-
27(3)-23.

Cnucok nutepatypbl

[1]. TTonbopka MaTepHaIOB O MEXIYHAPOHOM OIBITE 3aKOHOIATEILHOTO PETYITHPOBAHUS
HCIIOJIb30BaHUsA CUCTEM I/IHCHTI/I(i)I/IKaIII/II/I JIMYHOCTH
(http://www.kongord.ru/Index/Prison/SViP.htm).

[2]. Oruér o BBHIMONHEHNH HAYYHO-HCCIICIOBATENBCKON, OMBITHO-KOHCTPYKTOPCKON padoThI
«Pa3paboTka MEXaHN3MOB OIHO3HAYHOM I/I,HeHTI/I(bHKauHI/I JIQHHBIX O (bmnqecxylx JuLax
U 00BbeKTax HEABMXXUMOCTH, XPAHALIUXCA B Pa3JIMIHBIX I/IH(I)OpMaL[I/IOHHLIX CUCTEMAX
OpraHoB rocy1apCTBEHHOU BJIACTH 3¢ MECTHOI'O CaMOYIIpaBJICHUS
(http://www.nisse.ru/business/article/article_464.html).

341

Nataliia Limanova, Maxim Sedov. Searching Method of Personal Details on the Basis of Fuzzy Comparison. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 329-342

(31

[41.
[5].

[6].
[71.
[8].
[9].
[10].

342

TlonoxxeHne o mepcoHAIBHOM HACHTU(PHMKAIMOHHOM HOMepe rpaxkaaH Poccuiickoif
ODenepanuy, NMPOKUBAIOIIMX M TpeObiBatonx Ha Tepputoprn Caskr-IlerepOypra
(http://iac.spb.ru/shablon.asp?subpage=171&id=40&dir=0).

Tpoekr "CounansHast kapra Mockeuua" (http://www.soccard.ru).

COOpHUK TE3HMCOB TOPOACKOM HAayYyHO-TIPAKTHYECKOH KOH(EPEHIMH CTYACHTOB,
acIIMPaHTOB, TPENojaBaTeNie By30B U CIENHATNCTOB MYHUIMIAIBHBIX YUpexkKIeHHN
r.TonpsaTTH «HpopmaTu3zanms B COLMATBHOM chepe» (http://it-
exclusive.ru/idperson/docs/stat.doc).

Xemmunr P.B. Teopust koaupoBanust u Teopust nadopmanuy, mep. ¢ anri. [lox pex.
B.C. Ilpi0akoBa, Paguo u cBsizb, 1983.

Jlesenmreitn B.M. J[BomuHble KOABI C WCIpABICHUEM BBbINAJIEHUI, BCTaBOK U
3aMmenneHnii cumBouioB, nokmaasl AH CCCP 1.163, 1965.

boiioB JL.M. Awnamu3 ctpok, http://itman.narod.ru/articles/infoscope/string_search.1-
3.html.

Yyoykosa N.A., “Data Mining”, y4eOHblIil Kypc, U3aTeNbCTBO VIHTEpHET-YHUBEPCUTETA
uHpopMarmoHHbIX Texnomoruit (http://www.intuit.ru/), 2006.

Cxorr Ypman, “ORACLE 9i — TIporpammupoBanue Ha si3bike PL/SQL”, yueGHoe
noco6ue, Oracle Press — uznarensctso “Jlopu”, 2004.

J1.B.AnrtonoB, B.C.Py6nes. Dddexrunoe B3aumoaeiicrsue ¢ CYBJ DIM. Tpyast UCIT PAH, tom 27, Bbim. 3, 2015 1.,
c. 343-350

Effective Interaction with the DIM DBMS

D.V.Antonov <dmitrii.antonov@gmail.com>,
V.S.Roublev <roublev@mail.ru>
Demidov Yaroslavl State University, ul. Sovetskaya,10,
Yaroslavl 150000, Russia

Abstract. In the article the review of tools used in a new type object DBMS for increasing
the efficiency of access to data is provided. Some object DIM DBMS features based on the
use of the classes of object relations as object sets (inheritance, inclusion, interaction and
history) and object relations (inheritance, internal inheritance, inclusion, internal inclusion,
interaction and history) are described. The description of the subject domain is entered by
means of an object and dynamic data model (OD-model), and DIM DBMS completeness for
any OD-model is justified. An ODQL object query language allowing to combine the exact
description complexity with the simplicity of use due to two

query level introduction is described. For the elucidation of the most effective way of the
appeal to DIM DBMS the study of various query technologies for this environment is
conducted, and mechanisms for user work with it are developed and realized. Software
development “The Generator of ODQL-queries” is considered which is necessary for
simplification of query creation to DIM DBMS, needless for the user to know the syntax of a
modern query language. Problems of converting data from the existing DBMS into DIM
DBMS are considered.

Keywords: dim; doms; od-model; odgl; transformation algorithm; converter
DOI: 10.15514/ISPRAS-2015-27(3)-24

For citation: Antonov D.V., Roublev V.S. Effective Interaction with the DIM DBMS.
Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 343-350. DOI: 10.15514/ISPRAS-
2015-27(3)-24.

1. Introduction

The architectures of modern DBMS are various, but all of them have as the basis
one of extended models: relational (Codd, 1970), object-oriented (etc., 1995),
object-relational (Darwin, etc., 1996), temporal (Kostenko, etc., 2007).

The available DBMS technologies possess some shortcomings:

1. a relational - one is universal, effective in the realization but rather
complex for use, as it is necessary to project in terms of a large number of
tables, and not objects.

343

D.V.Antonov, V.S.Roublev. Effective Interaction with the DIM DBMS. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue
3, 2015, pp. 343-350

2. Object-oriented - is object, but has method shortcomings: are convenient
for object interaction description of one class, but for object interactions of
different classes, that is more often used in a DB, it is inconvenient as it is
compelled to use the asymmetrical device of "friendly" functions.

3. Object-relational - has some advantages in comparison with the relational
technologies, but it has shortcomings of both technologies.

4. Temporal - has advantages in opportunities of data change preservation
history, but not their types.

Shortcomings of the available DBMS models allowed to think of the DBMS new
technology creation which uses advantages of the available technologies of the
listed above systems. In [1] a new object approach to DBMS creation is described
which assumes not only a change of these objects, but also types of objects change
possibility, i.e. the database schemes called a dynamic information model (DIM).
DIM DBMS has some advantages in comparison with other systems:

1. it is object, and the object relation device (including internal inheritance
and internal inclusion) allows to describe adequately OD-models data, and
the interactions device allows to describe symmetrically laws of data
change and data types;

2. unlike the temporal one it allows to keep data change history, and their
types.

Now in many areas of human activity for the description of various processes the
discrete determined models are often used.

Model discretization in this case is understood as a final, though potentially
unlimited number of model objects, and determinancy of model is understood as the
determined laws of the model objects behavior.

Formalization of the discrete determined model has led to creation of the object and
dynamic model (OD-model), and for the adequate description of its data
formalization of the class scheme DIM and formalization of the OD-model static
description by the class scheme DIM [2] are entered into DIM.

We will call a group of elements

(0,A,A(0),V (0), Lp, Lo, Ly, Ar,(0]), Vi, (0]), F, T),
an OD-model where

O — afinal objects set,

A =uUg A,— a final set of object properties with types of these properties (this set
element of the pair (a,V?) — property, property type),

A(0)— a cortege function of object properties o,

V(o) — a cortege function of object properties values (orderliness of object
properties values of o corresponds to orderliness of this object properties in a
cortege A(0)),

344

J1.B.AnrtonoB, B.C.Py6nes. Dddexrunoe B3aumoaeiicrsue ¢ CYBJ DIM. Tpyast UCIT PAH, tom 27, Bbim. 3, 2015 1.,
c. 343-350

Lp=Ujer, {l}D = {o,01}} — a set of object simple communications,
L,— an objects-communications set (O N L,= @),
Li=Uje {(1f, 0] € L,)}— a set of objects functional communications,

KLf(o{)— a cortege function of object-communication attributes o{ functional
communicationsLy,

VLf(olf)— a cortege function of object-communication attributes values of functional
communications L,

F — a final set of algorithmic procedures of object property values change and
object change,

T — a discrete time scale.

2. ODQL object queries language

The object concept is complicated, as for the allocation of its properties and their
values it is required to work both with object class properties, and with the
properties received in inheritance. Therefore, an actual task is to introduce such a
language, by using which a user could set objects of one class (or several classes
with their communications), considering not only parameters and the properties of a
class inclusion but also all the inherited properties.

The SQL query language for RSUBD is evident, but is not objective. The ODMG
group, being the founder of one of the OOBD technologies, developed the standard
of the object OQL query language (see [3]). But, first, this technology does not
pursue the aim of adaptive DB creation which will be able to change dynamically
the data scheme, and secondly, the classes relations entered in it do not allow to
describe adequately any discrete determined models, that is also the property of the
DIM technology proved in the same place. Therefore, the object query language
allowing to carry out manipulations with data to DIM is necessary. This language
by means of the constructions must define precisely what we wish to allocate, and it
must be simple enough in use to allow one to set visually the information which
needs to be allocated with a small amount of clear constructions.

The complete description of the ODQL language can be found in [3].

3. Problem definition

The DB transformation from the existing DBMS to DIM puts a problem of data
converting.

As there are DBMS of different types, no uniform algorithm for data converting
from any DBMS to DIM can be written, but it is possible to use the OD-model, that
is, at first to transform the available DB to the OD-model, and then to use the
available OD-model transformation algorithm to the structure of DIM DBMS,
following the theorem of the static completeness described in [2].

The theorem of static completeness.
345

D.V.Antonov, V.S.Roublev. Effective Interaction with the DIM DBMS. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue
3, 2015, pp. 343-350

Any OD-model OD for any moment $t\in~T$ in it can be statically described by
means of a scheme S of the DIM classes which is in a normal form.

For transfer of the existing DB on DIM DBMS the program which can transform
data from relational DBMS was created. Other types, such as: temporal, object-
oriented and object and relational, at the moment are at a testing stage. Such
transformation requires two stages. At the first stage the DB is converted into the
OD model. Then the model is converted into DIM DBMS.

4. Algorithm of receiving display for any model and its
realization

For a start, it is necessary to receive a display for any model. The algorithm of
receiving the display appears as follows:

1. A series of queries for obtaining a list of the tables, the fields
corresponding to them, communications among tables presented in DB,
and also sets of the values which are available there, is carried out.

2. The arrays which are responsible for the sets corresponding to sets of OD-
model are filled.

5. Transformation algorithm of a relational DB to DIM DB

The algorithm of receiving the display for a relational model looks in many respects
similar to the general algorithm, but has some differences, namely, such an
operation procedure:

1. the query for obtaining the table list and the fields corresponding to them
presented in a DB is performed,;

2. on the basis of the obtained data, the array which is responsible for a table
name set of a transferable DB is filled up;

3. the two-dimensional array is filled up (as it is necessary to compare the
name of each field with the type corresponding to it) which is responsible
for a field set of all tables (information about the name of fields and their
type is registered in the array);

4. aseries of queries to tables for obtaining information about the data written
down in their fields is performed(the data sets corresponding to each field
are read out);

5. the array which is responsible for a set of the values which are written
down in the table is filled (each set is divided by a special tag to further
distinguish sets from each other);

6. a series of queries is performed to find out the existence of external
indexes, therefore, of communications between tables;

7. the array which is responsible for a set of communications among tables is
filled.

346

J1.B.AnrtonoB, B.C.Py6nes. Dddexrunoe B3aumoaeiicrsue ¢ CYBJ DIM. Tpyast UCIT PAH, tom 27, Bbim. 3, 2015 1.,
c. 343-350

As a result of the algorithm execution we receive a set of arrays containing
information on a set of properties, objects and communications. On the basis of
these data the model is formed which corresponds to the description of OD-model
from which by means of a special program it is possible to receive a structure
corresponding to the DIM DBMS metalevel.

6. Converter

The existing DB in DIM DBMS transfer requires creating the program which will
be able to transform data from different types of DBMS, such as: relational,
temporal, object-oriented and object-relational. Such transformation requires two
stages. At the first one the DB is converted into the OD model, then the model is
converted into DIM.

It was developed the program "DIM DBMS Converter" whose first stage of work is
data transformation from a relational DB to the OD model.

The principle of converting in the OD model consists in data transfer from any
DBMS in the general structure from which there is a transformation to DIM DBMS.
For compliance to structure of the OD model the converter possesses an arrays set
which emulate this model. Thus, when reading from DBMS all data are filtered at
the program level and make the OD model (see section I) though they are not
connected among themselves yet. Further, the algorithm is used in which these
tables contact the relevant fields groups (as a rule, each group begins with the field
"1d"). Next, the program analyzes fields names regarding partial coincidence, and,
on this basis, it forms communications between the tables corresponding to this
field. As in the existing DB there can be features of communications among tables,
the user can preview and correct OD model elements.

7. ODQL query generator

As a drafting object query demands from the user the knowledge of objects classes
and their communications that not always he knows precisely, the creation of an
intellectual system which will ease queries creation in object DIM DBMS is
necessary. We will call this system "ODQL query generator".

The generator represents a set of components that help the user to visually orient in
the structure of a DB and to make a query, using the interactive interface. For
ensuring interactivity the system allowing to choose from the presented DB
elements necessary for the user is used. At the initial stage the user chooses the
necessary parameters, then specifies a class if such parameters meet at several
classes. If necessary he specifies conditions for this choice. Also the user can
specify at this stage, whether performance of the conditions connected with other
classes or parameters of the chosen class is necessary. If necessary, the user is
offered to choose with what classes or parameters he wants to connect query
conditions, and the list of classes contains only those that are connected with the
class chosen at the moment. Thus, in the system it is realized the possibility of the

347

D.V.Antonov, V.S.Roublev. Effective Interaction with the DIM DBMS. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue
3, 2015, pp. 343-350

additional conditions indication taking into account interrelations among the DIM
DBMS elements. At the stage of drawing up a query it is controlled onto a
correctness of required data, therefore the problem is solved with the creation of
complex queries.

The development of an intellectual system which allows to make queries for DIM
DBMS in a form comfortable for the user was the result of the work.

8. Conclusion

As a result, the developed algorithms are used in the created "DIM DBMS
Converter" program for transformation of relational DB to DIM DBMS DB. The
converter was tested on Oracle DB and at the moment the program passes the state
of registration. Also it was performed the comparative analysis of query
technologies [4] and it is developed a software "ODQL query generator" [5], which
allows to generate complex queries to the user who does not know all complex
objects structure, but objects properties which need to be allocated. Thus, the
objectives on creating effective remedies of the access to data DIM are reached.

References

[1]. Pisarenko D.S., Rublev V.S. Ob”cktnaya SUBD Dinamicheskaya informatsionnaya
model’ i ee osnovnye kontseptsii // Modelirovanie i analiz informatsionnykh sistem. —
2009. — vol.16, no.1. — pp.62-91 (in Russian).

[2]. Rublev V.S. Teorema o staticheskoi polnote SUBD DIM // Problemyteoreticheskoi
kibernetiki. Materialy XVII mezhdunarodnoi konferentsii (Kazan’, 16 - 20 iyunya
2014g.). Kazan’: Otechestvo. — 2014. — pp.242-245 (in Russian).

[3]. Yazyk ob”ektnykh zaprosov dinamicheskoi informatsionnoi modeli DIM//
Modelirovanie i analiz informatsionnykh sistem. vol. 17, no.3, 2010. pp.144-161.

[4]. Antonov D.V., Rublev V.S. Analiz tekhnologii vychisleniya ODQL-zaprosov SUBD
DIM /I Yaroslavskii pedagogicheskii vestnik. — 2013. — vol.3, no.4. — pp.93-97 (in
Russian).

[5]. Antonov D. V. Zaprosy SUBD DIM i ikh generatsiya // Shest’desyat sed’maya
regional’naya nauchno-tekhnicheskaya konferentsiya studentov, magistrantov i
aspirantov vysshikh uchebnykh zavedenii s mezhdunarodnym uchastiem / red. Doronina
V B. - Yaroslavl’: Izdatel’stvo YaGTU, 2014. - vol. 2. - pp. 284. - ISBN 978-5-9914-
0365-8 (ch. 2) ISBN 978-5-9914-0363-4 (in Russian).

348

J1.B.AnrtonoB, B.C.Py6nes. Dddexrunoe B3aumoaeiicrsue ¢ CYBJ DIM. Tpyast UCIT PAH, tom 27, Bbim. 3, 2015 1.,
c. 343-350

AdhchekTBHOE B3anumoagencTeme C
cybl DIM

H.B.Anmonos <dmitrii.antonov@gmail.com>,
B.C.Py6aes <roublev@mail.ru>
Apl'Y um I1.T" [lemuoosa, yn.Cosemckas, 10,
Apocnasns 150000, Poccus

AnHotammsi. B cratee mpuBoamTCs 0030p CpENCTB, HCHONB3YeMBIX B 00bekTHOH CYB]]
HOBOTO THIA JUIsl TOBBILCHUA 3((EKTUBHOCTH JAOCTyHa K JaHHbIM. ONHCBHIBAIOTCS
ocobennoctn 00bekTHOM CYB/] DIM, ocHOBaHHBIC Ha MCITOJIL30BAHUKM OTHOIICHUH KIacCOB
00beKTOB (KaK MHOXXECTB OOBEKTOB): HACIEAOBAHUS, BKJIIOYCHHUS, B3aUMOJCHCTBUSA W
UCTOPHHU U OTHOIICHUH OOBEKTOB: HACIENOBAHHS, BHYTPEHHETO HACIEAOBAHNSA, BKIIOUCHHS,
BHYTPECHHETO BKJIFOUCHUs, B3aMMOACHCTBHS M HCTOpHH. BBomuTcs ommcaHue mpeaMeTHO
00MacTM TpPU TOMOIIM OOBEKTHO-THHAMHUYCCKOH Mozaenu mAaHHbIX (OD-momenn) wu
obocuoBbiBaercst moiHota CYBJ[DIM mns mpoumssonbHoOit OD-mopmenu. OmnucbiBaercst
00BEKTHBIN s3bIK 3ampocoB ODQL, mo3BONSAIONIMNA COBMECTHTH CIOXXKHOCTh TOYHOTO
ONMCaHUs € MPOCTOTOMN MCHOIb30BAHUS 3@ CUET BBEIECHUS JBYX YPOBHEH 3ampocoB. B nemsix
BBIACHEHUST Hambosee 3¢ ¢exTuBHOr0 cnocoda obpamenus k CYBJ DIM mposoautcs
UCCIIEIOBAaHNE PA3NIMYHBIX 3aMPOCHBIX TEXHOJNOTHMH JUIi 9TOM cpempl, a Takke
pa3pabaTHIBAIOTCS U PEATU3YIOTCS MEXaHU3MBI 71l paboTHI MmoJb3oBaTenel ¢ Hel. s aToro
pa3pabaTsiBaeTCsi KOMIUIEKC MPOTPAMMHBIX CPEICTB, HEOOXOMMMBIX aisi paboTel ¢ CYB]]
DIM. PaccmarpuBaetcs paspabotka [1O «['eneparop ODQL-3ampocoBy, KOTOPBIH HYyXCH
JUIs ynpolneHus nocrpoenus 3amnpocos k CYBJ] DIM 6e3 Heo0xoauMocTH i1 MOJIb30BaTeNs
B 00513aTEIILHOM ITOPSIIKE 3HATh CHHTAKCHC HOBOTO SI3bIKa 3alpocoB. PaccmarpuBaloTes myTn
pelieHus mpoOIieMbl KOHBepTaIK AaHHbIX U3 cymectByommx CYB/] 8 CYB/] DIM.

