HuctutyT Cuctemuoro IlporpamMmmupoBaHus
H‘ I I um. B.II. UBanHuUKOBa

Poccuiickoii AKageMHUHn HAVK

ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)

Tpyabl
Nuacruryra CuCTEMHOIO
IIporpammupoBanuss PAH

Proceedings of the
Institute for System
Programming of the RAS

Towm 30, BBIMyCK 5

Volume 30, issue 5

Mocxksa 2018

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)
Tpyabl UHCcTUTYTA cuctemHoro nporpammupoBaHust PAH

Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH — 510 u3nanue ¢ a1BoitHOM
AQHOHHMMHOMW CUCTEMOM pEelleH3UpOBaHMU,
myOMKyrolee HayqHbIe CTaTbU, OTHOCSIIHECS
KO BCEM 00J1aCTAX CHCTEMHOTO
MIPOTrPaMMHPOBAHUSI, TEXHOIOTHI
MIPOTPaMMHPOBAHUS U BEIMHCIUTEILHOM
TeXHUKH. Lenbio n3aanus sBisieTcs
(hopMHpOBaHHE HAYYHO-HH(POPMALTUOHHOM
CpPEebI B 3TUX OONIACTAX ITyTEM ITyOIUKAIIHN
BBICOKOKAYECTBEHHBIX CTAaTEH B OTKPHITOM
JIOCTYIIE.
M3nanue npeaHa3HaueHO IS HCCIIeioBaTeNeH,
CTYJICHTOB U aCIIUPAHTOB, a TAKXKE IPAKTHKOB.
OHO 0XBAaTHIBACT IIUPOKUIT CIIEKTP TEM,
BKJTIOYAsi, B YACTHOCTH, CIETYIOIIHE:
® OIlepalOHHBIC CHCTEMBI;
e KOMIMIATOPHBIC TEXHOJOTHUH;
e (0a3bl JaHHBIX U HHPOPMAIIHOHHBIC
CHCTEMBI;
e mapajenbHBIC U PacTIpe/eTIeHHbIe
CHCTEMBI;
e aBTOMaTH3MPOBaHHas pa3zpaboTka
IpOTpamMm;
e BepuduKanus, BaTUIANMI
TECTHPOBAHNE;
CTaTHYECKUHA ¥ THHAMAYECKUN aHaIIN3;
3auTa 1 obecredeHre 6e30macHOCTH
T10;
KOMIIBIOTEPHBIE aJITOPUTMBI;
I/ICKyCCTBGHHbIl\/’I HWHTCJIJICKT.
KypHan nzgaercs no 0JHOMY TOMY B TOJ,
IIECTH BBIITYCKOB B KaXJOM TOME.
Tonnep>xuBaeTcst OTKPHITHIN JOCTYM K
COZIEPKAHMIO M3/IaHUs, 0OecTIeunBast
JIOCTYITHOCTh PE3yJIbTAaTOB UCCIIEAOBAHUHN IS
OOIIECTBEHHOCTH U MOJICPIKUBAsT TI100aIbHBII
00MeH 3HaHUSIMU.
Tpynst UCIT PAH pedepupyrorest n/unm
UHJIEKCHUPYIOTCS B:

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by
publishing high quality articles on open
access.

The journal is intended for researchers,
students, and practitioners. It covers a
wide variety of topics including (but not
limited to):

e Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design
Tools.

Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

Go ugle ULRICHS\VEE

scholar

CYBERLENINKR 5> Worldcat
vease OpenDOAR
¢|.|BRAR RU B28%

y e

[
8

ros

VIK004.45

PenxoJsierust Editorial Board

Editor-in-Chief - Arutyun I. Avetisyan, Corresponding
RAS, Dr. Sci. (Phys.—Math.), lvannikov Institute for Syst
Programming of the RAS (Moscow, Russian Federation)

TnaBublii pepakrop - Aserncsn ApyTion
Muixanosud, uneH-kopp. PAH, a.¢.-m.1., UICIT PAH

(Mocksa, Poccuiickas deneparyst)

3amecTuTeIb IJIABHOIO pegakTopa - Kysueros

Cepreit JImutpuesnd, 1.T.H., mpodeccop, UCIT PAH

(Mockga, Poccuiickas ®enepariist)

YisieHnl peaKoJLIernu

Bopoukos Anpeii AHATO/IbEeBUY, TOKTOP QU3UKO-
MaTeMaTHYECKUX HayK, podeccop, Y HUBEPCUTET
Mamnuecrepa (Manuectep, BennkoOpuranus)
Bupouukaiite Upuna boHaBeHTYpOBHA,
npodeccop, JOKTOp GU3UKO-MATEMATHYECKUX HAYK,
HMHerutyT cucteM HHPOPMATHKU MM. aKaJleMUKa
AL Epuoa CO PAH (HoBocu6upck, Poccust)
KonnoB Mrops BiiagauMupoBu4, KaHIugaT
(hU3MKO-MaTeMaTHYECKUX HAyK, TeXHHYCCKHUii
ynusepcuteT Bensr (Bena, ABcTpust)
JlacroBeuknii Auekceii JIeoHn10BHY, JOKTOP
(hu3MKO-MaTeMaTHYECKUX HayK, podeccop,
Yuusepcuter Jlyomuna (Jy6nun, Upmanus)
Jlomazosa Upuna AnekcanapoBHa, TOKTOp
(u3MKO-MaTeMaTHYECKUX HayK, podeccop,
HanyonanbHelit nccnenoBaTeNnbeKuil yHUBEPCHTET
«Beiciast mkosa skonomukm» (Mocksa, Poccutickast
Deneparys)

