H C I I Huctutytr Cucremuoro IlporpaMmmupoBaHus
Poccuiickoii AKageMHH HaAYK
I I ——

ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)

Tpyabl
NucTuryTa CHCTEMHOIO
IIporpammupoBanusa PAH

Proceedings of the
Institute for System
Programming of the RAS

Tom 28, Bbimyck 2

Volume 28, issue 2

Mocksa 2016

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)
Tpyabl UHCcTUTYTA cucteMHoro nporpammupoBaHusi PAH

Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH — 510 u3nanue ¢ 1BOiHHOM

AQHOHHMMHOM CUCTEMOH pelieH3UpOBaHMU,

MyOJIMKyIOIIee HaydHbIe CTaThH, OTHOCSIINECS

KO BCEM 00JIaCTsIX CHCTEMHOTO

MPOrPaMMHPOBAHHS, TEXHOJIOT I

MPOrPaMMHPOBAHUS ¥ BEIYHUCIHTEIIBHON

TeXHUKH. Llenbio u3aanus sBasercs

(hopMHpOBaHHE HAYYHO-MH(OPMALMOHHO

Cpebl B 3TUX O0NACTAX MyTEM Iy OIuKaIiu

BBICOKOKAQUECTBEHHBIX CTaTeil B OTKPHITOM

JOCTyTIE.

W3nanue npegHasHaueHo Ai1s UCcIe0BaTeNeH,

CTYJICHTOB 1 aCIIMPaHTOB, a TAK)KE TIPAKTHKOB.

OHO 0XBAaTHIBACT IIUPOKUIT CIIEKTP TEM,

BKJIIOYAs], B YACTHOCTH, CIIEAYIOIINE:

® OIepalMOHHBIC CHCTEMBI;

® KOMIWIATOPHBIE TEXHOIOTHH;

e (0a3bl JaHHBIX U HH)OPMALMOHHBIE
CHCTEMBI;

e TapaiensHbIe H PAaCcTIpeAeIeHHbIE
CHCTEMBI;

e aBTOMATH3MPOBaHHas pa3paboTka
IpOTpamMm;

e BepH(HUKAIMA, BATUAANNSI 1
TECTHPOBAHNE;

® CTAaTUYECKUH U JTUHAMHYECCKHN aHAIN3;

e 3ammra u obecriedeHre 6e30IacHOCTH
T10;

® KOMIIBIOTEPHBIE AITOPUTMBI;

® JCKYCCTBCHHBII HHTEIUICKT.

JKypHhan nzgaercst o 0JHOMY TOMY B IO/,

IIECTh BEIITYCKOB B K)KIOM TOME.

TToanepxuBaeTcs OTKPBITHIN TOCTYI K

COZIEPKAHMIO M3/IaHUsI, 00ecTIeunBast

JIOCTYITHOCTh PE3yJIbTAaTOB UCCIIEAOBAHHUHN IS

OOIIIECTBEHHOCTH U MOJICPIKUBAsT TIT00aIbHBII

00OMEH 3HaHUAMH.

Tpyner UCIT PAH pedepupyrorest n/unm

MHICKCUPYIOTCSI B!

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by
publishing high quality articles on open
access.

The journal is intended for researchers,
students, and practitioners. It covers a
wide variety of topics including (but not
limited to):

e Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design
Tools.

Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

Google ULRICHS/C8

scholar

CYBERLENINKA 5> Wortdcat
JBASE OpenDOAR

RARY.RU 2248
Net,

LIB

VEL

e

V]IK004.45

Peaxoiuierns

I'naBublii peaakrop - Mpannukos Bukrop Ilerposuy,
akazemuk PAH, npodeccop, MCIT PAH (Mockga,
Poccuiickas eznepars).

3aMecTHTeb IVIABHOT0 pefakTopa - Kysueios Cepreit
Jvurpuesny, A.T.H., mpodeccop, UCIT PAH (Mocksa,
Poccuiickas deaepars).

Aserncsn Apytion Uixanosud, x.¢.-m.H., UICII PAH
(Mockga, Poccuiickas ®eneparusi).

bypaonos Wrops bopucosuy, a.¢.-m.H., UCI1 PAH
(Mockga, Poccuiickas ®eneparusi).

Boponkos Anapeii Anaronsesud, I.¢.-M.H., mpodeccop,
Vuusepcurer Manuectepa (Manuectep, Bennkoopuranus).
Bup6uuxkaiite Upuna bonasentyposna, npodeccop, a.¢.-
M.H., MHCTUTYT cucTeM HHQOPMATHKK M. akajemuka A Il
Epuosa CO PAH (HoBocubupck, Poccust).

laiicapsin Cepreii CypeHosud, K.¢.-M.H., UCI1 PAH
(Mockga, Poccuiickas ®eneparusi).

Eprymenxo Huna Biaymvipossa, mpodeccop, A.T.H., TI'Y
(Tomck, Poccuiickas denepars).

Kapnos Jleonna Eprensesny, a.1.1., UCIT PAH (Mocksa,
Poccuiickas deneparus).

Konnos Mrops Bragnmuposnd, k.¢.-M.H., TexHuueckuit
ynuBepcutet Bens! (Bena, ABctpust)

Kocaues Anexcannp Cepreesud, k.¢.-m.H., UCIT1 PAH
(Mocxksa, Poccuiickas dezeparust).

Kysiopun Hukonait Hukonaesud, .¢.-m.1., UCITI PAH
(MockBa, Poccniickas ®eneparms).

Jlactoerkuit Anexceit Jleonnmosud, a.¢.-M.H., mpodeccop,
Yuusepcurer yomuna (Jyomun, Upaanmus).

Jlomazosa Mpuna Anekcangposua, a.¢.-M.H., npodeccop,
HauyonanbHblii nceneopaTenbCkuil yHuBepeuTeT «Bricias
mkoa skoHoMuKI» (Mocksa, Poccuiickas deneparus).
Hognkos Bopuc Acenosnd, a.¢.-M.H., npodeccop, CaHKT-
IlerepOyprekuii rocynapcTBennslil yausepcuteT (CaHkT-
IletepOypr, Poccus).

Ilerpenko Anekcannp Koncrautunosud, A.¢.-m.H., UCII
PAH (Mocksa, Poccuiickas ®eaeparms).

Ilerpenko Anekcanap Pegoposud, a.¢.-M.H.,
Hccnenoparensckuii uHcTuTYT MOHpeans (Monpeais,
Kanana)

Cemenor Buranuii Anonsdosud, a.d.-m.H., mpodeccop,
UCIT PAH (Mocksa, Poccuiickas ®eneparms).

Tommmun Anexcanap Hukonaesuy, a.¢.-M.H., mpodeccop,
HCII PAH (Mocksa, Poccuiickas denepars).

Yepusix Anapeii, 1.¢.-M.H., mpodeccop, Hayuuo-
uccnegosarensckuii uentp CICESE (Ducenana, Huknsis
Kamndopums, Mekcnka).

IInntman Bukrop 3unossesnd, 1.1.H., UCIT PAH (Mocksa,
Poccuiickas deneparys).

Llycrep Accad, a.¢.-M.H.,, mpodeccop, Texuuon —
Wspaunbekuii TexHonornyeckuit uuetutyT Technion
(Xaitta, U3panis)

Agnpec: 109004, r. Mockaa, yi1. A. ColKeHHIbIHA, 10M
25.

Tenedou: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caiit: http://www.ispras.ru/proceedings/

Editorial Board

Editor-in-Chief - Victor P. Ivannikov, Academician RAS,
Professor, ISPSystem Programming of the RAS (Moscow,
Russian Federation).

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr. Sci.
(Eng.), Professor, Institute for System Programming of the
RAS (Moscow, Russian Federation).

Arutyun |. Avetisyan, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation).

Igor B. Burdonov, Dr. Sci. (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation).
Andrei Chernykh, Dr. Sci., Professor, CICESE Research Centre
(Ensenada, Lower California, Mexico).

Sergey S. Gaissaryan, PhD (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation).
Leonid E. Karpov, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation).

Igor Konnov, PhD (Phys.—Math.), Vienna University of
Technology (Vienna, Austria).

Alexander S. Kossatchev, PhD (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation).

Nikolay N. Kuzyurin, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation).

Alexey Lastovetsky, Dr. Sci. (Phys.—Math.), Professor, UCD
School of Computer Science and Informatics (Dublin, Ireland).
Irina A. Lomazova, Dr. Sci. (Phys.—Math.), Professor, National
Research University Higher School of Economics (Moscow,
Russian Federation).

Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor, St.
Petersburg University (St. Petersburg, Russia).

Alexander K. Petrenko, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation).

Alexandre F. Petrenko, PhD, Computer Research Institute of
Montreal (Montreal, Canada).

Assaf Schuster, Ph.D., Professor, Technion - Israel Institute of
Technology (Haifa, Israel)

Vitaly A. Semenov, Dr. Sci. (Phys.—Math.), Professor, Institute
for System Programming of the RAS (Moscow, Russian
Federation).

Victor Z. Shnitman, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation).
Alexander N. Tomilin, Dr. Sci. (Phys.—Math.), Professor,
Institute for System Programming of the RAS (Moscow,
Russian Federation).

Irina B. Virbitskaite, Dr. Sci. (Phys.-Math.), The A.P. Ershov
Institute of Informatics Systems, Siberian Branch of the RAS
(Novosibirsk, Russian Federation).

Andrey Voronkov, Dr. Sci. (Phys.—Math.), Professor,
University of Manchester (Manchester, UK).

Nina V. Yevtushenko, Dr. Sci. (Eng.), Tomsk State University
(Tomsk, Russian Federation).

Address: 25, Alexander Solzhenitsyn st., Moscow, 109004,
Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings/

© Uncruryt Cucremuoro IIporpamvuposanus PAH, 2016

http://www.ispras.ru/persons/ivannikov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/persons/burdonov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://www.ispras.ru/persons/gaissaryan.php
http://persona.tsu.ru/Home/UserProfile/1015
http://www.ispras.ru/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/persons/kossatchev.php
http://www.ispras.ru/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://www.ispras.ru/persons/semenov.php
http://www.ispras.ru/persons/tomilin.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/persons/shnitman.php
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/ivannikov.php
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/en/persons/burdonov.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/en/persons/gaissaryan.php
http://www.ispras.ru/en/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/en/persons/kossatchev.php
http://www.ispras.ru/en/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/semenov.php
http://www.ispras.ru/en/persons/shnitman.php
http://www.ispras.ru/en/persons/tomilin.php
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/
https://persona.tsu.ru/Home/UserProfile/1015

Tpyast UactutyTta Cucremuoro IllporpammupoBanusa PAH

ConepxaHue

Ju3zaite cpencts 0600IIEHHOTO IPOTPaMMHUPOBAHHUS B OOBEKTHO-
OPHMEHTHPOBAHHBIX SA3BIKAX: KIIOYEBbIE PEIICHUS
FO.B. BOMAKOBA ...ttt ettt 5

Refinement Tume! 11 s3eika Jolie
Anexcandp Yuuueun, Jlapuca Caguna, Moxameo Inveaxunv, Manysne Mayyapa,
Dabpuyuo Monmesu, BUKIMOP PUBEPA................ccoveciiiiiiiiiiieicceee e 33

O0pa3oBaTeIbHBIA BU3yaTBbHBIN MOTOKOBBIH A3bIK ISl IPOTPAMMHPOBaHHS POOOTOB
LA, Bumut, JJ.A. MOPOBUHOBcouueieiiiiiiiisiiiiti ittt 45

KonTekcTHO-0pHeHTHpOBaHHAS MOEIb ISl Pa3METKU CKBO3HOH (DyHKIIMOHAIBHOCTH B
HCXOIHOM KOJIe

M.C. Manegantoitl, C.C. MUXAAKOBUUeeereeeeeereeeeeseeeeeesesssesiiretessssssiseeeresssassreeeses 63
Tloaxox Kk 0OHAPYKEHUIO aHTU-IIATTEPHOB B CEPBUC-OPUEHTHPOBAHHBIX CHCTEMAX
A C.HO20B........oeccciei ettt e e et e et abe e e abae e aaaae s 79

TexHoNorus co3/1aHus CeMECTBa MPIIOKCHUI HAa OCHOBE aHAIM3a MPEAMETHOM
obmactu

A.ATY0ounuro8a, FO.B. JIUMBUHOGcccceiuiiiiiiiiriniiieei et 97
IIpumenumocts AutoProof: yueGHbIif npumep Bepudukanmu [10
Mamncyp Xazees, Bukmop Pugepa, Manyane Mayyapa, Anexcanop Yuuyueut.................... .. 111

Bepudukanus npeodpazoBaHUs rpaMMaTHKH B HOPMAIBHYIO (popmy XoMckoro B F*

M.U. Ionybenosa, C.H. Booicko, C.B. [PUSOPBEBcccuecuiiiiiiiiiiiiiieii e 127
HccnenoBanye BIMSHUS MCIIONb30BaHMS MapajuiesIi3Ma Ha IPON3BOAUTEIBHOCTD JIBIDKKA
kocumynsuu B mpoekte INTO-CPS

TV K., JIADCEH T1.T ...ttt sttt be e e 139
Crioco0 cTaTHYeCKO# OLIEHKH BpeMeHH paboThl KOMIOHEHTOB A A DL-Moneneit
AM. Tpouyrutl, I B. BY3OGNOGccccocveiuiiiiiiiniiiiiiiiesiisee sttt 157

IIpakTiueckuit ONBIT peaar3alky MoAX00B MPOrPaMMHON U CUCTEMHON UHXKEHEPUU ISt
yIpaBleHHs] TPeOOBAHUSAMH IIPH Pa3pabOTKe MPOrpaMMHOT0 00ECIIeueHUs B aBUAIIMOHHOM

oTpaciu

U.B. Kosepnunckuii, A.B. Kan, B.b. Boakos, IO.C. Ilonos, H.K. I'openuyccc.ccoou.... 173
VCTpOHCTBO M apXUTEKTypa ONEPallMOHHOM CHCTEMbI PEaIbHOTO BPEMEHN

K.M. Mannauues, H.B. Ilaxynu, A.B. XOPOUIULOB.c.cocureeiiiieiinieeiiisie st 181
Pa3paboTka OTIaaumKa [Uis OTIEPAIIHOHHON CHCTEMbI PEAIbHOTO BPEMEHU

A.H. Emenenxo, K.A. Mannauues, H.B. TIGKYTUHcccocoviiiiiiiiiiiiiiiiiiiis e 193
MonenupoBaHie KOHBelepa paciio3HaBaHHs JIFO/ICH B CUCTEMaX KOHTPOJIS IOCTYIIA.

Téccer @., Mapeapua T., TEKE Tccccoueiiiieiiiieieie ettt 205

IMapannensHast 00paboTKa ¥ BU3yanu3anus AL Pe3yIbTaToOB MOICIHPOBAHUS METOJJOM
MOJIEKYJIIPHON IMHAMHUKHU
H.B. Ily3vipokos, B.O. I100pbiea, C.B. TIONAKOG.............ccccooeieeiiiiiiiiiie e 221

O0630p mpexMeTHOH 06acTH 1 KoHIenuus ppeiiMBopKa Ut pa3pabOTKH MopeneH
MEMPHUCTOPOB U MEMPUCTOPHBIX HEMPOHHBIX CETEN
I Kooicegrurko8, H.B. KPACUTUYccouioiiiiiiiiiiii ittt 243

KommnosnnmonHnas Mojens 1 crocob mocTpoeHus GyHKINOHATBHO-OPHEHTHPOBAHHBIX
UH(POPMALIMOHHBIX PECYPCOB HH(POPMALIMOHHO-YIIPABIAIOIIMX CUCTEM
HLUL. TYKIIFEB ...ttt ettt b e bttt b e bt et e bt beeabe e e nre e 259

Proceedings of the Institute for System Programming RAS

Table of Contents

Language Support for Generic Programming in Object-Oriented
Languages: Design Challenges
JUIA BEIYAKOVA. ...ttt sttt b et st b e et reeneans 5

Refinement Types in Jolie
Alexander Tchitchigin, Larisa Safina, Mohamed Elwakil, Manuel Mazzara, Fabrizio

MONEEST, VICIOr RIVETA ...t 33
Visual Dataflow Language for Educational Robots Programming

G.A. ZIMiN, D.A. MOFAVINOV ...c.viiiiieceie ettt sttt ettt s sae e stesbeeerae s 45
Context-Based Model for Concern Markup of a Source Code

M.S. Malevannyy, S.S. MiKNAIKOVICNccocrriiiniieirins e 63
Approach to Anti-pattern detection in Service-oriented Software Systems

LS. YUGOV ettt bbb bbbt h e bRt bRt bt bt b n e b n b 79
Technology for application family creation based on domain analysis

A.GUAOSNNIKOVA, Y. LIEVINOVoiieiiceie ettt ettt sttt sttt e st e e saaeares 97
Usability of AutoProof: a case study of software verification

Mansur Khazeev, Victor Rivera, Manuel Mazzara, Alexander Tchitchigin...........c.cccoveeen. 111
Certified Grammar Transformation to Chomsky Normal Form in F*

M.1. Polubelova, S.N. BOZhKO, S.V. GFigOIeV.......ccccoieiiieiiiiieniese e 127
Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS

(O I a1V LT = TR = 1= ISR 139
A static approach to estimation of execution time of components in AADL models

AM. Troitskiy, D.V. BUZAAIOV..........cccoiiiiiiiiie s 157

Practical experience of software and system engineering approaches in requirements
management for software development in aviation industry

1.V. Koverninskiy, A.V. Kan, V.B. Volkov, Yu. S. Popov, N.K. Gorelitsc.ccceoeriinnnncne 173
Design and architecture of real-time operating system

K.M. Mallachiev, N.V. Pakulin, A.V. Khoroshilov...........cccocviiiiiiiiiiicis e 181
Developing a Debugger for Real-Time Operating System

A.N. Emelenko, K.A. Mallachiev, N.V. Pakulin..........c.cccocviviiiiiiiiiie e 193
Modelling the People Recognition Pipeline in Access Control Systems

F. Gossen, T. Margaria, T. GOKEccccooeiiiiiiiiiiiiiiie ettt 205
Parallel processing and visualization for results of molecular simulation problems

D.V. Puzyrkov, V.O. Podryga, S.V. POIYaKOVccccoeiiiiiiiienese s 221
Memristor-based Hardware Neural Networks Modelling Review and Framework Concept
D.D. Kozhevnikov, N.V. KrasiliCh.........ccccoviiiiiiiiiicc e 243

Composition model and method of creation of functionally-oriented information resources
L CRUCKIYAEBY ...ttt sttt te et ettt e e e s ereane s 259

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

Language Support for Generic
Programming in Object-Oriented
Languages: Design Challenges*

Julia Belyakova <julbel@sfedu.ru>
I. 1. Vorovich Institute of Mathematics, Mechanics and Computer Science,
Southern Federal University,
105/42, B. Sadovaya st., Rostov-on-Don, 344006, Russia

Abstract. It is generally considered that object-oriented (OO) languages provide weaker
support for generic programming (GP) as compared with functional languages such as Haskell
or SML. There were several comparative studies which showed this. But many new object-
oriented languages have appeared in recent years. Have they improved the support for generic
programming? And if not, is there a reason why OO languages yield to functional ones in this
respect? In the earlier comparative studies object-oriented languages were usually not treated
in any special way. However, the OO features affect language facilities for GP and a style
people write generic programs in such languages. In this paper we compare ten modern object-
oriented languages and language extensions with respect to their support for generic
programming. It has been discovered that every of these languages strictly follows one of the
two approaches to constraining type parameters. So the first design challenge we consider is
“which approach is better”. It turns out that most of the explored OO languages use the less
powerful one. The second thing that has a big impact on the expressive power of a programming
language is language support for multiple models. We discuss pros and cons of this feature and
its relation to other language facilities for generic programming.

Keywords: object-oriented languages; generic programming; generics; types; constraints;
concepts; interfaces; Concept pattern; multiple models; concept-parameters

DOI: 10.15514/ISPRAS-2016-28(2)-1

For citation: Belyakova Julia. Language Support for Generic Programming in Object-Oriented
Languages: Design Challenges. Trudy ISP RAN/Proc. ISP RAS, Volume 28, Issue 2, 2016, pp.
5-32. DOI: 10.15514/ISPRAS-2016-28(2)-1

1 This paper is the extended version of the conference paper [1] accepted for the XX Brazilian
Symposium on Programming Languages.

5

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

1. Introduction

Almost all modern programming languages provide language support for generic
programming (GP) [2]. Some languages do it better than others. For example, Haskell
is generally considered to be one of the best languages for generic programming [3,
4], whereas mainstream object-oriented languages such as C# and Java are much less
expressive and have many drawbacks. There were several studies that compared
language support for generic programming in different languages [3-6]. However,
these studies do not make any difference between object-oriented and functional
languages. We argue that OO languages are to be treated separately, because they
support the distinctive OO features that pure functional languages do not, such as
inheritance, interfaces/traits, subtype polymorphism, etc. These features affect the
language design and a way people write generic programs in object-oriented
languages.

Several new object-oriented languages have appeared in recent years, for instance,
Rust, Swift, Kotlin. At the same time, several independent extensions have been
developed for the mainstream OO languages [7-10]. These new languages and
extensions have many differences, but all of them tend to improve the support for
generic programming. There is a lack of a careful comparison of the approaches and
mechanisms for generic programming in modern object-oriented languages. This
study is aimed to fill the gap: it gives a survey, analysis, and comparison of the
facilities for generic programming that the chosen OO languages provide. We identify
the dependencies between major language features, detect incompatible ones, and
point the properties that a language design should satisfy to be effective for generic
programming.

2. Main ldeas

Ten modern object-oriented languages and language extensions have been explored
in this study with respect to generic programming. We have found out that in the case
of OO languages there are exactly two approaches to a design of language constructs
for generic programming. We call the first one “constraints-are-types”, because under
this approach OO constructs such as interfaces or traits, which are usually used as
types in object-oriented programs, are also used to constrain type parameters in
generic programs. The second approach, “constraints-are-Not-types”, restricts OO
constructs to be used as types only, and provides separate language constructs for
constraining type parameters. Hence the first design challenge arises: is one of this
approaches better than another? Or the same expressive power can be achieved using
any of them? We answer these questions in Sec. 3. It turns out that the approaches
cannot be integrated together, and the second one is more expressive.

The second point covered in the paper in detail (in Sec. 4) is language support for
multiple models (by “model” we mean a way in which types satisfy constraints).
There are several questions related to multiple models:

1. lIsit desirable to have multiple models of a constraint?

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

2. How can support for multiple models be provided with the approaches
discovered?
3. Why does not Haskell allow multiple models (instances of a type class)?
4. Isthere a language design that reflects the support for multiple models better
than the existing ones?
The short answers are:
1. Yes, itis desirable.
2. It can be naturally provided with the second approach but not with the first
one.
3. Because of type inference.
4. Yes, there is.
In conclusion, we present a modified version of the well-known table [3, 5] showing
the levels of language support for the features important for generic programming.
Table 1 provides information on all of the object-oriented languages considered,
introduces some new features, and demonstrates the relations between the features.

3. Two Approaches to Constraining Type Parameters

This section provides a survey of language constructs for generic programming in
several modern object-oriented programming languages as well as some language
extensions. All of the languages we explored adopt one of the two approaches:

1. Interface-like constructs, which are normally used as types in object-oriented
programming, are also used to constrain type parameters. By “interface-like
constructs” we mean, in particular, C#/Java interfaces, Scala traits, Swift
protocols, Rust traits. Fig.1 shows a corresponding example in C#:
IPrintable interface acts as the type of xs in PrintArr, whereas in the function
InParens<T> it is used to constrain the type parameter T.

2. For constraining type parameters a separate language construct is provided;
such construct cannot be used as a type. We will see some examples in
Sec. 3-2.

Sec. 3-1 analyses the languages of the first category; Sec. 3-2 is devoted to the second
one. In Sec. 3-3 we compare both approaches and answer the question “Which one is
better if any?”.

interface IPrintable { string Print(); }
void PrintArr (IPrintable[] xs)
{ foreach (var x in xs)

Console.WriteLine ("{0}\n", x.Print()); }

string InParens<T>(T x) where T : IPrintable
{ return " (" + x.Print() + ")"; }

Fig. 1. An ambiguous role of C# interfaces

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

3.1 Languages with “Constraints-are-Types” Philosophy

C# and Java are probably the best-known programming languages in this category,
with interfaces being used to constrain type parameters. In comparison with other
languages that support generic programming, these ones are much less expressive and
have several considerable drawbacks.

Lack of retroactive interface implementation. After a type had been defined, it
cannot implement any new interface. A consequence is that generic code with
constraints on type parameters can only be instantiated with types originally designed
to satisfy these constraints. It is impossible to adapt types afterwards, even if they
semantically conform the constraints.

interface IComparable<T> { int CompareTo (T other); }

class SortedSet<T> where T : IComparable<T> { ... }

Fig. 2. The IComparable<T> interface in C#

Drawbacks of F-bounded polymorphism. F-bounded polymorphism [11] allows
“recursive” constraints (F- constraints) on type parameters in the form T : I<T>,
where T is a type parameter, I<> is a generic interface. Such kind of constraints solves
the binary method problem [12]: Fig. 2 demonstrates a corresponding C# [13]
example. The type parameter T in the interface IComparable<T> pretends to be a type
that implements this interface. This is indeed the case for the class SortedSet<T> due
to the constraint T : IComparable<T>, so the method T.CompareTo(T) is like a binary
function for comparing elements of type T. But the semantics of IComparable<T>
itself has nothing to do with binary methods. One could easily write some class Foo
implementing IComparable<Bar>, and thus the semantics of comparing two Bars
would be broken. Another shortcoming of the F-bounded polymorphism is that code
with recursive constraints is rather cumbersome and difficult to understand. Yet, as
we will see, the F-bounded polymorphism is not the only solution to the binary
method problem. More detailed discussion on the pitfalls of the F-bounded
polymorphism can be found in [9, 14].

Lack of associated types [14,15]. Types that are logically related to some entity are
often called associated types of the entity. For instance, types of edges and vertices
are associated types of a graph. There is no specific language support for associated
types in C# and Java: such types are expressed in generic code in the form of extra
type parameters.

Lack of constraints propagation [14,15]. Despite the fact that the definition of the
class SortedSet<T> in Fig. 2 already contains a constraint on the type parameter T, in
the baz<T> function defined below the constraint on T is to be placed as well.

void baz<T>(SortedSet<T> s) where T : IComparable<T> { ... }
Although baz<T> takes a value of type SortedSet<T>, so it is clear from the signature
of the function that T must be comparable, the code would not compile without an

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

explicit constraint. In other words, a compiler does not propagate the constraints
implied by formal parameters, this is a programmer’s burden.

interface ITerm<Tm> { IEnumerable<Tm> Subterms(); ... }

interface IEquation<Tm, Eqgtn, Subst> where Tm : ITerm<Tm>
where Eqtn : IEquation<Tm, Eqgtn, Subst>
where Subst : ISubstitution<Tm, Egtn, Subst>
{ Subst Solve();
IEnumerable<Egtn> Split(); ... }

interface ISubstitution<Tm, Egtn, Subst> where Tm : ITerm<Tm>
where Eqgtn : IEquation<Tm, Egtn, Subst>
where Subst : ISubstitution<Tm, Egtn, Subst>
{ Tm SubstituteTm(Tm) ;
IEnumerable<Egtn> SubstituteEq (IEnumerable<Egtn>); ... }

Fig. 3. The C# interfaces for unification algorithm

Some of the drawbacks mentioned above have been successfully eliminated in the
modern object-oriented languages. We briefly examine language facilities for generic
programming in several OO languages with the “constraints-are-types” philosophy in
the following subsections. But there is a problem common for all languages of this
category, the problem of multi-type constraints (constraints on several types). Note
that an interface (or a similar language construct) describes properties, an interface of
a single type that implements/extends it. This has inevitable consequence: multi-type
constraints cannot be expressed naturally. Consider a generic unification
algorithm [16]: it takes a set of equations between terms (symbolic expressions), and
returns the most general substitution which solves the equations. So the algorithm
operates on three kinds of data: terms, equations, substitutions. A signature of the
algorithm might be as follows:
Subst Unify<Tm, Eqtn, Subst>(IEnumerable<Eqtn>)
But a bunch of functions has to be provided to implement the algorithm: Subterms

Tm - Ienumerable<Tm>,
Solve : Eqtn - Subst, SubstituteTm : Subst x Tm - Tm,
SubstituteEq : Subst x Ienumerable<Eqtn> - IEnumarable<Eqtn>, and
some others. All these functions are needed for unification at once, hence it would be
convenient to have a single constraint that relates all the type parameters and provides
the functions required.
Subst Unify<Tm, Eqtn, Subst>

(IEnumerable<Eqtn>) where <single constraint>

But in C#/Java the only thing one can do? is to define three different interfaces
describing a term, equation and substitution, and then separately constrain every type
parameter with a respective interface. Fig. 3 shows the interface definitions. To set

2 The Concept design pattern can also be used, but it has its own drawbacks. We will discuss
concept pattern later, in Sec. 4-3-2.

9

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

up a relation between mutually dependent interfaces, three type parameters are used:
Tm for terms, Eqtn for equations, and Subst for substitution. Moreover, the
parameters are repeatedly constrained with the appropriate interfaces in every
interface definition. These constraints are to be stated in a signature of the unification
algorithm as well:
Subst Unify<Tm, Eqtn, Subst> (IEnumerable<Eqtn>)

where Tm : ITerm<Tm>

where Eqtn : IEquation<Tm, Eqtn, Subst>

where Subst : ISubstitution<Tm, Eqtn, Subst>
There is one more thing to notice here — interfaces are used in both roles in the same
piece of code: the IEnumerable<Eqtn> interface is used as a type, whereas other
interfaces in the where sections are used as constraints.

interface Equatable<T> { fun equal (other: T) : Boolean
fun notEqual (other: T): Boolean
{ return !this.equal (other) } }

class Ident (name : String) : Equatable<Ident> {
val idname = name.toUpperCase ()
override fun equal (other: Ident) : Boolean
{ return idname == other.idname } }

Fig. 4. Interfaces and constraints in Kotlin

3.1.1 Interfaces in Ceylon and Kotlin

In contrast to C#, Ceylon [17] and Kotlin [18] interfaces support default method
implementation, so Java 8 [19] interfaces do. This is a useful feature for generic
programming. For instance, one can define an interface for equality that provides a
default implementation for the inequality operation. Fig.4 demonstrates
corresponding Kotlin definitions: the Ident class implements the interface
Equatable<Ident> that has two methods, equal and notEqual; as long as notEqual has
a default implementation in the interface, there is no need to implement it again in the
definition of the Ident class.

shared interface Comparable<Other> of Other
given Other satisfies Comparable<Other>
{ shared formal Integer compareTo (Other other);
shared Integer reverseCompareTo (Other other)
{ return other.compareTo (this); } }

Fig. 5. The use of “self type” in Ceylon interfaces

In addition to default method implementations, the Ceylon language also allows a
type parameter to be declared as a self type. An example is shown in Fig. 5. In the
definition of the Comparable<Other> interface the declaration of Other explicitly
requires Other to be a self type of the interface, i. e. a type that implements this

10

Bensikosa 10.B. lu3aitn cpeacts 06001MEHHOTO MPOrpaMMHPOBAHUS B 00BEKTHO-OPUEHTHPOBAHHBIX A3bIKAaX: KIIIOUCBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

interface. Because of this the reverseCompareTo method can be defined: both the
other and this values are of type Other, with the Other implementing
Comparable<Other>, so the call other.compareTo(this) is perfectly legal.

3.1.2 Scala Traits

Similarly to advanced interfaces in Java 8, Ceylon, and Kotlin, Scala traits [6,20]
support default method implementations. They can also have abstract type members,
which, in particular, can be used as associated types[21]. Just as in
C#/Java/Ceylon/Kotlin, type parameters (and abstract types) in Scala can be
constrained with traits and supertypes (upper bounds): the latter constraints are called
subtype constraints. But, moreover, they can be constrained with subtypes (lower
bounds), which are called supertype constraints. None of the languages we discussed
so far support supertype constraints nor associated types. Another important Scala
feature, implicits [20], will be mentioned later in Sec. 4-1 with respect to the Concept
design pattern.

struct Point { x: 132, y: i32, }
impl Point {
fn moveOn (&self, dx: 132, dy: 132) -> Point

{ Point {x: self.x + dx, y: self.y + dy } } o}
impl Point {

fn reflect (&self) -> Point { Point {x: -self.x, y: -self.y} } }
let pl
let p2

Point {x: 4, y: 3};
pl.moveOn (1, 1); let p3 = pl.reflect();

Fig. 6. Point struct and its methods in Rust

trait Eqgtbl { fn equal (&self, that: &Self) -> bool;
fn not equal (&¢self, that: &Self) -> bool { !self.equal(that) } }
trait Printable { fn print (&self); }

impl Eqtbl for i32 ({
fn equal (&self, that: &i32) -> bool { *self == *that } }

struct Pair<S, T>{ fst: S, snd: T }
impl <S : Egtbl, T : Egtbl> Egtbl for Pair<s, T> {
fn equal (&self, that: &Pair<S, T>) -> bool
{ self.fst.equal (&that.fst) && self.snd.equal (&that.snd) } }
Fig. 7. An example of using Rust traits

3.1.2 Rust Traits

The Rust language [22] is quite different from other object-oriented languages. There
is no traditional class construct in Rust, but instead it suggests structs that store the

11

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

data, and separate method implementations for structs. An example is shown
in Fig. 6% two impl Point blocks define method implementations for the Point struct.
If a function takes the &self* argument (as moveOn), it is treated as a method. There
can be any number of implementation blocks, yet they can be defined at any point
after the struct declaration (even in a different module). This gives a huge advantage
with respect to generic programming: any struct can be retroactively adapted to
satisfy constraints.

Constraints in Rust are expressed using traits. A trait defines which methods have to
be implemented by a type similarly to Scala traits, Java 8 interfaces, and others. Traits
can have default method implementations and associated types; besides that, the self
type of the trait is directly available and can be used in method definitions. Fig. 7°
demonstrates an example: the Eqtbl trait defining the equality and inequality
operations. Note how support for the self type solves the binary method problem (here
equal is a binary method): there is no need in extra type parameter that “pretends” to
be a self type, because the self type Self is already available.

Method implementations in Rust can be probably thought of similarly to .NET
“extension methods”. But in contrast to .NET®, types in Rust also can retroactively
implement traits in impl blocks as shown in Fig. 7: Eqtbl is implemented by i32 and
Pair<S, T>. The latter definition also demonstrates a so-called type-conditional
implementation: pairs are equality comparable only if their elements are equality
comparable. The constraint <S : Eqtbl... is a shorthand, it can be declared in a where
section as well.

There is no struct inheritance and subtype polymorphism in Rust. Nevertheless, as
long as traits can be used not only as constraints but also as types, a dynamic dispatch
is provided through a feature called trait objects. Suppose i32 and f64 implement the
Printable trait from Fig. 7. Then the following code demonstrates creating and use of
a polymorphic collection (the type of the polyVec elements is a reference type):

let prl = 3; let pr2 = 4.5; let pr3 = -10;

let polyVec: Vec<&Printable> = vec![&prl, &pr2, &pr3];

for v in polyVec { v.print(); }

3.1.3 Swift Protocols

Swift is a more conventional OO language than Rust: it has classes, inheritance, and
subtype polymorphism. Classes can be extended with new methods using extensions

3 Some details were omitted for simplicity. To make the code correct, one has to add
#[derive(Debug,Copy,Clone)] before the Point definition.

4 The “&” symbol means that an argument is passed by reference.

5 Some details were omitted for simplicity. The following declaration is to be provided to
make the code correct: #[derive(Copy, Clone)] before the definition struct Pair<S : Copy, T :
Copy>. Yet the type parameters of the impl for pair must be constrained with Copy+Equatable.
6 Similarly to .NET, Kotlin supports extending classes with methods and properties, but
interface implementation in extensions is not allowed.

12

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

that are quite similar to Rust method implementations. Instead of interfaces and traits
Swift provides protocols. They cannot be generic but support associated types and
same-type constraints, default method implementations through protocol extensions,
and explicit access to the self type; due to the mechanism of extensions, types can
retroactively adopt protocols. Fig. 8 illustrates some examples: the Equatable
protocol extended with a default implementation for notEqual (pay attention to the
use of the Self type); the contains<T> generic function with a protocol constraint on
the type parameter T; an extension of the type Int that enables its conformance to the
Printable protocol; the Container protocol with the associated type ltemTy; the
allltemsMatch generic function with the same-type constraint on types of elements of
two containers, C1 and C2.

protocol Equatable { func equal (that: Self) -> Bool; }
extension Equatable { func notEqual (that: Self) -> Bool

{ return !self.equal (that) } }
func contains<T : Equatable> (values: [T], x: T) -> Bool { ... }

protocol Printable { func print(); }
extension Int : Printable { ... }

protocol Container { associatedtype ItemTy ... }
func allltemsMatch<Cl: Container, C2: Container
where Cl.ItemTy == C2.ItemTy, Cl.ItemTy: Equatable> ...

Fig. 8. Protocols and their use in Swift

3.2 Languages with “Constraints-are-Not-Types” Philosophy

Most of the languages in this category were to some extent inspired by the design of
Haskell type classes [22]. For defining constraints these languages suggest new
language constructs, which are usually second-class citizens”. These constructs have
no self types and cannot be used as types, they describe requirements on type
parameters in an external way; therefore, retroactive satisfaction of constraints
(retroactive modeling) is automatically provided. Besides retroactive modeling, an
integral advantage of such kind of constructs is that multi-type constraints can be
easily and naturally expressed using them; yet there is no semantic ambiguity which
arises when the same construct, such as C # interface, is used both as a type and
constraint, as in the example below:

void Sort<T>(ICollection<T>) where T : IComparable<T>

Here ICollection<T> and IComparable<T> are generic interfaces, but the former one
is used as a type whereas the latter one is used as a constraint.

interface EQ { boolean eq(This that);

7 Second-class citizens cannot be assigned to variables, passed as arguments, returned from
functions.

13

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

boolean notEq(This that); }
abstract implementation EQ [EQ] {
boolean notEqg(This that) { return !this.eg(that); } }

boolean contains<X>(List<X> list, X x) where X implements EQ { ... }

abstract class Expr {...} class IntLit extends Expr {...}
class PlusExpr extends Expr { Expr left; Expr right; ... }

implementation EQ [Expr] { boolean eq(Expr that) { return false; } }
implementation EQ [PlusExpr]{ boolean eq(PlusExpr that) {...} }

interface UNIFY [Tm, Eqgtn, Subst] {
receiver Tm { IEnumerable<Tm> Subterms(); ... }
receiver Eqtn { IEnumerable<Eqgtn> Split(); Lo)
receiver Subst { Tm SubstituteTm(Tm); ... } o}
Subst Unify<Tm, Eqgtn, Subst>(Enumerable<Egtn>)
where [Tm, Egtn, Subst] implements UNIFY {...}

Fig. 9. Generalized interfaces in JavaGl

3.2.1 JavaGl Generalized Interfaces

JavaGl [7] generalized interfaces represent a kind of confluence of both “constraints-
are-types” and “constraints-are-not-types” philosophies. Interfaces such as
PrettyPrintable defined below are called single-parameter interfaces. They describe
interfaces of a single type and can be used both as types and constraints.
interface PrettyPrintable { String prettyPrint(); }
Such interfaces have explicit access to the self type named This; an example is shown
in Fig. 9, where the self type is used in the interface EQ. There is no direct support
for default method implementations in JavaGl, but abstract implementation
definitions can be used for this purpose®. For example, the notEq method of EQ
(Fig. 9) is implemented in such a way. Generalized interfaces can be implemented
retroactively in implementation blocks. They do not support associated types but can
be generic; moreover, implementations can be generic as well, and the support for
type-conditional interface implementation is provided:
implementation<S, T> EQ [Pair<S, T>] where S implements EQ
where T implements EQ { ... }
Besides single-parameter interfaces, there are multi-headed generalized interfaces
that adopt several features from Haskell type classes [24] and describe interfaces of
several types. There is no self type in a multi-headed interface; therefore, it cannot be
used as a type, it is designed to be used as a constraint only. An example of multi-
headed interface is shown in Fig. 9: the UNIFY interface contains all the functions
required by the unification algorithm considered earlier; the requirements on three

8 The design of JavaGI we discuss here goes back to 2011 when default method
implementations were not supported in Java. With Java 8 this task could probably be solved in
a more elegant way.

14

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

types (term, equation, substitution) are defined at once in a single interface. Note how
succinct is this definition as compared with the one in Fig. 3.

concept Inputlterator<Iter> { type value; ... }
concept Monoid<T> { fun identity elt() -> T;

fun binary op(T, T) -> T; };
model Monoid<int>
{ fun identity elt() -> int@ { return 0; } ... };

fun accumulate<Iter> where { Inputlterator<Iter>,
Monoid<InputIterator<Iter>.value> }

(Iter first, Iter last) -> Inputlterator<Iter>.value

{ let init = identity elt(); ... }

Fig. 10. Concepts and their use in G

3.2.2 Language G and C++ concepts

Concept as an explicit language construct for defining constraints on type parameters
was initially introduced in 2003 [25]. Several designs have been developed since that
time [26-28]; in the large, the expressive power of concepts is rather close the Haskell
type classes [4]. Concepts were designed to solve the problems of unconstrained C++
templates [14, 29]; they were expected to be included in C++0x standard, but this did
not happen. A new version of concepts, Concepts Lite (C++12) [30], is under way
now. The language G declared as “a language for generic programming” [8] also
provides concepts that are very similar to the C++0x concepts. G is a subset of C++
extended with several constructs for generic programming. For “C++ concepts” we
use the G syntax in this paper.

Similarly to a type class, a concept defines a set of requirements on one or more type
parameters. It can contain function signatures that may be accompanied with default
implementations, associated types, nested concept-requirements on associated types,
and same-type constraints. A concept can refine one or more concepts, it means that
the refining concept includes all the requirements from the refined concepts.
Refinement is very similar to multiple interface inheritance in C# or protocol
inheritance in Swift. Due to the concept refinement, a so-called concept-based
overloading is supported: one can define several versions of an algorithm/class that
have different constraints, and then at compile time the most specialized version is
chosen for the given instance. The C++ advance algorithm for iterators is a classic
example of concept-based overloading application.

It is said that a type (or a set of types) satisfies a concept if an appropriate model of
the concept is defined for this type (types). Model definitions are independent from
type definitions, so the modeling relation is established retroactively; models can be
generic and type-conditional. Fig. 10 illustrates some examples: the
Inputlterator<Iiter> concept with the associated type of elements value; the
Monoid<T> concept and its model for the type int; the accumulate<Iter> generic
function with two constraints, on the type of the iterator and on the associated type of

15

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

this iterator. Note how identity_elt is called in accumulate: in contrast to the languages
from the previous section, identity elt is available in the body of accumulate at the
top-level; this may lead to some inconvenience even if the autocomplete feature is
supported in IDE.

3.2.3 C# with concepts

In the C#* project [9] (C# with concepts) concept mechanism integrates with
subtyping: type parameters and associated types can be constrained with supertypes
(as in basic C#) and also with subtypes (as in Scala). In contrast to all of the languages
we discussed earlier, C#** allows multiple models of a concept in the same scope.

concept CEquatable[T] { bool Equal(T x, T vy);
bool NotEqual(T x, T y) { return !Equal(x, y); } }

interface ISet<T> where CEquatible[T] { ... }
bool Contains<T> (IEnumerable<T> values, T x)
where CEquatable[T] using CEq {... if (cEq.Equal(...) ...}

model default StringEgCaseS for CEquatable[String] { ... }
model StringEqgCaseIS for CEquatable[String] { ... }

Fig. 11. Concepts and models in C#°

Some examples are shown in Fig. 11: the CEquatable[T] concept with the Equal
signature and default implementation of NotEqual, the generic interface 1Set<T> with
the concept-requirement on the type parameter T, and two models of CEquatable[]
for the type String — for case-sensitive and case-insensitive equality comparison. The
first model is marked as a default model®: it means that this model is used if a model
is not specified at the point of instantiation. For instance, in the following code
StringEqCaseS is used to test equality of strings in s1.

ISet<String> sl = ...;

ISet<String>[using StringEqCaselS] s2 = ...;

sl = s2; // Static ERROR, sl and s2 have different types

Note that s1 and s2 have different types because they use different models of
CEquatible[String]. This property is called “constraints-compatibility” in [9], but we
will refer to it as “models-consistency”. One more interesting thing about C#H®P:
concept-requirements can be named. In the Contains<T> function (Fig. 11) the name
cEq is given to the requirement on T; this name is used later in the body of
Contains<T> to access the Equal function of the concept. It is also worth mention that
the interface IEnumerable<T> is used as a type along with the concept CEquatable[T]
being used as a constraint; thus, the role of interfaces is not ambiguous any more,
interfaces and concepts are independently used for different purposes.

9 The default model can be generated automatically for a type if the type conforms to a concept,
i.e. it provides methods required by the concept.

16

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

constraint Eq[T] { boolean T.equals (T other); }
constraint GraphLike([V, E] { V E.source(); ... }

interface ISet<T> where CEquatible[T] { ... }
bool Contains<T> (IEnumerable<T> values, T Xx)
where CEquatable([T] using CEq {... if (cEg.Equal(...) ...}

model default StringEgCaseS for CEquatable[String] { ... }
model StringEgCaselIS for CEquatable[String] { ... }

Fig. 12. Constraints and models in Genus

3.2.4 Constraints in Genus

Like G concepts and Haskell type classes, constraints in Genus [10] (an extension for
Java) are used as constraints only. Fig. 12 demonstrates some examples: the EQ[T]
constraint, which is used to constrain the T in the Set[T] interface; the model of
Eq[String] for case-insensitive equality comparison; the multi-parameter constraint
GraphLike[V,E], and the type-conditional generic model DualGraph[V,E]. Methods
in Genus classes/interfaces can impose additional constraints:

interface List[E] { boolean remove(E e) where Eq[E]; ... }

Here the List[] interface can be instantiated by any type, but the remove method can
be used only if type E of the elements satisfies the EQ[E] constraint. This feature is
called model genericity.

Just as C#", Genus supports multiple models and automatic generation of the natural
model, which is the same thing as the default model in C#°"*. Due to this, the following
code causes a static type error (we saw the same example in C#°*):

Set[String] s1 = ...;

Set[String with CIEq] s2 = ...;

sl = s2; // Static ERROR, sl and s2 have different types

In Genus this feature is called model-dependent types. An important note is to be
made here: in contrast to true dependent types that depend on values, model-
dependent types depend on models, which are compile-time artefacts. So the model-
dependent types are just as dependent as generic types are type-dependent types.

As well as concept-requirements in C#", constraint-requirements in Genus can be
named; the example is shown in Fig. 12: g is a name of the GraphLike[V,E] constraint
required by the DualGraph[V,E] model. Because function signatures inside
constraints are declared with an explicit receiver type (in a style close to JavaGl),
such as the type T in the EQ[T] constraint, syntax of calls to functions in the case of
named models is _.(g.sink)(), not g.sink().

3.3 Which Philosophy Is Better If Any?

It is time to find out which approach is better. Taking into consideration what we
explored in Sec. 3-1 and Sec. 3-2, we draw a conclusion that there are only two

17

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

language features important for generic programming that cannot be incorporated in
a language together:

1. the use of a construct both as a type and constraint;

2. natural support for multi-type constraints.
Languages with “constraints-are-types” philosophy support the first feature but not
the second, languages with “constraints-are-Not-types” philosophy vice versa'®. Can
we determine one feature that is more important?
It was shown in the study [31] that in practice interfaces that are used as constraints
(such as IComparable<T> in C# or Comparable<X> in Java) are almost never used
as types: authors had checked about 14 millions lines of Java code and found only
one such example, which could be even rewritten and eliminated. According to [31],
the same observation also holds for the code in Ceylon. It is hard to imagine any
useful “constraint-and-type” example besides the IPrintable interface from Fig. 1. In
those rare cases when this could happen, it is possible to provide a lightweight
language mechanism for automatic generation of one construct from another. For
example, single-parameter Genus constraints with some restrictions could be
translated to Java interfaces, with the other direction being easier.
At the same time, multi-type constraints, which can be so naturally expressed under
the “constraints-are-Not-types” approach, have rather awkward and cumbersome
representation in the “constraints-are-types” approach as we have seen in Sec. 3-1.
Language support for multiple models is also a problem in the latter approach: it is
considered in detail in the next section. All other language facilities we discussed
could be supported under any approach. Therefore, we claim that with respect to
generic programming the “constraints-are-Not-types” approach is preferable. An
additional benefit is that it eliminates the ambiguity in semantics of the interface-like
constructs currently used for different purposes in OO languages.

4. Single Model versus Multiple Models

For simplicity, in this part of the paper we call “constraint” any language construct
that is used to describe constraints, while a way in which types satisfy the constraints
we call “model”. We have seen in the previous section that most of the languages
allow having only one, unique model of a constraint for the given set of types; only
C#°P'[9] and Genus [10] support multiple models™. And indeed this makes sense for
the languages with “constraints-are-types” philosophy, because it is not clear what to
do with types that could implement interfaces (or any other similar constructs) in
several ways. But how does this affect generic programming?

10 JavaGI seems to support both of them, but it actually provides different constructs for
different purposes: single-parameter interfaces are more like Rust traits or Swift protocols,
whereas multi-headed interfaces are similar to concepts and type classes; the latter cannot be
used as types.

11 G [7] allows multiple models only in different lexical scopes.

18

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

It turns out that sometimes it is desirable to have multiple models of a constraint for
the same set of types. The example of string sets with case-sensitive and case-
insensitive equality comparisons we saw earlier is only one of such examples; another
one is the use of different orderings on numbers, yet different graph implementations,
and so on. Thus, in respect of generic programming, the absence of multiple models
is rather a problem than a benefit. Without extending the language the problem of
multiple models can be solved in two ways, and both of them have serious drawbacks.
1. Using the Adapter pattern. If one wants the type Foo to implement
IComparable<Foo> in a different way, an adapter of Foo, the Fool that
implements 1Comparable<Fool> can be created. This adapter then can be
used instead of Foo whenever the Fool-style comparison is required. An
obvious shortcoming of this approach is the need to repeatedly wrap and
unwrap Foo values; in addition, a code becomes cumbersome.
2. Using the Concept design pattern [20], which is considered in Sec. 4-1.
As we have discovered in Sec. 3-3, languages with the “constraints-are-types”
philosophy are in the large less expressive than the ones with the “constraints-are-
Not-types” philosophy. But may languages such as C#*t and Genus, which are in the
“constraints-are-Not-types” category and support multiple models at the language
level, be considered as the best languages for generic programming? Or we can
imagine a language with a better design? We discuss this question in Sec. 4-3. And
one more question: if language support for multiple models is a good idea, then why
does not Haskell [24] allow multiple instances of a type class? This issue is
considered in Sec. 4-2.

4.1 Concept Pattern

// F-bounded polymorphism

interface IComparable<T> { int CompareTo (T other); }
void Sort<T> (T[] values) where T : IComparable<T> { ... }
class SortedSet<T> where T : IComparable<T> { ... }

// Concept Pattern

interface IComparer<T> { int Compare(T x, T y); }

void Sort<T> (T[] values, IComparer<T> cmp) { ... }

class SortedSet<T> { private IComparer<T> cmp;
public SortedSet (IComparer<T> cmp) { ... } ... }

Fig. 13. The use of the Concept design pattern in C#

The Concept design pattern is suitable for programming languages with the
“constraints-are-types” philosophy. It eliminates two problems:

1. Firts, it enables retroactive modeling of constraints, which is not supported
in languages such as C#, Java, Ceylon, Kotlin, or Scala.

2. Second, it allows defining multiple models of a constraint for the same set
of types.

19

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

The idea of the Concept pattern is as follows: instead of constraining type parameters,
generic functions and classes take extra arguments that provide a required
functionality — “concepts”. Fig. 13 shows an example: in the case of the Concept
pattern the F-constraint T : IComparable<T> is replaced with an extra argument of
the type IComparer<T>. The IComparer<T> interface represents a concept of
comparing: it describes interface of an object that can compare values of type T. As
long as one can define several classes implementing the same interface, different
“models” of the IComparer<T> “concept” can be passed into Sort<T> and
SortedSet<T>.
This pattern is widely used in generic libraries of mainstream object-oriented
languages such as C# and Java; it is also used in Scala. Due to implicits [6,20], the
use of the Concept pattern in Scala is a bit easier: in most cases an appropriate
“model” can be found by a compiler implicitly, so there is no need to explicitly pass
it at a call site*2. Nevertheless, the pattern has two substantial drawbacks. First of all,
it brings run-time overhead, because every object of a generic class with constraints
has at least one extra field for the “concept”, while constrained generic functions take
at least one extra argument. The second drawback, which we call models-
inconsistency, is less obvious but may lead to very subtle errors. Suppose we have s1
of type HashSet<String> and s2 of the same type, provided that s1 uses case-sensitive
equality comparison, s2 — the case-insensitive one. Thus, s1 and s2 use different,
inconsistent models of comparison. Now consider the following function:
static HashSet<T> GetUnion<T>(HashSet<T> a, HashSet<T> b)
{ var us = new HashSet<T>(a, a.Comparer);

us.UnionWith(b); return us; }
Unexpectedly, the result of GetUnion(sl, s2) could differ from the result of
GetUnion(s2, s1). Despite the fact that s1 and s2 have the same type, they use different
comparers, so the result depends on which comparer was chosen to build the union.
Recall that in C#° and Genus models are part of types; therefore, a similar situation
causes the static type error. But in the case of the Concept pattern models-consistency
cannot be checked at compile time.

4.2 Instance Uniqueness in Haskell

Type classes in Haskell [23] provide the support for ad hoc polymorphism (function
overloading). Like concepts and constraints, they define functions available for some
types. For instance, a type class for equality comparison is defined in Haskell as
follows:
class Eq a where

==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

12 Scala is often blamed for its complex rules of implicits resolution: sometimes it is not clear
which implicit object is to be used.

20

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

X /=y =not (x ==Yy)
It contains a function signature for the equality operator ==, and provides a default
implementation for the inequality operator /=. Instances (models) of this type class
can be retroactively defined for types. For example, an instance for Int, a type-
conditional instance for lists, and so on.
instance Eq Int where .. -- (==) implementation
instance Eq a => Eq [a] where .. -- (==) implementation
As long as type classes support ad hoc polymorphism, they are “globally transparent”.
If a function is a part of some type class, every time the name of this function is used,
a compiler knows that an instance of the corresponding type class must be provided.
Multiple instances of a type class for the same set of types are not allowed in Haskell,
and there is a strong reason for that: type inference. Consider the following function
definition:
foo xs ys = if xs == ys then xs else xs ++ ys
In Haskell such definition is valid and its type can be inferred. It is Eq a => [a] — [a]
— [a]*3. Inference succeeds, because a compiler knows the following facts:
e aslong as (++) has the type [a] — [a] — [a], xs and ys are lists;
e there is an instance of Eq for lists: Eq a => Eq [a].
If there were no Eq a => Eq [a] instance available, type checking would fail.
Suppose that multiple instances of a type class are allowed. What to do with type
inference of the foo in this case? To check whether there is at least one instance Eq [a]
in the scope? But probably not all Eq [a] instances require Eq a, should not the type
of the foo be changed in this case to the type Eq [a] => [a] — [a] — [a]?
Now look at the following code:
class Eq a => Baz a where
bar :: a -> Int
useBar xs ys = if length xs > length ys then bar xs - bar ys
else bar ys - bar xs
If instances are uniquely defined, type checker just checks if there is an instance Eq
[a] that implies Baz [a] (xs and ys are inferred to be lists because length has the type
[a] — Int). But if there are multiple Eq [a] instances, then every Baz [a] instance must
specify which Eq [a] instance it uses. It can even be the case that there is a Baz [a]
instance for one Eq [a], but not for another one. Therefore, at the point of the useBar
definition a compiler has no idea whether there is an error of missed Baz [a] instance
or not, because it knows nothing about the instance that might be used in a call to
useBar. This information is available only at the point of the actual call, not the
function definition.
Note that even with the OverlappingInstances extension for Haskell, multiple models
in a sense we discuss in the paper are not supported. This extension indeed allows
having in a scope several instances that match the constraints deduced for code. But

13 [a] is a type of generic list, it is a notation for Data.List a.

21

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

there must be only one, the most specialised instance among them that compiler can
select unambiguously (according to some rules) at the point of the code definition.
Again, not at the call site — at the point of definition. Thus, a user of the code still
cannot choose between instances, an instance is already selected by a compiler. Thus,
Haskell sacrifices language support for multiple models for the sake of type inference.
It is a strong argument for Haskell users, but in the case of the most object-oriented
programming languages, which usually do not permit omitting type annotations of
function arguments as well as constraints on type parameters, there is no need to
prohibit multiple models in OO languages.

4.3 Parameters versus Predicates

So far we have found out that languages with “constraints-are-Not-types” philosophy
may potentially provide better support for generic programming compared to other
languages, especially if they also allow multiple models definition. We have seen
only two languages with such properties, C# [9] and Genus [10], and there is an
essential shortcoming in the design of both of them: constraints on type parameters
are declared in “predicate-style” rather than “parameter-style”. For example, consider
the following Genus definition [10]:
Map[V,W] SSSP[V,E,W](V s)
where GraphLike[V,E], Weighted[E,W],
OrdRing[W], Hashable[V] { ... }

SSSP[V,E,W] is a function for Dijkstras single-source shortest-path algorithm, with
the GraphLike[V,E], Weighted[E,W], OrdRing[W], and Hashable[V] being
constraints on type parameters. The constraints look as if they are predicates on types;
and if they were predicates, this function would probably be well-designed. For
example, in Haskell, G, C#, Java, Rust, and many other languages, where only one
model of a constraint is allowed for the given set of types, constraints on type
parameters are indeed predicates: types either satisfy the constraint (if they have a
model that is unique) or not. But in Genus and C#°" constraints are not predicates,
they are actually parameters, as long as different models of a constraint can be used.
In the worst case a call to the SSSP[V,E,W] function would be as follows:
...pathFromX = SSSP[MyVert, MyEdge, Double

with MyGrLike with MyEdgeDW

with DescDOR with MyVerHash](x);
Whereas in the best case:
...pathFromX = SSSP[MyVert, MyEdge, Double](x);
Note that edge and weight types cannot be deduced, because they are determined by
the models of the constraints, not by the vertex x itself. It is easy to imagine that the
models of edge weighing (Weighted[E,W]) and its ordered ring (OrdRing[W]) would
often vary, so in many cases a call to SSSP[V,E,W] is likely to look like this:
...pathFromX = SSSP[MyVert, MyEdge, Double

with MyEdgeDW with DescDOR] (x);

22

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

This is not very bad but is also not good enough.
If look again at the SSSP algorithm one could notice that it really depends on three
things: a source vertex, a model of a weighed graph which this vertex belongs to, and
a model of hashing. Furthermore, at the level of the SSSP signature the type E of
edges does not matter, we are interested in the model of weighed graph as a whole.
Taking into account this ideas, we can rewrite the SSSP in the following way:
constraint WeighedGraph[V,E,W]

extends GraphLike[V,E], Weighted[E,W], OrdRing[W] {}
Map[V,W] SSSP[V,E,W](V s)

where WeighedGraph[V,E,W], Hashable[V] { ... }
Then a call to SSSP also becomes better:
...pathFromX = SSSP[MyVert, MyEdge, Double with MyWGr](x);
Nevertheless, we believe that in the case of multiple models the “predicate-style”
syntax of constraints is misleading and makes it more difficult to write and call
generic code. We suggest that the design of constraints has to be maintained in the
“parameter-style”. One example of such design is provided by the extension for the
OCaml language — modular implicits [32]; it is briefly discussed in Sec. 4-3-1. A
sketch of the “parameter-style” design of constraints for object-oriented languages is
presented in Sec. 4-3-2.

4.3.1 Modular Implicits in OCaml

In the “modular implicits” extension for the OCaml language [32] module types are
used to describe constraints, modules represent models, with generic functions
explicitly taking module-parameters. Fig. 14 demonstrates some examples. By
contrast to concepts and genus constraints, module types and modules do not have
type parameters, instead they have type members, such as the t in the Eq module type.
Eqg_int and Eq_list are the models of Eq for the int and generic list. Generic functions
that need constraints, such as foo and foo’, explicitly take the implicit module
parameters EL and E. Notice that just as type parameters, EL and E are compile-time
parameters, not run-time. They are called implicit because at a call to generic function
actual models can be inferred, as in the x and y examples in Fig. 14. Note that in the
foo function any model of comparison of lists is expected, whereas foo’ expects a
model of comparison of elements of lists and fixes the model Eq_list E for comparing
lists.

module type Eg = sig

type t

val equal : t -> t -> bool
end

implicit module Eq int = struct
type t = int
let equal x y = ...

end

23

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

implicit module Eq list {E : Eq} = struct
type t = Egq.t list
let equal xs ys = ...

end

let foo {EL : Eq} xs ys = if EL.equal (xs, ys)

then xs else xs @ ys

if (Eq list E).equal(xs, ys)
then xs else xs @ ys

let x = foo [1;2;3] [4;5]

let v = foo’ [1;2;3] [4;5]

let foo’ {E : Eg} xs ys

Fig. 14. OCaml modular implicits

4.3.2 Concept Parameters for C#

Fig. 15 shows some examples of generic code in the style of concept-parameters,
which we call Cp# — C# with concept-Parameters. Concepts are the same as in C#°,
whereas constraints on type parameters are not predicates any more, they are
explicitly stated as parameters in the angle brackets after the ““|” sign. In the
ICollection<T> interface the Remove method is obviously generic: it takes the
concept-parameter eq for comparing values of type T. Note that concept-parameters
can even be non-generic as in the MaxInt function.

If default models are supported, it must be possible to infer concept-arguments just in
the same way as in C#° or Genus, so that in common cases instances of generic
functions and classes can be written in a usual way, without the need to specify the
models required:

var ints = new ISet<int>(...);
var hasb Contains(ints, 5);

var maxv MaxInt(ints);
var minv = MaxInt<|IntOrdDesc>(ints);

ISet<String> sl = ...;
ISet<String|StringEqCaselIS> s2 = ...;
sl = s2; // Static ERROR, sl and s2 have different types

C#°' and Genus can easily be redesigned to follow the “concept-parameters” style
presented here. With this style, the syntax of such languages would perfectly fit the
semantics. On the other hand, the “concept-predicates” style used misleads a
programmer and masks the fact that constraints can be satisfied non-uniquely.

concept Equality[T]{ bool Equal(T x, T y);

bool NotEqual (T x, T y) {return !Equal(x, y);} }
concept Ordering[T] refines Equality[T] { int Compare(T x, T y); } }
interface ISet<T | Equality[T] eag> { ... }
interface ICollection<T> {

24

Besnsixosa 10.B. {uzaiin cpectB 0000MEHHOTO IPOrpaMMUPOBAHHS B 00BbEKTHO-OPHEHTHPOBAHHBIX SI3bIKAX: KIIOYEBbHIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

bool Remove<Equality[T] eg>(T x); e}
bool Contains<T | Equality[T] eg>(IEnumerable<T> vs, T x)
{... if (eg.Equal(...) ..}

int MaxInt<|Ordering[int] ord>(IEnumerable<int> vs) {...}

Fig. 15. The use of concept-parameters in Cp#

4. Single Model versus Multiple Models

Table 1 provides a summary on comparison of the languages: each row corresponds
to one property important for generic programming, each column shows levels of
support of the properties in one language. Black circle e indicates full support of a
property, © — partial support, o means that a property is not supported at the
language level, > means that a property is emulated using the Concept pattern, and
the “— sign indicates that a property is not applicable to a language. The “ModImpl”
column corresponds to the Ocaml modular implicits. All the properties that appear in
rows of Table 1 were discussed in Sec. 3 and Sec. 4. Related properties are grouped
within horizontal lines; some of them are mutually exclusive. For example, as we saw
earlier, the use of constraints as types and natural language support for multi-type
constraints are mutually exclusive features. The major features analysed in the paper
are highlighted in bold.

Table 1. The levels of support for generic programming on OO languages

HmkelllC# Java8 Scala Ceylon Kotlin Rust Suiﬂ‘]aruGl G C#"™ Genus|ModImpl

Constraints can be used as types] [] [] [] [] [] L] [] O (@) (]
Explicit self types - o © o ® (o © - - - -
Multi-type constraints ® 3 * i (@] * O o] [] ® [] L] [
Retroaciive type extension o] e O o] O [] e e o] O O O o]
Retroactive modeling [] i i L o i * o L] [] [] L] []
Type conditional models ® |0 O C (0] o e O L] e o L] L]
Static methods e |0 e 0 ¢ o o ‘ L] e o e | o
Default method implementation e O @ o o o @ |0 e @ O O
Associated types [] (@] []) O e e (o] o o []
Constrainis on associated 1ypes © - [] e o - [] [] - L]
Same-1ype constraints [M - [] - -— ® [] - [] [] []
Sublype constrainis - |l @« ¢ o e - e/ 0 O @ O -
Supertype constraints - |lo o e © o) ol o e O -

Concept-based everloading) lo o o o} (ST |« o | o
Multipie models © . ¢ o “ [elNe] o] o e L] L]
Model. istency (model-dependent types) -l o ©o o o - =" e e L]
Model genericity - ¥ ¥ ¥ * * @ O O o O L] -

a Constraints have no self types, therefore, any function member of a constraint can be treated as static function.
b G supports lexically-scoped models but not really multiple models.

C If multiple models are not supported, the notion of model-dependent types does not make sense.

d C++0x concepts, in contrast to G concepts, provide full support for concept-based overloading.

The purpose of this table is not to determine the best language. The purpose is to show
dependencies between different properties and to graphically demonstrate that the

25

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

“constraints-are-Not-types” approach is more powerful than the “constraints-are-
types” one. It is also easy to see that there are features that can be expressed under
any approach, such as static methods, default method implementations, associated
types [15], and even type-conditional models.

It should be mentioned that the table is not exhaustive. There is a bunch of facilities
that we did not discuss at all, although they can be considered independently of the
study we made. Thus, for example, Genus [10] provides a support for such useful
feature as multiple dynamic dispatch. Consider the following code:

constraint Intersectable[T] { T T.intersect(T that); }
model Shapelntersect for Intersectable[Shape]
{ Shape Shape.intersect(Shape s) {...}
// Rectangle and Circle are subclasses of Shape
Rectangle Rectangle.intersect(Rectangle r) {...}
Shape Circle.intersect(Rectangle r) {...}
Shape Triangle.intersect(Circle c) {...} - }

It provides a subtype polymorphism on multiple arguments. So that in the call
sl.intersect(s2) the most specific version of intersect would be used depending on the
dynamic types of both s1 and s2.

Another interesting feature is concept variance. For example, suppose we have the
following Cp# definitions:

interface ISet<T | Equality[T] eg> { ... }
class B { ... }

class D : B { ... }

model EgB for Equality[B] { ... }

Should it be the case that I1Set<D, EqB> is a legal instance? Under what conditions?
It is also desirable to have the class SortedSet<T | Ordering[T] ord> implementing
the interface 1Set<T|ord>. Are there any problems here?

Now recall the ICollection<T> interface definition:

interface ICollection<T> { ...
bool Remove<Equality[T] egq>(T x); ... }

The SortedSet<T|ord> class obviously implements the interface ICollection<T>.
Should it be the case that the ord model of Equality[T] be used in place of eq in the
Remove method? Or the Remove method has to remain model-generic?

And one more question. Consider the following function:
void foo<T | Equality[T] eqg>(ISet<T|eg> s) { ... }
ISet<string | EqStringCaseS> sl =

new SortedSet<string | 0rdStringCSAsc>(...);
foo(sl);

26

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

Which model of Equality[string] should be used inside the foo<>? The static
EqStringCaseS or the dynamic OrdStringCSAsc one?

There are other questions similar to mentioned above that relate constraints on type
parameters to usual features of object-oriented programming. Some of these questions
require a careful type-theoretical investigation, so this is the subject for future work.

Acknowledgment

The author would like to thank Artem Pelenitsyn, Jeremy Siek, and Ross Tate for
helpful discussions on generic programming.

References

[1]. J. Belyakova. Language Support for Generic Programming in Object-Oriented
Languages: Peculiarities, Drawbacks, Ways of Improvement. To appear in Lecture Notes
in Computer Science, 2016.

[2]. D. R. Musser, A. A. Stepanov. Generic Programming. Proceedings of the International
Symposium ISSAC’88 on Symbolic and Algebraic Computation, ISAAC ’88, London,
UK, UK: Springer-Verlag, 1989, pp. 13-25.

[3]. R. Garcia et al. An Extended Comparative Study of Language Support for Generic
Programming. J. Funct. Program., Mar. 2007, 17(2), pp. 145-205.

[4]. J.-P. Bernardy et al. A Comparison of C++ Concepts and Haskell Type Classes.
Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP 08,
Victoria, BC, Canada: ACM, 2008, pp. 37-48.

[5]. R. Garcia et al. A Comparative Study of Language Support for Generic Programming.
SIGPLAN Not., Oct. 2003, 38(11), pp. 115-134.

[6]. B. Oliveira, J. Gibbons. Scala for Generic Programmers: Comparing Haskell and Scala
Support for Generic Programming. J. Funct. Program. July 2010, 20(3-4), pp. 303-352.

[7]. S. Wehr, P. Thiemann. JavaGl: The Interaction of Type Classes with Interfaces and
Inheritance. ACM Trans. Program. Lang. Syst., July 2011, 33(4), pp. 12:1-12:83.

[8]. J. G. Siek, A. A. Lumsdaine. Language for Generic Programming in the Large.
Sci. Comput. Program., May 2011, 76(5), pp. 423-465.

[9]. J. Belyakova, S. Mikhalkovich. Pitfalls of C# Generics and Their Solution Using
Concepts. Proceedings of the Institute for System Programming, June 2015, 27(3), pp. 29—
45,

[10]. Y. Zhang et al. Lightweight, Flexible Object-oriented Generics. Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2015, Portland, OR, USA: ACM, 2015, pp. 436-445.

[11]. P. Canning et al. F-bounded Polymorphism for Object-oriented Programming,
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, FPCA 89, Imperial College, London, United
Kingdom: ACM, 1989, pp. 273-280.

[12]. K. Bruce et al. On Binary Methods. Theor. Pract. Object Syst., Dec. 1995, 1(3), pp. 221-
242.

[13]. A. Kennedy, D. Syme. Design and Implementation of Generics for the .NET Common
Language Runtime. SIGPLAN Not., May 2001, 36(5), pp. 1-12.

27

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

[14].

[15].

[16].
[17].
[18].

[19].
[20].

[21].
[22].
[23].

[24].

[25].

[26].

[27].

[28].
[29].
[30].

[31].

[32].

28

J. Belyakova, S. Mikhalkovich. A Support for Generic Programming in the Modern
Object-Oriented Languages. Part 1. An Analysis of the Problems. Transactions of
Scientific School of I. B. Simonenko. Issue 2, 2015, no. 2, pp. 63-77 (in Russian).

J. Jarvi, J. Willcock, A. Lumsdaine. Associated Types and Constraint Propagation for
Mainstream Object-oriented Generics. Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA 05, San Diego, CA, USA: ACM, 2005, pp. 1-19.

A. Martelli, U. Montanari. An Efficient Unification Algorithm, ACM Trans. Program.
Lang. Syst., Apr. 1982, 4(2), pp. 258-282.

The Ceylon Language Specification, version 1.2.2 (March 11, 2016).
http://ceylon-lang.org/documentation/1.2/spec/

The Kaotlin Reference, version 1.0 (February 11, 2016).
https://kotlinlang.org/docs/reference/

Java Platform, Standard Edition (Java SE) 8. http://docs.oracle.com/javase/8/

B. C. Oliveira, A.Moors, M. Odersky. Type Classes As Objects and Implicits.
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, Reno/Tahoe, Nevada, USA: ACM,
2010, pp. 341-360.

A. Pelenitsyn. Associated Types and Constraint Propagation for Generic Programming in
Scala. Programming and Computer Software, 2015, 41(4), pp. 224-230.

The Rust Reference, version 1.7.0 (March 3, 2016).
http://doc.rust-lang.org/stable/reference.html

C. V Hall. et al. Type Classes in Haskell. ACM Trans. Program. Lang. Syst., Mar. 1996,
18(2), pp. 109-138.

P. Wadler, S. Blott. How to Make Ad-hoc Polymorphism Less Ad Hoc. Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, Austin, Texas, USA: ACM, 1989, pp. 60-76.

B. Stroustrup. Concept Checking — A More Abstract Complement to Type Checking.
Technical Report N1510=03-0093, ISO/IEC JTC1/SC22/WG21, C++ Standards
Committee Papers, 2003.

B. Stroustrup, G.Dos Reis. Concepts — Design Choices for Template Argument
Checking. Technical Report N1522=03-0105, ISO/IEC JTC1/SC22/WG21,
C++ Standards Committee Papers, 2003.

G. Dos Reis, B. Stroustrup. Specifying C++ Concepts. Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 06, Charleston, South Carolina, USA: ACM, 2006, pp. 295-308.

B. Stroustrup, A. Sutton. A Concept Design for the STL. Technical Report N3351=12-
0041, ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers, 2012.

A. A. Stepanov, M. Lee. The Standard Template Library. Technical Report 95-11(R.1),
HP Laboratories, 1995.

A. Sutton. C++ Extensions for Concepts PDTS. Technical Specification N4377, ISO/IEC
JTC1/SC22/WG21, C++ Standards Committee Papers, 2015.

B. Greenman, F. Muehlboeck, R. Tate. Getting F-bounded Polymorphism into Shape.
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 14, Edinburgh, United Kingdom: ACM, 2014, pp. 89-99.

L. White, F. Bour, J. Yallop. Modular Implicits. ArXiv e-prints, Dec. 2015, arXiv:
1512.01895 [cs.PL].

http://ceylon-lang.org/documentation/1.2/spec/
https://kotlinlang.org/docs/reference/
http://docs.oracle.com/javase/8/
http://doc.rust-lang.org/stable/reference.html

Bensikosa 10.B. lu3aitn cpeacts 06001MEHHOTO MPOrpaMMHPOBAHUS B 00BEKTHO-OPUEHTHPOBAHHBIX A3bIKAaX: KIIIOUCBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

Aun3anH cpeacTB 0606WEHHOrO NporpaMMmMpoBaHunsA B
06BHEeKTHO-OPUEHTUPOBaAHHbIX A3blKaXx:
KIoYeBble pelieHus”

FO.B. Bensxosa <julbel@sfedu.ru>
Hnemumym mamemamuxu, Mexanuxu u Komnviomepholx nayk um. M.H. Boposuua,

FOoicnviit hedepanvuviil ynusepcumem,
344006, Poccus, 2. Pocmos-na-/ony, yr. b. Cadosas, 0. 105/42

AnHorammsi. [IpuHATo cumrath, UYTO 00BEKTHO-opHeHTHpoBaHHBIE (OO) S3BIKH
OpOTpaMMHpPOBaHMuA obecreynBaioT Ooimee crnabyr0 HOAJEPKKY 000OIIEHHOTO
nporpammupoBanus (OIT) mo cpaBHEHHUIO ¢ TAKUME (QYHKIHOHATBHBIMH si3bIkamMu kak Haskell
wm SML. DTo OBIIO NMOKa3aHO B HECKOJNBKMX PaboTaX, IMOCBAIIEHHBIX CPaBHUTEIHEHOMY
aHaNM3y S3BIKOB IporpaMMupoBaHus. Ho B mocienHue rofpl MOSBUINCH HOBBIE 0OBEKTHO-
OPHEHTHUPOBAHHBIE S3BIKH. YJYYIIWIM JIA OHH HOIJICPKKY 000OMmIEHHOTrO
nporpammupoBanua? M eciu HeT, e€CTh JIM NMpHYMHA, 110 KOTOpoi OO-A3bIKM 1O CHX HOpP
YCTYHaloT (pyHKIIMOHAIBHBIM SI3bIKAM B 3TOM OTHOLIEHHH? B mpensirymux mcciie0BaHusIX
00BEKTHO-OPHEHTHPOBAHHBIC SI3BIKA HE PACCMATPUBAINCH CIENUAIBHBIM oOpa3oM. OnqHako,
BO3MOKHOCTH ~ OO-mporpaMMHpOBaHHs BIMSIOT W Ha cpeicTBa 00OOIIEHHOTO
MPOrPaMMHPOBAHUSA B SI3BIKE, A TaKXKe HAa CaM CTHIb 0OOOMIEHHOTO MpOrpaMMHpOBaHUs. B
9TOif cTaThe MBI IPOBOAUM CPaBHEHHE CPEACTB 000OIIEHHOTO MPOrpaMMUPOBAHUS B IECATH
COBPEMEHHBIX O0BEKTHO-OPHEHTHPOBAHHBIX f3bIKaX M HMX pacIIMpeHHsx. B pesyibrare
CPaBHUTENBHOTO aHain3a ObUIO OOHAPYKEHO, YTO KaXKIBII U3 ATUX SI3BIKOB M PACIIMPEHHUH
NPUJIEP)KUBACTCS B TOYHOCTH OJHOTO W3 JBYX IOJXOJOB K OrPAaHHYEHHIO THUITOBBIX
napamMeTpoB 0000mEHHOTO Kona. TakuM o0pa3oMm, TEpBBI KIIOYEBOH BOMPOC AM3aiiHa
cpencts OI1, paccMaTpUBaeMBblii B CTaThe, 3TO «KAKOU MOJIXO JTy4IIe» (€CITH OH BOOOIIIE €CTh).
Oxa3bIBaeTcsi, YT0 OONBIIMHCTBO HcciaenoBaHHBIX HamMu OO-fI3BIKOB HCHONB3YIOT Ooiee
OTpaHMYEHHBbIN MoaX0f. BTopoil MOMEHT, KOTOPBIN OKa3bIBaeT CyIIECTBEHHOE BIIMSHHUE Ha
BBIPA3UTENBHYIO MOIIb S3bIKa IMPOrPAMMHUPOBAHMS, 3TO MOAJEPIKKA MHOMKECTBEHHBIX
Mozenei. B craTbe paccMaTpHBalOTCS NPEMMYIIECTBA W HEAOCTATKH 3TOH BO3MOXKHOCTH, a
Takke €€ CBI3b C JPYTUMH S3bIKOBBIMH CpPEACTBAMU MOAICPKKU 0000IIEHHOTO
MpOrPaMMHPOBAHHS.

KuioueBble cl10Ba: 00bEKTHO-OPHEHTHPOBAHHBIE SI3bIKH; 0000IEHHOE MTPOrpaMMHIPOBAHNE;
THUIIBI; OTPAHUYCHUS; KOHIENTHI; HHTepdEHChl; KOHIENT-NaTTepH; MHOXXECTBEHHBIC MOJICIIH;
KOHILIENT-IIapaMeTphbl.

DOI: 10.15514/ISPRAS-2016-28(2)-1

Jnst nurupoBanus: bemsxosa 10.B. [{u3aiin cpencts 0600IMIEHHOTO MPOrpaMMHUPOBAHUS B
00BEKTHO-OPUEHTUPOBAHHBIX A3bIKaX: KitoueBble pemenusd. Tpyast UCII PAH, Tom 28, Bem.
2,2016 r., ctp. 5-32 (na anmmiickom). DOI: 10.15514/ISPRAS-2016-28(2)-1

JanHasi crarhsl sIBJSETCS PacIIMPEeHHOH Bepcueit crarbu [1] mpuHATON Ha KOH(MPEHLHUIO
«XX Bpa3unbckuil CUMIIO3UYM IO A3bIKaM IPOrpaMMUPOBAHU Y.