Keywords: dim; cy6x; od-mozens; 0dgl; anroputm npeobpa3oBanust; KOHBEpTEP
DOI: 10.15514/ISPRAS-2015-27(3)-24

s uutupoBanus: Aatonos /I.B., Py6nes B.C. Dddexrusnoe B3aumoneticreue ¢ CYB]]
DIM. Tpyast UCIT PAH, Tom 27, Bbmm. 3, 2015 1., ctp. 343-350 (Ha aHITHHCKOM SI3BIKE).
DOI: 10.15514/ISPRAS-2015-27(3)-24.

Cnucok nutepartypbl

[1]. Mucapenko O.C., Py6nes B.C. O6wexrnass CYB/l duuamuueckas nHOOpMAIMOHHAS
MOJieJIb ¥ €€ OCHOBHBIE KOHIENIHMH // MojenupoBaHHe W aHAIH3 HHPOPMAIHOHHBIX
cuctem. — 2009. — T.16, Nel, C. 62-91.

[2]. Py6nes B.C. Teopema o craruueckoit nonsore CYBJ] DIM// TIpoGiemMbl TeopeTnieckoit
kuOepHetnkn. Marepuansl XVII mexmyHaponHoit koHpepeHumu (Kazanp, 16 — 20
ntonst 2014r.). Kazanb: OteuectBo. — 2014, — C. 242-245.

[3]. Pybnes B.C. SI3bIk OGBEKTHBIX 3alPOCOB JHUHAMHYECKONH HH(DOPMALHOHHOW MOJEIH
DIM // MonenupoBanue u ananu3 uHpopManuoHHbIX cucteM. T.17, Ne3, 2010. — C.
144-161.

[4]. AntonoB II.B., Py6nes B.C. «AHnanu3 texnonoruii Berumcienus ODQL-3ampocos
CYBJ DIM» // Spocnasckuit meparorndeckuit Bectauk. 2013. T. 3. Ne 4. C. 93-97.

349

D.V.Antonov, V.S.Roublev. Effective Interaction with the DIM DBMS. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue
3, 2015, pp. 343-350

(5]

350

AntonoB JI. B. 3ampocst CYBJ] DIM wu ux renepauus // Illectbaecat cempmas
pEerHOHANIbHAS HAayYHO-TEXHUUYECKass KOH(EpeHIUs CTYAEHTOB, MAaruCTPaHTOB W
aCIIMPAHTOB BBICIIMX Y4YEOHBIX 3aBENCHUH C MEXIYHapOAHBIM YydacTHeM / per.
Joponuna B b. - SIpocnasins : Uznarenscto AI'TY, 2014. - T. 2. - ctp. 284.

JI.A. Ycranos. MHCTpyMeHTapHid KpayacOpCHHTa Ui MexaHu3uposaHHoro Tpyaa. Tpyasl UCIT PAH, Tom 27, Bbim. 3,
2015 r., c. 351-364

A Crowdsourcing Engine for Mechanized
Labor

D.A. Ustalov <dau@imm.uran.ru>,
Institute of Mathematics and Mechanics of Ural Branch of Russian Academy of
Sciences, 16 Sofia Kovalevskaya Str., Yekaterinburg, 620990, Russian Federation

Abstract. Microtask crowdsourcing implies decomposing a difficult problem into smaller
pieces. For that a special human-computer platform like CrowdFlower or Amazon
Mechanical Turk is used to submit tasks for human workers motivated by either
micropayments or altruism to solve. Examples of successful crowdsourcing applications are
food nutrition estimation, natural language processing, criminal invasion detection, and other
problems so-called “Al-hard”. However, these platforms are proprietary and requiring
additional software for maintaining the output quality. This paper presents the design,
architecture and implementation details of an open source engine for executing microtask-
based crowdsourcing annotation stages. The engine controls the entire crowdsourcing process
including such elements as task allocation, worker ranking, answer aggregation, agreement
assessment, and other means for quality control. The present version of the software is
implemented as a three-tier system, which is composed of the application level for the end-
user worker interface, the engine level for the Web service controlling the annotation process,
and the database level for the data persistence. The RESTful API is used for interacting with
the engine. The methods for controlling the annotation are implemented as processors that are
initialized using the dependency injection mechanism for achieving the loose coupling
principle. The functionality of the engine has been evaluated by both using unit tests and
replication of a semantic similarity assessment experiment.

Keywords: crowdsourcing engine; mechanized labor; human-assisted computation; task
allocation; worker ranking; answer aggregation

DOI: 10.15514/ISPRAS-2015-27(3)-25

For citation: Ustalov D.A. A Crowdsourcing Engine for Mechanized Labor. Trudy ISP
RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 351-364. DOI: 10.15514/ISPRAS-2015-
27(3)-25.

1. Introduction

Nowadays, crowdsourcing is a popular and a very practical approach for producing
and analyzing data, solving complex problems that can be splitted into many simple

351

mailto:dau@imm.uran.ru

D.A. Ustalov. A Crowdsourcing Engine for Mechanized Labor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 351-364

and verifiable tasks, etc. Amazon's MTurk?, a well known online labor marketplace,
promotes crowdsourcing as the artificial artificial intelligence.

In the mechanized labor genre of crowdsourcing, a requester submits a set of tasks
that are solved by the crowd workers on the specialized platform. Usually, the
workers receive micropayments for their performance; hence, it is of high interest to
reach the happy medium between the cost and the quality. The work, as described in
this paper, presents an engine for controlling a crowdsourcing process.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 defines the problem of lacking the control software for crowdsourcing.
Section 4 presents a two-layer approach for crowdsourcing applications separating
the engine from the end-user application. Section 5 describes the implementation of
such an engine. Section 6 briefly evaluates the present system. Section 7 concludes
with final remarks and directions for the future work.

2. Related Work

There are several approaches for controlling the entire crowdsourcing process.
Whitehill et al. proposed the GLAD? model that, for the first time, connects such
variables as task difficulty, worker experience and answer reliability for image
annotation [1].

Bernstein et al. created the Soylent word processor, which automatically submits
text formatting and rewriting tasks to the crowd on MTurk [2]. The paper also
introduces the Find-Fix-Verify workflow, which had highly influenced many other
researchers in this field of study.

Demartini, Difallah & Cudré-Mauroux developed ZenCrowd, another popular
approach for controlling crowdsourcing, which was originally designed for mapping
the natural language entities to the Linked Open Data [3]. ZenCrowd is based on the
EM-algorithm and deploys the tasks to MTurk.

The idea of providing an integrated framework for a crowdsourcing process is not
novel and has been addressed by many authors both in academia and the industry,
e.g. WebAnno [4], OpenCorpora [5] and Yet Another RussNet [6].

However, the mentioned products are problem-specific and using them for
crowdsourcing different tasks may be non-trivial. Moreover, that software do often
force the only possible approach for controlling the process of crowdsourcing,
which in some cases may result in suboptimal performance.

2.1 Task Allocation

Lee, Park & Park created a dynamic programming method for task allocation among
workers showing that consideration of worker's expertise increases the output

quality [7].

L http://mturk.com/
2 http://mplab.ucsd.edu/~jake/
352

http://mturk.com/
http://mplab.ucsd.edu/~jake/

JI.A. Ycranos. MHCTpyMeHTapHid KpayacOpCHHTa Ui MexaHu3uposaHHoro Tpyaa. Tpyasl UCIT PAH, Tom 27, Bbim. 3,
2015 r., c. 351-364

Yuen, King & Leung used probabilistic matrix factorization to allocate tasks in the
similar manner that recommender systems do [8].
Karger, Oh & Shah proposed a budget-optimal task allocation algorithm inspired by

belief propagation and low-rank matrix approximation being suitable for inferring
correct answers from those submitted by the workers [9].

2.2 Worker Ranking

Welinder & Perona presented an online algorithm for estimating annotator
parameters that requires expert annotations to assess the performance of the workers
[10].

Difallah, Demartini & Cudré-Mauroux used social network profiles for determining
the worker interests and preferences in order to personalize task allocation [11].
Daltayanni, de Alfaro & Papadimitriou developed the WorkerRank algorithm for
estimating the probability of getting a job on the oDesk online labor marketplace
utilizing employer implicit judgements [12].

2.3 Answer Aggregation

The answers are often aggregated with majority voting, which is highly efficient for
small number of annotators per question [9]. Some works use a fixed number of
answers to aggregate [5].

Sheshadri & Lease released SQUARES?, a Java library containing implementations
of various consensus methods for crowdsourcing [13], i.e. such methods as
ZenCrowd [3], majority voting, etc.

Meyer et al. developed DKPro Statistics* implementing various popular statistical
agreement, correlation and significance analysis methods that can be internally used
in answer aggregation methods [14].

2.4 Cost Optimization

Satzger et al. presented an auction-based approach for crowdsourcing allowing
workers to place bids on relevant tasks and receive payments for their completion
[15].

Gao & Parameswaran proposed algorithms to set and vary task completion rewards
over time in order to meet the budget constraints using Markov decision processes
[16].

Tran-Thanh et al. developed the Budgeteer algorithm for crowdsourcing complex
workflows under budget constraints that involves inter-dependent micro-tasks [17].

3 http://ir.ischool.utexas.edu/square/
4 https://code.google.com/p/dkpro-statistics/
353

http://ir.ischool.utexas.edu/square/
https://code.google.com/p/dkpro-statistics/

D.A. Ustalov. A Crowdsourcing Engine for Mechanized Labor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 351-364

3. Related Work

Hosseini et al. defines the four pillars of crowdsourcing making it possible to
represent the crowdsourcing system C as the following quadruple [18]:
C=(W,R,T,P). Q)
Here, W is the set of workers who benefit from their participation in the process C,
R is the task requester who benefits from the crowd work deliverables, T is the set of
human intelligence tasks provided by the requester R, and P is the crowdsourcing
platform that connects these elements.

Unfortunately, there is no open and customizable software for controlling C. This
problem is highly topical since using MTurk, the largest crowdsourcing platform, is
not possible outside the U.S. making it interesting to develop an independent
substitution that can be hosted.

4. Approach

The reference model of a typical mechanized labor crowdsourcing process is present
at Fig. 1 and consists of the following steps repeated until either convergence is
achieved or the requester stops the process:

a worker requests a task from the system,

the system allocates a task for that worker,

the worker submits an answer for that task,

the system receives and aggregates the answer,

the system updates the worker and task parameters.

Task. Ansyvgr Ly Answef Ly
Allocation Receiving Aggregation

Fig. 1. Reference Model

akrwnE

4.1 Use Case Diagram

Modern recommender systems like PredictionlO® and metric optimization tools like
MOES® separate the application layer from the engine layer to simplify integration
into the existent systems. In crowdsourcing, it is possible to separate the worker

5 http://prediction.io/
® https://github.com/Yelp/MOE
354

http://prediction.io/
https://github.com/Yelp/MOE

JI.A. Ycranos. MHCTpyMeHTapHid KpayacOpCHHTa Ui MexaHu3uposaHHoro Tpyaa. Tpyasl UCIT PAH, Tom 27, Bbim. 3,
2015 r., c. 351-364

annotation interface (the application) and the crowdsourcing control system (the
engine) for the same reason.

The use case diagram present at Fig. 2 shows two actors—the requester and the
application—interacting with the engine. The application works with the engine
through the specialized programming interface (API) and the requester works with
the engine using the specialized graphical user interface (GUI).

>%

Engine
Application i

Requester

Fig. 2. UML Use Case Diagram

4.2 Sequence Diagram

The sequence diagram at Fig. 3 shows the interaction between those elements: a
worker uses the end-user application that is connected to the engine that actually
controls the process and provides the application with the appropriate data.

[Aplication| [:Engine |

[[
I I
request GUI ! I
T 1] !
I I
| |
p L]

g set up GUI } }
! !
request task } request task }

I

I
update GUI JL<} allocate task Dm

}

!

1

!

1

L
I
|

|
|
submit answer .|
|
|
|
|
|
|
|

<t

submit answer,

g update GUI

Fig. 3. UML Sequence Diagram

355

D.A. Ustalov. A Crowdsourcing Engine for Mechanized Labor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 351-364

5. Implementation

The proposed system is implemented in the Java programming language as a
RESTful Web Service using such APls as JAX-RS’ within the Dropwizard®
framework. The primary data storage is PostgreSQL?®, a popular open source object-
relational database.

5.1 Class Diagram

The class diagram at Fig. 4 represents the crowdsourcing system as according to the
equation 1. The Process class defines a system C and specifies how its elements
W, T and A should be processed by the corresponding implementations of these
interfaces.

Particularly, an actual processor inherits that abstract class and implements one or
many of the following interfaces: WorkerRanker, TaskAllocator,
AnswerAggregator. The reason for that is the dependency uncertainty of each
particular processor implementation that has been approached by the dependency
injection mechanism?°.

«interface»
WorkerRanker
rank(w: Worker): WorkerRanking Process
rank(w: Worker, t: Task): WorkerRanking «@ Named» {value=id}
-id: String
«interface» «@ Named» {value=options}
TaskAllocator -options: Map<String, Object>
-workerRanker: WorkerRanker
allocate(w: Worker): TaskAllocation -taskAllocator: TaskAllocator
-answerAggregator: AnswerAggregator
«@ Inject»
«interface» +Process()
AnswerAggregator
aggregate(t: Task): AnswerAggregation

Fig. 4. UML Class Diagram

For example, an implementation of the majority voting technique, which is a
popular approach for answer aggregation, should inherit the AnswerAggregator
interface and provide the implementation of the aggregate method that returns
an AnswerAggregation instance representing the aggregated answer for the
given Task instance. In order to access the answers stored in the database, the
corresponding data access object—AnswerDAO—should be injected. Since that the
answers cannot be fetched without the correct process identifier, the corresponding

" https://jcp.org/en/jsr/detail ?id=339
8 http://dropwizard.io/

% http://www.postgresqgl.org/

10 https://jcp.org/en/jsr/detail ?id=330
356

https://jcp.org/en/jsr/detail?id=339
http://dropwizard.io/
http://www.postgresql.org/
https://jcp.org/en/jsr/detail?id=330

JI.A. Ycranos. MHCTpyMeHTapHid KpayacOpCHHTa Ui MexaHu3uposaHHoro Tpyaa. Tpyasl UCIT PAH, Tom 27, Bbim. 3,
2015 r., c. 351-364

Process instance should be injected, too. Direct injection of Process to
AnswerAggregator and vice versa causes a circular dependency. The cycle has
been successfully broken by injecting a lazily initialized Process provider instead of
its actual instance.

On startup, the application configures itself with the provided configuration files,
setting up the top-level Guice™ dependency injector. After establishing a database
connection, a database-aware child injector has been created, because it is not
possible to achieve during the framework bootstrapping stage. Then, for each
defined process, the application initializes a child injector containing process-
specific bindings, and that injector is inherited from the database-aware one.
Finally, the application exposes these processes by the RESTful API.

5.2 Package Diagram

The system is composed of several packages responsible for its functionality. Since
that the Dropwizard framework is used, the most of boilerplate code is already
included in the framework. However, such a sophisticated initialization requires
additional middleware resulting in the package hierarchy represented at Fig. 5
detailed in Table 1.

I_:(‘;| mtsar
api
cli

—T

dropwizard
guice

processors
worker
task
answer

resources

—
—

views

Fig. 5. UML Package Diagram

1 https://github.com/google/guice
357

https://github.com/google/guice

D.A. Ustalov. A Crowdsourcing Engine for Mechanized Labor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 351-364

Table 1. Packages

Package Description

mtsar Utility classes useful to avoid the code repetition.

mtsar.api Entity representations.

mtsar.api.sqgl Data access objects and object mappers.

mtsar.cli Colr(nmand-line tools for maintenance and evaluation
tasks.

mtsar.dropwizard Middleware for Dropwizard.

mtsar.processors Actual implementations of the methods for controlling
workers, tasks, answers.
mtsar.resources Resources exposed by the RESTful API.

mtsar.views View models used by the GUI.

6. Evaluation

The system functionality is tested using JUnit*2. At the present moment, only classes
contained in the mtsar.processors and mtsar.resources packages are
provided with the appropriate unit tests. The continuous integration practice is
followed by triggering a build on Travis CI*® for each change to ensure that all the
unit tests have been successfully passed.

In order to make sure the system works, the RUSSE'* crowdsourced dataset has
been used (see [19] for details). The russe process has been configured to use the
zero worker ranker that simply ranks any worker with zero rank, inverse count task
allocator that allocates the task with the lowest number of available answers, and the
majority voting answer aggregator (Fig. 6). Then, the workers, tasks and answers
stored in this dataset have been submitted into the system via the RESTful API and
the conducted experiment showed that no data have been lost during this activity
and the engine does allocate tasks and aggregate answers correctly w.r.t. the chosen
processors.