Hogukop Bopuc Acenosuy, 10KTop HU3NKO-
MaTeMaTH4YeCKuX Hayk, npodeccop, CaHKT-
TlerepOyprekuii rocy1apCTBEHHBII YHUBEPCHTET
(Cankr-TletepOypr, Poccust)

Ierpenko Asexcanap ®e1opoBud, T0KTOp HaYK,
HccnenoBarenscknii nHCTUTYT MOHpeans
(Monpeans, Kanana)

Yepubix Anjpeii, T0KTOp GH3UKO-MaTEMaTHIECKUX
Hayk, npodeccop, Hayuno-uccieoBarenbCkuit
uentp CICESE (DHcenana, baxa Kanmndophusi,
Mexkcuka)

1lverep Accad, 1okTOp GPU3NKO-MaTEMaTHIECKHX
Hayk, npodeccop, TexunoH — M3paunbckuit
TexHosornueckuit nucrutyrTechnion (Xaiida,
M3panns)

Agppec: 109004, r. Mocksa, yi1. A. ConkeHuUIIbIHa,
oM 25.

Tenedon: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caiir: http://www.ispras.ru/proceedings/

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr.
Sci. (Eng.), Professor, Ivannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Editorial Members

Igor Konnov, PhD (Phys.—Math.), Vienna University
of Technology (Vienna, Austria)

Alexey Lastovetsky, Dr. Sci. (Phys.—Math.),
Professor, UCD School of Computer Science and
Informatics (Dublin, Ireland)

Irina A. Lomazova, Dr. Sci. (Phys.—Math.), Professor,
National Research University Higher School of
Economics (Moscow, Russian Federation)

Boris A. Novikov, Dr. Sci. (Phys.—-Math.), Professor,
St. Petersburg University (St. Petersburg, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research
Institute of Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel
Institute of Technology (Haifa, Israel)

Andrei Tchernykh, Dr. Sci., Professor, CICESE
Research Centre (Ensenada, Baja California, Mexico).
Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The
A.P. Ershov Institute of Informatics Systems, Siberian
Branch of the RAS (Novosibirsk, Russian Federation)
Andrey Voronkov, Dr. Sci. (Phys.—Math.), Professor,
University of Manchester (Manchester, United
Kingdom)

Address: 25, Alexander Solzhenitsyn st., Moscow,
109004, Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings

© Uncruryt Cucremuoro IIporpammuposanus PAH, 2018

http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://usuario.cicese.mx/~chernykh/
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/kuznetsov.php
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://usuario.cicese.mx/~chernykh/
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/

Tpyasl Hucturyra CucrtemHoro IlporpaMMuUpoBaHuA

ConepxaHue

WNHubopmaTrka. CTAaHOBJICHUE MPOTPAMMHOTO 00ECIICUCHUS U
TEXHOJIOTHI MPOTPaMMHBIX CUCTEM
Jlaspuwesa E.M., IIempeHKO A.K.. c....coccvviiiiiiiiiiiiiiie i 7

MeTto/ aHanmM3a aTak MOBTOPHOT'O UCTIOIB30BAHUS KOJA
Buwmnsaxoe A.B, Hypmyxamemos A.P., Kypmaneanees L. @., ['aticapsn
oG e ettt naenes 31

OO0 oTHOM TOAXOJIC K aHATM3Y CTPOK B si3bike CH JIJIS TOKMCKA
nepernoyiHeHus Oydepa
Ihyouna U. A., Manviuieg H. E.cccccoviiiiiiiiiiiiieiee e 55

Ilonxon kx aHAMM3y HCIIOIHAEMOTO KOJa HA OCHOBE BOCCTAHOBJICHHS
IIPOTrPaMMHON apXUTEKTYPHI

[Tnardopma MEXITPOIETYPHOTO CTATHYECKOrO aHATN3a OMHAPHOTO KO/a
ACTAHAH A K. oottt et e e e ettt e s e e e s e e aab s e e eaesanes 89

OTciiexxuBaHue oneparuii ¢ paiioroii cuctemoii ext3 B amymsitope QMU
Cmenanos B.M., Jloeecanioxk I[1.M., [lonemaeg J[.H..............ccc..covcvveennunnn. 101

TMony4yeHne coEePIKUMOTO yIATIEMBIX U U3MEHAEMBIX (ailyioB B cpesie
JIMHAMHYECKOTO aHajIM3a UCIOHAeMBbIX (aitioB Drakvuf
KOBAMEG C.L......oeoe et 109

MeTtoauka u cpeactsa pazpadotku U Bepudukauu popmansasix fUML
MoJieneit TpeOOBaHMI U apXUTEKTYPHI CIIOKHBIX IPOrPaAMMHO-TEXHUYECKUX
CUCTEM

Camonog A.B., Camor0Ba I H.ccuueueveuuuirieiririrerinssesesesssssssssssssssnsnnnn, 123

Crenmpykanys MOJIENN yIPaBJICHUS JOCTYIIOM Ha S3bIKE TEeMITOPaIbHON
noruku jercreuit Jlamnopra
KOBAUOK A.B. ..coe ettt e et 147

dopmManu3anus METaMOCITN CHCTEMBI YIIPABICHUS TPEOOBAHUSIMU
Kunvouwes JI.C., Xopowitiiog A.B.cccccouvvveiieiiiiiiiiiesie e see e 163