29

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

References

[1].

(2].

(3]
[4].

[5].
[6].
[71.
(8].
[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19]
30

J. Belyakova. Language Support for Generic Programming in Object-Oriented
Languages: Peculiarities, Drawbacks, Ways of Improvement. To appear in Lecture Notes
in Computer Science, 2016.

D. R. Musser, A. A. Stepanov. Generic Programming. Proceedings of the International
Symposium ISSAC’88 on Symbolic and Algebraic Computation, ISAAC ’88, London,
UK, UK: Springer-Verlag, 1989, pp. 13-25.

R. Garcia et al. An Extended Comparative Study of Language Support for Generic
Programming. J. Funct. Program., Mar. 2007, 17(2), pp. 145-205.

J.-P. Bernardy et al. A Comparison of C++ Concepts and Haskell Type Classes.
Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP 08,
Victoria, BC, Canada: ACM, 2008, pp. 37-48.

R. Garcia et al. A Comparative Study of Language Support for Generic Programming.
SIGPLAN Not., Oct. 2003, 38(11), pp. 115-134.

B. Oliveira, J. Gibbons. Scala for Generic Programmers: Comparing Haskell and Scala
Support for Generic Programming. J. Funct. Program. July 2010, 20(3-4), pp. 303-352.
S. Wehr, P. Thiemann. JavaGl: The Interaction of Type Classes with Interfaces and
Inheritance. ACM Trans. Program. Lang. Syst., July 2011, 33(4), pp. 12:1-12:83.

J. G. Siek, A. A. Lumsdaine. Language for Generic Programming in the Large.
Sci. Comput. Program., May 2011, 76(5), pp. 423-465.

J. Belyakova, S. Mikhalkovich. Pitfalls of C# Generics and Their Solution Using
Concepts. Proceedings of the Institute for System Programming, June 2015, 27(3), pp. 29—
45.

Y. Zhang et al. Lightweight, Flexible Object-oriented Generics. Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2015, Portland, OR, USA: ACM, 2015, pp. 436-445.

P. Canning et al. F-bounded Polymorphism for Object-oriented Programming,
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, FPCA ’89, Imperial College, London, United
Kingdom: ACM, 1989, pp. 273-280.

K. Bruce et al. On Binary Methods. Theor. Pract. Object Syst., Dec. 1995, 1(3), pp. 221-
242.

A. Kennedy, D. Syme. Design and Implementation of Generics for the .NET Common
Language Runtime. SIGPLAN Not., May 2001, 36(5), pp. 1-12.

10.B. bemsixoBa, C.C. Muxankosud. CpencrBa 000OMIEHHOTO NPOTPaMMHPOBAHUS B
COBPEMEHHBIX 00BbEKTHO-OPUECHTUPOBAHHBIX s3bIKax. YacTh 1. AHamm3 npooieM. Tpyabt
Hay4yHoi mkonsl .b. CumoneHko. Beimyck 2, 2015, Ne 2, PoctoB-Ha-[{ony, ctp. 63—77.
J. Jarvi, J. Willcock, A. Lumsdaine. Associated Types and Constraint Propagation for
Mainstream Object-oriented Generics. Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA °05, San Diego, CA, USA: ACM, 2005, pp. 1-19.

A. Martelli, U. Montanari. An Efficient Unification Algorithm, ACM Trans. Program.
Lang. Syst., Apr. 1982, 4(2), pp. 258-282.

The Ceylon Language Specification, version 1.2.2 (March 11, 2016).
http://ceylon-lang.org/documentation/1.2/spec/

The Kaotlin Reference, version 1.0 (February 11, 2016).
https://kotlinlang.org/docs/reference/

Java Platform, Standard Edition (Java SE) 8. http://docs.oracle.com/javase/8/

http://ceylon-lang.org/documentation/1.2/spec/
https://kotlinlang.org/docs/reference/
http://docs.oracle.com/javase/8/

Bensxora F0.B. Jluzaiin cpencts 06001EHHOrO NPOrpaMMHPOBaHUsT B 00BbEKTHO-OPHEHTHPOBAHHBIX SA3bIKAX: KIIFOYEBbIC
pettennst. Tpyowr UCIT PAH, 2016, Tom 28, BbIyCK 2, ¢. 5-32.

[20].

[21].
[22].
[23].

[24].

[25].

[26].

[27].

[28].
[29].
[30].

[31].

[32].

B. C. Oliveira, A.Moors, M. Odersky. Type Classes As Objects and Implicits.
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, Reno/Tahoe, Nevada, USA: ACM,
2010, pp. 341-360.

A. Pelenitsyn. Associated Types and Constraint Propagation for Generic Programming in
Scala. Programming and Computer Software, 2015, 41(4), pp. 224-230.

The Rust Reference, version 1.7.0 (March 3, 2016).
http://doc.rust-lang.org/stable/reference.html

C. V Hall. et al. Type Classes in Haskell. ACM Trans. Program. Lang. Syst., Mar. 1996,
18(2), pp. 109-138.

P. Wadler, S. Blott. How to Make Ad-hoc Polymorphism Less Ad Hoc. Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, Austin, Texas, USA: ACM, 1989, pp. 60-76.

B. Stroustrup. Concept Checking — A More Abstract Complement to Type Checking.
Technical Report N1510=03-0093, ISO/IEC JTC1/SC22/WG21, C++ Standards
Committee Papers, 2003.

B. Stroustrup, G. Dos Reis. Concepts — Design Choices for Template Argument
Checking. Technical Report N1522=03-0105, ISO/IEC JTC1/SC22/WG21,
C++ Standards Committee Papers, 2003.

G. Dos Reis, B. Stroustrup. Specifying C++ Concepts. Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’06, Charleston, South Carolina, USA: ACM, 2006, pp. 295-308.

B. Stroustrup, A. Sutton. A Concept Design for the STL. Technical Report N3351=12-
0041, ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers, 2012.

A. A. Stepanov, M. Lee. The Standard Template Library. Technical Report 95-11(R.1),
HP Laboratories, 1995.

A. Sutton. C++ Extensions for Concepts PDTS. Technical Specification N4377, ISO/IEC
JTC1/SC22/WG21, C++ Standards Committee Papers, 2015.

B. Greenman, F. Muehlboeck, R. Tate. Getting F-bounded Polymorphism into Shape.
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom: ACM, 2014, pp. 89-99.

L. White, F. Bour, J. Yallop. Modular Implicits. ArXiv e-prints, Dec. 2015, arXiv:
1512.01895 [cs.PL].

31

http://doc.rust-lang.org/stable/reference.html

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

32

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

Refinement Types in Jolie

Alexander Tchitchigin <a.chichigin@innopolis.ru>
Larisa Safina <l.safina@innopolis.ru>
Mohamed Elwakil <m.elwakil@innopolis.ru>
Manuel Mazzara <m.mazzara@innopolis.ru>
Fabrizio Montesi <fmontesi@imada.sdu.dk>
Victor Rivera <v.rivera@innopolis.ru>
Innopolis University, Software Engineering Lab.
420500, Russia, Innopolis, Universitetskaya Str. 1

Abstract. Jolie is the first language for microservices and it is currently dynamically type
checked. This paper considers the opportunity to integrate dynamic and static type checking
with the introduction of refinement types, verified via an SMT solver. The integration of the
two aspects allows a scenario where the static verification of internal services and the dynamic
verification of (potentially malicious) external services cooperate in order to reduce testing
effort and enhance security.

Refinement types are well-known technique for numeric, array and algebraic data types. They
rely on corresponding SMT-theories. Recently SMT solvers got support for a theory of strings
and regular expressions. In the paper, we describe possible application of the theory to string
refinement types. We use Jolie programming language to illustrate feasibility and usefulness
of such extension. First, because Jolie already has syntax extension to support string
refinements. We build on top of that extension to provide static type checking. Second, because
in the realm of microservices the need for improved checking of string data is much higher as
most of external communication goes through text-based protocols.

We present simplified but real-world example from the domain of web-development. We
intentionally introduce a bug in the example demonstrating how easily it can slip a conventional
type system. Proposed solution is feasible, as it do not accept program with the bug. Complete
solution will need enhancements in precision and error reporting.

Keywords: Microservices, Jolie, Refinement Types, SMT, SAT, Z3

DOI: 10.15514/ISPRAS-2016-28(2)-2

For citation: Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel,
Montesi Fabrizio, Rivera Victor. Refinement Types in Jolie. Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 2, 2016, pp. 33-44. DOI: 10.15514/ISPRAS-2016-28(2)-2

33

mailto:a.chichigin@innopolis.ru

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

1. Introduction

“Stringly typed” is a new antipattern referring to an implementation that needlessly
relies on strings, when other options are available. The problem of “string typing”
appears often in service-oriented architecture and microservices on the border
between a service and its clients (external interfaces) due to necessity to communicate
over text-based protocols (like HTTP) and collaboration with clients written in
dynamically-typed languages (like JavaScript). The solution to this problem can be
found with refinement types, which are used to statically (or dynamically) check
compatibility of a given value and refined type by means of predicates constraining
the set of possible values. Though employment of numerical refinements is well-
known in programming languages, string refinements are still rare.

In this paper, we introduce a design for extending the Jolie programming language
[24,3] and its type system. On top of previous extensions with choice type [27] and
regular expressions, we introduce here string refinement type and we motivate the
reasons for such extension. Section 2 recalls the basic of the Jolie language and its
type system while Section 3 describes the open problem this paper attacks with
clarifying examples. Section 4 discusses related work in the context of using SMT
solvers for static typing of refinement types.

2. Jolie programming language

Jolie [24] is the first programming language based on the paradigm of microservices
[17]: all components are autonomous services that can be deployed independently and
operate by running parallel processes, programmed following the workflow approach.
Microservices can be composed to obtain, in turn, other microservices. The language
was originally developed in the context of a major formalization effort for workflow
and services composition languages, the EU Project SENSORIA [1], which spawned
many models for reasoning on the composition of services (e.g., [19,20]). Jolie comes
with a formally-specified semantics [16,15,23]; on the more practical side it is
inspired by standards for Serviceoriented Computing such as WS-BPEL [4]. The
combination of theoretical and practical aspects in Jolie enabled its usage in research
on correct-by-construction software (see, e.g., [26,9,21]).

Microservices work together by exchanging messages. In Jolie, messages are
structured as trees [23] (a variant of the structures that can be found in XML or JSON).
Communications are type checked at runtime, when messages are sent or received.
Type checking of incoming messages is especially relevant, since it mitigates the
effect of ill-behaved clients. The work in [25] presents a first attempt at formalizing
a static type checker for the core fragment of Jolie. However, for the time being, the
language is still dynamically type checked.

3. Extension of Jolie Type System

Safina et al [28] extended the basic type system of Jolie with type choices. The work
had been then continued with the addition of regular expression types, a special case

34

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

of refinement types. In refinement types, types are decorated with logical predicates
which further constrain the set of values described by the type and therefore represent
the specification of invariant on values. Here, we extend this with the possibility of
expressing invariants on string values in form of regular expressions.

The integration of static and dynamic analysis allows considering “internal” services
(native Jolie services) and calls from “external” services (potentially developed in
other languages) in a complementary way. The first ones can be statically checked
while the second ones, which could exhibit malicious behavior, still need a runtime
validation.

The key idea behind service-oriented computing, and microservices in particular, is
the ability to connect services developed in different programming languages and
possibly running on different servers over standard communication protocols [18]. A
common use case is the implementation of APIs for Web and mobile applications. In
such scenarios, the de-facto standard communication protocol is HTTP(S), combined
with standardized data formats (SOAP, JSON, etc.).

HTTP is a text-based protocol, where all data get serialized into strings'. Moreover,
clients of a service (an application or another service) may have been developed in a
language that does not support particular datatypes (e.g., JavaScript does not have a
datatype for calendar dates or time of day), therefore relying on string representation
for internal processing too. The same issue arises with key-value storage systems
(e.g., Memcache and Redis), which support only string keys and string values. These
factors make string handling an important part of a service application, especially at
the boundary with external systems.

Not all strings are made equal. For example, GUIDs are often used to identify records
in a store. GUIDs are represented as strings of hexadecimal digits with a particular
structure. Currently, developers have to manually check the conformance of received
values to the expected format. In such a scenario, a developer has to find her way in
a narrow stream between the Scylla of forgetting to insert necessary checks and the
Charybdis of inserting too many checks for data that has been already validated?.
Description of the shape of expected string data (like GUID or e-mail address) is
natural with regular expressions. Adding the description of this shape to the datatype
definition allows the compiler to automatically insert the necessary dynamic checks
(for public functions) and statically validate the conformance (for internal calls). This
is the extension of refinement type to string type. The same techniques and tools used
for static verification of conformance for numerical refinements [17, 12] can be used
for strings. For the purposes of this paper we will use Z3 SMT solver by Microsoft
Research [6], which recently got support for theory of strings and regular expressions
in its development branch.

1 Jolie partially mitigates this aspect with automatic conversion of string

serializations to structured data by following the interface definition of the service

[23]. However, this does not solve the general problem addressed here.

2 Scylla and Charybdis are monsters of Greek mythology living on the two sides of

a narrow channel so that sailors trying to avoid one would have fallen into the other.
35

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

3.1 Example: a news board

The approach to static checking of string refinements using Z3 SMT solver is
illustrated here by a simple example, i.e. a service using refined datatype for GUIDs
and the SMT constraints generated for it.

A news board is a simple service in charge of retrieving posts composed by a
particular user of the system. The service receives user information via HTTP in a
string format. String refinement types allow the definition of constraints on user 1Ds
as an alternative to the implementation of the logic checking the constraint inside the
posts retrieving operation.

type guid: string(” [A-F\\d]{8,8} —[A-F\\d]{4,4} —[A-F\\d]
{4,4} —[A-F\\d]{4,4} —[A-F\\d]{12,12}")

Types for storing user and posts information are also necessary?.

type user: void {
.uid: guid
.name: string
.age: int(age>18) }
type post_type: void {
.pid: guid
.owner: guid
.content: string }
type posts: void { .postx: post_type }

We leave service deployment information out of this paper due to its low relevance
to the topic, the full code example can be found in [2]. The behavioral fragment of
the news board demonstrates the post retrieval for a particular user. To get the
information the right user has to be found (find_user_by name) and pass the GUID
to get all users posts.

There are two definitions of the operation in the following code fragment:
all_posts_by_user and all_posts_by_user2. In the first one the correct data is passed
toget_all_users_posts, i.e. user.uid; while in the second user.name is passed. Without
string refinement a problem would arise. The code is syntactically correct. However,
it’s semantically incorrect since no information can be retrieved by user’s name when
user’s ID is actually expected.

3 Please note that in Jolie we structure the variable’s data as a tree, where the nodes
contain values. Using the void type for the variable on the top of the tree, we show
that it contains no data and is used as a container for its subtypes.

36

Yuunrun Anexcannp, Capuna Jlapuca, Dnbakuiib Moxamen, Manuapa Manyaib, MonTesu ®abpuimo, Pusepa
Bukrop. Refinement Tums ans sa3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Bhimyck 2, c. 33-44.

main {
all_posts_by_user (name) {
find _user_by_name@SelfOut (name) (user);
get_all_users_posts@SelfOut (user.uid)(posts) };

all_posts_by_user2 (name) {
find _user_by_name@SelfOut (name) (user);
//and here we pass the wrong field!
get_all _users_posts@SelfOut (user.name) (posts) };

//find user_by name definition
//get_all _users_posts definition

}

Introducing string refinement allows Jolie to have both dynamic and static checking
for strings. In case of dynamic checking, the string is verified at runtime when passed
to the receiving service. The more interesting case is static checking by means of
SMT. Here we present the most essential parts of the encoding, complete example

can be found in [2].

;notions of tvpes, terms and tvping relation
[declare—sort Tvpe)

(declare—sort Term)

{declare—fun HasType (Term Tvpe) Bool)

type of strings of a programming language
(declare—fun string () Type)
rl':|1|:-.|:|f:.|r|| |.1'|||‘:| -/'::‘:]I1Ii]1—:.‘:| .l‘;l'l':.'ll'_; f.‘.'zh' to our :-11':.|'|;_'_
tvpe and back
(declare—fun BoxString (String) Term)
(declare=fun string —term=val (Term) String)
(assert (forall ((str String))
(= (string—term—val (BoxString str)) str)))
(assert (forall ((s String))
(HasType (BoxString s) string)))
guid type that refines string type
(declare—fun guid () Type)
(define—fun guid—re () (HegEx String)
the construction of the regular expression is omitted

)

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

refinement definition for guid tvpe
(assert (forall ((x Term))
(iff (HasType x guid)
(and (HasType x string)
(str.in.re (string=term=val x) guid=re)})))
we -:1|l".'i1|| I_'-.'|||' "nser ' r'!|l'l:-'|l;'_|| iI g P -:l_il'l tions
[declare—fun user () Type)
(declare—fun user.uid (Term) Term)
{declare—fun user.name (Term) Term)
(declare—fun user.age (Term) Term)
typing rules for projections
(assert (forall ((t Term))
(implies (HasType t user)
(and (HasTvpe (user.uid t) guid)
[HasType (user.name t) string)
(HasType (user.age t) mnat)))))

(declare—fun find_user_by _name [Term) Term)
find _user_by_name : string —> user
(assert (forall ((name Term))
(implies (HasType name string)
(HasType (find_user_by_name name) user))))

type checking for all_posts_by_user
(assert (not (forall ((t Term))
(implies (HasType t string)
(HasType (user.uid (find_user_by_name t)) guid)))))
type checking for all _posts_by_ user2
(assert (not (forall ((t Term))
(implies (HasType t string)
(HasType (user.name (find_user_by_name t)) guid)))))

Type checking is based on proving a theorem stating that a function is correctly typed.
Technically, the opposite proposition is actually stated and the SMT solver is put in
charge of finding a counterexample. A failure in such an attempt leads to the
conclusion that the original theorem has to be true (proof by contradiction).

The Z3 solver successfully proves the well-typedness theorem for the correct
implementation of all posts by user, and fails to disprove the incorrect implementation
(all_posts_by_user2) due to many simplifications to the presented SMT encoding for
the sake of clarity and understandability. Employment of a more sophisticated
encoding for the actual implementation of refinement constraints may mitigate this
situation and is left as future work.

38

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

4. Related Work

Within the context of functional languages, type-checking of refined types by
employing SMT solvers is not new. In [7], the authors present the design and
implementation of the F7 enhanced type-checker for the functional language F# that
verifies security properties of cryptographic protocols and access control mechanisms
using Z3 [10]. The SAGE language [17] employs a hybrid approach [13] that
performs both static and dynamic type-checking. During compilation time, the
Simplify theorem prover [11] is used to check refinement types. If Simplify is not
able to decide a particular subtyping relation, a proper type cast is inserted in the code
and it is checked at runtime. If the type cast fails during runtime, this particular
subtyping relation is inserted in a database of known failed casts. In contrast to
checking syntactic subtyping as in F7 and SAGE, the authors of [8], introduce
semantic subtyping checking for a subset of the M language [5] using the Z3 SMT
solver.

5. Conclusions

The Jolie language is dynamically type-checked. This paper explores the possibility
of integrated dynamic and static type checking with the introduction of refinement
types, verified via an SMT solver. The integration of the two aspects allows a scenario
where the static verification of internal services and the dynamic verification of
(potentially malicious) external services cooperates in order to reduce testing effort
and enhance security.

In this work, we motivate the usefulness and feasibility of string refinement types
using an example. Naturally, we need to integrate this extension with an actual type-
checker employing a more advanced SMT-encoding. Not only for strings but for
numerical types too which is well-known and useful tool for correctness
enhancement.

When we have a type-checker for refinement types, an interesting empirical study
would be checking of existing programs augmented with refined types to discover
whether this technique can uncover bugs caused by a developer’s oversight.

References

[1]. EU Project SENSORIA. Accessed April 2016. http://www.sensoria-ist.eu/.

[2]. Gist of SMT constraints for the example. Accessed April 2016.
https://gist.github.com/gabriel-fallen/a04¢33860e2157201fa8.

[3]. Jolie Programming Language. Accessed April 2016. http://www.jolie-lang.org/.

[4]. WS-BPEL OASIS Web Services Business Process Execution Language. accessed April
2016. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html.

[5]. Power Query formula reference. Technical Report, August 2015.

[6]. Microsoft Research. Accessed April 2016. Z3. https://github.com/Z3Prover/z3.

39

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

[7].

[8].

[9].
[10].

[11].
[12].

[13].

[14].
[15].

[16].

[17].

[18].
[19].

[20].

[21].
[22].

[23].

[24].

40

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio
Maffeis. Refinement types for secure implementations. ACM Trans. Program. Lang.
Syst., 33(2):8:1-8:45, February 2011.

Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David Langworthy. Semantic
subtyping with an SMT solver. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP 10, pages 105-116, New York, NY, USA,
2010. ACM.

Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In POPL, pages 263-274, 2013.

Leonardo De Moura and Nikolaj Bjerner. Z3: An efficient SMT solver. In Proc. of 14th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg, 2008. Springer-
Verlag.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52(3):365-473, May 2005.

Joshua Dunfield. A unified system of type refinements. PhD thesis, Air Force Research
Laboratory, 2007.

Cormac Flanagan. Hybrid type checking. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 06,
pages 245-256, New York, NY, USA, 2006. ACM.

Tim Freeman and Frank Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268—
277, May 1991.

Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Dynamic error
handling in service oriented applications. Fundam. Inform., 95(1):73-102, 2009.
Claudio Guidi, Roberto Lucchi, Gianluigi Zavattaro, Nadia Busi, and Roberto Gorrieri.
Sock: a calculus for service oriented computing. In ICSOC, volume 4294 of LNCS, pages
327-338. Springer, 2006.

Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N Freund, and Cormac
Flanagan. Sage: Unified hybrid checking for first-class types, general refinement types,
and dynamic (extended report), 2006.

James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. Accessed April 2016. http://martinfowler.com/articles/microservices.htm.

Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for WS-BPEL. J.
Log. Algebr. Program., 70(1):96-118, 2007.

Manuel Mazzara, Faisal Abouzaid, Nicola Dragoni, and Anirban Bhattacharyya. Toward
design, modelling and analysis of dynamic workflow reconfigurations — A process algebra
perspective. In Web Services and Formal Methods - 8th International Workshop, WS-FM,
pages 64-78, 2011.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, | and
I1. Information and Computation, 100(1):1-40,41-77, September 1992.

Fabrizio Montesi. JOLIE: a Service-oriented Programming Language. Master’s thesis,
University of Bologna, 2010.

Fabrizio Montesi. Process-aware web programming with Jolie. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC *13, pages 761-763, New York,
NY, USA, 2013. ACM.

Fabrizio Montesi and Marco Carbone. Programming Services with Correlation Sets. In
Proc. of Service-Oriented Computing - 9th International Conference, ICSOC, pages 125-
141, 2011.

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

[25]. Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented programming
with jolie. In Web Services Foundations, pages 81-107. 2014.

[26]. J. M. Nielsen. A Type System for the Jolie Language. Master’s thesis, Technical
University of Denmark, 2013.

[27]. Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio
Gabbrielli. AIOCJ: A choreographic framework for safe adaptive distributed applications.
In Software Language Engineering - 7th International Conference, SLE 2014, Visteras,
Sweden, September 15-16, 2014. Proceedings, pages 161-170, 2014.

[28]. Larisa Safina, Manuel Mazzara, Fabrizio Montesi, and Victor Rivera. Data-driven
workflows for microservices (genericity in jolie). In Proc. of 30th IEEE International
Conference on Advanced Information Networking and Applications (AINA), 2016.

Refinement Tunbl Ana Aasbika Jolie

Anexcandp Yuuueun <a.chichigin@innopolis.ru>
Jlapuca Cagpuna <l.safina@innopolis.ru>
Moxameo Dnveaxuns <m.elwakil@innopolis.ru>
Manysne Mayyapa <m.mazzara@innopolis.ru>
Dabpuyuo Monmesu <fmontesi@imada.sdu.dk>
Buxmop Pusepa <v.rivera@innopolis.ru>
Ynueepcumem Hnnononuc,
420500, Poccus, pecn. Tamapcman, e. Uunonoauc, yn. Yuusepcumemcxas, 0.1.

AunHotaumsi. Jolie — s3bIK TPOrpaMMHUpPOBaHUS s Pa3paboTKH MHKPOCEPBHCOB M Ha
TeKyLIMi MOMEHT SBISieTCS IUHAMHYECKH IpOBEpseMbIM. B cTaTbe paccMarpuBaeTcs
BO3MOXKHOCTb OOBCIMHUTH JUHAMHYECKYIO M CTaTHYECKYIO MPOBEPKY THIIOB C MOMOIIBIO
refinement Tunos, nposepsiembix SMT-pemarenem. CoeiMHEHNHE ITUX JBYX ACHEKTOB JEacT
BO3MOXXHBIM CLICHApHi{, KOrJa CTaTuueckas BepHUOUKALMS 6HYMPEHHUX CEPBUCOB H
JMHAMHYEeCKasi MpoBepka (MOTEHUUAIBHO 3JIOHAMEPEHHBIX) GHEUHUX CEPBHCOB COBMECTHO
CHI)KAIOT 00BEMBI HEOOXOANMOTO TECTHPOBAHHS U YBEJIMUMBAIOT OE30MAaCHOCTD CHCTEMBI.
Refinement Tumsl XOpomro H3BECTHBI MPUMEHHUTEIBHO K YHCIOBBIM THIAM JIaHHBIX,
anreOpanyeckKiM THIIAM JAHHBIX U MaccuBaM. OHHM OCHOBBIBAIOTCSI Ha COOTBETCTBYOIIMX
SMT Teopusx. HegaBao SMT-pemarenu HOIydrIIu MOAEPKKY TEOPHU CTPOK H PETYISPHBIX
BBIp@XKEHHUil. B cTaThe OMMCHIBAETCS BO3MOXKHOCTH MPHMEHEHHS STOH TEOPHH K CTPOKOBBIM
refinement Tumam. Msbl ucnonme3yeM sA3bIK nporpammupoBanust Jolie 4uroOsI
MPOJIEMOHCTPUPOBATh LEIECOOOPA3HOCT M IOJE3HOCTh TAKOTrO paciiupeHHs. B mepyro
ouepens, motomy uto Jolie yxke CONEpKUT CHHTAKCHYECKOE PAaCUIMpEeHHe IS CTPOKOBBIX
refinement TumoB. MpbI pa3sBHBaeM yKa3aHHOE PACIIMPEHHE, MPEIOCTAaBIAA CTATHYECKYHO
HPOBEPKY THIOB. BO-BTOPBIX, MOCKOJIBKY B 00JACTH MHKPOCEPBHUCOB 3HAUCHHE YIYUYILICHHON
HPOBEPKU CTPOKOBBIX JAHHBIX TOpa3lo BbILNIE, TAK KaK OONBIIMHCTBO KOMMYHHKALHH C
BHEIIHIMH CHCTEMaMH IIPOUCXO/UT IT0 TEKCTOBBIM IPOTOKOJIAM.

MbI JEMOHCTPUPYEM YIPOIIEHHBI, HO PEANHMCTUYHBIN IIPUMEp CHCTEMbl U3 obnactu Web-
paspaboTku. B mnpumep mnpenHamMepeHHO BHECEHa OLIMOKA, MOKa3blBas, KakK JIETKO OHA
YCKOJIB3a€eT OT TPAAULIMOHHOI CHCTEMBI THIIOB. [Ipe/IoxkeHHOE paciupeHne Lenecoo0pasHo,
HOCKOJIBKY OHO HE NPOITyCKaeT IporpamMmy ¢ omnOkoi. IToiaHoneHHoe pemeHue norpedyer
JOpabOTKU B 4aCTH TOYHOCTH IIPOBEPKH M KauecTBa COOOMIeHHH 00 ommnoKax.

41

mailto:a.chichigin@innopolis.ru

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

KaroueBsie ciaoBa: Mukpocepsucsr, Jolie, Refinement tumsr, SMT, SAT, Z3
DOI: 10.15514/ISPRAS-2016-28(2)-2

Jas uutupoBanus: Ynunrun Anexcannp, Caduna Jlapuca, DnpBakuins Moxamen, Mannapa
Mamyaiis, Monresn ®@abpunuo, Pusepa Bukrop. Refinement tumbr mist si3sika Jolie. Tpysr
VICII PAH, tom 28, Bbim. 2, 2016 1., ctp. 33-44 (ua aunrnuiickom). DOI: 10.15514/ISPRAS-
2016-28(2)-2

Cnucok nutepaTtypbl

[1]
(2]

[3].
[4].

[5].

[6].
[7].

[8l.

[a].
[10].

[11].
[12].

[13].

[14].
[15].

[16].

[17].

42

. EU Project SENSORIA. Accessed April 2016. http://www.sensoria-ist.eu/.

. Gist of SMT constraints for the example. Accessed April 2016.
https://gist.github.com/gabriel-fallen/a04¢33860e2157201fa8.

Jolie Programming Language. Accessed April 2016. http://www.jolie-lang.org/.
WS-BPEL OASIS Web Services Business Process Execution Language. accessed April
2016. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html.

Power Query formula reference. Technical Report, August 2015.

Microsoft Research. Accessed April 2016. Z3. https://github.com/Z3Prover/z3.

Jesper Bengtson, Karthikeyan Bhargavan, Cedric Fournet, Andrew D. Gordon, and Sergio
Maffeis. Refinement types for secure implementations. ACM Trans. Program. Lang.
Syst., 33(2):8:1-8:45, February 2011.

Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David Langworthy. Semantic
subtyping with an SMT solver. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, pages 105-116, New York, NY, USA,
2010. ACM.

Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In POPL, pages 263-274, 2013.

Leonardo De Moura and Nikolaj Bjarner. Z3: An efficient SMT solver. In Proc. of 14th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg, 2008. Springer-
Verlag.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52(3):365-473, May 2005.

Joshua Dunfield. A unified system of type refinements. PhD thesis, Air Force Research
Laboratory, 2007.

Cormac Flanagan. Hybrid type checking. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’06,
pages 245-256, New York, NY, USA, 2006. ACM.

Tim Freeman and Frank Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268—
277, May 1991.

Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Dynamic error
handling in service oriented applications. Fundam. Inform., 95(1):73-102, 2009.
Claudio Guidi, Roberto Lucchi, Gianluigi Zavattaro, Nadia Busi, and Roberto Gorrieri.
Sock: a calculus for service oriented computing. In ICSOC, volume 4294 of LNCS, pages
327-338. Springer, 2006.

Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N Freund, and Cormac
Flanagan. Sage: Unified hybrid checking for first-class types, general refinement types,
and dynamic (extended report), 2006.

Yuuurun Anexcanap, Capuna Jlapuca, Dnbakuib Moxamen, Manuapa Manyaibs, MonTesu ®abpuimo, Pusepa
Buxktop. Refinement tumst qst si3sika Jolie. Tpyowt UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 33-44.

(18]

[19].

[20].

[21].
[22].

[23].

[24].

[25].
[26].

[27].

[28].

. James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. Accessed April 2016. http://martinfowler.com/articles/microservices.htm.

Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for WS-BPEL. J.
Log. Algebr. Program., 70(1):96-118, 2007.

Manuel Mazzara, Faisal Abouzaid, Nicola Dragoni, and Anirban Bhattacharyya. Toward
design, modelling and analysis of dynamic workflow reconfigurations — A process algebra
perspective. In Web Services and Formal Methods - 8th International Workshop, WS-FM,
pages 64-78, 2011.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, | and
I1. Information and Computation, 100(1):1-40, 41-77, September 1992.

Fabrizio Montesi. JOLIE: a Service-oriented Programming Language. Master’s thesis,
University of Bologna, 2010.

Fabrizio Montesi. Process-aware web programming with Jolie. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC *13, pages 761-763, New York,
NY, USA, 2013. ACM.

Fabrizio Montesi and Marco Carbone. Programming Services with Correlation Sets. In
Proc. of Service-Oriented Computing - 9th International Conference, ICSOC, pages 125—
141, 2011.

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented programming
with jolie. In Web Services Foundations, pages 81-107. 2014.

J. M. Nielsen. A Type System for the Jolie Language. Master’s thesis, Technical
University of Denmark, 2013.

Mila Dalla Preda, Saverio Giallorenzo, lvan Lanese, Jacopo Mauro, and Maurizio
Gabbrielli. AIOCJ: A choreographic framework for safe adaptive distributed applications.
In Software Language Engineering - 7th International Conference, SLE 2014, Visteras,
Sweden, September 15-16, 2014. Proceedings, pages 161-170, 2014.

Larisa Safina, Manuel Mazzara, Fabrizio Montesi, and Victor Rivera. Data-driven
workflows for microservices (genericity in jolie). In Proc. of the 30th IEEE International
Conference on Advanced Information Networking and Applications (AINA), 2016.

43

Tchitchigin Alexander, Safina Larisa, Elwakil Mohamed, Mazzara Manuel, Montesi Fabrizio, Rivera Victor.
Refinement Types in Jolie. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 33-44.

44

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.

Visual Dataflow Language for Educational
Robots Programming

G.A. Zimin <zimin.grigory@gmail.com>
D.A. Mordvinov <mordvinov.dmitry@gmail.com>
St Petersburg State University, Institute of Mathematics and Mechanics,
28 University Ave., 198504, Russia

Abstract. Visual domain-specific languages usually have low entry barrier. Sometimes even
children can program on such languages by working with visual representations. This is widely
used in educational robotics domain, where most commonly used programming environments
are visual. The paper describes a novel dataflow visual programming environment for embed-
ded robotic platforms. Obviously, complex dataflow languages are not simple for understand-
ing. The purpose of our tool is to "bridge" between lightweight educational robotic program-
ming tools (commonly these tools provide languages which are based on control flow model)
and complex industrial tools (which provide languages based on more complex dataflow exe-
cution model). We compare programming environments mostly used by robotics community
with our tool. After brief review of behavioural robotic architectures, some thoughts on ex-
pressing them in terms of our dataflow language are given. Visual language, which is described
here, provides opportunity to mix dataflow and control flow models for robotics programming.
We believe that it is important for educational purposes. Program on our language consists of
different blocks (visual representation of data transformation processes) and "links" which pre-
sents data flow between them. Domain-specific modelling approach was used to develop our
language. Also, this paper provides the examples of solving two typical robot control tasks in
our language.

Keywords: robotics, data flow, visual programming, educational robotics, domain-specific
modelling, subsumption architecture.

DOI: 10.15514/ISPRAS-2016-282)-3

For citation: G.A. Zimin, D.A. Mordvinov. Visual Dataflow Language for Educational Robots
Programming. Trudy ISP RAN/Proc. ISP RAS. vol. 28, issue 2, 2016, pp. 45-62 DOI:
10.15514/ISPRAS-2016-28(2)-3

45

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

1. Introduction

Programming languages for creating robotic controllers are actual topics of research
oftenly discussed at major conferences, such as ICRA? or IROS?. Visual program-
ming languages (\VVPLs) are also actively discussed for the last three decades, the larg-
est conferences are held annually, e.g. VL/HCCS3. VPLs are oftenly applied in robotics
domain [1-5] allowing to create and visualize robotic controllers. Robotic VPLs are
commonly used for educational purposes, making possible for students of even junior
schools to create robotic programs. For these aims there are already exists a great
number of educational robotic programming environments based on VVPLs, e.g. NXT-
G* TRIK Studio®, ROBOLABS, also there are some academic tools implementing
interesting and novel approaches to educational robotics programming [1], [3], [5].
Robotic control programs are inherently reactive: they transform data which is con-
tinuously coming from multiple sensors into the impulses on actuators. For this reason
dataflow languages (DFLs) are well-suitable for robotics programming. Many re-
searchers denoted the convenience of dataflow visual programming languages
(DFVPLs) [6], finding them more useful than textual DFLs, for example because data
flows explicitly displayed on the diagram. There are large and complex general-pur-
pose and domain-specific development environments such as LabVIEW? and Sim-
ulink® that provide a large (and sometimes even cumbersome) set of libraries for ro-
botics programming. More detailed discussion of robotics VPLs will be provided in
section 2.

There is a large number of robotic constructor Kits for learning the basics of robotics
and cybernetics, such as LEGO MINDSTORMS?, TRIK, ScratchDuino®. Modern
programming languages, which are used for programming those kits, are based on the
control flow model rather than on dataflow model. Control flow-based languages are
good for solving scholar "toy" tasks, but may be inconvenient for programming more
complex "real world" controllers that may be conveniently expresses on DFLs. The
simple DFVPL may be considered as a useful step from educational VVPLs to the pro-
gramming languages, which are used in universities and industry.

This paper discusses a novel extensible tool for programming all popular educational
robotic kits on dataflow visual programming language. It should be noted that, in
distinction from other tools, our tool is focused on embedded systems (section 6).

'[EEE International Conference on Robotics and Automation. Available: http://www.icra2016.org/

2International Conference on Intelligent Robots and Systems. Available: http://www.iros2016.org/

|[EEE Symposium on Visual Languages and Human-Centric ~Computting. Available:
https://sites.google.com/site/vl- hcc2016/

4NXT-G quick programming guide. Available: http://www.legoengineering.com/nxt-g-quick-guide/

SAll about TRIK: TRIK Studio. Available: http://blog.trikset.com/p/trik-studio.html

SROBOLAB quick guide. Available: http://www.legoengineering.com/robolab-quick-guide/

"LabVIEW System Design Software - National Instruments. Available: http:/www.ni.com/labview/

8Simulink - Simulation and Model-Based Design. Available:
http://www.mathworks.com/products/simulink/

*MINDSTORMS EV3 — Products. Available: http://www.lego.com/en-us/mindstorms/products/

0gcratchDuino — Magnetic Robot Construction Kit. Available: http://www.scratchduino.com/

46

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.

Another interesting detail of our work is the application of DSM-aproach for imple-
mentation of visual editor: it is entirely generated by QReal DSM-platform [7], [8]
without even a line of code written. We also take into consideration the popularity of
Brooks' Subsumption Architecture [9] which is still mainstream approach to design
of complex robotic controllers [1], [2], [4], [10] despite it was proposed 30 years ago.
Brooks' Subsumption Architecture and some other are conveniently expressed in our
language, they are discussed in section 3.

The remainder of a paper is organized as follows. An overview of robotics VPLs and
DFVPLs is presented in section 2. Section 3 provides some general thoughts on how
some widely used robotic behavioural architectures are expressed in our language. A
detailed description of our language is given in section 4. Section 5 demonstrates two
typical robotic controllers expressed in our language. The most important details of
implementation are discussed in section 6. Finally, the last section concludes the pa-
per and discusses possible directions for future work.

2. Similar Tools

Robot programming environments can be divided into three categories: educational,
which allows to program small educational robotic kits; industrial, which have a rich
toolkit for creating large and complex robotic controllers; academic, which imple-
ment new interesting ideas, however they are often unavailable for downloading or
unusable.

Educational visual environments are for example NXT-G and ROBOLAB for LEGO
MINDSTORMS NXT kit, EV3 Software for the Lego Mindstorms EV3 kit, TRIK
Studio for NXT, EV3 and TRIK. Those environments simplify solving primitive ro-
bot control tasks like finding a way out of the maze and driving along the line using
light sensors, which makes the process of learning the basics of programming and
robot control easy. But their simplicity often bounds the flexibility of the language.
Visual languages of all mentioned systems are based on control flow model.

There is also a number of well-known visual robotic programming environments of
industrial level. For example, general-purpose LabVIEW from National Instruments
with the DFVPL G, programming environment Simulink developed by MathWorks
for modelling different dynamic models or control systems. Those products offer a
huge set of models and libraries to create control systems, test benches, real-time sys-
tems of any complexity, using model-driven approach. LabVIEW provides oppor-
tunity for programming small robots. There are lots of examples of applying Lab-
VIEW in education [11], [12], but much more often adaptations like Robolab are used
in educational process. It should be noted that those environments are distributed un-
der the commercial license.

Another example of an visual robotics industrial system is the Microsoft Robotics
Developer Studio (MSRDS) [13], which is free for academic purposes and allow to
create distributed robotic systems on DFVPL. MSRDS officially supports a large set
of robotic platforms, LEGO NXT [14] in particular (however, the autonomous mode

47

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

for NXT is not supported). MSRDS has the ability of manual integration with custom
robotic platforms, but unhappily is not maintained since 2014.

There is a lot of scientific research has done in this area, e.g., dissertation [1] describes
a visual programming module for expressing robotic controllers in terms of extended
Moore machines, [3], [4] describe visual environment for occam-z language and
Transterpreter framework, and its usage in education and swarm robotics. Article [5]
describes DFVPL for beginners, which is pretty close to a one we introduce here.
However at the moment RuRu is under development, it has pretty limited functional-
ity and even unavailable for download.

3. Robotic Behavioural Architectures

The task of creation complex and scalable robotic controller is indeed a non-trivial
task. Starting from middle 80's many researchers have attempted to solve this problem
and a number of behavioural robotic architectures were proposed [18]. Those ap-
proaches are quickly became popular in robotics community and they are still actual.
For example, the original work that introduced Brooks' Subsumption Architecture [9]
is one of the most cited works in the entire robotics domain. We believe that the de-
scription of modern language for programming robotic controllers should contain at
least general thoughts on how those architectures may be expressed in it.

A controller built on Brooks' Subsumption Architecture is decomposed into a hierar-
chy of levels of competence where each new layer describes a new feature of robot's
behaviour. Levels are "ordered"” upside-down, the higher levels describe more "intel-
ligent" behaviour of robot. Higher levels depend on lower ones but not vice versa, so
failures of higher levels do not imply the failure of lower. This is important feature
for mobile robotics, e.g. if robot's gripper was damaged the controller is still able to
deliver robot to its base. Levels of responsibility are expressed as a set of "behaviours"
running concurrently and interacting with each other via channels of suppression and
inhibition. Using them, higher levels can suppress the activity of lower ones thus cor-
recting the behaviour of the whole system.

Brooks' in his original work offered to express behaviours in terms of state machines.
Each layer implements some simple logic of transformation sensor inputs into im-
pulses on actuators. Dataflow languages are obviously as suitable as state machines
for expressing such behaviours. In our language each behaviour can be represented
as "black box" described by separate subprogram. Also, our language contains Sup-
pressor and Inhibitor elements for layers communication. Levels can be invoked con-
currently, so we can conclude that our language allows the convenient expression of
controllers built with Subsumption Architecture. That is demonstrated by an example
in section 5.

Connell's Colony Architecture [15] is a very similar to Brooks' one, but solves some
scalability issues of Subsumption Architecture. It also decomposes the controller into
a number of communicating concurrent levels, but they are unordered. The other dif-
ference is an absence of inhibition channel, data inhibition should be implicitly ex-

48

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.

pressed by predicated in layers. Our language does not force any order between lay-
ers, predicative inhibition can be implemented simply with Filter block. So Colony
Architecture is also well-expressed in our language.

There also exist Arkin’s Motor Schema [16] and Rosenblatt’s Distributed Architec-
ture for Mobile Navigation (DAMN) [17] which are compatible with our language,
but the detailed descriptions will be omitted here. General ideas on their implemen-
tation on occam-rz language can be found in [18], we believe that those ideas will
suffice in the context of this paper. The complete research of expressing behavioural
architectures in our language is a topic for separate paper.

4. Language Description

Evolution of a domain-specific modeling (DSM) tools allows to quickly create a fairly
sophisticated visual programming languages [19]. TRIK Studio programming envi-
ronment is an example of a system that was created using DSM-based approach on
QReal platform [7], [8]. Basing on an industrial experience of TRIK Studio develop-
ers we decided to create the visual editor of our language on QReal platform.
Program on DFVPL is a set of blocks and flows that connect blocks. DFVPL blocks
process incoming tokens and emit resulting data into the output data flows. Blocks in
our language can be divided into several groups that are described below. Some
blocks require to specify information on textual language. The language we use is a
statically typed dialect of Lua.
» Control blocks that implement basic algorithmic constructions (conditions,
loops, etc).
o ConstValue and RandomValue blocks that are responsible for genera-
tion of a random number or a predetermined value of any type.
o Loop, If, Switch. These blocks implement general control flow algorith-
mic constructions in dataflow style. Loop is an entity which emits a se-
quence of numbers for a given amount of times. If checks the condition

specified on a textual language and sends them to True or False chan-
nel. Switch successively checks guard conditions and if it is evaluated

as true sends incoming data to corresponding channel.

o Function block, which allows to process of the input data in a textual
language. Most usually this block is used for mathematical processing
of data.

o FinalBlock stops the execution of program when receiving any data.

o Subprogram for reusing the code. Double-click on subprogram block
opens new visual editor tab with an implementation of this subprogram.
Contents of that tab can be then edited by user in exactly the same way
he edits the main diagram.

o GetSetVariable — purely practical block for setting value of some global
variable or emitting it into output flows.

49

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

50

o

o

Wait block delays data processing.

DelayAndFilter is the extension of the previous block adding the filter-
ing condition and checking the amount of emitted data validated by con-
dition.

Fork, EndFork blocks that provide an ability of invoking code in plat-
form-specific execution units. See section 6 for details.

Drawing. Blocks for drawing on display of the robot and on the floor in
simulator mode.

(e]

PaintSettings defines current background color, thickness and color of
pen and color and style of the brush that draw graphical primitives.
ShapePainter, SmilePainter, Text are used for drawing some shape, text
or smile on robot's display.

Clear block removes all graphics from robot's display when receiving
any token.

Pen block puts down or raises the marker for drawing the robot's trace
on the "floor" of 2D simulator.

Flow manipulation. These elements provide opportunity to manipulate data,
which flow between blocks.

@]

InPort, OutPort emit tokens that come into some instance of Subpro-
gram block into a diagram implementing it and similarly redirect data
from subprogram implementation into output flows of active instance
of Subprogram block.

Supressor, Inhibitor inhibit or replace token of some flow with tokens
of another. These, Subprogram and Fork blocks provide a compatibility
with the Brooks' Subsumption Architecture.

Zip, Unzip provide an opportunity to gather data from several Flows into
one and vice versa.

Actions provide an ability to query and modify state of robot's input and out-
put devices.

o

Sensor continuously emits data from specified sensor, e.g. infrared,
light, etc.

Servo, Motors process received data and send impulses to robot actua-
tors.

Encoders block sets the motors tacho limit when receiving data and con-
tinuously emits encoder values into output flows.

SendMessage, ReceiveMessage responsible for the coordination of a
group of robots.

Say, PlayTone, LED responsible for managing speakers and LED lights.
RemoveFile, WriteToFile, ReadFile implement working with file sys-
tem.

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.
o InitCamera, DetectByVideo, StreamingNode wrap some algorithms of
computer vision.
o PortBlock provides an ability to write low-level to some port of the ro-
bot.
o SystemCall responsible for the command execution by command line
interpreter, e.g. token "reboot" will reboot robot.
o Gamepad reads data from the operator's control device, e.g. gamepad,
and emits it.
These blocks are enough to express a pretty wide range of the robotic controllers of
varying complexity. If several blocks emitting data from one input device are met
only one of them is active. That detail distinguishes our tool from other implementing
data flow paradigm, for details see section 6. For example, figure 1 shows diagram
with Motors, ConstValue, Encoders, Flows where Encoders block is presented twice.
When interpretation started ConstValue emits data to Motors and Encoders (a) emits
a value of a tacho counter. When block Encoders (b) receives some data and thus
nullifies encoder value, at that moment Encoders (a) stops emitting tokens.

a) b}

@._ ___"Some blocks",, &
¢ d)

[~

a2

Fig. 1. Block with many representations but only one of them can be active. a,b — Encoders,
¢ — ConstValue, d — Motors.

shows diagram with Motors, ConstValue, Encoders, Flows where Encoders block is
presented twice. When interpretation started ConstValue emits data to Motors and
Encoders (a) emits a value of a tacho counter. When block Encoders (b) receives
some data and thus nullifies encoder value, at that moment Encoders (a) stops emit-
ting tokens.

One important detail about our language is that it explicitly supports control flow
model, that is important for educational goals. On figure 1 ConstValue and Motors
have incoming and outgoing "arrows", which are used to connect control flow data.
For example Motors block emits data to control flow channel when handle incoming
data and ConstValue emits its value when receives control flow token.

51

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

Flows may be pinned to a block on left, right and bottom side, which are highlighted
when user edits block (see Fig. 2). Also block may contain text fields, e.g. on figure
2 user entered textual condition.

@ - o~
*

{ data=0

FALSE

hn-——-——J
vars(]

Fig. 2. Showing and editing of block.

5. Example

Figures 3, 4 show simple PD-regulator which keeps robot on a certain distance from
a wall using infrared sensor.

P

W b = &

e} ———

Fig. 3. Controller for the wall following.

Global variable is used for storing old sensor values. Expressions in Function block
are calculated in upside-down order, results of previous expressions are available on
lower levels. Each level emits resulting token into a corresponding flow, in our ex-
ample two flows are connected directly to motors control block.

&.

Fig. 4. Simulation process of the wall following.

52

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.

Let's describe more complex robotic controller. We have the robot equipped with two
power motors and two frontal infrared sensors positioned at an angle of 30 degrees
on either side of the longitudinal line of symmetry of the robot. Let's consider the
robot control system that manages robot wandering in space and avoiding frontal col-
lisions. But at the same time it allows manual control with gamepad. We divide the
problem into three levels responsibility using Subsumption Architecture. The first
will be responsible for aimless movement of the robot. The second is responsible for
collision avoidance: if the robot is too close to a collision, it must avoid the obstacles
preventing robot wandering. The third will be responsible for maintenance of the user
queries, the user obtains a full control, the previous levels are suppressed.

Figure 5 shows this decomposition. Each level represented as Subprogram and emits
pulses to actuators. Execution begins with the launch of all levels concurrently. Robot
wanders aimlessly. If the robot is close to the collision, the Collision avoidance level
suppresses the flow with data emitted by Wandering level. If the user starts to manip-
ulate with the gamepad, the data sent suppress levels described above.

-] 1) 5
. < N,
- o 2 . |

4

N,

&
)

=)

Fig. 5. Controller code with three competencies level. 1 — Human control level. 2 — Collision
avoidance level. 3 — Wandering level. 4 — Supressor block for levels 2,3. 5 — Supressor block
for levels 1 and 2,3. 6 — Unzip block. 7 — Motors block.

Each level is the simple robot controller without direct connection to actuators. Wan-
dering (first level) continuously generates random number for each robot actuator,
and sends its outside as array (see Fig. 6). The execution of this level starts with InPort
which emits data to activate two RandomValue blocks. Each RandomValue generate
random number and emits it to Wait block which after some predefined delay sends
it to Zip block which produces an array storing output values.

The second level is needed to prevent collisions (see Fig. 7). It continuously gathers
data by Zip from two infrared Sensors and checks if collision threatens (continuously
after some delay by DelayAndFilter). If the collision can occur values sent for actua-
tors to evade obstacles are calculated by Function. Function block emits it to Zip
block, which produces an array storing output values.

53

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.

ISP RAS, 2016, vol. 28, no 2, pp. 45-62.
The third level is responsible for gamepad control (see Fig. 8). Gamepad emits tokens

describing current joystick and buttons state. For simplicity, we assume that pressing
any button on gamepad will terminate the robot control program (by FinalBlock). The
tokens are converted from the Gamepad to the array of pulses for actuators by Func-

tion block, which emits it through OutPort block.

o

2 o o)

1) | :
S - p—)
o e

Fig. 6. Walking. 1 — InPort block. 2,3 — RandomValue blocks. 4,5 — Wait blocks. 6 — Zip
block. 7 — OutPort block.

4)

K(({* B 3) ? JE—
}((({l - fJ !.#::-.‘ — . y

S

Fig. 7. Collision avoidance. 1,2 — Sensor blocks. 3,6 — Zip block. 4 — DelayAndFilter block.
5 — Function block. 7 — OutPort block.Human control. 1 — Gamepad block. 2 — FinalBlock. 3
— Function block. 4 — OutPort block.

54

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.

P e N
® <

i (D

W

Fig. 8. The third level.

6. Implementation

The system is implemented as two plugins for TRIK Studio. The first one describes
the visual language and provides visual editor for our system. It contains the meta-
model of dataflow visual language and entirely generated by QReal DSM-platform.
Plugged into TRIK Studio this module provides fully operational visual editor with
all advantages of TRIK Studio control flow editor like modern-looking user interface,
ability to create elements with mouse gestures, different appearances of links and so
on. The time spent on the development of this plugin (not considering discussing and
designing the prototype of visual language on paper) roughly equals three man-days.
The benefit on exploiting the DSM-approach is obvious, the development of the sim-
ilar editor from scratch would have been taken vastly more time.

The second plugin contains implementation of dataflow diagrams interpreter. Inter-
preter will transform given program, which is drawn in editor (provided by first
plugin) into a sequence of the commands sent to a target robot (see Fig. 9). The target
robot can be one of the supported in TRIK Studio infrastructure: Lego NXT or EV3
robot, TRIK robot, TRIK Studio 2D simulator or V-REP 3D simulator [20]. Com-
mands are sent via high-level TRIK Studio devices API, a part of it presented at Fig.
10.

55

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

Control Flow Diagram

P My Dame o

8 ?{"E'ﬂﬂ
4

ControlFlowinterpreter {l

Devices E‘

DataFlowlnterpreter E

Data Flow D|.1Er:|m

T
O
. -

Fig. 9. The general architecture of the system.

| Diervi

d?:.
l l |

|Abumﬂ$mm ” Maotor Hm.mv”smu..

l.'Fn
==
ql l ‘? 1
InfraredSensar | Gamepad | vmc-mnnl:jmnnmw|
& =

F—1——

——— (—
2nu;|15mw| |I«h:ﬂ.i||1l5-mmr IDinfraredSerser | | [MutinfraredSensor

o0

o0

TeikLighSenter TrikinfraredSenser

Fig. 10. Partial architecture of devices used in dataflow interpreter.

The general architecture of interpreter plugin is presented at Fig. 11. Interpreter
traverses given dataflow diagram, validates and prepares it for interpretation process.

56

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.

For each visited dataflow block implementation object is instantiated. Implementa-
tion objects are written in C++. Instantiation is performed by corresponding factory
object. Implementation objects are then subscribed each to other like they are con-
nected by flows on diagram, publish-subscribe pattern is used here. The set of initial
blocks is determined next, those are blocks without incoming flows. After all that
done preparation phase is complete and diagram starts being interpreted.

|nll.'r|:|n.'lm' | { B|D':ksfac1.-nry

#

Validatar Block

|
DwvicoBlock | | IntegralConstant

'.I'r.wé.rstr FilterBlock

]n'hi:imr‘ R

MotorsBlock || SensorBlock

‘GJnmp.‘ldElmk | o
ooo

Dl’."\'it!‘!r

Fig. 11. The general architecture of dataflow interpreter plugin.

Interpretation process is not as straightforward as in most asynchronous dataflow en-
vironments. Usually components of dataflow diagram are executed concurrently, on
different threads, processes or even machines (that is actively exploited, for example,
by Microsoft Robotics Developer Studio where dataflow diagram is deployed into a
number of web-services). That is a pretty convenient way to invoke dataflow dia-
grams on a powerful hardware, but not a case when we talk about embedded devices.
In our case we deal exactly with embedded devices (Lego NXT, EV3, TRIK, Arduino
controllers), so we propose here another way of executing dataflow diagrams. The
main idea is to introduce global message queue and event loop for messages pro-
cessing. When token is published by some block it is enqueued into messages queue
and waits for its turn to be delivered to subscribers (Fig. 12). In fact thus we flatten
the execution, convert concurrent way of dataflow interpretation to a pseudo-concur-
rent one where we schedule invocation order on our own. It must be noted that this
mechanism is similar to events propagation system of Qt framework. That is actively
exploited in our implementation, where message processing is completely performed
by QEventLoop class and tokens delivering is done by Qt signal/slot system in
QueuedConnection mode.

57

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

Event Loop
Data Events i, | LT
— Queus —F Fa |
Publisher] A
{1 A Subscriber2
Drata W\ | Data
Publisher2 Subscribarl

Fig. 12. Proposed mechanism of pseudo-concurrent dataflow interpretation.

Flat execution of dataflow diagram poses a number of small problems, one of them
will be discussed here. Input device blocks (for example blocks publishing tokens
from ultrasonic sensors) are constantly emitting tokens to subscribers. Subscribers
transmit tokens to a next one (possibly in modified state) and so on. Thus there ap-
pears a chain of data processing. In our language that chain can activate control flow
ports of blocks "reviving" them, so the control flow model is implicitly supported in
our language (this is important in educational reasons). If later in this chain same
input device block will be met then execution will come in a counter-intuitive way.
Such conflicts are ruled out with a simple heuristic that among all the blocks sharing
one physical device only one can be active and that is the last activated one. Thus
when the execution token comes into some device block it immediately "deactivates”
conflicting ones. Other problems like messages balancing (in case when some block
"flooding" the whole messages queue) will not be discussed here.

The last thing we should remark here is the presence of Fork block in our language
that usually is not provided by dataflow languages. Flattened model seems to work
well on embedded devices, but sometimes users still need to use concurrent execution
(for example for executing layers in Subsumption architecture). For that reason Fork
block is introduced, it forks the execution into a number of platform-specific execu-
tion units (for example pthreads on UNIX or tasks on NXT OSEK). This block can
be regarded as low-level control of execution process. It should be also marked that
this block almost has no sense in interpretation mode (because execution itself is per-
formed on desktop machine with only sending primitive commands to robot), but will
be very useful in future works when autonomous mode will be introduced.

7. Conclusion and Discussion

In this work, we presented the prototype of dataflow language for programming dif-
ferent robotic kits (LEGO MINDSTORMS NXT, LEGO MINDSTORMS EV3,
TRIK). The system provides ability to interpret diagrams on 2D- an 3D-simulators
and real robotic devices. Here, we also propose an approach for executing dataflow

58

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.

diagrams on embedded devices. The language implicitly supports control flow model
for educational purposes. It is also convenient for expressing typical robotic control-
lers architectures which is demonstrated on example.

The implemented system can be regarded as a platform for future investigations. First
of all, autonomous mode of work will be implemented. That will be done through
code generation into a number of textual languages already supported by TRIK Studio
(NXT OSEK C for Lego, bytecode for EV3, JavaScript, F# [21] and Kaotlin for
TRIK). We are also interested in academical research. First of all a formal semantics
of our language should be expressed for applying various formal methods of program
analysis. Another branch of research will be directed into a DSM-branch, here we
want to consider an ability of dynamic language metamodel generation from specifi-
cations of available modules of robotics middleware (like ROS [22] or Player [23]).

References

[1]. Banyasad, O. (2000). A Visual Programming Environment for Autonomous Robots.

[2]. Simpson, J., Jacobsen, C. L., & Jadud, M. C. (2006). Mobile robot control. Communi-
cating Process Architectures, 225.

[3]. Simpson, J., & Jacobsen, C. L. (2008, September). Visual Process-Oriented Programming
for Robotics. In CPA (pp. 365-380).

[4]. Posso, J. C., Sampson, A. T., Simpson, J., & Timmis, J. (2011). Process-Oriented Sub-
sumption Architectures in Swarm Robotic Systems. In CPA (pp. 303-316).

[5]. Diprose, J. P., MacDonald, B. A., & Hosking, J. G. (2011, September). Ruru: A spatial
and interactive visual programming language for novice robot programming. In Visual
Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on (pp. 25-
32). IEEE.

[6]. Johnston, W. M., Hanna, J. R., & Millar, R. J. (2004). Advances in dataflow programming
languages. ACM Computing Surveys (CSUR), 36(1), 1-34.

[7]. A.S. Kuzenkova, A.O. Deripaska, K.S. Taran, A.V. Podkopaev, Y.V. Litvinov, T.A.
Bryksin. [Tools for fast development of domain-specific solutions in metaCASE-platform
Qreal] St. Petersburg State Polytechnical University Journal, p. 142, 2011 (in Russian).

[8]. Kuzenkova A., Deripaska A., Bryksin T., Litvinov Y., Polyakov V. QReal DSM platform-
An Environment for Creation of Specific Visual IDEs. INENASE (pp. 205-211) 2013.

[9]. Brooks, R. A. (1986). A robust layered control system for a mobile robot.Robotics and
Automation, IEEE Journal of, 2(1), 14-23.

[10]. Proetzsch, Martin, Tobias Luksch, and Karsten Berns. "The behaviour-based control ar-
chitecture iB2C for complex robotic systems.” KI 2007: Advances in Artificial Intelli-
gence. Springer Berlin Heidelberg, 2007. 494-497.

[11]. Erwin, B., Cyr, M., & Rogers, C. (2000). Lego engineer and robolab: Teaching engineer-
ing with labview from kindergarten to graduate school. International Journal of Engineer-
ing Education, 16(3), 181-192.

[12]. Gomez-de-Gabriel, J. M., Mandow, A., Fernandez-Lozano, J., & Garcia-Cerezo, A.
(2011). Using LEGO NXT mobile robots with LabVIEW for undergraduate courses on
mechatronics. Education, IEEE Transactions on, 54(1), 41-47.

59

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

[13]. Kuzenkova, A., Deripaska, A., Bryksin, T., Litvinov, Y., & Polyakov, V. (2013). QReal
DSM platform-An Environment for Creation of Specific Visual IDEs. INnENASE (pp. 205-
211)

[14]. Kim, S. H., & Jeon, J. W. (2007, October). Programming LEGO Mindstorms NXT with
visual programming. In Control, Automation and Systems, 2007. ICCAS'07. International
Conference on (pp. 2468-2472). IEEE.

[15]. Connell, Jonathan H. A colony architecture for an artificial creature. No. Al-TR-1151.
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1989.

[16]. Arkin, Ronald C. Motor schema based navigation for a mobile robot: An approach to
programming by behavior. Robotics and Automation. Proceedings. 1987 IEEE Interna-
tional Conference on. Vol. 4. IEEE, 1987.

[17]. Rosenblatt, Julio K. DAMN: A distributed architecture for mobile navigation. Journal of
Experimental & Theoretical Artificial Intelligence 9.2-3 (1997): 339-360.

[18]. Simpson, Jonathan, and Carl G. Ritson. Toward Process Architectures for Behavioural
Robotics. CPA. 2009.

[19]. D.V. Koznov. [Fundamentals of Visual Modeling] Binom. Laboratorija znanij, Internet-
universitet informacionnyh tehnologij. 2008 (in Russian).

[20]. Rohmer, Eric, Surya PN Singh, and Marc Freese. V-REP: A versatile and scalable robot
simulation framework. Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Interna-
tional Conference on. IEEE, 2013.

[21]. Kirsanov, Alexander, lakov Kirilenko, and Kirill Melentyev. Robotics reactive program-
ming with F#/Mono. Proceedings of the 10th Central and Eastern European Software
Engineering Conference in Russia. ACM, 2014.

[22]. Quigley, Morgan, et al. ROS: an open-source Robot Operating System. ICRA workshop
on open source software. Vol. 3. No. 3.2. 2009.

[23]. Gerkey, Brian, Richard T. VVaughan, and Andrew Howard. The player/stage project: Tools
for multi-robot and distributed sensor systems. Proceedings of the 11th international con-
ference on advanced robotics. VVol. 1. 2003.

O6pa3oBaTenbHbIN BU3yanbHbIM NOTOKOBbIN A3bIK AN
nporpamMmmuMpoBaHusi po6oToB

I A. 3umun <zimin.grigory@gmail.com>
H.A. Moposunos <mordvinov.dmitry@gmail.com>
Canxm-Ilemepbypeckuii 20cyoapcmeenuvlil yHugepcumen,
MaAmMeMamuKo-mMexaHuyeckuti (haxyivmen,
Yuueepcumemckuii np-m. 28, 198504, Poccus.

Abstract. BusyanbHsle MpeIMETHO-OPHEHTHPOBAHHbIC A3BIKH 3a4aCTyI0 HMCIOT HU3KHU#T TOpOr
BXOKAEHUS: AaXKe YUEHHKH LIKOJ U AOIIKOJBHBIX YUPEXKICHUH MOTYT IPOrpaMMUpPOBATh Ha
TaKWX S3bIKAX, OTIEPUPYS BU3YaIbHBIMU MOJCISIMU. DTOT (haKT HaIIIeJI IMHPOKOE IPUMEHEHHUE
B 00pa30BaTeIbHON POOOTOTEXHHUKE, T/ie OOJIBIIHMHCTBO HCIIOIB3YEMBIX Cpell pa3paboTKH Oc-
HOBAHO Ha BH3YaJbHBIX sI3bIKaxX. JlaHHas paboTa ONMUCHIBAET HOBBII IIOTOKOBBIH BU3yalIbHBIN
SI3BIK IIPOrPAMMHUPOBAHHSI pOOOTOB JUISl PaCIPOCTPAHEHHBIX BCTPANBAEMBIX POOOTOTEXHUYE-
ckux miarpopm. OUeBUIHO, YTO CIIOXKHBIE HOTOKOBbIC BU3YaJIbHbIE S3bIKH TPYIIHBI UL IOHHU-

60

mailto:mordvinov.dmitry@gmail.com
mailto:mordvinov.dmitry@gmail.com
mailto:mordvinov.dmitry@gmail.com
mailto:mordvinov.dmitry@gmail.com
mailto:mordvinov.dmitry@gmail.com
mailto:mordvinov.dmitry@gmail.com
mailto:mordvinov.dmitry@gmail.com

3umun I"A., Mopasunos JI.A. OOGpa3oBaTe/ibHbIil BU3yalbHbIH MOTOKOBBIN S3BIK JUIS TPOrPaAMMHUPOBAHHS POOOTOB.
Tpyowr UCII PAH, 2016, Tom 28, BBIMyCK 2, C. 45-62.

Manus. L{enbro Hamme# paboTsl OBUIO CO3/1aHNE MHCTPYMEHTA, TIPECTaBIAIONEro coooi mepe-
XOJIHYIO «CTYIIEHb)» MEXIY JIETKOBECHEIMI 00pa30BaTeIbHBIMI CPEaMy IPOTPaMMHUPOBAHYS,
KOTOpBIE OOBIYHO MPEJOCTABISIIOT SI3BIKM, OCHOBAaHHBIE Ha MOJEIH MOTOKA YIpaBICHHS, U
CJIOXHBIMH UHIYCTPHAIBHBIMU CPEIaMH, KOTOPBIE, B OCHOBHOM, NPENOCTABIAIOT S3BIKH, OC-
HOBaHHbIE Ha MOJIENM TMOTOKOB JAaHHBIX. B cTaThe mpuBOAMTCSA CpaBHEHHE LIMPOKO Paclpo-
CTPaHEHHBIX Cpell IPOrpaMMUPOBAHUSI POOOTOB C OMHMCAaHHOH B padoTe cpenoid. Takxe B pa-
60Te MpeACcTaBIeH KPAaTKHUi 0030p HOIYJSIPHEIX MOBEIEHIECKUX apXUTEKTYP JUIS TOCTPOCHUS
CJIOXHBIX CHCTEM YIpaBieHHs poOOTaMHM, TAaKHX KaK apXHTeKTypa kareropuii P. Bpykca n
«Kononus» JI. KonHens, 1 IpuUBeAEHBI UJECU UX BBIPAXKEHHS B HOBOM S3bIKE IPOrPAMMHPOBa-
HUS. SI3BIK OBIT CO31aH ¢ MOMOIIBIO IPEIMETHO-OPHEHTHPOBaHHOTO noaxoaa. OH mpexocTas-
JSIET BO3MOXKHOCTh COBMeIATh B ceOe J1Be MOJIEH HCIIOMHEHHMS: MTOJIb30BaTeIb MOXKET IPO-
TpaMMHpPOBATh Kak B TEPMUHAX ITOTOKOB JaHHBIX, TAK U B TEPMHUHAX MTOTOKA yIPaBIeHUsS. MBI
CUHTAEM, 4TO 3TO BaXKHO B 00pa30BaTeIbHBIX IeNsX. [IporpaMMbl Ha HalleM sI3bIKE COCTOAT U3
MHOJKECTBA «OJIOKOBY» — BU3yalbHBIX MPECTaBICHUH MPOIIECCOB TpaHC(HOPMAIIMH JaHHbIX, U
«CBsI3ei», KOTOPbIe BU3yalIU3UPYIOT IMOTOKH JaHHBIX MEXAYy HUMH. B kauecTBe ampobarmu
CpelIbl CO3/IaHbI Pa3IMYHbIE 110 CJIOKHOCTH MPOrPaMMEbl yIIPaBICHUS] poOOTaMu.

Keywords: moTokoBbie sI3bIKH, IIOTOKH JaHHBIX, BU3yaJIbHOE IPOrpaMMHUpPOBaHKe, 0Opa3oBa-
TeNbHast POOOTOTEXHUKA, IPEIMETHO-OPHEHTHPOBAHHOE MOICITMPOBAHNE, IIOBEACHUECKUE ap-
XHUTEKTYPBL.

DOI: 10.15514/ISPRAS-2016-28(2)-3

Jnsa umrupoBanusi: 3ummH [A., MopasunoB JI.A. OOpa3zoBaTenbHBIA BH3YaJTbHBII
MOTOKOBBIX SI3BIK ISl porpamMupoBanus podotos. Tpyner UCIT PAH, Tom 28, Bem. 2, 2016
T, cTp. 45-62 (Ha anmmmiickom). DOI: 10.15514/ISPRAS-2016-28(2)-3

Cnucok nutepatypbl

[1]. Banyasad, O. (2000). A Visual Programming Environment for Autonomous Robots.

[2]. Simpson, J., Jacobsen, C. L., & Jadud, M. C. (2006). Mobile robot control. Communi-
cating Process Architectures, 225.

[3]. Simpson, J., & Jacobsen, C. L. (2008, September). Visual Process-Oriented Programming
for Robotics. In CPA (pp. 365-380).

[4]. Posso, J. C., Sampson, A. T., Simpson, J., & Timmis, J. (2011). Process-Oriented Sub-
sumption Architectures in Swarm Robotic Systems. In CPA (pp. 303-316).

[5]. Diprose, J. P., MacDonald, B. A., & Hosking, J. G. (2011, September). Ruru: A spatial
and interactive visual programming language for novice robot programming. In Visual
Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on (pp. 25-
32). IEEE.

[6]. Johnston, W. M., Hanna, J. R., & Millar, R. J. (2004). Advances in dataflow programming
languages. ACM Computing Surveys (CSUR), 36(1), 1-34.

[7]. KyzenkoBa A.C., Hdepunacka A.O., Tapan K.C., ITogxomaes A.B., Jluteuxos 10.B.,
Bprikenn T.A. Cpexnctsa OBICTpOi pa3pabOTKH MPEeAMETHO-OPHEHTHPOBAHHBIX PEIICHUH
B MetaCASE-cpenctse QReal. Hayuno-mexuuueckue éedomocmu CII6I'TTY, 142

[8]. Kuzenkova A., Deripaska A., Bryksin T., Litvinov Y., Polyakov V. QReal DSM platform-
An Environment for Creation of Specific Visual IDEs. INENASE (pp. 205-211) 2013.

[9]. Brooks, R. A. (1986). A robust layered control system for a mobile robot.Robotics and
Automation, IEEE Journal of, 2(1), 14-23.

61

Zimin G.A., Mordvinov D.A. Visual Dataflow Language for Educational Robots Programming. Trudy ISP RAN /Proc.
ISP RAS, 2016, vol. 28, no 2, pp. 45-62.

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].
[18].

[19].

[20].

[21].

[22].

[23].

62

Proetzsch, Martin, Tobias Luksch, and Karsten Berns. "The behaviour-based control ar-
chitecture iB2C for complex robotic systems." KI 2007: Advances in Artificial Intelli-
gence. Springer Berlin Heidelberg, 2007. 494-497.

Erwin, B., Cyr, M., & Rogers, C. (2000). Lego engineer and robolab: Teaching engineer-
ing with labview from kindergarten to graduate school. International Journal of Engineer-
ing Education, 16(3), 181-192.

Gomez-de-Gabriel, J. M., Mandow, A., Fernandez-Lozano, J., & Garcia-Cerezo, A.
(2011). Using LEGO NXT mobile robots with LabVVIEW for undergraduate courses on
mechatronics. Education, IEEE Transactions on, 54(1), 41-47.

Kuzenkova, A., Deripaska, A., Bryksin, T., Litvinov, Y., & Polyakov, V. (2013). QReal
DSM platform-An Environment for Creation of Specific Visual IDEs. In ENASE (pp. 205-
211)

Kim, S. H., & Jeon, J. W. (2007, October). Programming LEGO Mindstorms NXT with
visual programming. In Control, Automation and Systems, 2007. ICCAS'07. International
Conference on (pp. 2468-2472). IEEE.

Connell, Jonathan H. A colony architecture for an artificial creature. No. Al-TR-1151.
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1989.

Arkin, Ronald C. Motor schema based navigation for a mobile robot: An approach to
programming by behavior. Robotics and Automation. Proceedings. 1987 IEEE Interna-
tional Conference on. Vol. 4. IEEE, 1987.

Rosenblatt, Julio K. DAMN: A distributed architecture for mobile navigation. Journal of
Experimental & Theoretical Artificial Intelligence 9.2-3 (1997): 339-360.

Simpson, Jonathan, and Carl G. Ritson. Toward Process Architectures for Behavioural
Robotics. CPA. 2009.

Ko3uos, [Imutpuii BnagumupoBnd. OCHOBBI BU3yalbHOTO MOJeUpoBanus. M.: H30-60
HUnmepnem ynusepcumema ungpopmayuonnvix mexuwonoeui, UHTYUT.py, BUHOM, Jla-
bopamopus 3uanuil. 2008.

Rohmer, Eric, Surya PN Singh, and Marc Freese. V-REP: A versatile and scalable robot
simulation framework. Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Interna-
tional Conference on. IEEE, 2013.

Kirsanov, Alexander, lakov Kirilenko, and Kirill Melentyev. Robotics reactive program-
ming with F#/Mono. Proceedings of the 10th Central and Eastern European Software
Engineering Conference in Russia. ACM, 2014.

Quigley, Morgan, et al. ROS: an open-source Robot Operating System. ICRA workshop
on open source software. Vol. 3. No. 3.2. 2009.

Gerkey, Brian, Richard T. Vaughan, and Andrew Howard. The player/stage project: Tools
for multi-robot and distributed sensor systems. Proceedings of the 11th international con-
ference on advanced robotics. VVol. 1. 2003.

Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

Context-Based Model for Concern Markup
of a Source Code

1M.S. Malevannyy <mmxforever@mail.ru>
28.S. Mikhalkovich <miks@sfedu.ru>
! Don State Technical University,
162, Socialisticheskaja st., Rostov-on-Don, 344022, Russia
2Southern Federal University,
8A, Mil'chakova, Rostov-on-Don, 344090, Russia

Abstract. In this paper we describe our approach to representing concerns in an interface of an
IDE to make navigation across crosscutting concerns faster and easier. Concerns are
represented as a tree of an arbitrary structure, each node of the tree can be bound to a fragment
of code. It allows one to quickly locate fragments in the source code and makes switching
between software development tasks easier. We describe a model which specifies data
structures used to store the information about these code fragments and algorithms used to find
the code fragment in original or modified source code. The model describes the information
about code fragments as a set of contexts. Another important feature of the model is language
independency. The model supports different programming, mark-up, DSL-languages and any
structured text, such as a documentation. Main goal is to keep concern tree consistent with
evolving source code. Search algorithm is designed to work with a modified source code, where
the code fragment may change. The model is implemented as a tool, which supports different
programming languages and integrates into different editors and integrated development
environments. Source code analysis is performed by a set of lightweight parsers. In case of
significant changes if the code fragment may be not found automatically the tool helps a
programmer to find one by suggesting possible places in the source code based on the stored
information.

KimoueBnbie ciiosa: Concerns; Separation of Concerns; Program Comprehension; Integrated
Development Environments

DOI: 10.15514/ISPRAS-2016-28(2)-4

For citation: Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern
Markup of a Source Code. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 63-78.
DOI: 10.15514/ISPRAS-2016-28(2)-4

63

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

1. Introduction

During software development and maintenance developers usually work with several
code fragments related to their current task or concern. Most concerns are
crosscutting[1], which means that code related to it tends to be scattered across a
number of files, or different places within one file. Repeated navigation between these
code fragments requires a considerable time and effort[2]. These fragments form a
"working set". Switching to another task requires investigating the source code and
locating all fragments relevant to the task. Returning to the task after working on
another one may take significant time.

A number of techniques address to this problem, such as Aspect-Oriented
Programming[3], Feature-Oriented Programming[4][5][6], Delta-Oriented
Programming[7], Subject-Oriented Programming[8] and others. Most of them are
intended to explicitly separate concerns into a number of modules and provide
different mechanisms of composition of these modules. It often requires significant
changes in the source code to use one of these techniques.

Other methods provide support of concerns by adding new tools to an IDE, such as
virtual files[9][10][11] colour markup[12] without changing the source code. These
tools are often designed for only one IDE and depend on its infrastructure and thus
are limited to only few languages, supported by the IDE. Another common limitation
is low tolerance of changes in the source code. When the code is modified some code
fragments may be lost.

Many of these tools are limited to only one programming language, while large
software projects are often developed in several languages, including DSL-languages
and markup languages, and code fragments related to a concern may be scattered
across files in different languages.

We are currently developing an approach[13] intended to mitigate the problems of
navigation across the code and switching between different tasks. The approach
doesn't require any changes to the source code. It defines a notion of a concern as a
tree-like structure, consisting of sub-concerns and code fragments. Similarly to
ConcernMapper[14] it displays a concern tree in an IDE as a toolbox and allows one
to quickly locate fragments in the source code. Unlike most other tools it and may be
used in different IDEs and allows one to work with code in different languages.
Another goal is robustness, which allows working with the code being actively
developed keeping concern tree consistent with the code.

2. Model

We present a model our approach is based on. It uses lightweight parsers to analyze
source text and to create parse tree, which will be used later. The model defines the
data being stored in the concern tree. And finally, it defines algorithms to search the
code fragments in a modified source code.

64

Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

2.1. Lightweight parsing

The model is common for different languages. To minimize dependency on IDE
infrastructure we use lightweight parsing to analyze the source code and build parse
tree, which contains information about significant entities in the code. Lightweight
parsers can recover from errors and produce parse tree for code with errors or
incomplete code, which is important while the code is being modified.

Adding support of another programming language requires development of a
lightweight parser for this language. Lightweight parsers are simple and easy to
develop using our DSL language LightParse. For most languages it takes only about
10-30 lines of text to express important language features and produce a lightweight
parser. The parser is able to analyze source code and build a simple parse tree with
only nodes, corresponding to these language features. Any other parts of source code
(e.g. method bodies) are skipped. Saving information about an entity in the source
code is available for all entities returned by the parser. The more detailed parse tree
the parser produces — the more entities can be saved in the concern tree, however
development of the parser may require more time.

Lightweight parsers produce a lightweight parse tree. Nodes of the tree have type,
name and location in the source code. Node name consists of several tokens; one of
them may be marked as important. For example method name consist not only of one
identifier — name, which is marked as important, but also includes parameter names
and types, access modifiers, return value type and so on.