2 http://junit.org/

13 https://travis-ci.org/
14 http://russe.nlpub.ru/
358

http://junit.org/
https://travis-ci.org/
http://russe.nlpub.ru/

JI.A. Ycranos. MHCTpyMeHTapHid KpayacOpCHHTa Ui MexaHu3uposaHHoro Tpyaa. Tpyasl UCIT PAH, Tom 27, Bbim. 3,
2015 r., c. 351-364

Process "russe"

Key Value Action
workerCount 280 Details
workerRanker mtsar.processors.worker.ZeroRanker

taskCount 398 Detalls
taskAllocator mtsar.processors.task. InverseCountAllocator

answerCount 4200 Details
answerAggregator mtsar.processors.answer.MajorityVoting

Additional Options

Key Value

i No additional options found.

& Dashboard % Processes © GitHub

Mechanical Tsar

Fig. 6. Graphical User Interface

7. Conclusion

In this study, a crowdsourcing engine for mechanized labor has been presented and
described among the used approach and its implementation. Despite the conducted
experiment showing promising preliminary results, there are the following reasons
for the further work.

Firstly, it is necessary to conduct a field study, which was not possible due to the
lack of time. Secondly, it is necessary to integrate state of the art methods for
worker ranking, task allocation and answer aggregation into the engine to provide a
requester with the best annotation quality at the lowest cost. Finally, it may be
useful to extend the engine API and GUI in order to make it more convenient and
user-friendly.

The source code of the system is released on GitHub'® under the Apache License.
The documentation is available on GitHub® in English and on NLPub*” in Russian.

Acknowledgements. This work is supported by the Russian Foundation for the
Humanities, project Ne 13-04-12020 “New Open Electronic Thesaurus for Russian”.
The author is grateful to the anonymous referees who offered useful comments on
the present paper.

15 https://github.com/dustalov/mtsar
16 https://github.com/dustalov/mtsar/wiki
7 https://nlpub.ru/MTsar
359

https://github.com/dustalov/mtsar
https://github.com/dustalov/mtsar/wiki
https://nlpub.ru/MTsar

D.A. Ustalov. A Crowdsourcing Engine for Mechanized Labor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 351-364

References

[1].

[2].

[3].

[4].

[5].

[6].

[71.

[8].

[9].

[10].

[11].

[12].

360

J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, J. Movellan. Whose Vote Should Count
More: Optimal Integration of Labels from Labelers of Unknown Expertise. Advances in
Neural Information Processing Systems 22. Curran Associates, Inc., 2009, pp. 2035-
2043.

M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R. Karger,
D. Crowell, K. Panovich. Soylent: A word processor with a crowd inside. Proceedings
of the 23Nd Annual ACM Symposium on User Interface Software and Technology
(UIST ’10). New York, NY, USA: ACM, 2010, pp. 313-322. doi:
10.1145/1866029.1866078

G. Demartini, D. E. Difallah, P. Cudré-Mauroux. ZenCrowd: Leveraging Probabilistic
Reasoning and Crowdsourcing Techniques for Large-Scale Entity Linking. Proceedings
of the 21st International Conference on World Wide Web (WWW °12). New York, NY,
USA: ACM, 2012, pp. 469-478. doi: 10.1145/2187836.2187900

S. M. Yimam, I. Gurevych, R. E. de Castilho, C. Biemann. WebAnno: A Flexible, Web-
based and Visually Supported System for Distributed Annotations, in Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. Sofia, Bulgaria: Association for Computational Linguistics, 2013, pp.
1-6.

V. Bocharov, S. Alexeeva, D. Granovsky, E. Protopopova, M. Stepanova, A. Surikov.
Crowdsourcing morphological annotation, in Computational Linguistics and Intellectual
Technologies: papers from the Annual conference “Dialogue”, vol. 1, no.12(19).
Moscow: RSUH, 2013, pp. 109-124.

P. Braslavski, D. Ustalov, M. Mukhin. A Spinning Wheel for YARN: User Interface for
a Crowdsourced Thesaurus, in Proceedings of the Demonstrations at the 14th
Conference of the European Chapter of the Association for Computational Linguistics.
Gothenburg, Sweden: Association for Computational Linguistics, 2014, pp. 101-104.

S. Lee, S. Park, S.Park. A Quality Enhancement of Crowdsourcing based on Quality
Evaluation and User-Level Task Assignment Framework. 2014 International Conference
on Big Data and Smart Computing (BIGCOMP). IEEE, 2014, pp. 60-65. doi:
10.1109/BIGCOMP.2014.6741408

M.-C. Yuen, I. King, K.-S. Leung. TaskRec: A Task Recommendation Framework in
Crowdsourcing Systems. Neural Processing Letters, pp. 1-16, 2014. doi:
10.1007/s11063-014-9343-z

D.R. Karger, S.Oh, D.Shah. Budget-Optimal Task Allocation for Reliable
Crowdsourcing Systems. Operations Research, vol. 62, no. 1, pp. 1-24, 2014. doi:
10.1287/opre.2013.1235

P. Welinder P. Perona. Online crowdsourcing: Rating annotators and obtaining cost-
effective labels. 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition ~ Workshops (CVPRW), 2010, pp. 25-32. doi:
10.1109/CVPRW.2010.5543189

D. E. Difallah, G. Demartini, P. Cudré-Mauroux. Pick-A-Crowd: Tell Me What You
Like, and I’ll Tell You What to Do. Proceedings of the 22Nd International Conference
on World Wide Web (WWW ’13). Rio de Janeiro, Brazil: International World Wide
Web Conferences Steering Committee, 2013, pp. 367-374.

M. Daltayanni, L. de Alfaro, P. Papadimitriou. WorkerRank: Using Employer Implicit
Judgements to Infer Worker Reputation. Proceedings of the Eighth ACM International

JI.A. Ycranos. MHCTpyMeHTapHid KpayacOpCHHTa Ui MexaHu3uposaHHoro Tpyaa. Tpyasl UCIT PAH, Tom 27, Bbim. 3,

2015 1., c. 351-364
Conference on Web Search and Data Mining (WSDM °’15). New York, NY, USA:
ACM, 2015, pp. 263-272. doi: 10.1145/2684822.2685286

[13]. A. Sheshadri, M. Lease. SQUARE: A Benchmark for Research on Computing Crowd
Consensus. First AAAI Conference on Human Computation and Crowdsourcing, 2013,
pp. 156-164.

[14]. C. M. Meyer, M. Mieskes, C. Stab, I. Gurevych. DKPro Agreement. An Open-Source
Java Library for Measuring Inter-Rater Agreement. Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: System Demonstrations.
Dublin, Ireland: Dublin City University and Association for Computational Linguistics,
2014, pp. 105-109.

[15]. B. Satzger, H. Psaier, D. Schall, S. Dustdar. Auction-based crowdsourcing supporting
skill management. Information Systems, vol.38, no. 4, pp. 547-560, 2013. doi:
10.1016/j.i5.2012.09.003

[16]. Y. Gao, A. Parameswaran. Finish Them! : Pricing Algorithms for Human Computation.
Proceedings of the VLDB Endowment, vol.7, no.14, 2014. doi:
10.14778/2733085.2733101

[17]. L. Tran-Thanh, T.D. Huynh, A.Rosenfeld, S.D. Ramchurn, N.R. Jennings.
Crowdsourcing Complex Workflows under Budget Constraints. Proceedings of the
Twenty-Ninth AAAI Conference on Atrtificial Intelligence (AAAI-15). AAAI Press,
2015, pp. 1298-1304.

[18]. M. Hosseini, K. Phalp, J. Taylor, R.Ali. The Four Pillars of Crowdsourcing: a
Reference Model. 2014 IEEE Eighth International Conference on Research Challenges
in Information Science (RCIS), 2014, pp. 1-12. doi: 10.1109/RCI1S.2014.6861072

[19]. A. Panchenko, N.V. Loukachevitch, D. Ustalov, D.Paperno, C.M. Meyer,
N. Konstantinova. RUSSE: The First Workshop on Russian Semantic Similarity.
Computational Linguistics and Intellectual Technologies: papers from the Annual
conference “Dialogue”. Moscow: RGGU, 2015, vol. 2, no. 14(21), pp. 89-105.

WHCTpyMeHTapui KpayacopcuHra ans
MeXaHM3UPOBaHHOro Tpyaa

I A. Yemanos <dau@imm.uran.ru>,
Hncmumym mamemamuxu u mexanuxu um. H.H. Kpacosckozo
Ypanvcroco omoenenus Poccuiickotl akademuu HAYK,
620990, 2. Examepunbype, ya. Cogou Kosanescroti, 0. 16

AunHoTaums. KpayacopcuHr Ha OCHOBE BBIIOJTHEHUSI MHKPO3aj1ad MPeAIoiaraeT pa3ieieHue
UCXOJHOM 3ajaudl Ha MHOXKECTBO MEHEe KpYNHBIX. MMKpPO3ajaud BBINOJHAIOTCA Ha
CHELUATN3UPOBAHHBIX YEJIOBEKO-MAIIMHHBIX Miardopmax, Takux Kak CrowdFlower u
Amazon Mechanical Turk, 3a 4YTo yuyacTHHKH THpolecCa KpayICOPCHHIA IOJIy4aroT
HEKOTOpoe BO3HarpaxaeHue. Cpeam YCIEHIHbIX IPUMEPOB NPUMEHEHHs KpayICOpPCHHIa
CllelyeT OTMETHTh peIICHHEe 3amad II0 OLCHKE KaJOpUHHOCTH nHImu, o0paboTke
€CTECTBEHHOTO SI3bIKa, OOHAPYKEHHIO HE3aKOHHOTO NPOHWKHOBEHMS Ha TEPPUTOPHIO, U

361

mailto:dau@imm.uran.ru

D.A. Ustalov. A Crowdsourcing Engine for Mechanized Labor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 351-364

npyrux «MU-tpymabx» 3amad. CymiecTByromue miaTopMbl I BEITOIHEHUS] MUKPO3aaad
SBJIAIOTCS 3aKPBITHIMHU; U OoOecHedeHHs KadecTBa pe3yibraTa pasMeTKH HeoOXOIHMO
MIpeANPUHAMATE JIOTIOJHUTENbHBIE YCHINS 10 00paboTKe NaHHBIX. B maHHOI craThe
NPEJCTaBICH HHCTPYMEHTApUi Ui BBINOJIHEHHUS MHKPO3afad C OTKPBITBIM HCXOJHBIM
KOZIOM, IPOBENECHO ONMCAHUE apXUTEKTYpbl MU JeTaned peanusauuu. HMHCTpyMeHTapuit
yIOpaBisieT BCEMH AacCMEeKTaMH TIpoIlecca BBIMOMHEHHS MHKPO3aJad: OCYIIECTBISET
Ha3HA4YCHUE 3a/laHUM|, OLICHKY KBaIM(HUKALUK yYaCTHUKOB, arperalio OTBETOB U OLICHKY UX
COTTIACOBAaHHOCTH, a TAK)KE BKIIIOYAET MHbBIE MOJAXOABI K 00ECIEUeHHIO KauecTBa pe3ybTaTa.
Texymas BepcHs MHCTpYMEHTapHsl peajn3oBaHa B BHAE TPEX3BEHHON HH(OPMAIIMOHHOI
CHCTEMBI, COCTOSIIEH N3 YpOBHS NPIJIOKEHHS ¢ HHTepdeiicoM U1 yJacTHUKOB, ypoBHs Be6-
CepBHCa JUIS YIpaBJIeHHs [IPOLECCOM, M YPOBHS XpaHEHWUs TaHHBIX. B3aumopeiicteue ¢ Beb-
CEpPBHUCOM OCYIIECTBIICTCS NIPU IOMOINM IIPOrpaMMHOTO HHTep¢elica, IMOCTPOSHHOIO Ha
OCHOBE apXUTEKTYpHOI'O CTWJIS NEpeflaud COCTOSHMA MpPEACTaBICHUA. MeTob! ylnpaBleHUs
pa3sMeTKOl peamM3yloTCsi B BHJIE IIPOIECCOPOB, WHHIMAIU3HPYEMBIX IIPH IOMOIIU
MEXaHM3Ma BHEIPEHMS 3aBHCUMOCTEH JUI JOCTIDKCHUSI NPHHIMIA CIaboil CBA3HOCTH
cucTeMbl. PaboTOoCIIOCOOHOCT MHCTPYMEHTAapHsl MOATBEPKAACTCS HATHMIMEM MOIYJIBHBIX
TECTOB M YCIENIHBIM BOCIPOM3BEICHHEM SKCIIEPUMEHTA II0 OIEHKE CEeMaHTHYECKON
0JIM30CTH CIIOB.

KnwueBnbie cioBa: KpayJCOPCHHTI; MeXaHPBPIpOBaHHI)If;I TpyA; 4YCJIOBCKO-MallIMHHBIC
BBIYHUCJIICHHUS, HA3HAYCHUC SaﬂaHHﬁ; OLICHKA TPpyJda YYaCTHUKOB, arperaiuus OTBETOB

DOI: 10.15514/ISPRAS-2015-27(3)-25

Jdasi uurupoBanmsi: YcranoB JA.. HHcTpymeHTapuii KpayAcopcuHra s
MexanmsupoBanHoro tpyaa. Tpyast UCIT PAH, Tom 27, Bem. 3, 2015 r., ctp. 351-364 (Ha
anrimiickom sizpike). DOI: 10.15514/ISPRAS-2015-27(3)-25.

Cnucok nutepatypbl

[1]. J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose Vote Should Count
More: Optimal Integration of Labels from Labelers of Unknown Expertise. Advances in
Neural Information Processing Systems 22. Curran Associates, Inc., 2009, pp. 2035-
2043.

[2]. M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R. Karger,
D. Crowell, K. Panovich. Soylent: A word processor with a crowd inside. Proceedings
of the 23Nd Annual ACM Symposium on User Interface Software and Technology
(UIST ’10). New York, NY, USA: ACM, 2010, pp. 313-322. doi:
10.1145/1866029.1866078

[3]. G.Demartini, D. E. Difallah, P. Cudré-Mauroux, ZenCrowd: Leveraging Probabilistic
Reasoning and Crowdsourcing Techniques for Large-Scale Entity Linking. Proceedings
of the 21st International Conference on World Wide Web (WWW ’12). New York, NY,
USA: ACM, 2012, pp. 469-478. doi: 10.1145/2187836.2187900

[4]. S. M. Yimam, I. Gurevych, R. E. de Castilho, C. Biemann. WebAnno: A Flexible, Web-
based and Visually Supported System for Distributed Annotations, in Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. Sofia, Bulgaria: Association for Computational Linguistics, 2013, pp.
1-6.

362

JI.A. Ycranos. MHCTpyMeHTapHid KpayacOpCHHTa Ui MexaHu3uposaHHoro Tpyaa. Tpyasl UCIT PAH, Tom 27, Bbim. 3,
2015 r., c. 351-364

(5]

[6].

[7].

[8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

B. bouapos, C. AnekceeBuy, /[l. I'panoBckuii, E.Ilpotononosa, M. Crenanosa,
A. CypukoB. Mopdonornueckass pa3MeTka KopIyca CHJIAMH — BOJOHTEDOB.
KOMHLIOTepHaSI JIMHIBUCTHKA W HWHTCJUICKTYAJIbHBIC TEXHOJIOTUU!: Ilo MarepuaiamMm
exeroqHoi MexayHaponaoi koHpeperntmu «J/{uanor» (bexacoso, 29 mas — 2 nioHs
2013 r.), Beim. 12(19), T. 1. Mocksa: U3a-so PITY, 2013, C. 109-124.

P. Braslavski, D. Ustalov, M. Mukhin. A Spinning Wheel for YARN: User Interface for
a Crowdsourced Thesaurus, in Proceedings of the Demonstrations at the 14th
Conference of the European Chapter of the Association for Computational Linguistics.
Gothenburg, Sweden: Association for Computational Linguistics, 2014, pp. 101-104.

S. Lee, S. Park, S. Park. A Quality Enhancement of Crowdsourcing based on Quality
Evaluation and User-Level Task Assignment Framework. 2014 International Conference
on Big Data and Smart Computing (BIGCOMP). IEEE, 2014, pp. 60-65. doi:
10.1109/BIGCOMP.2014.6741408

M.-C. Yuen, I. King, K.-S. Leung. TaskRec: A Task Recommendation Framework in
Crowdsourcing Systems. Neural Processing Letters, pp. 1-16, 2014. doi:
10.1007/511063-014-9343-z

D.R. Karger, S.Oh, D.Shah. Budget-Optimal Task Allocation for Reliable
Crowdsourcing Systems. Operations Research, vol. 62, no. 1, pp. 1-24, 2014. doi:
10.1287/opre.2013.1235

P. Welinder P. Perona. Online crowdsourcing: Rating annotators and obtaining cost-
effective labels. 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition ~ Workshops (CVPRW), 2010, pp. 25-32. doi:
10.1109/CVPRW.2010.5543189

D. E. Difallah, G. Demartini, P. Cudré-Mauroux. Pick-A-Crowd: Tell Me What You
Like, and I’ll Tell You What to Do. Proceedings of the 22Nd International Conference
on World Wide Web (WWW °13). Rio de Janeiro, Brazil: International World Wide
Web Conferences Steering Committee, 2013, pp. 367-374.

M. Daltayanni, L. de Alfaro, P. Papadimitriou. WorkerRank: Using Employer Implicit
Judgements to Infer Worker Reputation. Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining (WSDM ’15). New York, NY, USA:
ACM, 2015, pp. 263-272. doi: 10.1145/2684822.2685286

A. Sheshadri, M. Lease. SQUARE: A Benchmark for Research on Computing Crowd
Consensus. First AAAI Conference on Human Computation and Crowdsourcing, 2013,
pp. 156-164.

C. M. Meyer, M. Mieskes, C. Stab, I. Gurevych. DKPro Agreement: An Open-Source
Java Library for Measuring Inter-Rater Agreement. Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: System Demonstrations.
Dublin, Ireland: Dublin City University and Association for Computational Linguistics,
2014, pp. 105-109.