CpaBHHTENBHBIN aHATN3 HEUPOHHBIX CETEH B 3a/1aUe KIacCU(pUKAITIH
no00YHBIX 3 (HEeKTOB Ha YPOBHE CYIIHOCTEH B aHTIIOA3BIYHBIX TEKCTAX
Anumosa U.C., TymyOanuna E.B.ccccccooviiiiiiiiieiie e 177

UucieHHOE MOZIeTTMPOBaHUE ABYX(Da3HBIX TEUCHUH Yepe3 CYIEeCTBEHHO
reTepOreHHYIO TIOPUCTYIO CPelly CXeMOW KBa3UXapaKTEPHUCTHK BHICOKOTO
TopsKa

JICBUH M IL..........cocoooiiiiiiiii i, 197

CnenmanmupoBannas podactHas CFD RANS mukpomaciiTabHas
METEeOPOJIOTHYECKast MOJENb I MOJISITUPOBAHUS aTMOC(HEPHBIX
MPOLIECCOB U MEPEHOCA TPUMECH B YCIOBUSIX TOPOJICKON M MPOMBIIUIEHHOMN
3aCTPOHKH

Copoxosuxosa O.C., [[zama JI.B., Achanouspog .1ccccccevevenurenn. 213

UucneHHOe MOJICTUPOBAaHUE KaUuKH CyJTHA C IIIAXTHBIM YCTPOHCTBOM Ha
BCTPEYHOM BOJIHCHUU
OBUUHHUKOB K L1vvveiiiiie ittt et 235

OnTtonoruueckuit pernosutopuii Ayt CFD-pacueTos
BEHKUH B.A. ..ooiiiiiiii ettt 249

IIpoBepka GHyHKIMOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOJOM
CHUMBOJIBHOW BepU(UKAIIMUA MOACIH
N S OO 265

Proceedings of the Institute for System Programming of the RAS

Table of Contents

Iformatics: Formation of computer software and technologies of
software systems
Lavrishcheva E. M., PErENKo A. K. ..oooveviiiieiie ettt seaen e seneee s 7

Method for analysis of code-reuse attacks
Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F.,
GAUSANYAN S.S. ..ot e et re e 31

An approach to the C string analysis for buffer overflow detection
Dudina l. A., Malyshev N. E.ccccoiiiiiieiiieie e s 55

Approach to analyzing executable code based on the software
architecture recovery
KONONOV D.S. ..ottt 75

Platform for interprocedural static analysis of binary code
ASIANYAN H.K....oi e e e 89

Tracing ext3 file system operations in the QEMU emulator
Stepanov V.M., Dovgalyuk P.M., PoletaeVD.N.ccocevvvrivervnriiierinnn 101

Reading the contents of deleted and modified files in the virtualization
based black-box binary analysis system Drakvuf
KOVAIBY S.G. ottt 109

Methodology and Tools for Development and Verification of formal fUML
Models of Requirements and Architecture for Complex Software and
Hardware Systems

SamonoVv A.V., SAMONOVA G.N.........oeeiiiiiiiiiiie e 123

TLA+ based access control model specification
KOZACNOK A.V....oiee s 147

Formalizing Metamodel of Requirements Management System
Kildishev D.S., KROFroShilOV A.V.......oeeeeeeeee ettt 163

Entity-level classification of adverse drug reactions: a comparison of neural
network models

IVanoV L.1., PELIOV P.P. e 177
Rock Flow Simulation by High-Order Quasi-Characteristics Scheme
LEVIN IMLP ..t 197

Specialized robust CFD RANS microscale meteorological model for
modelling atmospheric processes and transport of contaminants in urban
and industrial areas

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G.............ccccceevernennnn. 213
Numerical simulation of motions of a ship with a moonpool in head waves
OVChINNIKOV K.D. ..ot e 235
Ontological CFD-repository

ZENKIN VLA, ottt sre st ne e 249
Verifying functional properties of smart contracts using symbolic model-
checking

SNIShKIN E.S. ..o 265

Informatics: Formation of computer
software and technologies of software
systems’

L3E .M. Lavrischeva <lavr@ispras.ru>
124 A K. Petrenko <petrenko@ispras.ru=>
! lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
% Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
* Moscow Institute of Physics and Technology (State University)
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
* National Research University Higher School of Economics (HSE)
11 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. Formation of Informatics and aspects of computer software development, in
particular, operating systems and information systems since the period of appearance of the
first computers of 1948-1990 is considered. The program of informatization of Russia in
1992 and the development of the fundamentals of modern computer science or informatics
and the intellectualization of the development of various types of software systems.

Keywords: computer science; computer; system and software engineering; technology;
science; information; intelligent systems; digital economy.

DOI: 10.15514/ISPRAS-2018-30(5)-1

For citation: Lavrishcheva E. M., Petrenko A. K. Informatics: Formation of computer
software and technologies of software systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 7-30. DOI: 10.15514/ISPRAS-2018-30(5)-1

1. Introduction

The emergence of informatics as an independent scientific and engineering
discipline was preceded by a period of a large number of theoretical and practical
works, the most important of which include the works by C. Babbage, G. Boole,
K. Zuse, J. von Neumann, N. Wiener, A. Turing, and others.