An example of a lightweight parser is given in subsection 2.3. Lightweight parsing is
described in our paper[15] in more detail. The paper provides examples of lightweight
parser grammar. More examples may be found in GitHub repository of the tool* (files
with extension ".Ip™).

2.2. Data

The approach is not limited to any specific programming language and therefore the
information in the concern tree should be sufficient to support different languages.
Also, we assume that the source code may change and the concern tree should
possibly store some redundant data to find the code fragment after the code has
changed.

Each code fragment in the concern tree stores next 5 items:

o Type.
e Header context. It may include entity name and any number of additional
tokens.

e Quter context. It includes names and types of all parent nodes from the
immediate parent to the root of the parse tree.

L https://github.com/MikhailoMMX/AspectMarkup/tree/master/Parsers
65

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

e Horizontal context. It consists of two subsets of names and types of

preceding and subsequent sibling nodes.

e Inner context. It includes a subset of subnodes of current code fragment.
These items form Context of the node. Except for type, any other item may be empty.
Type is used to filter non-relevant nodes when searching for the code fragments. If a
concern tree item is bound to a method only methods should be considered, other
nodes, e.g. classes, fields may be ignored.

Header context represents entity name and several additional tokens. In the
following C# code example

public void visit (TreeNode t)

public void visit (Expression e)

both methods are named visit, but have different parameter types and names.
Header context makes possible distinguishing overloaded methods and other entities
with same names. Header context is represented as a list of tokens, where one token
may be marked as important and it is considered as the name of the entity. Header
context as well as name may be empty.

Outer context stores enclosing entities for the code fragment, such as classes and
namespaces. In many languages there may be variables and methods with exactly
same names, but defined in different classes or namespaces. An example is the
implementation of one interface by different classes. In this case it's necessary to save
not only the name of the entity, but also the name of enclosing entities. In the
following example

namespace N

{
class C1 : IVisitor
{
public void visit (IVisitor v) { }
}
class C2 : IVisitor
{

public void visit (IVisitor v) { }

}

both methods have same names and header contexts, but are defined in different
classes. For example, outer context for the first method will include name and type of
class c1 and namespace N. Outer context for an entity is a list of Header contexts and
Types for each enclosing entity starting from the immediate parent to the topmost
entity in the source file.

Header context and outer context are sufficient for most programming languages,
where all names are unique, at least in a certain scope. However, there is another class
of languages, such as Yacc (grammar definition language), or markup languages, such

66

Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

as XML. In these languages there may be two entities with same name in same scope.
Without additional information binding concern tree nodes to such entities is
ambiguous. To handle these cases two different kinds of context were added to the
model.
Horizontal context keeps nearest neighbors before and after the node. It consists of
two sets of pairs (Header context + Type), one for preceding entities and one for
subsequent entities. Following example is an excerpt from ANSI C grammar[16]:
selection statement

IF '(' expression ')'

statement ELSE statement

There are two occurrences of statement in a subrule of a rule
selection_ statement. Their horizontal contexts are different: token ELSE and
another non-terminal statement are located after the first occurrence of
statement and before the second one. This information makes it possible to
distinguish similar entities by their location among their neighbor entities.
It could have been achieved by saving an index of the entity. For example, first
statement gets index 1 and second one gets index 2, but saving indexes is less
tolerant to changes in the source text. Adding or removing entities in the beginning
of a subrule invalidates indexes of all subsequent entities, but has almost no effect on
horizontal context.
Inner context is intended to store subnodes of an entity. In some cases an entity can
have empty name and may be distinguished from another one only by its content. For
example, variable declaration sections in such language as Pascal ABC.NET[17] are
unnamed, but they have different variables:
var

X, Y : Double;
var

Name, Address : string;

Age : integer;
In this example, there are two sections. It may be necessary to bind a concern tree
node to a whole section. Horizontal context cannot be reliable in this case because it
keeps only type and name, which is empty — changing their order will lead to
incorrect result of the search. Inner context is a set of Header contexts and Types for
some subnodes. In the example above saving only one subnode (i.e. variable name)
is enough to distinguish these sections. Amount of subnodes to be saved as the inner
context may vary.
Inner context for leaves of a parse tree may contain lines of source code. This may
apply if the entity spans multiple lines in the source code (e.g. methods).

67

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

Inner and horizontal contexts may be empty if the entity has no neighbor nodes or
subnodes. Otherwise. it may be not necessary to store all neighbors or subnodes.
Usually, a small amount of unique nodes is enough to distinguish similar entities. In
many languages horizontal and inner contexts are a redundant information. However,
using horizontal and inner contexts increases reliability of the search even with a code
on a programming languages that normally don't need these two kinds of context.
When the code has changed this information may be useful.

Let T is a parse tree node. Context(T) = (Namer, Typer, Ny, O, Hy, I7) is a
tuple of node Name, Type and its Header, Outer, Horizontal and Inner contexts
described above. When a binding to the node T is added to the concern tree,
Context(T) is saved.

Name and Type are strings. Header context Ny = (53,55, ...S,, is a list of strings.
Outer context O; = ((N, Ty), (N,, T), ... (N, T,)) is a list of pairs, where N; is a
Header Context and T; is a type of an enclosing entity. Inner Context I = {(N;, T;)}
is a set of pairs: header contexts and type of an entity. And Horizontal context H; =
(N, TS, {(Nj, Tj)}) is a pair of sets of header contexts and types of entities.

2.3. Additional markup

Our approach is focused on finding code fragments without using any modifications
of source code. Additional markup, such as comments with special keywords clutters
the code if used frequently. However, in some cases it might be feasible to mark some
places in the code with comments. First scenario is binding to code fragments in a
file, which contains a lot of very similar entities. Some XML files may have such
structure. In this example:

A

7~

B B
(I

c C

There are two nodes C, with equal contexts. Despite being subnodes of different
parent nodes, their outer contexts are equal, because both parent nodes have same
name. To handle this case it might require to save horizontal context for each parent
node, which is not implemented in the model.

Another scenario is binding to code fragments in frequently modified code, where
entities may undergo significant changes.

This kind of markup requires a lightweight parser, which builds parse tree based on
comments. Comments may define points and spans in the source code.

// ConcernBegin Serialization

// Concern SomePoint

68

Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

// ConcernEnd Serialization

The code above shows an example of a markup with comments. Concern
Serialization is a span and SomePoint is a single line marked with a comment.
Lightweight parser for this markup is simple and may work with source code in many
languages. The only modification it may require to adapt the parser to a different
language is changing comment start symbols. Here is a grammar of the lightweight
parser written in LightParse:

%$Extension "*"

Token Tk [[:IsLetterOrDigit:]]%*|

[[:IsPunctuation:] [:IsSymbol:]]
Token NewLine \r|\n|\r\n

Rule Program : [#Comment | Other] *
Rule Comment : "//"™ QCTk? QTk+
Rule CTk: @"ConcernBegin"

| @"ConcernEnd"
| @"Concern"
Rule Other : Tk
| NewLine
| #error

3. Algorithms

There are two aspects of working with the concern tree: adding a node to the tree and
searching the code fragment, related to the node. Both actions require a parse tree,
which is provided by a lightweight parser. In the following part of the section we take
into consideration only a subset of parse tree nodes whose type is equal to the type of
an entity being saved or the one being searched. Given the T is a parse tree node to
be saved in the concern tree, we consider a set Tree = {T; | Typer, = Typer}.

Next step is calculating a distance between T and every item T; € Tree.

3.1. Calculating distances

Distance two tree nodes is a vector of distances between each component of a context
for a given pair of nodes.

Distance(T,T;) = D; = (DName, DType, DN, DO, DH, DI)
where:
1,if Type; # Typer,
DType =) '
0,if Typer = Typer,
Distance for other part of context is calculated with functions LDistance and
SDistance, described further below:

69

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

e DName = LDistance(Namer, Namer,)

e DN = LDistance(Nr, Nr,)

e DO = LDistance(Or, Or,)

e DH = LDistance(Hr, Hr,)

e DI = LDistance(Ir, Ir,)
Zero in each component of a vector D means equality of corresponding parts of
contexts of T and T;. The higher these values — the less similar two parts of contexts
are.
Calculating the distance for Name, Header context and outer context is based on a
Levenshtein metric [18]. Levenshtein distance for two strings reflects the number of
edits (insertions, deletions and substitutions) required to change one string into the
other. Names of entities are just strings, however Header contexts are lists of strings.
Levenshtein distance in this case is calculated similarly, but each edit is a deletion,
insertion or substitution of a token. Weight of a substitution in this case depends on
similarity of tokens and ranges between 0 (tokens are equal) to 2 (weight of insertion
+ weight of deletion) if two tokens have maximum possible edit distance between
them. Distance between two outer contexts is calculated similarly. Each item of an
outer context is a pair (Type, Header Context) and the weight of substitution depends
on distance between to header contexts.
Calculation of edit distance is performed by overloaded functions LDistance.
Horizontal and inner contexts contain a subset of nodes and the distance is calculated
as a number of subnodes present in T and absent in Ti.
Calculation of distance between sets is performed by function SDistance:

SDistance(l,I;) = |I \ ;|
SDistance(H,H;) = |[H, \ H;, | + |Hx \ H;

el

3.2. Saving information

Name, Type, Header and Outer contexts are required parts of a context and are saved
always. Inner and Horizontal contexts are optional in some cases. To determine
should they be saved or not and how much nodes they should contain we are looking
for other nodes in the parse tree with similar Header Contexts.

Given the T is the parse tree node to be saved we define two sets of parse tree nodes:
TreelL = {T; |Or, = Or}
TreeG = {T; |07, # Or}
In other words, one subset consists of all neighbour nodes for T (Local scope) and
other one - of all other nodes (Global scope).
After that, we calculate two values: NearL and NearG.

70

Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

NearL = LDistance(NT, NTl.) : T; € Treel; VT; € Treel, LDistance (NT, NT].)
> LDistance(Nr, Nr,)

In other words, we find a distance between header contexts of T and the most similar
node within the scope of a node T.

NearG = LDistance(NT, NTi) : T; € TreeG; VT; € TreeG, LDistance (NT, NTJ.)
> LDistance(Nr, Nr,)

similar to NearL, but outside of the scope of T.

When NearG > 0, NearL > 0 there are no other nodes with same header. In this case

Inner and Horizontal contexts are optional and may be omitted. If NearG = 0, NearL

> 0 there are similar nodes with different outer context. Again, saving Inner and

Horizontal contexts is optional, but may improve search results if the source file is
modified. In case of NearL = 0 saving inner and horizontal context is required.

The values NearL and NearG are saved within the concern tree and will be used for
the search.

3.3. Searching
A node in the concern tree keeps Context of some node T.

Context(T) = (Namey, Types, Ny, O, Hy, I)
After some modifications were applied to the source file, target node may change as
well. In some cases target node may be absent in the parse tree, if the code fragment
related to the concern was removed. We do not address this case in our research and
the tool is designed to always try to find target node or suggest a list of most similar
entities.

The search begins with parsing a file and calculating edit distance D; =
Distance(T,T;) VT; € Tree

Next step — checking if there is only one node in the tree, which is similar to the
target node and therefore considered as the result of the search. It depends on values
NearG and NearL.

If NearL>0, then there was only one entity in the source file with Header context Hr.
In this case if there is only one node T; with similar Header context in the tree — it is
returned as the result:

) Min(NearG, NearL)

Result =T; € Tree : LDlstance(NT, Nri) < > ;

) Min(NearG,NearlL)
VT; #+ T; LDistance (NT, NT].) > >

If NearL = 0, then there were other entities in the source tree, but only in the same
scope as T. In addition to the condition above we can return T; if it has minimal
distance for Header, Inner and Horizontal contexts among all other nodes:

71

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

Result =T, € Tree: VT; #T;: LDistance(NT, NTi) < LDistance (NT, NTJ.)
SDistance(IT, ITi) « SDistance (IT, ITJ.)

SDistance(HT, HTi) « SDistance (HT, HTj)

These conditions are correct if NearG > 0. Otherwise there were other entities in the
source file with same Header Context outside of the scope of T. In this case we add
requirements LDistance(Or, Or,) =0 and LDistance (OT, OT].) =0 to both
conditions.

If there are no exactly one node Ti,, which satisfies the requirements above we
consider the search result as ambiguous and cannot return only one node as the result.
It may occur when the source code was modified significantly, the target entity was
changed or removed and there are 0 or 2 or more nodes in the parse tree, similar to
the target node. In this case the set of all nodes is sorted according to the product of
D; - W, where vector W defines weights of parts of contexts.

3.4. Complexity

Wagner-Fischer algorithm[19] is used to calculate edit distances. It has a time
complexity of O(NM) where N and M are lengths of two strings. Calculating edit
distance of Header Contexts requires calculating edit distance between two strings at
each step. For simplicity, we assume that all tokens and all header contexts have
similar length. It gives a time complexity of O(N2M?), where N is the length of Header
contexts (in tokens) and M is length of tokens.

Calculating edit distance between two Outer Contexts has a time complexity of
O(N2M2K?), where K is a length of Outer Context (depth of the parse tree).

In most cases values N, M and K are relatively small. Length of separate tokens
usually ranges between 1 and 10-15, longer identifiers are rare. Header Context
contains usually not more than 10-15 tokens. Outer context in case of most
programming languages contains 1-3 items (e.g. a namespace and a class).
Calculating edit distance is performed for each item in set Tree.

Other operations have a time complexity between O(N) (calculating NearG and
NearL, finding exact match) and O(N log N) (sorting), where N is a number of items
in set Tree.

4. Tool

he tool? based on the model was designed to be easily integrated into different
integrated developer environments and text editors, such as Microsoft Visual Studio
and Notepad++.

2 Available at https://github.com/MikhailoMMX/AspectMarkup
72

Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

4.1. Architecture
The tool is separated into 3 main parts:

e A collection of lightweight parsers and a parser generator. A parser
analyzes source files written in a specific language and provides a parse
tree which is then used by the core. To make development of new parsers
easier a DSL-language {\em LightParse} was implemented along with an
utility which generates lex/yacc and C\# code of the parser from an input
LightParse file.

o Core. It implements the model with algorithms. It loads and runs parsers to
get a parse tree when it's necessary for saving or searching for a code
fragment. A visual component with user interface ready to be integrated
into different IDEs is also implemented.

¢ A collection of plug-ins for integrated development environments or text
editors. Since the tool relies on lightweight parsers rather than on a specific
IDE, and the visual part of the tool along with algorithms is provided by
the core, the tool can be very easily integrated into different IDEs. A plug-
in for an IDE should only display the Ul component and implement simple
interface, which defines 10 methods, such as getting and setting cursor
position, accessing the text of currently open files and event handlers for
opening and closing the IDE.
At this moment implemented lightweight parsers include: C#, Lex and Yacc, Java,
XML, Pascal ABC.NET and a parser for our own language LightParse. Plug-ins for
Microsoft Visual Studio, Notepad++ and PascalABC.NET[20] are developed and the
tool is also integrated into a grammar editor Yacc MC.

4.2. Functionality

The tool adds a concern tree to the interface of a IDE. Concern tree may have arbitrary
structure and is created by a developer. Each tree node has title and optional
description and subnodes. Description length is not limited. It's displayed as a tooltip
and may be edited in a separate window.

Each node may be bound to a fragment of code. In this case the node is marked with
an arrow. Double click performs navigation to the code fragment if the code fragment
may be identified unambiguously. Otherwise, the tool suggests several most similar
code fragments. Each code fragment may be navigated to in one click and if the code
fragment is found, double click updates the information in the concern tree, so next
navigation will not require any additional actions.

A reverse search is also possible. The tool can find a node in the concern tree by
cursor position in a current file. Along with the descriptions for tree nodes it may be
used to extract some long comments from the code into the concern tree and still be
able to easily find and read them.

73

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

There are several scenarios of using the concern tree. First, it may be used to maintain
a "working set" of fragments, related to a current task. Concern tree is relatively small
and finding the node in the tree may be much faster than finding the code fragment in
one of currently open files manually.

Concern tree significantly simplifies re-creating working set when returning to a task.
Instead of recalling class and method names, performing cross-reference search it’s
only necessary to expand a subnode in the concern tree related to the task.

Concern tree is very helpful when a new developer starts working with unfamiliar
project. Concern tree resembles a table of contents, it's easy to find concerns in it and
each concern contains all code fragments related to it with descriptions. Reading
description and navigating across the code helps to understand how the code is
organized and how it works.

The functionality, concern tree examples and the tool usage scenarios were presented
at CEE-SEC(R) 2015 Conference?®.

5. Conclusion

We propose an approach to working with crosscutting concerns. Concerns are
organized in a tree-like structure and tree nodes are bound to code fragments scattered
across the project. Concern tree is added to the interface of IDE as a toolbox. Concern
tree simplifies navigating across scattered fragments and is helpful for investigating
and re-investigating a concern. We describe a model our approach is based on. A
metrics of distance between entities in a code is defined. A description of data, stored
in a concern tree is given. Algorithms of identifying a minimal amount of data to store
and searching an entity in a modified source code are provided.

The model is implemented in a tool, which supports different programming languages
and integrates into different editors end integrated development environments. It
performs either navigation to a saved code fragment if it can be determined precisely,
or shows most similar code fragments otherwise. The concern markup tool is used in
development of Pascal ABC.NET and the tool itself.

At this moment some features of the model are not implemented yet, such as
horizontal context.

We are currently collecting statistical data and enhancing algorithms to better handle
most frequent changes in the source code. Some parameters, such as weights of
operations need adjustments.

References

[1]. M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning, and quantifying
crosscutting concerns” in Proceedings of the First International Workshop on Assessment

3 http://2015.secr.ru/lang/ru/program/submitted-presentations/aspect-markup-of-a-
source-code-for-quick-navigating-a-project
74

Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

(2].

[3].

[4].

[5].

(6].

[71.

[8].

(9.

[10].

[11].

[12].

[13].

of Contemporary Modularization Techniques, ser. ACoM ’07. Washington, DC,USA:
IEEE Computer Society, 2007, p. 2. DOI: 10.1109/ACOM.2007 4.

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance
tasks” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971-987, Dec. 2006. DOI:
10.1109/TSE.2006.116.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
overview of AspectJ” in Proceedings of the 15thEuropean Conference on Object-Oriented
Programming, ser. ECOOP’01. London, UK, UK: Springer-Verlag, 2001, pp. 327-353.
(http://dl.acm.org/citation.cfm?id=646158.680006)

D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, “The genvoca
model of software-system generators” IEEE Softw., vol. 11, no. 5, pp. 89-94, Sep. 1994.
DOI: /10.1109/52.311067.

D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement” in
Proceedings of the 25th International Conference on Software Engineering, ser. ICSE *03.
Washington, DC, USA: |EEE Computer Society, 2003, pp. 187-197.
(http://dl.acm.org/citation.cfm?id=776816.776839).

S. Apel, C. Kastner, and C. Lengauer, “Featurechouse: Language independent, automated
software composition” in Proceedings of the31st International Conference on Software
Engineering, ser. ICSE *09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
221-231. DOI: 10.1109/ICSE.2009.5070523.

I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella, “Delta-oriented programming of
software product lines” in Proceedings of the 14th International Conference on Software
Product Lines: Going Beyond, ser. SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 77-91. (http://dl.acm.org/citation.cfm?id=1885639.1885647).

W. Harrison and H. Ossher, “Subject-oriented programming: A critique of pure objects”
in Proceedings of the Eighth Annual Conference on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’93. New York, NY, USA: ACM,
1993, pp. 411-428. DOI: 10.1145/165854.165932.

M. C. Chu-Carroll, J. Wright, and A. T. T. Ying, “Visual separation of concerns through
multidimensional program storage” in Proceedings of the 2nd International Conference
on Aspect-oriented Software Development, ser. AOSD ’03. New York, NY, USA: ACM,
2003, pp. 188-197. DOI: 10.1145/643603.643623.

A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F.
Adeputra, and J. J. LaViola, Jr., “Code bubbles: A working set-based interface for code
understanding and maintenance” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp.
2503-2512. DOI: 10.1145/1753326.1753706.

S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto, “Do we really need to
extend syntax for advanced modularity?” in Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development, ser. AOSD ’12. New York, NY,
USA: ACM, 2012, pp. 95-106. DOI: 10.1145/2162049.2162061.

C. Kistner, S. Apel, and M. Kuhlemann, “Granularity in software product lines” in
Proceedings of the 30th International Conference on Software Engineering, ser. ICSE ’08.
New York, NY, USA: ACM, 2008, pp. 311-320. DOI: 10.1145/1368088.1368131.

M. Malevannyy and S. Mikhalkovich, [Implementation of support of aspects in integrated
development environments], in Sovremennye informatsionnye tekhnologii: tendentsii i

75

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

perspektivy razvitiya: materialy konferentsii [Modern information technologies:
tendencies and perspectives of evolution], 2015, pp. 351-353 (in Russian).

[14]. M. P. Robillard and F. Weigand-Warr, “Concernmapper: Simple view-based separation
of scattered concerns” in Proceedings of the 200500PSLA Workshop on Eclipse
Technology eXchange, ser. eclipse '05.New York, NY, USA: ACM, 2005, pp. 65-69.
DOI: 10.1145/1117696.1117710.

[15]. M. Malevannyy, [Lightweight parsing and its application in development environment].
Informatizatsiya i svyaz’ [Informatization and communication], vol. 3, pp. 89-94, 2015,
(in Russian).

[16]. ANSI C grammar. (http://www.quut.com/c/ANSIC-grammar-y.html)

[17]. Pascal ABC.NET. (in Russian). http://pascalabc.net/

[18]. V. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals”
Soviet Physics — Doklady, vol. 10, no. 8, pp. 707-710,1965, (in Russian).

[19]. R. A. Wagner and M. J. Fischer, “The string-to-string correction problem” J. ACM, vol.
21, no. 1, pp. 168-173, Jan. 1974. DOI: 10.1145/321796.321811.

[20]. I. V. Bondarev, Y. V. Belyakova, and S. S. Mikhalkovich, [System pascalabc.net 10 years
of evolution], in ”XX Nauchnaya konferentsiya Sovremennye informatsionnye
tekhnologii: tendentsii i perspektivy razvitiya. Materialy konferentsii [XX Scientific
conference Modern information technologies: tendencies and perspectives of evolution™],
2013, pp.69-71, (in Russian).

KoHTeKCTHO-OpMeHTUpOBaHHAA MoAernb ANA pa3MeTKu
CKBO3HOM (pYHKLMOHANBLHOCTU B UCXOOQHOM Kope

IM.C. Manesannsiii < mmxforever@mail.ru>
2C.C. Muxanxosuu <miks@sfedu.ru>
! Honckoii Tocyoapemeennuiii Texnuueckuii Yuueepcumen,
344022, Poccus, 2. Pocmog-na-/lony, yn. Coyuanucmuueckas, 0. 162.
2 [Ooicnwui dDedepanvhviii Yuusepcumenn,
344090, Poccus, Pocmos-ua-/[ony, Munvuaxosa, 0. 84.

AHHOTamMsA. B naHHOW cTaThe OMMCHIBAETCS MOAXOMA K YIPOILIEHHIO paboThl CO CKBO3HOM
(YHKIMOHATIBHOCTBIO B UCXO/HOM KOJie 3a cyeT J00aBieHHs K cpeAe pa3paboTKu CpelcTB
pa3MeTKu CKBO3HOH (hYHKIIMOHATIBHOCTU. Pa3mMeTka npeacTaBieHbl B BUIE IePeBa, OTACIbHbIC
Y3JI6I KOTOPOT'O MOTYT OBITh MPHUBSI3aHEI K OJIOKaM KoJa, o0ecredrBasi ObICTPYIO HABUTAIHIO
0 (pparMeHTaM KoJia, pea3yoIM CKBO3HYIO (YHKIIMOHAILHOCTH. [IpUBsI3Ka y37I0B iepeBa
K KOJIy OCYIIECTBIISETCS 3a CUET COXpaHEHHs B JepeBe Habopa mHbopMamuu o pparMeHTax
koxa. CoxpanseMast HHPOPMAIHS COCPKUT UMS U THIT ()parMeHTa KoJa, a TAK)Ke HECKOJIBKO
BHUJOB KOHTEKCTOB, KOTOPBIC IO3BOJIAIOT OAHO3HAYHO HalTH (I)parmeHT B KoOzEC. 3TI/I
KOHTCKCTBI ITO3BOJIAIOT B paMKaXx O)lHOI>’I MOJC/IN paGOTaTl) C KOJIOM Ha pa3JIMYHBIX A3bIKaX, KaK
NpOrpaMMHpPOBAHMs, TaK M s3blkax pa3Merkd, DSL-sa3bikax, a Takke ¢ JII0ObIM
CTPYKTYpHPOBAaHHBIM TEKCTOM, HAIlpUMep, JOKyMEHTaluel. Peaausamus anropuTMoB OMCKa
(parMeHTa o COXpaHEHHOH MH(OPMAIMU YIUTHIBAET BO3MOXHOCT BHECCHNUS HI3MCHEHHH B
KOJI B IIpoIiecce pa3paboTKH, 4To 00ecHednBaeT ycmotyugocms NpuBs3ky. [1pn HeOOmbIIHX
HM3MEHEHUSIX HCXOIHOTO KoJla parMeHT MOXKeT OBITh HaliieH aBToMaTH4YecKu. B cirydae 6omnee
CEepbe3HBIX H3MEHEHUH pean30BaH M0JIyaBTOMATHIECKUH MOUCK IIPH MUHUMAJIBHOM yIaCTHH

76

Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

nporpammucta. VIcxonHslil Ko aHaIU3UPYETCs JIETKOBECHBIMU NTapcepaMy, HE I0JIarasich Ha
HHOPACTPYKTYPY Ccpedbl pa3paboTKU. 3a CUET 3TOrO JOCTUTACTCSl BO3MOXKHOCTH PaboTaTh C
MIUPOKUM CIIEKTPOM S3BIKOB, a TAaKXKe HHTErpalis HHCTPYMEHTa B pa3jIHUYHBIE CPEJIbI
pa3paboTKH ¢ MUHUMAJIbHBIMHU YCHIMAMHU. B cTaThe npeacTaBieHa MoeIb XpaHEH!ST JaHHBIX,
AJITOPUTMBI OUCKA, a TAKXKe 0030p HHCTPYMEHTA, PEaTM3YIOLIEro JAHHYIO MOJEINb.

KiroueBbie cioBa: pasieneHue OTBETCTBEHHOCTEH; aCMEKThI; SI3bIKM IPOrPaMMHUPOBAHHUS;
cpebl pa3paboTKH

DOI: 10.15514/ISPRAS-2016-28(2)-4

Jost mmrupoBanusi: Manesanusiii M.C., Muxankosud C.C. KoHTeKcTHO-OpHEeHTHPOBaHHAS
MOJIEITh ISl pa3METKH CKBO3HOU (PYHKIIMOHANBHOCTH B ricxoaHoM koje. Tpynst UCIT PAH,
oM 28, Beim. 2, 2016 1., crp.63-78 (na anruiickom). DOI: 10.15514/ISPRAS-2016-28(2)-4

Cnucok nutepaTtypbl

[1]. M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning, and quantifying
crosscutting concerns” in Proceedings of the First International Workshop on Assessment
of Contemporary Modularization Techniques, ser. ACoM ’07. Washington, DC, USA:
IEEE Computer Society, 2007, p. 2. DOI: 10.1109/ACOM.2007 4.

[2]. A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance
tasks” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971-987, Dec. 2006. DOI:
10.1109/TSE.2006.116.

[3]. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
overview of Aspect]” in Proceedings of the 15thEuropean Conference on Object-Oriented
Programming, ser. ECOOP’01. London, UK, UK: Springer-Verlag, 2001, pp. 327-353.
(http://dl.acm.org/citation.cfm?id=646158.680006)

[4]. D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, “The genvoca
model of software-system generators” IEEE Softw., vol. 11, no. 5, pp. 89-94, Sep. 1994.
DOI: /10.1109/52.311067.

[5]. D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement” in
Proceedings of the 25th International Conference on Software Engineering, ser. ICSE 03.
Washington, DC, USA: |EEE Computer Society, 2003, pp. 187-197.
(http://dl.acm.org/citation.cfm?id=776816.776839).

[6]. S. Apel, C. Kastner, and C. Lengauer, “Featurehouse: Language independent, automated
software composition” in Proceedings of the31st International Conference on Software
Engineering, ser. ICSE ’09.Washington, DC, USA: IEEE Computer Society, 2009, pp.
221-231. DOI: 10.1109/ICSE.2009.5070523.

[7]. I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella, “Delta-oriented programming of
software product lines” in Proceedings of the 14th International Conference on Software
Product Lines: Going Beyond, ser. SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 77-91. (http://dl.acm.org/citation.cfm?id=1885639.1885647).

[8]. W. Harrison and H. Ossher, “Subject-oriented programming: A critique of pure objects”
in Proceedings of the Eighth Annual Conference on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’93. New York, NY, USA: ACM,
1993, pp. 411-428. DOI: 10.1145/165854.165932.

77

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

[9]. M. C. Chu-Carroll, J. Wright, and A. T. T. Ying, “Visual separation of concerns through
multidimensional program storage” in Proceedings of the 2nd International Conference
on Aspect-oriented Software Development, ser. AOSD ’03. New York, NY, USA: ACM,
2003, pp. 188-197. DOI: 10.1145/643603.643623.

[10]. A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F.
Adeputra, and J. J. LaViola, Jr., “Code bubbles: A working set-based interface for code
understanding and maintenance” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI *10. New York, NY, USA: ACM, 2010, pp.
2503-2512. DOI: 10.1145/1753326.1753706.

[11]. S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto, “Do we really need to
extend syntax for advanced modularity?” in Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development, ser. AOSD ’12. New York, NY,
USA: ACM, 2012, pp. 95-106. DOI: 10.1145/2162049.2162061.

[12]. C. Kaistner, S. Apel, and M. Kuhlemann, “Granularity in software product lines” in
Proceedings of the 30th International Conference on Software Engineering, ser. ICSE *08.
New York, NY, USA: ACM, 2008, pp. 311-320. DOI: 10.1145/1368088.1368131.

[13]. M.C. ManeBanupiii, C.C. MuxankoBud, Peanuszanmsi MOAJEPKKHA aclEKTOB
NPOrPaMMHOTO KOJa B HHTCTPUPOBAHHBIX cpemax pa3pabotku. CoBpeMeHHbBIE
MH(QOPMAIMOHHBIC TEXHOJIOTUH: TCHJCHIIMH U MepCreKTHBhl passutus, 2015, ctp. 351—
353.

[14]. M. P. Robillard and F. Weigand-Warr, “Concernmapper: Simple view-based separation
of scattered concerns” in Proceedings of the 200500PSLA Workshop on Eclipse
Technology eXchange, ser. eclipse ’05.New York, NY, USA: ACM, 2005, pp. 65-69.
DOI: 10.1145/1117696.1117710.

[15]. M.C. ManeBanHblif, JIETKOBECHBII MAPCHHT M €r0 UCIOJIb30BaHKE Ui DYHKIMI CPEeIbl
paspabotku. Madopmaruzanms u cBsa3b, Tom 3, ctp. 89-94, 2015.

[16]. ANSI C grammar. (http://www.quut.com/c/ANSIC-grammar-y.html)

[17]. Pascal ABC.NET. http://pascalabc.net/

[18]. B. U. JleBenmreiin. [IBou4HbIE KOJABI C HCIPABIEHHEM BBINAJCHUM, BCTABOK U
3aMemeHnit cuMBoJoB. JJokmaner Axanemuit Hayk CCCP, 1965. 163.4, ctp. 845-848.

[19]. R. A. Wagner and M. J. Fischer, “The string-to-string correction problem” J. ACM, vol.
21, no. 1, pp. 168-173, Jan. 1974. DOI: 10.1145/321796.321811.

[20]. Boumapes U. B., benskosa 0. B., Muxankosuu C. C. Cucrema mporpaMMHpOBaHHUS
Pascal ABC.NET — 10 ner passutus // XX Hayunas kondepenius «CoBpeMeHHbIC
MHGOPMAIIMOHHBIC TEXHOJOTHH: TEHJACHIMH M IEPCIEKTHUBHI Pa3BUTHs». Marepuaibl
koH(epenmu. Poctos v//], 2013. C. 69-71.

78

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

Approach to Anti-pattern detection in
Service-oriented Software Systems

A.S. Yugov <yugovas@live.ru>
National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000, Russia.

Abstract. A service-based approach is a method to develop and integrate program products in
a modular manner where each component is available through any net and has the possibility
of being dynamically collaborated with other services of the system at run time. That approach
is becoming widely adopted in industry of software engineering because it allows the
implementation of distributed systems characterized by high quality. Quality attributes can be
about the system (e.g., availability, modifiability), business-related aspects (e.g., time to
market) or about the architecture (e.g., correctness, consistency). Maintaining quality-attributes
on ahigh level is critical issue because service-based systems lack central control and authority,
have limited end-to-end visibility of services, are subject to unpredictable usage scenarios and
support dynamic system composition. The constant evolution in systems can easily deteriorate
the overall architecture of the system and thus bad design choices, known as anti-patterns, may
appear. These are the patterns to be avoided. If we study them and are able to recognize them,
then we should be able to avoid them. Knowing bad practices is perhaps as valuable as knowing
good practices. With this knowledge, we can re-factor the solution in case we are heading
towards an anti-pattern. As with patterns, anti-pattern catalogues are also available. In case of
continues evolution of systems, it is metric-based techniques that can be applied to obtain
valuable, factual insights into how services work. Given the clear negative impact of anti-
patterns, there is a clear and urgent need for techniques and tools to detect them. The article
will focus on rules to recognize symptoms of anti-patterns in service-based environment,
automated approaches to detection and applying metric-based techniques to this analysis.

KuroueBsbie ciioBa: Service based systems; anti-patterns; specification and detection; software
quality; quality of service (QoS)

DOI: 10.15514/ISPRAS-2016-28(2)-5
For citation: Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software

Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 79-96. DOI:
10.15514/ISPRAS-2016-28(2)-5

1. Introduction

Service-based style of software systems is very widely spread at the industrial
development because it allows implementing flexible and scalable distributed
systems at a competitive price. The result of development are autonomous, reusable,

79

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

and independent units of a platform — services — that can be consumed via any network
including the Internet [1].

Traditional approaches to software delivery are based on life cycle phases of the
system, when in the development process became involved various teams inside a
company or even by different companies [2]. Moreover, in classical approach, the
focus is on one vendor supplying the entire system or subsystem. The emergence of
service-oriented architecture approach introduces a model divided into levels. It
enables the existence of different design approaches; whereby different parties deliver
service layers as separate elements. Experience in development of joint projects,
divided into separate services, shows that errors may appear in potentially dangerous
areas. As part of this work, we will call these areas as anti-patterns.

Anti-patterns in software systems based on services are “bad” solutions recurring
design problems. In contrast to design patterns, anti-patterns are well-proven
solutions that engineers should avoid. Anti-patterns can also be introduced as a
consequence of various changes, such as new user requirements or operating
environment changes.

This paper presents an introduction to the anti-pattern detection domain and describes
proposed approach for the automated detection of anti-patterns.

2. Examples of Anti-patterns in Service-based Systems

Design (architecture) quality is vitally important for building a well thought-out, easy
to maintain and evolving systems. The presence of patterns as antipattern in the
system design was recognized as one of the most effective ways to express
architectural problems and their solutions, and hence higher quality criterion among
different systems [3].

A number of efforts have been taken to formalize the properties of the concept of
"bad" practices, i.e., decisions that adversely affect the quality of the system. Despite
the emerging interest to service based systems, the literature is not really consistent
with respect to pattern and anti-pattern definition and specification in this area.
Indeed, the available catalogs use different classification, either based on their nature,
scope or objectives.

Some completely new approaches were introduced to identify and detect code
vulnerabilities and anti-patterns [4], [5]. The methods used in these campaigns were
very diverse: completely manual, based on the research guidelines; metrics based on
heuristic methods using rules and thresholds for various metrics; or Bayesian
networks. Some approaches [6] are applicable to the application level and can be
applied to initial stages of the software life cycle.

Quite a large number of methodologies and tools exist for the detection of anti-
patterns, in particular, in object-oriented (OO) systems [7], [8]. However, the
detection of anti-patterns in service-based systems, in contrast to the OO systems is
still in its infancy. One of the last works by detecting of antipattern in service-oriented
architectures (SOA) has been proposed in Moha et al. In 2012 [4].

80

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

The authors proposed an approach to the determination and detection of an extensive
set of SOA anti-patterns operating such concepts as granularity, cohesion and
duplication. Their instrument is able to detect the most popular SOA anti-patterns,
defined in literature. In addition to these antipatterns, authors identified three
antipatterns, namely: bottleneck service, service chain and data services. Bottleneck
is a service that is used by many other components of the system, and as a result, is
characterized by high incoming and outgoing connections affecting the response time
of service. Chains of services occur when a business object is achieved by a long
chain of successive calls. Data service is a service that performs a simple operations
of information search or data access, which may affect the connectivity of the
component.

In 2012, Rotem-Gal-Oz [9] identified the “knot” antipattern, a small set of connected
services, which, however, is closely dependent on each other. Anti-pattern, thus, may
reduce the ease of use and response time.

Another example of anti-pattern is “sand pile” defined by Kr'al et al [10]. It appears
when many small services use shared data, which can be accessed through the service,
which represent the “data service” anti-pattern.

In the paper of Scherbakov et al. proposed “duplicate service” antipattern [11] that
affects sharing services that contain similar functions, causing problems in the support
process.

In 2003 Dudney et al. [12] have identified a set of anti-patterns for the J2EE
applications. “Multi service” anti-pattern stands out, among others, a “tiny service”
and “chatty service”. Multi service is a service that provides a variety of business
operations, which have no practical similarity (for example, belong to different
subsystems) that can affect service availability and response time. Tiny service is a
small service with few methods, which are always used together. This can lead to the
inability of reuse. Finally, an anti-pattern “chatty service” represents such services
that constantly call each other, passing small amount of information.

3. Metric-based Approach to the Detection of Anti-patterns

As DeMarco noted [13], in order to control the quality of development, correct
quantitative methods are needed. Already in 1990 Card emphasized that metrics
should be used to assess the development of software in terms of quality [14]. But
what should be measured? In the above context of design rules, principles and
heuristics, this question should be rephrased as follows: is it possible to express the
principles of “good design” in a measurable way?

The main goal of this approach is to provide a mechanism for engineers, which will
allow them to work with metrics on a more abstract level, which is conceptually much
closer to real conditions of applying numerical characteristics. Mechanism defined
for this purpose is called a discovery strategy:

81

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

Detection strategy is a quantitative expression of the rules by which specific pieces
of software (architectural elements), corresponding to this rule, can be found in the
source code.

By this reason, the detection strategy is a common approach to analysis of the source
code model using metrics. It should be noted that in the context of the above
definition, "quantitative expression of the rule™ means that the rule should be properly
expressible using metrics. The use of metrics in detection strategies grounded filtering
mechanisms and composition. In the following subsections, these two mechanisms
will be considered more detailed.

The key problem in data filtering is reducing the initial collection of information, so
that there remain only those values that are of particular value. This is commonly
referred to as data reduction [15]. The aim is to detect those elements of the system,
which have special properties. Limits (boundaries) of the subset are determined on
the basis of the type of filter. In the context of the measurement process with respect
to the software, we usually try to find the extreme (abnormal) values or those values
that lay within a certain range. Therefore, distinguish types of filters [16]:

e Marginal filter is a data filter, in which one limit (border) in the result set is
clearly identified with a corresponding restriction of the original data set.

e Interval filter is a data filter, in which the lower and upper limits of the
resulting subset are explicitly specified in the definition of the data set.
Marginal filters consist of two depending on how we specify the borders, resulting
dataset limiting filters may be semantical or statistical.

e Semantical. For these filters two parameters must be specified: a threshold
value that indicates a limit value (to be explicitly indicated); and the
direction that determines whether the threshold upper or lower limit of the
filtered data set. This category of filters is called semantical as the choice of
options is based on the semantics of specific metrics in the framework of the
model chosen for the interpretation of this metric.

e Statistical. Unlike semantical filters, statistical ones do not require explicit
specifications for the threshold, as it is defined directly from the original data
set using statistical methods (e.g., scatter plot). However, the direction is still
to be specified. Statistical filters are based on the assumption that all the
measured entities of the system are designed using the same style, and
therefore, the measurement results are comparable.

In this paper, a set of specific data filters of the two previous categories were used.
Basing on practical use and interpretation of the selected models, these filters may be
grouped as follows:

e Absolute semantic filters: HigherThan and LowerThan. These filtering
mechanisms are parameterized by a numerical value representing the border.
We will only use data filters are to express "clear" design rules or heuristics,
such as “class should not be associated with more than 6 other classes.” It

82

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

should be noted that the threshold is specified as a parameter of the filter,
while the two possible directions are defining by two particular filters.

Relative semantic filters: TopValues and BottomValues. These filters
differentiate the filtered data set according to the parameter that determines
the number of objects to be recovered, and do not indicate the value of the
maximum (or minimum) values are permitted in the result set. Thus, the
values in the result set will be considered with respect to the original data
set. The parameters used may be absolute (for example, "select 20 objects
with the highest values™) or percentile (for example, "to remove 10% of the
measured objects with the lowest values™). This type of filter is useful in
situations where it is necessary to consider the highest (or lowest) values of
a given data set, rather than indicating the exact thresholds.

Statistics: scatter plots. Scatter diagram is a statistical method that can be
used to detect outliers in the data set [17]. Data filters based on these
statistical techniques, which, of course, not limited to only the scatter
diagrams, are useful in the quantification of rules. Again, we need to specify
the direction of the deviation of adjacent values based on design rules of
semantics.

Interval Filters. Obviously, for the data interval it is necessary to define two
thresholds. However, in the context of the detection strategies, where, in
addition to the mechanism of filtering, the composition mechanism exists,
filter interval is defined by composition of two semantic absolute filters of
opposite directions.

Unlike simple metrics and interpretation models of it, detection strategy should be
able to draw conclusions on the basis of a number of rules. Consequently, in addition
to the filtering mechanism, which supports the interpretation of the particular metric
results, we need a second mechanism for comparing the results of calculations of a
number of metrics — a mechanism of composition. Composition mechanism is a rule
combining the results of calculating several metric values. In the literature three
composition operators were observed: “and”, “or” and “butnot” [16].

These operators can be discussed from two different perspectives:

From a logical point of view. These three operators are a reflection of rules
to combine multiple detection strategies, where operands are descriptions of
the design characteristics (symptoms). They facilitate reading and
understanding of the detection strategy, because operators of composition
are generally expressed in the form of quantitative characteristics, so it is
similar to the original wording of the informal thoughts. From this point of
view, for example, the operator «and» presupposes that the investigated
object has both symptoms that are combined by the operator.

From the point of sets. This view helps to understand how to build the
ultimate result of the detection strategy. The initial set of calculation results
on each of the metrics is carried out through the filtering mechanism. Then

83

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

remains limited set of system elements (and calculated metrics for these
elements), which are interesting for further investigation. The resultant
plurality of filtered sets should be merged with the operators using the
formulation. Thus, in terms of operations on sets, the operator "and" will
correspond to the operation of intersection (N), the operator "or" to reunion
operation, and the operator “butnot” to minus operation.

4. Definition of detection strategy

This section will be written in the formation of a strategy on the example of the
detection of a particular anti-pattern "God Object" [18]. The starting point is the
presence of one (or more) of the informal rules that describes the problem situation.
In this example, we will proceed from the three heuristics found in the book of
Riel [18]:

e The top-level services should share equally the responsibility.

e Services should not contain large amounts of semantically separate

functions.

e Services should not have access to fields or properties of other services.

The initial step to create a detection strategy is to translate the set of informal rules
into symptoms that can be evaluated by a particular metric. In the case of God Object
anti-pattern, the first rule refers to an equal sharing of responsibilities among services,
and therefore it refers to service complexity. The second rule tells us about the
intensity of communications among this service and all other services; thus, it refers
to the low cohesion of services. The third heuristic describes a special coupling i.e.,
the direct access to data items manipulated by other services. In this case, the
symptom is access to “foreign” data.
The second step is to find appropriate metrics, which evaluate more precisely every
of the discovered properties. For the God Service anti-pattern, these properties are
complexity of the service, cohesion of the service and access to data from other
services. Therefore, we found the following set of metrics:

e Weighted Method Count (WMC) is the sum of the static complexity of all
methods in a class [19]. We considered the McCabe’s approach as a
complexity measure [20].

e Tight Class Cohesion (TCC) is the relative number of directly connected
methods [21].

e Access to Foreign Data (ATFD) represents the number of external classes
from which a given class accesses attributes, directly or via accessor-
methods [22].

The next step is to select an appropriate filtering scheme that should be applied to all
metrics. This step is mainly done basing on the rules described earlier. Therefore, as
the first symptom is a “high service complexity” the TopValues relative semantical
filter was chosen for the WMC metric. For the “low cohesion” symptom it was also
chosen a relative semantical filter, but now the BottomValues one. For the third
84

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

symptom, an absolute filter was selected as we need to catch any try to access a
“foreign” data; thus, we the HigherThan filter will be used.

One of vital issues in creating a detection strategy is to choose proper parameters (i.e.,
threshold values) for all data filters. Several approaches exist to do this, but now we
just take a 25% value for both the TopValues filter for to the WMC metric and to the
BottomValues filter for the TCC metric. As for filter boundary for the ATFD metric,
the decision is pretty simple: no direct access to the data of other services should be
allowed, therefore, the threshold value is 1.

The final step is to join all the symptoms, with applying of the special operators
described before. From the unstructured heuristics as presented in [18], it was inferred
that all three symptoms should be combined if a service is supposed to be a behavioral
God Object.

The intention of this work is to use detection strategies in rule definitions in order to
facilitate detection of anti-patterns in service based software systems i.e., to select
such areas of the system (subsystem) that are participated in a particular anti-pattern.
From this point of view, it should be emphasized that the detection strategy approach
and the whole method is not limited by finding problems, but it also can facilitate
completely different objectives too. For instance, different investigation purposes
could be in reverse engineering [23], design pattern detection [22], identification of
components in legacy systems [24], etc.

5. Implementing a Tool for Detection of Anti-patterns in
Service-based Systems

5.1. Description of Metrics
Calculations intended to detect antipatterns is conducted basing on several basic
metrics:

e incoming call rate;

e outcoming call rate;

e response time;

e number of service connections;

e cohesion with other services;

o efc.
Each metric has its specific model and its specific algorithm to calculate. Values of
this metric have decisive influence on detection of services participating in
antipatterns.
In calculation of metrics, objective measures of occurrence pattern interestingness of
data mining like confidence and support are used. These are based on the structure of
discovered patterns and the statistics underlying them.
A measure for association rules of the form X—Y is called support, representing the
percentage of transactions from a log database that the given rule satisfies. This is

85

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

intended to be the probability P(X U Y), where X U Y indicates that a transaction
contains both X and Y, that is, the union of item sets X and Y.

Another objective measure for association rules from data mining is confidence,
which addresses the degree of certainty of the detected association. In classical data
mining this is taken to be the conditional probability P(X N Y), that is, the probability
that a transaction containing X also contains Y. More formally, confidence and
support are defined as

Support(X - Y)=P(X U Y),
Confidence(X — Y)=P(X NY).

In general, each measure of interestingness is associated with a threshold, which may
be controlled. For calculation of metrics each final value of metric is confidence
(which is calculated not as in classical data mining but more complexly) divided by
support measure (which is calculated in the same manner as in classical data mining).
Further, each metric is described in more details.

Incoming and Outcoming Call Rates. The model for calculation of IncomingCallRate
metric is call matrix. This matrix represents calls services make to each other. For
building this matrix and some other models, we need to identify the order of calls.
This information is not stored in logs, therefore, the first task is to mine service calls
from log. Procedure of mining calls consists of several main steps. The first is
ordering log events by traces. This is necessary because occurrence of events in
particular order in boundaries of one trace gives us evidence of one particular service
call. To mine all the service calls properly it is needed to sort events in the log
chronologically within every trace. Once ordering on both levels (trace and
timestamp) is finished, we can go through the log and reconstruct service calls.
Received values in mined matrix will represent generalized number of calls among
services for as IncomingCallRate as OutcomingCallRate.

Response Time. Response time metric represent general bandwidth of a particular
service. This parameter is crucial for systems having high load. Calculation of this
metric uses assumptions made for both metrics IncomingCallRate and
OutcomingCallRate but with some modifications. As we are aimed here at measure
of time characteristic, the object to explore will be time stamp parameter of the log.
Given defined algorithm for incoming and outcoming call rates, we modify it with
calculation of time prospect. Instead of just number of calls, we calculate general
length of service response. In such a way the summarized time while service was busy
is calculated. As a result of precious calculations, the matrix of general time every
service spent on work was obtained. Following step is to normalize real values, i.e. to
measure not in absolute number but in relative number. This relative number will
show percentage of time where the service was working on processing calls. This
metric can be used for detection of both highly loaded services and rarely used
services.

Cohesion with Other Services. For calculation of this metric classical data mining
rules are implemented. For this the conditional probability P(X N Y) is taken. That

86

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

is, the probability that a transaction containing X also contains Y. Additionally, the
special rule for ordering is added. This means that X—Y and Y—X is different
relations. l.e. we observe not only occurrence at one trace but also the order of
occurrences. High rate of confidence of this metric is evaluated as high cohesion of
several services and, therefore, high behavioral dependency.

Number of Service Connections. All the previous metrics were dynamic
characteristics of a system under consideration while number of service connections
is a static property of the system. For mining this property, it is enough to have the
incidence matrix of service calls. If one service called once another service, we do
not consider the same connections in future. Obtained incidence matrix allows us to
calculate all existing connections in the system.

The basic model to calculate each of metrics is Graph model (fig. 1) which is extended
in each particular metric calculation algorithm with specific attributes. As part of this
work, it is assumed that each object, once appeared in the system, initiates a sequence
of operations to be performed on the object. This sequence of operations is called
workflow. It is worth noting that not every service-oriented system is based on this
principle, but we will consider only such systems.

funcA

funcB

Fig. 1. Base graph model for calculation of metrics.

In this model, services of a software system are presented by graph nodes. Arcs of the
graph represent the call ratio, i.e., oriented arc from Srv1 to Srv2 shows that Srv1 in
the process of operation calls one of Srv2 functions. Depending on what metric should
be calculated, edges of the graph are marked by specific values. For example, on fig. 1
arcs are labeled by amount of calls in a particular direction and, in parentheses, some
weighted value of the transmitted data.

5.2. Extracting Data from Event Logs

The main weakness of previously observed works was the necessity to modify source
code of a particular system in order to evaluate concrete metrics. In this work we use

87

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

event logs to create a process model of the system and calculate metrics basing on
this model. To apply these, it is assumed that the information system records data of
events. These logs also contain unstructured and irrelevant data, e.g. information on
hardware components, errors and recovery information, and system internal
temporary variables. Therefore, extraction of data from log files is a non-trivial task
and a necessary pre-processing step for analysis. Business processes and their
executions related data are extracted from these log files. Such data are called process
trace data. For example, typical process trace data would include process instance id,
activity name, activity originator, time stamps, and data about involved elements.
Extracted data are converted into the required format.

To be able to analyze log content, the log should have specified structure. In our case
the minimal requirements for log is as follows:

e TracelD: shows the identity for a particular trace;
e ServicelD: shows the identity for a particular service;

e FunctionID: shows the identity attribute for a particular function in the
service;

e Timestamp: shows the time of occurrence of the event.
The log sample is presented in table 1.

Table 1. Source log sample

Traceld | Service | Function | TimeStamp

1 Srv2 C 2015-06-15 00:25:20
1 Srvl A 2015-06-15 00:33:24
2 Srv4 F 2015-06-15 00:32:25
3 Srv3 E 2015-06-15 00:24:13
1 Srv2 C 2015-06-15 00:31:52
3 Srvl B 2015-06-15 00:34:05
4 Srv4 G 2015-06-15 00:25:12
3 Srv3 E 2015-06-15 00:26:28
4 Srvl A 2015-06-15 00:28:21
4 Srv2 C 2015-06-15 00:30:32
2 Srvl A 2015-06-15 00:29:48
2 Srv2 C 2015-06-15 00:29:51

Each field included in log has its own purpose in future usage. TracelD is needed for
distinguishing events among execution sequences, i.e. for majority of metrics it is
necessary to connect events in boundaries of one trace. Moreover, inside traces events
appears in chronological order. That is why timestamp is included in log format.

88

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

ServicelD and FunctionID describe source of each event. In addition, dimensions of
functions and services are main structural units in analysis and creation of models.

5.3. Specification of Rule Cards

The rule cards are storing in XML format. The structure of XML represents scheme
of rule card structure. The scheme of XML is presented in fig. 2 in graphical mode.
In fig. 3 for more detailed view in XSD standard. The XML should have specialized
namespace: “RuleCardNS”. The root element is “RuleCard”. It has name element
called “AntipatternName”. This also plays the role of identification attribute.

[5] schema Root

Aftribute Form Defsut Ungualified
Element Form Defsult Qualified
Target Namespace RuleCardN$

o1
[E] AntipatternName : string
0.1
[E] Rulecard o o1 o [E] RuleName : string
[E] Rules off [E] Rule £ o
[E] MetricvValue : string

Fig. 2. Structure of antipattern XML

Each Rule is defined through type attribute, metric value and its own name. The type
attribute describes what metric (from a set of available metrics) should be calculated.
Metric value refers to specific value of calculated metric, which shows whether the
service under analysis has a particular symptom or not. Finally, rule name is an
identification property for rule.

89

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

<oxml —uq n _n nos,
<xs:schema ="

=" ">
<xsd:element =" ">
<xsd:complexType>
<xsd:sequence>
<xsd:element
<xsd:element =" ">
<xsd:complexType>
<xsd:sequence>
<xsd:element =" " ="
=" ">
<xsd:complexType>
<xsd:sequence>
<xsd:element
<xsd:element
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xs:schema>

1
1

-
Vv

I 1l
1
-
\

Fig. 3. Detailed structure of antipattern XML.

5.4. Description of Research Prototype of Analytic System

To automate process of anti-pattern detection the research prototype of information
system, which implements the described approach, has been developed. The scheme
of the proposed approach is shown in fig. 4. The workflow of the software system
consists of several steps. At the point of entry, the program takes log, which is reading
from the relational database implemented in SQL Server, and rule card describing
rules to detect particular antipattern.
General workflow structure is presented in fig. 5. It starts with reading input data,
which are:
¢ log from some software system implemented according to SOA principles;
e rule card describing all the rules and metrics needed for detection of each
particular antipattern.
Once the XML with antipattern description is read the system starts calculation of
metrics. Each metric is calculated against its specific algorithm. So for each rule the
process of metric calculation has been launching. First, the special model used for

90

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BBIMyCK 2, . 79-96.

analysis of a particular metric is build. All the models were defined previously. Then
with use of received model metrics are calculated. As a result of this process, services
suspected in participation in the antipattern are selected.

Next step is to integrate results received in threads of calculation of metrics. The
integration is conducted as intersection of result sets from previous threads. Finally,
we obtain set of suspicious services, which are parts of antipattern. Commonly there
are several services, but is always can be that just one service represents antipatterns
or no such services at all were discovered.

Results of analysis is depicting in general graph representation (fig. 4).

Vol

Fig. 4. Graphical representation of results.

Nodes in this graph are services and edges in this graph are direct references among
services. Each node represents one service observed in the system whose log has been
observed. As for example on fig. 5, nodes such as for services Srv2, Srv3, and Srv4
represent proper developed services, i.e. they are not participated in antipatterns.
Suspicious services are marked with “!”” sign, that means that this particular service
is a part (or is whole) of antipattern. In our example this is service number 1 (Srv1).
Edges represent calls made of one service to another one. Concerning example from
fig. 2.6, Srv4 calls Srv1 therefore one edge directed from Srv4 to Srv1l is depicted.
Srvl and Srv2 calls functions of each other therefore the edge is bidirectional.

91

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

SQL Server

SOA Anti-pattern Detection System

N N .

value

il
Jien e . ﬁ

XML

Fig. 5. Base graph model for calculation of metrics.

6. Conclusion

This work addresses the issue of necessity of monitoring circumstance of software
systems implemented through service-based approach in conditions of continuous
development and enhancement when number and complexity of systems is expanding
faster than a human being can handle.

During the exploration of process mining and data mining domains the general
service-based specific antipattern detection rules were invented. All rules consist of
several metrics and its specific values, describing symptoms of antipatterns. At the
time, five metrics are available for usage in detection rules: incoming call rate,
outcoming call rate, response time, cohesion, and number of service connections.
With applying these metrics several antipatterns was specified and algorithms for it
detection were introduced.

Algorithms of antipattern detection based on metric calculation were implemented as
a software tool (research prototype), which allows by specifying rule cards in XML
format and log in SQL Server database to detect antipatterns. The software tool is
developed with usage of Windows Presentation Foundation framework.

Itis planned that in future the information system will be refined according to analysis
of real life logs from and number of available metrics and possible to detect
antipatterns will be significantly greater. The following step will be introducing
dynamic analysis of system behavior in addition to implemented analysis of static
footprints. Furthermore, some fuzziness can be introduced for the evaluation of the
threshold values thus to make antipattern detection rules more flexible.

References

[1]. T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, August 2005.

[2]. G. Farrow. SOA antipatterns: When the SOA paradigm breaks // IBM Developer Works
[Online]. Available: http://www.ibm.com/developerworks/library/wa-soa_antipattern/

[3]. M. Nayrolles; N. Moha; P. Valtchev. Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces in Proceedings of the 20th Working
Conference on Reverse Engineering (WCRE'13), pp. 321-330, IEEE, 2013.

92

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

[4].

[5].

[6].

[7].

[8].

[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17].

[18].
[19].

[20].
[21].
[22].
[23].

[24].

N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Gueheneuc, B. Baudry, J.-M.
Jezequel. Specification and Detection of SOA Antipatterns. In International Conference
on Service-Oriented Computing (ICSOC), pp. 1-16, 2012

F. Khomh, M. D. Penta, Y.-G. Gueheneuc, G. Antoniol. An exploratory study of the
impact of antipatterns on class change- and fault-proneness. Empirical Software
Engineering 17(3):243-275, 2012.

D. Arcelli, V. Cortellessa, C. Trubiani. Experimenting the Influence of Numerical
Thresholds on Model-based Detection and Refactoring of Performance Antipatterns.
ECEASST 59 (2013).

M. Kessentini, S. Vaucher, and H. Sahraoui. “Deviance From Perfection is a Better
Criterion Than Closeness To Evil When Identifying Risky Code” in Proceedings of the
IEEE/ACM ASE. ACM, 2010, pp. 113-122.

M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice. Springer-Verlag, 2006.
A. Rotem-Gal-Oz, SOA Patterns, 1st ed. Manning Pubblications, 2012.

J. Kr’al and M. Zemlicka, “The most important service-oriented antipatterns,” in [CSEA,
2007, p. 29.

L. Cherbakov, M. Ibrahim, and J. Ang, “Soa antipatterns: the obstacles to the adoption
and successful realization of service-oriented architecture”.

B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE Antipatterns, 1st
ed. New York, NY, USA: John Wiley & Sons, Inc., 2002

T. DeMarco. Controlling Software Projects: Management, Measurement and Estimation.
Yourdan Press, New Jersey, 1982.

D. Card and R. Glass. Measure Software Design Quality. Prentice-Hall, NJ, 1990.

P.G. Hoel. Introduction to Mathematical Statistics. Wiley, 1954.

R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In
Proceedings of the 20th IEEE International Conference on Software Maintenance
(ICSM’04). Los Alamitos CA: IEEE Computer Society Press, 2004, pp. 350—359.

N. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical Approach.
International Thomson Computer Press, London, UK, second edition, 1997.

AJ. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

S. R. Chidamber and C. F. Kemerer. A Metric Suite for Object-Oriented Design. IEEE
Transactions on Software Engineering, 20(6):476—493, June 1994.

T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
2(4):308-320, dec 1976.

J.M. Bieman and B.K. Kang. Cohesion and Reuse in an Object-Oriented System. Proc.
ACM Symposium on Software Reusability, apr. 1995.

R. Marinescu. Detecting Design Flaws via Metrics in Object-Oriented Systems. In
Proceedings of TOOLS USA 2001, pages 103-116. IEEE Computer Society, 2001.

E. Casais. State-of-the-art in Re-engineering Methods. Achievement report SOAMET-
Al1.3.1, FAMOOS, October 1996.

A. Trifu. Using Cluster Analysis in the Architecture Recovery of OO Legacy Systems.
Diploma Thesis, Karlsruhe and the "’Politehnica” University Timisoara, 2001

93

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

Moaxoa K OoGHapy)XeHU0 aHTU-NaTTEPHOB B cepBuUC-
OPUEHTUPOBAHHbIX CUCTEMaXxX

A.C. FO206 <yugovas @live.ru>
Hayuonanenouii Hccreoosamenvckuii Yuusepcumem «Buvicwas Llxona
DKoHOMUKWY,
101000, Poccus, Mocksa, ya. Macuuyxas, 0.20.

AnHoTaumsi. CepBUC-OPUEHTHPOBAHHBIC CHCTEMBI, KaK CTUJIb B apXUTEKTYpe MPUIOKCHHH,
IIMPOKO MPUHAT B IPOMBIIUICHHOI pa3paboTKe IPOrpaMMHOT0 00€CIIeUeHu s, IIOTOMY ITO 3TO
HO3BOJIIET pa3padaThiBaTh '’HOKUE U MaclITaOUpyeMble paclpeiesiCHHbIe CUCTEMBI 110 Ooliee
BBITOJHOHM IieHe. Pe3ynbraToM pa3pabOTKH CTaHOBSTCS AaBTOHOMHBIC, MHOTOPA3OBBIE M
HE3aBUCUMBIE OT IUIaT(GOPMBI UCTIOIB30BaHMs (YHKIMOHATIA SIUHULEI — cepBHCHL. CepBHUC-
OPHEHTUPOBAHHBIC CHCTEMBI, KaK M JIFOObIE IPYrHe MPOrpaMMHBIC CHCTEMBI, PAa3BUBAIOTCS C
TEYECHHEM BPEMCHH, HE3aBUCHMO OT TOTO, KAKUMH OBUIM NPEANOCHUIKA M3MEHEHHMil: HOBbIC
TpeGoBaHMs, U3MEHEHHE CPEbl QYHKIIMOHHUPOBAHMUS, U T.I1. DTa 3BOJIIOLHUS MOXKET YCIOKHHUTD
TOJIBKO YTO M3MEHCHHBIC CHUCTEMbI, U TEM CAMbIM YBEJIHYHMTH TPYJHOCTh UX TEXHHYECKOU
HNOANCPKKH M JajbHeWIero pa3BuTHs. [IOCTOSHHBIE H3MEHEHUs MOTYT IIPHBECTH K
HOSIBJICHUIO B CHCTEME «IUIOXUX) PEIICHUH — aHTU-NIATTEPHOB, UTO, B CBOIO OYepeb, CHIKAET
KauecTBO MPOTPaMMHON CHCTEMBI M TpeOyeT OOJbIIero BHUMaHUS pa3pabOTYNKOB Ha BCeX
JTanax JKM3HEHHOTO IMKJIAa CUCTEMBl. AHTH-TIATTEPHBI B MPOLIECCe IKCILTyaTallMy CHCTEM Ha
0a3e CEepBHCOB TPEACTABISIIOT COOOH («IUIOXHE» pEIICHHUS IOBTOPSIOMIUXCA TPOOIeM
MPOSKTUPOBaHMS. B MPOTHBOIONOKHOCTh MATTEPHAM HPOCKTHPOBAHHS, KOTOPBIC SBISIOTCS
XOPOIIMMH MPOBEPEHHBIMH PELICHUSMH, aHTH-TIATTEPHBI HMHXKEHEpaM ClieqyeT H30erars.
AHTH-TIATTEPHBI TAKKe MOTYT OBITh BBEJCHBI KaK CIIEICTBHE PA3IMYHBIX W3MEHEHHMIl, TaKUX
Kak, HalpuMmep, HOBbIe TpeOOBaHWA IOJb30BaTeNied MM W3MEHCHHS CPEHbl
(YHKIMOHMPOBaHUs. 3HAaHME aHTH-TIATTEPHOB SIBISICTCS TAKUM JK€ BaXKHBIM, KaK M 3HaHHE
AQHTHU-TIATTEPHOB, I0O3TOMY aHTH-TIATTEPHBI omuchBaloTcs cnenuaiaucramu UT oGmacty, a
CaMH OIUCAHUs COOMPAIOTCS B KaTanory. 1 gaiie Bcero UMEHHO METPUKO-OPUEHTHPOBAHHBIH
MOAXOA MOXeT ObITh NpUMEHEH /Ul IOJydYeHWs IIeHHOW, OCHOBaHHON Ha (dakTax,
nHOOPMAIMK O TOM, KaK pabOTalOT CEPBHCHL. B IaHHOW CTaThe paccMaTpHBAIOTCS MPHMEPHI
AQHTH-TIATTEPHOB M METOJOB HX aBTOMAaTHYECKOro OOHapykeHus. Bce mertomsl Oyayt
COCPEIOTOYCHBI Ha METPHKO-OPHEHTHPOBAHHOM IOJIXO/IE K aHAIN3Y MPOIPAMMHBIX CHCTEM.

KitoueBble cj10Ba: CepBUC-OPHEHTUPOBAHHBIC CHCTEMBI, aHTH-TIATTEPHbI, CliCU(bHKALUST U
obHapyxKeHHe, KaueCTBO POrPaMMHOI0 00eCTICUeHUs.

DOI: 10.15514/ISPRAS-2016-28(2)-5

Jaa ourupoBanmsi: IOros A.C. Ilogxon k OoOHapyKeHHIO AaHTH-NIATTEPHOB B CEPBHC-
opuentupoBannbix cucremax. Tpynsr CIT PAH, tom 28, Beim. 2, 2016 1. ctp. 79-96 (Ha
anriumiickom). DOI: 10.15514/ISPRAS-2016-28(2)-5

Cnucok nutepatypbl

[1]. T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, August 2005.

94

TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

2.
[31

[4].

(5]

(6].

[71.

[8].

[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17].

[18].
[19].

[20].
[21].
[22].
[23].

[24].

G. Farrow. SOA antipatterns: When the SOA paradigm breaks // IBM Developer Works
[Online]. Available: http://www.ibm.com/developerworks/library/wa-soa_antipattern/
M. Nayrolles; N. Moha; P. Valtchev. Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces in Proceedings of the 20th Working
Conference on Reverse Engineering (WCRE'13), pp. 321-330, IEEE, 2013.

N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Gueheneuc, B. Baudry, J.-M.
Jezequel. Specification and Detection of SOA Antipatterns. In International Conference
on Service-Oriented Computing (ICSOC), pp. 1-16, 2012

F. Khomh, M. D. Penta, Y.-G. Gueheneuc, G. Antoniol. An exploratory study of the
impact of antipatterns on class change- and fault-proneness. Empirical Software
Engineering 17(3):243-275, 2012.

D. Arcelli, V. Cortellessa, C. Trubiani. Experimenting the Influence of Numerical
Thresholds on Model-based Detection and Refactoring of Performance Antipatterns.
ECEASST 59 (2013).

M. Kessentini, S. Vaucher, and H. Sahraoui. “Deviance From Perfection is a Better
Criterion Than Closeness To Evil When Identifying Risky Code” in Proceedings of the
IEEE/ACM ASE. ACM, 2010, pp. 113-122.

M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice. Springer-Verlag, 2006.
A. Rotem-Gal-Oz, SOA Patterns, 1st ed. Manning Pubblications, 2012.

J. Kr’al and M. Zemlicka, “The most important service-oriented antipatterns,” in ICSEA,
2007, p. 29.

L. Cherbakov, M. Ibrahim, and J. Ang, “Soa antipatterns: the obstacles to the adoption
and successful re-alization of service-oriented architecture”.

B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE Antipatterns, 1st
ed. New York, NY, USA: John Wiley & Sons, Inc., 2002

T. DeMarco. Controlling Software Projects: Management, Measurement and Estimation.
Yourdan Press, New Jersey, 1982.

D. Card and R. Glass. Measure Software Design Quality. Prentice-Hall, NJ, 1990.

P.G. Hoel. Introduction to Mathematical Statistics. Wiley, 1954.

R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In
Proceedings of the 20th IEEE International Conference on Software Maintenance
(ICSM’04). Los Alamitos CA: IEEE Computer Society Press, 2004, pp. 350—359.

N. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical Approach.
International Thomson Computer Press, London, UK, second edition, 1997.

A.J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

S. R. Chidamber and C. F. Kemerer. A Metric Suite for Object-Oriented Design. IEEE
Transactions on Software Engineering, 20(6):476-493, June 1994.

T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
2(4):308-320, dec 1976.

J.M. Bieman and B.K. Kang. Cohesion and Reuse in an Object-Oriented System. Proc.
ACM Symposium on Software Reusability, apr. 1995.

R. Marinescu. Detecting Design Flaws via Metrics in Object-Oriented Systems. In
Proceedings of TOOLS USA 2001, pages 103-116. IEEE Computer Society, 2001.

E. Casais. State-of-the-art in Re-engineering Methods. Achievement report SOAMET-
Al1.3.1, FAMOOS, October 1996.

A. Trifu. Using Cluster Analysis in the Architecture Recovery of OO Legacy Systems.
Diploma Thesis, Karlsruhe and the ”Politehnica” University Timisoara, 2001

95

Yugov A.S., Approach to Anti-pattern detection in Service-oriented Software Systems. Trudy ISP RAN /Proc. ISP RAS,
20186, vol. 28, no 2, pp. 79-96.

96

T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3aanus cemeiicTBa NPHIOKEHUH HA OCHOBE aHAIN3a MPEAMETHON
obnactu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 97-110.

Technology for application family creation
based on domain analysis

A. Gudoshnikova <gudoshnikova.anna@gmail.com>
Y. Litvinov <y.litvinov@spbu.ru>
Software Engineering chair,
St.Petersburg State University,
198504, Russia, St.Petersburg, Peterhof, Universitetsky prospekt, 28

Abstract. The theme of code reuse in software development is still important. Sometimes it is
hard to find out what exactly we need to reuse in isolation of context. However, there is an
opportunity to narrow the context problem, if applications in one given domain are considered.
Same features in different applications in one domain have the same context respectively so
the common part must be reused. Hence, the problem of domain analysis arises. On the other
hand, there is metaCASE-techonology that allows to generate code of an application using
diagrams, which describe this application. The main objective of this article is to present the
technology for application family creation which connects the metaCASE-techonology and
results of domain analysis activity. We propose to use some ideas of FODA (feature-oriented
domain analysis) approach for domain analysis and use feature diagrams for describing of
variability in a domain. Then we suggest to generate metamodel of the domain-specific visual
language, based on feature diagram. After that based on generated metamodel domain-specific
visual language editor is generated with the aid of metaCASE-tool. With this language user can
connect and configure existing feature implementations thus producing an application. This
technology supposed to be especially useful for software product lines.

Keywords: domain analysis; metaCASEtechnology; domain-specific language; application
family

DOI: 10.15514/ISPRAS-2016-28(2)-6

For citation: Gudoshnikova A.A., Litvinov Y.V. Technology for application family creation
based on domain analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue. 2, 2016, pp. 97-110
DOI: 10.15514/ISPRAS-2016-28(2)-6

1. Introduction

The term “reuse” in software engineering is closely associated with context. Reuse
objects can be programs, parts of programs, specifications, requirements,
architectures, test plans, etc. Reuse of one object leads to reuse of another object. This
means, there is a need to reuse something more than just code, i.e. there is a call for

97

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

increasing the abstraction level. It is commonly supposed that reuse, as some kind of
activity, can be divided into groups according to what should be reused: components,
process for gaining the product, technology or knowledge. At all accounts any reuse
object cannot be discussed without environment, where the given object exists.
Hence, the context problem still remains. However, if we reuse objects in one domain,
the context issue may be narrowed. The product line implies that there is a common
part, it can be: (1) architecture, (2) components, (3) algorithms, (4) methods, etc. —
and this part exists in the same context. This fact facilitates the reuse problem.
Consequently, the common part must be reused.

Gathering information about the domain is the crucial step in the whole process of
software development. Nowadays applications in one domain are often designed
independently; this approach leads to increase of development time and cost. Usually
such applications have similar functionality, so the reuse problem moves to the
forefront in an attempt to speed up the development and to decrease the cost for
systems in one domain. The reuse process in one domain supposes the necessity of
the domain analysis activity. At present domain analysis in software life cycle is
performed in informal way. There are some domain analysis tools, but such tools are
not integrated with development tools. As the result of the domain analysis activity
some diagrams just are put up on the board, and do not take part in following process
of software design. The risk of incorrect understanding of domain-dependent
knowledge increases. Therefore, many peculiarities of the domain may be missed in
development process because of the factor of human error. This fact may lead to
development of the product, which does not satisfy requirements at all. Hence, there
emerged a need for a tool in which domain analysis activity would play a vital role in
software development process, i.e. based on this activity would be possible to
generate some design model, so developers and other process actors could rely on this
model. At the present day there is no tool that could allow to solve this problem.
One possible solution for this problem is the use of domain analysis tool in model-
driven development, or, more precisely, domain-specific modeling. Domain-specific
approach uses visual languages to specify system under development, but, contrary
to general model-driven approach, which uses general-purpose visual languages like
UML, domain-specific languages are tailored specifically for given domain or a set
of problems. Existing studies [1-4] show that due to closeness to a problem domain
and the ability to generate complete application by visual models domain-specific
languages boost development productivity by 3 to 10 times compared to general-
purpose languages. It is clear that developing a tool for domain-specific language
“from scratch” for each domain will be prohibitively costly, so special systems are
used that allow to declaratively specify syntax of a language and to automatically
generate such tools as visual editor, source code generators, constraints checkers and
so on. Such systems are called DSM platforms, most known of these is MetaEdit+ [5-
7], Eclipse GMP [8, 9], Microsoft Modeling SDK [10].

Main idea of domain-specific modeling is to use a number of visual languages in one
tool to develop a complete system. Every language can provide a different point of

98

T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3aanus cemeiicTBa NPHIOKEHUH HA OCHOBE aHAIN3a MPEAMETHON
obnactu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 97-110.

view on a system. We propose to exploit this idea to automatically produce useful
artifacts from the results of domain analysis thus seamlessly integrating this phase
into development process (such as [11]). For that, we will use specific visual language
to perform domain analysis and to build domain model, language simple enough to
be useful to analysts and domain experts who do not necessarily possess programming
skills. Then, using this domain model, we will generate actual domain-specific
language that will allow to configure various existing pre-built components and
integrate them to generate a working application. As we will see, this language will
also typically be very simple so that non-programmers can use it. The only real coding
in the proposed approach occurs when creating components from which applications
will be built, but for product lines these components will already exist anyway, as
they will in a case when a team develops many applications in one domain for some
time. Not all steps in proposed approach are fully automatic, as a visual language
needs tailoring after generation from domain model — we still need to manually
specify shapes of its elements (to be familiar for domain experts) and configure
properties which depend on existing components and cannot be derived from domain
model. It is also possible that generated application will need tailoring by hand, but
generation can significantly lower the effort needed to create application.

Main contribution of this research-in-progress paper is a novel approach to product
line development and assets reuse. Also an implementation of technology which uses
this approach is presented. Our technology is based on QReal DSM platform [12], an
open source tool developed by Software Engineering chair of St. Petersburg State
University. An evaluation of proposed approach is also presented, but on a rather
simple problem, so a much wider evaluation is needed for this study to be considered
complete, such as the applicability of this approach to complex real-life situations and
determining actual productivity boost on real-life problems.

The rest of this paper is structured as follows: in section 2 most important terminology
for domain analysis is given, also related works are considered. In section 3 we
present our method and its implementation as development platform, in section 4 an
example of application of our approach is given, we will consider a family of Android
gamepads for remote control of various robot models. Section 5 concludes the paper.

2. Domain analysis approaches

There is no any clear and long-standing definition of the term “domain analysis”.
Almost all papers, in which this term is considered, go back to 80s-90s of the
twentieth century. It was then that scientists, taking into account rapidly growing
technologies, were thinking about global reuse. Always projects are developing for
concrete user needs, so then the term “domain” took the definition. Domain is the
field of expertise, problems in which the software intends to solve. According to
Rugaber [13], the domain is described in terms of glossary, some assumptions,
architecture approach and literature.

Then the question arise, how we need to analyze the domain for acquiring the
necessary information. At present, the information gathering into knowledge bases is

99

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

understood under the term “domain analysis”. Although, Prieto-Diaz [14] confirms
that domain analysis is an activity, which is held before system analysis and its output
is used for system analysis to the same degree as system analysis’s output is used for
system design. There are other definitions of the term “domain analysis”. Ferre [15]
has presented definitions, such as: (1) the process of identification, organization and
presenting the relevant information of a given domain, (2) the process, in which the
customer’s knowledge are identified, concretized and systemized. The relevant
information of the domain should be presented in objective, readily available way,
such way is called “domain model”. Mernik [16] specifies that the domain model
includes not only glossary, but also must describe commonalities and variabilities of
terms. Such model should precisely set bounds of the domain, i.e. clear and exact
characterize a range of questions, which are considered in the domain. Term
variabilities allow to define exactly, what information must be specified in concrete
system implementation. Term commonalities are used for defining a set of shared
operations between different applications. Implementing commonalities and adding
the gained model with information, which can be specified in instance of the concrete
system, a set of different systems can be obtained based on one common model. In
such manner, based on one domain model, the set of different systems in given
domain can be implemented. Taking into account definitions above mentioned, we
can conclude that domain analysis is the activity of forward system analysis, which
goal is to provide the domain model.

As stated above, at present in many software companies the term “domain analysis”
is understood as information gathering into some knowledge bases, but it is obvious
that there are disadvantages of this approach. It may lead to incomplete glossary,
absence of agreements about understanding some terms in the domain, so any
misunderstanding of domain can result in an improper product. Therefore, several
dozens of years ago were introduced some formal approaches for domain analysis.
Here will be mentioned some of them. Main objective any domain analysis approach
is to gain the domain model.

Despite different understanding of the term “domain analysis”, Arango [17] showed
that all formal domain analysis methods follow the general process for obtaining the
domain model. This process includes next stages: (1) domain characterization, (2)
data collection, (3) data analysis, (4) classification and finally (5) evaluation of
domain model. There are following domain analysis approaches: 1) DARE (Domain
Analysis and Reuse Environment) [18]. The crucial idea of this method is to create
the domain book, that will include the universal architecture and library of reusable
components. 2) DSSA (Domain-Specific Software Architectures) [19]. Given
approach allows to create a domain glossary with the aid of use case analysis. 3) ODE
(Ontology-based Domain Engineering) [20]. This approach connects the ontology
idea with object-oriented approach. Ontology includes terms and their connections,
definitions, properties and constraints. Library of objects is built based on mapping
ontology with object-oriented entities. 4) FODA (Feature-Oriented Domain Analysis)
[21]. This method has get popularity among scientists in the research area because of
its simplicity for non-programmers. The main idea of this approach is creating feature
100

T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3aanus cemeiicTBa NPHIOKEHUH HA OCHOBE aHAIN3a MPEAMETHON
obnactu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 97-110.

model. This model describes functionality, which the future product should possess.
Such model must note what features are compulsory for implement in any instance of
application in a given domain, what features must be implemented but there is some
alternative between them, and present features, which may be implemented but not
compulsory. This model can be easily built by expert in the domain.