B. Satzger, H. Psaier, D. Schall, S. Dustdar. Auction-based crowdsourcing supporting
skill management. Information Systems, vol.38, no. 4, pp. 547-560, 2013. doi:
10.1016/j.i5.2012.09.003

Y. Gao, A. Parameswaran. Finish Them! : Pricing Algorithms for Human Computation.
Proceedings of the VLDB Endowment, wvol.7, no.14, 2014. doi:
10.14778/2733085.2733101

L. Tran-Thanh, T.D. Huynh, A.Rosenfeld, S.D. Ramchurn, N.R. Jennings.
Crowdsourcing Complex Workflows under Budget Constraints. Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15). AAAI Press,
2015, pp. 1298-1304.

363

D.A. Ustalov. A Crowdsourcing Engine for Mechanized Labor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 351-364

[18].

[19].

364

M. Hosseini, K. Phalp, J. Taylor, R. Ali. The Four Pillars of Crowdsourcing: a
Reference Model. 2014 IEEE Eighth International Conference on Research Challenges
in Information Science (RCIS), 2014, pp. 1-12. doi: 10.1109/RCIS.2014.6861072
A.Ilanuenko, H.B. IJlykamesuy, J. Ycranos, [l Ilanepno, K.M. Meiiep,
H. KoncrantunoBa, RUSSE: cemuHap 1O OIIGHKE CEMaHTHYECKOil OIM30CTH st
PYCCKOTO A3BbIKA. KOMHLIOTepHaSI JIMHIBUCTHUKA U UHTEJUICKTYaJIbHBIC TEXHOJIOTUU: Ilo
MaTepHaiaM exeroaHoil MexayHnaponoi kondpepenimu «/uasor» (Mocksa, 27 — 30
mast 2015 r.). M.: U3a-Bo PITY, 2015, Bemm. 14(21), T. 2, C. 89-105.

JI.C. 3enenxko, JI.A. Kononenskun, B.C. MBanoB u ap. IlporpaMMmHble cpeacTBa s OpPraHU3allMM M IOIIEPKKH
WMIPOBOH TUCTaHIMOHHOM 00yuatomieit cuctemsl «3Ducation». Tpymst UCIT PAH, Tom 27, Bem. 3, 2015 r.. €. 365-378

Software Tools for Organization and
Support of Distance Learning Game System
«3Ducation»

L.S. Zelenko <Zelenko.larisa.s@gmail.com>,
D.A. Konopelkin <dekanszn@gmail.com>,
V.S. Ivanov <arietis27@gmail.com>,
A.O. Grigoriev <edspawn@gmail.com>,

A.E. Semenov <alexandr.semenov.smr@gmail.com>,
M.A. Savachaev <msavachaev@gmail.com>,
E.E. Poberezkin <efim@poberezkin.ru>
Samara State Aerospace University (SSAU),
443086, Moskovskoe highway, Samara, Russia

Annotation. The article describes the purpose and capabilities of distance learning system
«3Ducation», which is a part of the information space of SSAU School of Computer Science.
The article also describes the architecture and structure of the system and all its constituent
software components. «3Ducation» system has a client-server structure; it consists of a large
number of subsystems, each of which solves problems of providing support for the system
work and its interaction with other systems. On the server side there is a database and an
application server installed, on the client side it is enough to install a small Unity Web Player
plug-in and, using a web browser, navigate through the virtual space and surf the site as a
virtual world 3D scenes are directly integrated into the HTML pages of the site. The server
part of the system implements the MVC architecture (Model-View-Controller); it uses
TCP/IP as the protocol of data exchange over the network.

«3Ducation» system is based on two principles: the game approach and virtual worlds
technologies. Virtual reality technologies allow to transfer the learning process into three-
dimensional space and make educational environment more interesting and learning process
more fun. Efficient and stable work of the system is provided by game engine Unity3D (free
version). Game approach implementing active methods of educational activities is aimed at
increasing the interest of students, due to the introduction of the competitive element
(encouragement for achievements) interest in self-education is constantly maintained and
even increased. The system implements the capability of teamwork.

Currently «3Ducation» system is implemented as a multi-user educational environment
where students could work together to carry out learning activities, cooperating and
communicating with one another, including using a mobile version of the system. The system
provides a unified interactive way of access to information resources from both a teacher and
a student side; with its help it is possible to increase the effectiveness of the acquisition of
knowledge and skills (both individual and social).

365

mailto:dekanszn@gmail.com
mailto:edspawn@gmail.com
mailto:efim@poberezkin.ru

L.S. Zelenko et al. Software Tools for Organization and Support of Distance Learning Game System «3Ducationy.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 365-378

Keywords: E-learning, gaming approach, technology of virtual reality, three-dimensional
space, a web application, game engine Unity3D, database

DOI: 10.15514/ISPRAS-2015-27(3)-26

For citation: Zelenko L.S., Konopelkin D.A., Ivanov V.S., Grigoryev A.O., Semenov A.E.,
Savachaev M.A., Paberezkin E.E. Software Tools for Organization and Support of Distance
Learning Game System «3Ducation». Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015,
pp. 365-378. DOI: 10.15514/ISPRAS-2015-27(3)-26.

1. Introduction

Currently distance education (e-learning) is becoming increasingly popular, almost
all educational institutions present their courses electronically and provide access to
them online. Virtual educational systems present a relatively new kind of learning
systems, which combines the features of traditional systems of training, e-learning
environments and achievments in information technology. The e-learning
environment is generally understood as "system-organized set of means of
communication, information resources, communication protocols, hardware and
software and organizational methods, designed to meet the educational needs of
users" [[1]]. Virtual learning environments provide comprehensive methodological
and technological support for distance educational process, including training,
management of the educational process and its quality.

Currently there are a lot of virtual and distance learning environments, but
nevertheless there’s a relevant task of creating virtual environments which use
modern information technology, such as virtual reality technologies that make the
educational space more interesting and learning process more fun. Social studies
indicate that the boundary between the virtual and real worlds is being erased. The
advantages of the three-dimensional virtual space are derived from human
perception of information. Up to 80% of the information about the world a person
receives through sight which works more effective when the world it sees is more
imaginative. Teachers know that a simple and obvious example is often more
effective than strict theoretical calculations. The most popular educational resources
on the Internet (eg, Khan Academy [[2[]) increasingly rely on video instead of text.

Distance learning system «3Ducation» is built on two principles:

e game approach, which aims to increase the interest of students by
introducing interactive and continuous feedback, encouragement for
achievements, teamwork capabilities and the presence of a competitive
element to the system.

e virtual reality involves the transfer of the learning process into three-
dimensional environment that allows you to remove the problems of the
supply of educational material. This allows you to maintain and even
increase the interest in self-learning, and thus enhances the effectiveness of
training.

366

JI.C. 3enenxko, JI.A. Kononenskun, B.C. MBanoB u ap. IlporpaMMmHble cpeacTBa s OpPraHU3allMM M IOIIEPKKH
WMIPOBOH TUCTaHIMOHHOM 00yuatomieit cuctemsl «3Ducation». Tpymst UCIT PAH, Tom 27, Bem. 3, 2015 r.. €. 365-378

Combining the possibilities of advanced information technologies with teaching
potential, it is possible to build an individual educational path for each student,
taking into account his needs and features of information perception and processing.

2. System architecture

Distance gaming learning system «3Ducation», developed at the Department of
Software Systems of SSAU, is based on client-server technology and is built on the
three tiered architecture (Fig. 1). Server component of the system includes the
server application and the database. The server application allows you to use the
same logic in both desktop and mobile client. The client part of the system is simply
a web browser, which is used to view pages on the server (user only needs to install
a small plug-in Unity Web Player). 3D-scenes of the virtual world are integrated
into the HTML-page, so the student can move through the virtual space as through
the pages of the usual websites. The server part of the system implements the MVC
(Model-View-Controller) architecture, which defines three levels:

o level of presentation of portal’s web pages;
o level of business logic and data access;
o data level.

0BWNIbHOE KIIMEHTCKOE NPHIIONEHNE
Mobile application client

rCmseBuﬂdﬂ] rs:aﬁsncs][Testing]
f ™

Data loader Model of perfermance and
achievements

Virtual World

IS scripts

A

oxgrina Server application

Web pages vie.

Application behavior classes

DB access layer

Fig.1. System architecture.

367

L.S. Zelenko et al. Software Tools for Organization and Support of Distance Learning Game System «3Ducationy.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 365-378

The mobile client application provides all the basic functions of the basic version of
the system.

The network protocol TCP/IP is used as a network communication protocol.
Controllers of behavior logic group serve the pages of the presentation group. The
main component of the model (data level) is a database context; there is given a
listing of all the essential classes included in the model, and all the controllers work
with the database through it.

1. Software for the organization and support of the system

Distance learning system «3Ducation» is a client-server application which solves
following tasks:

e Creates a virtual learning space, based on information about the courses
stored in the database.

e Provides remote access to the virtual space;

o Provides support for the creation and modification of training courses —
allows the developer (the teacher) to create thematic courses (lectures),
assignments, tests, etc. The database stores all the information about the
training courses.

e Provides support for the work of the system administrator and gives him
the opportunity to keep the content of the system to date: update
information on the users of the system, work with the achievements, fill the
system with new information.

The structural diagram of this system is shown in Fig. 2. All data required for
system operation is stored in the database located on a server of the system.

368

JI.C. 3enenxko, JI.A. Kononenskun, B.C. MBanoB u ap. IlporpaMMmHble cpeacTBa s OpPraHU3allMM M IOIIEPKKH
WMIPOBOH TUCTaHIMOHHOM 00yuatomieit cuctemsl «3Ducation». Tpymst UCIT PAH, Tom 27, Bem. 3, 2015 r.. €. 365-378

DISTANT LEARNING SYSTEM «3DUCATION»

The server part of the system

The client part of the system

Subsystem of creating educational content

| Unity-3D Engine

| Course editor

| Tests and test items

generator

leaming paths

| Graphic :d.im; for building

| Testand templates of tests editar

I

Subsystem of virtual space
creation

The subsystem for virtual
world generation

Visualization subsystem

IRUDP,

| The file subsystem

| Networking subsystem F

|

Networking subsystem ‘

| Character selection subsystem |

DB TCP/IP - - -
¢ Subsystem of interaction with the
virtual world
— User achievements accounting
£ U [Tests export subsystem Administration subsystem User g— subsystem
oL in DLS SOI SSAU s
SSAU Users® Website Usess accounting Subsystem of 3D-tasks creation
content sybsystem subsystem
Leaming content subsystem subsystem.
import subsystem | Authorizations Control Subsystem
A5 (for mobile client)

so1

SSAU

Fig. 2. Structure of system.

3.1 The server part of the system

The server part of the training system includes a subsystem of educational content
creation, which includes training courses editor, graphic editor for constructing a
trajectory of training and test generator.
Training courses editor (Fig. 3) is designed for the development and editing of
training courses, it enables the teacher to fill the course with theoretical material
(lectures, which are divided into paragraphs), individual 3D-tasks, tests (training

and control).

wErs
73 aewo 2009
7 Bonpoc N1
7 Bonpoc He2
7 Bonpoc 3
7 Bonpoe Hed
7 Bonpoc NS

Kagmswa noncrasms

7 Banpoe M6

? Bonpoc M7

7 Benpoc g

? Bonpoc M9

+ % Era asuo 2010
+ 7% €MD amo 2011
EM3 peuo 2012

4% EMamwo 2013
? Er3 geuo 2018

%13 Er 15

Bapas
o Bapueit
Bepasi
Buprasi

Coxpasm,

Fig. 3. Training courses editor.

369

L.S. Zelenko et al. Software Tools for Organization and Support of Distance Learning Game System «3Ducationy.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 365-378

Graphic editor for constructing (Fig. 4) a trajectory of training allows teacher to
build learning paths based on the structure of training course after determining the
relationship between the structural elements of the course and specifying the
sequence of their study (passing).

3Ducation | AYCTaHUMOHHAA OOYUAIOWAA CHCTEMA Ha OCHOBE BUPTYaALHLIX MAPOB

o4 i & y &

BupTyansHuii MHp PeaakTop kypcos MNons3osaten PeaaxTop censen ‘O npoexTe lereparop Tecros

Wrpopuaia 1 KT

= Coxpanme || 2 Movous

- - - - - -

‘CSE demo 2010 ‘CSE demo 2011

CSE demo 2013 CSE demo 2015

CSE demo 2014

‘CSE demo 2012]

Final Test

«Data encryption» «Creating, storage,
test

processing of data»

Fig. 4. Graphical editor of the course.

Test generator enables the teacher to create templates of test tasks and adjust the
structure of tests on a given topic (based on problem-oriented language), based on
which a "stack" of typical tasks of different complexity will be automatically
created. These functions are implemented in the editor of tests and test templates. If
needed generated tasks and tests can be recorded in the database of SSAU School of
Computer Science LMS built on the basis of LCMS Moodle, or saved in a
Microsoft Office text file format (*.docx). The subsystem of test export is
responsible for this.

File subsystem is responsible for storing files needed for the system to operate in
general.

Networking subsystem provides support for joint passing of training courses and for
training users of the system.

Learning content import subsystem is used for the conversion of tests and lectures
from the SSAU School of Computer Science LMS DB, built on the basis of LCMS
Moodle, into the database of the distance learning system «3Ducationy.
Administration subsystem consists of three subsystems: subsystem of user
achievements, which allows the system administrator to edit user achievements;
subsystem of website content editing, which allows you to maintain site content
relevance; users subsystem, which allows you to edit user accounts.

370

JI.C. 3enenxko, JI.A. Kononenskun, B.C. MBanoB u ap. IlporpaMMmHble cpeacTBa s OpPraHU3allMM M IOIIEPKKH
WMIPOBOH TUCTaHIMOHHOM 00yuatomieit cuctemsl «3Ducation». Tpymst UCIT PAH, Tom 27, Bem. 3, 2015 r.. €. 365-378

User achievements accounting subsystem is responsible for collection and saving of
results of user’s learning, control of tasks completion, rewarding user with game
achievements. In addition, the subsystem counts the game coins and rating of the
student based on his activity.

3Ducation | AMcTanumorHas OByuatoLas C1cTema Ha OCHOBE BUPTYaflbHbIX MUPOS = Pycani 3% English [B Buifm

(<) & & 1Y) : i

BMpTYanbHsii Mup PesaKkiop kypcos Mons308arent Pepaxtop canseii O npoexte Teveparop Tecios Joctixerus

Terepatop Tectos / Pegaxtop wabiora / Cioxenve 8 2-0% CC

' e
Bubnvorexa .. @ " .22 O ® @ Pesatop wabnoHa Mepementbie senvu.. © © © @
v i CTAHZAPTHBIE P 1 sonroca = (] Tun 3Have
- nenesar_co Hemoe 2
wicao_a = B N
wono 5 = B 20m_a Hemoe 10
nen_ec_a = Maxc_a Hemce 1000
KOCMHYC uex_cc 6 = (1s15_mcx_ce_ 5, maxe_wmcx_ce 6);) Hemoe ©
TAHTEHC uenesas_ce OM (M uenesas_ce, Maxc Lemesas_ecc); -
- - - - - meno_a Uemce 0O
cyraea_wucen = CIIOENTS (wucno_e, wucwo_6) ; rom 6 Uemoe 25
OTBET = NEPESECTH (cyrasa_uwcen, uenesas_cc); samc yex cc a lemce 16
_ e maxc vox_cc 6 lemce 18
S0MPOC = CHJIENTH ("dewy pasma cymea wnces ", e
EEESECTH (mucmo a, uex ce a), * (= %, uex e a, "-ch cuczeme || WEE_GEa emoe 2
cuucenun) u ", NEPESECTH (wacno 5, ucx_cc 6), "(z ", — Hemoe 2000
nex_cc_6, "o cucteme cumcnemus)? BesymeTas mpeacTamsTe B 7, .
= N 1 mex_cc_a Hemoe 2
uenesas_cc, "-ofi cucTeme cumcmemMs."): =
. ucx_cc_8 Hemoe 2
avcno_5 Hemce 0
1 nex co 6 Lemoe 2
rom_uemesan. lemos 2
. WatnoH BanaHsii [JNEe =TS £ Cromnuanposats maxc_penesa. lUemce 16
PesynbTar pabotsl reHepaTopa (~]

Fig. 5. Generator of tests and test templates.

The authorization subsystem provides control of user data at the start of the system
using a technology based on the technology of OpenlD, interacting with automated
information system (AIS) of SSAU School of Computer Science, which stores all
users data of all the systems included in the information space of the School of
Computer Science of SSAU.

3.2 The client part of the system

The client part of the system communicates with the server through the Internet
connection protocol TCP / IP, and other protocol clients RUDP. It includes:

e Unity-3D Engine, which built a virtual space system.

e Subsystem of a virtual learning space creation includes a subsystem for a
virtual space generation and visualization subsystem. Virtual learning
space consists of two parts: a permanent and dynamic. Permanent part is
represented in the form of the hall and includes a place of choice of the
course from the list of courses available, as well as background information
about the developers, the department and the university. The dynamic part
is a set of connected rooms / corridors and is generated automatically based
on the structure of the chosen course and rooms templates, which are
loaded into the specific content. The visualization subsystem allows you to

371

L.S. Zelenko et al. Software Tools for Organization and Support of Distance Learning Game System «3Ducationy.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 365-378

visualize the virtual world rooms in different ways using a wide variety of
shaders.

e Subsystem of character selection allows user to choose an avatar, which he
will drive in the virtual world.

e Networking subsystem is designed to provide communication and data
transfer between clients and servers.

e Subsystem of interaction with the virtual world includes user’s character
interaction with the objects of the game space logic, such as teleportation
booth or information stand.

o Subsystem of 3D-tasks creation allows the teacher to create customized
three-dimensional tasks setting two sections of computer science, which
will the student perform.

e Control subsystem, which provides interaction of the mobile client with
the server system.

3.3 Software providing network communication for mobile client
on Android and Windows Phone

Currently the system «3Ducation» is implemented as a multi-user educational
environment where students could work together to perform learning tasks,
cooperating and communicating with each other, including using a mobile version
of the system.