The foundation for the development of informatics became research on cybernetics.
N. Wiener in his book «Cybernetics: Or Control and Communication in the Animal

! This work is supported by RFBR grant 16-00-00352

mailto:petrenko@ispras.ru
https://en.wikipedia.org/wiki/George_Boole

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

and the Machine» (1948) defined the term Cybernetics as the science of
information, control and communication in animal and inanimate systems.
Computer is a tool of this science, control and information processing processes
should be based on information about the living nature, be performed using arithmetic
operations on data, reflect human mental activity by means of a natural language.

The groundwork for informatics in the USSR was laid in the works by scientists and
engineers of the first half of the last century. Historians of science and technology
note the significant contribution of such scientists as A.A. Lyapunov, A.P. Ershov,
V.M. Glushkov and many others. In the 1950s, the English terms «computer
science» appeared. The «software engineering» term appeared in 1968.

Actually, the «informatics» term became widely known in European countries after
the appearance in 1973 of the book by F. Bauer and G. Gooz (in Russian translation
«Informatics. Introductory Course», Mir, M., 1976).

In the aforementioned book, F. Bauer [1] for the first line of the preface called
computer science as informatics, which includes communication technology to
determine physiology, psychology, and neurobiology. Informatics touches coding
theory, information theory, logical calculus, automata theory, algorithms,
algorithmic and intelligent systems. Many of these theories and concepts were
formed during the creation of the first computers and promoted the emergence of
information systems and technologies, neural systems, nanosystems, etc. In the
period when first computers appeared, the ideas of intelligent, smart machines were
also formed, solving mathematical problems of algebraic formulation in a special
language called «Analyst» on the Mir 1-3 computer (the 1960s) [2], neurocomputers
of N.M. Amosov and robots.

A lot of research in the USSR contributed the formation of informatics and
cybernetics. The work by D.A. Pospelov «The Formation of Informatics in Russia»
(http://www.raai.org/about/persons/pospelov/pages.htm), as well as the USSR
conferences on the subject held by him for many years, can be named as particularly
publications and in the book of D. A. Pospelov and Y. I. Fet «Essays on the history
of Informatics in Russia». IIS SB RAS, 1998, etc. Cybernetics and Informatics,
software engineering technologies for newly created computers occupies an
important place. Brief description of the types of domestic programming
technologies and scientific foundations of informatics are given below.

2. Programming technologies in the USSR in the 1950s and early
1960s

2.1. Programming systems and libraries of programs

Initially, programs for solving various tasks for computers were coded using simple
languages such as AutoCode close to a machine language. The first programming
program (PP) for A.A. Lyapunov language of operator calculus was developed in
1953-1954 at Moscow State University (E.Z. Lyubimsky, A.P. Ershov).

8

JlaBpumesa E.M., Ilerpenko A.K. Mndopmarnka. CraHoBIeHHE TPOrpaMMHPOBAHHs U TEXHOJIOIHii IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

The library method (V.M. Glushkov «On a Method of Programming Automationy,
Cybernetics Problems, Issue 2, 1957) is created for solving systems of differential
equations for computers (MESM, Ural 1, UMShN, Dnepr, etc.).

Reusable subprograms were collected in subprogram libraries (V.M. Kurochkin,
Computing Center of AS of USSR). M.R. Shura-Bura and E.A. Zhogolev developed
the technological approach to the management of program libraries in the works.
One of the outstanding results in this direction was the so-called «Interpretive
System» 1S-2 (M.R. Shura-Bura) for the computer Strela.

By the early 1960s, programming languages Algol-60, Fortran, PL/1, Cobol, etc.
appeared. Operating systems and translators from the Algol-60 (TA) language were
developed for all domestic computers to work with programs in programming
languages [5-9].

TA1-S.S. Lavrov (1962).

e TA2 - M.R. Shura-Bura and E.Z. Lyubimsky (1AM, 1963).

e TA3 - (Alpha-system) Russian version of the Algol-60 language, A.P.
Ershov (Siberian Branch of the USSR Academy of Sciences, 1964).

e TA4 — E.L. Yushchenko, E.M. Lavrischeva for Dnepr-2 controlled
computing complex (Institute of Cybernetics of the Academy of Sciences
of the Ukrainian SSR).

e Translator with ALMO (E.Z. Lyubimsky, 1965).

The development of translators built a strong basis for research in the compiler
technologies, which are actively developing in our country at the present time.

2.2. Operating systems for BESM-6

The first operating systems in the USSR were created for the BESM computer under
the supervision of S.A. Lebedev and M.V. Keldysh as well as at the Joint Institute
for Nuclear Research (N.N. Govorun) in Dubna, starting from the 1960s [3, 4].

1) OS-68 or Dispatcher 68 (L.N. Korolev, V.P. Ivannikov, A.N. Tomilin, and M.G.
Tchaikovsky). OS provided with:

e Multi-program problem solving;

e Management of all communication channels and devices;

o Parallel execution of tasks and device operation;

e Dynamic allocation of resources in RAM and external memory;
e Distribution and buffering of input-output;

e Operator and interactive mode control. Dispatcher 68 (ND-70) became the
basis of the BESM-6 OS, which has been used in the flight control centers
of spacecraft, ballistic and telemetric software systems for more than 20

years.
2) IAM OS for BESM-6 began to operate in 1970 (S.S. Kamynin, E.Z. Lyubimsky,
and 1.B. Zadykhaylo). In this OS, resource management is implemented with the

9

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

means of process synchronization and emergency management, and a system of
programming and debugging programs in programming languages is included in it.
3) Monitor — Dubna (N.N. Govorun and V.P. Shirikov) ensured management of tasks
and library programs creation, including the European programs of CERN and the
broadcasting of programs in Fortran, Algol, Pascal, and other programming languages.
The operating systems for BESM-6 supported smart interrupt handling systems,
memory protection, real-time and time-sharing modes.