Concerning product line creating with the aid of using domain model, Estublier [22]
presented approach, which is based on some aspects and requirements. These entities
were proposed by authors. Such approach based on MDE methodology. Domain
model is considered as metamodel, which is described on MOF or UML. There is an
interpreter, which translates each term in metamodel into Java class, and concrete
models — into instances of these classes. Domain model is accompanied with feature
model, which include some external behavior of the system. Authors use aspect-
oriented techniques for feature implementing and following their mapping with terms
in domain model. Consequently, there is a close interaction between domain
modeling and feature modeling. It seems that such approach is a bit complicated for
non-programmers. In addition, there is no any industrial use of this method, but it is
worth noting that authors describe appliance in this article [23].

3. Proposed approach

In our approach we will use some ideas of Feature- Oriented Domain Analysis
(FODA) method to perform domain analysis and to create feature models. For this
we will use visual editor that implements feature diagrams and is easy enough for
domain experts. Then, when feature models are ready, each feature is implemented
as reusable and configurable component on selected implementation language (C#,
C++, Java and so on) and feature library is formed as a collection of such components.
This process requires qualified programmers and requires more effort than to simply
create one application, but it allows to reuse features from feature library to create as
many applications as needed. Also, this process is scalable, so we may add new
features into feature library later, thus allowing to create more complex applications.
At this stage of development domain experts shall work with programmers, and they
shall use feature diagrams as an input for creation of feature library to simplify
matching between features and components in feature library.

Next step is to create domain-specific language that allows to combine and configure
features from feature library to implement applications in given domain. This is where
our approach differs from common reuse strategies. Naive approach would be to
generate an application directly from feature diagram, somehow marking features that
shall be included into application, and it actually works fine when domain variability
is low [24]. But more common is the situation when features themselves have
properties that allow to configure them, those properties can have different types.
Also, components may be related to each other in different ways, be used in
configuration of one another, or some of their properties may be meaningless in
absence or presence of other feature. Those rules may be implemented implicitly in

101

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

application generator and require that programmers will always observe them, but we
propose that these rules will be captured explicitly by

dedicated domain-specific language. Such language may make models that do not
observe those rules syntactically incorrect, and it will greatly reduce the possibility of
human error and reduce knowledge required to efficiently use programming system.
By using DSM platforms one can relatively quickly create domain-specific language
that will capture domain knowledge, but we already have feature diagram, so we
actually can generate the language using it. Generator takes feature diagram as input
and produces metamodel of a language. Metamodel is a visual model of a language
syntax, that can be opened and edited in yet another visual editor that is part of DSM
platform, this editor is called metaeditor. Features from feature diagram become
entities in metamodel, this metamodel is then edited to provide shape and a list of
properties for each entity. Any vector image can play the role of shape, so the best
practice is to select shape that is similar to a feature it depicts. For example, if an
application can have buttons, “button” becomes entity in domain-specific language
and looks like a button on a diagram. The same happens with properties — for each
feature they are added in metaeditor to corresponding language entity with respect to
feature library that actually implements this feature and uses the property to configure
it. Properties have name, type and default value. On this step it is also possible to
define some constraints on a metamodel that will be checked when model will be
edited. If some constraints are violated, user will immediately receive warning, which
makes errors in a target application even less likely to occur.

On a next step we use editor generator of the DSM platform to create visual editor for
our newly created language. This step if fully automated, and when an editor is
generated and loaded into DSM platform, we can use it to create diagrams that specify
target applications.

The next thing we need is to generate actual code on target textual language that will
call feature library and glue features together. For this we shall return to metamodel
level and define generation rules for metamodel. This step is performed only once for
a given domain after the feature library and metamodel are finished, and then the same
generator is used for each application created by using of the technology.
Recommendations for development of domain-specific generator are well-known in
DSM literature (for example, [7]): it is the best to write first application by hand, then
draw a model that is supposed to be generated into this application, then find the
places in handwritten application that shall be parameterised by information from
model and let the generator replace such handwritten parts with data from model. This
process is continued until handwritten application becomes a template that is filled
by generator with information taken from model. Handwritten application and,
consequently, a generator shall extensively use feature library to minimize the amount
of code that is generated directly, in ideal case generator shall produce merely a glue
code that binds components from feature library together.

After all steps above are finished we have feature library, visual editor for simple
domain-specific language that allows to describe how features are combined and
configured in a concrete application, and a generator that automatically produces
102

T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3aanus cemeiicTBa NPHIOKEHUH HA OCHOBE aHAIN3a MPEAMETHON
obnactu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 97-110.

complete application by a model in domain-specific language using feature library as
domain-specific runtime [7]. Now we may create as many applications as we wish by
just drawing models and automatically generate complete executable code.
Theoretically. Of course, in practice there will always be a need to modify feature
diagram, to extend feature library and, consequently, domain-specific language
metamodel, modify generator and even to make some changes in generated code,
there is no silver bullet. But we believe that our approach can provide better separation
of concerns, provides better utilization of domain experts knowledge and expertise
among a team. Summary of a process described above and relation between various
tools and roles of developers is provided on fig. 1.

This approach was implemented in a technology based on QReal DSM platform.
QReal became an enabler technology because it provides easy and effective way to
create visual editor for domain-specific languages that allows to create fully
functional editor in less than an hour. It has visual metaeditor, visual constraints
definition tool, visual shape editor and a C++ library that allows to quickly specify
generation rules. Feature diagram editor and generator that creates metamodel by
feature diagrams were both implemented as plugins to QReal core. Note that feature
diagram language is itself domain-specific language for the domain of domain
analysis, so it was implemented using QReal metaeditor. The same metaeditor
(including shape editor and constraints editor) is then used to tailor the generated
metamodel of domain-specific language. Then metaeditor generator is used to
generate yet another plugin to QReal that provides visual editor for created language.
Then the generator is implemented by hand on C++ with Qt library using generator
creation library included in QReal. Then it is possible to create special distribution of
QReal (using Qt Installer framework) that includes only QReal core, editors for
feature diagrams (at this point they are needed only as reference) and
domain-specific language, generator and feature library, thus forming a complete
technology that can be used to generate target applications.

103

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

1
Generates

Domain Expert |

DSL Metamodel | 1,5;5 77777)

1
Generates
I
U

1
S
. f

1
! in- i rites Supports
Prm.'Ildes [DDI‘I‘IaII‘I Speclﬁc Generator‘-é"
T
! 1
1 _ _ _ _ Tool
= = Programmer
-bravs. =.fapplication Model :
1
Genetates
Application I Generates 1
Programmer 0 === === = 1

Fig. 1. Relations between artifacts and roles in proposed approach to domain components
reuse.

4. Evaluation

For demonstration of the efficiency of proposed above approach there was
implemented a model application for remote control of various robot models —
“Joystick”. The main substantiation for implementing such application is that
controlling different robot models requires different control elements. For example,
one model can be controlled with only two pads, but another — with one pad and two
buttons. Such application was implemented in C# for Windows Phone platform.
Screenshots of this simple application are presented on fig.2.

001 012 060 266 o 002 008 052 017
! 1. Gamepad N

® & | ...

Fig. 2. Screenshots of “Joystick” application.

104

T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3aanus cemeiicTBa NPHIOKEHUH HA OCHOBE aHAIN3a MPEAMETHON
obnactu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 97-110.

As mentioned above, it was used QReal as DSM tool. A visual language was
implemented there for describing feature models. Appropriate feature model for
“Joystick” application family is proposed on fig.3. This feature model presents
explicit features, which are labeled as green, and some unite feature groups, which
are labeled as blue. Type of arrow shows which feature is compulsory (shown as solid
line with arrow on the end), which compulsory but there is some alternative between
them (shown as dash line with an arrow on the end), and optional features,

which may be implemented but not compulsory (shown as dash line with a circle on
the end).

Joystick control

AR
« . 4

Connection to Pad's existence
rabot

Best control

v 4 Y

Video control Button's Existence of
existence accelerometer

Fig. 3. Feature model for “Joystick” application family.

Based on this feature model a metamodel for future visual language was generated,
which is required for building different models for different configurations.
Generated metamodel is presented on fig. 4. As it can be seen, metamodel is very
simple. At this stage we can propose that entities, such as “buttons” and “pads”, may
have a property “Quantity”. In addition, we can specify images for these entities,
which will be shown in visual language.

/_ ‘\
/ Joystick

\

Diagram | Buttons

Quantity

| Pads

Quantity

\ _/
Fig. 4. Metamodel of visual language for “Joystick” application family.

105

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

Then with the aid of QReal tool a visual language was generated. Example of
generated visual language is demonstrated on Fig. 5. It can be seen that in visual
language editor can be specified property “Quantity”, explicitly noting the concrete
number of pads. As can be seen, example is quite simple for demonstrating extensive
possibilities of the approach proposed above. At present there is no rigorous
evaluation of the proposed process. Also, cohesive and consistent technology for
creating application family based on domain analysis is not implemented yet, here we
have described a conceptproof prototype. Therefore, this work requires more detailed
explorations.

5. Conclusion

The problem of not using domain analysis result for further generation of some
entities for software development process was stated. There were considered some
formal domain analysis approaches and we concluded that creation of feature
diagrams is the most elegant decision for domain analysis that can be conducted by
domain expert, i.e. non-programmer, maybe in collaboration with system analysts.
Moreover, there was discussed one of the possible solutions, which is presented by
Estublier, we specify some problems of such method. We suggested our own
approach for creation of application family in one domain based on domain analysis.
Thus, some target applications can be implemented even by non-programmers using
domain-specific language with configuring features from library. Also, there was
some evaluation of this approach, where we pointed out that this example remains
many questions because of its simplicity.

References

[1]. Tolvanen J.-p., Kelly S. Model-Driven Development Challenges and Solutions //
Modelsward, 2016, pp. 711-719.

[2]. Baker P., Loh S., Weil F. Model-driven engineering in a large industrial context —
Motorola case study / MoDELS’05: Proceedings of the 8th international conference on
Model Driven Engineering Languages and Systems. Berlin: Springer, 2005, pp. 476-491.

[3]. A software engineering experiment in software component generation / R. Kieburtz, L.
McKinney, J. Bell et al. // Proceedings of the 18th international conference on Software
engineering. Washington, DC, USA: IEEE Computer Society, 1996, pp. 542-552.

[4]. Kelly S., Tolvanen J.-P. Visual domain-specific modeling: Benefits and experiences of
using metaCASE tools // International Workshop on Model Engineering, at ECOOP.
2000. URL: http://dsmforum.org/papers/Visual_domain-specific_modelling.pdf.

[5]. Tolvanen J.-P., Pohjonen R., Kelly S. Advanced tooling for domain-specific modeling:
MetaEdit+ // Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM’07). 2007. URL:http://www.dsmforum.org/events/DSMO07/papers/tolvanen.pdf.

[6]. Tolvanen J.-P.and Kelly S. MetaEdit+: defining and using integrated domain-specific
modeling languages // Proceedings of the 24th ACM SIGPLAN conference companion

106

T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3aanus cemeiicTBa NPHIOKEHUH HA OCHOBE aHAIN3a MPEAMETHON
obnactu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 97-110.

[71
[8].
[9].

[10].

[11].

[12].

[13].
[14].

[15].

[16].

[17].
[18].

[19].

[20].

[21].
[22].

[23].

[24].

on Object oriented programming systems languages and applications / ACM. New York,
NY, USA: ACM, 2009, pp. 819-820.

Kelly S., Tolvanen J.-P. Domain-specific modeling: enabling full code generation.
Hoboken, New Jersey, USA: Wiley-IEEE Computer Society Press, 2008, p. 444.
Gronback R. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Stoughton, Massachusetts, USA: Addison-Wesley, 2009, p. 736.

Viyovic V., Maksimovic M., Perisic B. Sirius: A rapid development of DSM graphical
editor // IEEE 18th International Conference on Intelligent Engineering Systems INES
2014. Los Alamitos, CA, USA: IEEE Computer Society, 2014, pp. 233-238.
Domain-specific development with Visual Studio DSL Tools/ S. Cook, G. Jones, S. Kent
et al. Crawfordsville, Indiana, USA: Addison-Wesley, 2007, p. 576.

Koznov D. Process Model of DSM Solution Development and Evolution for Small and
Medium-Sized Software Companies // Enterprise Distributed Object Computing
Conference Workshops (EDOCW), 2011 15th IEEE International / IEEE. 2011, pp. 85—
92.

QReal DSM platform-An Environment for Creation of Specific Visual IDEs / A.
Kuzenkova, A. Deripaska, T. Bryksin et al. // ENASE 2013—Proceedings of the 8th
International Conference on Evaluation of Novel Approaches to Software Engineering.
Setubal, Portugal: SciTePress, 2013, pp. 205-211.

Rugaber S. Domain analysis and reverse engineering // White Paper, January. 1994.
Prieto-Diaz R. Domain analysis for reusability // Software reuse: emerging technology /
IEEE Computer Society Press. 1988, pp. 347-353.

Ferre X., Vegas S. An evaluation of domain analysis methods // 4th CASE/IFIP8
International Workshop in Evaluation of Modeling in System Analysis and Design /
Citeseer. 1999, pp. 2-6.

Mernik M., Heering J., Sloane A. M. When and how to develop domain-specific
languages // ACM computing surveys (CSUR). 2005. Vol. 37, no. 4. P. 316-344.
Arango G. Domain analysis methods // Software Reusability. 1994, pp. 17-49.

DARE: Domain analysis and reuse environment / W. Frakes, R. Prieto, C. Fox et al. //
Annals of Software Engineering. 1998, Vol. 5, no. 1, pp. 125-141.

Taylor R. N., Tracz W., Coglianese L. Software development using domain-specific
software architectures // ACM SIGSOFT Software Engineering Notes. 1995, vol. 20, no.
5, pp. 27-38.

Falbo R. d. A., Guizzardi G., Duarte K. C. An ontological approach to domain engineering
/I Proceedings of the 14" international conference on Software engineering and
knowledge engineering / ACM. 2002, pp. 351-358.

Feature-oriented domain analysis (FODA): Tech. Rep.: / K. C. Kang, S. G. Cohen, J. A.
Hess et al.: DTIC Document, 1990.

Estublier J., Vega G. Reuse and variability in large software applications // ACM
SIGSOFT Software Engineering Notes. 2005, vol. 30, no. 5, pp. 316-325.

An approach and framework for extensible process support system / J. Estublier, J.
Villalobos, L. Anh-Tuyet et al. // Software Process Technology. Springer, 2003, pp. 46—
61.

The Variability Model of the Linux Kernel / S. She, R. Lotufo, T. Berger et al. // VaMoS.
2010, vol. 10, pp. 45-51.

107

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

TexHonorus co3gaHus ceMencTBa NPUITOXKEHUN Ha OCHOBe
aHanusa npegMeTHOM obnacTtm

A.A.Iyoownurxosa <gudoshnikova.anna@gmail.com>
[O.B. Jlumeunos <y.litvinov@spbu.ru>
Kagheopa cucmemmnozo npocpammuposanust,
Canxm-Ilemepbypeckuti 20cy0apcmeeHHblil yHusepcumen,
198504, Poccus, Cankm-Ilemepoype, Cmapuii Ilemepeogh, Ynueepcumemckuii
npocnexm, 0. 28

AunHoTaums. Tema nepercrnoab30BaHus Kojia IpH pa3paboTKe MPOrpaMMHOI0 00eCIeueH s
JI0 CHX TIOp aKTyasibHa. IHOT1a TPYAHO MOHATb, YTO HYXKHO NEPEUCIIONb30BATh B U30JIALIUHU OT
KOHTEKCTa, B YaCTHOCTH IIEPEHCIIONb30BAaHUE OJHOrO o0OBbeKTa BiedeT 3a coOoi
HepencIoiIb3oBaHue Apyroro. OIHAKO €CTh BO3MOXHOCTH CY3UTh ITPO0IeMy KOHTEKCTa, €CIIN
paccMaTpHBaTh NPHIOKEHUS B OHOU IpenMeTHol obmacti. OIHH U T e XapaKTePUCTUKH
B pa3HBIX NPHIOKEHUAX, HO KOTOPBIE OTHOCSITCS K OHOM MPeMETHOH 00J1acTH, NUMEIOT OJJ1H
U TOT)K€ KOHTEKCT, I09TOMY Ba)KHO M HY)KHO MEPEUCIIOIb30BaTh ATy OOIIyI0 YacTh. Takum
o0pa3oMm, Ha TEpBBIA IUIAH BBIXOAWT 3aJada aHaiu3a OpeaAMeTHOH obmactu. C apyroit
CTOPOHBI, B HACTOfICE BpeMs aKTUBHO pa3BuBaioTcsi MetaCASE-TexHONOrHy, KOTOpHIC
MO3BOJISIIOT CIGHEPHPOBATh KOJ LIEJNEBOTO NPHIIOKEHHS, OCHOBBIBASCH Ha AUarpamMax,
OIMCHIBAIOIINE 3TO MPUIOKEHHE. [TaBHOH 1IENbI0 TaHHOW CTAaThbU SIBIISIETCS MPECTaBICHUE
TEXHOJIOTHH JUISl CO3JIAHUsI CEMEHCTB MPUIOKEHHUH B OJHOM MpeIMeTHOH 00JacTH, KoTopast
COCIMHSACT ACATCIBHOCTh MO aHAIM3y mpeaMeTHo# obnactu u MetaCASE-texHomoruo. Mbt
UCIIOJBb3yeM HEKOTOpbIe MJeH MeToja Uil aHanuza npeamerHoi obmactu FODA (ot aHri.
“Feature-Oriented Domain Analysis”), a UMEHHO CO37aeM AHArpaMMy XapaKTEePHCTHK Jis
OIIMCaHMs MpeJMEeTHOH obmacTH. 3aTeM Ha OCHOBE TAKOW AMarpaMMBbl MpejsiaracM
TeHEepUPOBATh METAMO/IENb PEAMETHO-OPUEHTHPOBAHHOTO BU3yaIbHOTO si3bIKa. ITociie 3Toro
cpeacrBamu MetaCASE-uHCTpyMeHTa reHepupyeM peJakTop MpeAMETHO-OPUEHTHPOBAHHOTO
BU3YyaJbHOTO s3blka. C TOMOIIBIO TAKOTO S3bIKAa MOJIb30BATENb MOXKET COCIHHATH U
KOH(QUTYpUpPOBATh CYNIECTBYIOLIME 3apaHee peaJM30BaHHbIE XapaKTEePHUCTHKH, TAaKUM
o0pa3oM co3faBas LeneBoe npuiokeHue. [lonaraercs, 4To Takast TEXHOJIOTHs OyAeT Mmoje3Ha
IIPY CO3/1aHUU JIMHEWKH IPOAYKTOB.

KmoueBble ciioBa: aHanu3 mnpeaMeTHoi obmactu; metaCASE-TexHOMOTHS; MpeIMETHO-
OPHEHTHPOBAHHBIN A3bIK; CEMENHCTBO TPHIOKEHHUI.

DOI: 10.15514/ISPRAS-2016-28(2)-6

Jas nutupoBanus: ['ynomnankosa A.A., JInteuHoB 10.B. Texnonorus cozganus cemeiictBa
TIPUJIOKEHHH Ha OCHOBE aHaim3a mpeamerHoit obmactu. Tpynst ICII PAH, Tom 28, Bem. 2,
2016 r., ctp. 97-110 (ua anrmumiickom). DOI: 10.15514/ISPRAS-2016-28(2)-6

Cnucok nutepatypbl

[1]. Tolvanen J.-p., Kelly S. Model-Driven Development Challenges and Solutions //
Modelsward, 2016, pp. 711-719.

108

T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3aanus cemeiicTBa NPHIOKEHUH HA OCHOBE aHAIN3a MPEAMETHON
obnactu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 97-110.

2.

[3].

[4].

[5].

[6].

[7].

[8l.
[9].

[10].

[11].

[12].

[13].
[14].

[15].

[16].

[17].
[18].

[19].

Baker P., Loh S., Weil F. Model-driven engineering in a large industrial context —
Motorola case study // MoDELS’05: Proceedings of the 8th international conference on
Model Driven Engineering Languages and Systems. Berlin: Springer, 2005, pp. 476-491.
A software engineering experiment in software component generation / R. Kieburtz, L.
McKinney, J. Bell et al. // Proceedings of the 18th international conference on Software
engineering. Washington, DC, USA: IEEE Computer Society, 1996, pp. 542-552.

Kelly S., Tolvanen J.-P. Visual domain-specific modeling: Benefits and experiences of
using metaCASE tools // International Workshop on Model Engineering, at ECOOP.
2000. URL: http://dsmforum.org/papers/Visual_domain-specific_modelling.pdf.
Tolvanen J.-P., Pohjonen R., Kelly S. Advanced tooling for domain-specific modeling:
MetaEdit+ // Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM’07). 2007. URL:http://www.dsmforum.org/events/DSMO07/papers/tolvanen.pdf.
Tolvanen J.-P.and Kelly S. MetaEdit+: defining and using integrated domain-specific
modeling languages // Proceedings of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications / ACM. New York,
NY, USA: ACM, 2009, pp. 819-820.

Kelly S., Tolvanen J.-P. Domain-specific modeling: enabling full code generation.
Hoboken, New Jersey, USA: Wiley-IEEE Computer Society Press, 2008, p. 444.
Gronback R. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Stoughton, Massachusetts, USA: Addison-Wesley, 2009, p. 736.

Viyovic V., Maksimovic M., Perisic B. Sirius: A rapid development of DSM graphical
editor // IEEE 18th International Conference on Intelligent Engineering Systems INES
2014. Los Alamitos, CA, USA: IEEE Computer Society, 2014, pp. 233-238.
Domain-specific development with Visual Studio DSL Tools / S. Cook, G. Jones, S. Kent
et al. Crawfordsville, Indiana, USA: Addison-Wesley, 2007, p. 576.

Koznov D. Process Model of DSM Solution Development and Evolution for Small and
Medium-Sized Software Companies // Enterprise Distributed Object Computing
Conference Workshops (EDOCW), 2011 15th IEEE International / IEEE. 2011, pp. 85—
92.

QReal DSM platform-An Environment for Creation of Specific Visual IDEs / A.
Kuzenkova, A. Deripaska, T. Bryksin et al. // ENASE 2013—Proceedings of the 8th
International Conference on Evaluation of Novel Approaches to Software Engineering.
Setubal, Portugal: SciTePress, 2013, pp. 205-211.

Rugaber S. Domain analysis and reverse engineering // White Paper, January. 1994.
Prieto-Diaz R. Domain analysis for reusability // Software reuse: emerging technology /
IEEE Computer Society Press. 1988, pp. 347-353.

Ferre X., Vegas S. An evaluation of domain analysis methods // 4th CASE/IFIP8
International Workshop in Evaluation of Modeling in System Analysis and Design /
Citeseer. 1999, pp. 2-6.

Mernik M., Heering J., Sloane A. M. When and how to develop domain-specific
languages // ACM computing surveys (CSUR). 2005. Vol. 37, no. 4. P. 316-344.
Arango G. Domain analysis methods // Software Reusability. 1994, pp. 17-49.

DARE: Domain analysis and reuse environment / W. Frakes, R. Prieto, C. Fox et al. //
Annals of Software Engineering. 1998, Vol. 5, no. 1, pp. 125-141.

Taylor R. N., Tracz W., Coglianese L. Software development using domain-specific
software architectures // ACM SIGSOFT Software Engineering Notes. 1995, vol. 20, no.
5, pp. 27-38.

109

Gudos
/Proc.

hnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
ISP RAS, 20186, vol. 28, no 2, pp. 97-110.

[20].

[21].
[22].

[23].

[24].

110

Falbo R. d. A., Guizzardi G., Duarte K. C. An ontological approach to domain engineering
Il Proceedings of the 14™ international conference on Software engineering and
knowledge engineering / ACM. 2002, pp. 351-358.

Feature-oriented domain analysis (FODA): Tech. Rep.: / K. C. Kang, S. G. Cohen, J. A.
Hess et al.: DTIC Document, 1990.

Estublier J., Vega G. Reuse and variability in large software applications // ACM
SIGSOFT Software Engineering Notes. 2005, vol. 30, no. 5, pp. 316-325.

An approach and framework for extensible process support system / J. Estublier, J.
Villalobos, L. Anh-Tuyet et al. // Software Process Technology. Springer, 2003, pp. 46—
61.

The Variability Model of the Linux Kernel / S. She, R. Lotufo, T. Berger et al. // VaMoS.
2010, vol. 10, pp. 45-51.

XaseeB Mancyp, Pusepa Bukrop, Mauapa Manyaib, Yuaurua Anekcanap. Ilpumernmocts AutoProof: yueGHblIi
npumep Bepuduxaunu I10. Tpyowr UCIT PAH, 2016, Tom 28, Bemyck 2, c. 111-126.

Usability of AutoProof: a case study of
software verification

Mansur Khazeev <m.khazeev@innopolis.ru>
Victor Rivera <v.rivera@innopolis.ru>
Manuel Mazzara <m.mazzara@innopolis.ru>
Alexander Tchitchigin <a.chichigin@innopolis.ru>
Innopolis University, Software Engineering Lab.
420500, Russia, Innopolis, Universitetskaya Str. 1

Abstract. Verification tools are often the result of several years of research effort. The
development happens as a distributed effort inside academic institutes relying on the ability of
senior investigators to ensure continuity. Quality attributes such as usability are unlikely to be
targeted with the same accuracy required for commercial software where those factors make a
financial difference. In order for such tools to become of widespread use, it is therefore
necessary to spend an extra effort and attention on users' experience, and allow software
engineers to benefit out of them without the necessity of understanding the mathematical
machinery in full detail. In order to put the spotlight on usability of verification tools we chose
an automated verifier for the Eiffel programming language, AutoProof, and a well-known
benchmark, the Tokeneer problem. The tool is used to verify parts of the implementation of the
Tokeneer so to identify AutoProof's strengths and weaknesses, and finally propose the
necessary updates. The results show the efficacy of the tool in verifying a real piece of software
and automatically discharging nearly two thirds of verification conditions. At the same time,
the case study shows the demand for improved documentation and emphasizes the need for
improvement in the tool itself and in the Eiffel IDE.

Keywords: static verification; formal specification; Eiffel, Autoproof; Design by Contract
DOI: 10.15514/ISPRAS-2016-28(2)-7

For citation: Khazeev Mansur, Rivera Victor, Mazzara Manuel, Tchitchigin Alexander.
Usability of AutoProof: a case study of software verification. Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 2, 2016, pp. 111-126. DOI: 10.15514/ISPRAS-2016-28(2)-7

1. Introduction

Tools for software verification allow the application of theoretical principles in
practice, in order to ensure that nothing bad will ever happen (safety). The extra effort
required by the use of these tools is certainly not for free and comes with increased
development costs [1]. There is a common belief in industry that developing software

111

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

with high level of assurance is too expensive, therefore not acceptable, especially for
non safety-critical or financially-critical applications.

Tools and techniques for the formal development of software have played a key role
on demystifying this belief. There are several approaches, for instances abstract
interpretation and model checking [2], [3] that seek the automation to formally
proving certain conditions of systems. However, these techniques tend to verify
simple properties only. On the other end of the spectrum, there are interactive
techniques for verification such theorem provers [4]. These techniques aim at more
complex properties but demand the interaction of users to help the verification.
Nowadays, there are new approaches that aim at finding a good trade-off between
both techniques, e.g. auto-active: users are not needed during the verification process
(it is automatically performed); they are required instead to provide guidance to the
proof using annotations. AutoProof [5], is a static auto-active verifier for functional
properties of object-oriented programs. Using AutoProof, users write code and equip
classes with contracts and annotations to help the tool to prove certain properties.
The main goal resented in this paper is to provide insights on how easy/difficult is for
users (mainly engineers without deep knowledge of formal verification) to use current
methodologies and tools for the development of software with high level of assurance,
in particular on the use of the AutoProof tool.

Generally, to prove the correctness of a program one needs some mechanisms to
express what the program is supposed to do and clearly state it in the specifications
that are used later to verify the program. Eiffel programming language natively
supports these mechanisms by means of contracts. Eiffel is an object-oriented
programming language, which directly implements the concepts of Design-by-
Contract (DbC) [1], [6]. The key concept is viewing the relationship between a class
and its clients as a formal agreement, expressing each party's rights and obligations.
This is realized equipping methods with pre- and post-conditions, and classes with
invariants. The key feature of the Eiffel language is indeed the idea that all the
methods might and should contain contracts.

Contracts and annotations used in Eiffel are used by AutoProof to statically verify the
consistency of the classes. To demonstrate the usability of the tool, the Tokeneer
project [7] was implemented in Eiffel and AutoProof was used to verify the
consistency of the code. The Tokeneer project is a system specified and implemented
by National Security Agency (NSA). Initially, NSA carried out this challenge to prove
that it is possible to develop secure systems rigorously in a cost effective manner.
Since its development, it became a testing range for different software development
methodologies and verification tools. Results of the project are publicly available.
This paper reports on the use of AutoProof to verify an Eiffel implementation of
Tokeneer and also reports on how easy/difficult is for users to use the tool, e.g. the
burden of helping the tool by means of annotations in the code.

The rest of the paper is organized as follows: Section Il introduces the Tokeneer
project, Eiffel and the AutoProof tool. Section Il describes the methodology used to
verify the implementation of the Tokeneer project. Section IV presents empirical

112

XaseeB Mancyp, Pusepa Bukrop, Mauapa Manyaib, Yuaurua Anekcanap. Ilpumernmocts AutoProof: yueGHblIi
npumep Bepuduxaunu I10. Tpyowr UCIT PAH, 2016, Tom 28, Bemyck 2, c. 111-126.

results helping to draw conclusions. Section V is devoted to related work and Section
VI concludes and mentions future work.

2. Preliminaries

2.1 The Tokeneer Project

In 2002, with the aim to prove/disprove the common believe in industry that
development of software of high level of assurance is too expensive and therefore not
feasible, the National Security Agency (NSA) asked Altran to undertake a research
project to develop part of an existing secure system, the Tokeneer System, in
accordance with Altran's Correctness by Construction development process. The
system was specified using Z notation [8] and implemented in Ada [9]. The project
was successfully delivered in 2003 within 260 days of effort, and later, in 2008, all
the results were made available by NSA to the software development and security
communities in order to demonstrate the possibility to develop secure systems in a
cost effective manner. It includes the “"Core" Tokeneer ID System Software, test
cases derived from the system test specification, ““Support" Tokeneer ID System
Software and test tokens and biometric data, project documents. Since the delivery,
the Tokeneer project has become a milestone point and a testing range for different
verification tools before applying them in industrial projects. Despite the fact that
after delivery 4 bugs® were found, the system is still deemed to be very secure.
Tokeneer is a secure enclave consisting of a set of system components, some housed
inside the enclave and some outside, as depicted in Figure 1.

L According to [7]
113

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

Secure Enclave

Certificate
Authority

Enrolment Authentication
Station Authority

Fingerprint Card
r

Display Reader

External
Certificate
Authority

Fig. 1. The Tokeneer System.

The ID Station (TIS) is part of the larger Tokeneer system. It has four connected
peripherals, namely, a fingerprint reader, a smartcard reader (users use Tokens -
smartcards- as identification), a door and visual display. The objective of the enclave
is to ensure that anyone who enters the enclave has a proper access, and no one else
can access to the enclave.

In order to ensure the entrance of users to the enclave, TIS implements a series of
protocols and checks (the use of smart cards and biometrics) to grant or deny the
entrance to it. This paper discusses one of these protocols: the enrollment to the 1D
Station. The protocol starts in a state where the user is not enrolled. Users can request
enrollment and then insert a FLOPPY (it retains an internal view of the last data
written) for the system to proceed. The system reads the information in the floppy and
either fails the enrollment process, in which case takes the process to the initial state,
or correctly validates the data in the floppy.

2.2 Eiffel

Eiffel is a real complex object oriented programming language that natively supports
Design-by-Contract methodology. Users can specify the behavior of Eiffel classes by
equipping them with contracts: pre- and post-conditions and class invariants that are
represented as assertions.

114

XaseeB Mancyp, Pusepa Bukrop, Mauapa Manyaib, Yuaurua Anekcanap. Ilpumernmocts AutoProof: yueGHblIi
npumep Bepuduxaunu I10. Tpyowr UCIT PAH, 2016, Tom 28, Bemyck 2, c. 111-126.

class
ACCOUNT
create make

feature o
make ==
do
balance := 0
ensure
balance_set: balance = 0
end
feature -- Access
balance : INTEGER -- Balance of account
feature -- Element change
deposit (amount : INTEGER) -- Deposit ‘amount’ on account
require
amount not negative : amount >= 0
do
balance := balance + amount
ensure
balance_increased : balance = old balance + amount
end
withdraw (amount : INTEGER) --W ‘amount’ from account
require
enough_balance : amount <= balance
do
balance := balance - amount
ensure
balance_decreased : balance = old balance amount
end
invariant
non_negative_balance : balance >= 0

end

Fig.2 ACCOUNT Eiffel class.

Figure 2 depicts a reduced implementation of a Bank Account. In Eiffel, creation
procedures are listed under the keyword create, for class ACCOUNT, routine make
is used as a creation procedure. The class defines a class attribute balance to represent
the current balance of the account. It also defines two routines (methods), deposit and
withdraw. deposit implements a deposit of amount of money to the account and
withdraw implements withdrawing money. Eiffel encourages software developers to
express formal properties of classes by writing assertions. Routine pre-conditions
express the requirements that clients must satisfy whenever they call a routine. They
are introduced in Eiffel by the keyword require. Routine deposit imposes a pre-
condition on the call, the client must pass as an argument a non-negative number (i.e.
amount_not_negative: amount >= 0) for the routine to work correctly: a negative
value might invalidate the invariant of the class. Routine post-conditions, introduced
in Eiffel by the keyword ensure, express conditions that the routine (the supplier)
guarantees on method exit, assuming the pre-condition. Routine deposit guarantees
that the balance of the account will be the previous value of the balance (expressed in
Eiffel by the keyword old: the value on entrance of the routine) plus the amount being
deposited. Routine withdraw imposes the constraint to the caller that the argument
must be less than or equal to the current balance of the account to avoid having

115

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

negative value in the balance. The routine ensures that, after execution, the new value
of balance will be the value on routine entry minus the amount withdrawn.

A class invariant must be satisfied by every instance of the class whenever the
instance is externally accessible: after creation, and after any call to an exported
routine of the class (public routines). The invariant appears in a clause introduced by
the keyword invariant. Class ACCOUNT's invariant imposes the restriction that class
attribute balance can never be negative (i.e. non_negative _balance: balance >= 0).

2.3 AutoProof

AutoProof [5] is a static verifier of contracts for Eiffel programs. It follows the auto-
active paradigm where verification is done completely automated, similar to model
checking [3], but users are expected to feed the classes providing additional
information in the form of annotations to help the proof. AutoProof identifies
software issues without the need of executing the code, therefore opening a new
frontier for ““static debugging"”, software verification and reliability, and in general
for software quality.

AutoProof verifies the functional correctness of Eiffel classes. It translates Eiffel code
to Boogie programs [10] and calls the Boogie tool to generate verification conditions:
logic formulas whose validity entails correctness of the input programs. Finally,
retrieves the answer back to Eiffel. AutoProof verifies that routines satisfy pre- and
post-conditions, maintenance of class invariants, loops and recursive calls
termination, integer overflow and non-Void (null in other programming languages)
references calls. The tool also supports most of the Eiffel language constructs: in-
lined assertions such as check (assert in other programming languages), types, multi-
inheritance, polymorphism.

3. Verification of Tokeneer using AutoProof

The Tokeneer project was implemented in Eiffel following the specifications file
41_2.pdf (see [7]) of the Tokeneer System and equipping classes with contracts. This
research work encompasses only the enrolment process of the whole Tokeneer
System therefore it implements only the entities involved in this process.

One of the main parts of TIS is the ID_STATION (see Figure 8) — it describes how
all components of the system are related to each other: one of the components is
implemented in class INTERNAL_S (not shown here) whose responsibility is to
keep knowledge of the status of user entry and the enclave and to hold a timeout when
relevant; another component is implemented on class FLOPPY (not shown here) that
retains an internal view of the last data written to the floppy as well as the current data
on the floppy. ID_STATION displays the configuration data on the screen which is
implemented in SCREEN_DISPLAY. There are a number of messages that may
appear on the TIS screen. The Real World types (described in [7] Specification
document, section 2.7.1) of the system such as messages that appear on the display
and screen, were implemented all together in class CONST which implements the

116

XaseeB Mancyp, Pusepa Bukrop, Mauapa Manyaib, Yuaurua Anekcanap. Ilpumernmocts AutoProof: yueGHblIi
npumep Bepuduxaunu I10. Tpyowr UCIT PAH, 2016, Tom 28, Bemyck 2, c. 111-126.

constants used in the TIS. And finally, a number of interactions between all these
entities within the enclave are implemented in ENCLAVE_OPERS.

AutoProof does not make any assumptions out of box therefore users are expected to
feed the Eiffel classes for a succeed verification.

class
ID STATION
-— Some lines were omitted--
create
make
feature —-Initialization
make
note
status : creator
do
—— Some lines were omitted —-
end

Fig. 3. Initialization of ID STATION Eiffel class.

This is expressed by means of Eiffel's note clause. note clause enables users to attach
addition information to the class that is ignored by the Eiffel's compiler. AutoProof
uses this information to succeed in the verification. For instance, AutoProof's
annotation status defines which procedure is used to initialize newly created objects:
Figure 3 depicts procedure make with annotation note (e.g. note status: creator) to
help Autoproof to discharge the corresponding proof obligations related to creation
procedures: the procedure will be called only when an object of this class is being
created, AutoProof needs to verify a creation routine only once.

note clause is also used to define models queries to express the abstract state space of
a classes. Model queries are part of model-based contracts to help users to write
abstract and concise specifications [11], they are used to specify the behavior of the
class. In Eiffel, this is specified by adding a note clause at the beginning of the class
followed with a keyword model: and listing one or more attributes of the class. Model
queries are also used to describe frame conditions: which allocations are allowed to
be modified by procedures.

In Eiffel, frame conditions are listed using the modify clause, which lists the model
queries that the feature is allowed to modify, as shown in Figure 7 (i.e.
modify_model(**current_display'’, Current)).

117

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

_RequestEnrolment
EnrolContext
Z KeyStore
£ AuditLog
ZlInternal

enclaveStatus = notEnrolled
floppyPresence = absent
currentScreen “screenMsg = insertEnrolmentData
currentDisplay "= blank

Fig. 4. Z schema of RequestEnrolment.

According to RequestEnrolment (a Z-schema that is a part of the formal
specification of the project Tokeneer), which is presented in Figure 4, requesting
enrolment involves EnrolContext, KeyStore, AuditLog, Internal. Schemas in Z
consist of an upper part, in which some variables are declared, and a lower part, which
describes the relationship between values and variables. The notation Z indicates an
operation in which the state does not change, and the apostrophe indicates the state of
the variable after the change [12]. RequestEnrolment specifies that the ID station
will request enrolment by displaying a request string on the screen and keeping the
display blank. This is only possible while there is no Floppy present. Therefore,
initially floppyPresence = absent and enclaveStatus set to notEnrolled. An ensure
clause was used in the creation procedure to guarantee this after the initialization of
ID_STATION object:

make
-— Some lines were omitted —-—
ensure
enclave status = cons floppy.not enrolled
floppy presence = cons internal.absent
token removal timeout = 0
end

Fig. 5. ensure clause in feature make.

Figure 6 depicts the class invariant for class ID_STATION. It states that a message
displayed on the display outside the enclave is one of the available from the list of
messages (i.e. constants.display_message.has(current_display)) and that class
attribute constants is attached to an object (i.e. constants /= Void).

118

XaseeB Mancyp, Pusepa Bukrop, Mauapa Manyaib, Yuaurua Anekcanap. Ilpumernmocts AutoProof: yueGHblIi
npumep Bepuduxaruu I10. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 111-126.

invariant
constants.display message.has (current display)
constants /= Void

Fig. 6. Invariants of ID STATION Eiffel class.

Figure 7 shows the implementation of procedure set_current_display. Its first pre-
condition was added to satisfy the invariant ensuring that argument v belongs to the
allowed displayed messages. The second pre-condition restricts the procedure to
change values only to model query current_display.

feature —-— Element Change
set_current_display (v: STRING)
require
constants.display message.has (v)
modify model (“current display”, Current)
do
current display := v
ensure
burrent display = v
end

Fig. 7. Feature equipped with modify clause.

Figure 8 shows the final version of class ID_STATION: with the respective
annotations for AutoProof to successfully verify the class. In class ID_STATION,
class attributes current_screen and current_display implements the physical screen
and display, respectively, of the enclave.

class

ID STATION

-—- Some lines were omitted —-—
create

make

feature —— Initialization
make

note
status: creator

do
create constants
current display := constants.blank
create current screen.make

create cons floppy

enclave status := cons floppy.not enrolled
token removal timeout := 0

119

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

create cons internal

floppy presence := cons internal.absent

ensure
enclave status = cons floppy.not enrolled
floppy presence = cons internal.absent
token removal timecut = 0

end

feature -— Element Change
set current display(v: STRING)
require

constants.display message.has (v)

modify model (“current display”, Current)
do

current display := v
ensure

current display = v
end

feature -— Access
constants : CONST
current screen : SCREEN DISPLAY
current display : STRING

invariant
constants.display message.has (current display)
constants /= Void

end

Fig. 8. Verified ID STATION E:iffel class.

4. Empirical Results

The usability of a verification tool cannot be considered in isolation and, in particular,
cannot be hived off by the effectiveness of the tool itself. First, as a general
observation, the cost of using an instrument can only be justified by its return, which
can ultimately be linked to financial consideration by top management. Second, and
this aspect is less general and more peculiar to the auto-active verification approach,
a tool like AutoProof is as much effective and usable as is its ability to discharge
verification conditions completely automatically, without feeding the code of
annotation overhead or requiring particular tweaking. Finally, the necessity for users
to add further annotations and dedicate extra effort (and considerable time) is, by
itself, an obstacle to adoption and (technically) a usability issue. Verification tools
should require minimal annotational effort and give valuable feedback when
verification fails.

The case study analyzed in this paper presented good results in term of automatic
discharge of verification conditions, though not comparable to others seen in literature
[13].

120

XaseeB Mancyp, Pusepa Bukrop, Mauapa Manyaib, Yuaurua Anekcanap. Ilpumernmocts AutoProof: yueGHblIi
npumep Bepuduxaunu I10. Tpyowr UCIT PAH, 2016, Tom 28, Bemyck 2, c. 111-126.

Discharged Failed
automatically (weak assertions)
58% 21%
Errors
(internal)

21%

Fig. 9. Verifications results.

In total there were 38 generated proofs. Of these, 22 (58\%) were discharged
automatically (see figure 9), 8 (21\%) could not be satisfied, and the rest (21\%) failed
due to internal errors, which in our case were basically caused by the attempt to create
objects in the contract, and that is not allowed by the tool. As observed before, the
success of verification is unsurprisingly linked to the complexity of programs [13].
Previous literature mostly dealt with students users and university projects. The use
of Tokeneer as a benchmark demands for detailed comparisons with different
verification efforts (for example, [14]).

5. Related Work

Formal/mathematical notations have existed for a long time and have been used to
specify and verify systems. Examples are process algebras [15], specification
languages like Z [16], B [17] and Event-B [18]. The Vienna Development Method
(VDM) is one of the earliest attempts to establish a formal method for the
development of computer systems [19]. A survey of these (and others) formalisms
can be found in [20] while a discussion on the methodological issues of a number of
formal methods is presented in [21].

All these approaches (and others described in the literature) still leave an open issue,
i.e., they are built around strict formal notations which affect the development process
from the very beginning. These approaches demonstrate a low level of flexibility. To
overcome this problem, a seamless methodological connection built on top of a
portfolio of diverse notations and methods is presented in [22]. Another approach is
presented in [14], [23] using [24], where users start the development of system from
a strict formal notation (i.e. Event-B), to then automatically translate it to Java code
with JML [25] specifications embedded (following Design-by-Contract
methodology). Even though this approach enables users with less mathematical

121

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

expertise to work on formal development, it does not give a seamlessly methodology
for the development as presented in this paper.

On the other side, Design-by-contract [6] when combined with AutoProof technology
offers the pros of both rigorous methodologies and supporting tools able to semi-
automate the process. Before this to be available for the average developer it is
however necessary to improve the users' experience. A comparison between different
approaches (for example Event-b/Rodin and Design-by-contract/AutoProof) is
beyond the scope of this paper and it is left as future work.

6. Conclusion

AutoProof allows for “static debugging”, i.e. debugging becomes possible without
the need of executing the program. The most effective way to release correct software
is a combination of static debugging and traditional run-time debugging. Being all
human activities (therefore including programming and testing itself) error-prone,
there is no magic or free lunches out there. Abandoning testing and adopting a proof-
oriented approach does not make miracles, debugging remains a trial-and-error long
and laborious process. AutoProof does not change the rules of the game: developers
will have to try, observe the results and make changes as a consequence. A proof-
oriented approach does not make the process smoother and necessarily simpler.
However, it makes it more accurate and robust, therefore effective. Adjustment can
be now focused on the implementation side (possibly sinergically with run-time
debugging), on the specification side (the contracts used to annotate the code as
integral part of the code itself), or in the proof itself (fine-tuning may be necessary
for AutoProof and its behind-the-curtains machinery to be able to prove correctly).
All this comes with a cost: the willingness and ability of the user to use extra tools
and being able to master them, and possibly invest extra time in the process. On the
other side, it is necessary for the tools to be simple to master and to provide intelligible
feedback.

The Tokeneer project case study showed the efficacy of AutoProof in verifying a real
piece of software, the complexity of which can be compared not only with most of
the commercial Off-the-Shelf software, but also with safety and financial-critical
applications, both in terms of computational logic and architectural organization.
AutoProof is capable to verify industrial software and may well be adopted in
commercial companies and its use injected into the development process. However,
some obstacles have been identified that could prevent its broader adoption.

As result of an academic effort, documentation is not at par with commercial
software, in particular for what concerns the size of the library of correctly verified
examples: tutorials on the official website are quite useful, but not enough. On top of
this, the tool itself has limitations. First, existing implementations need to be modified
in order to be verified. This would represent an unsurmountable obstacle in most
institutions since the overall cost of code adaptation may overrun the saves occurring
to the testing phase. This consideration may be different, however, for safety-critical

122

XaseeB Mancyp, Pusepa Bukrop, Mauapa Manyaib, Yuaurua Anekcanap. Ilpumernmocts AutoProof: yueGHblIi
npumep Bepuduxaunu I10. Tpyowr UCIT PAH, 2016, Tom 28, Bemyck 2, c. 111-126.

systems. Second, the Eiffel IDE - necessary for functioning - calls for increased
stability and robustness.

7. Acknowledgments

We would like to thank Innopolis University for logistic and financial support, and
the laboratories of Software Engineering (SE) and Service Science and Engineering
(SSE) for the intellectual engagement and vivid discussions.

References

[1]. B. Meyer, Touch of Class: Learning to Program Well with Objects and Contracts. Springer
Publishing Company, Incorporated, 1 ed., 20009.

[2]. P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL *77, (New York, NY, USA), pp. 238-252, ACM, 1977.

[3]. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. Cambridge, MA, USA:
MIT Press, 1999.

[4]. D. W. Loveland, Automated Theorem Proving: A Logical Basis (Fundamental Studies in
Computer Science). sole distributor for the U.S.A. and Canada, Elsevier North-Holland,
1978.

[5]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “AutoProof: Auto-active
functional verification of object-oriented programs,” in 21% International Conference,
TACAS 2015, London, UK, April 11-18, 2015. Proceedings, pp. 566-580, 2015.

[6]. B. Meyer, Object-oriented software construction, ch. 11: Design by Contract: building
reliable software. Prentice Hall PTR, 1997.

[7]. AdaCore, “Tokeneer.” http://www.adacore.com/sparkpro/tokeneer/download, accessed
in April 2016.

[8]. J.-R. Abrial, S. Schuman, and B. Meyer, “Specification Language,” in On the
Construction of Programs, R. M. McKeag and A. M. Macnaghten, editors, pp. 343-410,
Cambridge University Press, 1980.

[9]. J. Barnes, High Integrity Software: The SPARK Approach to Safety and Security. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[10]. K. R. M. Leino, “This is boogie 2,” tech. rep., June 2008.

[11]. N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying reusable components,” in
Proceedings of the 3rd International Conference on Verified Software: Theories, Tools,
and Experiments (VSTTE’10) (G. T. Leavens, P. O’Hearn, and S. Rajamani, eds.), vol.
6217 of Lecture Notes in Computer Science, pp. 127-141, Springer, August 2010.

[12]. J. Spivey, “An introduction to Z and formal specifications,” Software Engineering
Journal, 1989.

[13]. C. A. Furia, C. M. Poskitt, and J. Tschannen, “The AutoProof verifier: Usability by non-
experts and on standard code,” in Proc. Formal Integrated Development Environment (F-
IDE 2015), vol. 187, pp. 42-55, Electronic Proceedings in Theoretical Computer Science
(EPTCS), 2015.

[14]. V. Rivera, S. Bhattacharya, and N. Cata™ no, “Undertaking the tokenecer challenge in
Event-B,” To appear in 4th FME Workshop on Formal Methods in Software Engineering
(FormaliSE), 2016.

123

http://www.adacore.com/sparkpro/tokeneer/download

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

[15]. J. C. M. Baeten, “A brief history of process algebra,” Theor. Comput. Sci., vol. 335, no.
2-3, pp. 131-146, 2005.

[16]. J. Abrial, S. A. Schuman, and B. Meyer, “Specification language,” in On the Construction
of Programs, pp. 343-410, 1980.

[17]. J. Abrial, The B-book - assigning programs to meanings. Cambridge University Press,
2005.

[18]. J.-R. Abrial, Modeling in Event-B: System and Software Engineering. New York, NY,
USA: Cambridge University Press, 1st ed., 2010.

[19]. C. B. Jones, Software Development: A Rigorous Approach. Englewood Cliffs, N.J., USA:
Prentice Hall International, 1980.

[20]. “On modelling and analysis of dynamic reconfiguration of dependable real-time systems,”
in Proceedings of the 2010 Third International Conference on Dependability, DEPEND
’10, (Washington, DC, USA), pp. 173-181, IEEE Computer Society, 2010.

[21]. M. Mazzara, “Deriving specifications of dependable systems: toward a method,” in
Proceedings of the 12th European Workshop on Dependable Computing, EWDC, 2009.

[22]. R. Gmehlich, K. Grau, A. Iliasov, M. Jackson, F. Loesch, and M. Mazzara, “Towards a
formalism-based toolkit for automotive applications,” 1st FME Workshop on Formal
Methods in Software Engineering (FormaliSE), 2013.

[23]. V. Rivera, N. Cata™ no, T. Wahls, and C. Rueda, “Code generation for Event-B.” To
appear in International Journal on STTT, 2016.

[24]. V. Rivera and N. Cata™ no, “Translating Event-B to JML-Specified Java programs,” in
29th ACM SAC, (Gyeongju, South Korea), March 24-28, 2014.

[25]. G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of jml: A behavioral
interface specification language for java,” SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1—
38, May 2006.

MpumeHumocTb AutoProof: y4eGHbIN npumep
Bepudukaumm NO

Mancyp Xazees <m.khazeev@innopolis.ru>
Buxmop Pusepa <v.rivera@innopolis.ru>
Manysne Mayyapa <m.mazzara@innopolis.ru>
Anexcandp Yuuueun <a.chichigin@innopolis.ru>
Ynueepcumem Hunononuc,
420500, Poccus, pecn. Tamapcman, 2. Uunonoauc, ya. Yuusepcumemcras, 0.1.

AnHoTanusi. O4eHb YaCTO HHCTPYMEHTBI CTATHYECKOH BepH(DUKALIMY SIBIAIOTCS PE3YIbTaTOM
MHOTOJIETHHX Hay4HO-HCCIIEI0BATENbCKHX padoT. Tlo 3Tolt mpuunHe pa3pabOTKH BELYTCS C
pacrpesiesieHIeM 3a/1au BHYTPH y4eOHBIX 3aBE/IEHHH U ¢ PacyeTOM Ha CIIOCOOHOCTh CTapIINX
rccnenoBareneil odecriednBarh €€ HEMPEPBHIBHOCTh. B Takol cuTyalun HeKOTOpble aTpuOyThI
KauecTBa, TaKMe KaK yJAoOCTBO M IPOCTOTA MCIIONB30BAHHSA IPOTrPaMMHOIO oOecredyeHus,
yamie BCEro, HE PacCMaTpUBAIOTCA Ha JOJDKHOM YPOBHE, YTO IUIOXO CKa3bIBAaeTCs Ha
BO3MOJKHOCTH JaJlbHEHIIEH KOMMepLMaau3aluu Hpopykra. s Toro, 4ToObl JaHHBIC
HHCTPYMEHTHl HOJYYMIM IIMPOKOE IIPUMEHEHHE HEOoOXOAMMO OOpaTUTh BHHMaHHE U
HanpaBUTh YCUJIMS NIPU JabHeHIel 10paboTke Ha YNpOLIEHNE MEXaHU3Ma B3aUMOIeHCTBYSA
HONIb30BaTeNed C NPUIIOKEHHWEM, JJid TOro, 4ToObl JaTh MH)XKEHEpaM IPOrpaMMHOIO

124

http://www.multitran.com/m.exe?s=%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%B7%D0%BC%20%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F%20%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D0%B5%D0%B9%20%D1%81%20%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%D0%BC&l1=2&l2=1
http://www.multitran.com/m.exe?s=%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%B7%D0%BC%20%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F%20%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D0%B5%D0%B9%20%D1%81%20%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%D0%BC&l1=2&l2=1

XaseeB Mancyp, Pusepa Bukrop, Mauapa Manyaib, Yuaurua Anekcanap. Ilpumernmocts AutoProof: yueGHblIi
npumep Bepuduxaunu I10. Tpyowr UCIT PAH, 2016, Tom 28, Bemyck 2, c. 111-126.

obecriedeHns BO3MOXKHOCTh IIOJIB30BaThCSI MHCTPYMEHTOM 0€3 HEOOXOIUMOCTH ITOJIHOTO
MOHMMAaHUs BCEX MaTeMaTHIECKUX MEXaHU3MOB BO BceX JeTaisixX. [t Toro, 4roObl 00paTuTh
BHUMaHHE OOIIECTBEHHOCTH HAa BAXHOCTh YAOOCTBAa HCHOJIB30BAHMSA HHCTPYMEHTOB
BepH(UKALMK, MBIl OPUMEHHIN HHCTPYMeHT AUtOProof k Xopomro H3BECTHOMY MPOEKTY
Tokeneer. [{aHHBI HHCTPYMEHT HMCIOIB30BAICS IS BEPUMHKALMN YaCTH UMIUICMEHTALHH
peanbHOro mpoekra Tokeneer, B Xxole 4ero ObUIM BBIBJICHBI CHJIBHBIC M CJIA0BIe CTOPOHBI
AutoProof, u, xak pe3ynbTaT, OBUI COCTABIICH CIIHCOK HEOOXOIUMEBIX YIIyqIIeHHH. Pesymbrat
JTAHHOH PaboTHI WILTIOCTPUPYET 3P PEKTUBHOCTE HHCTPYMEHTA NP BepuHKannuy GparMeHTa
peanpHOr0 TPOTPaMMHOTO OOECIIEUeHHS: OH IIO3BOJIMJI ABTOMATHYECKH IIPOBEPHTH
MPaKTUYECKN JIBE€ TPETH BCEX CBOMCTB. B TO ke Bpems, HaHHOE HCCIEIOBaHHE MOKa3ajo
HOTpeOHOCT B JIOPa0OTKE IOKYMEHTAIMM K IaHHOMY HWHCTPYMEHTY M HOIYEPKHYJIO
HEO0OXOIMMOCTh YJTyUIICHHS KaKk CaMOro HHCTpYMEHTa, Tak u cpenbl Eiffel IDE.

KuwueBbie ciioBa: cratudeckas Bepudukaums, QopmanpHas creuudukanus, Eiffel,
Autoproof, koHTpakTHOE POrpaMMHPOBAHKE

DOI: 10.15514/ISPRAS-2016-28(2)-7

Ja nurupoBanus: XaszeeB Mancyp, Pusepa Buxrop, Manuapa Manyasns, Yuuurux
Amnexcannp. IIpumenumocts AutoProof: yuebusrit mpumep Bepudukamuu 110. Tpyast UCIT
PAH, Tom 28, BbIm. 2, 2016 1., ctp. 111-126 (na anrmmiickom). DOI: 10.15514/ISPRAS-2016-
28(2)-7

Cnucok nutepaTtypbl

[1]. B. Meyer, Touch of Class: Learning to Program Well with Objects and Contracts. Springer
Publishing Company, Incorporated, 1 ed., 2009.

[2]. P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL °77, (New York, NY, USA), pp. 238-252, ACM, 1977.

[3]. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. Cambridge, MA, USA:
MIT Press, 1999.

[4]. D. W. Loveland, Automated Theorem Proving: A Logical Basis (Fundamental Studies in
Computer Science). sole distributor for the U.S.A. and Canada, Elsevier North-Holland,
1978.

[5]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “AutoProof: Auto-active
functional verification of object-oriented programs,” in 21% International Conference,
TACAS 2015, London, UK, April 11-18, 2015. Proceedings, pp. 566-580, 2015.

[6]. B. Meyer, Object-oriented software construction, ch. 11: Design by Contract: building
reliable software. Prentice Hall PTR, 1997.

[7]. AdaCore, “Tokeneer.” http://www.adacore.com/sparkpro/tokeneer/download, accessed
in April 2016.

[8]. J.-R. Abrial, S. Schuman, and B. Meyer, “Specification Language,” in On the
Construction of Programs, R. M. McKeag and A. M. Macnaghten, editors, pp. 343-410,
Cambridge University Press, 1980.

[9]. J. Barnes, High Integrity Software: The SPARK Approach to Safety and Security. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[10]. K. R. M. Leino, “This is boogie 2,” tech. rep., June 2008.

125

http://www.adacore.com/sparkpro/tokeneer/download

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

[11].

[12].

[13].

[14].

[15].
[16].
[17].
[18].
[19].

[20].

[21].

[22].

[23].
[24].

[25].

126

N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying reusable components,” in
Proceedings of the 3rd International Conference on Verified Software: Theories, Tools,
and Experiments (VSTTE’10) (G. T. Leavens, P. O’Hearn, and S. Rajamani, eds.), vol.
6217 of Lecture Notes in Computer Science, pp. 127-141, Springer, August 2010.

J. Spivey, “An introduction to Z and formal specifications,” Software Engineering
Journal, 1989.

C. A. Furia, C. M. Poskitt, and J. Tschannen, “The AutoProof verifier: Usability by non-
experts and on standard code,” in Proc. Formal Integrated Development Environment (F-
IDE 2015), vol. 187, pp. 42-55, Electronic Proceedings in Theoretical Computer Science
(EPTCS), 2015.

V. Rivera, S. Bhattacharya, and N. Cata™ no, “Undertaking the tokeneer challenge in
Event-B,” To appear in 4th FME Workshop on Formal Methods in Software Engineering
(FormaliSE), 2016.

J. C. M. Baeten, “A brief history of process algebra,” Theor. Comput. Sci., vol. 335, no.
2-3, pp. 131-146, 2005.

J. Abrial, S. A. Schuman, and B. Meyer, “Specification language,” in On the Construction
of Programs, pp. 343—410, 1980.

J. Abrial, The B-book - assigning programs to meanings. Cambridge University Press,
2005.

J.-R. Abrial, Modeling in Event-B: System and Software Engineering. New York, NY,
USA: Cambridge University Press, 1st ed., 2010.

C. B. Jones, Software Development: A Rigorous Approach. Englewood Cliffs, N.J., USA:
Prentice Hall International, 1980.

“On modelling and analysis of dynamic reconfiguration of dependable real-time systems,”
in Proceedings of the 2010 Third International Conference on Dependability, DEPEND
’10, (Washington, DC, USA), pp. 173-181, IEEE Computer Society, 2010.

M. Mazzara, “Deriving specifications of dependable systems: toward a method,” in
Proceedings of the 12th European Workshop on Dependable Computing, EWDC, 2009.
R. Gmehlich, K. Grau, A. Iliasov, M. Jackson, F. Loesch, and M. Mazzara, “Towards a
formalism-based toolkit for automotive applications,” 1st FME Workshop on Formal
Methods in Software Engineering (FormaliSE), 2013.

V. Rivera, N. Cata™ no, T. Wahls, and C. Rueda, “Code generation for Event-B.” To
appear in International Journal on STTT, 2016.

V. Rivera and N. Cata™ no, “Translating Event-B to JML-Specified Java programs,” in
29th ACM SAC, (Gyeongju, South Korea), March 24-28, 2014.

G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of jml: A behavioral
interface specification language for java,” SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1—
38, May 2006.

TTony6enosa M.U., Boxxko C.H., I'puropses C.B. Bepudukanus npeodpa3oBanus rpaMMaTHKH B HOPMaJIbHY10 GopMy
Xomckoro B F*. Tpyow: UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 127-138.

Certified Grammar Transformation to
Chomsky Normal Form in F*

M.I. Polubelova <polubelovam@gmail.com>
S.N. Bozhko <gkerfimf@gmail.com>
S.V. Grigorev <Semen.Grigorev@jetbrains.com>
Saint Petersburg State University,
7/9, Universitetskaya Nab., St. Petersburg, 199034, Russia

Abstract. Certified programming allows to prove that the program meets its specification. The
check of correctness of a program is performed at compile time, which guarantees that the
program always runs as specified. Hence, there is no need to test certified programs to ensure
they work correctly. There are numerous toolchains designed for certified programming, but
F* is the only language that support both general-purpose programming and semi-automated
proving. The latter means that F* infers proofs when it is possible and a user can specify more
complex proofs if necessary. We work on the application of this technique to a grammarware
research and development project YaccConstructor. We present a work in progress verified
implementation of transformation of Context-free grammar to Chomsky normal form, that is
making progress toward the certification of the entire project. Among other features, F* system
allows to extract code in F# or OCaml languages from a program written in F*.
YaccConstructor project is mostly written in F#, so this feature of F* is of particular importance
because it allows to maintain compatibility between certified modules and those existing in the
project which are not certified yet. We also discuss advantages and disadvantages of such
approach and formulate topics for further research.

Keywords: certified programming; F*; program verification; context-free grammar; Chomsky
normal form; grammar transformation; dependent type; refinement type

DOI: 10.15514/ISPRAS-2016-28(2)-8

For citation: Polubelova M.l., Bozhko S.N., Grigorev S.V. Certified Grammar Transformation
to Chomsky Normal Form in F*. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp.
127-138. DOI: 10.15514/ISPRAS-2016-28(2)-8

1. Introduction

Certified programming is designed for proving that a program meets its specification.
For this technique, proof assistants or interactive theorem prover are used [1], what
allows to check correctness of the program at compile time and guarantees that the
program always works according to its specification. Classical fields of application

127

Polubelova M.I., Bozhko S.N., Grigorev S.V. Certified Grammar Transformation to Chomsky Normal Form in F*.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 127-138.

of certified programming are the formalization of mathematics, security of
cryptographic protocols and the certification of properties of programming languages.
There are two approaches to certified programming [2]. In the classical approach the
program, its specification, and the proof that the program meets its specification are
written separately, as different modules. Such technique costs too much to be applied
in software development. More effective approach is to combine program, its
specification, and the proof in one module by means of dependent types [3], [4]. The
most well-known toolchains for program verification are Coq [5], Agda [6], F* [7]
and Idris [8]. Among them, F* is the only language which supports semi-automated
proving and general-purpose programming [9].
As a proof assistant, F* allows to formulate and prove properties of programs by using
lemmas and enriching types. F* not only infers types of functions, but also the
properties of its computations such as purity, statefulness, divergence. For example,
consider the following function:

val £ : (int -> Tot int) -> int -> Tot int

let £ g x =g x
The keyword va1l indicates that we declare a function £ and its type signature. The
function £ takes a function g and an integer value, as arguments. The effect of
computation Tot t is used for total expression, which always evaluates to a t-typed
result without entering an infinitive loop, throwing exception or other side effects.
Hence, one can prove for some programs not only their properties and restrictions on
the types, but also guarantee their termination and that a result has assigned type.
We apply certified programming using F* to a grammarware research and
development project YaccConstructor (YC) [10], [11]. YC is a tool for parser
construction and grammar processing. Also it is a framework for research and
development of lexer and parser generators and other grammarware for .NET
platform. The verification of its programs covers the topic of parser correctness: how
to obtain formal evidence that a parser is correct with respect to its specification [12].
In this article, we consider only one algorithm implemented in YC, namely the
transformation of context free grammar to Chomsky normal form, that is a small step
towards the certification of entire project. The algorithm of grammar normalization
consists of four transformations. We prove totality of each of them and establish an
order of their application to the input grammar. In addition, we describe the
peculiarities of evaluation F* as a proof assistant and formulate topics for further
research.

2. Overview of F*

We use a functional programming language F* [7] for program verification. It is the
only language that support semi-automated proving and general-purpose
programming [9]. The main goal of this tool is to span the capabilities of interactive
proof assistants like Coq [5] and Agda [6], general-purpose programming languages
like OCaml and Haskell, and SMT-backed semi-automated program verification tools
like Dafny [13] and WhyML [14].

128

TTony6enosa M.U., Boxxko C.H., I'puropses C.B. Bepudukanus npeodpa3oBanus rpaMMaTHKH B HOPMaJIbHY10 GopMy
Xomckoro B F*. Tpyow: UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 127-138.

Type system of F* includes polymorphism, dependent types, monadic effects,
refinement types, and a weakest precondition calculus [15], [16]. These features allow
expressing precise and compact specification for programs [7].

Dependent function type has the following form x;:t; —.. = x,: t,[x.. %_1] =
E t [x;..x,]. Each of a function's formal parameters are named x; and each of these
names in the scope to the right of the first arrow that follows it. The notation
t[x;..x,,] indicates that the variables x;.. x,, may appear free in t.

Refinement type has a form x:t{phi(x)}. It is a sub-type of t restricted to those
expressions of type t that satisfy a predicate phi(e).

In addition to inferring a type, F* also infers side effects of an expression such as
exceptions and state. The following are the most significant monadic effects.

e Tot t —the effect of a computation that guarantees evaluationto a t -
typed result, without entering an infinite loop, throwing an exception,
reading or writing the program's state.

o ML t— the effect of a computation that may have arbitrary effects, but if
some result is computed, then it is always of type t.

e Dv t— the effect of a computation that may diverge.

e ST t— the effect of a computation that may diverge, read, write or
allocate on a heap.

e Exn t —the effect of a computation that may diverge or raise an exception.

The effects {Tot, Dv, ST, Exn, ML} are arranged in a lattice, with Tot at the
bottom, ML at the top, and with sT unrelated to Exn.
There are two main approaches to prove properties: either by enriching the type of a
function (intrinsic style) or by writing a separate lemma about it (extrinsic style). You
can see an example of the first approach below; keyword va1 indicates declaration of
a value and its type signature.

val append: 1ll:list 'a -> 12:1ist 'a

-> Tot (l:1ist 'a{length l=length ll+length 12})

let rec append 11 12 =

match 11 with

[[] -> 12

| hd :: t1l -> hd :: append tl 12
The following example demonstrates extrinsic style, in which the formula after
keyword requires is the pre-condition of the lemma, while the one after keyword
ensures IS its post-condition.

val append len: 1ll:list 'a -> 1l2:1list 'a

-> Lemma (requires True)
(ensures (length (append 11 12)=
length 11 + length 12)))
let rec append len 11 12 =

129

Polubelova M.I., Bozhko S.N., Grigorev S.V. Certified Grammar Transformation to Chomsky Normal Form in F*.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 127-138.

match 11 with

[1 -> 0

| hd::tl -> append len tl 12
There is no general rule which style of proving to use, but in some cases it is
impossible to prove a property of a function directly in its types and one has to use a
lemma.
When defining lemmas or expressions that are total, F* automatically proves their
termination. The termination check is based on a well-founded relation. For natural
numbers, F* uses classical decreasing metric, for inductive types — the sub-term
ordering, for recursive function, it requires the tuple of parameters to be in decreasing
lexicographic ordering. The last case can be overridden with using clause decreases
%][x4..x,], which explicitly chooses a lexicographic ordering on arguments.
To conclude, one can use F* to write effectful programs, specify them using
dependent and refinement types, verify them using an SMT solver or providing
interactive proofs. Programs written in F* can be translated to OCaml or F# for
further execution.

3. Verification of transformation of CFG to CNF

In this section we briefly describe some necessary aspects of the theory of formal
languages, sketch a totality proof for one of grammar transformations to Chomsky
normal form in F*, and formulate some advantages and disadvantages of this
approach.

3.1 Context-free grammar and Chomsky normal form

In this section we give basic definitions and formulate a theorem that helps us to
verify the implemented algorithm of a transformation of context-free grammar to
Chomsky normal form.

In formal language theory, a context-free grammar (CFG) is a formal grammar in
which every production rule is of the form A — a, where A is single nonterminal
symbol and « is a string of terminals and/or nonterminals (« can be empty).
Context-free grammar is said to be in Chomsky normal form (CNF) if all of its
production rules are of the form:

e A - BC

e A->a

e S > g
where A, B and C are nonterminal symbols, a is a terminal symbol, S is the start
nonterminal, and & denotes the empty string. Also, neither B nor C may be the start
symbol, and the third production rule can only appear if € is in L(G), namely, the
language produced by the context-free grammar G.

Context-free grammars given in Chomsky normal form are very convenient to use. It
is often assumed that either CFGs are given in CNF from the beginning or there is an

130

TTony6enosa M.U., Boxxko C.H., I'puropses C.B. Bepudukanus npeodpa3oBanus rpaMMaTHKH B HOPMaJIbHY10 GopMy
Xomckoro B F*. Tpyow: UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 127-138.

intermediate step of normalization. Having a certified implementation of
normalization for CFGs enables us to stop thinking in terms of CFG and consider
grammar in CNF without losing guarantees of correctness.

CFG normalization theorem: There is an algorithm which converts any CFG into
an equivalent one in Chomsky normal form.

The full normalization transformation for a CFG is a composition of the following
constituent transformations.

e Replaceallrules A - X,X,..X,, where k = 3 withrulesA - X;A,,
Ay, - X,A,, .., A_; — X,_1 Xy, wWhere A; are "fresh” nonterminals.

e Eliminate all e-rules.
e Eliminate all chain rules.

e For each terminal a, add anew rule A — a, where 4 is a "fresh"
nonterminal and replacing a in the right-hand sides of all rules with length
at least two with A.

3.2 Verification with F*

Our purpose is to verify a core YaccConstructor (YC) using F*. YC is an open source
modular tool for research in lexical and syntax analysis and its main development
language is F# [17]. In this paper we consider only a verification of normalization
grammar algorithm [18] which is defined in a following way:
let toCNF (ruleList: Rule.t< , >list) =
rulelist

|> splitLongRules

|> deleteEpsRules

|> deleteChainRules

|> renameTerm

The function toCNF is a composition of the four transformations mentioned. Notice
that the order of rules execution is important. The first rule must be executed before
the second, otherwise normalization time may increase to O(2™). The third rule
follows the second, because elimination of e-rules may produce new chain rules.
Also, the fourth rule must be executed after the second and the third as they can
generate useless symbols.

F*, as a proof assistant, allows to formulate and prove properties of function of
interest using lemmas or enriching types. For example, in F# function (f (x:int)=
2*x) is inferred to have type (int -> int), while in F* we infer (int -> Tot
int). Thisindicatesthat (£ (x:int) = 2*x) isa pure total function which always
evaluatesto int. Alemma is a ghost total function that always returns the single unit
value (). When we specify a total function, we have to prove totality of every nested
function, because F* supports only high-level annotations. In others words, we cannot
add annotation for a nested function. Therefore, to prove totality of a function

131

Polubelova M.I., Bozhko S.N., Grigorev S.V. Certified Grammar Transformation to Chomsky Normal Form in F*.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 127-138.

containing nested functions, we need to lift all nested functions up and explicitly
prove totality of these functions.
We describe each function of interest in an individual module to avoid namespace
collision. We use module architecture similar to YC architecture. Module 11 contains
type constructors for describing productions of a grammar. Module Namer contains
a function to generate new names. Finally, we created individual modules for each
transformation and a separate, main, module which contains the definition
of tocnF transformation.
We implemented all the transformations in F* [19], but in this paper we consider only
one of them, namely splitLongRules, wWhich eliminates long rules. Firstly, we
describe all the helpers we need, prove their totality and other necessary properties,
and then explain why this transformation is correct.
In the first transformation, it is necessary to create new nonterminals, so we need a
function to supply them. The function Namer.newSource defined below is used.
val newSource: n:int -> oldSource:Source -> Tot Source
let newSource n old =
({old with text = old.text”(string of int n)})
Integer n is equal to the size of the list of rules which we have at the moment of
function Namer.newSource call. Obviously, function Namer.newSource IS
injective. In other words, unique rule namesremain unique after application
splitLongRules.

Some necessary helpers are grouped in Transformaux module: for example,
functions createRule and createbDefaul tElem, Which take some arguments and
return Rule and Elem respectively. E1lem is the right part of the rule if the latter is a
sequence. Also, we define follow one simple function which returns the length of the
right part of the rule.
val lengthBodyRule: Rule 'a 'b -> Tot int
let lengthBodyRule rule =
List.length (match rule.body with
|PSeqg(e, a, 1) -> e
[=>11)
The most interesting function is cutRule. It takes a rule and a list-accumulator as an
input. If the length of the right-hand side of the rule is less or equal to 2, cutRule
only renames a nonterminal to avoid name collision. Otherwise, it is necessary to
create new nonterminal B, _,, cut off last two elements X,_, X,., pack them into a new
rule B,_, = X,_1 Xy, and then add the nonterminal to the end of the long rule. Then
the new rule is added to the accumulator and the function cutrule is recursively
called on the new rule and accumulator. This way, we reduce our rule by one.
Function signature is the following.
val cutRule: rule: (Rule 'a 'b)
-> resRulelist: (list (Rule 'a 'b))
-> Tot (list (Rule 'a 'b))

132

TTony6enosa M.U., Boxxko C.H., I'puropses C.B. Bepudukanus npeodpa3oBanus rpaMMaTHKH B HOPMaJIbHY10 GopMy
Xomckoro B F*. Tpyow: UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 127-138.

(decreases %[lengthBodyRule rule])

There are some peculiarities in our implementation, which are worth mentioning. One
of them is the representation of the right-hand side of the rules by lists. In the
algorithm, we need to cut off two last elements of a rule, so we carry out the following
steps.

let revEls = List.rev elements

let cutOffEls = [List.Tot.hd revEls;

List.Tot.hd (List.Tot.tl revEls)]

Functions List.hd and List.t1 from a standard library are not defined for an
empty list, so they cannot be considered total, which limits their usage in our code. In
F* there is a module List.Tot which provide proper total analogs of the functions
mentioned. We only provide their signature here.

val hd: 1l:1list 'a{is Cons 1} -> Tot 'a

val tl: 1l:1list 'a{is Cons 1} -> Tot (list 'a)
Predicate is Cons takes a list as an input and returns false if it is empty, otherwise
it returns true.
If function List.Tot.hd isapplied to a list, nonemptiness of which is not clear from
the context, F* reports a type mismatch. A pleasant peculiarity of F* is that in some
rare cases it can derive necessary properties. In our implementation of the
transformation, only the rules which have more than two symbols in the right-
hand side are split. In this case F* is able to automatically derive required type, so we
can choose two elements. It can be illustrated with the following example.

// 1lst has type list int and can be empty

assume val lst: list int

// f takes only nonempty lists

assume val f: lst:(list int) {is Cons lst} -> Tot int

assume val g: lst:(list int) -> Tot int

//0k

let testl (lst:list int) =
if List.length 1lst >=1
then £ 1lst
else g 1lst

//Fail: subtyping check failed
let test2 (lst:list int) =
if List.length 1st >= 0
then f 1st
else g 1lst
At the same time, we have to prove and explicitly add even simple lemmas for
functions. For example, if list 1st has type (1ist 'a){is Cons 1lst}, then F*
can only infer that (List.rev 1st) hastype (1ist 'a). This can be easily fixed

133

Polubelova M.I., Bozhko S.N., Grigorev S.V. Certified Grammar Transformation to Chomsky Normal Form in F*.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 127-138.

with the instruction sMTPat. In addition, we should formulate the following lemma
which proof can be derived automatically by F*. The following code makes
List.rev preserve information about the length:
val rev_length: 1l:(list 'a)
-> Lemma (requires true)
(ensures (List.length (List.rev 1) = List.length 1))
[SMTPat (List.rev 1)]
We proved totality of all the nested functions. Now we want to prove termination of
the general one. In our case, it is sufficient that the length of the rule strictly decreases
on each recursive call and we are not interested in the length of the accumulator. To
prove this we must explicitly specify that after applying List.Tot.t1 to a list, its
length reduces by 1. So, we must use the same method as we used before.
val tail length : 1:(list 'a) {is_Cons 1}
-> Lemma (requires True)
(ensures (List.length (List.Tot.tl 1)=(List.length 1)-1))
[SMTPat (List.Tot.tl 1)]
With this sufficient information F* has to conclude that cutRule is total.
Function splitLongRules takes a list of rules and applies cutRule to each rule,
then concatenates all the results and returns the combined list.
val splitLongRules: list (Rule 'a 'b)
-> Tot (list (Rule 'a 'b))
let splitLongRules rulelist =
List.Tot.collect
(fun rule -> cutRule rule []) rulelist
Totality is proved automatically by F*.
Previously we proved totality of our transformation, but we had not mentioned
properties of the rules we get after applying splitLongRules. We add restriction
on the type of function, which guarantees the necessary property of the result, instead
of proving the lemma about these properties. The function signature now look like
this.
val cutRule: rule: (Rule 'a 'b)
-> acc: (list (Rule 'a 'b))
{List.Tot.for all (fun x->lengthBodyRule x<=2) acc}
-> Tot (res: (list (Rule 'a 'b))
{List.Tot.for all (fun x->lengthBodyRule x<=2) res})
(decreases %[lengthBodyRule rule])

val splitLongRules:list (Rule 'a 'b)
-> Tot (res:list (Rule 'a 'b)
{List.Tot.for all (fun x->lengthBodyRule x<=2) res})
Now we have almost everything we need to prove such properties. We have to provide
some additional information so that F* could check arguments type when collect

134

TTony6enosa M.U., Boxxko C.H., I'puropses C.B. Bepudukanus npeodpa3oBanus rpaMMaTHKH B HOPMaJIbHY10 GopMy
Xomckoro B F*. Tpyow: UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 127-138.

is recursively called. At the moment of cutting the rule off, we should fix the length
in the type of the cut part. For this purpose we have to define a function to take our
list and return part with that type. Further, we have to prove lemma that states that
concatenation of two lists with short rules is the list with short rules. After that F*
accepts type correctness.