Development of multi-user mode required changing and/or adding the following
operating modes of the system:

e support for joint passing of chosen course of study,
¢ joint passing of test tasks in cooperative, competitive and team modes,
o calculation of statistics of the learning process,

o possibility of communication between the participants.
During the development of the network part of the system the following main
problems, inherent in mobile devices, have arisen and the following ways have been
found to solve them:

e device may have an unstable Internet connection: connection quality
depends on many factors: signal strength, connection speed, the type of
connection (Wi-Fi, 4G, 3G, Edge or GPRS). Solution: to use RUDP
protocol for transmission of most data.

o device can forcibly limit Internet connection: mobile devices are powered
by batteries and have a small battery life. To increase this time, the OS
developers and device manufacturers try to limit the consumption of one of
the most "voracious" components — radio module. Solution: add
mechanisms to suspend learning when connection is lost.

372

JI.C. 3enenxko, JI.A. Kononenskun, B.C. MBanoB u ap. IlporpaMMmHble cpeacTBa s OpPraHU3allMM M IOIIEPKKH
WMIPOBOH TUCTaHIMOHHOM 00yuatomieit cuctemsl «3Ducation». Tpymst UCIT PAH, Tom 27, Bem. 3, 2015 r.. €. 365-378

o the device can easily change the IP-address: if device uses the Internet via a
cellular network, IP-address of the device depends on the base station of
operator, which leads to the fact that when the reception conditions are
poor or when the user moves it changes very often. A similar situation
occurs when connecting/disconnecting the Wi-Fi network. Solution: to not
take into account the IP-address of the user, for identification only use
cookies and xsrf-token.

4. Technological support of educational process

Distance learning system «3Ducation» extensively use capabilities of virtual reality
technology (Virtual Reality) or virtual worlds. The criterion for selecting the
underlying technology was the possibility to integrate virtual worlds into the
browser that would ensure the integrity of the system. After careful analysis the free
version of the game "engine™ Unity3D was chosen. Its creators (the company Unity
Technologies [[4]]) describe it as "the most powerful free game engine". Level of
graphical effects of Unity3D is superior to both O3D and X3D graphics, but much
more valuable fact is its simplicity, convenience and stability. Graphic editor allows
to quickly model the geometry of the scene, without having to write code. To import
any resource it is enough to just move the appropriate file in the project folder. The
big advantage of Unity3D is an impressive collection of ready resources - household
items and character models with a ready and highly customizable code responsible
for controls and movement of the camera. By using Unity3D engine system can be
developed quickly and in full, avoiding non-obvious problems that can slow down
or stop the work.

4.1. Software development tools
Software selected to develop the system includes the following technologies [[5]]:

¢ development environment Microsoft Visual Studio 2010 and programming
language C #;

o technology of web application development ASP.NET 4.0;
o framework ASP.NET MVC Frame-work 3.0;

o data access technology Entity Framework 4.0;

o database management system Microsoft SQL Server 2008;
o server software 1S 7.5;

e JavaScript-library ExtJS 4.0;

o development environment Unity Editor 3.4;

o three-dimensional graphics editor Blender 2.6.

373

L.S. Zelenko et al. Software Tools for Organization and Support of Distance Learning Game System «3Ducationy.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 365-378

4.2. Data storage and manipulation techonlogies

One of the main functions of the system is processing and storage of data, as well as
correct display of it when generating the virtual world. For these purposes the data
access technology Entity Framework is used. It allows to automatically generate a
database and all tables on the basis of essential classes created by developer and
populate them with the original data, if it was determined. This technology monitors
all changes, made during the development of system, on the code level and, if
necessary, modifies the structure of the database. The choice of Entity Framework
determined selection of DBMS: Microsoft SQL Server 2008 is also a part of family
of technologies from Microsoft and ensures the correct work of the above functions
better than other options. The data necessary for the operation of the system
«3Ducation» is stored in the database. In addition, part of the data is stored on the
server in the form of files.

5. Team development of the system using git-repository

The system «3Ducation» is being developed by a large team of developers, which
obliges to use a version control system. After a comparative analysis of systems of
this class version control system GIT has been selected, because it has the following
advantages:
o decentralization (the presence of a local repository containing full
information on all changes, allows to maintain full local version control
and "fill" in the master repository only fully authenticated changes);

e good support of non-linear development;
o efficient operation of large projects;
e high performance and speed,;

o reliable system of audit comparisons and data validation based on the
hashing algorithm SHA1 (Secure Hash Algorithm 1);

o extensibility and configurability (there is a large number of graphical
shells, which allow to quickly and accurately work with Git) [[6], [7]].

One of the extensions used in the repository is a simplified git-flow diagram (a
general version of the diagram is shown in Fig. 6), which consists of master,
develop and features branches. According to it the system «3Ducation» is being
developed in several branches:

o branch, which always contains only release versions,
e branch, which stores the code between new releases,

e a set of branches, each of which is reserved for only one development
feature.
Thus, the use of the version control system Git allowed to clearly organize the work
of the development team to synchronize the development process and increase the
reliability of the system.

374

JI.C. 3enenxko, JI.A. Kononenskun, B.C. MBanoB u ap. IlporpaMMmHble cpeacTBa s OpPraHU3allMM M IOIIEPKKH
WMIPOBOH TUCTaHIMOHHOM 00yuatomieit cuctemsl «3Ducation». Tpymst UCIT PAH, Tom 27, Bem. 3, 2015 r.. €. 365-378

6. Conclusion

Distance learning system «3Ducation» is designed for middle and high school
students learning basic course "Computer Science". The system provides a unified
interactive way to access information resources for both a teacher and a student, it
can help to increase the effectiveness of the acquisition of knowledge and skills
(both individual and social).

e weaie
Sanchen teveley branchen Ferfiney mavier

.
18

>
2

Fig. 6. General git-flow diagram

References

(1].

2.
[3].

Koncepcii sozdaniya i razvitiya edinoj sistemy distancionnogo obrazovaniya v Rossii
[The concept of creation and development of a unified system of distance education in
Russia] — URL: http://www.e-joe.ru/sod/97/2_97/st064.html (date of the application
02.06.2015).

Oficial'nyj sajt Khan Academy [The official website of Khan Academy] — URL:
http://www.khanacademy.org (date of the application 05.06.2015).

Zelenko L.S. Virtual'naya real'nost' i igrovoj podhod kak osnovy postroeniya
tryohmernogo obuchayushchego prostranstva [Virtual reality and game approach as a
basis for constructing a three-dimensional learning space]. Materialy VIII

375

http://www.e-joe.ru/sod/97/2_97/st064.html
http://www.khanacademy.org/

L.S. Zelenko et al. Software Tools for Organization and Support of Distance Learning Game System «3Ducationy.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 365-378

mezhdunarodnoj nauch-no-prakticheskoj konferencii «Innovacii v usloviyah razvitiya
informacionno-kommunikacionnyh tekhnologij (INFO-2012)» [Materials of the VIII
International scientific and practical conference "Innovation in the development of
informational communication technologies (INFO-2012)"]/ under. ed. of V.G.
Domrachev, S.U. Uvaysov. - M.: MIEM, 2012. - P. 56-59 (in Russian).

[4]. Oficial'nyj sajt Unity3D [The official website of Unity3D] - URL:
http://unity3d.com/company/ (date of the application 15.06.2015).

[5]. Zelenko L.S., Zagumennov D.A. Principy razrabotki virtual'noj obuchayushchej sistemy
«3Ducation» [Principles of the development of virtual learning system «3Ducation»].
Shornik izbrannyh trudov VII Mezhdunarodnoj nauchno-prakticheskoj konferencii
«Sovremennye informacionnye tekhnologii i IT-obrazovanie» [Collection of selected
works of the VII International scientific and practical conference "Modern information
technologies and IT education"]. Under ed. of prof. V.A. Sukhomlina. - M.:
INTUIT.RU, 2012. - P. 326-333 (in Russian).

[6]. About - Git [Electronic resource]. - http://git-scm.com/about (date of the application
14.06.2015).

[7]. Review of wversion control systems [Electronic resource]. - http:/all-
ht.ru/inf/prog/p_0_1.html (date of the application 16.06.2015).

NMporpammHble cpeacTBa ANA opraHusauum
U noafdepXku uUrpoBom AUCTAaHUUOHHOW
obyu4arouwen cuctembl «3Ducation»

Jlapuca 3enenxo <Zelenko.larisa.s@gmail.com>,
JImumpuit Kononenvxkun <dekanszn@gmail.com>,
Bumanuii Heanoe <arietis27@gmail.com>,
Anexcanop I'pucopves <edspawn@gmail.com>,
Anexcanop Cemenos <alexandr.semenov.smr@gmail.com>,
Muxaun Casauaes <msavachaev@gmail.com >,
Egpum TIobepéskun <efim@poberezkin.ru>
Camapckuii cocydapcmeennbviii aspoxocmuyeckuti ynusepcumem (CIAY),
443086, Mockosckoe wocce, Camapa, Poccus

AHHOTammMsi. B cTaThe ONMCHIBAIOTCS Ha3HAYEHHE W BO3MOXKHOCTH JUCTAHIIMOHHOM
obyuaromieii cucrembr «3Ducationy», koTopas BXOAHT B HH(MOPMAIMOHHOE MPOCTPAHCTBO
mkonel nHpopMatuku CI'AY. Takke paccMaTpUBArOTCS apXUTEKTYpa U CTPYKTYpHAsi cXema
CHCTEMBI M ONHCaHUE BCEX BXOMIIIMX B HEro IMPOTpPaMMHBIX KOMIOHeHTOB. Cucrema
«3Ducation» ¥MMeeT KIHCHT-CEPBEPHYIO CTPYKTYpPY, OHa COCTOMT M3 OOJBIIOrO YHCiIa
MOJACHCTEM, KaKAash M3 KOTOPBIX pelIaeT 3agadd, o0ecHedHBaroOLIUe IMOIICPIKKY paboThI
CUCTEMBI U €€ B3aUMOJICHCTBUA C APYrMMU cuctemamu. Ha cepBepHON yacTH yCTaHOBIEHA
6a3a JaHHBIX W HAXOAUTCS CepBEp MPUIOKEHHs, Ha KIHEHTCKOH YacTH [JOCTATOYHO
ycraHOBUTh HeOompmod twaruH Unity Web Player wu, wucmons3ys BeO-Opaysep,

376

http://unity3d.com/company/
http://git-scm.com/about
http://all-ht.ru/inf/prog/p_0_1.html
http://all-ht.ru/inf/prog/p_0_1.html

JI.C. 3enenxko, JI.A. Kononenskun, B.C. MBanoB u ap. IlporpaMMmHble cpeacTBa s OpPraHU3allMM M IOIIEPKKH
WMIPOBOH TUCTaHIMOHHOM 00yuatomieit cuctemsl «3Ducation». Tpymst UCIT PAH, Tom 27, Bem. 3, 2015 r.. €. 365-378

MepeMENIaThesl 10 BUPTYalIbHOMY IIPOCTPAHCTBY U IPOCMATPHBATh CTPAHUILIBI CaifTa, Tak Kak
3D-cieHbl BUPTYaJIbHOTO MHpa HampsiMyto wuHTerpupyiorcs B HTML-crpaHuisl caiita.
CepBepHasi 4acTh CHCTEeMbI peanusyer apxutekrypy MVC (Model-View-Controller), B
KavyecTBe MPOTOKOJa 0OMEHA TAHHBIMU I10 CETU MCIob3yeTcs nporokon TCP/IP.

Cucrema «3Ducation» mocTpoeHa Ha JIBYX NPHHIMIAX: HTPOBOM IMOAXOJAE M TEXHOJOTHIX
BUPTYaJbHBIX MHpPOB. TEXHONOTHMHM BHPTYalbHOH pPEAJbHOCTH IO3BOJIAIOT IEPEHECTH
npouecc 0OyueHHs BHYTPb TPEXMEPHOTO IPOCTpaHCTBA M cAedaTh oOyuwaromiee
MPOCTPAaHCTBO Oojiee HMHTEPECHBIM, a Mpouecc oO0y4deHUs Oojee yBIEKAaTEIbHBIM.
D¢ dexTuBHYI0 U CTabWIBHYIO PabOTy CHCTEMBI OOeCTIeuBaeT HIPOBOH «IBKOK» Unity3D
(6ecrmatHast Bepcus). VrpoBoil MOAXOZ, € MOMOIIBIO KOTOPOTO PEalM3YIOTCS AKTHBHBIC
METOJbI IMEeJarorundeckoil MesTeNbHOCTH, HAleleH Ha IOBBIIIEHHE 3aHHTEPECOBAHHOCTU
00yJaeMBbIX, 3a CUCT BBEJCHHS COPEBHOBATEIHHOTO 3JIeMEHTa (IIOOIIPEHHs 3a TOCTIKCHHS)
MOCTOSIHHO IOJIJICP)KUBACTCSl W JIaKEe YBEIIMUMBACTCS HHTEpEC K CaMOCTOSTEIEHOMY
obyuenuto. B cucreme peannzyercs BO3MOKHOCTh KOMaHTHOH pabOTHI.

B Hacrosimee Bpemst cuctema «3Ducationy peann3oBaHa B BHAE MHOTOIIOJIB30BAaTEIBCKOH
00pa30BaTeILHON Cpebl, TE yIaIIUecs: MOTTIH ObI COBMECTHO BBINOJHATH yIEOHBIC 3a0aHUs,
KOOTIEpUPYACh M OO0Iasch MEXAYy co0OW, B TOM UYHCIEC HCIONB3YyS MOOMIBHYIO BEPCHIO
cucrembl. Cucrema oOecreunBaeT €QUHBI WHTEPAKTUBHBI Croco® JOCTyma K
MH(OPMAIIMOHHBIM pecypcaM KaK CO CTOPOHBI IIPENOAaBaTellsi, TaKk U CO CTOPOHBI
0o0yJaeMoro, ¢ e€e IOMOLIBI0 MOXKHO ITOBBICUTH 3()(EKTUBHOCTh NPHOOPETCHHsS 3HAHUM,
YMEHHH U HaBBIKOB (KaK MHIUBHUIYATbHBIX, TAK U COLUANBHBIX).

Keywords: E-learning, gaming approach, technology of virtual reality, three-dimensional
space, a web application, game engine Unity3D, database

DOI: 10.15514/ISPRAS-2015-27(3)-26

Jass uurupoBanus: 3enenko JI.C., Kononenskun J.A., Bano B.C., I'puropses A.O.,
CemenoB A.E., CaBauaeB M.A., [To6epés3kun E.E. [IporpaMmHBIe cpeacTBa Juis OpraHH3alin
W TIOAJEPKKA WTPOBOM MUCTAaHIMOHHON oOywaromieit cucremsl «3Ducation». Tpymer UCIT
PAH, Tom 27, Bem. 3, 2015 r., crp. 365-378 (ma anrmmiickom s3bIkKe). DOI:
10.15514/ISPRAS-2015-27(3)-26.

Cnucok numepamypbl

[1]. KoHuenimu co3qaHusi ¥ pa3BUTHS €AWHON CHCTEMbI JUCTAHIIMOHHOTO OOpa3oBaHMS B
Poccuu. — http://www.e-joe.ru/sod/97/2_97/st064.html (mara o6pamenus 02.06.2015).

[2]. Odunmansnsrii caiit Khan Academy. — http://www.khanacademy.org (nara obpamiexns
05.06.2015).

[3]. 3enenxko, JI.C. BupTyanbHas peaabHOCTh W MIPOBOH MOIXOJ KaK OCHOBBI MOCTPOCHHUS
TpéxmepHoro obyuatomero npocrpanctBa [Texcr] / JI.C. 3enenko// Matepuanst VIII
MEXIYHApOIHON HaydyHO-NIpaKTH4ecKoil KoH(pepeHIMH «/HHOBaIMK B YCIOBHSIX
pa3BuTHs HHGOPMAMOHHO-KOMMYHHKAIMOHHBIX TexHomoruid (MH®O-2012)»/ mon.
pen. B.I'. [lompauesa, C.V. VBaiicoBa. — M.: MUDM, 2012. — C. 56-59.

[4]. Oduumaneneiit caiir Unity3D. — http://unity3d.com/company/ (nara o6pamuieHns
15.06.2015).

[5]. 3enenko, JI.C. TlpuHummbl pa3pabOTKH BUPTyallbHOH 0Oy4aroliell CHCTEMBI
«3Ducation» [Texkcr] / JI.C. 3enenko, I.A. 3arymentoB // COOpHUK U30OPaHHBIX TPYIOB
VIl MexnaynaponHoid — HaydHoO-TpakTHyeckoil — koHdpepeHuun «CoBpeMEHHBIE

377

http://www.e-joe.ru/sod/97/2_97/st064.html
http://www.khanacademy.org/

L.S. Zelenko et al. Software Tools for Organization and Support of Distance Learning Game System «3Ducationy.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 365-378

unpopmarironHsie Texnogoruu u MT-ob6pazosanuer. [lox pex. mpod. B.A. CyxomimnHa.
—M.: UHTYUT.PY, 2012. — C. 326-333.
[6]. About-Git. - http://git-scm.com/about (nata obpamerns 14.06.2015).

[7]. O630p cucrem konTpOISE Bepemii. - http://all-ht.ru/inf/prog/p_0_1.html (zata obpamieHns
16.06.2015).

378

http://git-scm.com/about
http://all-ht.ru/inf/prog/p_0_1.html

A. A IlpiranoB. YckopeHue co3/1anus npoduiieii uist TpeXMepHoro BEKTOpHOro Buzeo ¢ nomomsio GPGPU. Tpyast
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 379-388

Acceleration of Profile Creation for Three-
Dimensional Vector Video with GPGPU

A. Tsyganov <tsyganov.aa@samgtu.ru=>,
Samara State Technical University
244 Molodogvardeyskaya Str., Samara, 443100, Russian Federation

Abstract. In the report the optimization of image similarity metric computation method for
three dimensional vector video with general-purpose computations on graphical processor
unit (GPGPU) is discussed. The use of stream processors in graphics accelerators and
Compute Unified Device Architecture (CUDA) platform allows significant performance gain
in comparison to calculations on general-purpose processors, while solving problems of
computer vision and image similarity determination. The performance of the GPGPU metric
value computation is measured and researched.

Keywords: three-dimensional video, graphical processor unit, computer vision, metrics, key
points.