It should be additionally noted that in the mid-1960s (a little bit earlier then OS-68)
M.R Shura-Bura and V.S. Shtarkman (Institute of Applied Mathematics - IAM AS
USSR) developed the operating system for the Vesna computer, but due to the security
reason first and very brief information about this work was published much later.

3. Programming technologies in the early 1970s and 1980s

3.1. Operating systems in 1980-s

A further development of the research in operating systems became OS for multi-
machine complex AS-6, in which various types of computers were combined. AS-6
OS design used experience gained in ND-70 development and exploitation. Work
on the AS-6 OS has determined the direction of development of the OS and
programming systems with OOP for the coming years.

3.2. Compilers in 1980-s

Translator from ALGOL-68 made at Leningrad State University (G.S. Tseitin,
A.N. Terekhov, 1968-1991) for the first computers — CM1, CM2, ES EVM, and
Sampson (HLL soviet computer). Programs in ALGOL-68 were translated into an
intermediate language, and then into a specific machine code.

3.3. Modular and assembly programming

On first domestic computers, programs were initially implemented in machine codes
or languages like AutoCode. Later, the programming languages appeared (Algol,
Fortran, PL/1, Cobol, etc.). The above-mentioned translators from high-level
programming languages had been used on domestic computers and had provided
solutions to various kinds of problem domains (mathematical, physical, economic,
etc.) before the ES EVM (clones of IBM’s System/360 and System/370) appeared.
Within the defense industry specific computers for radars, spaceships, airborne
equipment and software complexes PROTVA, YAUZA, RUZA, PROMETHEUS
(Moscow Research Institute of Instrument Automatics, MNIIPA, V.V. Lipaev) were
created. These complicated systems had a modular architecture, were written in
different programming languages and were assembled into complexes using
interfaces of the APROP system of the PROMETEY project (1980-1990) [11-13].
The interface has become the main element of the program assembly and the
foundation of assembly programming. Its development was influenced by
10

JlaBpumesa E.M., Ilerpenko A.K. Mndopmarnka. CraHoBIeHHE TPOrpaMMHPOBAHHs U TEXHOJIOIHii IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

V.M. Glushkov, V.V. Lipaev, A.P. Ershov, E.H. Tyugu, and others. The APROP
system became a CASE-tool for automating the assembly process using primitive
functions of the interface library for converting inconsistent data types in modules
in the programming language (Lavrischeva E.M., Grishchenko V.N. Linking
Multilingual Modules in the Unified Computers Operating System. M.: Finance and
Statistics, 1982. 127 p.). The development of this system and its use have been
funded by the USSR Ministry of Radio Industry for more than 10 years, being an
integral part of the PROMETHEUS, YAUZA, RUZA, and other systems. The
APROP systems were transferred to Yerevan Research and Development Center
(1984) for using in other Software systems. The main developers of this complex
were given the Award of the USSR Cabinet of Ministers (1985). This system was
transferred in 52 organizations of the USSR and became an integral part of the ES
EVM programming systems. Academician A.P. Ershov considered “assembly
programming effective, since ready-made modules make it possible to quickly solve
any tasks from a specific problem area for the ES EVM and mini-, micro- and
macro computers” (A.P. Ershov. Scientific basis of programming. Report in the
USSR Academy of Sciences, 1985, pp. 1-12.).

The results of the research and development in the assembly programming were
defended in the Dissertations E.M. Lavrischeva (Models, Methods and Means of
Assembly Programming, 1988), Grishchenko V.N. (Methods and Means for
Providing the Intermodule Interface in the Class of High Level Programming
Languages, 1990) and published in their monograph (Assembling programming,
1991, 136p.) and others articles [25-29]. The implemented interface is built into
IBM OS 360 and other foreign operating environments. Later, the ISO/IEC FDIS
24765 — Configuration (assembling), 2009 standard was developed. There was no
national standard for the assembly method, and only the domestic assembly concept
was published in a number of articles in the Programming and Compute Software
Journal (Academy of Sciences of USSR), in books “Technology of assembling
programming” by V.V. Lipaev, A.A. Shtrik, B.A. Pozin, published in 1992 and
presented in many papers for Scientific conferences in 1976, 1978, 1980, 1986, 1991.

3.4. Programming synthesis

Synthesizing programming (E.H. Tyugu) is the process of obtaining a program from
the problem statement and the method of its solution. The synthesis of programs
based on logical and analytical specifications and consists in proving the existence
theorem and transforming these specifications into a problem-solving program. In
case of a logical approach, the specification is interpreted as the formulation of a
theorem stating the existence of a solution to the problem. In the case of the
analytical approach, the specification is interpreted as an equation for the symbolic
transformation of the program with validation. Program synthesis is a certain way of
manipulating knowledge embodied in the domain problem specification and
universal knowledge that reflects general mathematical patterns and the essence of
evidence-based reasoning [13, 17].

11

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

3.5. Compositional programming

The composition of programs is the operation of combining functions and data in
one of the forms: “data — function — name” and “function-composition-description”
on a set of named data, descriptions and denotations (values). Composition
operations form a subclass of standard compositions and compositional functions at
the programming language level (V.N. Red’ko). The theory of descriptive and
declarative programmatic formalisms (N.S. Nikitchenko) provides adequate
modeling of data structures, programs, and means of their design. The basis of this
theory is semantics, a system of compositions and nominative data for describing
functions and compositions. The theory is closely related to function and data
algebra and differs from traditional program systems by a theoretical-functional
approach, classes of single-valued functions of arity n with nominative data
structures such as sets, multisets, relations, etc. An experimental system that
displays functions and data compositions, which was used in teaching students of
KNU [18-21] and France, had been created.