3.3 Advantages and disadvantages of F*

In this section we want to outline some advantages and disadvantages of F*
programming language. In F#, even if there is no doubt that some functions are
correct, an incorrect result may still be obtained by applying them in a wrong
order. F* can prevent such situations, if a programmer specifies the properties
demanded from an input data in a function type. For
instance, deleteChainRules should only be applied after deleting epsilon rules.
This can be ensured by specifying the following signature of deleteChainRules
function (where predicate has no _eps rules checks that there are no epsilon
rules).
val deleteChainRules:
rulelList: (list (Rule 'a 'b))
{has no _eps rules rulelList}
-> Tot (list (Rule 'a 'b))
Unfortunately, there are some disadvantages of F* which we want to emphasize. First
of all, it does not provide any — even primitive — support for object-oriented features.
One can use structures instead of classes, but it complicates development. For
example, we had to explicitly create functions for constructing elements of types. In
other words, rather than create class person with constructors and methods:
let person = new Person ("Nick", 27)
One has to write code in a rather cumbersome manner:
let new Person name age = {name=name; age=age}
There is a special construct in many functional languages which checks whether some
property holds for a wvalue. Such construct is called guardin Haskell
and when in OCaml and F# and is often used in pattern matching to simplify code.
Unfortunately, it is not supported in F* and one can only hope that it will be supported
in the latter language versions.
Lastly, we can notice poor quality of error reporting in F* which sometimes makes it
hard to understand why proofs do not pass correctness tests.

4. Conclusion and future work

We presented a verification of one of transformations of context-free grammar to the
Chomsky normal form. We proved totality of each function implemented, as this
property guarantees that computations always terminate and do not have side effects,
which is useful in practice. Although for a complete proof of the correctness of the
grammar transformation we still need to prove the equivalence of the original and

135

Polubelova M.I., Bozhko S.N., Grigorev S.V. Certified Grammar Transformation to Chomsky Normal Form in F*.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 127-138.

the resulting grammar, we have already obtained interesting results. We can specify
an input and an output of functions — using refinement and dependent types — that
allows us to establish application order of the four transformations, by means of which
correctness of the whole transformation is guaranteed.

We use programming language F* to verify the implementation, but to be able to
execute it one needs to extract it to OCaml or F# and then compile it using the OCaml
or F# compiler respectively. At the moment, the mechanism of extraction code from
F* to F# omits casts, erases dependent types, higher rank polymorphism and ghost
computation [9]. These features are very important and lack of them breaks the
consistency and correctness of programs within the target language. F* is currently
under active development, and implementation of the extraction mechanism which
copes with the above shortcoming is actual topic of our further research.

References

[1]. H. Geuvers. Proof assistants: History, ideas and future. Sadhana, 2009, vol. 34, issue 1.
pp. 3-25. DOI: 10.1007/s12046-009-0001-5.

[2]. A. Chlipala. Certified programming with dependent types. MIT Press, 2013, 440 p.

[3]. T. Sheard, A. Stump, S. Weirich. Language-based verification will change the world.
Proceedings of the FSE/SDP workshop on Future of software engineering research, 2010,
pp. 343-348. DOI: 10.1145/1882362.1882432.

[4]. E. Tanter, N. Tabareau. Gradual certified programming in Coq. Proceedings of the 11th
Symposium on Dynamic Languages, 2015. pp. 26-40. DOI: 10.1145/2816707.2816710.

[5]. The Coq proof assistant. June 2016. https://coq.inria.fr/

[6]. U. Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, 2007.

[7]. The F* homepage. June 2016. https://www.fstar-lang.org/

[8]. E. Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 2013, vol. 23, n. 5, pp. 552-593.
DOI: 10.1017/S095679681300018X.

[9]. N. Swamy, C. Hritcu, C. Keller. Dependent Types and Multi-Monadic Effects in F*.
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2016, pp. 256-270. DOI: 10.1145/2837614.2837655

[10]. The YaccConstructor homepage. June 2016. https://github.com/YaccConstructor/

[11]. I. Kirilenko, S. Grigorev, D. Avdiukhin. Syntax analyzers development in automated
reengineering of informational system. St. Petersburg State Polytechnical University
Journal. Computer Science. Telecommunications and Control Systems, 2013, no. 174, pp.
94— 98.

[12]. J.-H. Jourdan, F. Pottier, X. Leroy. Validating LR (1) parsers. Programming Languages
and Systems, 2012, pp. 397-416.

[13]. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
International Conference on Logic for Programming Artificial Intelligence and
Reasoning, 2010, pp. 348-370.

[14]. J.-C. Filliatre, A. Paskevich. Why3: Where Programs Meet Provers. Proceedings of the
22Nd European Conference on Programming Languages and Systems, 2013, pp. 125—
128. DOI: 10.1007/978-3-642-37036-6_8.

136

http://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1145%2F2816707%252E2816710&v=49a15aab

TTony6enosa M.U., Boxxko C.H., I'puropses C.B. Bepudukanus npeodpa3oBanus rpaMMaTHKH B HOPMaJIbHY10 GopMy
Xomckoro B F*. Tpyow: UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 127-138.

[15]. B. C. Pierce. Types and Programming Languages. MIT Press, 2002, 645 p.

[16]. F* tutorial. June 2016. https://www.fstar-lang.org/tutorial/

[17]. D. Syme, A. Granicz, A. Cisternino. Expert F#. Apress, 2012, 609 p.

[18]. D. Firsov, T. Uustalu. Certified normalization of context-free grammars. Proceedings of
the 2015 Conference on Certified Programs and Proofs, 2015, pp. 167-174. DOI:
10.1145/2676724.2693177.

[19]. Verification of grammar transformation to Chomsky normal form in F*. June 2016.
https://github.com/YaccConstructor/YC_FStar.

Bepudumkauma npeobpaszoBaHus rpaMmaTUKU B
HopManbHy ¢hopmy Xomckoro B F*

M.U. Hony6enosa <polubelovam@gmail.com>
C.H. Boacko <gkerfimf@gmail.com>
C.B. I'puzcopves <Semen.Grigorev@jetbrains.com>
Canxm-Ilemepbypackuil 2ocyoapcmeeHHbliL YHugepcumen,
199034, Poccus, Cankm-Ilemepoype, Ynueepcumemckas nao., 0.7/9

Annorammsi. CepTuduKalMOHHOE IPOTpaMMHPOBAHNE IIO3BOJISAET JOKa3bIBaTh, 4TO
IporpaMma COOTBETCTBYET CBOeMY (OpPMajJbHOMY ONMCaHUIO0. [IpoBepka KOPPEKTHOCTH
HPOM3BOJMTCS CTATHYECKH, Onarojapsi 4eMy CTAQHOBUTCS BO3MOXKHBIM OTKa3aTbCsl OT
JalbHEHIIero TecTHpOBaHUS NPOBEepHU(UIMPOBaHHBIX mporpamM. Cpeau HHCTPYMEHTOB,
HpeHa3HAYCeHHBIX Ul CePTU(GUKAIMOHHOTO MPOrPaMMHUPOBAHHMS, TOJBKO HHCTpyMEHT F*
MO3BOJISIET PEaM30BBIBATH MPOTPaMMBI Ha sI3bIKE OOIIEro Ha3HA4YEHHS W aBTOMATH3UPYET
JIOKa3aTeNIbCTBO UX KoppekTHocTH. [locneHee 03HavaeT, 4To HHCTPYMEHT F* aBToMaTH4ecKH
BBIBEJIET JIOKA3aTeIbCTBO KOPPEKTHOCTH, TJI€ 9TO BO3MOXKHO, ITPU STOM I0JIb30BATENh MOXKET
crierUIMpPoBaTh OoJiee CIIOXKHBIE J0Ka3aTeNbCTBA, €CIIM 9TO HeoO0XoauMo. Mel paGotaeM
HaJ TMPUMEHEHHEM JaHHOTO ToaxoJa K mpoekty YaccConstructor — miatdopme s
UCCIIEZIOBaHUS M pa3pabOTKK eHepaTopoB JIEKCHUECKUX M CHHTAKCHYECKHX aHaJIU3aTOPOB U
JPYTHX aIrOpUTMOB IJIs paboThl ¢ TpaMMaTHKaMH. B jaHHO#l craThe paccMarpuBaeTcs
BepubUKaLUs pealu3ali OJJHOTO U3 TAKUX aIrOPUTMOB — MPeoOpa30BaHUs IPaMMATHKH B
HOpMasbHYI0 (opMy XOMCKOTO — YTO SIBIISIETCS TIEPBOi 3ajadeil Ha MyTH K BepH(HUKALUK
Bcero mpoekra YaccConstructor. [lnst mporpamMMbl, peanu3yronell 1aHHoe npeoOpa3oBaHue,
JIOKa3aHbl 3aBEPIIAEMOCTh M TOTAIBHOCTb, @ TAKXKE YCTAHOBJICH MOPSAOK MPUMEHEHHS
I/ICl'lOJ'[b?:yeMbIX B HEW OCHOBHBIX HpeOGpaSOBaHI/Iﬁ C HCIIOJIb30BAHUMEM 3aBHCHMBIX H
YTOUHSIOIUX TUNOB. CHenyloUMM BaXXHbIM HANpaBJICHUEM MJaHHOH paboOTHl SBISETCS
JIOKa3aTeNIbCTBO SKBUBAJICHTHOCTH MCXOJHOW M MpeoOpa3oBaHHOW rpaMMatuk. MIHCTpyMeHT
F* mnosBomsier wu3BNeKkarh KoJX, HamMCaHHBI# Ha F* kak mnporpaMmy Ha s3bIKe
nporpammupoBanus F# wim OCaml. Tak kak F# siBisieTcss OCHOBHBIM SI3IKOM Pa3pabOTKu
npoekra YaccConstructor, 3To mo3BONUT COXPaHUTh COBMECTHMOCTb POBEPU(UIIMPOBAHHBIX
HPOrpaMM C CYILIECTBYIOIIMMHU B MpoekTe. B crarthe copMyiImMpoBaHBI NMPEHMYLIECTBA U
HEIOCTaTKU NPUMEHEHUSI HHCTpyMeHTa F*.

KiroueBbie ciioBa: cepTudukalMoHHOE IporpaMmupoBanue; F*; Bepudukanus nporpamm;
KOHTEKCTHO-CBOOOJHAs TIpaMMaTHKa, HopManbHas ¢opma XOMCKOTo; mHpeoOpa3oBaHHUE
rpammaruky; dependent type; refinement type.

DOI: 10.15514/ISPRAS-2016-28(2)-8
137

Polubelova M.I., Bozhko S.N., Grigorev S.V. Certified Grammar Transformation to Chomsky Normal Form in F*.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 127-138.

Jas wnurupoBanusi: Ilomy6enoBa M.U., Boxko C.H., I'puropres C.B. Bepudukauus
npeoOpa3oBaHus rpaMMaTHKU B HOpMaJbHYIO (popmy Xomckoro B F*. Tpyast UCII PAH, Tom
28, BbIm. 2, 2016 1., ctp. 127-138 (na anramiickom). DOI: 10.15514/ISPRAS-2016-28(2)-8

Cnucok nutepaTtypbl

[1]. H. Geuvers. Proof assistants: History, ideas and future. Sadhana, 2009, vol. 34, issue 1.
pp. 3-25. DOI: 10.1007/s12046-009-0001-5.

[2]. A. Chlipala. Certified programming with dependent types. MIT Press, 2013, 440 p.

[3]. T. Sheard, A. Stump, S. Weirich. Language-based verification will change the world.
Proceedings of the FSE/SDP workshop on Future of software engineering research, 2010,
pp. 343-348. DOI: 10.1145/1882362.1882432.

[4]. E. Tanter, N. Tabareau. Gradual certified programming in Cog. Proceedings of the 11th
Symposium on Dynamic Languages, 2015. pp. 26-40. DOI: 10.1145/2816707.2816710.

[5]. The Coq proof assistant. June 2016. https://coq.inria.fr/

[6]. U. Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, 2007.

[7]. The F* homepage. June 2016. https://www.fstar-lang.org/

[8]. E. Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 2013, vol. 23, n. 5, pp. 552-593.
DOI: 10.1017/S095679681300018X.

[9]. N. Swamy, C. Hritcu, C. Keller. Dependent Types and Multi-Monadic Effects in F*.
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2016, pp. 256-270. DOI: 10.1145/2837614.2837655

[10]. The YaccConstructor homepage. June 2016. https://github.com/YaccConstructor/

[11]. I. Kirilenko, S. Grigorev, D. Avdiukhin. Syntax analyzers development in automated
reengineering of informational system. St. Petersburg State Polytechnical University
Journal. Computer Science. Telecommunications and Control Systems, 2013, no. 174, pp.
94— 98.

[12]. J.-H. Jourdan, F. Pottier, X. Leroy. Validating LR (1) parsers. Programming Languages
and Systems, 2012, pp. 397-416.

[13]. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
International Conference on Logic for Programming Artificial Intelligence and
Reasoning, 2010, pp. 348-370.

[14]. J.-C. Filliatre, A. Paskevich. Why3: Where Programs Meet Provers. Proceedings of the
22Nd European Conference on Programming Languages and Systems, 2013, pp. 125—
128. DOI: 10.1007/978-3-642-37036-6_8.

[15]. B. C. Pierce. Types and Programming Languages. MIT Press, 2002, 645 p.

[16]. F* tutorial. June 2016. https://www.fstar-lang.org/tutorial/

[17]. D. Syme, A. Granicz, A. Cisternino. Expert F#. Apress, 2012, 609 p.

[18]. D. Firsov, T. Uustalu. Certified normalization of context-free grammars. Proceedings of
the 2015 Conference on Certified Programs and Proofs, 2015, pp. 167-174. DOI:
10.1145/2676724.2693177.

[19]. Verification of grammar transformation to Chomsky normal form in F*. June 2016.
https://github.com/YaccConstructor/YC_FStar.

138

http://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1145%2F2816707%252E2816710&v=49a15aab

Tyn K., Jlapcen ILT". HccienoBanne BIHSAHHS HCIOIB30BaHMS TapaJlIen3Ma Ha IPOU3BOIUTEILHOCTh JIBHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

Investigating Concurrency in the
Co-Simulation Orchestration Engine
for INTO-CPS

C. Thule <casper.thule@eng.au.dk>
P. G. Larsen <pgl@eng.au.dk>
Aarhus University, Department of Engineering,
Inge Lehmanns Gade 10, 8000 Aarhus C, Denmark

Abstract. The development of Cyber-Physical Systems often involves cyber elements
controlling physical entities, and this interaction is challenging because of the multi-
disciplinary nature of such systems. It can be useful to create models of the constituent
components and simulate these in what is called a co-simulation, as it can help to identify
undesired behaviour. The Functional Mock-up Interface describes a tool-independent standard
for constituent components participating in such a co-simulation and can support different
formalisms. This paper describes an exploration of whether different concurrency features in
Scala (actors, parallel collections, and futures) increase the performance of an existing
application called the Co-Simulation Orchestration Engine performing co-simulations. The
investigation was conducted by refactoring the existing application to make it suitable for
implementing functionality that takes advantage of the concurrency features. In order to
compare the different implementations testing was carried out using four test co-simulations.
These test co-simulations were executed using the concurrent implementations and the original
sequential implementation, verifying the simulation results, and retrieving the execution times
of the simulations. The analysis showed that concurrency can be used to increase the
performance in terms of execution time in some cases, but in order to achieve optimal
performance, it is necessary to combine different strategies. Based on these results, future work
tasks has been proposed.

Keywords: Co-simulation; concurrency; INTO-CPS; cyber-physical systems; FMI.
DOI: 10.15514/1SPRAS-2016-28(2)-9

For citation: Thule C., Larsen P.G. Investigating Concurrency in the Co-Simulation
Orchestration Engine for INTO-CPS. Trudy ISP RAN/Proc. ISP RAS], vol. 28, issue 2, 2016,
pp. 139-156. DOI: 10.15514/ISPRAS-2016-28(2)-9

1. Introduction

Cyber-Physical Systems (CPSs) need to have close interaction between computer-
based cyber parts controlling physical artefacts in a dependable way. In order to
develop CPSs in a dependable manner it can be useful to create models of constituent

139

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

components that jointly form the system. A constituent model is an abstract
description of a constituent, where the irrelevant details are abstracted away.
Constituent models can be described in very different forms depending upon their
nature, but here we will restrict ourselves to Discrete Event (DE) and Continuous-
Time (CT) models representing very different disciplines. Such constituent models
can then be used in a collaborative simulation (a co-simulation), which is able to
couple models created in different formalisms. Thereby it is possible to simulate the
entire system by simulating the components and exchange data as the common
simulated time is progressing.

Typically such co-simulations are organised with a master-slave architecture where a
Master Algorithm (MA) is used to manage the simulation. Fig 1 shows an example
of four slaves, their dependencies, and input/output ports. It is the responsibility of
the MA and thereby the master to orchestrate the simulation. This means to allow the
different slaves to progress for determined time steps and resolve the dependencies
between steps. A co-simulation often consists of three phases: Initialisation,
simulation, and tear down. In the initialisation phase the master gets the properties of
the slaves, chooses an MA, initialises the slaves, and establishes the communication
channels. Next, in the simulation phase the master retrieves output values from the
slaves, sets input values on the slaves, and invokes them to run a simulation step with
a specific time step size. The slaves must respond with a status whether the step was
accepted. In this phase, it can be necessary to perform a rollback! (if possible) for the
relevant slave and run the simulation again with a different step size. Lastly, the
outputs from the slaves are retrieved and the process repeats until a configured end
time is reached. The final phase is tear down, where the slaves are shut down, memory
is released, results are reported, and so forth.

> b - (e——(D)

@9
@m

Fig. 1. Example of a simulated CPS with dependencies between slaves (the grey boxes) via
their respective ports (the black ellipses) [1].

A challenge in using co-simulation as part of developing CPSs is that many complex
multi-disciplinary systems cannot be modelled naturally in one simulation tool alone,
but require several specialised simulation tools, that each do their part

[2]. This makes it necessary to develop solutions tailored for a specific purpose
instead of generalised solutions, which is expensive. The Functional Mock-up

L A rollback can be necessary e.g. if a slave rejects a step size.
140

Tyn K., Jlapcen ILT". MccnenoBanue BIUSHUS UCTIONB30BAHMS MapaJUICI3Ma Ha IPOU3BOAUTEIBHOCTD JIBHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

Interface (FMI) was created to solve these challenges, as it is a tool-independent
standard for co-simulation [3]. The standard provides and describes C interfaces that
can be partly or fully implemented by a component, which is then called a Functional
Mock-up Unit (FMU). This makes it possible to create generalised solutions, as the
components can contain their own solvers, and still adhere to FMI. The INTO-CPS
project? [4] makes use of FMI for a simulation kernel of a tool suite ranging from
original requirements expressed in SysML over heterogeneous constituent models
that can be co-simulated and gradually moved down to their corresponding
realisations. When developing CPSs using co-simulation, it is desirable to execute the
simulations as fast as possible to enable the use of increasingly complex models and
try a greater range of test scenarios. As many processors today have multiple cores
[5] concurrency may increase the performance of an application, but it also introduces
overhead. It is therefore of keen interest to determine, how concurrency can be used
to potentially improve the performance. The performance in this context is considered
to be how fast a co-simulation is performed, and is therefore measured in terms of
time. This paper describes how the usage of concurrency was implemented in an
existing application called the Co-Simulation Orchestration Engine (COE), which
orchestrates co-simulations using FMI. Different implementations were performed in
Scala using three different concurrency features: Akka Actors [6], futures [7], and
parallel collections [8]. These were chosen because they offer different capabilities
that can be taken advantage of in the COE, and therefore the trade-off between
features and performance is interesting. One of the most important capabilities is
composability, because FMUs can have different step sizes and rollbacks can be
necessary, which can lead to complicated scenarios. Following is a short description
of the concurrency features:

Parallel Collections: The motivation behind adding parallel collections to Scala was
to provide a familiar and simple high-level abstraction to parallel programming [8].
Parallel collections are conceptually simple to use, as a regular collection can be
converted to a parallel collection by invoking the function “par”. Once it is a parallel
collection, functions such as map and filter are executed concurrently. Parallel
collections are considered less composable than the other implementations, as the
results are gathered in a blocking fashion.

Futures: A future is a placeholder for a value, that is the result of some concurrent
calculation, and it can be accessed synchronously or asynchronously. The term
“future” was originally proposed by Baker and Hewitt [9] in the context of garbage
collection of processes. As opposed to parallel collections, it is possible to chain
futures, such that when a future has been computed, the computed value is passed to
the chained future.

2 public deliverables and more information regarding the INTO-CPS project can be retrieved
from http://into-cps.au.dk.

141

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

Actors: The Actor Model was introduced as an architecture to efficiently run
programs with a high degree of parallelism without the need for semaphores [10]. An
actor is an autonomous object that encapsulates data, methods, a thread, a mailbox,
and an address [11]. Actor methods can return futures, and therefore offer the same
composability as futures in this regard. Actors also provide additional composable
features, such as hierarchical structures, remote capabilities, message parsing, and so
on.

The paper is structured as follows: Section 2 describes the initial implementation and
the implementations using concurrency. Afterwards, Section 3 describes how the
implementations were tested and presents the results. Then related work is treated in
Section 4. Lastly, the work is summarised in Section 5 and future work is outlined in
Section 6.

2. Co-Simulation Orchestration Engine Implementations

This section concerns the implementations of the COE application®. It focuses on the
MA part of the implementations, as the initialisation and tear down phases are
unaltered for the implementations described below.

The COE application runs as a web server using HTTP. The following HT TP requests
are performed in the given order to run a simulation:

1. Initialise: A configuration file is sent to the web server. The configuration
file contains the FMUs to be used in the simulation, the mapping between
input and output values, and whether to use a fixed or variable step size.

2. Simulate: This request starts a simulation.

3. Results: This request returns the result and duration of a given simulation.
There are different implementations of the MA in the COE: A sequential
implementation, and three implementations that execute concurrently, following the
principles described above. These different implementations were developed in order
to test and compare the performance of the COE in a sequential/concurrent setting
and determine whether using concurrency could improve the performance.

2.1 Sequential Implementation
The sequential implementation of the MA consists of the following steps in the given
order:
4. Resolve inputs: This step consists of mapping the outputs of the FMUs to
the inputs of the other FMUs.
5. Set inputs: The input values determined in the previous step are passed to
the FMU instances in this step.
6. Serialize state: In this step the states of the FMUs are serialized, so it is
possible to perform a rollback in case of an error.

3 See [12] for further details on the implementation.
142

Tyn K., Jlapcen ILT". MccnenoBanue BIUSHUS UCTIONB30BAHMS MapaJUICI3Ma Ha IPOU3BOAUTEIBHOCTD JIBHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

7. Get step size: If variable step size is supported by the FMUs, then the
maximum step size is retrieved in this step. Otherwise a configured fixed
step size is used.

8. Do step: The FMU instances are invoked to perform a step with the step size
determined in the previous step. This function contains the most extensive
calculations performed by the FMUs.

9. Process result: The return values from the previous invocations are
analysed and in case of any errors a rollback is performed or the simulation
is terminated.

10. Get state: The state in terms of output values is retrieved in this step, and
thereby the next iteration can begin.

In the sequential implementation a mapping operation is performed over the FMU
instances in every step except the “Process result” step, where it depends on whether
errors are encountered and if so which errors. This sums to six, possibly seven,
mapping operations over the FMU instances.

2.2 Implementations with Concurrency

When implementing concurrency in the COE it is desirable that as much work as
possible is performed in every concurrent invocation. To allow for a better usage of
concurrency some functions should be grouped, such that a group of functions can be
invoked concurrently. If concurrency was used in the sequential implementation to
invoke the FMUs without refactoring the implementation, it would be necessary to
invoke every step in different concurrent invocations. This would result in several
thread initialisation and synchronizations per simulation step, where a
synchronization is a waiting operation until all threads have finished computing. An
example of this is shown in Fig. 2. The figure shows a possible usage of concurrency
based on the sequential implementation with four FMUs (horizontal frames), where
the functions “Set inputs”, “Serialize state”, “Do step”, and “Get state” are invoked
in different concurrent invocations. The realised implementation (vertical frame)
invokes the functions using the same concurrent invocation for a given FMU. This
will be described further below.

i At T A
Setinputs | FMULI_[FMU2I_[FMU3I [FMUal |
_EMUL VU1 EMOSTEMUd
gl gyl Kbyl gl o .
Serialize state :_ (FMULl FMU2I FMU3I FMU4T
gl gl oy nptegte it
1 T s s T g
Dostep _[FMUL _|FMUZ, \FMU3, |EMU4,
R ST T TP e
Get state FMUL, FMU2| [FMU3; Fvus |

L | — — | — — — —_—

R I I R

Fig. 2. The horizontal frames represent a possible usage of concurrency based on the
sequential implementation. The vertical frames represent the usage of concurrency based on
the implementations.

143

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

By refactoring and grouping these functions, it is possible to reduce the thread
initialisations and synchronizations. This leads to more work performed by every
spawned thread and fewer synchronizations, which minimizes the overhead of using
concurrency. It is not possible to eliminate synchronization completely, because it is
necessary to resolve the inputs for the FMUs before progressing, which requires
retrieving the outputs from other FMUSs, and therefore the simulation cannot continue
until this has been performed. Besides minimizing the overhead of using concurrency,
this grouping will also help to minimize the number of mapping operations performed
in the steps in the sequential implementation, which is desirable to improve the
performance.

The grouping and flow of a simulation step for the implementation using concurrency
is shown in Fig. 3. The grouping was implemented in a separate and encapsulated
function that exhibits referential transparency to prevent the necessity of locking
mechanisms. This grouping will be referred to as the concurrent entity below.

—__ = Synchronization
< /Es;:stepz;ED

(:E;s;lve |n|;|;€sl>
—

¥

<f§et inputs / rollbaI:E)

W
-

(::S:é;ialize sta]:;eié:::)

N

< Process result_
Fig. 3. Simulation step flow in the implementation using concurrency. The box represents the
functions grouped together.

By creating these concurrent entities, it was a conceptually simple task to take
advantage of the concurrency features. Furthermore, it effectively reduced the
mapping operations from six, possibly seven depending on the step “Process result”,
to three. This implementation also makes it possible to include “assignment
functions” such as “Set inputs” in the concurrent entity without lowering
performance. Including “Set inputs” as its own concurrent invocation (as shown in
the horizontal frames in Fig. 2) would lower the performance, because the overhead
of using concurrency is too high compared to invoking the function sequentially.

144

Tyn K., Jlapcen ILT". MccnenoBanue BIUSHUS UCTIONB30BAHMS MapaJUICI3Ma Ha IPOU3BOAUTEIBHOCTD JIBHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

Using the grouping (the vertical frame in Fig. 2) it improves performance to include
“Set inputs”, because it can be grouped with the other functions, e.g. “Do step”,
without additional overhead. However, the grouping also came with a trade-off; In
the sequential implementation, the state would not be retrieved, if one or more FMUs
fail in the step called “Do step*, because it would be wasteful due to the error(s). But
in the implementation using grouped functions, the state of the FMUs not failing in
the step “Do step” would still be retrieved, because the entities responsible for the
FMU simulation step are unaware of the state of other entities until the
synchronization phase*. This can therefore lead to unnecessary retrieval of states.

In the sequential implementation, the flow is to calculate the parameters necessary for
the next immediate function to be invoked on the FMUs, and then calculate the
parameters again. In the implementations with concurrency this is changed to
calculate the parameters necessary for an entire simulation step, and invoke the
concurrent entity for each FMU concurrently. This makes it possible to maximize the
workload for each concurrent invocation.

3. Testing

This section presents the evaluation of the COE described in Section Il. The purpose
is to gain data that can be used to compare performance of the sequential
implementation and the implementations using concurrency. Furthermore, as
concurrency can lead to non-determinism, it is important to verify the simulation
results, which are the output values of the FMUs at different points in time relative to
the step sizes. For this purpose, the sequential implementation was considered an
oracle, and therefore simulation results of the concurrent implementations were
compared against simulation results from the sequential implementation. In the longer
term the plan is to use a representation of the FMI semantics as the ultimate oracle
[13]. Here semantics is provided using the Communicating Sequential Processes [14]
and this has been used to model check FMI for deadlock and livelock properties using
the FDR tool [15].

The following test principles were followed during testing:

Test environment: A test consisting of multiple simulations should be performed on
the same hardware with approximately the same processes running during the test.
The reason for stating “approximately the same processes™ is that the tests were run
in a Windows environment, where it is not possible to completely control the running
processes from the Operating System. All processes irrelevant to the execution of
tests should be disabled during the tests.

Test functions: To limit inconsistencies in the processes running between
simulations, each test should be implemented as a single test function. This means
that a test performing simulations using the sequential implementation and the three

4 Several programming languages offer the possibility to abort threads in a case like this.
However, that increases the complexity and is not considered applicable in general.

145

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

concurrent implementations should be implemented in one test function to avoid
undesirable interaction required to start other tests. To further ensure usable results
the COE application should be restarted for every simulation.

Correct simulation results: The sequential implementation is considered to be an
oracle and it is assumed that it calculates the “correct” simulation results. It should be
verified that the concurrent implementations calculate the same simulation results as
the sequential implementation.

Automation: The tests should be automated so they are easy to replicate and less
prone to manual errors. This will also make them usable in the future development of
the COE.

3.1 Test Setup

To enable automatic testing a framework was developed. This enabled testing of
different concurrent implementations, evaluation of performance, and verification of
consistency between the sequential simulation results and the concurrent simulation
results. Implementation-wise this required support for launching the different
implementations with different arguments, invoking the web servers using HTTP
requests along with gathering, and verifying the consistency of results. To verify the
consistency of results, the simulation results of the implementations using
concurrency are automatically compared to the simulation results of the sequential
implementation, as this is considered an oracle.

Different FMUs were used in the tests to investigate the performance, including a
configurable FMU that was developed to control the level of computations, which
will be described below. The tests and their corresponding FMUs are the following:
Heating, Ventilation, and Air Conditioning (HVAC) test: This test uses FMUs that
perform the most extensive computations available in the project. The simulation
consists of five FMUSs: one controller FMU and four Fan Coil Unit FMUs. A test,
which will be referred to as HVAC #1, was set up with an end time of 1000 seconds
and a step size of 0.1 seconds. This is inspired by the case study undertaken by Unified
Technologies Research Center inside the INTO-CPS project [16].

Sine Integrate Wait tests: These tests consist of three different FMUSs, that perform
limited computations, and therefore one has been modified. The FMUs are: a sine
FMU generating a sine wave, an integrate FMU that integrates the sine values, and a
modified integrate FMU. It is possible to configure the modified integrate FMU, such
that it performs busy waiting in the “Do step” function for a given number of
microseconds. It makes use of “QueryPerformanceCounter” recommended by
Microsoft to use when high-resolution time stamps are required with microsecond
precision [17]. The configuration of the busy wait does not have any impact on the
performance of the FMU, because it happens in the initialisation phase, which is not
part of the performance measurement. These FMUs were used to set up three tests,
referred to as Sl #1/2/3, where each simulation in the tests have an end time of 100
seconds and time step size of 0.1 seconds. The tests are the following:

146

TyJ'I K., HapCCH ILT. I/ICCHCHOBaHl/lC BJIMAHHUA UCIIOJIB30BAHU Napauie/in3Ma Ha MPOU3BOAUTECIIBHOCTD JABHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

Sl #1 consists of one sine FMU, one modified integrate FMU, and three simulations:
In the first simulation, the modified integrate FMU has a wait time of zero
milliseconds, then 0.5 milliseconds, and lastly 1 millisecond.

Sl #2 uses one sine FMU and five modified integrate FMUs with the same simulation
setup as SI #1.

Sl #3 uses one sine FMU and 100 integrate FMUSs.

3.2 Test Results

This section contains the results of the tests described in Section 3.1. The results are
presented in tables, where the unit of the numbers is milliseconds, and the table
columns represent the following: Sequential refers to the sequential implementation,
“Future” refers to the concurrent implementation using futures, “Par” refers to the
concurrent implementation using parallel collections, and “Actor” refers to the
concurrent implementation using actors. The result for the HVAC test is presented in
Table. 1, and the results for the Sl tests are presented in Table. 2, 3, and 4.

Based on these tests it is possible to draw some conclusions:

Executing simulations concurrently can be faster than executing them
sequentially: The results for HVAC #1, Sl #2, and Sl #3 show that concurrent
execution can be faster than sequential execution.

Executing simulations sequentially can be faster than executing them
concurrently: The results for HVAC #1, Sl #1, Sl #2 and SI #3 show, that sequential
execution can be faster than concurrent execution. Some of these test results
contradict the previous conclusion, and therefore it is necessary to pay attention to the
concurrency feature used.

Trade-off: An interesting discovery is that parallel collections perform worse than
futures and actors. This indicates that even though parallel collections offer fewer
capabilities than the other concurrency features, it does not perform faster.

Table. 1. Results from HVAC #1.

Sequential Future Par Actor
31256 29822 31980 30919

Table. 2. Results from SI #1.

Wait Sequential Future Par Actor
0.0 195 330 656 374
0.5 4468 4635 5161 4715
1.0 8758 8938 9545 9032

147

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

Table. 3. Results from SI #2.

Wait Sequential Future Par Actor
0.0 355 434 834 622
0.5 21904 4679 5042 4746
1.0 43356 8970 9348 9184

Table. 4. Results from SI #3.

Sequential Future Par Actor
355 434 834 622

4. Related Work

In order to make use of the improvements in hardware, it is necessary to improve the
software. An adage known by “Wirth’s law” goes: “Software is getting slower more
rapidly than hardware becomes faster” [18]°. He argues that methodologies are
important in order to take full advantage of the improvements in hardware. Sutter
urges application developers to take a hard look at the design of their applications and
identify places that could benefit from concurrency [20]. This is necessary to exploit
hardware capabilities, as processor manufacturers are turning to multicore processors.
Harper et. al. conducted a study on a large-scale Publish/Subscribe bus system, and
found an overall performance of 80 percent based on concurrency experiments [21].
Additionally, they surveyed concurrency design patterns with the purpose of helping
developers towards the “right” patterns.

As mentioned previously, it is important to reduce communication and
synchronization overhead between processes to achieve a fast simulation. Agrawal
et. al. have implemented and evaluated three communications primitives for
hardware/software co-simulation and found that a message-queue based
communication backplane is preferable [22]. The other two primitives evaluated were
shared memory and file-based sockets. Strategies that address the issue of
synchronization are also introduced by Bishop et. al., and these strategies also deal
with time management [23]. They conclude that using the design strategies discussed
can enable the development of high-performance application-specific co-simulations.
Kim et. al. consider synchronization between components simulators as the main
reason for poor performance of HW/SW co-simulation [24]. They propose a novel
technique based on virtual synchronization, which improves the simulator speed and
minimizes the synchronization overhead. Becker et. al. describes an approach, where
distributed communicating processes are used for the interaction between software
and hardware using Unix interprocess communication mechanisms [25]. The

5 Wirth attributes this to a different saying by Reiser [19].
148

TyJ'I K., .HapCCH ILT. I/ICCHCHOBaHl/lC BJIMAHHUA UCIIOJIB30BAHU Napauie/in3Ma Ha MPOU3BOAUTECIIBHOCTD JABHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

approach does not accurately simulate the relative speeds of the hardware and
software components, but the authors found this to be acceptable in their case.

The articles above consider synchronization, communication between simulators, and
concurrency as a bottleneck in achieving fast co-simulations. It is therefore of keen
interest to minimize the communication and synchronization along with taking
advantage of concurrency. This work addresses these issues as well, as it is an attempt
to limit synchronization and take advantage of concurrency. Furthermore, it is an
attempt to avoid unnecessary inter-thread/inter-process.

5. Conclusion

Using FMI it is possible to develop a generalised application capable of performing
co-simulation, thereby avoiding the need for tailored solutions developed to support
the co-simulation of specific systems. It is desirable to perform a co-simulation as fast
as possible, as it can help to verify the behaviour of systems or lead to the discovery
of undesired behaviour. It was therefore investigated whether concurrency could be
used to improve the performance of an application performing co-simulation. In some
cases the usage of concurrency resulted in faster co-simulations, whereas in other
cases sequential computation offered better performance. Because of this it is
reasonable to conclude, that it is necessary to allow for different simulation strategies
to achieve the fastest simulation. These strategies should support running simulations
sequentially, concurrently, or a mix of these. For example, if an FMU that performs
long-lasting computations is to be simulated with three FMUs that perform fast
computations, then it could be optimal to run this simulation in a hierarchical structure
using two threads as shown in Fig. 4.

Master Algorithm
<<Thread>>
<<Thread>> Step Master Algorithm |
Long-lasting FMU | FastPMU || FastFmU |
Fast FMU

Fig. 4. Master Algorithm simulating four FMUs using an additional step Master Algorithm

Allowing for different strategies inevitably involves computing which strategies to
use. A way of assisting the choice of strategy is to include a measure of how long-
lasting the computations performed by an FMU are within the properties of the given
FMU. However, this might be difficult to realise in a practical manner, where
different hardware is used. An alternative approach is to use meta data for a given
simulation. This can be configured beforehand, or the COE can determine it, when
running the first co-simulation using the given FMUs.

149

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

6 Future Work

In order to improve the performance of the COE and choose when to use concurrency,
there are several tasks to undertake:

Testability: Currently, the COE supports reporting the duration of an entire
simulation without initialisation and reporting of results. As these steps inevitably are
part of a simulation, they should be part of the performance tests. Additionally, the
COE should offer better granularity for performance measurements. Better
granularity will make it possible to examine the performance of different parts of the
application, which can aid in finding bottlenecks and help target the development
effort.

Investigate concurrency: Besides concluding that concurrency can/cannot improve
the performance of the application in some cases, it is interesting to investigate when
concurrency can improve the performance. Part of this investigation is to determine,
whether an increase of performance is achievable by enabling sequential, concurrent,
and mixed processing, as mentioned in the previous section. The approach is to
implement nested COEs that appears as FMUs externally as shown in Fig. 5.

COE

<<FMU>>

NestedCOE
FMU

FMU FMU

FMU

Fig. 5. Example of a nested COE participating in a co-simulation

This approach would allow for compositional co-simulation, as the nested COE will
exhibit the same behaviour as an FMU externally and therefore be closed under
composition. This allows for an elegant representation of complex systems, as it can
be considered a co-simulation of co-simulations. Furthermore, it allows for
hierarchical co-simulations, which can contribute to the reusability of co-simulations.
The implementation will also support distributed scenarios, where nested COEs can
be executed on different machines/operating systems and therefore allow for a greater
range of co-simulation scenarios.

Guidelines: Since the future work concerns investigation of concurrency, it is
compelling to attempt to generalise the lessons that will be learned and apply them
on different case studies. The hope is that this can contribute to existing
methodologies and guidelines on using concurrency efficiently.

Semantics alignment: The continuation of the FMI semantics work referred to above
will also involve theorem proving using the Isabelle theorem prover [26] and we hope
that it will be possible to align that with the COE work in order to use the semantics

150

TyJ'I K., .HapCCH ILT. I/ICCHCHOBaHl/lC BJIMAHHUA UCIIOJIB30BAHU Napauie/in3Ma Ha MPOU3BOAUTECIIBHOCTD JABHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

directly as an oracle of checking conformance. This also involves examining the
semantic properties of the concurrency features.

Graphical user interface: A Graphical User Interface (GUI) for the tools in the
INTO-CPS project is currently being developed. This contains functionality to
configure and interact with the COE. Furthermore, it will be possible to configure
which simulation strategies to use and how the FMUs should be organised. The GUI
application is being developed as a desktop application, as some of the tools in the
tool chain do not support a distributed approach. However, by using Electron [27] it
is possible to use web technologies for desktop applications. Therefore the GUI
application is cross platform and supports a possible transition to being hosted on a
web server in a distributed fashion.

Acknowledgement

The work presented here is partially supported by the INTO-CPS project funded by
the European Commission’s Horizon 2020 programme under grant agreement
number 664047. Furthermore, the authors would like to thank Nick Battle for
reviewing and providing input to this paper. Finally, thanks to Alexander Petrenko
for translating parts of the paper into Russian.

References

[1]. D. Broman, C. Brooks, L. Greenberg, E. Lee, M. Masin, S. Tripakis, and M. Wetter,
“Determinate composition of fmus for co-simulation,” in 2013 Proceedings of the
International Conference on Embedded Software, Sept 2013, pp. 1-12. ISBN: 978-1-
4799-1443-2.

[2]. J. Bastian, C. Clauss, S. Wolf, and P. Schneider, “Master for Co-Simulation Using FML,”
in Proceedings of the 8th International Modelica Conference, 2011, pp. 115-120. DOI:
10.3384/ecp11063115.

[3]. FMI development group, “Functional mock-up interface for model exchange and co-
simulation 2.0,” Modelica, Tech. Rep. Version 2.0, July 2014.

[4]. J. Fitzgerald, C. Gamble, P. G. Larsen, K. Pierce, and J. Woodcock, “Cyber-Physical
Systems design: Formal Foundations, Methods and Integrated Tool Chains,” in
FormaliSE: FME Workshop on Formal Methods in Software Engineering. Florence, Italy:
ICSE 2015, May 2015, pp. 40-46. DOI: 10.1109/FormaliSE.2015.14.

[5]. D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38, no. 5, pp. 11—
13, May 2005. DOI: 10.1109/MC.2005.160.

[6]. Typesafe Inc, “Akka scala documentation,” http://akka.io/docs/, Akka, September 2015,
Release 2.4.0.

[7]. P. Haller, A. Prokopec, H. Miller, V. Klang, R. Kuhn, and V. Jovanovic, “Futures and
promises - scala documentation,” http://docs.scala-lang.org/overviews/core/futures.html,
(Visited on 05/03/2016).

[8]. A. Prokopec and H. Miller, “Parallel collections — overview - scala documentation,”
http://docs.scala-lang.org/overviews/parallel-collections/overview.html, 2015, (Visited
on 05/03/2015).

[9]. H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collection of processes,” in
Proceedings of the 1977 Symposium on Artificial Intelligence and Programming

151

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

[10].

[11].

[12].

[13].
[14].

[15].
[16].
[17].
[18].
[19].

[20].

[21].

[22].

[23].

[24].

152

Languages. New York, NY, USA: ACM, 1977, pp. 55-59. [Online]. Available:
http://doi.acm.org/10.1145/800228.806932. DOI: 10.1145/800228.806932.

C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for artificial
intelligence,” in Proceedings of the 3" International Joint Conference on Artificial
Intelligence, ser. IJCAI’73. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1973, pp. 235-245. [Online]. Awvailable: http://worrydream.com/refs/Hewitt-
ActorModel.pdf.

G. A. Agha and W. Kim, “Actors: A unifying model for parallel and distributed
computing,” Journal of Systems Architecture, vol. 45, no. 15, pp. 1263 — 1277, 1999.
[Online].Available:
http://www.sciencedirect.com/science/article/pii/S1383762198000678.

C. Thule, “Investigating Concurrency in the Co-Simulation Orchestration Engine for
INTO-CPS,” Department of Engineering, Aarhus University, Finlandsgade 22, Aarhus N,
8200, Tech. Rep. ECE-TR-26, May 2016. [Online]. Available:
http://ojs.statshiblioteket.dk/index.php/ece/issue/archive.

N. Amalio, A. Cavalcanti, C. Konig, and J. Woodcock, “Foundations for FMI Co-
Modelling,” INTO-CPS Deliverable, D2.1d, Tech. Rep., December 2015.

T. Hoare, Communicating Sequential Processes. Englewood Cliffs, New Jersey 07632:
Prentice-Hall International, 1985.

T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe, “FDR3 — A Modern
Refinement Checker for CSP,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. LNCS, vol. 8413, 2014, pp. 187-201.

J. Fitzgerald, C. Gamble, R. Payne, P. G. Larsen, S. Basagiannis, and A. E. D. Mady,
“Collaborative Model-based Systems Engineering for Cyber-Physical Systems - a Case
Study in Building Automation”. INCOSE. Edinburgh, Scotland. July 2016.

Microsoft, “Acquiring high-resolution time stamps (windows),”
https://msdn.microsoft.com/en-us/library/dn553408(v=vs.85).aspx, 2015, (Visited on
05/03/2016).

N. Wirth, “A plea for lean software,” Computer, vol. 28, no. 2, pp. 64-68, Feb 1995.

M. Reiser, The Oberon System: User Guide and Programmer’s Manual. New York, NY,
USA: ACM, 1991.

H. Sutter, “A fundamental turn toward concurrency in software,” Dr. Dobb’s Journal, vol.
30, no. 3, pp. 16-23, 2005.

K. E. Harper, J. Zheng, and S. Mahate, “Experiences in initiating concurrency software
research efforts,” in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering — Volume 2, ser. ICSE *10. New York, NY, USA: ACM, 2010, pp.
139-148. [Online]. Awvailable: http://doi.acm.org/10.1145/1810295.1810316. DOI:
10.1145/1810295.1810316.

B. Agrawal, T. Sherwood, C. Shin, and S. Yoon, “Addressing the challenges of
synchronization/communication and debugging support in hardware/software
cosimulation,” in VLSI Design, 2008. VLSID 2008. 21st International Conference on VLSI
Design (VLSID 2008), Jan 2008, pp. 354-361.

W. Bishop and W. Loucks, “A heterogeneous environment for hardware/ software
cosimulation,” in Simulation Symposium, 1997. Proceedings., 30th Annual, Apr 1997, pp.
14-22.

D. Kim, Y. Yi, and S. Ha, “Trace-driven hw/sw cosimulation using virtual
synchronization technique,” in Design Automation Conference, 2005. Proceedings. 42nd,
June 2005, pp. 345-348.

Tyn K., Jlapcen ILT". MccnenoBanue BIUSHUS UCTIONB30BAHMS MapaJUICI3Ma Ha IPOU3BOAUTEIBHOCTD JIBHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

[25]. D. Becker, R. K. Singh, and S. G. Tell, “An engineering environment for
hardware/software co-simulation,” in In 29th ACM/IEEE Design Automation Conference,
1992, pp. 129-134.

[26]. T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof Assistant for Higher-
order Logic. Berlin, Heidelberg: Springer-Verlag, 2002.

[27]. Github, “Electron — Build cross platform desktop apps with JavaScript, HTML, and CSS”,
version 1.2.2, http://electron.atom.io/, (Visited on 10/06/2016).

UccnepoBaHue BNUAHUA UCNONb30BaHUA napannennima
Ha Nnpon3BoAuUTesiIbHOCTb ABUNXKa KOCUMYIALUUN B NPOEKTE
INTO-CPS

K. Tyn <casper.thule@eng.au.dk>
I1. I Jlapcen <pgl@eng.au.dk>
Opxyccxuil yrugepcumem, Texnuueckuu ghaxyiomem,
ya. Hnee Jlexmanc, 10, 8000 Opxycc C, Hanus

AnHoTtanus. Kubep-usndeckne CHCTEMBI 4acTO BKJIIOYAIOT B ceOs yIpaBIAIOIIUe KHOep-
3JIEMEHTHI, KOHTPOJIHpYomue (HH3HIecKre 00BEKTH U B3aNMOICHCTBYIOINE C HUMH. AHAIN3
MPOLECCOB B TaKMX CHCTEMax SBISIETCS CIOXHOW 3ajadedl M3-3a MEXAUCUUIIMHAPHOTO
Xapaktepa O3TOH o0JlacTH HcCleqoBaHUi. MoaenupoBaHHe W CHMYJSIIMS ITOBEACHUS
COCTaBJISIIOIIMX CHCTEMY KOMIIOHEHTOB, TaK Ha3bIBaeMasi KOCHMYJISILIHUS, TI03BOJISIET BHIIBISITH
BO3MOHOCTh HExKeareapHoro noseaenus. Marepgeiic FMI (Functional Mock-up Interface)
OIUCBHIBAET CTAHAAPTHBIN MHTEpQElC B3aMMOAEHCTBHS C COCTABIAIOIIMMU KOMIOHEHTAMH,
YYaCTBYIOIIMMH B TaKOW KOCHMYJIAINH, X MOXET TIOJIePKUBATh PA3IMIHbIC (DOPMATHU3MEL.
CraThsl ONMCHIBACT UCCIIEAOBAHUE TOTO, HACKOIBKO PA3IMIHBIE BO3MOKHOCTH NapauielIn3Ma
B Scala (akTopsl, mapaienbHbIe KOJIEKIUU U QyTyphl) YBEIHIHBAIOT MIPOU3BOIUTEIEHOCTD
cymectBytomero apmwkka Co-Simulation Orchestration Engine, BBINOJHSIOIIETO
KocUMyJinuio. MccnenoBanue conpoBoXkIaaoch peakTOPUHIOM UMEIOIIErocsl KoJia ¢ TeM,
4TOOBI peanu3alysi MOrJia UCIIOIb30BaTh MPEHMYIIECTBA MapaUICIIbHBIX BO3MOKHOCTEH. [list
TOro, YTOOBI CPaBHUTD Pa3IMYHbIC BAPUAHTBI PC€aIn3alliy BBIIIOJIHAJIOCH 110 YETBIPE TECTOBBIX
KOCUMYJISIIUA. B TECTOBBIX KOCHMYISIIMSX CPAaBHUBAINCH MapajuIelbHBbIE pealn3alud U
HCXOJHas TTOCIIeI0BaTeIbHas pealn3anys, BepH(QUINPOBAINCE PE3yIIbTATl MOASINPOBAHUS
Y MOJTy4YaJIMCh OI[EHKH BPEMEHH MOJICTIMPOBAHHS. AHAIN3 ITOKA3aJl, 9YTO B HEKOTOPBIX CIydasix
HapajIeIn3M MOXKET HCHOJIB30BAThCS JUIS TIOBBIIICHHS TIPOM3BOAUTENHHOCTH, HO JUISL TOTO,
'-lT06l>I JAOCTHYb ONTUMATLHOM MPOU3BOJUTEIIBHOCTH, HCOGXOHI/IMO KOMGHHHpOBaT])
pa3nuyHble cTpaTernd. Ha OCHOBE MOJyYeHHBIX pPe3yJbTaTOB MpeIararoTcst Oyayuue
HaIpaBJICHUs CCIIEJOBaHUI.

KiroueBble cioBa: Kocumynsims; napamwienusm; INTO-CPS; kubep-¢pusudeckie CHCTEMBI;
FMI

DOI: 10.15514/ISPRAS-2016-28(2)-9

153

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

Jasa nurupoanusi: Tyn C., Jlapcen ILI. MccnenoBaHue BIUSHUSA HCIIOJIB30BAHUS
TapajuieNn3Ma Ha IPOU3BOANUTENBHOCTE IBIKKA KocuMyaruH B ipoekte INTO-CPS. Tpyzer
VCII PAH, Tom 28, BbIm. 2, 2016 1., cTp. 139-156. DOI: 10.15514/ISPRAS-2016-28(2)-9

Cnucok nutepaTtypbl

[1]. D. Broman, C. Brooks, L. Greenberg, E. Lee, M. Masin, S. Tripakis, and M. Wetter,
“Determinate composition of fmus for co-simulation,” in 2013 Proceedings of the
International Conference on Embedded Software, Sept 2013, pp. 1-12. ISBN: 978-1-
4799-1443-2.

[2]. J. Bastian, C. Clauss, S. Wolf, and P. Schneider, “Master for Co-Simulation Using FMI,”
in Proceedings of the 8th International Modelica Conference, 2011, pp. 115-120. DOI:
10.3384/ecp11063115.

[3]. FMI development group, “Functional mock-up interface for model exchange and co-
simulation 2.0,” Modelica, Tech. Rep. Version 2.0, July 2014.

[4]. J. Fitzgerald, C. Gamble, P. G. Larsen, K. Pierce, and J. Woodcock, “Cyber-Physical
Systems design: Formal Foundations, Methods and Integrated Tool Chains,” in
FormaliSE: FME Workshop on Formal Methods in Software Engineering. Florence, Italy:
ICSE 2015, May 2015, pp. 40-46. DOI: 10.1109/FormaliSE.2015.14.

[5]- D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38, no. 5, pp. 11—
13, May 2005. DOI: 10.1109/MC.2005.160.

[6]. Typesafe Inc, “Akka scala documentation,” http://akka.io/docs/, Akka, September 2015,
Release 2.4.0.

[7]. P. Haller, A. Prokopec, H. Miller, V. Klang, R. Kuhn, and V. Jovanovic, “Futures and
promises - scala documentation,” http://docs.scala-lang.org/overviews/core/futures.html,
(Visited on 05/03/2016).

[8]. A. Prokopec and H. Miller, “Parallel collections — overview - scala documentation,”
http://docs.scala-lang.org/overviews/parallel-collections/overview.html, 2015, (Visited
on 05/03/2015).

[9]. H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collection of processes,” in
Proceedings of the 1977 Symposium on Artificial Intelligence and Programming
Languages. New York, NY, USA: ACM, 1977, pp. 55-59. [Online]. Awvailable:
http://doi.acm.org/10.1145/800228.806932. DOI: 10.1145/800228.806932.

[10]. C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for artificial
intelligence,” in Proceedings of the 3" International Joint Conference on Artificial
Intelligence, ser. JCAI’73. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1973, pp. 235-245. [Online]. Awvailable: http://worrydream.com/refs/Hewitt-
ActorModel.pdf.

[11]. G. A. Agha and W. Kim, “Actors: A unifying model for parallel and distributed
computing,” Journal of Systems Architecture, vol. 45, no. 15, pp. 1263 — 1277, 1999.
[Online].Available:
http://www.sciencedirect.com/science/article/pii/S1383762198000678.

[12]. C. Thule, “Investigating Concurrency in the Co-Simulation Orchestration Engine for
INTO-CPS,” Department of Engineering, Aarhus University, Finlandsgade 22, Aarhus N,
8200, Tech. Rep. ECE-TR-26, May 2016. [Online]. Available:
http://ojs.statsbiblioteket.dk/index.php/ece/issue/archive.

[13]. N. Amalio, A. Cavalcanti, C. Konig, and J. Woodcock, ‘“Foundations for FMI Co-
Modelling,” INTO-CPS Deliverable, D2.1d, Tech. Rep., December 2015.

154

Tyn K., Jlapcen ILT". MccnenoBanue BIUSHUS UCTIONB30BAHMS MapaJUICI3Ma Ha IPOU3BOAUTEIBHOCTD JIBHKKA
xocumyisatun B mpoekte INTO-CPS. Tpyowt HCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 139-156.

[14].

[15].
[16].
[17].
[18].
[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

T. Hoare, Communicating Sequential Processes. Englewood Cliffs, New Jersey 07632:
Prentice-Hall International, 1985.

T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe, “FDR3 — A Modern
Refinement Checker for CSP,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. LNCS, vol. 8413, 2014, pp. 187-201.

J. Fitzgerald, C. Gamble, R. Payne, P. G. Larsen, S. Basagiannis, and A. E. D. Mady,
“Collaborative Model-based Systems Engineering for Cyber-Physical Systems - a Case
Study in Building Automation”. INCOSE. Edinburgh, Scotland. July 2016.

Microsoft, “Acquiring high-resolution time stamps (windows),”
https://msdn.microsoft.com/en-us/library/dn553408(v=vs.85).aspx, 2015, (Visited on
05/03/2016).

N. Wirth, “A plea for lean software,” Computer, vol. 28, no. 2, pp. 64-68, Feb 1995.

M. Reiser, The Oberon System: User Guide and Programmer’s Manual. New York, NY,
USA: ACM, 1991.

H. Sutter, “A fundamental turn toward concurrency in software,” Dr. Dobb’s Journal, vol.
30, no. 3, pp. 16-23, 2005.

K. E. Harper, J. Zheng, and S. Mahate, “Experiences in initiating concurrency software
research efforts,” in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering — Volume 2, ser. ICSE 10. New York, NY, USA: ACM, 2010, pp.
139-148. [Online]. Awvailable: http://doi.acm.org/10.1145/1810295.1810316. DOI:
10.1145/1810295.1810316.

B. Agrawal, T. Sherwood, C. Shin, and S. Yoon, “Addressing the challenges of
synchronization/communication and debugging support in hardware/software
cosimulation,” in VLSI Design, 2008. VLSID 2008. 21st International Conference on VLSI
Design (VLSID 2008), Jan 2008, pp. 354-361.

W. Bishop and W. Loucks, “A heterogeneous environment for hardware/ software
cosimulation,” in Simulation Symposium, 1997. Proceedings., 30th Annual, Apr 1997, pp.
14-22.

D. Kim, Y. Yi, and S. Ha, “Trace-driven hw/sw cosimulation using virtual
synchronization technique,” in Design Automation Conference, 2005. Proceedings. 42nd,
June 2005, pp. 345-348.

D. Becker, R. K. Singh, and S. G. Tell, “An engineering environment for
hardware/software co-simulation,” in In 29th ACM/IEEE Design Automation Conference,
1992, pp. 129-134.

T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof Assistant for Higher-
order Logic. Berlin, Heidelberg: Springer-Verlag, 2002.

Github, “Electron — Build cross platform desktop apps with JavaScript, HTML, and CSS”,
version 1.2.2, http://electron.atom.io/, (Visited on 10/06/2016).

155

Thule C., Larsen P. G. Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 139-156.

156

Tpounkuit A.M., Byznanos JI.B. Crioco6 cratnueckoii oneHkn BpeMeHH paboTsl koMoHeHToB AADL-moneneit. Tpyout
HUCII PAH, 2016, Tom 28, Beimyck 2, ¢. 157-172.

A static approach to estimation of execution
time of components in AADL models

A.M. Troitskiy <troitskiy@ispras.ru>
D.V. Buzdalov <buzdalov@ispras.ru>
Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. During development of modern avionics systems and other mission-critical systems
modelling is vitally used. Models can be used for checking and validation of developed system,
including early validation. Early validation is very important because the cost of errors is
raising exponentially depending on the development stage. For modelling of such systems,
Architecture Analysis and Design Language (AADL) is widely used. It allows to model both
architecture of a developed system and some of behavioral characteristics of its components.
In the paper, the task of automated model checking for consistency of some behavioral
properties is considered. In particular, we focus on the problem of estimation of working time
of model components and corresponding between this time and other properties in a model.
This problem is close to the worst-case execution time problem (WCET) but it has its own
specific in this application. We considered a static approach allowing to work with standard
specification of components behaviour in AADL-models with specialized extended finite
automata. In the paper, peculiarities of used behaviour model (specialized finite automata) were
considered including work with time and external events. We considered the problem of
working time estimation for such models connected with non-local characteristic of this
property. We propose an algorithm for time estimation for such behaviour models. This
algorithm was implemented in MASIW framework, a tool for development of AADL-models.

Key words: AADL; avionics design; static analysis.
DOI: 10.15514/ISPRAS-2016-28(2)-10

For citation: Troitskiy A.M., Buzdalov D.V. A static approach to estimation of execution time
of components in AADL models. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp.
157-172. DOI: 10.15514/ISPRAS-2016-28(2)-10

1. Introduction

Modern avionics is responsible for control of almost all aspects of aircraft operation.
As a result, the complexity of such systems is really high. Thus making sure that
developed system is correct is a challenging task.

Nowadays problems and their solution bring additional complexity to avionics
systems. To satisfy models requirements for weight and power consumption,

157

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

integrated modular avionics (IMA [1]) approach is used. It means that several
resources (e.g. universal processor modules and network) are shared between several
pieces of software. The approach leads to appearing of step of the integration of the
whole system, i.e. deployment of software on different hardware, network
configuration and etc.

This approach solves weight and power consumption problems, but leads to potential
problems of interfering of applications. It means that the whole system correctness
must be checked and this problem is not solvable by checking of correctness of each
part of the system.

The model-driven approach of development allows to manage with the complexity of
a system being developed. In particular, models are needed to perform different kinds
of analysis of the modelled system though analysis of appropriate models. Such
analyses are intended to be performed on different stages of development, in
particular, to eliminate errors at early steps of development.

One kind of checks that are needed to be performed is check of timing properties of
software components.

In particular, during design and deployment stages, each particular application is
bound to a processor module. Appropriate timing properties are assigned to them, for
example

o dispatch protocol, i.e. whether an application is fired periodically,
eventually (sporadically) or both;

e period of execution for periodic applications;

e compute deadline, i.e. time interval in which an application has to finish its
work after it was given an ability to execute;

o recover deadline, i.e. time interval in which an application has to recover
from recoverable errors;

e process time, i.e. the time between sending a processed output data after
getting some input data;

e output rate, i.e. rate at which an application has to produce its output, when

it is periodic;

e output jitter, i.e. maximum deviation of time for periodic output and etc.

Being assigned to some particular application, these properties can be used in
schedulability analysis, data flow timing analysis, worst case execution time (WCET)
analysis and etc. Some desired or expected values can appear before implementation
of particular software.
During the system development, models of it are refined. In particular, for software
some behaviour specifications can appear. Such behaviour specifications can be
purely functional (i.e. containing only information about which outputs will be
produced in particular inputs at the given state).

158

Tpounkuii A.M., By3nanos JI.B. Crioco0 cratiyeckoii oreHkH BpeMeHH paboThl komroHeHToB AADL-mozeneit. Tpyos
HUCII PAH, 2016, Tom 28, Beimyck 2, ¢. 157-172.

Also such specifications can contain how much time will be consumed in this or that
situation. The addition of this information can lead to inconsistency in the model,
because some assumptions about timing properties of software can already exist in
the model and these assumptions can contradict with behavior specification.

To check the consistency of a model, it is important to estimate timing properties of
particular behaviour specifications.

Compute deadline consistency example

Consider a periodic software component with some particular period set in the model.
Consider also that this component has compute deadline property bounds set to a
range pfrom p,to p,ms.

This property can be used in the schedule building: e.g. a time frame of p,ms can be
reserved each period to ensure this software component has enough time to compute.
This can be done on early stages of system development when no particular behavior
is known yet.

Consider the case when after development this software component is refined: now
its behaviour is specified with automaton with transitions containing how much time
is consumed by computations assigned to them. We can estimate general time
consuming of an application each period as a range hfrom h;to h,ms.

After getting estimations hwe can compare it with bounds pfrom the model and there
are several decisions we can take:

e when h = p, behavior corresponds to property and the model is consistent;

e when h & p, the model can be inconsistent because real execution time
may miss the bounds;

e when h c p, p # h, the behaviour specification corresponds to the
property; also, we can say that the property in the model can be refined to a
more precise value;

e whenp n h = @, the model is inconsistent.

[otherwise]

Fig. 1. Example of behavior specification

Example of consistent case

Consider an example when the model has bounds for compute deadline property set
to be from 3 to 10 ms. Consider also that this application has behavior specification

159

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

with automaton shown on the fig.1. Each period this application begins in state s, and
finishes in s¢.

In this example we can estimate execution time of the application to be between 5 and
10 ms. This value is consistent with property set in the model.

There is another case when such estimations are useful. Consider a situation when
some software component in the model did not have any timing properties set.
Consider then, that later it was refined and some behavior specification has appeared
for it. The model still needs to be checked for schedulability and other timing-aware
properties. So, we need to derive these timing properties for a component with some
behaviour specification. Again, we run into an issue of estimation of timing properties
having a particular behavior specification.

So, generally we can resume that there is an important issue of estimation of timing
properties in responsible systems' models with behavior specifications.

2. AADL and BA

We use AADL (Architecture Analysis and Design Language, [2]) as a modelling
language. It allows to describe both physical and logical parts of the modelled system,
connections between components and bindings between layers of the system. AADL
has a mechanism of the language extending though special language annexes and it
has a number of standard annexes.

One of such extensions is called Behavior Model Annex [3] (BA). It allows to specify
behavior of AADL-components using extended time-aware finite-state machine.
Behaviors are set to components of a modelled system. The basic elements used in
BA behavior specifications are

e automaton states change;
e internal computations;
e accessing and assigning to internal or external variables (data components);

e interaction with the outer world using input/output ports; depending of
behavior, input ports can be managed both by pulling data and by waiting
for data to come;

o handling dispatch events, i.e. a situation when software component is
allowed to perform its execution (e.g., an operating system signals a thread
to start).

Behavior Annex automaton must contain a single initial state. When the automaton
goes out from the initial state, its internal variables are being initialized. The
automaton can contain several final states, in these states automaton can stop its
execution.

Each state of the automaton belongs to one of the classes of complete states or
execution states.

160

Tpounkuii A.M., By3nanos JI.B. Crioco0 cratiyeckoii oreHkH BpeMeHH paboThl komroHeHToB AADL-mozeneit. Tpyos
HUCII PAH, 2016, Tom 28, Beimyck 2, ¢. 157-172.

Transitions from execution states occur immediately after automaton comes to such
state. In complete states automaton waits for external events (data for input ports or
dispatch event). Transitions going out of complete states are fired as soon as
corresponding event happens.

In BA each state transition is assigned with a list of actions which is run when
automaton performs this transition.

There are actions that appear in the list of actions in BA behavior specification:
e actions with ports: reading, writing, getting of messages count in ports;

e actions with local and accessible external variables: reading and
assignment;

o locking on resources: getting and releasing;

e action for modelling of time consumption computation(tin--tmax):
e stop action for automaton interruption;

e composite actions (loops, conditionals);

e computation of arithmetical expressions.

3. Problem

We focus on AADL models with behavior specifications set using Behavior Model
Annex language.

We consider a BA behavior specification of a single component in a model. Also, we
consider two states sg;4+ and s.,,4 Of the automaton are given.

We want to estimate the maximum and minimum model time the BA automaton will
consume to go out from state sg,.+ and to come to s, -

4. Solution

Automaton can reach a given state starting from another given state in several ways
depending on variables state, external events and nondeterminism. We will call an
interleaving sequence of states and transitions as a path in automaton.

Thus we divide the original problem to considering a single path in automaton and
then considering the automaton itself as a source of paths.

4.1. Estimation for a path

First, let us look at a finite path starting and ending at given states sy 4+ and Senq,
and going through states s; s, ..., s,, which could be equal to each other and to states
Sstare aNd Sq,q. We would designate it as Sgiqrt = S; = Sz =...— Sy = Sepg. The
question is how long does it take to go along this path out from sgq,+ 10 Seng-

Some of states in the path may be complete. An automaton is waiting for external
events in these states while going through them. It is a hard task to estimate how much

161

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

time would it take because it is not a local property, i.e. it depends on other
components in the model.

Execution states do not consume any time by definition, thus there is no such problem
for them.

Also, in BA actions assigned to transitions can take some time (e.g. computation
action takes time, which is specified with its argument; input/output operations may
take time too). Time taken by composite actions (loops and conditionals) depend on
very actions inside them and external conditions (state of variables and ports). Having
dependency on external conditions, estimation of time consumption by conditionals
it a tricky task (undecidable in the general case).

Thus, task of estimation of time, taking by execution of a finite path, can be split into
two tasks: time estimation for each complete state in the path and for each list of
actions assigned to a transition in the path.

4.2. Estimations for an automaton

The whole automaton containing both execution and complete states is a challenging
object. Let us at first consider simpler kind of automata containing only execution
states and then to consider the general case.

4.2.1 Automata with execution states only

In this case, automaton is not waiting for external events and goes through states right
away. We can represent such automaton as a weighted graph. Vertexes of the graph
are states of the automaton, and edges of the graph are transitions of the automaton.
Weight of each edge is time estimation for the actions of corresponding transition.
We can use all known algorithms for finding minimum and maximum times (e.g. for
finding minimum time we can use Dijkstra's algorithm [4]).

However, when the graph is cyclic these estimations can be inaccurate. For example,
we have a loop of the automaton, which is executed exactly 50 times. If this fact is not
used, estimation of the time consumption of this loop may be too imprecise, up to 4o
for the higher bound and to 0 for the lower bound. Considering information of the
number of loop iterations, we can estimate the time to be 50t;,4, Where t;,4y is an
estimation of the time consuming by the loop body, or even more precise if ¢4y
depends on the loop iteration number in a known way.

Despite inaccuracy in some cases, time estimation for this kind of automaton is a
pretty studied problem.

4.2.2 Automata with complete states too

Approaches with simple weighted graphs with weights only on edges do not model
the fact that automaton can wait some time in a complete state during its execution.
But we work with automata having complete states. Thus, we need to manage with it
somehow while estimating automata execution time.

162

Tpounkuii A.M., By3nanos JI.B. Crioco0 cratiyeckoii oreHkH BpeMeHH paboThl komroHeHToB AADL-mozeneit. Tpyos
HUCII PAH, 2016, Tom 28, Beimyck 2, ¢. 157-172.

It seems that this problem can be reduced to the previous one, e.g. though replacing a
single complete state with two connected execution states with a transition consuming
the same time as automaton waits in this complete state.

But what we realized trying to implement such approach is that time of waiting in a
complete state is not local and cannot be represented by some constant. This time
actually depends both on the way this state was reached and on how regular external
events occur. So, automata with complete states need special treatment, one variant
of which will be discussed below.

4.2.3 Solution structure
So, to solve the original task we have divided the original problem to the following
subtasks:
e estimation of time consumption of paths in automaton:
e estimation of execution time for transitions;
e estimation of time of waiting in complete states;
e estimation of time consumption by automaton itself:
e ina particular case, when the automaton contains only execution states;
¢ inthe general case, when automata with both complete and execution
states are considered.
The rest of the paper follows this division.

5. Estimation of time for paths

5.1. Estimation of time for transitions

Let us estimate how much time can take different Behavior Annex actions. At first,
look at simple actions.

The action computation has a time as an argument, which is the execution time of this
action.

Also, the action get resource can take some time, because at the moment when this
action is executed, needed resource can be used by some other component. And so it
will be necessary to wait for some time until the resource can be used. We will
estimate this time from 0 to +co.

If action stop occurs at some point, then the execution of automaton became
interrupted and it does not go to the next state. The action does not take time.
However, since we are interested in the time between the states of the automaton, it
is convenient to assume that the time of this action is 4+oo. Indeed, if the transition
from s to g with action stop exists, it means that automaton will not ever be in state
qafter this transition.

Now let us consider composite actions. Loops which contains the actions occupying
some time, we will estimate with time from 0 to 4+c0. Making this estimation to be

163

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

more accurate is possible but it is not considered in this paper. Other loops do not take
any time.

We will estimate conditional constructs in the following way. Time of actions in if-
block is from t; to t,, time of actions in else-block is from 7, to 7, (if there is no
else-block 7; = 7, = 0). Then the estimation is the time range from min(t,, z,) to
max(t,, ;).

In this way, estimations for transitions of the automaton can be performed. Now let
us estimate time, that automaton is waiting in complete states.

5.2. Estimation of time for complete states

Behavior Annex allows to handle two types of external events: receiving a message
to input port and a dispatch signal.

At first, look at the first type of events. Since the expectation of the receiving message
can take arbitrarily much time, we will estimate this time with 0 to +oco. So, this is
the estimations of time of waiting in the complete states for the external event of the
first type.

Estimations of time waiting for events of the second type can be performed in same
way. But the estimations can be more accurate when the component is a thread. This
is due to the fact, that AADL allows to set properties for the thread, which determined
how often dispatch signal arrives to the thread (such properties are Dispatch Protocol
and Period).

These properties determine the time between neighboring complete states in
automaton. Consider any path in an automaton, which starts and ends in complete
states, all other states are execution states, and the transition from the first complete
state is the transition of the second type. Above AADL-properties can determine the
execution time of this path from going out from the first complete state to going out
from the second complete state. This time is determined by time range with possibly
infinite bounds.

In this way, when automaton comes to complete state, the waiting time in this state is
determined by the time elapsed from going out from the previous complete state and
by AADL-properties.

6. Estimation of time for the whole automaton

6.1. Particular case, execution states only

6.1.1 Problem
The weighted oriented graph G = {V, E} and two Vertices Ss;q,¢» Senq are given. The
weights of the edges are determined by the function w: E - R2.

Weight of each edge is a range of two real numbers [ry, 1,]; , = 17, where 7, is the
lower bound, r, is the upper bound of the range. Weights are partially ordered in the
following way:

164

Tpounkuii A.M., By3nanos JI.B. Crioco0 cratiyeckoii oreHkH BpeMeHH paboThl komroHeHToB AADL-mozeneit. Tpyos
HUCII PAH, 2016, Tom 28, Beimyck 2, ¢. 157-172.
[r,12] <[q1,92] © 12 < g4

Also, the addition function for weights is determined:

[r, 2] +[q1,q2] = [+ g2 + q2]-
The task is to find the maximal and minimal weight of paths from sg;q+ 10 Sena,
where weight of a path is a sum of weights of path’s Sgiqrt = *** = Seng transitions
counted with multiplicity.
For example, we will consider the graph on the fig. 2 and vertices s, and sg as Sszart
and s,,4 respectively.

Fig. 2. Graph G and strongly connected components

Fig. 3. Graph E

6.1.2 Algorithm

1) We find strongly connected components (SCC) in graph G with Tarjan's
algorithm [5]. Strongly connected components of the graph G are
highlighted by a dotted line on fig. 2.

2) We build acyclic graph E from strongly connected components of the graph
G (fig. 3).

3) Let vertices syq¢ and s,,,4 belong to strongly connected components
Cstare aNd copnq respectively. Then we find all paths in acyclic graph E (we

165

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

166

4)

5)

6)

call them SCC-paths) from c;q.¢ 10 Cong. In the example, all paths from c,
tocgare cp > ¢c; @ czandcy, > ¢; = cs.

For each SCC-path cg1qrt = €1 =... = Cp_q = Cong We pick vertices from
each SCC and consider the following path through them:

(sstart = s(z))ut) - (Siln = Sfut) i (Sriln—l = 51011—“:1) - (Siln = Send)v
where Sgeare € Co» Sena € Cn» ST sP% € ¢y, i=1,2,...,n, and edges
(s - sft) €E, j=1,2,..,n—1. We will designate such paths as
Ppickea. DeSignation sin = s{™* represents an automaton path from state s;
to state s; inside a single SCC-component. Vertices s/ and s** can be the
same. On the fig. 4 all paths are presented. Notice that number of such paths
is finite because each SCC-path is finite.

Let us find the weight of each path pp;ckeq. Weight of each transition
s?Ut - s™is equal to weight of edge (sP"%,sj") of graph G. To estimate
weight of transitions s/ = s%¢, i = 1..n — 1, we consider two cases.
Case 1: ¢; is acyclic (thus containing a single vertex), then weight of the
transition s = s% is 0.

Case 2: ¢; is cyclic, then upper bound of weight of the transition s/ = s2%¢
is positive infinity, and the lower bound is calculated using Dijkstra's
algorithm [4].

For possibly infinite set of paths between s, 4+ and s.,,4 We have considered
finite set of p,;ckeq Paths. We calculated weight of each p,;creq path, got a
finite set of weights. Thus, we can pick maximal and minimal ones.

Fig. 4. Paths in graph G from s0 to s6

Tpounkuii A.M., By3nanos JI.B. Crioco0 cratiyeckoii oreHkH BpeMeHH paboThl komroHeHToB AADL-mozeneit. Tpyos
HUCII PAH, 2016, Tom 28, Beimyck 2, ¢. 157-172.

6.2. General case, both execution and complete states

6.2.1 Problem

The Behavior Annex automaton and two states of the automaton are given. The
problem is to find estimation of the execution time of the automaton between leaving
the state s.4,+ and entering the state s,,,4.

We designate the set of states of the automaton as S. The set of execution states of the
automaton is Exec c S, the set of complete states of the automaton is Comp c S.
For example, let us consider the automaton on fig. 5. Complete states are marked by

white color, execute states are gray. The goal is to find time between state e2 and
state c2.

Fig. 5. Graph with complete states and execution states

6.2.2 Solution idea

Two different states types are determined in Behavior Annex. So we consider two
different graphs.

We consider graph of the complete states and the graph of the execution states
separately. Then if we need to find time between exit from one complete state to exit
from other complete state, we use graph of complete states. In other cases we use the
graph of execution states.

6.2.3 Algorithm

At first, we introduce few functions.

Function PREV:S — Comp computes all previous complete states for a state of the
automaton, i.e. those complete states starting with which it is possible to reach the
state through only execution states. More formally, Vs €S Vc € Comp:
¢ € PREV(s) & 3(c - s), where ¢ > s means (c - e; 2 e, > = e, > 5),
withn >0, e, e, ... e, € Exec.

167

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

Function NEXT: S — Comp computes all possible next complete states for a state of
the automaton, i.e. those complete states, which can be reached from the state through
only execution states. More formally, Vs € S Vc € Comp: c € NEXT(s) &
A(s -» ¢). It is easy to see that Vc;,c, € Comp:c, € PREV(c,) &
¢, € NEXT(cy).

Fig. 6. Graph G, and graph G,

6.2.3.1 General scheme

We have two states Sgiqrt)Sena €S- The aim is to find the minimum and the
maximum possible time between leaving the state s, and entering the state s,,,4.
We will do this by estimation of time for each path sg;grt = *** = Seng- The problem
is that execution time of the path depends on complete states before state sgqr¢, if
Sstare 1S €XECUtiON State.

We will consider two cases: when sg.q,+ iS complete state, and when sgq4+ IS
execution state.

When sgq,+ IS cOmplete state, each path sgqt = =+ = Seng Can be divided into
smaller paths: s¢iqrt = =+ = Cip @Nd Cjy, = Sena, Where ¢;, € PREV (Spnq). FOr €ach
Cin € PREV (Sgpnq) time of the path sy 0re = -+ = Cin > Sena 1S T (Sgtart = Cin) +
t(Cin > Sena), Where T(Sgeqrt = - = Cin) IS time between leaving sg:,+ and
leaving c;,,, and time t(c;, —> Senq) IS time between leaving c;, and entering s.,4.
Notice that times T and t can be different for the same path, when the last state of the
path is complete state. The ways of estimation of time T(cl- - cj) were described in
section 5.2.

When sgq¢ IS execution state, each path Sgu+ = Seng 1S @ part of path like
Cout = Sstart "> Cmed = " = Cin ™ Send where Cmea € NEXT(Sstart)’
Cout € PREV (Sstart)s Cin € PREV (Sgng). Time of the path sgqrt = *++ = Seng CanN

168

Tpounkuii A.M., By3nanos JI.B. Crioco0 cratiyeckoii oreHkH BpeMeHH paboThl komroHeHToB AADL-mozeneit. Tpyos
HUCII PAH, 2016, Tom 28, Beimyck 2, ¢. 157-172.

be computed as T(Cout - Cmed) - t(Cout = Sstart) + T(Cmed Idi Cin) +
t(cin o Send)'

Fig. 7. Usage of graph G,: graphs G, (e,, c3), G,(c,, ¢3), G,(co, €3), G,(c1, €5).

6.2.3.2 Calculation of T

Let us focus on the function T. Value of T is described in section 5.2 for paths
c; > c;, where ¢;,¢; € Comp. To find time T for arbitrary paths (¢; - -+ - ¢;) we
build weighted oriented graph G,. The vertices of the graph G, are complete states of
the automaton. We build edge (c;, ¢;), if a path ¢; -» ¢; exists in the automaton.
Weights of edges are determined with AADL-properties of the component as
described in section 5.2, i.e. weight of an edge (c;, ¢;) equals to T(c; - ¢;). Graph
G, for the considered example is presented on fig. 6. To find time T(¢; » ... = ¢;)
we execute the algorithm described in section 6.1 on graph G..

6.2.3.3 Calculation of t
To find time t(s; ~» s,) we build weighted oriented graph G,. The vertices of the
graph G, are all execution states of the automaton. For each transition e; — e, of the

169

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

automaton we build edge (e,,e,) in graph G,. The weight of this edge is time
estimation for transition’s actions (see section 5.1). Graph G, can be not connected.
Graph G, is presented on the top of fig. 6.