DOI: 10.15514/ISPRAS-2015-27(3)-27

For citation: Tsyganov A. Acceleration of Profile Creation for Three-Dimensional Vector
Video with GPGPU. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 379-388.
DOI: 10.15514/ISPRAS-2015-27(3)-27.

1. Introduction

Video playback systems for three-dimensional vector format need to determine
parameter types of shader programs contained in the video stream. This can be
accomplished by creating profiles for each video source type. Profiling is resource-
intensive task and the calculations cannot be performed in real time while running
the application for which the profile is compiled. The longest stage of the method is
the metric calculation. The paper proposes to move its computation to graphics
processing unit (GPU) in order to speed up the algorithm.

2. Profiling method

Method for automated profiling based on a comparison of images obtained with the
original shader parameters and ones found after applying shaders with modified
parameters.

379

mailto:tsyganov.aa@samgtu.ru

A. Tsyganov. Acceleration of Profile Creation for Three-Dimensional Vector Video with GPGPU. Trudy ISP RAN
[/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 379-388

For each shader it is necessary to find the correct types of values transmitted to its
parameters. For implementation of stereoscopic effects, parameters containing
projection matrixes are important. Thereby the problem is reduced to search such
matrixes among parameters of the shader program. Parameters type search in the
method is carried out by their search for each separate parameter. The assumption of
correctness for the selected type is checked by similarity evaluation of images
received from frame visualization of a video stream without modification of
parameters and with modification of parameters according to the assumption made.
The selected frame V of the initial video stream is modified by transform T(V, S)
which changes set of shader parameters S concerning of which assumption was
made about their certain type. The initial frame of V and the modified frame V" are
rasterized by R(V) resulting in two images | and I’ respectively. This images are
represented by function of brightness in the given point | = fi(x, y). They are
compared by using a metric. The result of applying this metric is the set D,
consisting of two integral values, which are passed to the decision A(D):

D = {DB, DS}, (1)

1 Dg<b,nDg2=s,

A(D):{ @

0, DB>bmuDS<sm’

where b, and Sy, are the boundary values of the metric components.

Metrics computing algorithm for two images processes raw data in a few steps.
Under the original data we will assume two images obtained with initial
visualization parameters I, and with modified visualization parameters In. Two
color histograms H(l,) and H(ln) are calculated from the original image by
dispersion method. Initial evaluation of the distance between the images performed
by using Bhattacharya distance Dg(Ho, Hm). Second component of metric is
specified by comparing sets of control points in the original image. Sets of control
points P, and Pn, received from the image In and lo, respectively, are used to
calculate the distance Ds(Po, Pm). Speeded Up Robust Features (SURF) method is
used for point detection, the implementation of which is also available for GPU [1,
2].

3. GPGPU implementation

The architecture of modern graphics cards is designed for vector operations with the
data in the form of multi-dimensional arrays. This allows to achieve high memory
speed when using SIMD vector processors with independent L1 and L2 caches. In
comparison to a general purpose processor, GPU has fewer steps and a smaller
amount of the conveyors cache. Exchange of data between video memory and
general purpose memory is implemented via the PCI-E x16 bus. The sample data in

380

A. A IlpiranoB. YckopeHue co3/1anus npoduiieii uist TpeXMepHoro BEKTOpHOro Buzeo ¢ nomomsio GPGPU. Tpyast
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 379-388

the cache transfers through a 256-bit bus. As a result, the efficiency of scientific
algorithms on the GPU depends on the efficient use of memory and cache [3].

The main purpose of the GPU method implementation is to minimize the number of
data exchanges between video memory and general-purpose memory.
Communication between the CPU and graphics core negatively affect performance.
To reduce the data used by the various stages of the algorithm, it loaded into video
memory only once. The result is also available in video memory for the following
stages. The essence of the developed method is the efficient use of the cache and
loading video streaming GPU cores uniformly. Transfer of resources between the
stages of the algorithm is carried out through the video memory, as shown in Fig. 1,
which speeds up processing using the GPU.

General memory \Video memory
lo, Im lo, Im
rd
H(lo), H(lm)
DB(IQ, Im) DB 0y Im)

Po, Pm

%

Ds(Po,Pm) Ds(PoPr)
S! osf'm,

Fig. 1. Data exchange between general-purpose memory and video memory.

Images In and I, are loaded into video memory for processing. On their basis
histograms are calculated to find the first components of the metric using
Bhattacharya distance. The same source images used by SURF algorithm to
calculate set of points, which are used as the basis for the second component of the
metric. Only calculated components of the metric unloaded from video memory to
general-purpose memory. Their size is extremely small, and video memory reading
will not stop the process of computing on the GPU, resulting in high performance
parallel computing.

4. Histogram computation

Calculation of the metric component Dg is performed by using the histograms H(lo)
and H(ls) of corresponding images. The calculation of the histogram on the GPU
can be performed using both classical shader programs, and using CUDA
technology for general-purpose computation on the GPU. CUDA technology usage
described in the works of Podlozhnyuk [4] and Shams [5]. These algorithms provide
better performance than those based on the use of conventional means of graphical

381

A. Tsyganov. Acceleration of Profile Creation for Three-Dimensional Vector Video with GPGPU. Trudy ISP RAN
[/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 379-388

programming interfaces, as shown by Nugteren et al. [6]. Work of Fluck [7] is an
example of the second approach.

Since the main objective is to accelerate the metrics calculation then most
appropriate methods for histogram computation are based on CUDA. Such as
method of Podlozhnyuk, that implemented in CUDA SDK. Method is cache
effective and does not contain steps of data upload into shared memory that allows
it to be integrated into the process of metric component calculation.

In this method, the original data is divided into blocks between threads executed on
the GPU. Output data stream is stored in individual histogram. In the final pass all
histogram are combined by different threads into one. To efficiently use shared
memory of streams each individual histogram is created in group of threads called
rope. This allows to store histograms of a larger volume, up to 6 kilobytes on G80
hardware architecture.

Bhattacharya distance calculation based on the histogram for two sets of statistics. It
is expressed by the following formula:

DB:Z H(Io)iH(Im)i ! ®
i=0
where n - the number of the histogram elements.

Calculation of histogram elements sums can be done by reduction of the initial data
array on the GPU. It is proposed to use an optimized method of parallel reduction
on CUDA, described by Mahardito et al. [8].

5. Key points detection

The second component DS of the metric calculated with SURF algorithm [9]. With
its help search is performed for two sets of points P and P’, available in the original
and the modified frames, respectively. The value of component determined by the
following expression:

PUP!
P

D, = - 4)

SUREF is one of the most common and efficient image points search algorithms. It
used in automatic object recognition and tracking, video recording, panoramic
image combining and in many other areas of computer vision. The algorithm can
process images in HD resolution at more than 30 frames per second.

SURF detects points by approximating the Hessian. Approximation performed by
application of block filters to the image. It makes good use of the integral
representation of the image 11, which is determined by the following formula:

382

A. A IlpiranoB. YckopeHue co3/1anus npoduiieii uist TpeXMepHoro BEKTOpHOro Buzeo ¢ nomomsio GPGPU. Tpyast
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 379-388

()= 3216.5) ®

The calculation of the integral image representation on the GPU is the longest stage
of the SURF algorithm and can be implemented by the algorithm of the pyramid
points as described in Terriberry et al. [10]

Construction of the integral image is the task of the prefix sum. Pyramid algorithm
offers a solution to this problem on the GPU in two stages. At the first stage,
pyramid images constructed extending upward, each of which divides into four
parts half the width and height than the previous level. Image content is determined
by three components of U(k), H(k), V(k):

UM%, y)=U ¥ (2x2y)
+U kY (2x+1,2y)

(6)
+U kY (2x,2y +1)
+U D (2x+1,2y +1),
H®(x,y)=Uk Y (2x,2y) 0
+UD(2x+1,2y),
®i(x, y)=U" Y (2x,2y)+UkH(2x,2y +1), ®)

where k - level of the pyramid, x and y - coordinates of the image.

It requires two half-sum of H (k) and V (k) to calculate the sum of the even rows and
columns, using formula:

0, y)= 3 HY(i.y) ©

J(x,y :ZV (10)

Using the obtained image pyramid, a reverse pass going from the top downwards.
This value is used to calculate four different versions of the formula that depend on
the parity argument. For even x and y

(x,y) =W ([X} [y}), 1)

2
383

A. Tsyganov. Acceleration of Profile Creation for Three-Dimensional Vector Video with GPGPU. Trudy ISP RAN
[/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 379-388

for odd x and even y
(12)

for even x and odd y

W(k)(X, y):W k+1(|:)2(j|’|:;/:|) " Xk+1(|:)2(:|’|:g:|), (13)

for odd x and y

we-wf3)

2112

ke X y ki X y
GGl o
+U D (x—1y-1)

The values of the top-level assumed to be zero.

Using the integral image, the key points are determined by searching the extremum
of the Hessian determinant. Block filters used for this purpose as described by Bay
et al. [9] Their GPU computation requires only 17 texture samples per pixel. Search
for a local Hessian maximum can be made by the method of neighboring points
3x3x3.

Each found key point is described by the descriptor, which is a normalized vector
calculated using filters similar to the Haar block filter for Hessian. Sets of elements
P and P' are compared using descriptors, which calculates the value of Ds with
expression (4).

6. Performance evaluation

An experimental study with various sources of graphic information was carried to
determine the performance gain of GPGPU implementation in comparison with the
general-purpose processor implementation. Sources of graphical information were
selected by statistics of streaming video services.

The first series of experiments aimed at assessing the dependence of the duration
profiling on the recording. The results are shown in Fig. 2. As can be seen, the work
time increases insignificantly, since longer records contains almost no new shader

384

A. A IlpiranoB. YckopeHue co3/1anus npoduiieii uist TpeXMepHoro BEKTOpHOro Buzeo ¢ nomomsio GPGPU. Tpyast
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 379-388

programs. However, there is a significant reduction in execution time by 8-12 times
when using a GPU implementation.

Composition of the shader programs in each application is heterogeneous. The main
feature affecting the complexity of the specific shader program analysis is the
number of its parameters of interest for the algorithm. To evaluate the impact of this
amount on processing time for each shader program, a series of experiments was
carried with same sources of image information, as in the previous case.

The values are averaged over all shader programs with a given number of
parameters of matrix type for a ten minute record. The results are shown in Fig. 3.

350
', Y %

A A A

8 200 7% Z % 7

MiEE .

E 150 - f ‘4 % ;— #.CPU
100 —? ? ? }— % GPU
50 -—f f % .‘2—

,/ i o s o
0 - 2 S it

Recording duration, min

Fig. 2. The diagram of time depending on the duration of the record.

600
500
£ 400
@ 300
£ 200

100 ;
O L Z 2‘:&.@
3

Number of parameters

Fig. 3. Diagram of time depending on the number of parameters.

385

A. Tsyganov. Acceleration of Profile Creation for Three-Dimensional Vector Video with GPGPU. Trudy ISP RAN
[/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 379-388

Number of recognizable parameters affects their recognition duration exponentially.
Speed of data processing strongly depends on the complexity of video source
rendering system. However, GPGPU calculations can reduce it by 8-12 times. This
allows comparison of vector video frames and subsequent profiling on the terms
that are acceptable to use these methods in practice.

References

[1]. Thorsten Scheuermann, Justin Hensley. Efficient histogram Generation Using Scattering
on GPUs. Proceedings of the 2007 symposium on Interactive 3D graphics and games,
ACM New York, NY, USA, 2007, pp. 33-37. doi: 10.1145/1230100.1230105

[2]. N. Comnelis, L. Van Gool. Fast Scale Invariant Feature Detection and Matching on
Programmable Graphics Hardware. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 2008, pp. 1-8. doi:
10.1109/CVPRW.2008.4563087

[3]. N. K. Govindaraju, E. S. Larsen, J. Gray, D. Manocha. A memory model for scientific
algorithms on graphics processors. Proceedings of the ACM/IEEE Conference on
Supercomputing (SC’06), NY, USA: ACM Press, 2006, no. 89, pp. 6-15. doi:
10.1109/SC.2006.2

[4]. V. Podlozhnyuk. Histogram calculation in CUDA. Technical report. NVIDIA, 2007,
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/hist
ogramé4/doc/histogram.pdf

[5]. Ramtin Shams, R. A. Kennedy. Efficient Histogram Algorithms for NVIDIA CUDA
Compatible Devices. Australia, Gold Coast, ICSPCS, 2007. pp. 418-422.

[6]. Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, Bart Mesman. High
Performance Predictable Histogramming on GPUs: Exploring and Evaluating Algorithm
Trade-offs. Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units, NY, USA: ACM New York, 2011. pp. 1-9. doi:
10.1145/1964179.1964181

[7]. O. Fluck, S. Aharon, D. Cremers, M. Rousson. GPU histogram computation. ACM
SIGGRAPH 2006 Research posters, SIGGRAPH ’06. ACM, 2006, p. 53. doi:
10.1145/1179622.1179683

[8]. Adityo Mahardito, Adang Suhendra, Deni Tri Hasta. Optimizing Parallel Reduction in
Cuda to Reach GPU Peak Performance. Proceedings of The Second International
Workshop on Open source and Open Content WOSOC 2010, Indonesia, Depok.:
Gunadarma University, 2010, pp. 48-57.

[9]. Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool. Speeded-Up Robust
Features (SURF). Computer Vision and Image Understanding, New York, USA, 2008,
vol. 110, no. 3, pp. 346-359. doi: 10.1016/j.cviu.2007.09.014

[10]. Timothy B. Terriberry, Lindley M. French, John Helmsen. GPU Accelerating Speeded-
Up Robust Features. Proceedings of the Fourth International Symposium on 3D Data
Processing, Visualization and Transmission, Georgia Institute of Technology, Atlanta,
GA, USA, 2008. pp. 355-362.

386

A. A IlpiranoB. YckopeHue co3/1anus npoduiieii uist TpeXMepHoro BEKTOpHOro Buzeo ¢ nomomsio GPGPU. Tpyast
UCII PAH, tom 27, Beim. 3, 2015 1., ¢. 379-388

YckopeHue co3gaHusa npodunen ans
TPexXMepHOro BEKTOPHOro BUAeo ¢
nomouwbio GPGPU

A. A IJvleanos <tsyganov.aa@samgtu.ru=>,
Camapckui I'ocyoapcmeennviii Texnuueckuti Ynusepcumem,
443100, Poccus, 2. Camapa, yr. Moroodozeapoetickas, oom 244

AnHotammsi. B pabore paccmarpuBaeTcsi MeTOJ] ONTHMH3AIMU BBIYHCICHUS METPHKH
CXOKECTH M300paKeHUI C MOMOLIBIO BBHIYMCICHUN OOINEro Ha3HaueHHs Ha TpadudeckoMm
nporieccope (GPGPU). Hcronp30BaHHe TOTOKOBBIX — MPOIECCOPOB IpaduuecKux
yckoputeneir u twiatpopmel CUDA mo3Bonsier JOOHMTHCS 3HAYMTENBLHOTO MPUPOCTA
HPOU3BOJUTEIFHOCTH 110 CPABHEHHIO C pacdeTaMH Ha Iporeccopax o0IIero Ha3HaueHUs [Ipu
pelieHHH 3amad B OO0JACTH KOMITBIOTEPHOTO 3pEHHUs, B YaCTHOCTH IS OIpeJeeHHs
CXOXecTn wn3o0pakeHWi. [IpuBeneHbI pe3yabTaThl HCCICIOBAHUS HPOU3BOANUTEIEHOCTH
GPGPU peanm3zaimu pacueToB 3HAYCHUIT METPUKH.

KioueBbie c10Ba: TPEXMEPHOE BHIECO, TpaduuecKHii IPOIEccop, KOMIBIOTEPHOE 3pEHHE,
METpPHKA, KITFOYEBbIe TOUKH.

DOI: 10.15514/ISPRAS-2015-27(3)-27

s uutupoBanus: LlpranoB A.A. YckopeHHe co3maHUs NMPOQMICH U TPEXMEPHOTO
BekTOpHOTO BHAEO ¢ momompbio GPGPU. Tpynst UCII PAH, tom 27, Bem. 3, 2015 r., cTp.
379-388 (ma anrmuiickom s3eike). DOL: 10.15514/ISPRAS-2015-27(3)-27.

Cnucok nutepatypbl

[1]. Thorsten Scheuermann, Justin Hensley. Efficient histogram Generation Using Scattering
on GPUs. Proceedings of the 2007 symposium on Interactive 3D graphics and games,
ACM New York, NY, USA, 2007, pp. 33-37. doi: 10.1145/1230100.1230105

[2]. N. Cornelis, L. Van Gool. Fast Scale Invariant Feature Detection and Matching on
Programmable Graphics Hardware. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition = Workshops, 2008, pp. 1-8. doi:
10.1109/CVPRW.2008.4563087

[3]. N. K. Govindaraju, E. S. Larsen, J. Gray, D. Manocha. A memory model for scientific
algorithms on graphics processors. Proceedings of the ACM/IEEE Conference on
Supercomputing (SC’06), NY, USA: ACM Press, 2006, no. 89, pp. 6-15. doi:
10.1109/SC.2006.2

[4]. V. Podlozhnyuk. Histogram calculation in CUDA. Technical report. NVIDIA, 2007,
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/hist
ogramé4/doc/histogram.pdf

[5]. Ramtin Shams, R. A. Kennedy. Efficient Histogram Algorithms for NVIDIA CUDA
Compatible Devices. Australia, Gold Coast, ICSPCS, 2007. pp. 418-422.

387

mailto:tsyganov.aa@samgtu.ru

A. Tsyganov. Acceleration of Profile Creation for Three-Dimensional Vector Video with GPGPU. Trudy ISP RAN
[/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 379-388

[6]. Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, Bart Mesman. High
Performance Predictable Histogramming on GPUs: Exploring and Evaluating Algorithm
Trade-offs. Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units, NY, USA: ACM New York, 2011. pp. 1-9. doi:

10.1145/1964179.1964181

[7]. O. Fluck, S. Aharon, D. Cremers, M. Rousson. GPU histogram computation. ACM
SIGGRAPH 2006 Research posters, SIGGRAPH °'06. ACM, 2006, p. 53. doi:

10.1145/1179622.1179683

[8]. Adityo Mahardito, Adang Suhendra, Deni Tri Hasta. Optimizing Parallel Reduction in
Cuda to Reach GPU Peak Performance. Proceedings of The Second International
Workshop on Open source and Open Content WOSOC 2010, Indonesia, Depok.:

Gunadarma University, 2010, pp. 48-57.