3.6. Functional programming — REFAL

Functional programming is used to solve problems related to pattern recognition,
communication in the natural language, implementation of expert systems, proof of
theorems, symbolic calculations, etc. The basis of this programming is the theory of
lambda calculus (A. Church) and combinatorial logic (M. Schonfinkel and
H. Curry). The functional program includes a set of definitions of functions, calls to
other functions and control calls. Recursion is the fundamental basis for
constructing semantics in functional programming. In domestic practice, the
REFAL language (V. Turchin, 1966) is considered a functional one [22]. A function
in it is an ordered set of sentences consisting of a sample and a pattern. Some
expression is supplied to the input of the function. It is matched with the sample and
if the matching is successful, then this expression will be the result of the function
or an error will be recorded. An expression is a sequence of terms that can be letters,
numbers, and label characters (identifiers), macro numbers — a character (digital)
record of non-negative integers, floating-point numbers, variables from one of
several predefined types, and an arbitrary expression in parentheses or in angle
brackets to call functions, including recursive ones. This language is still being
developed and is practically used in a number of industrial areas [23].

3.7. Layered (aspect oriented) programming

A. L. Fuksman [24] developed the technology of distributed actions or the vertical
layering technology. According to this technology, the vertical layer (slice) contains
a set of distributed actions, code fragments that implement a certain expanding
function, while the process of developing and modifying a program is a sequence of
operations for adding or changing these functions. This concept forms the basis for
a new strategy for incremental program development. The first stage has a “basis”
created — a simplified version of the program. At subsequent stages, the program is

12

JlaBpumesa E.M., Ilerpenko A.K. Mndopmarnka. CraHoBIeHHE TPOrpaMMHPOBAHHs U TEXHOJIOIHii IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

implemented, and it is added to the vertical layer. The program may contain "stubs"
— simulators of missing parts for inserting ready-made programs. The transaction is
executed as the addition of a new component (vertical layer), which splits into
modules designed for several horizontal layers. These modules add security,
protection, and reliability. Any program has a series of extensions on the horizontal
layer. This programming has received development abroad in aspect-oriented
programming [25].

3.8. Algebraic and agent programming (AP)

The AP paradigm is based on the theory of rewriting terms using the equality
system of the computation algorithm, the result of which is a term obtained using
graph terms of data representation and knowledge of subject domains [26-28]. This
device allows determining the behavior of systems and their equivalence in a
transitive system. The main state of the transitive system is the system behavior,
which is defined by expressions of the behavior algebra F(A) on the set of algebra
operations A. Two prefixing operations a-u define the behavior of u on the operation
a and the non-deterministic choice u + v of one of two u and v behaviors, which is
associative and commutative. The final behavior is given by the constants: A, L, 0
denoting the state of successful, undefined and unsuccessful completion. The
behavior algebra is partially defined by the < relation, for whom the L element is the
smallest, and the operations of the behavior algebra are monotone. The environment
E, where the object is located, is defined as an agent in the algebra of actions A and
the insertion function of two arguments Ins (e, u) = e [u]. The first argument is the
behavior of the environment; the second is the behavior of the agent, which is
inserted into this environment in a given state. The agent algebra is the parameters
of the environment, and the value of the insertion function is a new state of the same
environment. AP integrates procedural, functional and logical programming. A term
graph is used to represent data and knowledge using expressions of polybasic data
(group, ring, and field) algebra. Insertion (insert) programming is formed on the
basis of the AP. The AP was implemented on MIR 1-3 computer, and the agent
theory was developed for management decisions making by E. A. Trakhtengerts
[29].

3.9. Graph programming

The theory of graphs began to develop relatively to programming in the school of
A.P. Ershov (V.l. Kasyanov, V.E. Itkin, A.A. Evstigneev and others). The modular
programming paradigm is based on the representation of modules and interfaces in
graph nodes [11]. The graph is defined as an adjacency matrix and a characteristic
vector. The adjacency matrix is used to prove the reachability of graph nodes and
the correctness of the modular structure, as well as the formal conversion of the data
types transferred between inconsistent modules (see Chapter 3, 4 in the Assembly
Programming Book, 1991). Last year Graph theory is being actively developed in

13

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

ISP RAS for the schematic organization of memory for Linux and is used in
medicine, aviation, biology, etc. The direction of this theory presented in the works
[30-31].

3.10. Technology of programming and conferences in the USSR

The definition of programming technology in the USSR was given in the following
works:

1. Glushkov V.M. Basic Research and Programming Technology. Programming.
1980, No. 2. p. 3-13.

2. Velbitsky 1.V. Programming Technology. K.: Technika, 1984. 277 p.

After the death of V.M. Glushkov (1982), 1.V. Velbitsky became responsible for
holding the All-Union Conferences of the All-Union Communist Party I-111 (1982,
1985, 1992) on behalf of the Executive Committee of the Academy of Sciences of
the Ukrainian SSR and the State Committee on Science and Technology of the
USSR [33-35]. These conferences gathered thousands of specialists from the
country. The following scientists presented scientific reports on programming
technologies: A.P. Ershov, V.V. Lipaev, S.S. Lavrov, M.R. Shura-Bura,
E.L. Yushchenko and others scientists. The conference materials are stored in the
computer science museums (http://www.computer-muse.ru).