With graph G, we can estimate time t(s; ~» s,). To do this we build new graph
G;(s1,S,). Vertices set of graph G¢(sy, s,) is union of states set of G, and {s;, s,}. It
contains all edges from G,. Additionally, it contains all edges, which are
corresponding to outgoing transitions of automaton from state s, to vertices from
G;(sy,S;) and incoming transitions from vertices of G.(s;,s,) to s,. To find
t(s; - s,) we execute the algorithm from section 6.1 on graph G4 (s, S5).

On the second line of fig. 7 the graph G, for calculating the time between exit from
complete state c, to enter to complete state c is presented.

6.2.3.4 Calculation of the result

For each path ssge = ... = Seng We calculate time estimation. The result of the
algorithm is the smallest time range, that contains all these time ranges.

7. Related works

One close problem to the problems, considered in this paper, is WCET problem. This
problem is well-known, and a lot of algorithms solving WCET exist. But these
algorithms cannot be applied to our problem directly, due to considered specific
object class, defined by Behavior Annex language. As Behavior Annex describes
behavior based on timed automata, consider WCET algorithms working on timed
automata.

The WCET problem for timed automata was considered in the paper [6]. This paper
has a description of the algorithm using the difference-bound matrix data structure to
represent zones (heuristic). This algorithm can be applied in the particular case, which
was described in section 6.1.

The main specific construct in Behavior Annex is complete states. In the particular
case we consider automata with only execution states. These automata are very
similar to timed automata from the paper [6]. It means that algorithms from the paper
can be applied to the particular case. We are thinking about applying it, but currently
we have chosen simpler algorithm.

But to use it in the general case from 6.2, it should be adapted. We have decided that
the adaptation of the algorithm would be harder, than to develop the new algorithm
applied to a needed object class.

8. Conclusion

In this paper, the development of mission-critical systems is considered. In this
context, we have considered the task of correct integration of the whole system.
System modelling with language AADL and analysis of models are using to solve the
task.

170

Tpounkuii A.M., By3nanos JI.B. Crioco0 cratiyeckoii oreHkH BpeMeHH paboThl komroHeHToB AADL-mozeneit. Tpyos
HUCII PAH, 2016, Tom 28, Beimyck 2, ¢. 157-172.

The problem is that a component of an AADL model can have behavioral properties
set. At the same time the behavior of the component can be set with Behavior Model
Annex. That can lead to inconsistency of the model. So, we considered a task of
automated analysis of behaviors in AADL-models.

In this paper, one static approach for analysis of timing properties is proposed. An
algorithm for finding of execution time estimation of behaviour of AADL-
components was offered and described in the paper. This algorithm was implemented
in MASIW, a framework for development and analysis of AADL models [7].
Characteristics of behaviors, acquired using proposed algorithm can be used for
checking of model consistency and for model refinement, when AADL-properties are
not set.

References

[1]. B. C. Watkins, “Transitioning from federated avionics architecture to Integrated Modular
Avionics”, AIAA 26™ Digital Avionics Systems Conference, 2007.

[2]. Architecture Analysis & Design Language (AADL), SAE International standard
AS5506B, SAE International, 2012, http://standards.sae.org/as5506b/.

[3]. Architecture Analysis & Design Language (AADL), Annex Volume 2, Behavior Model
Annex, SAE International, 2011, http://standards.sae.org/as5506/2/.

[4]. E.W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische
Mathematik, 1959.

[5]. R.E. Tarjan, “Depth-first search and linear graph algorithms”, SIAM Journal on
Computing, 1972.

[6]. O. I. Al-Bataineh, “Verifying worst-case execution time of timed automata models with
cyclic behaviour”. Ph. D. dissertation, School of Computer Science & Software
Engineering, 2015.

[7]. D. Buzdalov, S. Zelenov, E. Kornykhin, A. Petrenko, A. Strakh, A. Ugnenko, and A.
Khoroshilov, “Tools for system design of integrated modular avioics”. Trudy ISP
RAN/Proc. ISP RAS, vol. 26, issue 1, 2014, pp. 201-230 (in Russian). DOI:
10.15514/ISPRAS-2014-26(1)-6

Cnoco6 cTtaTu4yeckoun OoLeHKU BpeMeHU paboTbl
KomMmnoHeHToB AADL-moaenen

A.M. Tpouyxui <troitskiy@ispras.ru>
J1.B. Byzoanoe <buzdalov@ispras.ru>
Hnemumym cucmemnozo npoepammupoganusn PAH,
109004, Poccus, e. Mockea, yn. A. Conxcenuysvina, 0. 25.

AHHoTamms. Ilpy NpoekTUpOBaHMM COBPEMEHHBIX CHUCTEM ABHOHHKH, a TaKKe IPYTHX
OTBETCTBEHHBIX CUCTEM, HEOTHEMIIEMON JacCThIO Pa3pabOTKHU SABISETCS MOJEIMPOBAHUE ITUX
cucteM. Mozenu MoryT HCHONIB30BaThCs ISl MPOBEPOK M BAIUIAIMN CUCTEMBI, B TOM YHCIIE
Ha paHHMX 3Tamax pa3paboTkH. PaHHss Banmupanuss BaKHA HU3-32 TOTO, YTO CTOMMOCTb
UCIIPABJICHUS OIIHOOK PacTET HKCIOHEHIMAIBLHO OT BPEMEHH BHECEHHUs 3TOH ommOku. J{is

171

http://standards.sae.org/as5506b/
http://standards.sae.org/as5506/2/

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.
Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

MOJICJIUPOBAHUS TaKOT0 POAa CHUCTEM HIMPOKO UCIOJB3YeTcs sA3bIK MoaenupoBanus AADL,
TIO3BOJISONIMI MOAENMPOBATH KaK apXUTEKTYpy pa3pabaTbIBaeMBIX CHCTEM, TaK H HEKOTOPHIE
MOBEJICHUECKHEe XapaKTEPUCTHKNA KOMIIOHEHTOB MOJENH. B craThe paccmaTpuBaeTcs 3amada
aBTOMAaTU3UPOBAHHON IMPOBEPKU MOJEIM HAa KOHCHCTEHTHOCTh HEKOTOPBIX MOBEACHYECKUX
cBoifcTB. B wactHOCTH, paccMaTpuBaeTCst MpoOIeMa OIIEHKH BPEMEHU PabOThl KOMIIOHEHTOB
MoJeNel U COOTBETCTBHS 3TOTO BPEMEHH IPYTUM CBOHCTBAaM B MOJIENHU. DTa mpodiema Onn3ka
k npo6Guieme xyanrero Bpemenu BoinonHeHns: (WCET), Ho nMmeeT cBolo crierupuKy B JaHHOM
NIPWIOKEHNH. PaccMOTpeH cTaTHdeckumid TOAXoxA, paboTarommii co CTaHZApTHOI
crnenuduKanueii moBeneHus KoMmoHeHTOB AADL-mozenell crenualn3upOBaHHBIME
pacIIMpeHHBIMA KOHEYHBIMH aBTOMAaTaMH. B craThe OBUIM PAacCMOTPEHBI OCOOEHHOCTH
HCTIONB3YeMOH MO TOBEACHMS (CHEeUaNn3UpOBAaHHBIX KOHEYHBIX aBTOMAroB), B
YaCTHOCTH, 3a CYET paboOThl aBTOMAaTa CO BPEMEHEM U BHENIHUMM COOBITUSAMHU. bbimn
PpaccMOTpEHBI MPOOIEMBI OIIEHKH BpEeMEHU paboThl TAKUX MOJIENel TOBEIEHHs, CBI3aHHBIE C
HEJOKaJbHOCTBIO ATON XapaKTEPUCTUKU B psifie ciaydaeB. bbll pacCMOTPEH BaXKHBIN 4aCTHBIN
cllydail, a Tarke oOmmid cimydaid 3Toi mpoOiembl. B cTaTee mpemaraercsi ajaropuTM,
MO3BOJIIOIINI OIIEHUTH BpeMsl pabOTHl TAKUX MOJIENeil MOBEIEeHHS B 3THX CiIydasx. [laHHbIe
AITOPUTM pPEATH30BaH M HCIOJIB3yeTcs B cpexe paspaborku AADL-mogmeneit APM CU
(MASIW).

Kimouessble ciioBa: AADL; aBHOHNKA; CTATHYECKHI aHAITN3.
DOI: 10.15514/ISPRAS-2016-28(2)-10

Jas uutupoBanus: Tpourkuit A.M., By3nanos /I.B. Crioco6 crarndeckoii OIEHKH BpEMEHU
paboter komnonerToB AADL-Moneneit. Tpyast UCII PAH, Tom 28, Bem. 2, 2016 1., cTp. 157-
172 (na anrmuiickom). DOI: 10.15514/ISPRAS-2016-28(2)-10

Cnucok numepamypsbl

[1]. B. C. Watkins, “Transitioning from federated avionics architecture to Integrated Modular
Avionics”, AIAA 26™ Digital Avionics Systems Conference, 2007.

[2]. Architecture Analysis & Design Language (AADL), SAE International standard
AS5506B, SAE International, 2012, http://standards.sae.org/as5506b/.

[3]. Architecture Analysis & Design Language (AADL), Annex Volume 2, Behavior Model
Annex, SAE International, 2011, http://standards.sae.org/as5506/2/.

[4]. E.W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische
Mathematik, 1959.

[5]. R.E. Tarjan, “Depth-first search and linear graph algorithms”, SIAM Journal on
Computing, 1972.

[6]. O. I. Al-Bataineh, “Verifying worst-case execution time of timed automata models with
cyclic behaviour”. Ph. D. dissertation, School of Computer Science & Software
Engineering, 2015.

[7]. A.B. By3nanos, C.B. 3enenos, E.B. Kopusixun, A.K. Ilerperko, A.B. Crpax, A.A.
Vruenko, A.B. Xopommuios, “MHcTpyMeHTaIbHBIE CPEICTBA IPOEKTUPOBAHUS CHCTEM
HMHTErpUpOBaHHON MoaynsHOH aBuoHukK, Tpynst UCII PAH, tom 26, Bemmyck 1, 2014
r., ctp. 201-230. DOI: 10.15514/ISPRAS-2014-26(1)-6

172

http://standards.sae.org/as5506b/
http://standards.sae.org/as5506/2/

Kosepuunckuii U.B., Kan A.B., Boixos B.B., ITonos 10.C., T'openun H.K. TIpaktiueckuii onsIT peann3anuy moaxo10B8
TPOTPaMMHO# ¥ CHCTEMHO HHXEHEPHH [UIS yIpaBieH:s TpeOOBAHUSIMHE IPU pa3paboTKe IPOrpaMMHOTO 00eCIIeUeHUs.
B aBHAIMOHHOIT otpaciu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, c. 173-180.

Practical experience of software and system
engineering approaches in requirements
management for software development in

aviation industry

1.V. Koverninskiy <ivkoverninsk@2100.gosniias.ru>
A.V. Kan <avkan@2100.gosniias.ru>
V.B. Volkov <vbvolkov@2100.gosniias.ru>
Yu. S. Popov <yspopov@2100.gosniias.ru>
N.K. Gorelits < nkgorelits@2100.gosniias.ru>
State Research Institute of Aviation Systems,
125319, Russia, Moscow, Viktorenko Str, 7

Abstract. The article describes the technical world evolution tendencies, which require proper
software and system engineering approaches used for complex systems creation, for example
for aircrafts creation. The substantiation of the importance and relevance of using requirements
management discipline in software development is made. The main basics of software and
system engineering approaches and discipline are set out. System engineering is a discipline,
which integrates and harmonizes all activities around entire area of systems creation. The
article contains description of information systems, which have been created in GosNIIAS and
now are actively used in internal and external works: requirements management information
system, problem reports management information system, technological environment for test
methods preparation and test results registration. Requirements management information
system contains special predefined documents and template, required by standards DO-178,
DO-254, DO-330, ARP4754, State Standards GOST 51904 and GOST 34. Using of
requirements management system in GosNIIAS and external enterprises is described. Problem
reports management information system registers and supports the lifecycle of problem reports,
which appear during the work process. Technological environment for test methods preparation
and test results registration supports different activities such as test methods, test cases, test
procedures preparation and testing on the integration stand, test results registration and test
protocols preparation. Some perspective directions of software and system engineering
approaches applying in GosNIIAS are listed.

Keywords: software engineering; system engineering; requirements management; complex
on-board equipment; aircraft design.

DOI: 10.15514/ISPRAS-2016-28(2)-11

173

Koverninskiy 1.V, Kan A.V., Volkov V.B., Popov Yu.S, Gorelits N.K. Practical experience of software and system
engineering approaches in requirements management for software development in aviation industry. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp.173-180.

For citation: Koverninskiy I.V., Kan A.V., Volkov V.B., Popov Yu.S., Gorelits N.K. Practical
experience of software and system engineering approaches in requirements management for
software development in aviation industry. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2,
2016, pp. 173-180. DOI: 10.15514/ISPRAS-2016-28(2)-11

1. Introduction

Nowadays there is a considerable change in industries all over the worlds. The change
is related with the rapidly increasing complexity level of systems and devices, which
are created and used.

Safety and reliability requirements to products of aerospace, defense and other
industries become stricter as well as certification requirements to management
processes of products creation. At the same time we have to use new industry
standards.

Aerospace imposes some restrictions and requirements on the software development
process and its result. These restrictions are caused by safety requirements to the
aircrafts on which the software will be used. Requirements are set out in the industry
standards, these standards must be complied very carefully for high quality results
and successful certification.

2. Software and system engineering approaches realization

Using and customizing software and system engineering processes and approaches
are an appropriate response to technical world complication tendencies. These
processes and approaches are base of the most standards and guidelines which define
methods to achieve necessary safety and reliability levels during development, design
and engineering of critical technical and software systems.

Nowadays software in complex technical systems is responsible for executing of the
most critical functions [1].

The most important discipline of software and system engineering for software
development is requirements management. If there is no requirement management
process or its bad realization then obvious or hidden defects and faults appear. It takes
more and more efforts to repair these defects and faults at the later stages of
development lifecycle.

Problems in requirements are leaders in projects failures reasons lists and rework
costs lists (Standish Group reports).

That’s why requirements are mandatory basis of design and development processes
according to guidelines of standards R4754 (R4754A is now a draft, it is Russian
analogue of ARP 4754), KT-178 (DO-178), KT-254 (DO-254), DO-330, GOST R
51904. Development of the software, hardware and systems begins from creation of
requirements. Design is based on requirements. We also have to inspect how result
corresponds with initial requirements during verification, validation, testing
processes.

174

Kosepuunckuii U.B., Kan A.B., Boixos B.B., ITonos 10.C., T'openun H.K. TIpaktiueckuii onsIT peann3anuy moaxo10B8
TPOTPaMMHO# ¥ CHCTEMHO HHXEHEPHH [UIS yIpaBieH:s TpeOOBAHUSIMHE IPU pa3paboTKe IPOrpaMMHOTO 00eCIIeUeHUs.
B aBHAIMOHHOIT otpaciu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, c. 173-180.

Some important tasks arose GosNIIAS due to the changes in the world. These tasks
were about modernization of existing approaches and work processes in order to
minimize potential risks for software design and development [2].

A number of current situation researches were done in GosNIIAS. Existing world
approaches to the software and system engineering approaches were adapted
considering the specialization of the institute. The results of analysis and adaptation
as well as software and system engineering fundamental principles formed the basis
of newest works of GosNIIAS.

Fundamentals of software and system engineering:
e Requirements are base of software development process,

e There should be coherent architecture of modules/subsystems and
communication interfaces (points of input and output) between modules
should be predefined,

o Verification process (product check for requirements compliance) should
be organized for cases when accurate measurement is impossible,

¢ Modeling approaches and then model verification and validation are used
for earlier failures and bug detection,

e Communication protocols between process participants should be defined
like strict regulations.

Nowadays GosNIIAS has built the number of systems accordingly to software and
system engineering approaches. The list of created systems consists of the following
systems:

¢ Requirements management information system,
e Problem reports management information system,
e Technological testing environment,

o Practical approaches and skills in software and system engineering adapted
for real tasks.

2.1 Requirements management information system

Requirements management information system (RMIS) was created for support
requirements management activities in design and development of complex systems
like aircraft onboard software.

RMIS processes are built based on R4754 (ARP 4754) processes.

RMIS realizes such functions and processes like:

e Cross-cutting requirement management process during the software and
system development entire lifecycle,

e Single requirements change and configuration management process,
o All necessary lifecycle artifacts tracing,
175

Koverninskiy 1.V, Kan A.V., Volkov V.B., Popov Yu.S, Gorelits N.K. Practical experience of software and system
engineering approaches in requirements management for software development in aviation industry. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp.173-180.

e Generation and publishing of reporting documents and documents with any
necessary data in accepted formats.

Documents and projects templates required by standards R4754, KT-178, KT-254,
DO-330, GOST R 51904, GOST 34 are created and included in RMIS suite. These
items allow to decrease labor costs for audit preparation and passage in certification
authorities — processes and products must strictly comply the standards.
Some methodological materials were made to help with requirements management
and configuration management using RMIS.
Using RMIS while designing and developing aircrafts allows to significantly reduce:

o Efforts for execution of works,

o Time for approval, negotiation and final products release,

e Errors from difficult work with requirements,

e Provides actual information to all the participants during entire

development lifecycle.

This way RMIS gives opportunities to make reasonable and timely decisions.
RMIS was successfully implemented in some organizations. The list of successful
users of RMIS in aviation industry includes companies such as GosNIIAS,
SpecTechnica, Techodinamika and others.
GosNIIAS effectively uses RMIS in testing avionics processes on integration stand
for Irkut MS-21 aircraft. RMIS’s database contains traced data from AP-25 (like
EASA CS-25, FAR-25 — Airworthiness standards for transport categories airplanes),
Certification basis, Special technical conditions and some other data for Irkut MS-21
aircraft. There is active ongoing process of creation, customization and
implementation of requirements management process, configuration management
process, verification and validation management process in GosNIIAS.

2.2 Problem reports management information system

Specialists from GosNIIAS also made Problem reports management information
system (PRMIS) during MS-21 project. PRMIS allows support of problem reports
management activities on testing avionics processes on integration stand for MS-21
aircraft.

PRMIS processes are built on the base of R4754A (R4754A’s part about problem
reports actvities). Main of PRMIS tasks are

e Collection and storage data of problem situations,
e Problem analysis,

e Resolving problem documenting,

o other functions.

176

Kosepuunckuii U.B., Kan A.B., Boixos B.B., ITonos 10.C., T'openun H.K. TIpaktiueckuii onsIT peann3anuy moaxo10B8
TPOTPaMMHO# ¥ CHCTEMHO HHXEHEPHH [UIS yIpaBieH:s TpeOOBAHUSIMHE IPU pa3paboTKe IPOrpaMMHOTO 00eCIIeUeHUs.
B aBHAIMOHHOIT otpaciu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, c. 173-180.

2.3 Technological environment for test methods preparation and
test results registration

Technological environment for test methods preparation and test results registration
(TET) was made during MS-21 project as well. TET allows support of test methods
preparation and testing activities on integration stand for MS-21 aircraft’s avionics
testing. Processes of TET are built in accordance with industry standard R4754.
TET provides the following functions:

e Preparation of test programs, test methods, test cases and test procedures
for avionics, integrated flight control system testing,

e Maintenance of testing activities on integration stand,
o Creating test reports,
e Other functions.

TET provides such opportunities as:

o Test methods approval processes,
o Test methods development history logging,

e Test results control and changing of succeeding test methods accordingly to
revealed remarks for test requirements, hardware, methods, etc.

Some of TET goals are:

¢ Reducing labor costs for test methods, test procedures and test cases
creation,

e Transparent control for finished tests considering received and registered
test results,

e Increasing quality of tests traced with requirements, test methods and
programs and received results,

o Possibility to work with the set of integrated hardware on the integration
stand,

Information integration with RMIS, PRMIS and configuration control system for
further integration in entire software and system engineering process of GosNIIAS,
which will allow effective reusing of prepared test organization process for
certification audit.

3. Current and future tasks

Nowadays there are actively realized system engineering approaches in GosNIIAS.
Some tasks about development, design and implementation such processes of system
engineering as requirement management process, problem reports management
process, information management process, verification and validation management

177

Koverninskiy 1.V, Kan A.V., Volkov V.B., Popov Yu.S, Gorelits N.K. Practical experience of software and system
engineering approaches in requirements management for software development in aviation industry. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp.173-180.

process, version and configuration management processes during software and
system development lifecycle processes.

Processes listed above and traced with its software and system engineering
approaches will be performed for the further researches. Real-time operation system
creation and creation of Russian instrumental set for support of the software and
system engineering processes were chosen as nearest researches for perform these
processes. There were defined some models for chosen researches — change request
lifecycle processes model and problem report lifecycle processes model.

4. Conclusion

GosNIIAS has plans to create cross-cutting process based on developed processes and
realized with software which is already developed and which will be developed soon.
It should be cross-cutting process of software and system engineering with necessary
instrumental support in GosNIIAS.

References

[1]. G.A. Chuyanov, V.V. Kosyanchuk, N.I Selvesyuk, [Prospects of development of complex
onboard equipment on the basis of integrated modular avionics], Izvestiya SFedU [News
of SFedU], vol. 3, pp. 55-62, March 2013 (in Russian).

[2]. G.A. Chuyanov, V.V. Kosyanchuk, N.I Selvesyuk and S.V. Kravchenko, [Directions of
perfection on-board equipment to improve aircraft safety], lzvestiya SFedU [News of
SFedU], vol. 6, pp. 219-229, June 2014 (in Russian).

MpakTnyeckun onbIT peanusauum nNnoagxoaoB NPOrpaMmMHOMN
M CUCTEMHOMN UHXeHepuUu AnA ynpaBreHus TpeboBaHusamMu
npu pa3paboTke NporpaMmMHoOro obecne4yeHus B
aBMaLMOHHOM oTpacnu

U B. Kosepnunckuii <ivkoverninsk@2100.gosniias.ru>
A.B. Kan <avkan@2100.gosniias.ru>
B.F. Boaxos <vbvolkov@2100.gosniias.ru>
FO.C. ITonos <yspopov@2100.gosniias.ru>
H.K. I'openuy <nkgorelits@2100.gosniias.ru>
Tocyoapcmeennvriit Hayuno-uccaedoeamenvckuti Mucmumym
Asuayuonnvix Cucmenm,

125319, Russia, Moscow, Viktorenko Str, 7.

AHHOTammsi. B cTrathe mpoaHamM3MPOBAaHBI TEHACHIMH PAa3BUTUS OKPYXKAIOLIETO
TEXHUYECKOTO MHpa, OOSA3bIBAIONIME K HCIOIb30BAHHIO TMPOIECCOB IPOTrPaMMHON U
CHCTEMHON HMH)KEHEPUH TPH CO3JaHHUHU CIIOKHBIX CHCTEM B IIENIOM M BO3IYLIHBIX CYIOB B
yacTHOCTH. IlpuBeneHO 0OOCHOBaHWE BAXHOCTH U aKTYaJIbHOCTH HCIHOJB30BAaHMS
JUCLWIUIMHBl YIIPaBICHUS TPEOOBAaHUSIMHU IIPH pPa3paboTKe MPOrpaMMHOIO OOECIICUCHUS.

178

Kosepuunckuii U.B., Kan A.B., Boixos B.B., ITonos 10.C., T'openun H.K. TIpaktiueckuii onsIT peann3anuy moaxo10B8
TPOTPaMMHO# ¥ CHCTEMHO HHXEHEPHH [UIS yIpaBieH:s TpeOOBAHUSIMHE IPU pa3paboTKe IPOrpaMMHOTO 00eCIIeUeHUs.
B aBHAIMOHHOIT otpaciu. Tpyowr UCIT PAH, 2016, Tom 28, Beimyck 2, c. 173-180.

M3noxeHpl NPUHLUIBL, JIeKAL[ME B OCHOBE INPOTPAMMHOM M CHCTEMHOM HH)KEHEpHUHU.
CucreMHass MHXXEHEpUS — 3TO HAyYHO-METOJOJIOTHYECKas AWUCLUIUINHA, WHTETPUpPYIOIas
MHOJKECTBO JUCIHUIUIMH BOKPYT €IMHOW OO0JIacTH CO3JaHMs CHCTeM. B crarthe ommcaHbl
co3maHHBle W akTuBHO wucnonbdyemble B ['ocHUMAC wuH(bOpManMOHHBIE CHCTEMBIL:
MHQOpPMAIIMOHHAsT CHUCTEMa yIpaBlIeHWs TpeOOBaHMAMH, WH(OpPMAIMOHHAs CHCTEMa
YIIpaBJIEHHS! COOOMIEHUSMH O TIpo0ieMax, TEXHOJIOTHYecKasl cpefia NOATOTOBKH METOIHUK U
ydera pe3ysbTaToB HcnblTaHui. VH(pOpMalMOHHAas CHCTEMa YIpaBICHHS TPeOOBaHUSIMH
COJEPIKUT JOKYMEHTHI M IAOJIOHBI Uil pa3paboTKu U MyOnuKkauu TpeOoBaHmid, TpeOyeMble
pykoBoactBaMu u cranaaptamu KT-178, KT-254, ARP-4754, DO-330, TOCT 51904, TOCT
34. Onucano ucnons30BaHWe WHPOPMAIMOHHON CHUCTEMBI YIpaBiCHHS TPeOOBaHUSIMU B
TocHUMAC wu cropoHHHX opraHm3amusix. MHpopManmoHHas cucTeMa YIpaBieHHS
COOOLIEHUSIMH O TIPOOJIEMaX PETHCTPUPYET M CONPOBOXKAACT KUZHEHHBIN MK BBISBIISIEMBIX
B Xoz1e paboT nmpobiaem. TexHomoruyeckas cpezia MOATOTOBKU METOJMK M y4eTa Pe3yJIbTaToB
UCIIBITAHUH TIOAJIEPIKUBAET ACSATEIFHOCTD TI0 TIOATOTOBKE IIPOrPaMM M METOIMK UCIIBITAHUH,
TECTOBBIX CIIy4aeB M TECTOBBIX IPOIEAYp, NMPOBEICHHIO HCIBITAHHHA HAa MHTETPAIlMOHHOM
CTeHZe OTpabOTKH MporpaMMHOro obecriedeHust umuTanuonHoi cpeasl KbO camonera MC-
21, mOATOTOBKE MPOTOKOJIOB HcTibiTaHuid. Omucansl Tekymue padotsl ['ocHUMAC B obnactu
pa3BUTHS W BHEAPEHHS HOBBIX IPOIECCOB M MOAXOAOB. IIpuBEJEHBI HEKOTOpPHIE
HEePCIEKTUBHBIC HAIPABJICHUS INPAKTHYECKOTO IPHMEHEHUS IIOAXOJOB MHPOTPaAMMHOU M
cucreMHoi urkenepuu B 'ocHMUAC.

KiroueBbie cjioBa: IporpaMMHasl HWHXKXCHEPHUA; CUCTEMHas UWHXKXCHEpUA;, YIPABJICHUEC
Tpe6OBaHI/I$[MI/I; KOMIIJIEKC 60pTOBOFO O60pyI[OBaHI/I5[; MPOCKTUPOBAHUE BO3AYIIHOI'O Cy/IHA.

DOI: 10.15514/ISPRAS-2016-28(2)-11

s uutupoBanus: Kosepuunckmii .B., Kan A.B., Bonkos B.b., Ilomos 10.C., T'opemuig
H.K. Ilpaktuueckuil onpIT peanu3aniy MOJX0A0B MPOrpaMMHON U CHUCTEMHON HHKEHEPHUH
JUIS yIIpaBJIeHHs TpeOOBaHMSIMH IPH pa3paboTKe MPOrpaMMHOTO 00ECTIEUeHHS B aBHAIMOHHON
orpaciu. Tpynst UCIT PAH, tom 28, Bemm. 2, 2016 t., ctp. 173-180 (Ha anrmmiickom). DOI:
10.15514/ISPRAS-2016-28(2)-11

Cnucok nutepaTtypbl

[1]. T.A. YysHoB, B.B. Kocesinuyk, H.J. CenpBectok. ITepcrnieKTUBBI pa3BUTHS KOMIUIEKCOB
6opToBOrO 00OpPYHOBAaHMS HA 0a3e MHTETPHPOBAHHOM MOMYNBHOI aBHOHUKH. V3BecTHs
IO®Y. Ne 3, 2013 1., cTp. 55-62.

[2]. T.A. Yysmos, B.B. Kocesnuyk, H.. Cenbectok, C.B. Kpapuenko. Hampasienus
COBEPILCHCTBOBaHHsI OOPTOBOrO 000PYIOBAHKS IS HOBBIILICHNUS €30MaCHOCTH MOJIETOB
BO3AymHOrO cynHa. M3sectus FODY. Ne6, 2014 r., ctp. 219-229.

179

Koverninskiy 1.V, Kan A.V., Volkov V.B., Popov Yu.S, Gorelits N.K. Practical experience of software and system
engineering approaches in requirements management for software development in aviation industry. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp.173-180.

180

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

Design and architecture of real-time
operating system

L2K.M. Mallachiev <mallachiev@ispras.ru=
L2.3 N.V. Pakulin <npak@ispras.ru>
12,34 A V. Khoroshilov <khoroshilov@ispras.ru=>
! Institute for System Programming of the RAS,
25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia.
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
3 Moscow Institute of Physics and Technology (State University)
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
4 National Research University Higher School of Economics (HSE)
11 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. Modern airliners such as Airbus A320, Boeing 787, and Russian MS-21 use so called
Integrated Modular Avionics (IMA) architecture for airborne systems. This architecture is
based on interconnection of devices and on-board computers by means of uniform real-time
network. It allows significant reduction of cable usage, thus leading to reducing of takeoff
weight of and airplane. IMA separates functions of collecting information (sensors), action
(actuators), and avionics logic implemented by applied avionics software in on-board
computers. International standard ARINC 653 defines constraints on the underlying real-time
operation system and programming interfaces between operating system and associated
applications. The standard regulates space and time partitioning of applied IMA-related tasks.
Most existing operating systems with ARINC 653 support are commercial and proprietary
software. In this paper, we present JetOS, an open source real-time operating system with
complete support of ARINC 653 part 1 rev 3. JetOS originates from the open source project
POK, created by French researchers. At that time POK was the only one open source OS with
at least partial support for ARINC 653. Despite this, POK was not feasible for practical usage:
POK failed to meet a number of fundamental requirements and was executable in emulator
only. During JetOS development POK code was significantly redesigned. The paper discusses
disadvantages of POK and shows how we solved those problems and what changes we have
made in POK kernel and individual subsystems. In particular we fully rewrote real-time
scheduler, network stack and memory management. Also we have added some new features to
the OS. One of the most important features is system partitions. System partition is a
specialized application with extended capabilities, such as access to hardware (network card,
PCI controller etc.) Introduction of system partitions allowed us moving large subsystems out
of the kernel and limiting the kernel to the minimal functionality: context switching, scheduling
and message pass. In particular, we have moved network subsystem to system partition. This

181

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

moving reduces kernel size and potentially reduces probability on having bug in kernel and
simplifies verification process.

Keywords: ARINC 653; RTOS; IMA, partitioning; real-time.
DOI: 10.15514/ISPRAS-2016-28(2)-12

For citation: Mallachiev K.M., Pakulin N.V., Khoroshilov A.V. Design and architecture of
real-time operating system. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 181-
192. DOI: 10.15514/ISPRAS-2016-28(2)-12

1. Introduction

Real-time Safety-critical systems have strong requirements in terms of time and
resource consumption. Most of them have several concurrently executing separate
functions (applications), which communicate from time to time. The most obvious
approach is running those applications on separate devices and connecting to sensors
and actuators by point-to-point link, on which applications should communicate. But
firstly, there will be a lot of wires in large system. And secondly, having a separate
computing node for periodic application, which is idle most of the time, results in a
great number of computing nodes and high cost of hardware.

Integrated modular avionics (IMA) network is a solution to those problems in
avionics. Core modules are main part of IMA network. Core module runs a real-time
operating system (RTOS), which supports independent execution of several avionics
applications that might be supplied by different vendors. System provides
partitioning, i.e., space and time separation of applications for fault tolerance (fault
of one application doesn’t affect others), reliability and deterministic behavior. The
unit of partitioning is called partition. Basically partition is the same as process in
commodity operating systems. ARINC 653 standardizes constraints to the underlying
RTOS and associated API. [1]

Civil aircraft airborne computers are mostly PowerPC architecture. In this paper we
present the project on development of an open source ARINC 653 compatible
operating system, which can run on PowerPC CPU and, in the future, on other CPU
architectures, such as MIPS and x86.

1.1 Overview of ARINC 653

ARINC 653 is the standard for implementing IMA architecture; it defines general
purpose APplication Executive (APEX) interface between avionics software and
underlying real-time operating system, including interfaces to control the scheduling,
communication, concurrency execution and status information of its internal
processing elements.

Key concept of ARINC 653 is partitioning of applications in integrated module by
space and time. [2]. A partition is a partitioning program unit representing an
application. Every partition has its own memory space, so one partition cannot get
access to the memory of another. Partitions are executed in user (non-privileged)

182

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

mode, so errors in partition cannot affect OS kernel (which is executed in privileged
mode) and other partitions. Partition consists of one or more processes, which operate
concurrently. Processes in partition have the same address space and can have a
different priority. Process has an execution context (processor registers and data and
stack areas), and they resemble well-known concept of threads. Fig. 1 shows example
architecture.

Integrated module

Partition 1 Partition 2

’ process 1 | | process 1

process 2

OS kemnel
CPU

Fig. 1. Example module architecture

Partitions are scheduled using a simple round-robin algorithm. System defines a
major time frame of fixed duration which is constantly repeated through integrated
module execution time. Major frame is divided into several time windows. Each
partition is assigned to one or more time windows, and partitions are running only
during corresponding assigned time window. Assignment of time windows and major
frame duration are statically configured by the system integrator, therefore scheduling
is fully deterministic.

Scheduling of processes within partition is a dynamic priority based scheduling and
communication and synchronization mechanism make it more sophisticated than
partitions scheduling.

ARINC 653 provides interface for communication between applications (partitions),
potentially running on different modules connected by onboard communication
network. All inter-partition communication is conducted via messages. Message is a
continuous block of data. The ARINC 653 interface doesn’t support fragmented
messages. Message source and destination are linked by channels; a channel links a
single source to one or more destinations. Partitions have access to channels via
defined access points called ports. Port has single direction; it can be either source or
destination port. One port can be assigned only to one partition. Each partition can
have multiple ports. It is even possible to have a channel where both source and
destination ports are assigned to one partition

Partition code works with ports regardless of underlying channels. Channels are
preconfigured statically.

183

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

To control the concurrent execution of processes ARINC 653 offers synchronization
primitives such as semaphores, events and mutexes. Buffers and blackboards provide
inter-process communication within a partition. Buffer is a messages queue, while
blackboard has only one message, which is rewritten by every write operation.

2. Related works

ARINC-653 requirements results in constrains to underlying operating system. OS
must support:

e space partitioning, so partitions have no access to memory areas of the other

partitions and OS kernel;
e time partitioning, so not more than one partition can run at any time;
e strict and determinate inter-partition scheduler that ensures application
response time.

Furthermore, in safety-critical systems the operating system must undergo
certification process. As a result, size and complexity of OS become a real issue.
Popular real-time operating systems (such as RTERMS [3] and FreeRTOS[4]) don’t
support ARINC 653. Furthermore, RTERMS doesn’t support memory protection.
Operating systems that satisfy all of these constrains are exist, but they are
commercial and proprietary software. They are VxWorks[5] (by Wind River),
PikeOS[6] (by Sysgo), LynxOS [7](by LynuxWorks).
There are research projects on real-time and ARINC 653 [12] enhancements of Linux.
But Linux is a large system, so certification of Linux kernel seems impossible.
There are research projects that exploit the virtualization technology to support
ARINC 653. But they are either proprietary like LithOS[8] (works over open
hypervisor XtratuM[9]), or limited prototype VanderLeest implementation of ARINC
653 over Xen [10].
Only POK operating system [11], which is available under BSD license terms, mostly
satisfies our requirements, so we decided to fork POK and continue its development.

3. POK

POK is a partitioned operating system focused on safety and security [11]. We
describe it in detail here since it is the basis for the JetOS that we are working on.

POK has been designed for x86 and ported to PowerPC (PReP) and Sparc. POK has
two layers: kernel and partition, where services of partition layer run at low-privileged
level (user mode), and kernel services are executed at high-privileged level (kernel
mode). Besides the kernel POK provides a library for partition code (libpok), which
translates ARINC 653 API to POK kernel syscalls. Fig 2 shows POK architecture.

184

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

Integrated module

Partition 1 Partition 2

| process 1 ‘ ‘ process 1

process 2

libpok ‘ libpok ‘

0OS kemel
CPU

Fig. 2. POK architecture

We selected POK as the basis for our RTOS. Below in this paper we describe parts
of POK that were changed or rewritten. We describe limitations of current
implementation or architecture of these parts.

Partition management. POK provides partition isolation:

e intime by allocating fixed time slots for partitions in the schedule,

e inspace by associating a uniqgue memory segment to each partition.
Partition scheduling and memory management of POK partly comply the ARINC 653
specification. But PowerPC processor, on which we focus (P3041), doesn’t support
memory segmentation.

Processes management. POK supports ARINC 653 partition processes. All
processes are represented in the kernel as array entries of a single processes array that
stores process information for all partitions. POK has no logical separation in kernel
representation of ARINC-653 processes of different partitions.

POK supports two intra-partition schedulers: Rate Monotonic Scheduling (RMS) and
Earliest Deadline First (EDF). Those partitions schedule processes within a partition
when its time slot is active.

The problem with POK scheduler is that ARINC 653 requires much more from intra-
partition scheduler: priority scheduling and fault management.

POK runs both inter- and intra-partition schedulers in the kernel mode.
Inter-partition communication. For every ARINC port there is a buffer of
corresponding size inside the kernel. User code while sending to (or receiving from)
port accesses those buffers by means of syscalls. At the beginning of every major
frame POK copies data from source buffers to destinations. For large buffers there is
possibility to spend significant part of partition time slot on buffer-to-buffer copying.
If a process tries to send to a full port (or read from an empty one) the kernel blocks
the process until buffer becomes operational. POK supported this feature but did not

185

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

obey to the ARINC-653 requirement on that the order of unblocking should be the
same as the order of blocking on each priority level.

Intra-partition communication support is implemented by the user-mode library
libpok, using system calls for synchronization purpose. It supports locking resources
for concurrent access to shared data resources (such as buffer and blackboards)
between processes in partition. When process tries to accesses a locked resource, it
will be blocked (so scheduler will skip this process) until the resource is unlocked.
POK scheduler has some inherent problems with handling of locked processes. Let’s
consider an example. A low-priority locks a buffer for writing and before it unlocks
the buffer a higher priority process wakes up. POK scheduler unconditionally
switches to the second process. If the second process tries to get status information
about the locked buffer it blocks and POK wakes the first process. But according to
ARINC-653 standard the process that requests status information must not block.

4. JetOS

JetOS is the real time operating system with ARINC-653 support that we currently
develop at ISPRAS. It originates from POK but has evolved significantly since then.
Before we introduce the new features of JetOS compared to POK let us mention the
facility that was removed from POK: the AADL configuration tool. Originally POK
was designed and implemented as a demonstration of a number of approaches, and
the developed selected rather exotic approach to configuration. The suggested way to
create an embedded application by means of POK is to specify its environment and
capabilities as an AADL specification. In JetOS we dropped AADL support in favor
of XML-based configuration files.

Integrated module

Partition 1 Partition 2 drivers
process 1 | ‘ process 1 |
system
services
ARINC lib ‘
ARINC lib ARINC lib S (s ‘

Kernel (mmu, scheduler, ipc)

Arch lib

Hardware

Fig. 3. JetOS architecture

186

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

Furthermore, we dropped support of the SPARC platform as there are no onboard
avionics systems that are built atop of SPARC CPUs. At the moment JetOS runs on
x86 and PowerPC (Book E branch).

Partition management. Unlike x86 and SPARC the new target hardware for JetOS,
PowerPC platform, features direct MMU control through TLB writes. To reduce
cache flushes at context switches and simplify TLB lookups PowerPC provides
tagged cache where each tag is an 8 bit identifier. We use that identifier as partition
identifier (pid). At context switch we just change value of the special-purpose register
responsible for current pid. This is simple and secure method.

The inter-partition scheduler of POK was able to switch partitions only when the
active process runs in user mode. If a process calls syscall it cannot be switched until
the end of that call. Such behavior violates requirements of real-time since system
calls might be prolonged. Currently we are working on kernel-mode critical section
and synchronization primitives to enable context switch while a process executes a
system call.

Processes management. We store process-related data in kernel separately for
different partitions. Intra-partition scheduler was fully rewritten to support ARINC
653 specification. The new scheduling facility allows for multiple schedulers, and
different partitions might utilize different schedulers (a.g. ARINC-653 for avionics
applications and preemptive pthreads for system partitions). New intra-partition
scheduler can be accessed only by functions

o start() is called when partition is starting or restarting

e on_event() is called on every event such as timer interrupt and returning
control to partition.

Inter-partition communication. We use one ring buffer for every channel. Its size
is the sum of source and destination ports buffers size in original POK design. It
removes the need for copying from source to destinations buffers. Correct work of
send and receive function achieved by two pointers, one for source port, and one for
destination. Sending increases source port pointer, receiving increases destination
port pointer. When pointers are met then buffer either full or empty, uncertainty is
resolved by another variable associated with the channel, which stores current number
of messages in the channel’s buffer. Example can be seen at Fig. 4.

destination port index T
source port index

Fig. 4. Example kernel channel buffer. Yellow cells are already received messages, blue
cells are sent but not yet received messages, white cells are empty

Intra-partition communication. Correct handling of concurrent data access to
buffers and blackboards without violating the ARINC 653 scheduling requirements

187

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

with user mode scheduler is a hard task. Therefore the intra-partition schedulers are
implemented in the kernel to simplify lock-wait-unlock and priority scheduling. In
future versions we may design a solution that solves this issue while keeping a code
in user space.

4.1 Configuration

The characteristic feature of real-time operating systems is deterministic behavior.
The primary way to ensure reliable and dependable behavior is static pre-allocation
of all resources — memory, CPU time, access to devices, etc. For instance, partition
code is executed only during fixed time slots within the schedule, no sooner, but no
later. Memory is pre-allocated for every partition, memory image of the partition is
fixed, no pages could be added or removed during runtime.

Many parameters of our operating system are configured statically and cannot be
changed dynamically. These parameters are number of partitions and their memory
size, number of ports, their names, sizes and directions, channels etc.

Configuration of the system is stored in xml documents. To keep the kernel minimal
we got rid of the need to include xml parser to kernel: the configuration files are
processed at build time. The processor generates C code where parameters are
presented as either preprocessor macros (#define constants) or enum constants. The
generated files are included in the build process.

4.2 System partitions

Beside ordinary partitions, that interact with the kernel and the outer world thought
ARINC 653 APEX, the standards allows for so called system partitions that utilize
interfaces outside the scope of APEX services, such access to devices or network
sockets. The standard doesn’t specify their operations and interfaces other than
constraints on time and space partitioning: system partitions are subject to scheduling.
The difference between system partitions and kernel modules is that system partitions
run in user space and have time and space partitioning constrains.

Our OS supports system partitions. From the kernel point of view system partitions
are like ordinary partitions with some additional memory mapping and additional
system calls. Communication between application partitions and system partitions is
performed through ARINC-653 ports.

Currently we have only one system partition: the 10 partition that is responsible for
communication over the network. In the future we will implement a number of other
system partitions — file system, graphics server,

10 partition has access (by corresponding entry in TLB) to special memory areas,
where network card registers are mapped, so 10 partition can work directly with
hardware without kernel system calls.

10 partition receive and send data either from partitions in the same integrated module
by ports or from other integrated modules by network card drivers. In the simple case
the communication over network is based on UDP messages, and the configuration

188

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

defines mapping between ARINC 653 port and a pair of IP address and UDP port.
This mapping looks like ARINC channel, so we also call it channel.

But network communication may be based on other protocols, such as AFDX. So in
general, the channel maps ARINC port to some network specific data. We support
parallel work with several network protocols, by assigning channel driver to channel.
Channel driver is interlayer between port and device driver. In most cases channel
driver is a network stack.

System can have several network cards, so we support parallel independent work of
several device drivers. Currently we support three network cards drivers: virtio, ne2k
family and hardware cards on the platform with P3041 processor.

Each network driver manages one or more uniform devices. During initialization each
driver, which cards are connected through PCI bus, registers as PCI device in PCI
driver. After initialization of all network drivers PCI driver starts enumeration of PCI
bus. If it finds a physical device that matches a registered PCI device, then it signals
to the corresponding network driver. Network driver dynamically for every signal
registers a network device. Network device has a nhame and method to send and
receive data from assigned physical device. Names to network device are assigned
dynamically; name is concatenation of drivers name and sequential number of current
device in driver.

The configuration assigns channel drivers to network devices by name. Example of
sending two messages in parallel to two different network cards can be seen at Fig. 5.

Integrated module

Partiion1 | :ports: 10 partition

dev driver 1

- channel driver 1 -

£+{ channel driver 2 i\
ot |

OS kernel

process 1

process 2 [~&

i

Fig.5. Two messages are being parallel sent to different network cards

Different drivers require different configuration. We have dedicated xml parsers of
some specific part of xml document, this parser generates data specific for
corresponding driver.

This architecture allows independent work of different drivers, which can possibly
come from different developers. Furthermore, it allows adding new drivers with
minimal effort and change of common parts.

189

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

5. Future work

There is research group to develop OpenGL renderer and frame buffer driver for our
OS. Their work will show how well we thought out architecture of 10 partition.

We finally need to measure latency without providing which we cannot tell that our
operating system is a real-time system.

We are going to seek way to minimize kernel code, and move code, for which it is
possible, to user-space.

Currently we use only one CPU core of the e500mc multicore processor. Newest
version of ARINC 653 introduces interfaces for multicore work. We are going to
support multicore CPUs as well.

Another objective is to port the OS to MIPS CPU family and another PowerPC
family, namely IBM PPC 440.

6. Conclusion

In this paper, we sketched JetOS, a real-time operating system, which support ARINC
653 standard. Our system started as fork of POK OS. We describe architecture of
POK, architecture of our operating system and differences between them.

References

[1]. Avionics application software standard interface part 0 overview of ARINC 653, ARINC
specification 653P0-1, August 3, 2015

[2]. Avionics application software standard interface part 1 — required services, ARINC
specification 653P1-3, November 15, 2010

[3]. G. Bloom, J. Sherrill. 2014. Scheduling and thread management with RTEMS. SIGBED
Rev. 11, 1 (February 2014), 20-25. DOI=http://dx.doi.org/10.1145/2597457.2597459

[4]. C. S. Stangaciu, M. V. Micea, V. |. Cretu; Hard real-time execution environment
extension for FreeRTOS Conference: IEEE International Symposium on RObotic and
SEnsors Environments (ROSE 2014), At Timisoara DOI: 10.1109/ROSE.2014.6953035

[5]. VxWorks 653 http://www.windriver.com/products/product-
overviews/PO_VxWorks653_Platform_0210.pdf

[6]. R. Kaiser, S. Wagner: Evolution of the PikeOS Microkernel, MIKES: 1st International
Workshop on Microkernels for Embedded Systems. 2007

[7]. LynxOS http:/mww.lynx.com/products/real-time-operating-systems/lynxos-rtos/

[8]. M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll, A. Crespo, J.J. Metge, 2010. LithOS: a
ARINC-653 guest operating for XtratuM. In Proc. of the 12th Real-Time Linux
Workshop, Nairobi (Kenya).

[9]. M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge. XtratuM: a Hypervisor for Safety
Critical Embedded Systems. 11th Real-Time Linux Workshop. Dresden. Germany.
http://www.xtratum.org/files/xm_rtlw09.pdf

[10]. S. H. VanderLeest. ARINC 653 hypervisor. In Proc. Of IEEE/AIAA DASC, Oct. 2010.

[11]. J. Delange, L. Lec, 2011. POK, an ARINC653-compliant operating system released under
the BSD license. In 13th Real-Time Linux Workshop (Vol. 10).
http://julien.gunnm.org/data/publications/articledl11-osadl11.pdf

190

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Tpyowst UCIT PAH, 2016, Tom 28, Beimyck 2, c. 181-192.

[12]. S. Han and H.-W. Jin. 2012. Kernel-level ARINC 653 partitioning for Linux. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12).
ACM, New York, NY, USA, 1632-1637.
DOl=http://dx.doi.org/10.1145/2245276.2232037

YCTpOMUCTBO U apX1UTeKTypa onepaLuoHHON CUCTEMbI
peanbHOro BpeMeHu

L2 K. M. Mannauues <mallachiev@ispras.ru=>
123 f B. Haxynun <npak@ispras.ru>
1234 4 B. Xopowunos <khoroshilov@ispras.ru>
Y Unemumym cucmemnozo npoepammuposanus PAH,
109004, Poccus, e. Mockea, yn. A. Comxcenuyvina, 0. 25.
2 Mockoeckuii 2ocyoapcmeennwiil ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opei, 0. 1.
SMockosckuii (husuxo-mexHusecKutl uHCIUnTym (20Cy0apCmeeHHblil YHUGepcumen,)
141701, Poccus, Mockosckas obnacme, 2. [Jonzonpyonstii, Uncmumymckuii nep., 9
4 Hayuonanvulii uccnedo6amenpckuii yuueepcumen «Bolculan wkona s3K0HOMUKUY
101000, Poccus, Mockesa, yn. Macuuykas, 0.20

Annortamusi. CoBpeMeHHbIC aBHalaiiHepwl, Takue Kak Airbus A320, Boeing 787,
MEPCIeKTUBHBI OTedecTBCHHBIH caMon€ér MC-21, HCHONB3YIOT HOBYIO apXUTEKTYypy
MOCTPOCHUsI ~ KOMIUIEKca OOpTOBOro O0OpyZOBaHMs, IOJYYHMBIIYIO Ha3BaHHE
WnrerpupoBanHas MoaynbHas aBuoHuka (IMA). B e€ ocHoBe nexuT 00beIiHeHNnE TPHOOpPOB
1 OOPTOBBIX BEIUUCIIHUTENEH B €JUHYIO CETh PEAbHOI'0 BPEMEHH, YTO M03BOJISIET CYIIECTBEHHO
CHH3UTB KOJIMUECTBO KabeJeil Ha OOpTy U, TeM CaMbIM, YMEHBIIHUTh B3JIETHBIN Bec naitHepa. B
HNMA pazgensrorcs dyHkuun cbopa mHGOpMaIuy (JAaTYMKH), BO3ACHCTBUS (aKTyaToOphl) U
JIOTUKH OKa3aHHS YIPABISIONINX BO3ACHCTBHH, KOTOpas peann3yeTcs CleNHaTn3POBaHHBIM
npuknagaeiM [I0 B OOPTOBBIX BBIYHCIMTENBHBIX MOIYISAX. MeXIyHapOIHBIH CTaHAAPT
ARINC 653 ommceiBaeT TpeOOBaHHS K ONEPAMOHHOW CHCTEME pPEalbHOTO BpPEMEHH,
YCTaHaBIMBAaeMOW Ha TaKMX MOAYJSIX, M MPOTPAMMHBIA HHTepelc MeXIy HPHKIaIHBIM
aBuaumoHHbIM I1O u omepaunoHHOW cuctemoi. JlaHHBI CTaHOApT perjJaMeHTHPYET
BPEMEHHOE U TPOCTPAHCTBEHHOE paszjeneHue npuknagHoro IO B cooTBercTBHM C
npuHuunaMd UMA. BonemmactBo OCPB cootBerctByromux cranmapry ARINC 653
aBisiroTess kommepueckuM [10. B nannoii cratse npeacrasisercs JetOS — OCPB ¢ oTkpbITEIM
HCXOIHBIM KOJIOM HOJHOCTBIO cOOTBeTCTBYIoNIyIo TpeboBanmsiM ARINC 653 gactu 1 Bepcun
3. JetOS Gbl1a OCHOBaHa Ha OTKPBHITOM NpoeKTe (paniy3ckux ucciaenonareneir POK. Hexorma
POK o6s1ma equacTBeHHO OCPB ¢ OTKPHITBIM HCXOJHBIM KOJIOM, KOTOpast XOTh CKOJIBKO-
HHOYZB cooTBeTcTBOBaNa TpeboBaHmsaM crangapra ARINC 653, oxgnako Obina HempurogHa
JUIsL TIpakThdeckoro ucnons3oBanusi: POK He ymoieTBopsuia psiny (yHAaMEHTalIbHBIX
tpeboBanuit ARINC 653 u paborana tonbko B amynsatope. [Ipu paspadorke JetOS xox POK
ObUI cymniecTBeHHO nepepaboTtaH. B cratbe Mbl 06cyxknaem Henoctatku POK u mokaseiBaem,
KaK HaM YZAaJoCh PEIIUTh 3TH NMPOOIEMbl U KaKHe H3MEHEHHs ObUIH BHECEHBI B aDXUTEKTYPY
n peammaruio POK u oTnensHbIM mojcucteM. B wactHOCTH, OBUI NMOJTHOCTBIO NEpenUcaH
IUIAHUPOBLIMK PEaIbHOTO BPEMEHH, CETEBOM CTEK U yIpaBieHUE MamAThio. Tawke B JetOS
Obum 100aBIEHBI HOBBIE BO3MOXHOCTH. Hambosiee WHTEpecHOH SBISETCS IOJJIEpPIKKa

191

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

CHCTEMHBIX paznenoB. CUCTEMHEBIH pa3jien — crenuaibHoe npukianHoe [10 ¢ pacmmpeHHBIM
Ha0OpOM BO3MOKHOCTEH, TAaKUX KaK MPSIMOIl JOCTYN K OTICIBHBIM allapaTHBIM CPEACTBAM
(cereBoii kapte, PCI xoHTposepy u T.11.). Hanuure cucTeMHbIX pa3iesioB MO3BOJISET BHIHECTH
KpyHnHbIe nmoacucteMsl u3 siapa OC 1 0CTaBUTH B SApe MUHUMAJIBHBIA HA00P 3a7a4, CBSI3aHHBIX
C MEPeKITIOYCHHEM KOHTEKCTOB, IUIAHHUPOBIIMKOM W OOMEHOM COOOLICHUSIMH MEXIY
kommnoHeHTamu [10. B gacTHOCTH, B CUCTEMHBIH pa3/ien BEIHECEHA TOCUCTEMA, OTBEYAIOIIAs
3a B3aUMOJICHCTBUE Yepe3 ceTh. JlaHHOe mepeMeleHrne Koa MO3BOJISIeT YMEHBIIUTh pa3Mep
snpa OC, 9TO TEOPETUYCCKH YMCHBIIIAET BEPOSATHOCTh HAIMYHUS ONIMOKH B SIPE M YIIPOIIACT
TpoIecc Bepr(pUKAIIH Spa.

Kuarwuessie ciioBa: ARINC 653; OCPB; onepanmonHas cuctemMa peaiibHOTO BpeMenn; UMA;
MHTETPUPOBAHHASI MOYJIbHAS aBUOHUKA

DOI: 10.15514/ISPRAS-2016-28(2)-12

Jas nurupoBanusi: Mamwtaunes K.M., [Nakymua H.B., Xopommno A.B. YcrpoiicTBO u
apXUTEKTypa OMEPalMOHHOM crcTeMbl peainbHoro Bpemenu. Tpyast UCIT PAH, Tom 28, BbImL.
2,2016 ., ctp. 181-192 (na anrmmiickom). DOI: 10.15514/ISPRAS-2016-28(2)-12

Cnucok nutepatypbl

[1]. Avionics application software standard interface part 0 overview of ARINC 653, ARINC
specification 653P0-1, August 3, 2015

[2]. Avionics application software standard interface part 1 — required services, ARINC
specification 653P1-3, November 15, 2010

[3]. G. Bloom, J. Sherrill. 2014. Scheduling and thread management with RTEMS. SIGBED
Rev. 11, 1 (February 2014), 20-25. DOI=http://dx.doi.org/10.1145/2597457.2597459

[4]. C. S. Stangaciu, M. V. Micea, V. I. Cretu; Hard real-time execution environment
extension for FreeRTOS Conference: IEEE International Symposium on RObotic and
SEnsors Environments (ROSE 2014), At Timisoara DOI: 10.1109/ROSE.2014.6953035

[5]. VxWorks 653 http://www.windriver.com/products/product-
overviews/PO_VxWorks653_Platform_0210.pdf

[6]. R. Kaiser, S. Wagner: Evolution of the PikeOS Microkernel, MIKES: 1st International
Workshop on Microkernels for Embedded Systems. 2007

[7]. LynxOS http://www.lynx.com/products/real-time-operating-systems/lynxos-rtos/

[8]. M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll, A. Crespo, J.J. Metge, 2010. LithOS: a
ARINC-653 guest operating for XtratuM. In Proc. of the 12th Real-Time Linux
Workshop, Nairobi (Kenya).

[9]. M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge. XtratuM: a Hypervisor for Safety
Critical Embedded Systems. 11th Real-Time Linux Workshop. Dresden. Germany.
http://www.xtratum.org/files/xm_rtlw09.pdf

[10]. S. H. VanderLeest. ARINC 653 hypervisor. In Proc. Of IEEE/AIAA DASC, Oct. 2010.

[11]. J. Delange, L. Lec, 2011. POK, an ARINC653-compliant operating system released under
the BSD license. In 13th Real-Time Linux Workshop (Vol. 10).
http://julien.gunnm.org/data/publications/articledl11-osadl11.pdf

[12]. S. Han and H.-W. Jin. 2012. Kernel-level ARINC 653 partitioning for Linux. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12).
ACM, New York, NY, USA, 1632-1637.
DOl=http://dx.doi.org/10.1145/2245276.2232037

192

Emenenxo A.H., Mannaunes K.A., Ilakyiun H.B. PaspaGorka oTnagumka JUisl ONEpaliMOHHON CHCTEMBbI PEallbHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 193-204.

Developing a Debugger for Real-Time
Operating System

L2 AN. Emelenko <emelenko@ispras.ru>
L3K.A. Mallachiev <mallachiev@ispras.ru>
L2.3N.V. Pakulin <npak@ispras.ru=
Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2Moscow Institute of Physics and Technology (State University),
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia

3 Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. In this paper, we report on the work in progress on the debugger project for real-time
operating system JetOS for civil airborne systems. It is designed to work within Integrated
Modular Avionics (IMA) architecture and implements ARINC 653 API specification. This
operating system is being developed in the Institute for System Programming of the Russian
Academy of Sciences and next step in developing this system is to create a tool to debug user-
space applications on it. We also discuss the major requirements to such a debugger and show
the difference between it and typical debugger, used by desktop developers. Moreover, we
review a number of debuggers for various embedded systems and study their functionality.
Finally, we present our solution that works both in emulator QEMU, which we use to emulate
environment for our system, and on the target hardware. The presented debugger is based on
GDB debugging framework but contains a number of extensions specific for debugging
embedded applications. However, the implementation of the debugger is not complete yet and
there is a number of features that can improve debugger usability, but it is already more
functional than common GDB debugger for QEMU and, in contrast to other systems and their
debuggers, where developers can use some functions to debug applications, but not all we need,
our debugger meets the majority of our requirements and restrictions.

Keywords: debugger; GDB; real-time OS; remote debugger
DOI: 10.15514/ISPRAS-2016-28(2)-13

For citation: Emelenko A.N., Mallachiev K.A., Pakulin N.V. Developing a Debugger for
Real-Time Operating System. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 193-
204. DOI: 10.15514/ISPRAS-2016-28(2)-13

193

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Developing a Debugger for Real-Time Operating System. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 193-204.

1. Introduction

Application debugger is an indispensable tool in developer’s hands. But debugger in
a real-time operating system is more than just plain debugger. In this paper we present
an on-going project on debugger development for JetOS, a real-time operating system
that is being developed in the Institute for System Programming of the Russian
Academy of Sciences.

JetOS is a prototype operating system for civil airborne avionics. It is designed to
work within Integrated Modular Avionics (IMA) architecture and implements
ARINC 653 API specification, the de-facto architecture for applied (functional)
software.

The primary objectives of ARINC 653 are deterministic behavior and reliable
execution of the functional software. To achieve this ARINC 653 imposes strict
requirements on time and space partitioning. For instance, all memory allocations and
execution schedules are pre-defined statically.

The unit of partitioning in ARINC 653 is called partition. Every partition has its own
memory space and is executed in user mode. Partitions consist of one or more
processes, operating concurrently, that share the same address space. Processes have
data and stack areas and they resemble well-known concept of threads.

Embedded applications might be run in two different environments: in an emulator
and on the target hardware. In our project we use QEMU system emulator. Although
QEMU has its own debugger support, its functionality proved to be insufficient for
debugging embedded applications. Therefore, we implemented a debugger not only
for the target hardware, but for the emulator as well.

2. Main Targets for Debugger

Debugger for an embedded operating system has a number of specific features
compared to typical debugger used by desktop developers.

Firstly, an embedded application runs under constrained conditions, such as limited
on-board resources and lack of interactive facilities — no keyboard and screen. This
makes it impossible to do debugging on the same device where application runs.
Therefore, the debugger for embedded applications has to be remote: the developer
interacts with workstation while the application runs on a target hardware.

Secondly, an embedded application typically consists of a number of interacting
processes that needs to be debugged simultaneously. This means that the debugger
must support dynamic and transparent switching between execution contexts during
debugging session.

Thirdly, the debugged should support developers of system software, mostly device
drivers and network stack. This requires switching between low-privilege code and
highly privileged kernel code in the same debugging.

It is also important to mention that embedded developers widely use emulators in
their work process. Typically most of development runs on top of emulators, therefore
the debugger must support corresponding emulators as well.

194

Emenenxo A.H., Mannaunes K.A., Ilakyiun H.B. PaspaGorka oTnagumka JUisl ONEpaliMOHHON CHCTEMBbI PEallbHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 193-204.

The above mentioned features impose a number of restrictions on the design of the
debugger that we considered:

e There are many different applications compiled in OS, which can have
overlapping virtual address spaces.

e Typically target hardware board for embedded OS has only one port to
communicate with the external world — a single serial port. Since it is used
to stream console output of the running applications we need to share it
between debugger traffic and applications' output.

e Multifunctional debugger is a complex program. It is very complicated to
develop it from scratch, so we decided to base our debugger on an existing
one.

e Support debugging both on hardware and with emulator because this support
can expand developers' capabilities and improve their efficiency.

e Support capabilities of debugging for kernel and for user mode code, as well
as capabilities of multiprocess mode.

e It must excel QEMU debugger, which we use to emulate environment for
our system.

e Since the OS in question is real-time, it is important to minimize debugger's
impact on system during debugging.

In order to meet these restrictions we selected the architecture of remote debugger
with server and client parts, that communicate over a serial port using multiplexer.
We have chosen GDB (GNU debugger) for the client part of our debugger.

3. Related Works

We are not the first to consider the problem of remote debugging. For example,
Pistachio microkernel uses kdebug for debugging [4]; besides, there is Fiasco
debugger [1] and many different debuggers for VxWorks, for example, RTOS
debugger [2].

Here we briefly consider some debuggers for embedded OSes and their primary
features.

3.1 Fiasco OS

Fiasco OS is a 3rd-generation microkernel, based on L4 microkernel [1]. The kernel
is simplistic, it misses most of the features available in “big” operating systems like
Linux or Windows: program loading, device drivers and file system. All these
features must be implemented in user-level programs on top of it (L4 Runtime
Environment provides a basic set such functions).

Fiasco OS has built-in support for debugger that:
e supports threads;
e provides stack backtrace

195

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Developing a Debugger for Real-Time Operating System. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 193-204.

e sets breakpoints;

e does single step;

e provides reading/writing in memory;

e provides reading hardware registers;

e support interprocess communication (IPC) monitoring.

The Fiasco Kernel Debugger (JDB) is a debugger for Fiasco. It has the following
special functionality:

e It always freezes the system when it is working. It means that JDB disables
all interrupts and halts clock. All processes and kernel don't work when JDB
is invoked.

e JDB doesn't use any part of Fiasco kernel, because it is a stand-alone
debugger with drivers for keyboard, display, etc.

In general, JDB is not a part of Fiasco p-kernel, and Fiasco p-kernel can run without
connection with JDB or another debugger.

The debugger operates remotely over the serial line.

3.2 VxWorks

VxWorks [5] is a real-time operating system (RTOS) developed as proprietary
software by Wind River of Alameda, California, US. It supports Intel (x86, including
the new Intel Quark SoC and x86-64), MIPS, PowerPC, SH-4, and ARM
architectures.

RTOS debugger for VxWorks implements the following set of features:

e Task Stack Coverage

e Task Related Breakpoints

e Task Context Display

e Debugging Modules (for example, Kernel module)

e Debugging Real-Time Processes

e Debugging Protection Domains

e Collecting statistics for function and tasks
RTOS debugger displays all system states, tasks, message queues, memory
partitioning, modules and etc.
The key feature of the RTOS debugger is that is based on Lauterbach's TRACE32
debugger [3] that utilizes hardware interfaces like JTAG. It does not use serial port
for communication with the target hardware but rather requires specific debug
module.

3.3 L4Ka::Pistachio

L4Ka::Pistachio [4] is the latest L4 microkernel developed by the System
Architecture Group at the University of Karlsruhe. It is the first available kernel

196

https://en.wikipedia.org/wiki/Alameda,_California

Emenenxo A.H., Mannaunes K.A., Ilakyiun H.B. PaspaGorka oTnagumka JUisl ONEpaliMOHHON CHCTEMBbI PEallbHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 193-204.

implementation of the L4 Version 4 kernel API, which provides support of both 32-
bit and 64-bit architectures, multiprocessor and super-fast local IPC. The current
release supports x86-x64 (AMD64/ EM64T, K9 / P4 and higher), x86-x32 (1A32,
Pentium and higher), PowerPC 32bit (IBM 440, AMCC Ebony / Blue Gene P).

The debugger for Pistachio kernel can direct its 1/O via the serial line or the
keyboard/screen. It is a local debugger and does not support remote debugging mode.

This debugger is also a low-level device with very limited amount of functions.
Debugger for Pistachio can:

Set breakpoints

Single step

e Dump memory

Read registers

When the processor meets special instruction (for example, int3 instruction), it passes
control to interrupt handler, which is the part of Pistachio kernel. In turn, interrupt
handler checks instructions, which come next, and if they correspond to the special

layout, it prints special message before passing control to interrupt handler. This
feature is a simplistic implementation of a facility to trace execution.

4. Technical Description:

The primary goal of the debugger is Power PC platform, based on e500mc CPU core.
The debugger is based on GDB, it uses the GDB architecture to establish link to the
remote target.

The architecture includes three major components: front end, local client and remote
server. The front end provides user interface, it runs on the same workstation as the
client part. The latter translates the commands from the front end into GDB protocol
and communicates with the remote server. The server implements the actual
command embedded into protocol messages such as reading memory regions, setting
breakpoints, processing debug interrupts, etc. Remote server is sometimes called
“stub”.

Gdb-stub for i386 was taken as a basis for our debugger. This stub was totally
redesigned for e500mc processor, which belongs to PowerPC architecture family. We
left only the packet exchange and some of the packet processing mechanisms.

We use common gdb client, which was built for PowerPC with somewhat extended
functional, to connect to our stub. This functional was developed using special user
defines commands, so developers don't need to use special version of GDB. Instead,
they can use any version, but it needs to use gdb commands file by utilizing special
“source” command in GDB.

Accordingly, messaging mechanism between client and server doesn't change — the
client sends a special-type packet to the server and waits for the server's answer. The
server receives this message, checks control sum, which was sent in this packet, and
if it matches the message contents, informs the client that the message was accepted

197

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Developing a Debugger for Real-Time Operating System. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 193-204.

for processing. Then the server performs the action described in the packet and sends
its own packet to the client.

4 v)

~

[$m8000acac.4#1d

7

<

Answer

—H Z o~ 0
oM< M

Next packet

- / - /

Fig. 1. GDB messaging mechanism

Let us consider an example on Fig. 1. Here client sends to server packet
“$m8000acac,4#1d”. This means that client wants to read 4 bytes of memory from
virtual address 0x8000acac. In this packet “1d” is the control sum, that is, the sum of
all bytes in message modulo 256. If the server fully receives this message, it sends
“+”, and the client knows that the message was accepted. After that, server sends 4
bytes of memory from that address to the client in the same way, and message
exchange continues. All these types of packets are described in GDB manual.

4.1 Implementation of the server side

In general, debugger's work consists of packet exchange between client and server.
Client sends certain types of packets to perform the action, which the user needs. Our
goal is to develop server part because we use client part from common GDB.

198

Emenenxo A.H., Mannaunes K.A., Ilakyiun H.B. PaspaGorka oTnagumka JUisl ONEpaliMOHHON CHCTEMBbI PEallbHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 193-204.

During the connection between server part of the debugger with client part our system
stands in frozen state where no interrupts are available and the clock is halted. This
opportunity allows us to work with partitions and debugger as if there is no debugger
in the system.

We implemented functions in our debugger in the following way:

Breakpoints setting was implemented using special PowerPC instruction 'trap’. When
the trap instruction occurs, server code in interrupt handler is called.

For Single step operation, we can use two different methods. The first one is when
the system stops on the next instruction of the current partition. The second one is to
stop the system stops on the next instruction wherever it is. The difference is how
system calls are handled; the first method skis all kernel code and traverses
application only. The second method allows entering kernel and stepping through
system call implementation. Furthermore, it is sensitive to interrupts: if an interrupt
occurs during the step, the debugger switched to the interrupt handler.

However, GDB structure requires interrupts to be disabled during single step. This
requirement imposes restrictions on partition's work, so we gave up the second
method. Because of the lack of debug registers in QEMU we need to disable interrupts
and set trap instruction on the next instruction.

Watchpoints were implemented using special capabilities of hardware, such as Debug
registers. Unfortunately, QEMU doesn't have such registers, so we need to use
another way to set watchpoints in emulator. This method isn't implemented yet, but
we are working in this direction.We also developed multiplexer to use one serial port
for both GDB and another application. Multiplexer allows message exchange for
debugger and for internal system service. The transformation of one serial port into
two serial ports with the help of our multiplexer is not so difficult.

There are two parts of multiplexer, local and remote. Local part is a superstructure
responsible for information input/output in the system. During the output it puts a
special symbol before every printable symbol, determining to which of the two virtual
serial ports the next symbol should be sent. Working with input symbols is very
similar: two symbols are read, with the first of them specifying the application to
which we want to send the second symbol. Remote part of multiplexer looks the same.
This solution is not the fastest, but it provides smooth debugger's work via one serial
port together with other applications. This connection between remote and local parts
of multiplexer is shown on Fig. 2.

199

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Developing a Debugger for Real-Time Operating System. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 193-204.

(O
Virtual
Serial
Port 1
Another
application
................... Multiple | .+ | Multiple |
.......... er, |Serial ot
Local | POrt | Remote
part | g part
Debugger
Virtual
Serial
Port 2

Fig. 2. Multiplexer work

5. Debugger's Capabilities
Our debugger supports all standard debugging features. Among them are:

5.1 Setting Breakpoints on Kernel and Partitions.

Setting breakpoints is the key feature of any debugger. Considering that client knows
only virtual addresses, the server part of the debugger must correctly translate this
address into physical address. Our debugger can do this, that's why users can debug
partitions with overlapping virtual address spaces and debugger stops only on the
partition that the user wants.

5.2 Single Step.

Stepping through code step by step is a convenient way of finding bugs. However,
there can be a situation in real-time OS, when the next instruction in code is not the
next executable instruction, for example, because of timer interrupt. That's why we
disable interrupts during the single step.

5.3 Showing Information about Processes and Threads,
Inspecting Memory, Instructions and Registers. Memory Reading
and Writing.

Memory view must correctly translate virtual addresses into physical as with

breakpoints. The capability to find out all information about threads in OS, their
states, registers and memory is very important too.

200

Emenenxo A.H., Mannaunes K.A., Ilakyiun H.B. PaspaGorka oTnagumka JUisl ONEpaliMOHHON CHCTEMBbI PEallbHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 193-204.

Support of memory writes allows changing process state as user's discretion.

5.4 Setting Watchpoints.

Watchpoints are one of the most comfortable ways to control user's partition. They
give the opportunity to follow changes in memory sectors and stop\pause while trying
to read or record memory. This opportunity increases the number of ways to control
partitions' states.

5.5 Stack Inspection.

Stack inspection makes tracing possible: for example, tracing the queue of called
functions, which can help user to understand exactly what has happened in the system.

6. Future Work

Implementation of the debugger is not complete yet. There is a number of features
that can improve debugger usability:

e Enhance debugging capabilities to the level of standard GDB functionality.
e Accelerate debugger interaction time with the system through multiplexer.
e Improve hardware support on bare metal.

e Increase user convenience in multiplexer. Enhance its functionality for
working with more devices (now multiplexer supports only two devices).
This solution allows us to work on bare metal with as many ports as we need,
regardless of the actual amount of ports.

e Add watchpoints implementation to QEMU, which doesn't support debug
registers. This is the reason why we can't use debug registers for setting
watchpoints like we do on bare metal. In that case, we need to change code
handling in QEMU to develop instruction for watchpoints creation.

7. Conclusion

In this paper, we have presented our project on implementation of the debugger for
real-time operating system JetOS. In contrast to other systems and their debuggers,
where developers can use some functions to debug applications, but not all we need,
our debugger meets the majority of our requirements and restrictions. However, we
will able to update our debugger in near future and increase its functionality, but it is
already more functional than common GDB debugger for QEMU.

References

[1]. F. Mehnert, J. Glauber and J. Liedtke, “Fiasco Kernel Debugger Manual” Dresden
University of Technology, Department of Computer Science, November 2008
(https://os.inf.tu-dresden.de/fiasco/doc/jdb.pdf)

[2]. Lauterbach GmbH, “RTOS debugger for VxWorks”, November 2015

201

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Developing a Debugger for Real-Time Operating System. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 193-204.

(http://wwwz2.lauterbach.com/pdf/rtos_vxworks.pdf)

[3]. Lauterbach GmbH, “RTOS-VxWorks”, 18 August 2014
(http://wwwz2.lauterbach.com/doc/rtosvxworks.pdf)

[4]. System Architecture Group University of Karlsruhe. “The L4Ka:: Pistachio Microkernel”.
May 1, 2003
(http://www.l4ka.org/l4ka/pistachio-whitepaper.pdf)

[5]. Wind River Systems, Inc “VxWorks Product Overview”, March 2016
(http://windriver.com/products/product-overviews/2691-VxWorks-Product-
Overview.pdf)

[6]. Free Software Foundation, Inc. “Debugging with gdb: the GNU Source-Level Debugger”,
The Tenth Edition
(https://software.intel.com/sites/default/files/article/365160/gdb.pdf)

PaspaboTtka oTnagyuka ans onepaumMoHHON CUCTEMbI
peanbHOro BpeMeHu

L2 4.H. Emenenxo <emelenko@ispras.ru>
L3 KA. Mannauues <mallachiev@ispras.ru>
Y23 (B. Haxynun <npak@ispras.ru>
Y Unemumym cucmemmozo npozpammuposanus PAH,
109004, Poccus, 2. Mockea, yn. A. Congcenuyvina, 0. 25.
2 Mockoeckuil (pusuxo-mexnHuueckuii UHCMumym (20Cy0apcneenHblil
YHUBepcumem,),
141701, Mockosckas obracme, . [{oneonpyonutii, Hucmumymckuii nepeyiox, 0.9.
8 Mockoeckuii 2ocyoapcmeennwiil ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwl, 0. 1.

AnHOTamms. B 3Toif cTatbe MBI paccka’keM O TPOEKTe MO pa3paboTKe OTIATYHKa IS
ONepaliOHHOW CHCTEMBI peanbHOro BpemeHu JetOS, co3maHHON Ui TpakIaHCKHX
ABUAIIMOHHBIX CHCTECM. Ona npe€aHasHady€Ha JJid pa60T1>1 B paMKaxX apXHUTEKTYpPbl
UnTerpupoBanHoit MonyneHoit ABnonuku (IMA) u peanmusyer ARINC 653 cnenudukanuio
API. Dta omnepaumoHHas cucrema pa3pabaTbiBaeTCsi B HMHCTHTYT€ CHCTEMHOTO
nporpammupoBanust PAH, um crmemylomuM maromM B ee pa3pabOTKe CTalo CO3IaHHe
HMHCTPYMEHTA I OTJIQJKHU IOJB30BAaTEIbCKUX NMpIIokeHHH. Takke B 3TOH cTaThe OymyT
paccMOTpPEHbI OCHOBHBIE TPeOOBaHMS K TAKOMY OTIIAUHMKY U MOKa3aHa Pa3HHUIA MEXY HUM H
OOBIYHBIM OTJIAJYUKOM, HCIIONB3yEMBIM Pa3pabdOoTIMKaMU HACTOJBHBIX IpHIIOKeHHH. boiee
TOTO, ObLTH PacCMOTPEHBI JAPYrue€ BCTPaUBAEMBIC OICPALIMOHHBIE CUCTEMBI, TAKHE KakK
WxWorks, Fiasco OS, L4Ka::Pistachio u OTnag4yuky A HHX, & TaKkKe ObUT M3yd4eH HX
¢yHnkunoHan. B 3akiroueHue, Mbl MPEACTaBUM HAIll OTJIaAYHK, KOTOPBIt MOXKET paboTaTh Kak
B amyssitope QEMU, ncnonb3yemMoM At sMyIsiuu okpykeHus 11 JetOS, Tak 1 Ha 11e1eBoi
MammHe. [IpeacTaBieHHbI OTIaaIMK SBISIETCS YAAICHHBIM U OCTPOCH C HCIIOJIb30BaHUEM
cTpykTypsl GDB, HO comepXuT psii paciIMpeHuid, crequUIHbIX IS OTJIAJKH BCTPOESHHBIX
npuwioxeHni. OHAKO peann3anys OTJIaJIMKa [I0Ka He 3aBepIIeHa U CYIIEeCTBYET LB s
3a1a4 10 YIydIIEHHIO yqo0CTBa M BO3MOXKHOCTEH OTJIIaquKKa, HO HAa TEKyIIMH MOMEHT OH
SBJIETCSL Yke Oosiee (YHKIMOHATIBHBIM, dYeM oObiuHbl oriaguuk GDB mmst QEMU wu, B

202

Emenenxo A.H., Mannaunes K.A., Ilakyiun H.B. PaspaGorka oTnagumka JUisl ONEpaliMOHHON CHCTEMBbI PEallbHOrO
Bpemenu. Tpyowst UCIT PAH, 2016, Tom 28, BeImycKk 2, c. 193-204.

OTJINYHE OT JPYIMX PAaCCMOTPEHHBIX CHCTEM M MX OTIAAUUKOB, TA€ pa3pabOTIMKH MOTYT
HCIIOIb30BaTh HEKOTOPBIe (DYHKIMH JUTS OTIIAAKU IPIIIOKEHNH, HO HE BCE, YTO HaM HYXHBI,
Halll OTJIAJYHMK YJOBJICTBOPSET OOJNBIIMHCTBY IOCTABICHHBIX TPEOOBaHUIl U OrpaHUYCHHI, a
TaKXkKe yXKe UCTIONB3yeTCs pa3paboTynKaMu npuioxeHuit s JetOS.