[9]. Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool. Speeded-Up Robust
Features (SURF). Computer Vision and Image Understanding, New York, USA, 2008,

vol. 110, no. 3, pp. 346-359. doi: 10.1016/j.cviu.2007.09.014

[10]. Timothy B. Terriberry, Lindley M. French, John Helmsen. GPU Accelerating Speeded-
Up Robust Features. Proceedings of the Fourth International Symposium on 3D Data
Processing, Visualization and Transmission, Georgia Institute of Technology, Atlanta,

GA, USA, 2008. pp. 355-362.

388

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.
389-406

Two-step Harmonious Melody Generator

Sofya Latkina <latkina.sofya@gmail.com>,

Software Engineering Department, Faculty of Computer Science, National
Research University Higher School of Economics, 101000, Myasnitskaya, 20,
Moscow, Russia

Abstract. An establishment and spread of computer technologies has expanded the spectrum
of non-mathematical problems that are suitable for algorithmic description and simulation,
related to human creativity activity, art, in other words. Undoubtedly, various scientific and
artistic works have their specific features and some common ones. The main point is that any
art product is initially based on an intuition. The intuition of humankind, surely, relies in his
experience. Nevertheless, this experience may obtain different nature. It can be acquired
during rational, formal, and conscious studying of creativity specifics. However, the
experience may be got by another way.

Musical communication, its scales, intonations, or rhythms form in the mind some
relationships, logical dependencies, which subject the certain laws and principles of melody
organization. These accurate and clear patterns allow computer to take them into account,
translate into commands, and simulate the process of music creation.

In this paper the attempt of modeling composer’s functions on a computer is described.
Modeling opuses on the basis of unification of musical rhythm and melody line allows
providing computer music with given parameters of composition. Using the new approach
leads to the results which differ from the predecessors and suggests new direction for further
research and development in the sphere of computer art.

Keywords: music creating, algorithm, computer music, harmony, artificial intelligence,
generation, evolutionary algorithm, cybernetics, data analysis

DOI: 10.15514/ISPRAS-2015-27(3)-28

For citation: Latkina Sofya. Two-step Harmonious Melody Generator. Trudy ISP
RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 389-406. DOI: 10.15514/ISPRAS-2015-
27(3)-28.

1. Introduction

1.1. Problematic area

As man develops and explores new levels of technological progress, appearance of
high-speed computers broadened the range of non-mathematical problems, allowing
algorithmic description and simulation at the information level of processes related
to human creative activity. The computer as a technological unit has evolved from a

389

Sofya Latkina. Two-step Harmonious Melody Generator. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
389-406

simple calculator to a distributed system, supporting million non-recurring
processes, sophisticated mechanism of artificial intelligence emulation, or a life
support equipment. Essentially, Hi-Tech invades to every sphere of human activity,
even to the complicated ones, related to nonlinear thinking and abstract mindset,
like an art.

Specifically, music as a piece of art is not a trivial product for being produced by
computer as is requires integrity, variability, and harmoniousness. Generally,
discussions about the definition of music are reduced to two contradictory
definitions: “Music is the language of our emotions”, and "Music — a calculation of
the mind, unsuspecting of these calculations" (Leibniz). Music is composed of
elements and refined sequences of them that affects listeners’ perception and
sensations. Moreover, man is able to differ melodic elements depending on their
"pleasantness” of exposure. This acoustic “pleasantness™ is easily amenable to
analysis and explanation, while the simulation of these effects and machinery
reproduction is still under investigation.

1.2. Background observation

The first attempts to use the information approach in the study of musical art are
related to the achievements of classic statistical information theory. This theory in
the classical Shannon version has had a purely technical orientation. It was designed
for communications and was almost bounded by this area. However, in 1950-60 it
began to rapidly penetrate into various research areas.

One of the first statistical studies of music theory with the methods of information
theory was undertaken in 1956 by American scientist Robert K. Pinkerton. In the
article “Information Theory and Melody” [1] he questioned what makes a melody
attractive; he discussed the issue in mathematical term. For that Pinkerton analyzed
information theory in popular American tunes and children’s songs to determine the
probability of individual notes and paired combinations appearance. Moreover, he
calculated the entropy per one note and the information redundancy. Basing on the
probability of two consecutive notes with a help of random selection, he was able to
make few tunes, similar to analyzed ones. Unfortunately, most of them seemed to be
monotonous and not attractive enough. This fact allowed scientist to admit that not
only every single note conveys a certain amount of information but also that for
obtaining “attractive” tunes some redundancy is needed.

The same goal (making up new tunes by probabilistic selection) has become the
basis of the study, named “The experiment in music song” [2], which was
implemented in 1957 in the laboratory of computers at Harvard University. Several
scientists analyzed excerpts from 37 hymns of different composers and epochs.
Scientists used computer equipment for counting frequencies of all the individual
elements as well as all combinations of two, three, and so on up to eight neighboring
elements. But the discovery of statistical regularities was only the initial stage of
their study. Basing on these results, scientists have tried to build a computer model
for the creation of music. The resulting table of sounds probability and their

390

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.
389-406

connections has been used for the synthesis of melodies via a random process. In
total, scientists have made about 6,000 attempts of a synthesis, and created
approximately 600 hymns. It should be noted that the calculations in this study were
made without direct bearing on the mathematical apparatus of information theory.
Incidentally, this is indirect evidence that the necessary and sufficient sought
computational results can be obtained, limiting the methods of probability theory.
Since then appeared a substantial amount of applications and systems that challenge
computing technology in music composition. As the development in this area has
started, many new theories and concepts appeared. Human taught computer basic
aspects of music: sound synthesis, digital signal processing, sound design, sonic
diffusion, acoustics, and psychoacoustics. The complex path of computer music
investigation can be traced back to the origins of electronic music creation, and the
first innovations and experiments with electronic instruments at the turn of the XX
century.

There is a big selection of systems that provide digital music. Some of them require
human interruption to a greater extent, like those ones developed in 50s (CSIRAC,
playing Colonel Bogey March [3], Ferranti Mark 1 computer (MUSIC 1 [5]), the
biggest achievement of which were the incipience of algorithmic composition
programs beyond rote playback. Some of concepts are more independent, like
TOSBAC computer [6] which caused resonance in the area and became an origin of
computer music carried out for commercial purposes in popular music (this has led
to the use of computers in widespread in the editing of pop songs). For the current
moment, the terms of “computer music” or “computer-generated music” are related
to any music which uses computers in its composition (that implies a kind of music
which cannot be created without the use of computers).

Nowadays, intensive researches in the field of computer music creation are
continuously carried out. Several mighty organizations are engaged (ICMA 1,
IRCAM 2, SEAMUS ®) and some institutions of higher learning also.

Besides scientific studies, the specialists and composers have also created some
software solutions, which can be considered as basic concepts: topical for today and
for contemporary computer music concepts.

In the current context it is worth to mention widely known numerous experiments
and studies of R. H. Zaripov. For simulating the process of composing music, he
has created several programs, which were based on different principles. At first he
used the principle of synthesizing music from individual sounds; next he subdued an
algorithm to certain structural, rhythmic, of pitch and harmonic laws [7, pp. 90-118;
79]; then he treated musical pattern as well as poetic text [7, pp. 119-140]; finally he
approached borrowing the most common melodic turns in intonation in order to
create similar melody [8]. Furthermore, it was established program-harmonizer,

! The International Computer Music Association
2 Institut de Recherche et Coordination Acoustique/Musique (France)
3 Society for Electro Acoustic Music in the United States
391

Sofya Latkina. Two-step Harmonious Melody Generator. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
389-406

which imitates the process of solving the problem of melodies harmonization by
students of music schools [7, pp. 141-175].

1.3. Composition

The method of new melodies composing plays vital role in concepts of computer
music creation. Musical composition simultaneously relates to the notion of an
original piece of music, to the structure of a musical piece, to the process of creating
some new melody. In general, the composition consists of manipulation of each
aspect of music (harmony, melody, form, rhythm, and timbre). When computer
music is created, it usually means that new musical notation appeared as a result of
improvisation or selection and completion of patterns but more often as a result of
sophisticated algorithm operating.

There can be roughly defined several common types of algorithms, basing on which
exact instruments are used in a process of composing:

e Mathematical models,

e Knowledge-based systems,

e Grammars,

e Evolutionary methods,

e Systems that learn,

e Hybrid systems.

The specificity of each type is clearly implied by its name.

Currently, intensive and promising researches are undertaken in the fields of
generative and evolutionary music. Also the improvisation as an efficient method of
computer music making can be highlighted.

1) Generative music: The original term was popularized by Brian Eno,
English composer and well-known innovator in ambient music; it implies
the music, which is created by a computer and appears to be constantly
changing and different. For an explicit indication that some clarification is
needed; according to R. Wooller [9], there are four primary interpretations
of generative music:

e Linguistic/structural: Music made up using analytic theoretical
constructs, explicit as much as it is needed for generating structurally
coherent material. The roots can be traced back to the generative principles
in grammar of language and music, where generative instead refers to
mathematical recursive tree structure.

e Interactive/behavioural: Music created by a system component with no
discernible musical inputs, i.e., “not transformational”. Example: engine
Koan, developed by SSEYO.

e Creative/procedural: Music composed as a result of processes set which
are designed and/or set in motion by the composer. Examples of result: “In
C” by Terry Riley and “Its gonna rain” by Steve Reich.

392

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.
389-406

e Biological/emergent: Music which can be defined as non-deterministic,
revolved around the idea of using "farming" parameters for creating
different variation of sounds (such as wind chimes). Example:
collaborative electronic noise music symphony “Viral symphony” by
Joseph Nechvatal.

2) Evolutionary music: This type of computer music is created using an

evolutionary algorithm (a subset of evolutionary computation that is based
on mechanisms of biological evolution, such as reproduction, mutation,
recombination, and selection, and is aimed at optimization of processed
essence). The whole process initiates with a set of individuals which
produce audio (a piece of music, or melody, or loop): these can be
generated randomly or produced by human mind. Then, through the
repetitious taking steps of computation, this population becomes optimized,
more sounding like a piece of customary music. As it is quite a
complicated task for a computer to determine how exactly piece of art is
sounding, typically the user or audience is used as fitness function
(objective function that is used as a single figure of merit) of interactive
evolutionary algorithm. Additionally, methods of evolutionary processing
are commonly applied to harmonization and accompaniment tasks.
It is worth noting, that research in the field of automated measures of
musical quality, which can be implemented by a simple computer, is also
conducted nowadays. Example: NEUROGEN software uses a genetic
algorithm for producing and combining musical fragments and a set of
neural networks (initial population of individuals is based of real music)
[10].

3) Computer-Aided Algorithmic Composition: The most common method of
machine improvisation is a recombination of different musical phrases. As
the resulting computer music has to be credible and nice-sounding,
machine learning and pattern matching algorithms are inevitably used. That
normally causes creating of variations “in the style” of original melody or
pieces of music.

Modelling the particular style is a complicated objective, it requires statistical
handling, big data to some extent. The algorithm can use musical surface to
distinguish key stylistic features. This approach uses terms of pattern dictionaries
for subsequent generating the new audio. This long musical tradition was started on
60s with Markov chains and stochastic processes. Nowadays lossless data
compression for incremental parsing, pattern searching, prediction suffix tree and
other new methods of data processing were added.

The factor of convenient usage of natural interface, where the musician has no need
for coding musical algorithms, leads to prevalence of such systems in live
performances.

Example: OMax, developed in IRCAM.

393

Sofya Latkina. Two-step Harmonious Melody Generator. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
389-406

1.4. Main purposes and objectives

It should be emphasized that the researches in the field of computer music creating
and different generative, evolutionary, or improvisation approachess, the
development of the original algorithm, and the grasp of the concept of intuitive
human-computer interaction, which will allow to manage the process of music
creating, pursue the same goal. The primary aim of the entire project is to create
computer music generator which will be able to create melodies according to the
settings, specified by user, but without actual interruption of user to the generation
of melodic pattern.

Undoubtedly, it is vital to perform specific objectives in order to reach the goal of
the research. It seems to be important to clarify them in detail. The first objective
will be accomplished by inventing an algorithm of computer music generating.
Inevitably, it will be based on existing methodologies (generative, evolutionary), but
it also has to be sharpened by the principle of flexibility and ability of changing
according to adjustments, made by user. Next objective is to implement software
shell, which will satisfy potential user and allow to manipulate melody relatively
effortless and without necessity of code changing. Finally, output methods have to
be elaborated: the way of music sounding is one of the most important things in the
sphere of computer music creating.

Essentially, there is can’t be any need to verify and prove what way of music
creating is better, more efficient, of aesthetical: the traditional one, or the innovative
variations. The interlinear mission of the whole work is to extend musical thinking
or composition practice which is current computer-music practice.

2. Methodology

The destination of software which is able to produce music is to create the
successions of musical tones that can be perceived as melodies, pieces of art.
Considering a definition given by Alexander 1. Ringer, “melody” is a pitched sounds
arranged in musical time in accordance with given cultural conventions and
constraints [11]. It can be noted that in some cultures rhythmic considerations may
take precedence over melodic expression, so the cultural and regional context
largely determines what exactly a human accepts as music. For example, Chinese
and European perception of music differs a lot; this is due to many factors, in
particular: the time of development of the national understanding of musical
composition.

According to ancient Chinese encyclopedic works Liishi Chungiu, the scale has to
contain twelve tones. The situation differs for European music, which is younger
and fully aligned with the Well-Tempered Clavier of Bach. Current paper
corresponds to the European scale and standards of Western music. In this concept a
pitch space includes octaves sized 12 semitones — this specific distance reflects
physical distance on keyboard instruments, orthographical distance in Western

394

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.
389-406

musical notation, and musical distance as measured in psychological experiments

[9].

2.1. Tones and scale

Tones, which construct a melody, equal to the sum of two semitones and hence
referred to as a ‘whole tone’, usually perceived as a major 2nd; in equal
temperament, the sixth part of an octave. As it is defined for European scale, the
semitone seems to be the ration of the frequencies as 1 to the 12%" degree of 2. Thus,
the tone of particular note can be identified with function: f(x;) = '3/2 * f(x;_1),
where x; is a current note and X;.1 — the previous one.

Tones are used in musical theory for calculating intervals, which inevitably appear
“between” every two notes. Literally speaking, this circumstance affects a lot on
how a person perceives a melody, whether he likes it or not, recognizes as music or
not.

The set of intervals is restricted; each of them has two vital characteristics: the
amount of semitones and harmoniousness. Shortly, mostly used intervals can be
presented in the following list:

e Perfect unison, perfect octave — the best consonance;

o Perfect fourth, perfect fifth — middle consonance;

e Third (minor, major), sixth (minor, major) — imperfect consonance;
e Second (minor, major), seventh (minor, major) — sharp dissonance.

2.2. Harmony

According to the New Grove Dictionary of Music and Musicians, harmony can be
defined as combining of notes simultaneously, to produce chords, and successively,
to produce chord progressions. The term is used descriptively to denote notes and
chords so combined, and also prescriptively to denote a system of structural
principles governing their combination [11]. Creating a harmonic and logical
melody is a sophisticated task, which is complicated by a sufficient number of rules,
restrictions, and preconditions. Important mention: “logical” in this context implies
symmetry of melody, adherence to pre-defined rules, compliance with the
restrictions, exactly. Logical construction of melody includes controlling what next
note will be, where the start and the end of melody are, at what time the next
transition can be performed. Existing tools can provide the solution of these
important tasks.

2.3. Petri nets

Once an issue of polyphony is raised, the usage of Petri nets seems to be relevant.
Creating computer music becomes more complicated if second (third, fourth, etc.)
voice is added. Without proper synchronization, created music will become
cacophonic.

395

Sofya Latkina. Two-step Harmonious Melody Generator. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
389-406

The dynamic system can model a “Conductor”: like a conductor in real life, this
model manages two or more musical threads. It is necessary to keep tracking of
hitting the strong bit and maintaining mode and harmony. Due to what can this
monitoring be achieved?

t=4

|
A Play B

Fig. 1 Example of timed petri net

The key feature of timed Petri nets is a usage of limited execution time, which
makes the transition disabled from occurring for the duration time; but it is fired
immediately after becoming enabled. In the presented primitive net (see in Fig. 1)
the time delay (or execution time) is 4 time units. In the initial state “Play” in
enabled will therefore immediately fire, i.e., the token in A is consumed. Next there
occurs a delay in 4 time units before the firing is complete and tokens are deposited
into A and B. Now Play is again enabled and will again fire.

Practical application of the concept can be demonstrated on the following example
(see in Fig.2): in the first bar (Bar0) only one violin plays, next the second violin
joins, then the first violin sounds together with two viols, finally, all instruments
play together, and in the last bar the first violin is again sounding lonely (see the
information about tokens motion in table 1). This example can provide
representation of how actual conductor deals with four different musicians.

t=8
16 - L] - - i F. | : - " t 4 . "
i
Violin Violin 2 Viola 2
t=8
Viola
b=8_

Fig. 2 Example of timed Petri net, model “Conductor”

396

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.
389-406

Table I. Chronology of tokens motion

Violin Violin2 Viola Viola2
" JEEERE
o HEEERE
E;nrszz) trans3 1 0 1 1
E;’:zl) 1 1 1 1
Eéznrs:; transs, trans6 3 0 0 0

Within the scope of current paper only monophonic melodies will be considered;
but usage of timed Petri nets stays suitable for the project, perspectively.

3. Two-step harmonious computer music creation algorithm

The process of creating computer music with a melody as a resulting form can be
divided in two phases: first, computer constructs durational pattern of melody, then,
it is filled with tones.

3.1. Durational pattern construction

A typical melody is a combination of pitches and rhythm. It is not essential what
element of combination will be created first; in the current work it will be the
rhythm.