4. Informatics and its role in society

N. Wiener (1948) his book on cybernetics in 1948, in discussion on nature of
information said "the ideal computing machine must then have all its data inserted at
the beginning, and must be as free as possible from human interference to the very
end. This means that not only must the numerical data be inserted at the beginning,
but also all the rules for combining them, in the form of instructions covering every
situation which may arise in the course of the computation. Thus the computing
machine must be a logical machine as well as an arithmetic machine and must
combine contingencies in accordance with a systematic algorithmy.

According to A.P. Ershov, “information is a body of knowledge about actual data,
dependencies between them for the cognition and reproduction of human thinking in
an artificial intelligence system. Informatics is a science that studies the structure
and general properties of information, the laws of the processes of exchange,
processing, storage, search and distribution of scientific, financial, economic and
other information. Informatics provides mechanisms for reforming documents in
natural languages and creating information retrieval, information logical, intelligent
systems using system analysis and artificial intelligence. In other words, informatics
is considered as a complex scientific discipline, which includes the theory of
designing and operation of complex computer, information and intelligent systems
(knowledge and data) as well as programming technologies. The term “computer
science” began to be used in Russia in the late 1970s, particularly due to the theory
of artificial intelligence, which allows simulating human mental activity in the

14

JlaBpumesa E.M., Ilerpenko A.K. Mndopmarnka. CraHoBIeHHE TPOrpaMMHPOBAHHs U TEXHOJIOIHii IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

works of domestic scientists — A.Dorodnitsyn, E.Velikhov, G.Pospelov and
D.Pospelov, V.Glushkov, and others [39-44].

4.1. Engineering sciences of computer science teaching

A computer science education program was published in 2005 [R. Shackelford,
J.H. Cross, G. Davies, et al. Series "training programs in Informatics”, Commission
of training programs in Informatics]. It presented the disciplines of Computer
Science (Computer Engineering, Electronic Engineering, Software Engineering,
System Engineering, IT — Information Technology, Information Systems). A
computer science-training program for each individual discipline is provided at
https://curriculum.code.org. Below, their brief definitions are provided (Fig. 1).
Information technologies are technologies for managing solutions, business,
commerce, economics, social sphere, etc.).

Information Systems — information processing systems (exchange of information,
documents, data, etc.).

Software Engineering — methods, means and tools for the development, operation,
maintenance and termination of programs usage. It occupies a central place in
computer science.

System Engineering — the theory, methods, and principles of software design for
computers (OS, translators, interpreters, analyzers, schedulers, etc.), information
and software systems maintenance, data management, etc.

Computer Engineering — the theory and principles of building computers,
supercomputers, multiprocessor and macroconveyor machines, clusters, etc. The
basis of Computer Engineering includes Turing machine, von Neumann, automata,
algorithms, mathematics, logics, and other theories.

4.2. Intellectual systems

The intellectual system performs creative tasks, the knowledge of which is stored in
its memory. Such a system includes a knowledge base, a decision output
mechanism, and an intelligent interface. Intellectual systems are studied by means
and methods of artificial intelligence [49].

The main tasks of artificial intelligence:

symbolic modeling of thinking processes,

working with natural languages,

presenting and using knowledge

machine learning,

biological modeling of artificial intelligence,

robotechnics.

These systems were on the agenda as soon as computers appeared. A number of
scientists have been studying these problems to the present day [50]. During the
period of 1985-1990, specialists from Japan were engaged in the issues of the

15

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

intellectualization of knowledge and the construction of smart machines. First
Japanese robots became the result of this project [49].

Inform.
syst.

Inform.
techn.

Soft.

eng.

Syst.
Eng.

Comp.
eng.

Theory, concept, Development

Fig. 1. Informatics space (Software Engineering in the middle)

Information systems and information technologies in computer science have
become the main tool for the everyday life and interactions of modern society and
the basis for computerization and informational support of the global world.

Today, in a time of the digital economy, the solution of machine learning problems,
the use of accumulated knowledge, machine learning and robotization are on the
agenda of the government and the Ministry of Education of the Russian Federation.
A great contribution to the development of artificial intelligence was made by
G.S. Pospelov, who has been holding thematic conferences on Artificial Intelligence
in Russia for 10 years.

4.3. Knowledge engineering in engineering domains

Knowledge of a certain subject area (biology, chemistry, physics, etc.) is presented
in the Knowledge Base (KB), which contains inference rules and information on
human experience and knowledge with consideration of the ISO/IEC 2382-1:
19931-BR standard. Not only is the actual information of the region placed in the
KB, but also the rules of inference for performing automatic deduction about the
existing or newly entered facts and thereby is semantic (meaningful) processing of
information carried out. Modern KBs work in conjunction with the search and
retrieval systems for information represented by ontology as a set of concepts and
their relationships. Ontologies are described using special ontology languages
(OWL, FODA, ODM, etc.) [51, 52]. One of the authors, together with the students
of MIPT, developed the ontology of the life cycle domain in OWL, which contains
information about processes and actions, as well as artifacts and dependencies
between them. The life cycle description in OWL was processed by Protégé 2.3 and

16

Jlapumesa E.M., [Terpenko A.K. Mupopmarrka. CTaHOBICHHE MPOrPaMMHPOBAHHS M TEXHOJIOTHH ITPOrPaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

the output code in XML was obtained [53]. The life cycle automation approach was
reported at the Science and Information-2015 conference in London. Today, the
ontological approach is gaining momentum on the Internet, widely represented in
the Semantics Web (http://semanticweb.org) for building ontologies, knowledge
extraction (Data Mining), neural, quantum and intelligent technologies.