Knrouessie cioBa: omiagunk; GDB; OCPB; ynaneHHsli oTnaq4rk; onepadoHHas cucTeMa
peanbHOTro BpeMeHH

DOI: 10.15514/ISPRAS-2016-28(2)-13

Jnsi nutupoBanus. Emenenxko A.H., Mamraunes KA., Ilakymma H.B. Paspaborka
OTJIQJYUKA /ISl ONIEpallMOHHOM cucTeMbl peaibHoro Bpemenu. Tpynst UCIT PAH, Tom 28, BbI.
2,2016 r., ctp. 193-204 (Ha anrmmiickom). DOI: 10.15514/ISPRAS-2016-28(2)-13

Cnucok nutepaTtypbl

[7]. F. Mehnert, J. Glauber and J. Liedtke, “Fiasco Kernel Debugger Manual” Dresden
University of Technology, Department of Computer Science, November 2008
(https://os.inf.tu-dresden.de/fiasco/doc/jdb.pdf)

[8]. Lauterbach GmbH, “RTOS debugger for VxWorks”, November 2015
(http://lwww2.lauterbach.com/pdf/rtos_vxworks.pdf)

[9]. Lauterbach GmbH, “RTOS-VxWorks”, 18 August 2014
(http://lwww2.lauterbach.com/doc/rtosvxworks.pdf)

[10]. System Architecture Group University of Karlsruhe. “The L4Ka:: Pistachio Microkernel”.
May 1, 2003
(http://www.14ka.org/l14ka/pistachio-whitepaper.pdf)

[11]. Wind River Systems, Inc “VxWorks Product Overview”, March 2016
(http://windriver.com/products/product-overviews/2691-VxWorks-Product-
Overview.pdf)

[12]. Free Software Foundation, Inc. “Debugging with gdb: the GNU Source-Level Debugger”,
The Tenth Edition
(https://software.intel.com/sites/default/files/article/365160/gdb.pdf)

203

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Developing a Debugger for Real-Time Operating System. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 193-204.

204

T'éccen @., Maprapua T., I'éke T. MonenupoBanie KOHBeHepa pacro3HaBaHus JIIOAEH B cHCTEMax KOHTPOJIS JIOCTYIa.
Tpyow UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 205-220.

Modelling the People Recognition Pipeline
in Access Control Systems

1F. Gossen <frederik.gossen@lero.ie>
1T. Margaria <tiziana.margaria@lero.ie>
2T. Goke <thomas.goeke@systeam-gmbh.com>
1Lero - The Irish Software Research Centre, University of Limerick,
Tierney Building, University of Limerick, V94 NYD3, Ireland.
2SysTeam GmbH,
Technologiepark, Martin-Schmeifser-Weg 14, 44227 Dortmund, Germany.

Abstract. We present three generations of prototypes for a contactless admission control
system that recognizes people from visual features while they walk towards the sensor. The
system is meant to require as little interaction as possible to improve the aspect of comfort for
its users. Especially for people with impairments, such a system can make a major difference.
For data acquisition, we use the Microsoft Kinect 2, a low-cost depth sensor, and its SDK. We
extract comprehensible geometric features and apply aggregation methods over a sequence of
consecutive frames to obtain a compact and characteristic representation for each individual
approaching the sensor. All three prototypes implement a data processing pipeline that
transforms the acquired sensor data into a compact and characteristic representation through a
sequence of small data transformations. Every single transformation takes one or more of the
previously computed representations as input and computes a new representation from them.
In the example models presented in this paper, we are focusing on the generation of frontal
view images of peoples’ faces, which is part of the processing pipeline of our newest prototype.
These frontal view images can be obtained from colour, infrared and depth data by rendering
the scene from a changed viewport. This pipeline can be modelled considering the data flow
between data transformations only. We show how the prototypes can be modelled using
modelling frameworks and tools such as Cinco or the Cinco-Product Dime. The tools allow for
modelling the data flow of the data processing pipeline in an intuitive way.

Keywords: Visual Modelling, Face Recognition, People Recognition, Computer Vision.
DOI: 10.15514/ISPRAS-2016-28(2)-14

For citation: Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in
Access Control Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 205-220.
DOI: 10.15514/ISPRAS-2016-28(2)-14

205

Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in Access Control Systems. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 205-220.

1 Introduction

When using today’s admission control systems some kind of interaction is required
to check permission for every individual. Among the most widely used technologies
are RFID chips on check cards. When attempting to pass the admission control system
people have to swipe their check card through a reader to transfer a unique ID to the
system. The system will then check whether or not access should be granted. Once a
person is identified, it is easy to assign different levels of permission to different
people. This might be useful to restrict access to certain areas in a building. Other
methods for identification include PINs, passwords or keys. All these methods have
one thing in common: They require the user to carry something, either physically or
in mind. That means it is likely that someone who is allowed to pass the admission
control system is not able to do so because he or she has forgotten his or her password
or key. To overcome this issue iris recognition, fingerprint recognition and face
recognition can be used [1]. All of these methods identify a person by something that
cannot be forgotten such as the eye or the face.

In our work, we focus on identity recognition from colour and depth data using low-
cost depth sensors such as the Microsoft Kinect 2 [2]. These sensors offer colour,
infrared and depth images at high frame rates. Our goal is to recognize people with
as little interaction as possible. The user should be able to walk towards the admission
control system looking forwards as he or she walks. The system picks up his or her
head and face and predicts the identity that is most likely to have caused the
observation. Moreover, the system will have notion of certainty. In cases where the
prediction is possibly wrong a fall back method for identification will be used. This
can be a PIN, password or a check card but it is also possible to redirect the person to
a staff member to be identified with human capabilities.

The proposed system primarily improves the aspect of comfort for everybody who
uses the admission control system as they no longer have to carry check cards or keys
or remember PINs or passwords. Such an admission control system can be used in
many places. Starting from fitness studios, spa and swimming pools where members
have to be recognized to give access, reaching to institutions where staff members
have to be recognized. In these scenarios, the proposed system primarily improves
the aspect of comfort. However, in some cases people are not able to use any of the
alternative methods for identification. Especially in places like hospitals and
retirement homes where many people suffer from impairments such a system can
make a major difference. People with Parkinson’s disease might be unable to swipe a
check card with the tremor in way that allows the system to read the card. They will
also have problems to enter a PIN or a password while a visual recognition system
would not require them to interact in a particular way. Other examples include
patients with Alzheimer’s disease, people wearing a cast or doctors with sterilized
hands.

We are currently working on the third version of a prototype for contactless admission
control. Previous versions have suggested that geometric features can contribute to
reliable recognition of individuals but are alone not sufficient for reliable access

206

T'éccen @., Maprapua T., I'éke T. MonenupoBanie KOHBeHepa pacro3HaBaHus JIIOAEH B cHCTEMax KOHTPOJIS JIOCTYIa.
Tpyow UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 205-220.

control [3]. We are currently focusing on the generation of frontal view images from
people’s faces, which we will use to extract comprehensible and characteristic
features for individuals. This will allow for recognizing them in the application of an
admission control system. In what follows we will present the three versions of our
prototype in Section 2. All three prototypes implement a data processing pipeline that
transforms the acquired sensor data into a compact and characteristic feature
representation. In order to show how this pipeline can be modelled, Section 3
introduces the reader to the meta modelling framework Cinco and to Cinco-Products
that we use to model the pipeline. We present two alternative models of the data
processing pipeline in Section 4 that are based on these Cinco-Products. Section 5
concludes this paper and points our directions of future work.

2 Prototypes

We are currently working on the third version of our prototype. The first two versions
were based on the Microsoft Kinect [2] and its SDK while our new version will be
based only on its low-level API that is similar to that of comparable sensors. The low-
cost sensor provides capabilities to acquire colour, depth and infrared images at high
frame rates. It comes with a powerful SDK that provides reliable algorithms to detect
people’s skeletons and faces.

In this section, we will describe the three versions of our prototype and we analyse
their differences.

2.1 First Prototype

Starting with the first prototype, we decided to use the Microsoft Kinect 2 sensor.
This sensor acquires colour, infrared and depth images at high frame rates. Moreover,
the sensor comes with a Software Development Kit (SDK) that offers a high
resolution face model and a skeleton model. The first system is based on the
capabilities of the Kinect SDK. We use the high resolution face model to extract
characteristic geometric features with clear interpretation. The features are extracted
on frame by frame basis. The compact and comprehensible set of features is used to
predict the person who is most likely to have caused the observation. In this first
approach we use our own implementation of a Bayesian Classifier to perform this
task on every frame separately.

As we aim to recognize human identities in a comprehensible way we need features
that provide clear interpretation. As one of the first features that were used for facial
recognition, geometric features fulfil this requirement [4] [5]. In contrast to early
approaches we extract distances in space rather than in the image plane using the
Kinect’s face and its skeleton model.

207

Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in Access Control Systems. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 205-220.

Fig. 1. Visualization of 8 distances that were extracted from the Kinect's face model (left) and
23 distances that were extracted from the Kinect's skeleton model (right). The distances are
estimated in space rather than in the image plane to be invariant under the viewport.

The Kinect’s face model provides a set of 1347 feature points many of which are
interpolated. In order to obtain features with clear meaning we decided to focus on a
subset of 12 feature points as shown in Figure 1. These feature points represent the
eye corners, the moth corners, the lower and the upper lip and the left, right, lower
and upper boundary of the nose. The face model provides these points’ positions in
both, the image plane and in space. As distances in the image plane are affected by
the view point we use the Euclidean distances between points in space. We extract
the following distances from the face model

e the inner and the outer eye distance

e the width and the height of the nose

e the width and the height of the mouth

o the width of the left and of the right eye.
Figure 1 visualizes all of the 8 facial features. Note, that some of these might vary a
lot. For instance, the estimated height of the mouth will vary when people open or
close their mouth. The features are therefore not invariant to facial expressions but
can nevertheless characterize the face of an individual. Note, that we extract only a
small subset of possible distances with clear interpretation that we expect to be
characteristic for the human face. In this way we maintain comprehensibility of our
representation. Moreover, too many features would lead to overfitting during the
learning process as our data set was small at this stage of the development process.
The Bayesian Classifier that we used for classification assumes conditional
independence of features. This assumption is obviously violated for the proposed
features meaning that the Bayesian Classifier is no longer guaranteed to be optimal.
However, Bayesian Classifier are often successful although their assumptions might
be violated. In order to allow for a good representation of the conditional probability
distribution, we introduce another assumption that the conditional probability for each
features is normally distributed. Hence, the learned model for a person can be

208

T'éccen @., Maprapua T., I'éke T. MonenupoBanie KOHBeHepa pacro3HaBaHus JIIOAEH B cHCTEMax KOHTPOJIS JIOCTYIa.
Tpyow UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 205-220.

represented by mean and variance per feature. Note, that a normal distribution is a
reasonable assumption for geometric features from the Kinect face model as shown
in [3]. However, this introduces yet another assumption that might be violated to
some degree. The Bayesian Classifier is therefore no longer guaranteed to be optimal.
However, it shows reasonable performance in many classification problems as well
as in our preliminary evaluation in [3].

With recognition rates of up to 80% on a preliminary data set with only 5 people, this
first prototype was far from being sufficiently accurate for reliable access control.
However, it proofed, that geometric features from the Kinect’s models can be used to
recognize people. This first system was not exploiting the redundancy of the records
among consecutive frames as its prediction was on a frame by frame basis. Moreover,
the feature set was extremely small.

2.2 Second Prototype

To overcome the weaknesses of our first prototype, we introduce more features and
feature aggregation in the second version of our prototype and tested different
classifiers to analyse the quality of the feature set. One feature that is expected to be
particularly predictive for a person’s identity is his or her height. The height varies a
lot between different individuals and can be estimated using the Kinect’s skeleton
model. The model provides the position for 25 joints in both, the image plane and in
space. We extract Euclidean distances in the same way as we extract them from the
face model. In order to capture meaningful features from the model we consider
distances from a selection of adjacent skeleton joints. In addition, we extract features
between joints that are not adjacent if we expected the feature to be characteristic for
a person. In particular, we wanted to represent a person’s height and his or her
shoulder width. Figure 1 shows all of the proposed 23 features that are considered
from the skeleton model.

We introduced feature aggregation to this version of our prototype. Frames are still
processed separately to extract the set of features from them leading to 31 values per
frame. When a person approaches the Kinect sensor, up to 15 frames were considered
during our experiments. As the Kinect’s models have high computational demands,
the low frame rate did not allow for more records in most situations. All of the 15
records aim to measure the same set of distances. In order to benefit from this
redundancy, we aggregated the sequence into a single value per feature using one of
6 aggregation methods. As the most prominent aggregation method for real values,
we used the mean in our experiments. In order to be more robust against outliers, we
also analysed the median and four variants of truncated mean which can be seen as
intermediate aggregation methods between mean and median.

The larger the distance to an object, the more noise can be observed in depth images.
This makes approximation of the facial shape more difficult leading to lower quality
of the Kinect’s models. We therefore expect the measures for the proposed geometric
features to be particularly noisy for records that were taken far away from the sensor.

209

Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in Access Control Systems. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 205-220.

As these measures might have a negative impact on the quality of the aggregated
features, we consider only a subset of the closest N records during our experiments.
In order to select a good classifier for our system, we use Rapid Miner [6] to evaluate
the quality of our feature set. We tested two classifiers in our experiments, k-Nearest
Neighbour (k-NN) [5] and Linear Discrimination Analysis (LDA) and report a
recognition rate of up to 88% for k-NN and up to 89% for LDA on a data set with 37
individuals.

These recognition accuracies are a significant improvement over our previous system
while the aggregated features are still as comprehensible as the previously used raw
features. Most importantly, the aggregation of feature values was shown to improve
the recognition accuracy significantly. In order to be used in an access control system,
we aim to further increase our system’s performance.

2.3 Third Prototype

As based on the Kinect’s face and skeleton model, the first two versions of our
prototype are not easily adoptable to the use of other sensor devices. Moreover, the
Kinect’s face and skeleton model have high demands with regard to hardware. This
might be a problem once the system is in use on site where such machines are not
available or increase the costs dramatically. Hence, we wanted to become
independent of the Kinect SDK’s advanced capabilities while we still use the sensor
and its low-lever API. The subset of the provided functionality that we use in the third
version of the system is available for many other low-cost sensors. We acquire colour,
infrared and depth frames as well as a mapping between these data sources. This
functionality is also offered in OpenNI [7] for a variety of different sensors.
Although the recognition accuracies using aggregated geometric features are a
significant improvement over the first version of our prototype they are not yet
sufficient for reliable access control. However, they have shown that geometric
features can contribute to reliable recognition in a comprehensible manner. To
explore additional features and to improve the system’s accuracy, we currently focus
on colour, infrared and depth data directly which were not used in the previous
systems. We aim to extract comprehensible features from these images as an
intermediate representation. These features can again be geometric features as the
distances between certain feature points but they are not restricted in this way and
more importantly, no longer based on the Kinect’s models.

As a basis for feature extraction we decided to generate frontal view images of
detected faces. When a person approaches the sensor, his or her head and face are
detected. We also estimate the person’s head pose meaning that the exact position and
orientation of a person’s face is known. As the depth frame provides spatial
information, this allows to render the scene from a normalized position in front of a
person’s face. In this way we obtain depth images of detected faces that that are
aligned in a predefined position.

210

T'éccen @., Maprapua T., I'éke T. MonenupoBanie KOHBeHepa pacro3HaBaHus JIIOAEH B cHCTEMax KOHTPOJIS JIOCTYIa.
Tpyow UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 205-220.

Given the mapping from depth frame to the colour frame respectively the infrared
frame, it is further possible to use these as a texture. Hence, we are able to render
frontal views of a detected face using either the colour frame or the infrared frame as
a texture. Three different kinds of frontal views of a person’s face can be computed
in this way. As the system is currently under development, we want to focus on this
part of the data processing pipeline in what follows. These first steps as a part of the
data processing pipeline are sufficient to point out the idea of how such a system can
be modelled using existing modelling frameworks.

3 Modelling Frameworks and Tools

All three prototypes implement a data processing pipeline that transforms the
acquired sensor data into a compact and characteristic feature representation through
a sequence of small data transformations. Every single transformation takes one or
more of the previously computed representations as its input and computes a new
representation from them. As only the final outcome is of any interest while
intermediate representations are solely used for the computation of the final outcome,
all of our prototypes can me modelled intuitively by focusing on the data flow only.
In fact, we will show that the control flow can be derived from the data flow in our
example.

In the example presented in this paper, we are focusing on the newest version of our
prototype. As the final recognition is not implemented to date, we will focus on the
generation of frontal view images of peoples’ faces which will be part of the final
data processing pipeline. These frontal view images can be obtained from colour,
infrared and depth data by rendering the acquired data from a changed viewport. In
order to do so the face position and its orientation have to be estimated precisely. Our
newest prototype approaches this task in four steps based on a single depth frame.
We show two example models of our prototype using two different modelling tools
that were generated using the modelling framework Cinco. In what follows, we will
first introduce the reader to the modelling framework Cinco and to Dime, the most
complex Cinco-Product to date. We will further show a small custom Cinco-Product
that models the data flow only and is tailored to the needs of our prototypes’ models.

3.1 Cinco

Cinco is a meta modelling framework for graphical Domain Specific Languages that
is developed at TU Dortmund University since 2014 [8] [9] [10]. It is based on the
popular Eclipse Open-Source IDE and allows for the generation of Cinco-Products
that are themselves based on the Eclipse IDE. Graphical Domain Specific Languages
in Cinco are based on the concept of directed graphs meaning that a predefined set of
custom nodes and edges is defined for a particular Cinco-Product. The meta
modelling framework allows to define the appearance for each kind of node and edge
and allows to constrain their connectivity. In this way it is possible to allow certain

211

Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in Access Control Systems. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 205-220.

edges to connect only very particular kinds of nodes, but many other ways of
constraining the graphical language are possible.

To enable rich features in Cinco-Products, the framework implements the concepts
of hooks which allows to programmatically adjust the graph in case of a particular
event. Such an event can be that a node was moved on the canvas or that it was
removed from it. In particular, this allows to implement custom spatial arrangement
of multiple nodes relative to one another but many other applications are possible.
As a meta modelling framework Cinco is used to generate modelling tools that are
referred to as Cinco-Products. Due to the only assumption that a graphical Domain
Specific Language is a directed graph, Cinco is very flexible and allows to generate
modelling tools for a wide range of applications. Cinco itself does not associate any
semantics with the graphical language but allows for the generation of an API that
can be used to generate code from the graph models or to interpret them otherwise.
Particularly interesting for our example models, edges can be used to represent both,
control flow and data flow.

3.2 Dime

As the most complex Cinco-Product to date, Dime is the prime example of the Cinco’s
flexibility. As a Cinco-Product, Dime defies a set of nodes and edges, their
appearance and also constraints the way they can be connected. While nodes represent
situations during model’s execution, edges are used to model both, control flow and
data flow.

\ 3

Input Parameter to the Mode! Text

This is a SIB
@

48 Input Parameter 1o a SIB Text

/N

Branch A [Branons]
10 Result Text

Success ‘ Failure ‘

Result Text

Fig. 2. Minimal example of a Dime model.

The most important nodes are the so called Service Independent Building Blocks
(SIB) which represent executable code in the model. Every SIB has a list of input
ports similar to function or method parameters in other programming languages. The
functionality represented by the SIB relies only on the data provided by means of
these input ports. The execution of a SIB can result in different cases which are

212

T'éccen @., Maprapua T., I'éke T. MonenupoBanie KOHBeHepa pacro3HaBaHus JIIOAEH B cHCTEMax KOHTPOJIS JIOCTYIa.
Tpyow UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 205-220.

modelled using the concept of branches. Every SIB must have one or more branches
as its successors, each representing one case. Depending on the outcome of the
execution of the SIB, one branch is chosen that determines the SIB that is to be
executed next. In this way branches are used to model the control flow of the system.
In addition, the selection of a particular branch, any other outcome of a SIB will be
represented as variable. In Dime the set of computed variables can be defined for
every branch separately. This is often appropriate as there will be no computation
result in some error cases or different results can be computed in different cases. Dime
represents the outcome in terms of data by output ports that are associated with the
branch nodes. Figure 2 shows a small example of a Dime model with one SIB that
has two branches only one of which has an output port.

As Dime allows the user to model control flow and data flow, it has to provide at least
two different kinds of edges. In fact, there are many more kinds of edges but for the
sake of simplicity, we want to focus on data flow and control flow. The control flow
starts at the start SIB which is represented by a blue arrow. To make the entry point
unique, there can only exist one start SIB in every model. Together with the end SIBs
they are the only SIBs that have no branches. During execution the start SIB will do
nothing as it is solely used to represent the start of the control flow and potential input
ports. The end SIBs are used to represent different cases as an outcome of the model’s
execution and their associated output ports. As such they serve a similar purpose as
branches on the level of the entire model. In fact, this is how Dime allows users to
model in a hierarchical manner, meaning that the whole model can be used as a SIB
in other models. In order to define the control flow from the start SIB to one of the
possible end SIBs, the user has to define the control flow. This is done by connecting
branches as the outcome of SIBs to exactly one other SIB. Depending on the outcome
of the execution of a SIB, this allows to define the successor separately for every case.
The control flow must be defined for every possible branch to make the model valid.
When the control flow reaches a SIB, all of its input ports must be available. The
required data can be provided by the initial input parameters on the level of the entire
model or it can be provided as the outcome of a previously executed SIB. In any case,
the variable to be used as an input must be defined using data flow edges. These edges
are dashed and connect exactly one output port of a branch to one input port of a SIB.
Moreover, the start SIB’s ports can be used as output ports and the end SIBs’ ports
can be used as input ports. It is the user’s responsibility to define the data flow and
the control flow in such a way that required input data is available when a SIB is
reached. Hence, the data flow imposes constraints on the control flow and vice versa,
which can be exploited in the example that we present in this paper.

As Dime is a Cinco-Product and defines a set of nodes and edges, with clear
interpretation, Dime is no longer as flexible as the use of Cinco for a tailored Cinco-
Product. However, by modelling both, control flow and data flow its graphical models
can express similar things as many programming languages in an intuitive fashion.
Dime is still flexible in the sense that SIBs can have arbitrary functionality.

213

Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in Access Control Systems. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 205-220.

3.3 Custom Cinco-Product

Although Dime is suitable for many applications as it allows to model both, data flow
and control flow, there are applications that can be modelled more intuitively in other
ways. In our example, we are only interested in the final outcome of the computation,
respectively the final data representation. As every data transformation depends on
one or more data representations, an order of all data transformations is implicitly
defined by the data flow. Hence, this example allows for modelling the data flow only
while the control flow can be derived automatically.

For our second example we have therefore created our own Cinco-Product that allows
for modelling the data flow only. There are three kinds of nodes, namely input
representations (blue), output representations (green) and intermediate
representations (white) and only one kind of edges to model data flow. All of these
nodes represent a form of data that will be computed during the execution of the
model if necessary. Note, that intermediate representations also represent a data
transformation as they are computed from one or more other representations.

4 Example Models of our Prototype

All of our prototypes were developed in a way that allows to easily model their data
processing pipeline using either Dime or a custom Cinco-Product. The recognition
algorithm can be clearly separated into a sequence of data transformations as will be
shown by means of the following two example models. We present example models
for both of the modelling tools, Dime and our own Cinco-Product.

4.1 Dime Model Example

As Dime allows for modelling control flow and data flow, the data processing pipeline
can be easily modelled in Dime. Each of the data transformations as part of the data
processing pipeline can be represented as a SIB. The required input representations
are inputs to the SIBs and will therefore be connected to the SIBs’ input ports. In our
example we want to focus on the data flow and we want to show that the control flow
can be automatically derived from it. For the sake of simplicity this example is
therefore limited to a single branch per SIB. When the model is used to generate code
in future versions of our system, more than one branch will be necessary to handle
exceptions in any of the data transformation steps. For instance, there might be no
person visible in an acquired frame and hence no meaningful head pose can be
computed.

Ignoring these exceptions in the current version of the model, every SIB has exactly
one branch which is the success branch. The success branch is necessary to provide
outputs of the computation, namely a new data representation. In the example new
frames are acquired from each of the three sources as a very first step. The first three
SIBs fulfil this purpose and provide colour, infrared and depth frames as output ports
of their success branches. While colour and infrared frames are solely used as a
texture for the generation of the frontal view images, the depth frame plays an

214

T'éccen @., Maprapua T., I'éke T. MonenupoBanie KOHBeHepa pacro3HaBaHus JIIOAEH B cHCTEMax KOHTPOJIS JIOCTYIa.
Tpyow UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 205-220.

important role. As it provides information about the facial shape it can be used to
approximate the head pose. In the newest version of our prototype, this problem is
approached as a sequence of four refinements as shown in the second row of the
model in Figure 3. First, the head position is roughly approximated from the raw
depth image as given to the first SIB’s input port. The success branch provides the
head position approximation which serves as an additional input for the more precise
head position computation. Both, the raw depth frame and the head position
approximation are connected to the head position computation SIB’s input ports. In a
similar fashion, the head pose is computed in two consecutive steps. Finally, a precise
estimate of the head pose is available which allows for rendering of frontal views.

¥

" Asquire Galor Frame | Asquire Infrared Frame " Avauirs Depth Frame

l | DAL
Suctess. J Guecess
e Frame eer | Dopth F-ame nisge {_DepinFrame slnteger

" Compute Head Position Approximation } i Compuie Head Position N Compute Head Pose Approximation ‘ ° Compute Head Pase }

) Depth Frame -Intage

Sutcass Buvest [Suctans

Hess Frsiion Aaprasimaton -negs | Head Posiven mage He2d Posg Appos mtion : riozs i Hess Poss s 1

)
DATA

{ lead Pose dnteger)¢

Render Taxtrs | Render Texture " Render Depth Display Frantsl Views |

2 Depth Frams Intage. Sep Frsme gl 4 Dapih F-ams ntage
B Viwpot Inlege igancil 1nléger) Vot Inkeger

0 Testure integer Texturo risger —’—

e Color: rtegsr
Vie Iraed nleger

iy Diepih -integer

(Succass |

!
Buctess

Fig.3. Dime model for the generation of frontal view images
from colour, infrared and depth data.

Given the head pose, the first three SIBs in the third row of our model in Figure 3
render the frontal view images. As input parameters, all of them expect the raw depth
image as acquired from the sensor which provides spatial information and also the
precise head pose estimate which defines the viewport from which the scene is to be
rendered. In addition, colour and infrared images are used as a texture leading to three
different frontal view images of the detected face. For demonstration purposes the
last SIB takes all of these images as inputs and displays them.

Note, that some data representations such as the depth image and the head pose are
used more than once. In Dime this requires the use of a data context that holds

215

Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in Access Control Systems. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 205-220.

variables and allows for them to be used multiple times. In general, this is necessary
as SIBs can change the value of their input parameters. However, in our example all
of the input variables are only read which allows for using them multiple times in an
arbitrary order.

Our goal is to define reusable components from the data processing pipeline of our
final version of the admission control system and to provide them as SIBs in Dime.
Not only would this allow to modify the system in a very intuitive way and would
allow non-programmers to adjust the system at any time, but also would this allow
for building similar systems from the existing components in a very easy way.
Especially people with little to no programming skills would be enabled to create
advanced systems that detect people, their head poses and many other things
depending on the capabilities of the palate of provided SIBs.

4.2 Custom Cinco-Product Model Example

As only the displayed image the displayed image in this example as the final outcome
of our model’s execution is of any interest, the order of execution is irrelevant as long
as required input representations are available for every data transformation in the
data processing pipeline. In order to exploit this property, we use our custom Cinco-
Product to model the data flow of the pipeline only. Every node represents data while
intermediate data representations (white) implicitly represent data transformations
that define how the new data representation can be obtained from others. In the
example, raw sensor data is given as input representations (blue). In particular, these
are colour, infrared and depth frames that were acquired using the Kinect sensor. Per
execution of the pipeline one frame from each source is available and all of them can
be used to obtain the final data representation. As the newest version of our prototype
does not implement the final recognition of an individual yet, we limit the example
to the generation of a collage of frontal view images from all three sources. The
frontal views will later be used to extract facial features for the recognition of
individuals. In order to render frontal view images of faces, the head pose must be
known which defines the viewport from which the scene has to be rendered.

As the prototype is the same one that was used for the Dime model example, the
computation of the head pose is again approached in four steps. First, the head
position is approximated in the raw depth frame. The data representation Head
Position Approximation implicitly represents the data transformation from a raw
depth frame to an approximation of a person’s head position. The new data represents
only the approximation of the head position and no longer the depth frame. It is
therefore a significantly smaller data representation than the Depth Frame, which was
provided as an input representation. In a second step, the Head Position is computed
more precisely from the raw Depth Frame and from the Head Position
Approximation. The new data representation therefore depends on two others which
have to be available before the Head Position can be computed. Hence, the data flow
as defined in the model in Figure 4 imposes constraints on the order of data
transformations.

216

T'éccen @., Maprapua T., I'éke T. MonenupoBanie KOHBeHepa pacro3HaBaHus JIIOAEH B cHCTEMax KOHTPOJIS JIOCTYIa.
Tpyow UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 205-220.

Note, that the model in Figure 4 does not define the control flow but only the data
flow. As the data flow imposes constraints on the order in which data representations
must be available, a possible control flow can be deduced automatically from the
topological order of the graph. More precisely every input representation must be
available before a new data transformation can be applied. In our example, this means
that Head Position Approximation, Head Position, Head Pose Approximation and
Head Pose must be computed in exactly this order before any of the other data
representations can be derived. For the generation of the separate frontal view images,
the order can be arbitrary as they do not depend on one another but only on input
representations and the Head Pose. Finally, the Merged Image must be computed at
the very end. This is also defined as the final output representation (green) of our
model. Any case in which the order of computation is irrelevant allows for
parallelism. In our example, the generation of the separate frontal view images can in
fact be performed in parallel once their input representations are available.

| Head Position Approximation |-—‘ Depth Frame | Colour Frame Infrared Frame

Head Position

Head Pose Approximation

Head Pose

Q Depth Frontal View ‘ | Texture Frontal View ‘ ‘ Texture Frontal View

Merged Image

Fig. 4. Cinco-Product model for the generation of frontal view images
from colour, infrared and depth data.

As an alternative to SIBs in Dime our custom Cinco-Product has strong focus on data
flow. While this simplifies modelling of a data processing pipeline, there is no easy
way of modelling side effects, defining the order of execution etc. This Cinco-Product
is nevertheless useful for data oriented applications such as processing pipelines in
computer vision systems similar to the one in our example.

5 Conclusion

In this paper, we presented three generations of prototypes for a contactless admission
control system with high potential to be modelled with available modelling
frameworks and tools.

217

Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in Access Control Systems. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 205-220.

We presented the three versions of our prototype and their commonalities and
differences. In particular, we focused on the data processing pipeline which all
prototypes implement in a similar fashion. This part of the system can be modelled
intuitively with modelling tools such as Dime or our custom Cinco-Product.

In order to show our prototypes’ potential to be modelled, we introduced the reader
to Cinco, Dime and our custom Cinco-Product. Focusing on the first part the newest
processing pipeline, we show examples of models in both tools. We discussed the
possibility to derive the control flow automatically from a specification of the data
flow in the data processing pipeline.

We continue to develop the most recent version of our prototype in a way that
maintains its high potential to modelled visually. This will enable us to define
reusable components from the data processing pipeline of our final admission control
system and to provide them as SIBs in Dime. Moreover, we aim to model the system
using a similar Cinco-Product to the one that we presented in this paper. Not only
would this allow to modify the system in a very intuitive way and would allow non-
programmers to adjust the system at a later stage, but also would this allow for
building similar systems from the existing components in a very easy way. Especially
people with little to no programming skills would be enabled to create advanced
systems that detect people, their head poses and many other things. Once a set of
powerful SIBs, respectively data transformations is developed for computer vision
related applications, it can be extended continuously leading to a rich palate of SIBs.
Depending on the extend of this palate, this would allow for modelling a wide range
of computer vision related applications. In the long term, such a palate could also be
extended to an even broader range of systems that implement any kind of a data
processing pipeline.

Acknowledgment

This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094
and co-funded under the European Regional Development Fund through the Southern
& Eastern Regional Operational Programme to Lero - the Irish Software Research
Centre (www.lero.ie).

References

[1]. G. S. Gagandeep Kaur and V. Kumar, “A review on biometric recognition,” International
Journal of Bio-Science and Bio-Technology, vol. 6, no. 4, pp. 69-76, 2014.

[2]. Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MultiMedia, vol. 19, no. 2, pp.
4-10, 2012.

[3]. F. Gossen, “Bayesian recognition of human identities from continuous visual features for
safe and secure access in healthcare environments,” in Design Technology of Integrated
Systems in Nanoscale Era (DTIS), 2015 10th International Conference on, 2015.

[4]. 1. Marqués and M. Graiia, Computational Intelligence in Security for Information Systems
2010: Proceedings of the 3rd International Conference on Computational Intelligence in

218

T'éccen @., Maprapua T., I'éke T. MonenupoBanie KOHBeHepa pacro3HaBaHus JIIOAEH B cHCTEMax KOHTPOJIS JIOCTYIa.
Tpyow UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 205-220.

Security for Information Systems (CISIS’10), ch. Face Processing for Security: A Short
Review, pp. 89-96. 2010.

[5]. T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information Theory, IEEE
Transactions on, vol. 13, no. 1, pp. 21-27, 1967.

[6]. “Rapid miner.” https://rapidminer.com/. Accessed: 2016-02-02.

[7]. “Openni 2 sdk.” http://structure.io/openni. Accessed: 2016-04-01.

[8]. S. Naujokat, L.-M. Traonouez, M. Isberner, B. Steffen, and A. Legay, Leveraging
Applications of Formal Methods, Verification and Validation. Technologies for Mastering
Change: 6th International Symposium, ISOLA 2014, Imperial, Corfu, Greece, October 8-
11, 2014, Proceedings, Part I, ch. Domain-Specific Code Generator Modeling: A Case
Study for Multi-faceted Concurrent Systems, pp. 481-498. Springer Berlin Heidelberg,
2014.

[9]. S. Naujokat, M. Lybecait, B. Steffen, D. Kopetzki, and T. Margaria, “Full generation of
domain-specific graphical modeling tools: a meta modeling approach.” under submission,
2015.

[10]. “Cinco scce meta tooling framework.” http://cinco.scce.info/. Accessed: 2016-04-01.

MogaenupoBaHue KOHBelepa pacno3HaBaHuUs nogen B
cuctemax KOHTpons gocTtyna

Y @. I'éccen <frederik.gossen@lero.ie>
LT Mapaapua <tiziana.margaria@lero.ie>
2 T. I'éxe <thomas.goeke@systeam-gmbh.com>
Y Lero - The Irish Software Research Centre, Jlumepuxckuii ynusepcumen,
Tierney Building, Jlumepuxcxuii ynusepcumem, V94 NYD3, Hpranous.
2SysTeam GmbH,
Texnonapx, Martin-Schmeifier-Weg 14, 44227 Jlopmmyno, I'epmanust.

AHHoTanus. B pabote mpeacTaBieHoO TpH NOKOJIEHHS TPOTOTHIOB OECKOHTAKTHOH CHCTEMBI
MPOITYCKa, PACIIO3HAIOIIEH JTI0IeH 10 NX BU3YaJIbHBIM 0COOCHHOCTSIM IIPH MTOJXO0ME K CEHCOPY.
Hasnauennem cucTeMBl sBISeTCS yBeIWUYeHHE YymoOCTBa MOJNb30BaTeNeil 3a cder
MHUHUMH3aIUH B3aUMOJeHCTBUS. Takas cHCTeMa MOXET OBITh OCOOEHHO IOJIe3HA JIIOMISIM C
HApYyLICHUSAMH TeX WM MHBIX (QyHKIMA. [[ns nomydeHus u oOpabOTKHM JaHHBIX B CHCTEMe
ucronp3yercs Microsoft Kinect 2, Hemoporoit ceHcop TiyOHHBI, W CBsI3aHHBIE C HUM
MHCTPYMEHTBI pa3paboTku. Pacro3HaBaHue NPHOIIIKAIOMIErocs K CEHCOpY HWHIMBUIA
OCHOBAaHO Ha MOCTPOEHHHM KOMIIAKTHOTO XapaKTEPUCTHYECKOTO IMPEACTaBICHMS; A 3TOro
BBIYHCIISIETCS MHOXKECTBO FEOMETPHIECKIX OCOOEHHOCTEH HHIUBHUIA M TIPUMEHSIOTCS] METOBI
arperanyy Ui MOCNIEOBATENbHOCTH KanpoB. KaxkIplid M3 Tpex NPOTOTHIIOB PEaH3yIOT
HEKOTOpPHIiI KoHBeliep 00pabOTKH NaHHBIX; KOHBelep mpeoOpasyeT NaHHBIC, MOIyYEHHBIE OT
CEHCOpa, B KOMITAKTHOE XapaKTEPHCTUYECKOE IIPEJCTAaBICHHE ITyTEeM IIOCIENOBATEIHHOTO
HpUMEHEHMs] NpocThIX TpaHchopmanuit. Kaxnas ornenpHas TpaHchopMmaius Moiydaer Ha
BXOJ[OJIHO MJIM HECKOJIBKO MPECTABICHHUH, MOTYUYEHHBIX HA MPELUIECTBYIOMNX CTAAUIX, U
CTPOMUT IO HUM HOBOE IpeacTasieHue. [Ipumepsl Moaenei, mpeacTaBlIeHHbIE B 3TON CTaThe,
(doxycupyroTcst Ha reHepauud (POHTANbHBIX H300pa)keHWH JHMI JIIoJell — 3TO 4acThb
KOHBelepa 00pabOTKH JAaHHBIX ITOCIEIHET0 NpoToTHa. OpoHTANIBHEIE H300PaXKSHUSI MOTYT
OBITh TOJIydeHBI II0 JaHHBIM O IBeTe, MH(PAKPaCHOM H3IYyYeHHHM M TIIyOWHE ITyTeM

219

Gossen F., Margaria T., Goke T. Modelling the People Recognition Pipeline in Access Control Systems. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 205-220.

PEHJIEpHHTa CIIEHbI OTHOCHTEIFHO MEHSIOLICHCS 001acT! IpocMoTpa. Takoil KoHBeitep MOXKeT
OBITH TIPECTABIECH UCKIIOYUTEIHFHO TOTOKAMH JAHHBIX MEXTY TpaHcdopMmarusmu. B cratbe
[OKa3bIBAETCSl, KAK MOJEIMPOBATH [IPOTOTHIIBI C IOMOLIBIO TAKHX CPEJ U HHCTPYMEHTOB, KaK
Cinco u Cinco-Product Dime. DTu cpeicTBa TMO3BOJSIIOT HHTYHTHBHBIM 0Opasom
MOJIEJIMPOBATh IOTOKH JAHHBIX B KOHBEHepax.

KinwueBbie ciioBa: BU3YAJIbHOE€ MOJCIUPOBAHUE, pAaCO3HABaAaHUE IJIMI, PACIIO3HABAaHUC
J'IIOHGﬁ, MAalIMHHOC 3pCHUE.

DOI: 10.15514/ISPRAS-2016-28(2)-14

Jasa wmurupoBanms: [éccen ®., Maprapua T., I'éke T. MogenupoBanue KoHBelepa
pacro3HaBaHus JIOJel B cucTeMax KoHTpois pocryma. Tpynst UCIT PAH, Tom 28, BhIm. 2,
2016 r., ctp. 205-220 (na anraumiickom). DOI: 10.15514/ISPRAS-2016-28(2)-14

Cnucok nutepaTopbl

[1]. G. S. Gagandeep Kaur and V. Kumar, “A review on biometric recognition,” International
Journal of Bio-Science and Bio-Technology, vol. 6, no. 4, pp. 69-76, 2014.

[2]. Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MultiMedia, vol. 19, no. 2, pp.
4-10, 2012.

[3]. F. Gossen, “Bayesian recognition of human identities from continuous visual features for
safe and secure access in healthcare environments,” in Design Technology of Integrated
Systems in Nanoscale Era (DTIS), 2015 10th International Conference on, 2015.

[4]. 1. Marqués and M. Grafia, Computational Intelligence in Security for Information Systems
2010: Proceedings of the 3rd International Conference on Computational Intelligence in
Security for Information Systems (CISIS’10), ch. Face Processing for Security: A Short
Review, pp. 89-96. 2010.

[5]. T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information Theory, IEEE
Transactions on, vol. 13, no. 1, pp. 21-27, 1967.

[6]. “Rapid miner.” https://rapidminer.com/. Accessed: 2016-02-02.

[7]. “Openni 2 sdk.” http://structure.io/openni. Accessed: 2016-04-01.

[8]. S. Naujokat, L.-M. Traonouez, M. Isberner, B. Steffen, and A. Legay, Leveraging
Applications of Formal Methods, Verification and Validation. Technologies for Mastering
Change: 6th International Symposium, ISoLA 2014, Imperial, Corfu, Greece, October 8-
11, 2014, Proceedings, Part I, ch. Domain-Specific Code Generator Modeling: A Case
Study for Multi-faceted Concurrent Systems, pp. 481-498. Springer Berlin Heidelberg,
2014.

[9]. S. Naujokat, M. Lybecait, B. Steffen, D. Kopetzki, and T. Margaria, “Full generation of
domain-specific graphical modeling tools: a meta modeling approach.” under submission,
2015.

[10]. “Cinco scce meta tooling framework.” http://cinco.scce.info/. Accessed: 2016-04-01.

220

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

Parallel processing and visualization for
results of molecular simulation problems

D. V. Puzyrkov <dpuzyrkov@gmail.com>
V. O. Podryga <pvictoria@list.ru>
S. V. Polyakov <polyakov@imamod.ru>
Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Miusskaya sq., 4, Moscow, 125047, Russia

Abstract. In this paper authors presents “mmdlab” library for the interpreted programming
language Python. This library allows to carry out reading, processing and visualization of the
results of numerical calculations in the tasks of molecular simulation. Considering the large
volume of data obtained from such simulations, there is a need in parallel realization of
algorithms for processing those volumes. Parallel processing should be performed on multicore
systems, such as common scientific workstation, and on super-computer systems and clusters,
where the MD simulations were held. During the development process we have study the
effectiveness of the Python language for such tasks, and we have examined the tools for it’s
acceleration. As well, we studied multiprocessing capabilities and tools for cluster computation
using this language. Also we have investigated the problems of receiving and processing the
data, located on multiple computational nodes. This was prompted by the need to process the
data, produced by parallel algorithm, that was executed on multiple computational nodes, and
saves its output on each of them. As a tool for scientific visualization was chosen an open-
source “Mayavi2” package. The developed "mmdlab” library was used in the analysis of the
results of MD simulation of the gas and metal plate interaction. As a result, we managed to
observe the effect of adsorption in details, which is important for many practical applications.

Keywords: parallel processing; visualization; molecular dynamics; Python; Mayavi2
DOI: 10.15514/ISPRAS-2016-28(2)-15

Juns uurupoBanus: Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and
visualization for results of molecular simulation problems. Trudy ISP RAN/Proc. ISP RAS, vol.
28, issue 2, 2016, pp. 221-242. DOI: 10.15514/ISPRAS-2016-28(2)-15

1. Introduction

Advances in computer technology and the rapid growth of computational capabilities
significantly increased the possibilities of computational experiment (CE). In
particular, nowadays it is already possible to study the properties and processes in
complex systems on molecular and atomic levels, for example, using molecular
dynamics (MD) approach. Mathematical models, which describe such processes, may

221

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

consider huge amounts of particles: up to billions of them, and even more. In addition,
each particle can be described by dozens of parameters and the volume of output data
in such CE can be estimated in terabytes.

Processing of such volumes of data in serial mode can potentially take years, and
optimization of computing code does not bring a significant acceleration of the
computations. Therefore, currently the most widely used approach to accelerate the
large-scale computing is it's paralleling, which means that a great number of compute
nodes would process a large amount of data each handling apart of it.

As a result of paralleling, each node receives only a small part of the data set which
is easy to manipulate with.

This technique significantly reduces the time required to complete data processing,
but leads to several problems concerning the data storage. Most often, after
performing calculations compute nodes exchange the results of computations, and
master process assembles them in RAM or in a storage device as one large array or a
file. However, in the large-scale computations the size of the result array (file) can
significantly exceed the resources of the master node. In this case, each compute node
stores the results in isolation. The last described method of storage has several
advantages. The first one is the lack of need to sequentially read all the results for
further processing (for example, for visualization purpose) because each
computational node only reads it's part of the data. The second advantage is that each
individual data file is typically not very large (compared to the full data set), and thus
it takes less processing time. Such data can be reached in various ways, for example
using a distributed file system, on-the-node-process reading, or using the applications
allowing to send data over the network, such as the SFTP.

The scientific programs that store data in the form described above, are considered in
this article. The results of the simulation based on the algorithm, described in the
article [1] were used as a data set for studying parallelization capabilities of the
developed "mmdlab" library.

One of the ways of CE data representation is a two- and three-dimensional
visualization.

In order to assemble a complete state of the simulation results, it is required to read
and process the data from each compute node, which in itself is a resource-intensive
task. In most cases, the calculated data formats and storage methods differ depending
on the calculation program. Therefore, such programs usually have their own
visualizer, and calculate all the necessary visualization data in the process of
computation, collecting them on the master node. In this case, the visualization is
provided by the means of such programs (LAMMPS, and others). Another way is to
save data in the well-known standardized containers (HDF5, VTK, and other), which
are supported by the majority of software for scientific visualization. The problems
of such methods of storage and rendering are the limited possibilities of the used
visualization software in regards to visualization and post-processing, and in the case
of well-known standards of data storage there occurs the problem of loading large
files.

222

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

This paper presents an attempt to create a flexible tool that allows importing,
processing and visualization of data from different sources, regardless of it's structure:
whether the data is in known formats or distributed calculation results in a custom
format.

The results obtained using the computer program described in the article [1] were
considered as a test case.

In view of the parallel algorithms and storage features, this data can be a one big file
that describes the general state of the simulated system, as well as a distributed data,
processed by every computational process separately. The results obtained from the
simulation are the information about the interactions of the gas molecules with the
metal atoms near the surface. This process is characteristic for many technological
microsystems used in nanotechnology.

2. Problem Statement

The problem of collecting and processing the distributed data obtained as a result of
some calculation program has several key features.

Firstly, it is the specifics of the problem domain. As a result of searching among the
various simulation packages, there has not been found suitable means for parallel
loading of distributed data relating to the considered task. This problem drove us to
do this research.

Secondly, the scale of the input data can differ greatly. It can be a small one-
dimensional array or a large number of files distributed across the various
computational nodes and file systems. Such problems are usually solved by means of
a software system that generated this data, or by development of a specialized
"loader" tool, which understands input-output formats used by the calculation
program.

Thirdly, there is a need to process such results for convenient representation on charts
or in 3D visualization.

Due to the features described above, in this work we made an attempt to create a
framework for the software complex with the following features:

e Parallel reading of data from different sources;
e User-defined data formats support;

e Custom data filters and processors support;

e Data visualization solution;

It is important to emphasize that in the case of development of such library its
expandability has a significant role. It should be relatively easy to use the developed
framework for processing the data stored in any format, and to integrate it with the
other known solutions for visualization and data processing. As the initial stage of
development we chose the problem of post-processing and visualization of the results
obtained in work described in the article [1].

223

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

This task involves the consideration of all the listed features of the selected
application, because of the distributed structure of the data in different computer
systems with remote access to it via SSH.

3. Development tools

There are many known solutions for task-based paralleling and data visualization.
Feature of these solutions is the difficulty of their use, setup and installation.

Among the known solutions for clustering can be noted Apache Hadoop. This is a
large and complex solution, which implements MapReduce model for task-based
parallel processing. However, for the considered problem, it has many unnecessary
features, such as a distributed file system (HDFS) and requirement of installation on
computational nodes.

For general scientific visualization, there is a variety of software packages, for
example, Paraview, VMD, Tecplot. Each of these software packages has its own
format of data storage, and is also able to read the standardized formats. However, in
the case of a custom data format or a complex data distribution all of these solutions
require implementation of a special data loader.

Taking all the above into account, we decided to add into the developed library the
support of the integration into such packages, and its own visualization and clustering
tools. Furthermore, "mmdlab™ library has a minimum set of dependency and does not
require installation on the compute nodes.

In view of the need for the above-mentioned integration into well-known solutions,
as well as the requirements posed by the expandability of developed framework, we
decided to use an interpreted programming language Python, due to the fact that
almost all of that packages use Python in their plug-in systems.

3.1 Python

Python [2] is a widely used in scientific community general-purpose high-level
programming language. Its design philosophy emphasizes code readability, and its
syntax allows programmers to express concepts in fewer lines of code than it would
be possible in languages such as C++ or Java. The syntax of kernel of Python is very
simple and short, at the same time a standard library gives the large volume of useful
functions and convenient data structures. It is also a cross-platform, so you can use it
(with some restrictions), both under the MS Windows and Linux operating systems.

Python supports multiple programming paradigms, including object-oriented,
imperative and functional programming or procedural styles. It features a dynamic
type system and automatic memory management, full introspection, exceptions and
multiprocessing.

The developers community created a lot of computer science libraries, that makes
Python one of the most commonly used languages for big data analysis and scientific
calculations.

224

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

Though Python already has version 3, in this study we used Python version 2.7, in
view of the fact that some used libraries (for example, Mayavi2) were written in
Python 2.7, and Python 3 and Python 2.7 in some cases do not have backward
compatibility.

3.2 IPython

IPython [3] is an interactive shell for Python language, which adds an expanded
introspection, additional command syntax, code highlighting and autocomplition. The
main feature of this project is that it provides the core for Jupyter web-application,
which allows to write scripts in Python, R, and BASH directly in the browser, as well
as interact with the objects of visualization. In this work IPython notebook application
has been selected as the web-control system.

3.3 Accelerators of computations

Despite all the advantages of the main realization of the interpreter CPython, it is
necessary to remember that the Python is a high-level interpreted programming
language. It cannot provide high performance itself, due to the memory management
system and dynamic typification. It is very easy to use, but if performance is critical
it is necessary to implement CPU-critical code in C or C++, to avoid the overhead of
interpreter calls. However, there are several technologies allowing to evade the low-
level programming.

Another big disadvantage of the CPython interpreter is associated with the speed and
performance in multithreading. The last is caused by use of the GIL (Global
Interpreter Lock) mechanism representing mutex (the elementary binary semaphore)
which is not allowing different threads to process the same bytecode at the same time.
Unfortunately, this lock is necessary, since the memory management system in
CPython is not thread-safe. The following methods were considered to avoid this
limitations.

3.4 Numpy

Numpy [4] is an open source library for Python. It implements fast multi-dimensional
arrays and plenty of parallel (vectorized) algorithms for linear algebra, Fourier
transform and other applications. Since Numpy is written in C, the executable code
of the library is compiled into native code, and there is no need for its interpretation,
gaining significant speedups of the array-processing methods. The threads that run
inside Numpy do not depend on the GIL, present in the CPython, and therefore its use
accelerates the execution of algorithms by parallelization. Besides Numpy has
detailed documentation that facilitates the development and maintenance of the
software. All these features make Numpy reasonable choice for array processing in
Python.

225

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

3.5 Numba

Numba [5] is optimizing Just-In-Time (JIT) compiler, which allows to accelerate the
time-critical code by compiling it into native code. Unlike Cython, Numba does not
require explicit type annotations (but supports it) and does not translates the code in
C language, which simplifies the use of this technology. In order to show Numba
which methods are needed to be optimized, the user must use the simplest means of
Python language, called a decorator.

Marked by the special decorator methods Numba optimizes and compiles to machine
code using LLVM (Low Level Virtual Machine) infrastructure. With the ability to
turn off the GIL, as well as the compilation to native code without using the Python
C API (for the methods that operates elementary types), Numba compiler can
generate more efficient and optimized bytecode. Numba also automatically vectorizes
all that it can handle, utilizing the capabilities of multiprocessor systems to the
maximum.

from numba import Jjit
@jit (nogil=True, nopython=True)
def numpy numba func(vx, vy, vz, multiplier=100, divider=3.0):

return multiplier* ((vx*vx) + (vy*vy) + (vz*vz)) / divider
def numpy func(vx, vy, vz, multiplier=100, divider=3.0):
return multiplier* ((vx*vx) + (vy*vy) + (vz*vz)) / divider

Listing 1. Numba and Numpy array multiplication.

Table 1. Numba and Numpy performance comparison.

N Numpy Numba Speedup
108 0.19 ms 0.07 ms 2.77
107 1.62 ms 0.74 ms 2.19
108 16.06 ms 7.4 ms 2.17

Table 1 compares the speed of execution of the same Python code (multiplication
arrays with multiplying and dividing by a constant, see Listing 1), in one case without
Numba, in the other using this technology. Testing was performed on a system with
the Intel Core 17-3630QM CPU.

It should be noted that the algorithm shown in Listing 1 is not parallel in the means
of code, and the vectorization is performed by Numpy.

The Table 1 shows that Numba allows to speed up the execution nearly twice due to
JIT compilation, without any special optimization, such as, most likely, would be
needed while using any other tools, such as Cython.

226

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

4. Parallelization tools

Considering a GIL mechanism, presenting in CPython, the use of standard Python
threads is not an effective solution for parallel processing. GIL does not allow
multiple threads run simultaneously on different cores (within one interpreter process)
even on a multiprocessor system. However, running multiple processes of
interpreters, which can exchange data, completely solves this problem. The only
distinctive in this case is that the launch of the process is a much more prolonged
operation than starting threads, and usage of multi-process application on small data
is not rational. There are several tools for easy management of such tasks.

4.1 Multiprocessing

Multiprocessing [2] is a standard library module that provides an interface to create
and manage multiple interpreters processes. Its AP is similar to the threading module
of the standard library. It also adds some new features, such as the Pool class,
representing the abstraction and control mechanism for a set of parallel interpreter
processes. Multiprocessing also implements interprocess primitives, such as queue
and mutex. It is also worth noting that each process of the interpreter works in separate
memory space, therefore there is no need to worry about race conditions when writing
or reading variables, unless they are declared as an object in shared memory.
Communication between the processes of the interpreter within a given library is
through interprocess communication channel, based on pipes, using the pickle
module, allowing to "serialize" and "deserialize” the Python objects (serialization -
the process of transferring any data structure into a bit sequence; deserialization - the
restoration of the initial state of the data structure from a bit sequence). All the tasks
of synchronization and object transferring are carried out by the Multiprocessing
module. Therefore, the user does not need to solve the problem of confirming that all
data used in the calculation has been updated.

4.2 ParallelPython

ParallelPython (PP) [6] is a library used to solve the problem of clustering
applications. Its implementation has a client-server structure and it requires
installation of the server part on the compute nodes. However, the server program of
the PP is a simple one-file script, that can be transferred into the node in any possible
way. Because of the simplicity of PP interface, it allows to run a computational task
on a parallel cluster in few lines of code.

This library has its own load balancer, and it also monitors the status of nodes and
redistributes tasks in case of non availability of one of them. With Multiprocessing
module, ParallelPython allows simply and conveniently use all of the capabilities of
the cluster computing.

Listing 2 shows an example of summing up the plurality of arrays in parallel mode,
using ParallelPython and Multiprocessing.

227

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

import pp
import numpy as np
ppservers = ("10.0.0.1","10.0.0.2","10.0.0.3","10.0.0.4")

serv = pp.Server (ncpus = 2, ppservers=ppservers)
def mpsum(array) :

pool multiprocessing.Pool (2)
half len(array) /2
s = sum(pool.map (sum, [array[:half], arraylhalf:]]))
return s
arrays = [np.ones(5000) for i in xrange(10)]
imports = ("multiprocessing",)
depfuncs = tuple()
jobs = [serv.submit (mpsum, (a,), depfuncs, imports) for a in arrays]
s = sum([Jjob () for job in jobs])
print s

Listing 2. Parallel Python and multiprocessing usage for multiple arrays summation.

At every computational node, two processes start by ParallelPython and each of them
starts other two process by means of Multiprocessing. It is worth noting that this
library, as well as Multiprocessing, uses the "pickle” module to serialize data and tcp
/ ip network messaging.

5. Visualization tools

As it was already mentioned, there are many third-party tools for data visualization.
The "mmdlab” library presented in this work can be used as a tool for preparation of
data for the visualization in such packages, however it was also decided to add its
own visualization capabilities. During the research it has appeared that the listed
below libraries almost do not concede in options to the well-known packages for
scientific visualization.

5.1 Mayavi2

Mayavi2 [7] is a Python framework, which allows to build a general-purpose
scientific visualization. It gives user a possibility to load and render the data in a
separate GUI application and also has a convenient Python API for scene construction
and rendering. This library is built over the well-known in scientific community VTK
library.

Mayavi2 gives ample opportunities for the visualization of data, beginning from
hydrodynamic calculations and finishing with atomistic data. In the case of the
interactive GUI mode, tools for changing the rendering parameters, such as the size
of objects, color schemes, filter settings are also available. Mayavi2 also has a
possibility of the offscreen-rendering (without displaying image), that is extremely
important for the server, distributed and batch operation of a large number of data.

228

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

import pp
import numpy as np
ppservers = ("10.0.0.1","10.0.0.2","10.0.0.3","10.0.0.4")

serv = pp.Server (ncpus = 2, ppservers=ppservers)
def mpsum(array) :

pool multiprocessing.Pool (2)
half len(array) /2
s = sum(pool.map (sum, [array[:half], arraylhalf:]]))
return s
arrays = [np.ones(5000) for i in xrange(10)]
imports = ("multiprocessing",)
depfuncs = tuple()
jobs = [serv.submit (mpsum, (a,), depfuncs, imports) for a in arrays]
s = sum([Jjob () for job in jobs])
print s

Listing 3. KDE calculation and visualization script using SciPy and Mayavi.

4l

Y X

17,2143

Fig. 1. Listing 3 execution result: Kernel Density Estimation as volume visualization.

Listing 3 and the Fig. 1 show an example of the density distribution calculation of
points and its three-dimensional visualization using Mayavi2 and library for scientific
computing SciPy.

5.2 Matplotlib

Matplotlib [8] is a Python library for building high-quality two-dimensional graphs.
It is widely used in the scientific community. Usage of Matplotlib is very similar to
the usage of the plot methods in MATLAB, however, they are independent projects.
It is particularly convenient that the plots, which are drawn with the help of this library
can be easily integrated into applications written with different libraries for GUI
construction. Matplotlib can be integrated into applications written using the
wxPython, PyQt and PyGTK libraries.

Matplotlib module is not included in the standard library, but it is the de facto standard
for the visualization of numerical information.

229

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

6. Distributed data access

The data obtained from the algorithm, described in the article [1] has distributed
structure, and is stored on the compute nodes, used for simulation.

Filel 1 FileM 1
Filel 2 FileN 2
Filel N FileN N
MNode 1 Mode N

Fig. 2. Data distribution structure.

Fig. 2 shows an example of such data arrangement. The composition of all the files is
a complete form of the system simulated by means of molecular dynamics. It happens
that the computational nodes use the shared disk space, for example, by means of the
NFS (Network File System). However, access to the data from the client-side which
needs to read and process the data is open only via SSH. Paramiko library can be used
to solve this problem.

6.1 Paramiko

Paramiko [9] is a library for the Python language, which provides implementation and
interface for interacting with remote systems via SSHv2 protocol. This library has
both client and server implementations. In addition, Paramiko provides a convenient
API, which implements objects of "file" type, which are representing files on the
remote filesystem. This functionality was used as a basis for the implementation of
SSH collector in the represented work.

7. Implementation details

Using the tools above, there was initiated the development of the software complex,
allowing to achieve the objectives, namely the parallel data reading and processing,
as well as their visualization. As an initial stage, "mmdlab" package was written
which implements a general purpose API for such tasks. Below are described the
implementation problems we have to handle, application and solutions with the means
of the developed library. There is also drawn further attention to the implementation
peculiarities in some parts of the package.

7.1 Parallel data access

A module for reading and partial processing of the input data was named "datareader".
In this module have been implemented the necessary objects for reading and
representation of the data, such as Container, Parser and means of access to the files
on the local file system and via SSH. In the terminology of "mmdlab" package,

230

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

Container is a structure that stores the read data in a user-defined format. Parser is a
special object that reads binary data structure and parses them, thereby obtaining a
container. The Parser class receives the raw data from the Transport object that
provides an interface for the access to the local or remote file system.

Inheriting and combining objects from these classes, the user can easily make the
loader, that parse a custom data format, and accesses it using any protocol, such as
SSH or HTTP.

File=1 File2 File2

Fig. 3. MMDLAB components scheme.

On the Fig. 3 are shown the "mmdlab™ components interactions.

Let's consider the reading procedure of the MD system's particular state described the
article [1]. Given the distributed structure of input data, a single state of the system is
a set of files of the atomistic data. For each of them it is necessary to read, parse and
compile binary structure into a single container that contains the representation of the
simulated system. For the performance needs it is necessary to use a parallel algorithm
for the reading and processing of the data.

Master process launches N slave-processes that are able to load and parse the data.
Then it begins to give every data file address to a every free process. When the slave
process has finished the reading and parsing procedure, and assembled its part of the
container, the master process combines the loaded data with its master container, and
then assigns a new file to the slave process. After all the slave processes are
completed, and there are no more files for reading, master process provides the
necessary post-processing for the container, where all of the available data is stored,
and sends it to the next data processor in line. It should be noted that in some cases it
is not necessary to send all the data to the master host. For those cases, the "mmdlab"
supports a possibility to use the post-processing pipeline in the slave processes, so
they can make necessary calculations and send back only the result, but not all the
processed data set.

In order to enhance the ability of "mmdlab™ package for reading the custom-format
data, it is required to describe the new entity for storage and loading of such data.

231

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

As an example, consider the implementation of such entities for reading a CSV
(Comma-Separated Values) format with three columns.

class CsvCtr(dr.containers.DummyContainer) :
def init (self):
self.cols = [[],[],[]]
def append data(self,data):
for i,d in enumerate(datal[:]):
self.cols[i] .extend(d)
class CsvParser (dr.parsers.DummyParser) :
def data(self):
cols = [[1,[]1,I[1]
for line in self.transport.readlines():
c = line.split(",")
for i in range(0,3):
cols[i].append(cli])
return cols
nodes = \
({"ip":"10.0.0.1","pwd":"123","login":"test"},
{"ip":"10.0.0.2","pwd":"123","login":"test"})

remotedirs = [(sys.argv[l], node) for node in nodes]
transport = dr.transport.RemoteDirs (remotedirs)
parser = CsvParser ()

rdr = dr.DistributedDataReader (file mask="1*.csv",
transport=transport, parser = parser,
container = CsvCtr)

container = mmdlab.run([rdr,])

Listing 4. CSV Container and Parser implementation using “mmdlab™ package.

Listing 4 shows an example of such an extension to CSV reading from remote file
systems via SSH.

In practice the user will need to describe the new class inherited from the class
DummyContainer and to redefine the append_data method in it. Also it will be
required to describe the class for raw data parsing.

7.2 Pipeline

In this work, to run reading and processing tasks, it is proposed pipeline-type interface
(see Listing 5, the mmdlab.run part).

This method makes it possible to run an execution of a chain of actions in one line,
each of which is carried out over the result of the previous task. Also parallel
operations over the same result of the previous method are supported.

For example, the call of mmdlab.run([generate, [f1, f2, 3], sum]) first performs the
"generate" method, then in parallel mode it runs three processes: "f1", "f2", "f3" each
operating on the result of the "generate", and in the end it will summarize the obtained
values. Restrictions on objects in the pipeline are simple: the object has to be callable,
it should take the data for processing as an argument and it should return an object.

232

TTyssipekoB [1.B., TToapsira B.O., ITonsikos C.B. IMapamiensHas 06paboTka ¥ BU3yallH3alus JUIs Pe3yJibTaToB
MOJICTIMPOBAHHUS METOIOM MONEKYIsApHOI auHaMuku. Tpyost MCIT PAH, 2016, Tom 28, Beimyck 2, c. 221-242.

from mmdlab.datareader.shortcuts import read distr gimm data

import mmdlab

import sys

reader = read distr gimm data(sys.argv[l],sys.argv([2])

filter reg =

mmdlab.dataprocessor.filters.RegionFilter([0,10,0,10,0,107)

parts descr = \

{ "Nickel"™ : { "id" : 0, "atom mass" : 97.474, "atom d" : 0.248}, \

"Nitrogen" : { "id" : 1, "atom mass" : 46.517,"atom d" : 0.296} }

filter split = mmdlab.dataprocessor.filters.SplitFilter (parts_descr)

container = mmdlab.run([reader, filter reg, filter split])

met,gas = container["Nickel"], container["Nitrogen"]

mp = mmdlab.vis.Points3d(met, scalar=met.t, size=met.d,
colormap="black-white")

gp = mmdlab.vis.Points3d(gas, scalar=gas.t, size=gas.d,

colormap="cool")

mmdlab.vis.colorbar (gp, "Gas T")

mmdlab.vis.show (distance=20)

Listing 5. Reading, processing and visualization of the atomistic data using "mmdlab"
package.

Fig. 4. The result image produced by execution of Listing 5.

At the current stage of development, when you run a multithreaded processing over
the previous action the result will be copied to each of the child process.
In the future we plan to add some additional entities, allowing to manage the
execution workflow, such as a special object that allows to perform an action in the
master process, and to send the result's parts to the slave-processes. This may be
necessary, for example, for the separation of the array into a multiple parts, and
process each in a separate slave-process without sending the entire array to it.
Due to the fact that the pipeline is implemented by means of the interface module
Multiprocessing, consider some of the problems encountered.

233

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

7.3 RAM leak in parallel processing
Let's consider the reading procedure of the DistributedDataReader class (see Listing 6).

class DistributedDataReader:
def read(self):

files = self.transport.list(self.file mask)

container = self.container ()
pool = Pool (processes=self.np, maxtasksperchild=self.mtpc)
results = [pool.apply async(rd, \

args=(f,self.transport.filer(),self.parser))\
for £ in files]
for ct in results:
container.append data(ct.get())
return container.finalize ()

Listing 6. A part of DistributedDataReader class.

During the testing it was found that a resources leak appears in the multiprocessing
mode. After starting the pool of processes, and performing a variety of tasks in it,
memory consumption increases dramatically. It became apparent that by default the
started by Multiprocessing library interpreter processes handle all the scheduled tasks
without restarting.

Each task which is carried out in such processes leaves the context, which becomes
bigger in the volumes of consumed memory as the more data the task returns. As a
result, after long-term execution of multiple tasks at the computational node the RAM
came to an end.

The proposed solution of this problem is as follows. The object of a processes pool
has a special parameter of the constructor named "maxtaskperchild”, allowing to set
the number of tasks that a single interpreter process can handle. When the counter of
finished jobs becomes more then this value, the master-process algorithm will restart
the interpreter. Changing this parameter allows to vary the maximum amount of
memory consumed. However, it should be noted that the smaller the value, the more
often the master process will restart child processes' interpreters. It can take noticeable
amount of time.

Within the considered task of processing large amounts of data, the time is not critical,
and installation of rather small value is quite justified because of memory limits.

234

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

Time, 5

ma r:f.i'.!:cprr-r hild

Fig. 5. Loading time of 256 files depending on a "maxtaskperchild" parameter, logarithmic
scale.

Fig. 5 shows the dependence of the loading time on the "maxtaskperchild" parameter.
The loader uses multiprocessing module, with the pool consisting of one process, and
loads 256 data files in serial mode.

Taking into the account the Fig. 5, the optimal behavior of the processes pool is to
restart the slave-workers every 16 tasks. It makes possible limiting the consumption
of RAM and at the same time keeps the overhead of the interpreter restart time
influence almost negligible.

7.4 Multiprocessing and Pool of Pools

Another problem encountered in the development process is the fact that the default
multiprocessing library does not allow to create "nested" pools for processes.

In particular, if there appears a necessity to run in parallel the processes of reading a
plurality of states of the studied system (this will start new slave-processes that should
start a lot of reading processes), for example, for the particles' trajectories
construction, so the Multiprocessing module will not allow to do it. The introspection
which is supported by the Python language fully helps with the solution of this
problem.

The "mmadlab" package developed in this work has a construction shown in Listing 7
included in it. It redefines the _get daemon and _set daemon methods at the
"multiprocessing.Process" class and provides a new object, inherited from the Pool
class. It should be used instead of the standard Pool class from Multiprocessing
module.

235

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

import multiprocessing
import multiprocessing.pool
class NoDaemonProcess (multiprocessing.Process) :
def get daemon (self):
return False
def set daemon(self, value):
pass
daemon = property(get daemon, set daemon)
class MultiPool (multiprocessing.pool.Pool) :
Process = NoDaemonProcess

Listing 7. MultiPool class, allowing to run pool of processes inside child process, created by
multiprocessing module.

7.5 Data processing

For processing and filtering data in developed "mmdlab™ library the same
mechanisms as for the data reading are used. The so-called "pipeline" architecture is
used which implicates the container object passing through a chain of a great number
of data processors, that can change, supplement a container or create a new one. The
"run" method in the "mmdlab™ package passes the container obtained from the
previous task to the input of the next processing method. The implementation of these
processing methods can be both serial and parallel.

In the application to the analysis specific objective of molecular dynamics
simulations' results from the article [1], the objects for data post-processing have been
added to the developed library. For example, a filtration of particles by various
criteria, in particular for getting the particles only from specified area, for filtration
by indexes and division of particles according to physical materials.

All computationally intensive procedures were optimized by using Numpy and
Numba.

As a simple example, let's consider the task of visualizing of the particles' position
and temperature that are divided by criteria of physical material in the predetermined
area. Such problem can be solved using "mmdlab" library in the following way (see
Listing 5). First, the user creates an object of the data loader, setting their location in
the filesystem and a time mark.

Then they need to specify the description of particles, which the division filter will
work with, and create the corresponding objects of filters (the location filter and the
division filter). Lastly they need to pass these objects to the pipeline. Calculation of
temperature is performed during the container's post-processing stage.

Listing 5 and Fig. 4 show the listing of such task and the execution results.

236

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

import sys
import mmdlab
from scipy.stats import *
from mmdlab import parallel
from mmdlab.datareader.shortcuts import *
from mmdlab.dataprocessor.filters import *
rdr = read distr gimm data(sys.argv[1l],0)
def calc kde(kde, data):
return kde (data.T)
parts_descr = { "Nickel"™ : { "id" : 0}, "Nitrogen" : { "id" : 1}}
filter split = SplitFilter (parts descr)
filter reg = RegionFilter ([0, 100, 0, 100, 0, 100])
cont = mmdlab.run([rdr, filter reg, filter split])

gas = cont["Nitrogen"]

kde = gaussian kde (np.vstack([gas.x,gas.y,gas.z]))

xi, yi, zi = np.mgrid[0O:gas.x.max():307,
O:gas.y.max () :3073,
O:gas.z.max () :30]

c = np.vstack([item.ravel () for item in ([xi,yi,zi]]

cores = sys.argv/[2]

nodes = ("192.168.6.15","192.168.6.20")

cluster = parallel.Cluster (nodes)

args = [(kde,a) for a in np.array split(c.T, cores)]

cluster.map (calc_kde, args)
density = np.concatenate (results) .reshape (xi.shape)

Listing 8. KDE Clustering example using "mmdlab" package.

7.6 Cluster processing

For testing of the cluster mode was used the combination of the master node with the
Intel Xeon E5-2650 (32 cores) and 6 compute nodes (Intel Xeon 5150 2.66 GHz, 24
cores) with shared file system over NFS. It gives certain freeness in respect of access
to the data: it is not required to associate the input and the node on which processing
is started, as any datafile is available from any of nodes.

However, such configuration has a bottleneck: the storage input-output performance.
As a result, it was decided to use the following strategy: a master node, which is a
physical data storage, in the multiprocess mode loads data into memory and sends it
to the cluster nodes in the form of internal representation, without the data processing.
In contrast to the strategy of "reading on each node" the described way allows to use
the computational capabilities of the subordinated nodes on maximum, with the
minimum input-output waiting, maximizing disk input-output utilization.

In case of difficult visualization for which processing and rendering takes more time
than reading one system state, such approach allows to reduce the average time of full
processing almost to the data reading time, which is the potential minimum time of
processing.

As an example of clustered task, consider the problem of constructing three-
dimensional field of the gas density in the computational domain using Kernel
Density Estimation (KDE) algorithm, implemented in SciPy library (see Listing 8).

237

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

The graphs of execution time (see Fig. 6) and the acceleration (see Fig. 7) of such
calculations, depending on the number of processors for a variable number of
subtasks are shown below.

TOn
17 tasks
64 tanks
128 tazks
F506 tazks
512 tanks

i [iy 138 160
fneriad) (1 node) 12 rodeu) [3 nembon) (4 moden] it roden)

Fig. 6. Processing time for parallel KDE algorithm with various number of subtasks,
depending on the number of used processors.

32 tanks

Gd tasks
120 tasks
e 256 tasks
P 512 tasks

‘.) = 3 128 6o
ediall 01 il {F Pusiles) 19 isiles) il Fueibed] 5 imsiades)

Fig. 7. Speedups for parallel KDE algorithm with various number of subtasks, depending on
the number of used processors.

It should be noted that if the number of tasks is less than the number of master node
processes (which is up to 32), then the increasing of the process's count in this
calculation is not effective. Also, the acceleration increases with the number of nodes
involved in the computation, rather than with the number of actual processes. This is
due to the following two features:

e PP considers that the overhead of process start-up and data transfer is
significantly less on the master-node, than on the slave-nodes. Thus, it loads
the master node to the maximum, before it starts to send jobs to the slave-
nodes;

e Numpy already vectorizes array operations over all available cores, and the
addition of a new processor will not make a significant acceleration;

Also we need to note that the PP, which is used as a library for clustering,
automatically distributes the load across nodes, depending on the tasks execution
time. So it makes sense to divide the original problem into a number of subtasks more
than the number of available processes, if there are some "weak" nodes in the cluster.
In this case PP forms a queue and gives tasks to the nodes taking into account
efficiency of each node, thereby providing a load balancing.

238

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

7.7 Visualization

For the visualization in this work Mayavi2 and Matplotlib library were used. For
convenient usage of the common rendering methods, the "mmdlab.vis" module was
included, which is a wrapper over the methods of these libraries, combining their
capabilities to achieve the desired result. Due to the single-threaded architecture of
Mayavi and Matplotlib, data visualization process is currently supported only in the
single-threaded mode within a single process. However, "mmdlab" allows to run a
hybrid task of reading and rendering on a set of nodes and in the multiprocess mode,
which significantly accelerates the rendering of frame-by-frame video animations.
For example, consider the task of rendering an animation, which consists of frames
representing the state of the studied system in consecutive timepoints. Basic data can
be distributed across the multiple nodes, thus the visualization can be run on each of
the nodes, and then the result can be collected on the master-node. The following
algorithm is proposed for the solution of such a problem:

e On each of the specified nodes run a sequence of reading and visualization;
e Collect all the frames that were drawn on the master node;
e Assemble an animation from collected frames;

To build an animated GIF format file "mmdlab" library uses the program "convert"
from the ImageMagick [10] utils.

8. Conclusion

This paper presents the experimental version of a high-level library "mmdlab" for the
Python language. Usage of such library makes it possible to perform a simple
clustering and paralleling for the various types of processing tasks, such as reading,
post-processing and visualization.

It can operate over the large-scale data, distributed over the computational nodes in
parallel mode.

The main tasks of the development of this library are the analysis and visualization
of the data obtained as the result of MD simulation of gas-metal microsystem
described in the article [1]. To achieve this goals it was necessary to process about
1.3 TB of data obtained from one simulation, and there were three simulations with
different materials temperatures. Usage of the "mmdlab” library allowed to closely
observe the effect of nitrogen adsorption on a nickel plate (see Fig. 8) including an
analysis of the individual particles' trajectories.

239

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

Fig. 8. Adsorbtion of nitrogen on nickel plate and particle trajectory visualized using the

"mmdlab" package.

Special attention was paid to a possibility of extension of the library. It is possible
thanks to flexibility of the used tools. As a result, usage of the developed library can
be extended to reading and visualization of potentially any structures of data.

9. Acknowledgment

Work is performed with assistance of the Russian Foundation for Basic Research
(grants No. 15-07-06082-a, No. 15-29-07090-ofi_m).

10.
[1].

2.
[3]

[4].

[5].
[6].
[7].
[8l.

(€1
[10].

240

References

V.0. Podryga, S.V. Polyakov, D.V. Puzyrkov, “Supercomputer Molecular Modeling of
Thermodynamic Equilibrium in Gas—Metal Microsystems” (in Russian), in
Vychislitel'nye Metody i Programmirovanie [Numerical Methods and Programming],
vol. 16, no. 1, pp. 123-138, 2015 (in Russian).

Python official documentation. 04, Feb. 2016, https://www.python.org/

P. Fernando, E.G. Brian, “IPython: A System for Interactive Scientific Computing” (in
English), in Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29, 2007.
(2015, Feb. 4), [Online]. Available: http://ipython.org

Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux. The NumPy Array: A
Structure for Efficient Numerical Computation, Computing in Science & Engineering, 13,
22-30 (2011), DOI:10.1109/MCSE.2011.37

Numba official documentation, 04, Feb. 2016, http://www.numba.pydata.org/
Vanovschi V., Parallel Python Software, http://www.parallelpython.com

Ramachandran, P. and Varoquaux, G., "Mayavi: 3D Visualization of Scientific Data®
IEEE Computing in Science & Engineering, 13 (2), pp. 40-51 (2011)

John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science &
Engineering, 9, 90-95 (2007), DOI:10.1109/MCSE.2007.55

Paramiko official documentation, 04, Feb. 2016, http://www.paramiko.org/
ImageMagick official documentation, 04, Feb. 2016, http://www.imagemagick.org/

ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

MapannenbHas o6paboTka u BU3yanusauua ons
pe3ynbTaToB MOAENUPOBAHUA METOAOM MOJEKYNSApPHOMN
OUHAMMKKU

. B. Iyswiporos <dpuzyrkov@gmail.com>
B. O. Iloopwiea <pvictoria@list.ru>
C. B. Ilonaxos <polyakov@imamod.ru>
Hnemumym Ipuknaonoi Mamemamuxu um. M. B. Kenovuua Poccuiickoti
Axademuu Hayk
125047, Mockea, Muycckas na., 0.4

AuHoTtammsi. B 9r0if pabGore aBropamm mpencrasisercs Oubmuoreka "mmdlab" s
HUHTEPIPETHPYEMOTO s3bIKa TporpaMmupoBanust Python. Drta Oubnuoreka mo3BosseT
OCYILLECTBIIATH YTCHHE, 00PabOTKY M BU3YAIH3ALHIO PE3yJIbTaTOB YHCICHHBIX PAacUeTOB 3a1a4
MOJICKYJIIPHOTO MOJICIMPOBAHMS. YUHTHIBas OONbLION 00BEM NaHHBIX, MONyYaeMbIi B
pe3yabTaTe MpOBEICHHS TAKUX CUMYJLIIUH, CYyIIeCTBYeT HEOOXOIMMOCTh B MapauleIbHON
peanu3anuy aaropuTMOB T 00pabOTKH TakuX 00heMoB. [lapannenbHas 00paboTka T0KHA
BBIMOJIHATBCS KAK Ha MHOTOSICPHBIX CHCTEMaX, TAKUX KaK OOBIYHBIA COBPEMEHHbIN
KOMITIBIOTEP, TaK M Ha CYNEPKOMIBIOTEPHBIX CHCTEMaX M KJIacTepax, IJe MPOUCXOMIIO
YHCICHHOE MOJCIMPOBAaHUE METOJIOM MOJEKYJSApHOH AMHAaMHUKH. B mpouecce pa3paboTku
JaHHOM OMOIMOTEeKN Oblia M3ydeHa >QPeKTUBHOCTH s3bIKa Python mist rakux 3amad u GpuTH
PaccMOTPEHBI HHCTPYMEHTBI, TI03BOJISIONINE YBEIHMYUT MPOU3BOAUTEILHOCTh IPOTPaMM Ha
9TOM s3blKe. Takke OBUIM H3y4eHbl BO3MOXKHOCTH JIQHHOTO SI3bIKA B OTHOIICHUH
napasuIeJbHBIX BBIYUCICHUH 1 MHCTPYMEHTBI, ITO3BOJISTIONINE HCIIOIB30BaTh JUIS BHIYMCICHHI
CHCTeMBI KiacTepHoro tuma. Kpome Toro, ObUIM HCCIeOBaHBI MPOOJIEMBI 3arpy3kd U
00pabOTKHM JTaHHBIX, PACIOJIOKEHHBIX HAa MHOXKECTBE BBIYMCIUTEIBHBIX Y3JIOB. DTO OBUIO
BBI3BAaHO HEOOXOIMMOCTBIO 00pabaThIBaTh JaHHbIE, TIOJYYESHHBIE C OMOLIBIO ITapalIeIbHOTO
aNrOpUTMa, KOTOPBIl BBIMOJHSJICS Ha HECKOJBKHX BBIYHCIUTENBHBIX Y3JIaX M COXPaHSI
pe3yibTaThl Ha KaXIOM M3 HUX. B KauecTBe MHCTpyMEHTA /Ul HAy4YHOIl BU3yaJIH3alluH ObUT
BBIOpaH TAKET C OTKPBITBIM HCXOAHBIM KomoM "Mayavi2". Pa3spaGorannas OubnnoTexa
"mmdlab" Gbula wucmosb30BaHa IS aHANM3a pe3yibTaToB MJ] MOJenMpoBaHHs
B3aMOJIEIICTBUS ra3a ¢ METAUIMYECKOM IUIacTMHOW. B pe3ynpTaTe mpuMEHEHus NaHHOU
O6UOIMOTEKH YAAIOCh B IeTallsIX HaOmoAaTh 3¢ GeKT ancopOIMu, KOTOPBIN BaKeH JUTsl MHOTHX
HPaKTUYECKUX MPUITOKEHUH.