All rhythmic units can be classified as (see in Fig. 3):
e Metric — even patterns, such as steady eighth notes or pulses;

e Intrametric—confirming patterns, such as dotted eighth-sixteenth note and
swing patterns;

e Contrametric—non-confirming or syncopated patterns;

e Extrametric—irregular patterns, such as tuplets.
The realization of each kind of rhythmic units becomes possible with a proper
standardization of a variety of notes durations. In this way, for every duration
(eights, pulses) the time is given: exact amount of seconds, for which a single note
with this duration sounds. This parameter (the time) can be accordingly changed if a
tempo of the whole melody is changed.

397

Sofya Latkina. Two-step Harmonious Melody Generator. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
389-406

Division level

w
e ———ay
Metric Intrametric .
- - - - - - -
s B]]]] e — e —
i
Rhythmic units
o
K)) r r r 1 ¥ & 5 r 1 & F & I)
7S 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R e e ————
Contrametric X Extrametric
” h » .- . . e P e
g:h‘ i 1 1 - 1]] 1]]
3 3

Fig. 3 Rhythmic units

By creating durational pattern, a program complies with necessary restrictions, like:
an overall sum of beats doesn’t exceed time (meter) signature. It also avoids
syncopation for the first and last beats of pattern and adheres to the principle of
symmetry.

Durational pattern of musical compositions appears to be holistic and logical if it
uses principles of symmetry and repetition. Like in poems, rhythmical phrases have
to alternate. By this reason, algorithm considers the amount of bars, which have to
be filled with various durations, and constructs an alteration of several rhythmic
patterns, just as if it comes to the rhyme in the poem. The process is organized in the
following way: A, B, C, D — rhythmical phrases, the combination of several
durations, overall amount of which doesn’t exceed time signature. Program
generates from 1 to 4 different phrases and constructs the durational pattern like a
poem, using one of the six schemes (each named by similar rhyme scheme),
described in Table II.

Table Il. Rhythm schemes

Name of scheme Phrases alternation (for 4 bars)
Alternate ABAB
Enclosed ABBA
Monorhyme AAAA
Rubaiyat AABA
Simple 4-line ABCB
Clerihew AABB

After 4 bars of durational pattern are constructed, program deals with next ones,
using the same rhythmic scheme or another one.

398

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.
389-406

Here is a short example of how algorithm creates durational pattern for eight bars
with time signature C or% in Table 111 (here only metric patterns are used in order
to facilitate understanding).

Table I11. Example of durational pattern constructing

Crotchet + Quaver + Quaver +
Crotchet + Crotchet

Quaver + Quaver + Quaver +
Rhythmic phrase ‘B’ Quaver + Quaver + Crotchet +
Crotchet

Quaver + Crotchet + Quaver +
Quaver + Crotchet + Quaver

Crotchet + Quaver + Quaver +

Rhythmic phrase ‘A’

Rhythmic phrase ‘C’

Rhythmic phrase ‘D’

Minim
Alternate (using phrases A,B) +
Chosen scheme(-s) Simple 4-line (using phrases A,
D, C)
Resulting scheme ABABADCD

Bar1 JrA]

Sar2 DPDIIDIL
Sar 3 JrIJ.

Bar 4 PPPIIDIL
sar JrrJ

Bar® JI2o

Bart PIrDID
Sar 8 JDD

399

https://en.wikipedia.org/wiki/File:Commontime_inline.png

Sofya Latkina. Two-step Harmonious Melody Generator. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
389-406

3.2. Melodic pattern construction

The basis of this part of the algorithm lies in the rules of harmonic melody
construction (rules will be explained further).

In mathematics, there is one key rule: a plane can be described through three points.
Literally saying, the whole two-dimensional surface, a flat, that contains endless
amount of points, can actually be defined by only three of them. A figure “3” has
significant in a context of music creating also. Three notes form a chord, which
determines vital characteristics of musical composition: whether it is major of
minor, harmonious or disharmonious. As it is needed to create harmonious
melodies, chords can be uses as basic elements, sequential playback of which is
finally a musical canvas.

Back to the Western music: it occurs that this concept is a product of two subjects,
harmony and counterpoint (voice leading). The first discipline appoints the
acceptable chords, which sound simultaneously or successively. The second one
connects the individual notes in a series of chords so as to form simultaneous
melodies. According to Dmitri Tymoczko, composer and music theorist, these key
features “facilitate musical performance, engage explicit aesthetic norms, and
enable listeners to distinguish multiple simultaneous melodies” [12].

This researcher has developed an interesting model of melody’s motion analysis. He
supposed that there can be a geometric shape which can represent all possible notes
and their combinations. This shape is an orbifold (see in Fig. 4) — that is the space
of unordered pairs of pitch classes. The orbifold is singular at its top and bottom
edges, which act like mirrors. In this way, and melody or voice leading between
pairs of pitches (or pitches classes) can be associated with a path on the picture. And
as it follows, consonant chords of traditional Western music can be connected by
efficient voice leading, visualized on this shape. There are a lot of sophisticated
nuances and features in the description of this model, which can be unclear for
uninitiated reader. The most essential conclusion is that, after all necessary
investigations, researcher has proved that most of famous classical melodies subject
to common rules: they consist of symmetrical voice leadings, which can be easily
traced with orbifold. This rule applies for canonical music, hence, it can be inversed.
The aim of this part of algorithm in the current project is to use inversed rule and
build a melody, basing on harmonious permutations and combinations.

400

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.
389-406

transposition

olo_TT 11 22 33 44 55 [eg] “MO"
1 A 5 - s % ? minor second

et 02 13 24 3 46 [57]
‘ . N y . . & ? minor third

major second

© e3 04 15 25 a7 [ag Majorthird

¢ & o4 . . . 2 T perfect fourth

o & . o5 o 58 [ag) [ritone
. 5 ? perfect fourth

* major third
48 59 6t 7e 80 91 [t2) 'J)
S T minaor third
major second
* & 1: m|_norsecond
unison

Fig. 4 Orbifold

For the particular objective simplified shape can be considered. It is a cube with
eight vertices: for each pitch in octave and one for the first one of the next octave
(see in Fig. 5). This cube is carried out specifically for Cdur.

© ;
O], @~

S0
® ®

Fig. 5 Cube of pitches sequences constructing

The essence of this method is that program constructs a melody by moving along
the edges: from one vertex to another. These movements are caused by the chords;
program is trained to use the most harmonious ones, vary sequences, and always
resolve to the tonic. How exactly does it work? It would be rational to explain the
approach with an example:
0. A program has already defined durational pattern so this is not an issue
anymore;

1. Program appoints C (tonic) as the first pitch;

2. Program chooses next pitch from E, G, and D. This can result in intervals:
major third, quart, or major second. Program chooses G;

401

Sofya Latkina. Two-step Harmonious Melody Generator. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
389-406

3. Program chooses next pitch from H, A, or C. Only one option can result in
chord, so program chooses A. End of iteration (triad is done);

4. Program chooses next pitch from D, G, or C of the next octave. Program
chooses D;

5. Program chooses next pitch from C, A, and F. This can result in intervals:
minor third, major second, or fifth. Program chooses F;

6. Program chooses next pitch from D, E, or C of the next octave. Program
chooses E. End of iteration (triad is done);

7. Program chooses next pitch from C, F, or H. Program chooses H;

8. Program chooses next pitch from G, E, and C of the next octave. This can
result in intervals: major third, minor second, or the fifth. Program chooses
G;

9. Program chooses next pitch from C, H, or A. Option “C” is an optimal
finishing for harmonic melody generation. End of iteration;

10. Next iteration...

One of the key limitations for this endless process is to return to the tonic at the end
of voice leading. The entropy of melodic pattern can be increased if it is allowed to
move not only along edges (those ones which are drawn on the picture). But the
principle has to stay unchanged: the motion considers chords and gives priority to
the consonant ones.

Program picks an amount of pitches which corresponds the durational pattern
created earlier. At the final stage algorithm creates and object: melody, which
consist of notes (objects with appropriate properties: tone and durations). This is the
end of algorithm work.

4. Conclusion

The problem of this paper is considered upon the problem of creating music by
computer, which sounds rhythmically and harmonically and appears to be received
as a complete melodic pattern without actual interruption of humankind. Its
specifics is related to the consonantly sounded melodies, to simplicity of
construction algorithm, and to its flexibility: in a case cancelation of some of
limitation, program will provide qualitatively different piece of art, hence, the
ability of computer improvisation can become unlimited within the scope of this
project while the final produce stays holistic.

References

[1]. R. Pinkerton. Information Theory and Melody, Scientific American, vol. 194. #2, pp.
77-86, 1956.

402

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.

389-406

[2]. F. Brooks, A. Hopkins, P. Neumann, W. Wright. An experiment in musical composition,
IRE Transactions on Electronic Computers, vol. EC-6, Ne 3, pp. 175-182, 1957.

[3]. P. Doornbusch, The Music of CSIRAC, Melbourne School of Engineering, Department
of Computer Science and Software Engineering, Ed. Melbourne, Australia: Common
Ground, 2005.

[4]. J. Fildes, ‘Oldest' computer music unveiled, BBC News, Dec. 2008, retrieved Dec. 4,
2013.

[5]. V. Bogdanov, All Music Guide to Electronica: The Definitive Guide to Electronic
Music, Russia: Backbeat Books, 2001

[6]. T. Shimazu, The History of Electronic and Computer Music in Japan: Significant
Composers and Their Works, Leonardo Music Journal (MIT Press), vol. 4, pp. 102-106,
1994.

[7]. R. Zaripov. Kibernetika i musika [Cybernetics and music], Moscva, Rossiya: Nauka
[Moscow, Russia: Nauka], 1971 (in Russian).

[8]. R. Zaripov. Produktsionnaya sistema v musike [The production system in the music],
Izvestiya AN SSSR. Technicheskaya kibernetika [Proceedings of USSR Academy of
Sciences. Technical cybernetics], 1987, no. 2, pp. 207-216 (in Russian).

[9]. R. Wooller, A. Brown, A framework for comparing algorithmic music systems, in
Symposium on Generative Arts Practice (GAP), 2005.

[10]. P. M. Gibson, J. A. Byrne (1991) NEUROGEN, musical composition using genetic
algorithms and cooperating neural networks. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=140338.

[11]. The New Grove Dictionary of Music and Musicians, 2nd ed., S. Sadie, Ed., J. Tyrrell,
Ed. Oxford, UK: Oxford University Press, 2004.

[12]. D. Tymocsko (2006) The Geometry of Musical Chords. [Online]. Available:
http://www.sciencemag.org/content/313/5783/72.full.

[13]. D. G. Loy, The Music Machine: Selected Readings from Computer Music Journal,
Roads, Curtis, Ed. Cambridge, USA: MIT Press, 1992.

[14]. B. Varga, U. Dimen, E. Loparitz. Yazik, Muzika, Matematika. [Language, music,
mathematics] Moscva, Rossiya: Mir [Moscow, Russia: Mir],1981 (in Russian)

AByxwaroBbi reHepaTop
rapMOHUYHbLIX Menoaumn

Cogpos Jlamxuna <latkina.sofya@gmail.com>,
Hayuonanvnwiii Hccneoosamenvckuti Yuusepcumem Boicuwas [lkona Sxonomuxu,
101000, Poccus, e. Mockea, ya. Macnuyxas, 0. 20

Annortanus. [TosBieHne 1 pa3BUTHE KOMITBIOTEPHBIX TEXHOIOTHH B HAIM JHU 3HAYUTEIHHO
paCIIUpPUIM CIEKTP pEIIaeMbIX HEMaTeMaTHYECKHX IPoOaeM, KOTOpBIE TO3BOJISIOT
NPUMEHATh AITOPUTMHYECKOE ONMCAHHE M TPOTPaMMHYI0 CHUMYISILMIO K OOJacTsIM,
CBSI3aHHBIM C TBOPYECKOH (yHKIMEH 4eloBeKa, MHaue roBOps, MCKyccTBOM. HecomHeHHO,
pa3nUYHBIE HAYYHBIE W TBOpPUECKHE PAa0OTHI 00JIANAlOT KaK CBOMMH cHenuduKamu, Tak U

403

Sofya Latkina. Two-step Harmonious Melody Generator. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
389-406

obmmmy kadectBamMu. OCHOBHOM Weel SBISICTCS TO, YTO KaXKIBI Pe3ylbTaT TBOPUYCCKOM
paboTel B OMNpENeNEHHONW CTENeHW Oa3upyeTcss Ha WHTYHIMH aBTopa. B cBOIO ouepens,
YeNoBeYeCKask MHTYUIHS OMUPACTCS HAa OMBIT CyObEKTa, KOTOPBIA MOXET UMETh MOJ CO00i
pazimuHyto npupony. OH MoOXeT OBITh TOJyY4eH B pE3yNbTaTe pPalUOHAIBHOTO,
¢dbopmanbHOrO, MO0 CO3HATENBHOTO MOAXOAA K H3YYCHHIO TOM WIM HHOW creuuduku
MY3BIKaJIBHOTO UCKyccTBa. Ho Takxke OH MOXKeT OBITh U3BICUEH U3 MHBIX HCTOYHUKOB.
My3bIKanbHbIE CBA3M, UX JIQJ0BBIC, WHTOHALMOHHBIC WIM PUTMHYECKHE DPa3HOBHIHOCTH,
(GOpPMHUPYIOT B BOCHPHHHUMAIONIEM WX CO3HAHHU OINpPEACNEHHBIC OTHOILICHUS, JIOTHYECKUE
3aBHCHUMOCTH, KOTOPBIC MOJYMHSIOTCS CIUHBIM NpaBHJIaM W TPUHIWANAM MY3BIKaTbHOMN
opraHuzanui. DT YETKO OMNpeICICHHBIC M IMOHSATHBIC NIAONOHBI MOBEICHHUS IO3BOJSIOT
KOMITBIOTEPY BOCHPUHSITH WX, IMEPEBECTH HA SI3bIK KOMAaHJ M CHUMYJIHPOBaTh Ha HX 0Oa3e
TPOLIECC CO3aHHsI HOBOTO MY3bIKaJIbHOTO IIPOU3BEACHUS.

B nmanHO#l pabGoTe paccMaTpuBaeTCs MOJACTHpPOBaHHWE (YHKIUH KOMIIO3UTOpAa Ha
COBPEMEHHOM IEPCOHAIIEHOM KOMIBIOTEpE. MOIEIMpoBaHUE OIyCOB Ha 0a3e 00beaMHEHHS
MY3BIKQIFHOTO pUTMa M MEJIOJMYECKOM JTMHUH MO3BOJISIET CO3AaTh KOMIBIOTEPHYIO MY3BIKY C
3aJaHHBIMH KOMIIO3UIIMOHHBIMHU TapaMeTpaMu. Vcnoiap30BaHHe HOBOTO MOIXO0JA MPHBOAUT
K pe3ysbTaTaM, OTJIHYAOIIUMCS OT MPEANICCTBEHHUKOB U MPEII0IaralouiiM HOBYIO 001acTh
JUTSL MCCIIEAIOBAHUSA M Pa3paboTKu B chepe HCKYCCTBA, TBOPHMOTO KOMITBIOTEPOM.

KnwueBble cjioBa: co3gaHue MY3bIKH, aJrOPpUTM, KOMIIBIOTCpHAad MY3blKa, TrapMOHUA,
TreHepanus, KI/I6epHeTI/IKa, aHaJIn3 JaHHbIX.

DOI: 10.15514/ISPRAS-2015-27(3)-28

Jas nurupoBanus: JlatkuHa Codpsi. J[ByXIIaroBbli TeHEpaTOp rapMOHHUYHBIX MENOAMIL.
Tpynst UCIT PAH, tom 27, Bbim. 3, 2015 1., ctp. 389-406 (na anrnmiickom s3bike). DOI:
10.15514/ISPRAS-2015-27(3)-28.

Cnucok nutepartypbl

[1]. R. Pinkerton. Information Theory and Melody, Scientific American, vol. 194. #2, pp. 77-
86, 1956.

[2]. F. Brooks, A. Hopkins, P. Neumann, W. Wright. “An experiment in musical
composition”, IRE Transactions on Electronic Computers, vol. EC-6, Ne 3, pp. 175-182,
1957.

[3]. P. Doornbusch, The Music of CSIRAC, Melbourne School of Engineering, Department
of Computer Science and Software Engineering, Ed. Melbourne, Australia: Common
Ground, 2005.

[4]. J. Fildes, “'Oldest' computer music unveiled”, BBC News, Dec. 2008, retrieved Dec. 4,
2013.

[5]. V. Bogdanov, All Music Guide to Electronica: The Definitive Guide to Electronic
Music, Russia: Backbeat Books, 2001

[6]. T. Shimazu, “The History of Electronic and Computer Music in Japan: Significant
Composers and Their Works”, Leonardo Music Journal (MIT Press), vol. 4, pp. 102-
106, 1994.

[7]. P. 3apumnos, Kubepueruka u my3bika. Hayka, 1971.

[8]. P. 3apumos, IIpoaykuuonunas cucrema B mysbike. M3Bectust AH CCCP. TexHuueckas
kubepHerrka, Tom 2, ctp. 207-216, 1987.

404

Codps JIaTkuHa. JIByXIIaroBblii reHepaTop rapMoHHuHbIX Menoauit. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., C.
389-406

[9]. R. Wooller, A. Brown, “A framework for comparing algorithmic music systems”, in
Symposium on Generative Arts Practice (GAP), 2005.

[10]. P. M. Gibson, J. A. Byrne (1991) NEUROGEN, musical composition using genetic
algorithms and cooperating neural networks. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=140338.

[11]. The New Grove Dictionary of Music and Musicians, 2nd ed., S. Sadie, Ed., J. Tyrrell,
Ed. Oxford, UK: Oxford University Press, 2004.

[12]. D. Tymocsko (2006) The Geometry of Musical Chords. [Online]. Available:
http://www.sciencemag.org/content/313/5783/72.full.

[13]. D. G. Loy, The Music Machine: Selected Readings from Computer Music Journal,
Roads, Curtis, Ed. Cambridge, USA: MIT Press, 1992.

[14]. B. Bapra, V. {umen, E. Jlonapu, SI3bika, My3bika, MaTeMaTuku. Mup, 1981.

405