KnoueBble cjioBa: TnapajuieibHas 06pa60TKa; BI/I3yaHI/13aIII/I5I; MOJICKYJIApHas JUHaAMUKa,
Python; Mayavi2

DOI: 10.15514/ISPRAS-2016-28(2)-15

Jns murupoanusi: IlyseippkoB JI.B., Iloppera B.O., IlomaxoB C.B. Ilapamnenshas
00paboTka M BU3yalW3alMs Ul PE3YyJIbTAaTOB MOJEIMPOBAHUS METOAOM MOJEKYISPHOH
nuaamuku. Tpynst UCIT PAH, Tom 28, Bein. 2, 2016 1., cTp. 221-242 (Ha anrnuiickom). DOI:
10.15514/ISPRAS-2016-28(2)-15

241

Puzyrkov D.V., Podryga V.O., Polyakov S.V. Parallel processing and visualization for results of molecular simulation
problems. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 221-242.

Cnucok nutepaTtypbl

[1].

[2].
[3].

[4].

[5].
[6].
[7].

[8].

[al.
[10].

242

IToppeira B.O., ITonsxos C.B., ITy3sippkoB [I.B., CynepkomnbioTepHOe MOJEKYISIpHOE
MOJCINPOBAHUE TEPMOAMHAMHUYCCKOIO PpaBHOBECHUSA B MHUKPOCHUCTEMAX TIa3-METaJlI.
BoruncnurensHble METO/BI M IPOrpaMMUpoBaHie, ToM 16, no. 1, crp. 123-138, 2015.
Python official documentation. 04, Feb. 2016, https://www.python.org/

P. Fernando, E.G. Brian, “IPython: A System for Interactive Scientific Computing” (in
English), in Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29, 2007. (2015,
Feb. 4), [Online]. Available: http://ipython.org

Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux. The NumPy Array: A
Structure for Efficient Numerical Computation, Computing in Science & Engineering, 13,
22-30 (2011), DOI:10.1109/MCSE.2011.37

Numba official documentation, 04, Feb. 2016, http://www.numba.pydata.org/

Vanovschi V., Parallel Python Software, http://www.parallelpython.com

Ramachandran, P. and Varoquaux, G., "Mayavi: 3D Visualization of Scientific Data’
IEEE Computing in Science & Engineering, 13 (2), pp. 40-51 (2011)

John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science &
Engineering, 9, 90-95 (2007), DOI:10.1109/MCSE.2007.55

Paramiko official documentation, 04, Feb. 2016, http://www.paramiko.org/
ImageMagick official documentation, 04, Feb. 2016, http://www.imagemagick.org/

Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

Memristor-based Hardware Neural Networks
Modelling Review and Framework Concept

1D.D. Kozhevnikov < ddkozhevnikov@edu.hse.ru >
ZN.V. Krasilich < nadezhda.krasilich@mail.ru>
! National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000, Russia.
2 National Research University Higher School of Economics,
38, Studencheskaya st., Perm, 614070, Russia.

Abstract. This paper is a report of a study in progress that considers development of a
framework and environment for modelling hardware memristor-based neural networks. An
extensive review of the domain has been performed and partly reported in this work.
Fundamental papers on memristors and memristor related technologies have been given
attention. Various physical implementations of memristors have mentioned together with
several mathematical models of the metal-dioxide memristor group. One of the latter has been
given a closer look in the paper by briefly describing model’s mechanisms and some of the
important observations. The paper also considers a recently proposed architecture of
memristor-based neural networks and suggests enhancing it by replacing the utilized memristor
model with a more accurate one. Based on this review, a number of development requirements
was derived and formally specified. Ontological and functional models of the domain at hand
have been proposed to foster understanding of the corresponding field from different points of
view. Ontological model is supposed to shed light onto the object-oriented structure of
memristor-based neural network, whereas the functional model exposes the underlying
behavior of network’s components which is described in terms of mathematical equations.
Finally, the paper shortly speculates about the development platform for the framework and its
prospects.

Keywords: memristor; memristor model; hardware neural network model; memristor-based
neural networks.

DOI: 10.15514/ISPRAS-2016-28(2)-16

For citation: Kozhevnikov D.D., Krasilich N.VV. Memristor-based Hardware Neural Networks
Modelling Review and Framework Concept. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2,
2016, pp. 243-258. DOI: 10.15514/ISPRAS-2016-28(2)-16

1. Introduction

Until 1970-s the world has been aware of only three passive elements of electrical
circuitry: resistors, capacitors and inductors. The three stated elements coupled with

243

Kozhevnikov D.D., Krasilich N.V. Memristor-based Hardware Neural Networks Modelling Review and Framework
Concept. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 243-258.

natural relationships provide five connections for four basic notions of electrical
circuit theory (voltage, charge, current and flux). Mathematics, however, claims that
four things can be mutually interconnected in six different ways. Indeed, the relation
between charge and flux was not present. It wasn’t until 1971 that the discordance
has been formulated and solved. A new element — memristor - has been proposed by
Leon Chua in his paper in IEEE Transactions on Circuit Theory completing the
mathematical symmetry of circuit theory. It took nearly 40 years for memristor to
transform from a purely theoretic concept into feasible implementation. In 2008 a
group of scientists from Hewlett-Packard Labs lead by Stan Williams has finally built
working memristors [1].

One of the most promising domains of memristor application, seem to be artificial
neural networks [2]. These often come in either software or hardware
implementations, sometimes in a combination of both. While digital neural networks
simulate the data processing mechanism of biological neural networks, hardware ones
strive to emulate it. It is worth mentioning that since most of computer architectures
conform to the von Neumann architecture, neural network simulation becomes a
challenging task because of the paradigm mismatch. Instead of simulating the ways
of nature, hardware neural networks try to directly replicate them, creating non-von-
Neumann architectures. In comparison with digitally simulated networks, hardware
ones can achieve better speed, less power consumption and chip space.

On the other hand, hardware networks often prove to be far less accurate that their
software counterparts, due to the nonuniformity of analog components [3]. Another
disadvantage of modern hardware neural networks, which they actually share with
the software ones, is the volatile storage of synaptic weights. There are ways to
achieve the nonvolatile weight storage within hardware networks, but usually such
weights are either static (cannot be changed once manufactured), quickly digress
(require frequent updating) or are rather hard to program [4]. The emergence of
memristor, however, seems to have opened new possibilities in addressing the stated
problems. Memristors seem to be a perfect match for synapses, making hardware
implementations of neural networks more reliable and greatly increasing productivity
of neural computations [5].

Nevertheless, memristors are still scarcely availably and lack industrial-grade
production. Being such a new technology, they are often hard and expensive to
acquire for experimentation, but a large variety of memristor models has already been
produced, making it possible to model memristor-based devices.

Thus, considering the domain of artificial intelligence, a need in profound and correct
model of artificial memristor-based feedforward neural network arises. Such model
would be of great help in assessing the qualities of modeled system: computation
performance, time and energy expenses, material costs, etc. Consequently, the goal
of the research is to develop a framework for modelling artificial memristor-based
neural networks.

244

Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

2. Theoretical Memristor

The concept of memristor has been recognized since 1971, when Leon Chua has
proposed for the first time in a well-organized and mathematically described way [6].
The 1971 Chua’s paper in IEEE Transactions on Circuit Theory is considered to be
the pioneer work in the corresponding field of research. Although, the concept of
memristor-like devices has been suggested earlier in 1960 by Bernard Widrow, Leon
Chua was the first one not only to provide a feasible foundation for memristor’s
existence, but also to estimate and mathematically describe its’ supposed behavior
and properties.

Memristor fulfills the mathematical symmetry of relationships between major circuit
notions. The relationship created by a memristor, according to Chua, is expressed as
follows:

v(t) = M(q())i(t),
where M(q(t)) is the memristance defined as

— de(q)
Mgy = ==
The definition of memristance may be represented in a more convenient form by
substituting flux and charge with their integral definitions:

de/dt d[f_toov(r)dr]/dt _v(®)

dg/at — qff iac]jar i©)

M(q(®)) =
The similarity of memristor to the remainder of classical circuit elements can be better
reflected by expressing their definitions via differential equations as it is done in
fable 1.

Table 1. Differential equations of basic circuit elements

Device Electronic Symbol Unit Differential equation
Resistor —A\N\NN— R, ohm R= %
Capacitor _| |— C, farad C= ‘;—:
Inductor Y Y Y L L, “2 or henry L=%

A di
Memristor —@— M, W2 or ohm M =22
[dq

245

Kozhevnikov D.D., Krasilich N.V. Memristor-based Hardware Neural Networks Modelling Review and Framework
Concept. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 243-258.

The first important property of memristors, which commonly is referred to as
memristance and stands for the ability to change its resistance gradually via a
controlled mechanism (e.g. memory of device’s history of charge).

The second significant attribute of memristors, figured out by Chua, is the non-
volatility property, which stands for the absence of internal power supply. In other
words, Chua proposed that memristor is able to store the value of own resistance
without the need to be connected to a power source.

In 1976, Leon Chua and his fellow colleague Sung Kang proceeded exploring the
mathematical and physical properties of the memristor [7].

They had come to an understanding, that since memristor is a dynamic device, one
equation is not enough to describe it, henceforth memristor’s behavior is represented
by following equations for current-controlled memristor

x = f(x,i,t)

v=R(x,it)i
and for voltage-controlled one

x = f(x,v,t)

v =R(x,v,t)i

Currert I(f)

-0.02+

-0.04

L L L L
-10 -05 0.0 05 1.0

i
Voltage V(f) = i Sm[—)
B 10

Fig. 1. Pinched hysteresis loop in the i-v curve

246

Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

where v and i denote the input voltage and current respectively and x stands for the
internal state of the device. In their paper, Chua and Kang also provided a more
generalized concept of memristive systems with no specific reference to particular
physical variables.

One noteworthy peculiarity derived from these equations is that regardless of the state
X (which implements the memory effect), the output voltage is equal to zero whenever
input voltage or current are equal to zero as well. This zero-crossing property, Chua
and Kang write, manifests itself vividly in the form of a Lissajous figure, which
always passes through the origin. Thus, they extended the definition of memristor that
is now to encompass any system able to demonstrate a Lissajous figure (later called
pinched hysteresis loop by Chua) in the i-v curve, which is presented on fig. 1.

3. Memristor Models

However, the true interest has been sparked by the notable work of Richard Stanley
Williams’ group of researchers at Hewlett-Packard laboratories. Despite this fact, the
idea of memristors not being a purely theoretical concept has captivated minds of
many researchers around the world, resulting in more than 120 publications about
memristors and memristive systems by 2011. [8].
After the concept of memristor was brought back to the public’s sight, several
implementations of memristors and memristive systems have been proposed.
Different implementations of memristor rely on various physical and chemical
reactions that give rise to both memristance and nonvolatility, properties essentially
constituting the definition of memristor. There have been reported polymeric [9,10],
spintronic [11], ferroelectric [12] and layered [13] implementations of memristor, but
titanium dioxide memristors remain the most well studied group. During this research
four models were closely considered, namely linear ion drift model[1], nonlinear ion
drift model[14], Simmons tunnel barrier mode[15], and threshold adaptive memristor
model (TEAM)[16]. Unfortunately, due to the paper size considerations only the last
one of them will be reported. This model, however, was decided to be further utilized
throughout the work.
TEAM model, proposed by Kvatinsky et al., incorporates advantages of ion drift
models’ explicitness and Simmons tunnel barrier accuracy, yet manages to preserve
relatively high computational performance and generalizability. TEAM model is
based on the same physical behavior as Simmons tunnel barrier model. But it manages
to convey it with simpler mathematical functions. The model introduces several
assumptions for the sake of analytical simplicity: state variable does not change below
a certain threshold and exponential dependence is replaced with a polynomial one.
Detailed mathematical foundation of the model may be found in the corresponding
paper.
A major advantage of such a relation is the explicitness of current and voltage
relationship as opposed to the Simmons tunnel barrier model. Nevertheless,
Kvatinsky et al. were able to perform a fitting procedure forcing TEAM model to
match the latter with reasonable and sufficient accuracy. In their paper, authors of
247

Kozhevnikov D.D., Krasilich N.V. Memristor-based Hardware Neural Networks Modelling Review and Framework
Concept. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 243-258.

TEAM model also report the results of comparison between the fitted TEAM and
Simmons tunnel barrier model. The feasible preciseness of TEAM model was proved
by the average discrepancy between models’ state variable difference of only 0.2%.
The maximum difference of this value constituted 12.77%, however the run time of
the model was nearly halfed (47.5%) Kvatinsky et al. had been also able to fit the
model with different types of physical memristor models, namely STT-MRAM and
Spintronic memristors.

4. Memristor Bridge Neural Network

This paper considers the neural network architecture proposed by Adhikari et al. in
2012 [4]. The architecture is based on the memristor-bridge synapse [17] and aims to
solve the issue of nonvolatile synaptic weight storage and implement a newly
proposed hardware learning method.

4.1 Memristor Bridge Synapse

Memristor bridge synapse architecture was first proposed in [17], it is a Wheatstone-
bridge-like circuit that consists of four identical memristors of opposite polarities.
When positive or negative strong pulse vin (t) is applied at the input, the memristance
of each memristor is increased or decreased depending upon its polarity.
Kim et al. write, that if input pulse voltage is equal to vin, voltages at memristors can
be calculated according to “voltage-divider formula”. Then given memristances My,
M2, M3, and My stand for the corresponding memristors at time t, the output voltage
is reported to be equal to the voltage difference between terminals A and B:

M, M,
M, +M, M+ M4) Vin:

vout=vA_vB=(

4.2 Memristor Bridge Neuron

In artificial neural networks neurons are required to sum a set of input postsynaptic
signal and, according to the activation function, propagate (or not propagate) the
signal further on to the next layer of the network. The neuron is then required to sum
the input postsynaptic signals. Kim et al. point out, that the signal summing operation
is easier to be performed in current mode: postsynaptic signals should be connected
to a single node, so that the following neuron would receive the sum of currents via
Kirchhoff’s current law. In order to achieve current summation, the memristor bridge
synapse has to be modified because it provides voltage output. Kim et al. suggest
combining the memristor bridge with differential amplifier. The latter converts post-
bridge negative and positive voltage into corresponding currents. Hence, for a set of
synapses there exist two nodes: one for positive postsynaptic current and one for
negative postsynaptic current. These nodes sum the output currents of each individual
synapse in the set. Neuron itself is then comprised of the summation nodes, but also
of the active load circuit that implements the activation function as in fig. 2. The sum

248

Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

of all postsynaptic currents is converted back to voltage (presynaptic signal for next
layer of neural network) by the active load circuit according to the activation function.
In their paper, Adhikari et al. also provide rigorous mathematical explanation of the
suggested architecture behavior.

Active Load

Fig. 2. Memristor Neural Network Circuit Fragment [4]

4.3 Neural Network Training

A composition of an arbitrary number of neurons connected via memristor-bridge
synapses therefore constitutes the artificial network. Adhikari et al. intend to use
Chip-in-the-Loop technique for training the network of proposed architecture. They,
however, suggest modifying this technique slightly in order to take into account
peculiar properties of memristor-based circuits. This technique is a viable choice
since it provides a way to deal with memristor bridge non-idealities without explicitly
modelling these nonidealities. According to this technique, the circuit performs the
forward computation of the network, whereas back-propagation and weight update is
done on the software side.

The hardware circuit network is reproduced by a software clone, which is used to
process the training data. After the computer network has processed all the training
data, synaptic weights of each individual synapse circuit are programmed by direct
application of strong voltage pulses in order to match with the weights from computer
network’s weight matrix. Hence, the whole of the hardware network is treated as it
consists of a set of simple single-layer networks. Each one of those single layer
networks is trained separately, according to the weight matrix. Because of the nature
of memristor bridge synapses, the need in additional circuitry is eliminated.

249

Kozhevnikov D.D., Krasilich N.V. Memristor-based Hardware Neural Networks Modelling Review and Framework
Concept. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 243-258.

5. Framework Concept

As one can see, plenty of research has been carried out in the field of memristors and
memristor-based neural networks. Multiple approaches to both creating and
modelling memristors have been mentioned in previous sections.

It is needed to create a reliable framework for simulating memristor-based neural
networks. So far, rather abundant overview of the domain has been presented. Despite
the vast variety of works mentioned, the domain at hand lacks general integrity and
is not formalized enough to start composing the framework at least in its basic form.
Hence, the domain must be formalized to a certain extent. In order to derive this
degree of formalization, the requirements for the stated framework are to be
determined. This will enable framework to be designed properly and will ensure it
complies with the needs and wants of its users. Requirements are decided to include
four major points: accuracy, performance, flexibility, and explicitness. Accuracy
stands for reliability of framework and if its output data can be trusted. Performance
reflects how quick does the simulation proceed. Flexibility corresponds to how easy
it is to swap components and models within framework. Finally, explicitness is
determined by the overall convenience of the framework and how well does it
represent results of the simulation. Insights into these requirements can be better
revealed according to the SMART criteria (a project management technique for
elaborating objectives), which is done in Table 2.

The requirements described above help determine what is to be expected from the
framework, what kind of formalization for the domain is required, and set guidelines
for further process of design and development. The domain may be formalized by
representing it as a graphical scheme, henceforward called ontological model. The
reason for such naming is that this model encompasses relevant entities of the domain
under discourse, as well as reflects their major properties and interrelations, which in
turn roughly corresponds to the definition of ontology. This model will limit the
complexity of the field of memristor-based neural networks and expose the intrinsic
connections between the notions at hand.

First, let us derive a set of entities to be found within this model. At the very core of
every network there are neurons and synapses. These three notions (neural network,
synapse and neuron) constitute the heart of designed model as well.

Multilayer network usually distinguishes between input layer neurons, output layer
neurons and hidden layer neurons, which may slightly differ. Input neurons should be
able to receive input signals, which may not necessarily coincide with how the signals
are conveyed within the network. Similarly, output neurons must provide output
signals. Consequently, input and output program modules should be introduced, in
order to convert electrical output signals into human-comprehensible format and vice
versa for the input signals.

250

Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

Table 2. Framework requirements according to SMART

corresponding

Criterion Accuracy Performance Flexibility Explicitness
Results of Simulation Frameworks Simulation results
simulation within processing must components must | should be clear

Specificity fra_me_work_must be performe_d ina | beeasytochange | and easy to
coincide with reasonable time. and replace, due observe.

to the domain’s

framework and
tuning it match

frameworks
algorithms and

experimental data. novelty.

Given the same Time taken to Framework’s Explicitness is the

input data the perform the flexibility can most subjective of

framework must simulation and measured in all requirements

produce the same calculate the regard with how and should be

output data as in results reflects many approaches | estimated by

either how well does the | to memristor direct responses of

experimental data | framework modelling and framework’s
Measurability | or in verified perform in terms network training users.

models. Thus, the | of performance. and architecture

discrepancy does it

between these implement.

results may be

used to measure

accuracy of the

framework.

Accuracy is Performance is If designed Various

achieved through achieved through correctly the parameters of

testing the optimization of architecture framework’s

(structure) of the
framework should

components must
be accessible and

Achievability with known data. architecture. provide sufficient | visualization
flexibility. methods (graphs,
visual models,
etc.) should be
provided.
Accuracy is Performance is Because the Visual
arguably the most | quite relevant domain is so new, | representation of
important since long runtime | it is extremely simulation results
requirement, may hinder the important to make | is very important
Relevance without sufficient research progress the framework for the end user.
accuracy, the when using able to adapt to
purpose of the framework. possible changes.
framework is
defeated.
Accuracy may be Performance Flexibility must Visualization may
achieved after should be taken be ensured from be introduced
tuning the initial into account the very after the basis of
L version of during the beginning of the the framework is
Timeliness
framework. development, but development. complete.
can be also
improved by later
optimization.

Both neurons and synapses of hardware neural networks are implemented through
Both neurons and synapses of hardware neural networks are implemented through

251

Kozhevnikov D.D., Krasilich N.V. Memristor-based Hardware Neural Networks Modelling Review and Framework
Concept. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 243-258.

circuits. Circuit design may vary from one implementation to another, therefore, the
general concept of neurons and synapses should be decoupled from its’ particular
hardware implementation to ensure flexibility. This will enable the framework to
safely switch between specific circuit implementations of neurons and synapses, but
will also ensure framework’s operability. The framework must as well be able to
switch between different realizations of memristor, namely, memristor models.
Hence, the latter should be considered a separate entity, which is contently used as a
component in synapse circuitry. For the time being only the metal dioxide class of
memristors is considered to limit already reasonable complexity of the framework.
Finally, the network must should be able to employ different learning techniques.
Despite the fact that this work considers only chip-in-the-loop method, the framework
should be designed being able to implement various ways of network training. Here
it is necessary to take into account not only the learning algorithm, but also how this
algorithm is applied to hardware circuit components of the network.

The ontological model is depicted on fig. 3. Solid border circles correspond to the
entities of the domain; dashed border circles stand for the properties (attributes) of
certain entities; filled arrows represent association relation between entities; empty
arrows reflect inheritance (or, possibly, interface implementation); finally, dashed
lines reflect attribution connections.

It must be noticed, that the ontological model is likely to be changed in the following
works and presented version is not final. Some of the anticipated issues include
particular implementations of learning techniques, for instance, chip-in-the-loop does
not require auxiliary circuitry, whereas spike timing-dependent plasticity usually
does. Another bottleneck to be expected relates to the circuit implementations of
neurons and synapses. The latter may consist of multiple circuits that should be
represented as separate entities in order to preserve flexibility of the system, yet
should conform to the same interface for the sake of integrity.

In this way we shed light onto the structural peculiarities of the future framework.
This model is to help composing the classes to be implemented as well as their
interrelations. Let us now consider the other side of the developed system, namely,
its functional requirements. In this paper, the latter refer to a certain number of
capabilities expected by users from the framework.

Framework under development strives to model memristor-based neural network
suggested by Adhikari et al., which is described in the previous section. It is also
expected to make possible modeling with better level of preciseness by enabling
swappable memristor models. For instance, employing TEAM memristor model may
significantly raise the relevance of proposed hardware neural network model through
fostering the accuracy of memristor’s physical model.

252

Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

O

Provides Da!a Receives Data
mpm module Output modme
Pruduces p rocesses

,’ Network \

\ Output Signal(s) /

~ ~_ _-7 Produces

,’ Network Input \‘
\ signalls) /
N %

Neural Network
NS - /\

Receives

Learning

Technique
Cons\sts of Cnnslsts of Cor\s ists of

- Input Level Hidden Level Output Level
Chip-in-the- Neuron Neuron Neuron
Loop
Consists of

Spike Timing-
Dependent
Plasticity
Has presynaptic neuron-
Implements
Has postsynaptic neuron
Implement \5
Synapse Circuit
g
|1 / 3
| {/ Synapse \npul comple Neuron Ou(put N

P \ signal \ signal omm—s
N ® // N en // i

N ~ - ~ 4 e \\
Se - S~ Activation
I Synaptic Weight ! / ’\ Function }
, \ /
S -7 PN AT o~ -7
- R ~ - < ="
/ A
Employs / Synapse Output \ compte Neuron Input |
\ signal \ Signal(s) /
\ J \ /
~o 7 AN P
e N
/
Memristor / .
Resistance !
Model \ /
\ /
NG -

Simmons
Tunnel Barrier
Model

Threshold
Adaptive Model

v
Nonlinear
Model

Fig. 3. Domain’s Ontological Model

v
Linear Model

The functional scope of the framework may be represented as a set of intertwined
mathematical equations that describe various parts of the network model. Each entity
of the framework can be characterized with equations that have adjustable parameters,
which are usually derived by the authors of corresponding models from experimental
data analysis. These equations are extracted from relevant models and are bound in
such way, that one equation’s output usually corresponds to input of the other
equation. This set of equations is depicted on fig. 4.

253

Kozhevnikov D.D., Krasilich N.V. Memristor-based Hardware Neural Networks Modelling Review and Framework
Concept. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 243-258.

Neuron Active Load

Input Current
. - " b
=) =2

Output Voltage

—Vgs — 27 Vag — 20,
(Rt of Ty, T T
) Roue) Rour
B Yag — 2V
Vour = | Vmax = Vaa = 2va, U o<l
ou
¥~ 2ty
Fmin = ~Vsz — 20 f—F— Sim
ouc
Parameters.

Yag Ve Ven Row Ry

Differential Amplifier
Gircuit
Memistor Bridge Circult
Voltage Input
v,
Voltage Input b
™ Vi Positive Current
Output
-
Voltage Output " -
oltage Output * = —05g.ve
Vour =Y Vg
Positive Current
Synaptic Weight Output Ll
" My M, 17 = 0.5gmVin
T ML+ M +
LMy M3+ Mg Transconductance
G

Threshold Adaptive Memristor Madel

Memristance

M(w,t) = R, e"e

Internal State Variable

fice oty
(v, (Q— 1) forr (W), 0l <1
dw(e) J & o
de | kon (ll(—‘)— 1) Fon (W), i<ig <0
an
k 0, otherwise
Fitting Parameters ‘Window Functions
Ker ™= -
= a e (5520
loe = Forr W) = e -
ES —exp (=S
Roff ﬁ on e exp (257
off
i=log R

Fig. 4. Functional Structure

Each separate square on the scheme reflects an entity of the framework, while arrows
denote the input-output connections between equations. One may notice that relations
of equations form a cycle, where one iteration of this cycle corresponds to one layer
of hardware memristor network. This figure depicts what set of functions is expected
to be provided by the future framework.

254

Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

6. Conclusion and Prospects

In this paper, a range of memristor models has been reviewed together with some of
the fundamental papers on memristor-related technologies. Based on this review, a
concept of framework for modeling memristor-based hardware neural networks has
been proposed. This framework represents an implementation of neural network
architecture considered in the paper, but implies ability to swap memristor models in
order to increase the overall flexibility and, possibly, relevance of models generated
with the help of proposed framework. The ability to switch between model is also
expected to help comparing suggested implementations. In the process of framework
structure discovery a set of criteria has been formulated to assess the future software
product, domain of memristor-based neural networks has been formalized to a certain
extent, and, finally, the framework has been given a functional structure strictly
defining its’ capabilities.

Specific platform for framework implementation is yet to be chosen. As of current
state of affairs, Unity engine is expected to be the most favorable candidate. Its
architecture perfectly fits the nature of soft simulation (which the framework
ultimately represents), providing some software patterns that greatly alleviate the
development. Considered engine is also able to realize extensive visualization of
models as well as equip them with user-friendly interface to further enhance model
explicitness and facilitate employment of the future framework for academic
purposes. Finally, implementing a circuit simulation framework in Unity also pursues
an exploration goal, since such attempts have not been previously well studied.

References

[1]. D. Strukov, G. Snider, D. Stewart and R. Williams, "The missing memristor found",
Nature, vol. 453, no. 7191, pp. 80-83, 2008.

[2]. J. Mullins, "Memristor minds: The future of artificial intelligence”, NewScientist
Magazine, no. 2715, 2016.

[3]. S. Draghici, "Neural Networks in Analog Hardware - Design and Implementation Issues”,
International Journal of Neural Systems, vol. 10, no. 1, pp. 19-42, 2000.

[4]. S. Adhikari, Changju Yang, Hyongsuk Kim and L. Chua, "Memristor Bridge Synapse-
Based Neural Network and Its Learning", IEEE Trans. Neural Netw. Learning Syst., vol.
23,n0. 9, pp. 1426-1435, 2012.

[5]. T. Simonite, "A Better Way to Build Brain-Inspired Chips", Cacm.acm.org, 2015.
[Online]. Available: http://cacm.acm.org/news/186782-a-better-way-to-build-brain-
inspired-chips/fulltext. [Accessed: 30- Mar- 2016].

[6]. L. Chua, "Memristor-The missing circuit element”, IEEE Trans. Circuit Theory, vol. 18,
no. 5, pp. 507-519, 1971.

[7]. L. Chua and S. Kang, "Memristive devices and systems", Proceedings of the IEEE, vol.
64, no. 2, pp. 209-223, 1976.

[8]. A. Thomas, "Memristor-based neural networks", Journal of Physics D: Applied Physics,
vol. 46, no. 9, p. 093001, 2013.

255

Kozhevnikov D.D., Krasilich N.V. Memristor-based Hardware Neural Networks Modelling Review and Framework
Concept. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 243-258.

[9]. V. Erokhin and M. Fontana, "Electrochemically controlled polymeric device: a memristor
(and more) found two years ago", Arxiv.org, 2008. [Online]. Auvailable:
http://arxiv.org/abs/0807.0333. [Accessed: 30- Mar- 2016].

[10]. F. Alibart, S. Pleutin, D. Guerin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat and
D. Vuillaume, "An Organic Nanoparticle Transistor Behaving as a Biological Spiking
Synapse", Adv. Funct. Mater., vol. 20, no. 2, pp. 330-337, 2010.

[11]. X. Wang, Y. Chen, H. Xi, H. Li and D. Dimitrov, "Spintronic Memristor Through Spin-
Torque-Induced Magnetization Motion", IEEE Electron Device Lett., vol. 30, no. 3, pp.
294-297, 2009.

[12]. A. Chanthbouala, V. Garcia, R. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier,
H. Yamada, C. Deranlot, N. Mathur, M. Bibes, A. Barthelemy and J. Grollier, "A
ferroelectric memristor”, Nature Materials, vol. 11, no. 10, pp. 860-864, 2012.

[13]. A. Bessonov, M. Kirikova, D. Petukhov, M. Allen, T. Ryhidnen and M. Bailey, "Layered
memristive and memcapacitive switches for printable electronics”, Nature Materials, vol.
14, no. 2, pp. 199-204, 2014.

[14]. E. Lehtonen and M. Laiho, "CNN using memristors for neighborhood connections”, 2010
12th International Workshop on Cellular Nanoscale Networks and their Applications
(CNNA 2010), 2010.

[15]. M. Pickett, D. Strukov, J. Borghetti, J. Yang, G. Snider, D. Stewart and R. Williams,
"Switching dynamics in titanium dioxide memristive devices", J. Appl. Phys., vol. 106,
no. 7, p. 074508, 2009.

[16]. S. Kvatinsky, E. Friedman, A. Kolodny and U. Weiser, "TEAM: ThrEshold Adaptive
Memristor Model", IEEE Trans. Circuits Syst. I, vol. 60, no. 1, pp. 211-221, 2013.

[17]. H. Kim, M. Sah, C. Yang, T. Roska and L. Chua, "Memristor Bridge Synapses",
Proceedings of the IEEE, vol. 100, no. 6, pp. 2061-2070, 2012.

O630p NpeagMeTHOM 06NacTU U KoHUeNUUAa cppenMBOpKa
Ana pa3paboTku moaenen MeMpucTopoB U MEMPUCTOPHbIX
HEUPOHHbIX CETEN

Y11 Koowcesnuxos <ddkozhevnikov@edu.hse.ru>
2 H B. Kpacunuu <nadezhda.krasilich@mail.ru>
YHUY Buicwas xona Ixonomuxu,
101000, Poccus, e. Mockea, yn. Macnuykas, 0. 20.
2 HUY Bwicwas Llkora Sxonomuxu,
614070, Poccus, 2. Ilepmv, yn. Cmyodenueckas, 0. 38.

AnHoTanus. B manHOl paboTe IpeACTaBICHBI NPEABAPUTENBHBIE PE3YNBTATHl TEKYIETO
HCCIICIOBaHUsl 1O pPa3paboTKe CpeAbl MOJCIUPOBAHMS aNNapaTHbIX MEMPHCTOPHBIX
HEeWpOHHBIX ceTell. [IpoBeneH aHanM3 peJeBaHTHBIX TPYIOB, OMHMCAHBI (yHIAMEHTAbHBIC
paboThl MO MEMpPUCTOPAM M MEMPHCTOPHBIM TEXHOJOTHAM, PAacCMOTPEHBI pa3lMYHbIC
¢bu3nyueckue peanusalMd MEMPUCTOPOB, a TaKXKe HECKOJIBKO MaTeMaTHYECKMX Mopelel
MEMpPHCTOPOB M3 METaJUIO-ANOKCHIHON Tpynnbl. OnHa U3 Takux Mojeiei 6oree moapoOHO
NIpe/CTaBIeHa B paboTe, ONMMCAHBI €e OCHOBHBIC MEXAaHM3MBI M HauOoyee HHTEpPECHBIC
cBoifctBa. B pabore Tarke paccMaTpHBaeTCS HENABHO IIPEIJIOKEHHAsT apXUTEKTypa
MEMpPHCTOPHOH HEHPOHHOW CETH, ONMUCHIBACTCS METOANKa 00ydeHHMs MoAoOHOI anmapaTHOH

256

Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

HCHpPOHHOH ceTH, peanu3anus €y KOMIIOHEHT: HEHpOHOB U CHHAICOB Ha OCHOBE
MEMPHUCTOPHBIX MOCTOB. B aHHOIT paboTe Tarke BBIABHHYTO MPEUIOKEHNE 0 YIyIIICHHIO
3TOH apXUTEKTYpPHI IIyTEM HCIOIB30BaHUs O0Iee TOUHOH MOJIETM MEMPHCTOPA B PaMKax CETH.
OCHOBBIBasICH Ha NPOBEACHHOM aHalH3€ IMPEAMETHON 00JacTH, COCTABICHBI M (OPMAIBHO
omucaHbl TpeOOBaHUS K pPa3paboOTKe Cpembl MOASIUPOBAHUS MEMPUCTOPHBIX HEHPOHHBIX
cereii. Kpome Toro, ams Jiydmiero MOHMMaHMS PAacCMaTpUBAaeMOil mMpenMeTHOH oOmactu
COCTaBJICHBI OHTOJIOTHYECKas ¥ (hyHKIIMOHaTIbHAst Mojend. [lepBast Monens HeoOXxoauMa JUIs
(opmanm3anyy 00BEKTHOH CTPYKTYPHI IPEIMETHON 001aCTH, B TO BpeMsI Kak BTOpasi MOJIeNb
UCIIONB3YeTCs Ul SIBHOTO TIPEACTAaBICHHS MaTeMaTHYeCKHX (OPMYJ, OIMCHIBAIOIINX
¢du3nueckoe MOBEIECHHE COOTBETCTBYIOIIMX O0OBEKTOB. B coBokymHoctn o06e Moxenn
MO3BOJITIOT COCTABUTH MOHOE, GOpMaNTN30BaHHOE U MHOTOCTOPOHHEE OIMCAHNUE IPEAMETHOM
001aCTH MEMPHUCTOPHBIX HEHPOHHBIX CeTell M MEepPeWTH K Ipoleccy NPOEKTHPOBAHHUS H
pa3paboTKH MPOrpaMMHOTO MPOIYKTa. B KoHIlEe pabOTHI KpaTKO MpeACTaBICHBI JadbHEHIINe
HEePCHEeKTUBBI Pa3pabOTKH CPebl MOAEIUPOBAHNS MEMPHCTOPHBIX HEHPOHHBIX CETEH.

KitoueBble cj10Ba: MEMpUCTOpP; MOJENb MEMpPHUCTOpA; AalmapaTHas HEHpOHHas CeTb;
MEMPHCTOPHAsl HEHPOHHAS CETh.

DOI: 10.15514/ISPRAS-2016-28(2)-17

For citation: Koxxesuukos J[./1., Kpacunuu H.B. O630p npeaMeTHOMH 001aCTH U KOHLCTIIIUS
¢peiiMBOpKa 11 pa3paboOTKU Mojenell MEMPHCTOPOB U MEMPHCTOPHBIX HEHPOHHBIX CETEH.
Tpymst MCIT PAH, tom 28, Bbm. 2, 2016, crp. 243-258 (ua aurmimiickom). DOI:
10.15514/ISPRAS-2016-28(2)-16

References

[1]. D. Strukov, G. Snider, D. Stewart and R. Williams, "The missing memristor found",
Nature, vol. 453, no. 7191, pp. 80-83, 2008.

[2]. J. Mullins, "Memristor minds: The future of artificial intelligence”, NewScientist
Magazine, no. 2715, 2016.

[3]. S. Draghici, "Neural Networks in Analog Hardware - Design and Implementation Issues”,
International Journal of Neural Systems, vol. 10, no. 1, pp. 19-42, 2000.

[4]. S. Adhikari, Changju Yang, Hyongsuk Kim and L. Chua, "Memristor Bridge Synapse-
Based Neural Network and Its Learning”, IEEE Trans. Neural Netw. Learning Syst., vol.
23,n0. 9, pp. 1426-1435, 2012.

[5]. T. Simonite, "A Better Way to Build Brain-Inspired Chips"”, Cacm.acm.org, 2015.
[Online]. Available: http://cacm.acm.org/news/186782-a-better-way-to-build-brain-
inspired-chips/fulltext. [Accessed: 30- Mar- 2016].

[6]. L. Chua, "Memristor-The missing circuit element”, IEEE Trans. Circuit Theory, vol. 18,
no. 5, pp. 507-519, 1971.

[7]. L. Chua and S. Kang, "Memristive devices and systems", Proceedings of the IEEE, vol.
64, no. 2, pp. 209-223, 1976.

[8]. A. Thomas, "Memristor-based neural networks", Journal of Physics D: Applied Physics,
vol. 46, no. 9, p. 093001, 2013.

[9]. V. Erokhin and M. Fontana, "Electrochemically controlled polymeric device: a memristor
(and more) found two years ago”, Arxiv.org, 2008. [Online]. Auvailable:
http://arxiv.org/abs/0807.0333. [Accessed: 30- Mar- 2016].

[10]. F. Alibart, S. Pleutin, D. Guerin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat and
D. Vuillaume, "An Organic Nanoparticle Transistor Behaving as a Biological Spiking
Synapse", Adv. Funct. Mater., vol. 20, no. 2, pp. 330-337, 2010.

257

Kozhevnikov D.D., Krasilich N.V. Memristor-based Hardware Neural Networks Modelling Review and Framework
Concept. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 243-258.

[11]. X. Wang, Y. Chen, H. Xi, H. Li and D. Dimitrov, "Spintronic Memristor Through Spin-
Torque-Induced Magnetization Motion", IEEE Electron Device Lett., vol. 30, no. 3, pp.
294-297, 20009.

[12]. A. Chanthbouala, V. Garcia, R. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier,
H. Yamada, C. Deranlot, N. Mathur, M. Bibes, A. Barthelemy and J. Grollier, "A
ferroelectric memristor”, Nature Materials, vol. 11, no. 10, pp. 860-864, 2012.

[13]. A. Bessonov, M. Kirikova, D. Petukhov, M. Allen, T. Ryhdnen and M. Bailey, "Layered
memristive and memcapacitive switches for printable electronics”, Nature Materials, vol.
14, no. 2, pp. 199-204, 2014.

[14]. E. Lehtonen and M. Laiho, "CNN using memristors for neighborhood connections", 2010
12th International Workshop on Cellular Nanoscale Networks and their Applications
(CNNA 2010), 2010.

[15]. M. Pickett, D. Strukov, J. Borghetti, J. Yang, G. Snider, D. Stewart and R. Williams,
"Switching dynamics in titanium dioxide memristive devices", J. Appl. Phys., vol. 106,
no. 7, p. 074508, 2009.

[16]. S. Kvatinsky, E. Friedman, A. Kolodny and U. Weiser, "TEAM: ThrEshold Adaptive
Memristor Model", IEEE Trans. Circuits Syst. I, vol. 60, no. 1, pp. 211-221, 2013.

[17]. H. Kim, M. Sah, C. Yang, T. Roska and L. Chua, "Memristor Bridge Synapses",
Proceedings of the IEEE, vol. 100, no. 6, pp. 2061-2070, 2012.

258

Yyxises N.J. KoMIo3HIMOHHAS MOJIENb M CIIOCOO MOCTPOCHHS (DYHKIIHOHAIBHO-OPHEHTHPOBAHHBIX
MH(OPMAMOHHBIX PeCYpCOB HHPOPMALIMOHHO-YIPaBISIOmHX cucteM. Tpyost UCIT PAH, 2016, Tom 28, BbIyCK 2,
c. 259-270.

Komno3nunmoHHas mogenb U cnocob
NOCTPOEHUA
YHKLMOHANbHO-OPUEHTUPOBAaHHbIX
MHOPMaLMOHHbLIX pecypcoB
UH(hOPMaLIMOHHO-YNPaBNAILWMUX CUCTEM

H.U. Yyknses <smolrsu@mail.ru>
Boennas akademus sotickosoil npomugoeo30yuHol 060pOHbI
Boopyarcennvix Cun Poccutickoti @edepayuu
umenu Mapwana Cosemcroco Corwsa A.M.Bacunegckoeo,
214027, Poccus, e. Cmonenck, yn. Komosckoeo, 2.

AHHOTanmusi. B crathe mpencTaBneHa KOMIIO3WIMOHHAS MOAENs (PyHKI[MOHAIBHO-
OPHEHTHPOBAHHBIX HH(POPMAMOHHBIX PECYPCOB MH()OPMAITMOHHO-YIIPABIAIOMNX CHCTEM, a
Taoke CIoco0 MOCTpoeHWs 3Toi Mmoxenmu. Ilpemmaraemas MOAENbh W CIOCOO TTOCTPOEHHS
(YHKINOHATIBHO-OPUEHTHPOBAHHBIX WH(OPMAIMOHHBIX PECypCcoB obecrneunBalT
pacIIMpeHHble BO3MOXXHOCTH IO CO3JaHHMIO IEPCHEKTHBHBIX CPEACTB 3aIlUTHI
MH(OPMAIIMOHHO-YIIPABISIIONIMX CHCTEM, OPHEHTUPOBAaHHBIX HAa KOMIUICKCHYIO 3allUTy
BBITIOJTHEH U 33/1a4 C Y4ETOM YPOBHEH YIpaBJIeHHs CIOKHBIX OPraHU3alHOHHO-TEXHUYECKUX
cucteM. KOMITO3HIIMOHHAsT MOZIENb COOTBETCTBYET MOJEIH JaHHBIX B HE MEPBOI HOPMaIbHOM
¢dopme, obOpasoBaHa (YHKIMOHATFHBIM KOMIUICKCOM MAHHBIX WM MPEJCTaBISIETCS B BHUIE
MHOTOOCHOBHOH anreOpamdeckoil CTPYKTYpBI, KOTOpBI OTOOpaskaeT CTPYKTYpY,
B3aMMOCBSI3H, & TaKXKe CIENU(UKY OIepanuii MaHUITyIUPOBaHUS U 0OpabOTKH HAJl CIOKHO
CTPYKTYPHPOBAHHBIMU JIAHHBIMM Ha Pa3iMYHBIX YPOBHSX YIpPAaBICHUS HH(POPMALUOHHO-
ynpaBisifomux cucreM. Crnoco® mocTpoeHusl (QyHKIMOHAIBHO-OPHEHTUPOBAHHBIX
MH(GOPMALIMOHHBIX ~ PECYpCOB MH(GOPMAIMOHHO-YNPABISIIONIMX ~ CHCTEM OCHOBaH Ha
JIEAYKTUBHOM METOJI€ TIOCTPOEHMsl akcMomarhyeckux Teopuil. IIpencramneno
(¢opManm30BaHHOE ONHCaHWe (YHKIMOHAIBLHO-OPHEHTUPOBAHHBIX MH()OPMAIIMOHHBIX
pecypcoB HH(OPMAITMOHHO-YIIPABIISIONX CHCTEM IS PENISHHs 3a1a4 pa3IHIHBIX YPOBHEH
yIpaBieHus; (YHKIHOHATGHOTO KOMIUIEKCA IAaHHBIX MHOTOOCHOBHOHM —anreGpamdecKkoit
CTPYKTYpPBl KOMITO3HMIIHOHHON Mopeny; (DyHKIMOHAJIBHBIX 3aBHCHMOCTEH M OTHOIICHUS,
00pa3ylommx CHCTEMY aKCHOM KOMIIO3UIIMOHHOM Moxemu. Ilokasansl rpaduueckue
SNIEMEHThl, Ha KOTOPBIX OTOOPaXEHO pACIpPEAENICHHE KOMIIOHEHTOB IOJCHUCTEM
UH(POPMALIMOHHO-YIIPABIAIOIIECH CUCTEMbl HA CMEXHBIX YPOBHSX YNpPaBICHMS; CTPYKTYPHO-

* HccnenoBanue BHINONHEHO IIpH mojjaepkke PODHU B paMkax HaydHOTO MPOEKTa
Ne 13-07-97518 u rpanTa IIpesuaenra Poccuiickoit @eneparn Ne MK-3603.2014.10.
259

Chucklyaev I. Composition model and method of creation of functionally-oriented information resources. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 259-270.

(yHKOMOHANBHAsT ~ AWMarpaMMa B3aUMOJCHCTBUS ~ KOMIIOHEHTOB MH(OPMAaIHOHHO-
YOPaBIAIOIUX CUCTEM, PpACIpENENCHHBIX II0 YPOBHSAM YIpPAaBIEHUs, CTPYKTypa
KOMIIO3UIIMOHHOM MozienH (DYHKIMOHATIEHO-OPUEHTHPOBAHHBIX HH)OPMAIIMOHHBIX PECYpPCOB
UHGOPMAIIMOHHO-YIIPABIIAIOIIEH CHCTEMbl, IPEACTABICHHAs TaONULEH CIOXKHO
CTPYKTYPHPOBAHHBIX IAaHHBIX B HE MEPBOHl HOpManbHOH (opMme; CTPYKTYpHO-JIOrHuecKas
cXeMa croco6a MoCTPOEHHsT KOMITO3HLIIHOHHON MOJenH (HYHKINOHAIbHO-OPUEHTHPOBAHHBIX
HH(OPMAIMOHHBIX pecypcoB HHPOPMAIMOHHO-YIIPABIISIONINX CHCTEM.

KnwueBbie CJI0BA: I/IHq)OpMaIII/IOHHO-praBHSIIOH_[aSI CHCTEMa, q)yHKL[I/IOHaJ'H;HO-
OPUCHTUPOBAHHBIC I/IH(bOpMaHI/IOHHLIe PECYPCEHI.

DOI: 10.15514/ISPRAS-2016-28(2)-17

Jas ourupoBanusi: Yyknges UW.M. KommosummoHHas Mozens M CIOcod IMOCTPOCHUS
(hyHKIHMOHATFHO-OPHEHTUPOBAHHBIX ~ MH()OPMALMOHHBIX peCypcoB MH()OPMALMOHHO-
ynpasisioux cucreM. Tpyast UCIT PAH, tom 28, Bem. 2, 2016 r., ctp. 259-270. DOI:
10.15514/ISPRAS-2016-28(2)-17

1. BeedeHue

Wurerpanust HGOPMAOHHO-TEJICKOMMYHHUKAIIHOHHBIX TEXHOJIOTHH B CIOXKHBIX
opraHu3anuoHHO-TexHH4Yeckux cuctemMax (OTC) cnenmanbHOTO Ha3HAYECHUS
aKTyaJlu3upyeT BOIIPOCHI obecrieueHus nux 3aIMIIEHHOCTH oT
HECAHKIINOHUPOBAHHBIX BHEIITHUX n/Mnm BHYTPEHHHUX BO3/IeCTBUH
necrabunmsupytomero xapakrepa (HCB), 3akmowatommxcs B paspylICHHH,
HOBPEKICHUH KOMIIOHEHTOB, MOAU(HKAIINY (MCKakeHHH) HaHHbIX ([1]), Benymmx k
HapyIICHHUIO BHITIOJTHEHHS 33/1a4 YIIPaBIICHHS.

B nacTosimee BpeMs Ipeu1oKeHbl pa3Ho00pa3HbIe METOIBI U CPEICTBA 00ecIedeHUs
samuuieHHocTd OTC u uupkynupyoomux aadHeix B yenoBusix HCB. Oanako, kak
MPaBHJIO, OHH «JIOKAJIM30BaHbD» OTHOCHTEIHHO OTAEJIBHBIX COBOKYIHOCTEH JaHHBIX
U MIPOIIECCOB U HE OPUEHTHUPOBAHBI HA KOMIUICKCHYIO 3aIIUTY BBIIOJIHEHHUS 3a]a4 C
ydaerom yposreit yrpasinenust OTC [2, 3].

[Ipennaraercst KOMIIO3MIMOHHAS MOJIENb (DYHKIMOHAIBHO-OPUEHTHPOBAHHBIX
nHpopMamoHHBIX pecypcoB (POUP) uHPOPMAIIMOHHO-YIIPABISIOMNX CHUCTEM
(UYC), koTopast OTOOpaXkaeT CTPYKTYPY, B3aMMOCBS3HM, a TaKkXke CIElUpUKY
oTepannii MaHUITYJINPOBAHHS U 00paboTKM (HYHKIMOHAIBHOTO KOMIUIEKCA JTaHHBIX
Ha PAa3IMYHBIX YPOBHSAX YIIPaBIEHUS WHPOPMANNOHHO-YIPABIIONNX CHCTEM,
COOTBETCTBYIOIIETO MOJENH JaHHBIX B HE TIIEPBOM HOPMalbHOW Qopme
(non-first normal form — NFNF). IIpeanaraemas mMonenb U Croco0 MOCTPOCHUS
kommosuionHor moxenm @OUP MYC obecreunBaroT pacuiMpeHHbIE
BO3MOXHOCTH IO CO3JAHUI0 MEPCHEKTHBHBIX cpeAcTB 3amuTel UYC,
OpPUEHTUPOBAHHBIX Ha KOMIIJIEKCHYIO 3alllUTY BBIIOJHEHNUS 33/1a4 C Y4€TOM ypOBHEH
uepapxuu OTC.

260

Yyxises N.J. KoMIo3HIMOHHAS MOJIENb M CIIOCOO MOCTPOCHHS (DYHKIIHOHAIBHO-OPHEHTHPOBAHHBIX
MH(OPMAMOHHBIX PeCYpCOB HHPOPMALIMOHHO-YIPaBISIOmHX cucteM. Tpyost UCIT PAH, 2016, Tom 28, BbIyCK 2,
c. 259-270.

2. PYHKUUOHasIbHO-OPUEHMUPOB8aHHbIE UHGOPMayUOHHbLIe
pecypcbl UHGhOPMaUUOHHO-yNpaensiowux cucmem

WHbOpMAIMOHHO-yIIPABJISAION[Aas ~ CHCTEMa BKIOYaeT (YHKIHOHAIBHYIO,
UHPOPMAIMOHHYIO, OPTAHU3ALMOHHYIO M TEXHUYECKYIO MOACUCTEMBI. KOMIIOHEHTHI
9TUX IIOJICUCTEM pacIpe/ielieHbl o ypoBHsM yrpasienus UYC. B tabu. 1 nokasan
[pUMep paclpe/ielieHus] KOMIIOHEHTOB JTHX TOJCUCTEM Ui CMEXHBIX YpOBHEH
yrpasiennst 1Y C[4].

Tabn. 1. Ilpumep pacnpedeneHuss KOMROHEHMO8 NOOCUCEM UHDOPMAYUOHHO-
YNpasnsAouell CUCeMbl Ha CMENCHBIX YPOBHAX YRPABGTIEHU.

Table 1. An example of distribution of subsystem management information system's
components on the adjacent levels of control.

YpoBHU IToncucremsr UYC
yIpaBlIeHHs
nyC OyHKIMOHATIbHAS MNudopmannonnas | OpraHu3almoOHHAS TexHuueckas
Sazaun WndopmarronHbie JloiKHOCTHBIE TexHuueckas
MOTOKHU JJAHHBIX JIHLA OPraHoOB OCHOBa
nyc YIIpaBIICHUS
<Dynryus> <IR> YIpaBIIEHUS <Mexanusm>
<[JIoy>
WupopmanonHsre
motoku <IR>,
3anaun
a <Bx00 dymagus >,
yrpaBJieHus, v " HomkHOCTHbIC Cpencrsa
<Vnpasnenue
N3YEeMBI JIMIa OPTaHOB
YpoBeHs 4; peaymsyeMeIe . P aBTOMAaTH3aLUH
I[HOY Dynryus >, praBﬂeHI/Iﬂ
' <CpAsm>
1 . <JJIOYye>
<@yukyusi,, > | <Busos Dy, >,
<Buwixo0 (I’yﬁ/«‘mm:m >
Tokazatenn
CTPYKTYpHI
<Nj>
3anaun Nir
ynpasners, HH(OPMALOHHBIX
peasyembie MIOTOKOB JTaHHBIX, .
N <Bxoo > Teiic JUI0Y VYerpoiictBa
Vposers 4; yeTpoticTsami X00 yniyus, | >, g ﬂTJl;leg i« (ammaparypa)
(annapaTypoSH) <Vnpasaenue bed <Yempoticmea>
< Dynryus’,, i, >
>
<Bbi306 fpymmug:mh >,
<Bwixo0 @=Hku1,ﬂ:mk‘ >

Ha puc. 1 mokazana cTpyKTypHO-(D)yHKIMOHaJbHAsI JUarpamMMa B3anMOAEHCTBUS
KOMMOHEeHTOB nojacucteM MY C, pacnpeneneHHbIX 0 YPOBHSAM YIPaBICHUS.
OyHKINOHAIBHO-OPUEHTHPOBaHHbIE HHpOpMaMoHHble pecypcsl UYC conepikar
MHOTOACIEKTHYI0 HMH(OPMALMIO Ui BBINOJIHEHUS BCEH COBOKYNHOCTH 3a1ad
ynpasnenust UYC u npeacrasistotes B Bune [5]:

261

Chucklyaev I. Composition model and method of creation of functionally-oriented information resources. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 259-270.

DOHUP1yc={POHUP 4i} > < {IR} > < { Dynxyusa} > < {IIpaso} > < {JIOV} > <
> < {Mexanusm} B>< {Bsaumocesnsu} >< {Cesoticmea} > <1 {Bpemennvle
napamempoi};

DYHKIUOHATBHO-OPUCHTUPOBAHHbIE WH(POPMAIMOHHBIE PECYPChl UL PELICHUS
3a/1a4 i-ro ypoBHSI yIIPABJICHUSL:
D@OUP 4i={POHUP 4} > < {Bx00 sy } > < {Vnpasnenue s} ><{Buizos
(I{vﬁtmuﬂ:m } D 4 {Bblxoa (I{vma(xm:m } > 4
> < { @yuryus, } > < {llpaco} ><1{I0Vn} > < {CpAsm} > < {Bsaumoceszu}

><
> <1 {Csoticmea} > < {Bpemennvie napamempoi};

Puc. 1. Cmpyxmypno-gyuxyuonansnas ouazpamma uH@GopmMayuoHHo-ynpasaoujei
cucmemul.

Fig. 1. Structural and functional diagram of information and control system

262

Yyxises N.J. KoMIo3HIMOHHAS MOJIENb M CIIOCOO MOCTPOCHHS (DYHKIIHOHAIBHO-OPHEHTHPOBAHHBIX
MH(OPMAMOHHBIX PeCYpCOB HHPOPMALIMOHHO-YIPaBISIOmHX cucteM. Tpyost UCIT PAH, 2016, Tom 28, BbIyCK 2,
c. 259-270.

OyHKIUOHATLHO-OPUEHTHPOBAHHbIE HH()OPMAIMOHHBIE PECYPCHI JUIS pEIICHHS
3aj1a4 j-T0 yPOBHS YIPaBICHUS:
DPOUP 4={Nir} > < { Qynryus’ ,} > < {IIpaso} > < {JIJIOVpeq} > <

{Vempoiicmea} ><

> <1 {Bzaumocessu} ><{Ceoticmsa} > < {Bpemennvie napamempoi},

rne {POUPuyc}, (G YHKIIMOHATIBHO-OPUEHTHPOBAHHBIC

{D®OHP,}, nH(popMannOHHbIE pecypchl nvyc
{®ONP .} COOTBETCTBYIOIIMX YPOBHEH YIpaBIICHUS;
{Bzaumoceszu} — B3aMMOCBS3H (HYHKUHOHAIEHO-OPUEHTUPOBAHHBIX
WHPOPMAINOHHBIX pecypcoB nyc
COOTBETCTBYIOIINX YPOBHEH yIpaBICHNUS;
{Cesoticmsa} — CBOWCTBA 3aNMIIEHHOCTH, MNPEIbABIIEMBIE K
(YHKIIOHAIbHO-OPHEHTUPOBAHHBIM
UH(OPMALMOHHBIM pecypcam nyc
COOTBETCTBYIOIIMX YPOBHEH YIpaBIICHUS;
{Bpemennvie — BpEMEHHbIE MapaMeTphbl, XapaKTepU3yIoIue
U3MEHEHHUS nokasaTesei (GYHKIIMOHAIBHO-

napamempbl
P por} OPHEHTHPOBAHHBIX HWH()OPMAIMOHHBIX pPECYpCOB

NYC cooTBeTCTBYIOIINX YPOBHEH yIpaBIEHUS;
>< — omepamus arperupoBaHUs, XapaKTepH3Yyromas
o0beAMHEHWE W YKpYNHEHHE IIOKa3aTelei
(YHKIIOHAIbHO-OPHEHTHPOBAHHBIX
WH(POPMAIMOHHBIX pecypcoB nyc
COOTBETCTBYIOIINX YPOBHEH yIpaBICHUS.

3. Komno3suyuoHHasi MoOesib hyHKUUOHasIbHO-
OopueHMuUpo8aHHbIX UHGhOPMaYUOHHbLIX Pecypcos
UHOpMayUOHHO-ypassisioWux cucmem

Komnosuimonnast monmens @OMP NYC Brmiowaer B cebs (GyHKIMOHATHHBIHN
KOMIUIEKC JaHHBIX W IPEJCTABISIETCS B BHJE MHOTOOCHOBHOW anrebpamyeckon
CTPYKTYPHI ¢ y4eToM ypoBHel ynpasneHus MY C:

<D, D,,...D,; R, >,

rie Dg, Dy, ...,Dn - 3aJlaHHbIe MHOXXECTBA (OCTOBBI) JIAHHBIX,
COOTBETCTBYIOIINX YPOBHSIM yIIPaBJICHUS

263

Chucklyaev I. Composition model and method of creation of functionally-oriented information resources. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 259-270.

(hyHKIIOHATbHO-OPHEHTUPOBAHHBIX
nHPOPMAINOHHBIX pecypcoB UYC;

R - KOHEYHBIH HaOop PyHKITHiA
(hyHKIIHOHATbHO-OPHEHTUPOBAHHBIX
nHdopmanmoHHbIX pecypcoB UYC,
onpenenennsix Ha Dy, Dy, ..., Dy
(xapaxkTepucTHKa CTPYKTYpPHl);

> - OTpaHUYHTEIbHBIE YCIIOBHS,
HakJIa/ipIBaeMble Ha MHOXkecTBa Dy, Do, ...,
Dn u ¢yHKIMEM naHHBIX U3 R.

M popmupoBanms octoBoB D1, Da, ..., Dn, XapakrepucTtux CTpyKTypbl R u
OTPaHWYINTEIBHBIX YCIOBUI X Tpedyercs:

BBINIOJHUTH aHanu3 nokaszareneit ®OWP UYC u onpenenuTs UMeHa, IIETIH, CXEMBI,
paHr;

noctpouts rpad N-aepeBa u Tabuuib B He NepBoii HopMaiibHO# popme DONP UYC;
BbIIBUTh F-3aBucumoctTn u FD-oTHomeHwe, cermMeHTHpoBaTh «daitmamm»

(yHKIMOHAJIBHBIE CXEMBl HPOU3BOJBHBIX MHOPAIKOB KOMIIO3UIMOHHON MOJEIH
OONP NYC.

Crpykrypa ®OUP UYC sBuserca octoBamu Di, Do, ..., Dn KOMIO3UITMOHHOM
mojmemn ®OMNP MYC, a wux 3HA4YEHUS ONPEACNAIOT CTIPYKTYpPy THIOBBIX
xapakTepuctuk R. dopmanuzoBanHoe onucanue octoBoB Di, Do, ..., Dy

kommno3uroHHo# Mogenu @ONP MY C npencraBieHo ¢GyHKINOHATBEHBIMU CXEMaMHU
FSh npou3BoIbHBIX TIOPSAIKOB.

CermenrupoBanue «paiinamm» (B, ..., B, , ..., Bl) QyHKuuoHAIBHEIE CXCMBI

FSh mpon3BoNBHBIX MOPSIIKOB B CTPYKTYpEe KOMMO3UIMOHHOM Mogenu PONP UYC
no3Bossier uaeHTHduiuposate @OOWP pasnuuHBIX ypOBHEH yIpaBieHHS
KOJIMYECTBEHHO (B BU/IE SK3EMIUISIPOB).

Brisenennsie F-3asucumoctn ®ONP MY C yposHeit ynpasnenus, oopasytomue FD-
otHomenne POUP NYC, 060011eHb! B CHCTEMY aKCHOM X

FD : ®yuxyus — IR Dynxyus — = VIOV , ©ynxyusn — ey Mexanuzm,

1

X =qFD : @ynkuwz#)Mexamww;

2

FD : (@yukyus U Mexanuzm) #)(IRMW U Mexanusm) B—)(JJIOY U Mexanusm).

3

OYHKIMOHANBHBIA KOMIUIEKC JaHHBIX KOMIO3MIMOHHON Moaenun POUP UVYC,
CTPYKTYpa KOTOPO¥i ITOKa3aHa Ha PHC. 2, IPEACTABISICTCS B BHIC:

DPK[wonp nyc=
(©OUP UVC

264

Yyxises N.J. KoMIo3HIMOHHAS MOJIENb M CIIOCOO MOCTPOCHHS (DYHKIIHOHAIBHO-OPHEHTHPOBAHHBIX
MH(OPMAMOHHBIX PeCYpCOB HHPOPMALIMOHHO-YIPaBISIOmHX cucteM. Tpyost UCIT PAH, 2016, Tom 28, BbIyCK 2,
c. 259-270.

{(Haumenosanue 3x3.: aucino, ®POUP A;
{(Haumenosanue 7x3.: uncno, ®OHP Aj: 3HaueHne
)}

)

z

).

QOUP UYC =
(@oupP UyC
{(®ynxyus
{(Haumenosanue 3x3.. ancio, FSNaywus: 3HaUCHIE
)}
IR
{(Haumenoganue sx3.. uncio, FShir: 3HaueHue
)}
1oy
{(Haumenoganue 3x3.: uncno, FShoy: 3Hauenne
b
Mexanuszm
{(Haumenosganue 3x3.: aucio, FSNyexausy: 3HaYCHUE

)}
)}

4. Cnocob nocmpoeHusi KOMMNO3UUUOHHOU Modenu
PYHKUUOHa/IbHO-OPUEHMUPOB8aHHbIX UHG(hOPMAaYUOHHbLIX
pecypcoe UHghopMayUOHHO-YNPassIsioWux cucmem

TIpennaraemerii cmoco6 (puc. 3) OCHOBaH Ha NEAYKTUBHOM METOJIE TOCTPOCHHS
akcroMmaTtryeckux teopuii ([6]) 1 MO3BOJISET MOCTPOUTH KOMITIO3UIIHOHHYIO MOJIETb
DOONP NYC, orobpaxkamllylo CTPYKTYpy, B3aWMOCBS3H, a Takke CHenuduxy
oreparyii MaHUITYJUpOBaHUs W OOpabOTKM HaJ CIOXKHO CTPYKTYPHPOBAHHBIMH
npaaaeivu ([7-9]) Ha pasnmuuHbiX ypoBHsAX yrpasieHuss UYC, cOOTBETCTBYIONIMMHU
MOJIEJIH IaHHBIX B HE MEPBOU HOPMAIIbHOM (opme.

5. 3aknroyeHue

B kauectBe ocHOBEI A1t cpencts 3amuTsl MY C Beictynator DOUP UYC, cTpykTypy
KOTOPBIX COCTaBJIsIeT (DYHKIMOHATIBbHBIH KOMIIJIEKC [aHHBIX MHOTOOCHOBHOM

265

Chucklyaev I. Composition model and method of creation of functionally-oriented information resources. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 259-270.

anreOpandeckoil CTPYKTYpbI, OpraHW30BaHHBIC A BEIMonHeHHs 3axad UYC c
y4ETOM ypOBHEH yIpaBICHHUS.

KomnnexcHas 3ammra BeImonHeHUs 3amad UYC ¢ ydeToM ypoBHEH ympaBieHHUS
ABJISIETCS MEPCTIEKTHBHBIM HAIPABJICHUEM CO3/IaHHS COBPEMEHHBIX CPEJICTB 3aIUTHI
OTC.

$YHEIHOHANEHO-OPHEHTHOEAHHEle HE(QOpManHoHEEe pecypest HYC, B,

PYHEOHOHATEHO-OPHEETHPOEAHHEIE HEQOPMANHOEHREE pecypesl HYC

ypoERZ yopastenan A;, B

N

3KIEMILLAPOE SymEn - OpHEHTHPOEAHHEIE HHD pecypersr HYC
MNMK ypoBRA yopasmennd 4. 5,
IESEMILIAPOE
NMKL
PYHEMHOHATEHAA COCTABTAIOMAT CIpyETYpHAT COCTABNAOMAT
IKIEMILIAPOE
- J—y B B, L —

Puc. 2. Cmpykmypa KoMRO3UyuOHHOU MOOERU QYHKYUOHATLHO -OPUCHINUPOBAHHBIX
UHPOPMAYUOHHBIX PECYPCO8 UHPOPMAYUOHHO-YRPABTAIOWEll CUCTEMb,
npedcmasnenHas madnuyel CloXiCHO CMPYKMypUpoSaHHbIX OAHHbIX 8 He NepEoti HOPMALbHOL
Gopme.

Fig. 2. The structure of the composite model for function-oriented information resources of
information and control system presented by table of complexly structured data is not the first
normal form.

266

Yyxises N.J. KoMIo3HIMOHHAS MOJIENb M CIIOCOO MOCTPOCHHS (DYHKIIHOHAIBHO-OPHEHTHPOBAHHBIX
MH(OPMAMOHHBIX PeCYpCOB HHPOPMALIMOHHO-YIPaBISIOmHX cucteM. Tpyost UCIT PAH, 2016, Tom 28, BbIyCK 2,
c. 259-270.

1
OnpeaeneHne MMeH, UeNeH, CXeM, PaHra, 0CTOBOB,
OFPAHHYHTEALHEIX YCIOBHI, HAKIANBIBACMEIX HA OCTOREL,
Iy HEUMOHANBHO-OPHEHTHPOBAHHBIX MHPOPMALHOHHEIX PECYPCOR
HHQOPMALTHOHHO-VIIPARTAIONIEH CHCTEMB

.
[ocTpoenne rpaa N-nepesa
(Y HEIHOHATBHO-OPHEHTHPOBAHHBIX. HR(GOPMALMOHHBIX PECYPCOB
HHBOPMALHOHHO-YNIPARIAIONIEH CHCTEMBI

'
MMoctpoenne Tabauu B He nepaoi HopMansHoil Gopae, onpeaenenne GyHKIHOHANBHBIX CXEM,
(ropMHpOBAHIE CTPYKTYPE KOMITO3HIHMOHHON MOLe/IH
y HKUHOHANLHO-OPHEHTHPOBAHHBIX HHPOPMALMOHHEIX PECYPCOB
HEGOPMALIHOHHO-YTIPABIAIOIIEH CHCTEMBI

h '
Cersentuposanne “daiinamn™ CTPYKTYPY KOMIOSHUHOHHOM MOLEIH
(Y HKUHOBANEHO-0PHEHTHPOBAHHETX HHQOPMAIIHOHHEIX PECYPCOR
HEBOPMALIHOHHO-YTIPABIAIOIEH CHCTEMBI

5 L]

Braenenne F-zasucumocteil n FD-oTHOWEHNA,
(POPMHPOBAHKE BIAMMOCBAICH CTPYKTYPB! KOMIOIHUHOHHON MOLEAH
(Y HKIHOHANEHO-OPHEHTHPORAHHEX HHPOPMAIHOHNEIX PECYPCOR
HMHPOPMALIHOHHO-Y IIPABAR OUIETH CHCTEMBI

Puc. 3. Cmpykmypno-noeuueckas cxema cnocodoa nocmpoenusi KOMRO3UYUOHHOU MOOenU
DYHKYUOHATLHO-0PUCHMUPOBAHHBIX UHGOPMAYUOHHBIX PECYPCO8 UHPOPMAYUOHHO-
VYIPABAAIOUUX CUCTEM.

Fig. 3. Structural and logical scheme for the method to build a composite model of
functional-oriented information resources of information and control systems.

IIpemmaraemas kommosuimonHas moxens ®ONP UVYC ortobpaxkaer cTpyKTypy,
B3aMMOCBS3H, a TaK)Ke CIEHN(HUKY ONeparnii MaHUITYJINPOBAaHHUA M 00pabOTKH HaJ
CIIOKHO CTPYKTYPHPOBAaHHBIMH JIAaHHBIMH Ha Pa3JIMYHBIX YPOBHSX YIPaBJICHUS
MH()OPMALIMOHHO-YTIPABISIFOLIMX CUCTEM, COOTBETCTBYFOLIMMHU MO/JIEIIH IaHHBIX B HE
MIepBOI HOPMATBEHON opme.

Wcnonp30Banne JaHHON MOJENH TO3BOJIUT PACIIMPHUTH BO3MOXKHOCTH I10 CO3IaHHUIO
U BHEJPEHUIO IEPCHeKTHBHBIX cpeicTB 3amuthl MYC, OpHEeHTHpPOBaHHBIX Ha
KOMIUIEKCHYIO 3allUTy BhINOJHEHHs 3a1a4 cioxHbix OTC.

Cnucok nutepatypbl

[1]. PykoBomsimii nokyment [ocrexkomuccuu Poccun ot 30.03.1992 r. «3ammra oT
HECAHKIIHOHMUPOBAHHOTO JOCTYIa K nHpopMarwi. TepMUHBI U OTIPENETICHUSD). 5 C.

267

Chucklyaev I. Composition model and method of creation of functionally-oriented information resources. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 259-270.

[2]. AB.Mopo3os, B.B.Bopucos, .U YyknsieB. BblYUCIUTENBHBIE CHCTEMBI:
TeopeTHdeckoe 00oOIeHne, pa3BUTHE, INPAKTHYECKHE pe3ynbTaTel. MoHorpaduws.
Cmonenck: BA BIIBO BC P®. U3narenbctBo «CMONCHCKAsT TOPOACKAsT TUIIOTPaHsD).
2013. 448 c.

[3]. N.N. Yyknsies. Teoperrdeckoe 00OOIICHHE NPEAMETHOW 06IacTH «HH(GOpPMAIHOHHAS
Oe3onmacHocTh». TenmeHmmu pas3BuTusi MetonoB M cpencts. M.: OAO «KonuepH
«Cucremmpom». Crates. B ku.: Hayuno-rexumueckuit cOopank OAO «KonnepH
«CucreMIpom».

Bem. Ne 1(6)-2015, 2015. C. 471-486.

[4]. N.N. Yyknsier. MHDOpMALIMOHHO-YIIPABIISIOLIAs CHCTEMA B YCIOBHIX MHOTOYPOBHEBOT'O
(YHKIIMOHATBHO-OPUEHTUPOBAHHOTO HWH()OPMAIIMOHHOTO KOH(JIMKTA W TOAABICHHMS.
Cwmonenck: BA BIIBO BC P®. Cratps. B xu.: Hayuno-texauueckuii cOOpHHK «BecTHUK
BoiickoBoii ITIBOx». Bei. Ne 13, 2015. C. 183-189.

[5]. N.U. YyknsieB. MeTox W MOJENH YNpPAaBICHHS pPUCKAMH 3alMIICHHOCTH B
nHpopMaIoHHO-ympaBisitonmx cucremax. M.: OAO «Konueps «Mopundopmcucrema-
Arat». Cratbsa. B xH.: Hayuno-texnmueckuii cOopuuk OAO «BpraucnuTensHble
CHCTEMBI pealbHOTO BpeMeHH U I poBbIe yeTpoiicTBay. Bemm. Ne 9, 2015. C. 14-33.

[6]. E.II. EmenbuenkoB. bassr manusix. CoBpemennbix mojaxon. Cmonenck: BA BIIBO BC
P®.2010. 59 c.

[7]. E.IL. Emenbuenkos, }0.C. Maneun. O (pyHKIHOHAIBHOM MOIXOJIE B TEOPHHU 0a3 JaHHBIX.
Cwmonenck: CI'TIY. Ien. 8 BUHUTH Ne 6046-84. 1984. 29 c.

[8]. Ye. Yemelchenkov, M. Tsalenko Functional dependencies in hierarchical Structures of
Data. // Lect. notes in Compute Sciense. Berlin, 1991. V. 495. P. 258-275.

[9]. E.IL. Emenbuenkos, H.A. Jleur O MOJEINPOBAHHH CIIOKHBIX MPEIMETHBIX 00IacTei. //
ITpoGneMsl 1 METOABI HHPOPMATUKH.

Il Hayunas ceccust UTIU PAH. Tes. nokn. / mox pea. U. Cokonosa. M., TN PAH.
2005. C. 89-91.

Composition model and method of creation
of functionally-oriented information resources

I. Chucklyaev <smolrsu@mail.ru>
Military academy of army antiaircraft defense
Armed forces of the Russian Federation,
2 Kotovskiy Str., Smolensk, 214027, Russian Federation

Abstract. In the paper the composition model of functionally oriented informational resources
is provided as well as the method for creating this model. The composition model and method
of functionally oriented informational resources provide enhanced features on creation of
informational security systems. The composition model corresponds to a data model in not the
first normal form, is formed by the functional complex of data and is presented in the form of
polybasic algebraic structure which displays structure, correlations, and also specifics of
operations of handling and processing over difficult structured data. The method of creation of
function-oriented information resources is based on a deductive method of creation of
axiomatic theories. The formalized description of function-oriented information resources is
provided; the functional complex of data of polybasic algebraic structure of compaosition

268

Yyxises N.J. KoMIo3HIMOHHAS MOJIENb M CIIOCOO MOCTPOCHHS (DYHKIIHOHAIBHO-OPHEHTHPOBAHHBIX
MH(OPMAMOHHBIX PeCYpCOB HHPOPMALIMOHHO-YIPaBISIOmHX cucteM. Tpyost UCIT PAH, 2016, Tom 28, BbIyCK 2,
c. 259-270.

model; the functional dependences and the relation forming system of axioms of composition
model. Graphic elements on which it is displayed components of subsystems are shown;
structurally functional chart of component interaction of levels of control; the structure of
composition model of function-oriented information resources provided by the table of difficult
structured data in not the first normal form; structural logic circuit of a method of creation of
composition model of function-oriented information resources.

Keywords: management informational system; composition model; functionally oriented
informational resources.

DOI: 10.15514/ISPRAS-2016-28(2)-17

For citation: Chucklyaev 1. Composition model and method of creation
of functionally-oriented information resources. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue
2, 2016, pp. 259-270 (in Russian). DOI: 10.15514/ISPRAS-2016-28(2)-17

References

[1]. Rukovodyashiy document Gostehkomissii Russian Federation [The leading document of
Gostekhcomissia of Russia]. «Zashita ot nesancionorovannogo dostupa k informacii.
Termini I opredeleniya» [Protection against illegal access to information. Terms and
determination], 1992. 5 p. (in Russian).

[2]. A.V. Morozov, V.V.Borisov, I.I. Chucklyaev. [Computing systems: theoretical
generalization, development, practical results]. Monografiya. Smolensk, Air defense of
Military academy, 2013. 448 p. (in Russian).

[3]. I.I. Chucklyaev. [Theoretical generalization of data domain “information security".
Tendencies of development of methods and means]. Moscow, Koncern «Systemprom»»
Publ., 2015, volume 1(6)-2015, pp. 471-486 (in Russian).

[4]. 1.1. Chucklyaev. [Management information system in the conditions of the multi-level
function-oriented information conflict and suppression]. Smolensk, Air defense of
Military academy, Vestnik PVO [Messenger army air defense], 2015, volume 13, pp. 183-
189 (in Russian).

[5]. I.I. Chucklyaev. [Method and models of risk management of security in management
information systems]. Moscow, Koncern «Morinformsistema-Agat» Publ., 2015, volume
9, pp. 14-33 (in Russian).

[6]. E.P. Emelchenkov. [Databases. The modern approach]. Monografiya. Smolensk, Air
defense of Military academy, 2010. 59 p. (in Russian).

[7]. E.P. Emelchenkov, Yu.S. Malein. [About the functional approach in the database theory].
Smolensk, SGPU, VINITI [VINITI], 1984, volume 6046-84, 29 p. (in Russian).

[8]. Ye. Yemelchenkov, M. Tsalenko. Functional dependencies in hierarchical Structures of
Data. Lect. notes in Compute Sciense. Berlin, 1991. V. 495. P. 258-275.

[9]. E.P. Emelchenkov, N.A. Levin. [About simulation of difficult data domains]. Problemi |
metodi informatiki. Il Nauchnaya sessia IPI RAN. Tez. dokl. Moscow, IPI RAN Publ.,
2005, pp. 89-91 (in Russian).

269