5. The era of informatization and market oriented economy
(1992-2018)

After the collapse of the USSR, the «Informational Support of Russia» Scientific
and Technical Council (1992) was established to determine the focus area on the
development of information technology for the upcoming years. The council
included 30 leading specialists from institutes of the Russian Academy of Sciences
and other research organizations of Russia. This council has developed an
informational support strategy for Russia, consisting in the development of concepts
and principles for the development of promising and typical informational support
projects, unification and standardization of design solutions based on international
standards and information and communication technologies (ICTs) that improve the
efficiency of informational support, security, quality of information technologies
and economic mechanisms of informational support [62].

The basics of informational support of Russia included the following areas:

1. Economic and social tasks of informational support.

2. Technologic and economic development of the informational support market
economy.

3. Scientific and technical informational support of Russia:
3.1. Fundamental development of IT and systems.
3.2. Technology and software engineering systems development.
3.3. Ensuring information protection.
3.4. Standardization of system creation tools.
3.5. Support for informational support in education.
3.6. Development of informational support infrastructure in Russia.
4. Development of informational support infrastructure in Russia.
5. System projects for informational support in Russia.
The main focus of the informational support project was on the justification of a
market economy for various informational support projects.
In area 3.1, the following are related to the scientific areas of informational support
(V.P. lvannikov):
e algebraic and logical theories of system formalization;
e analysis of parallel and distributed systems;
o formal specifications and verification of complex systems;
e programming paradigms;

17

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

e knowledge presentation formalisms;

e models of human-machine interfaces and visualization.
The area 3.2 defines the main tasks of software engineering (V.V. Lipaev):
development methods, safety, reliability, protection, quality and standardization of
the life cycle of information systems, as well as a strategy for developing the market
economy of software and hardware and organization of education.
The infrastructure and informational support program of Russia included: a
communication system for computing tools and networks to provide interaction of
information facilities and technologies; programs for the hardware, media and
software complexes; a personnel education system for the effective development of
the country’s informational support. The market economy is defined as the main
tool of informational support.

5.1. Directions of technology development after 1992

The presented domestic programming technologies have come a long way of
development and have played an important role in the development of programming of
software and system complexes for various purposes on a computer. Practically
developed domestic technologies were not brought to the standard in this country, but
many standards appeared in software and computer engineering abroad after 1992 [14].
These include, for example: UML (Unified Modeling Language), OWL (Ontology
Web Language), WSDL (Web Service Definition Language), XML, XSL, RDF, and
others. Since 2002, the Model (Model Variability) has been formed on programs
production Product Lines/Product Family [32] and in Grid systems. It is used in
AppFab software factories [33].

In domestic practice, a theory of object-component modeling of software systems
[36] and a data type conversion system have been developed, taking the 1ISO/IEC
11404 GDT standard and Big Data non-structural data types into account
[Lavrischeva E.M., Ryzhov A.G. Application of the theory of general data types of
ISO / IEC 12207 GDT standard to Big Data].

5.2. Industrial technologies after 2005

A few words are to be said on one important direction in the development of
computer science, which gained momentum in the early 2000s, related to such
concepts as program families and program factories. A program factory is an
integrated architecture of pipeline assembly and fabrication of Programming
Products (PP) from ready-made resources, which are standardized in programming
languages, and their interfaces — standardized in the WSDL language [56-59, 64].
The program factory includes the following elements:

e ready-made resources (artifacts, modules, programs, systems, reuses,

assets, objects, components, services, etc.);
e interfaces in one of the languages IDL, SIDL, WSDL, etc.;
e technological and product lines;

18

JlaBpumesa E.M., Ilerpenko A.K. Mndopmarnka. CraHoBIeHHE TPOrpaMMHPOBAHHs U TEXHOJIOIHii IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

assembly line;
production and planning techniques;
configuration of custom product versions;
development of an environment for individual elements of ready-made
resources and functions.
Creation of a product from ready-made elements depends on their volume or
quantity. The level of programming programs production using the following
functions:
v = F (z, u), where v = (v;) is the output vector, z = (z;) is the resource expenditure
vector, u = (u;) is the expenditure function dependency matrix z = F (wj, u),
j =1, 2., n. The indicators of the w; function set the volume of production, the
structure of the production assets and the level of ready-made resources
specialization of the factory.
The overall Cobb-Douglas production function of output has the form v = ne " L*
KP, where v is the generalized output, n is the normative factor, e is the basis of the
algorithm, t is an indicator of the level of scientific and technical progress, L is the
cost of human labor, K — the amount of capital, o, B — elasticity coefficients.
The calculations of these functions determine the estimates of the revenue part of
the production at the program factory. The efficiency, consistency, and
proportionality of PP output depend on resource management by factory services
(control, testing, quality assessment of PP, etc.). In a market economy, the quality
and cost of PP evaluations correspond to the demand for a product.
The following factories are known for PP production at the moment:

e Product Line/Product Family (K. Pohl) [32].

e Conveyor multigeneration (K. Czarnecki) [48].

e AppFab in VS.Net (https://msdn.microsoft.com/ru-

ru/library/ee677312(v=azure.10).aspx).

o IBM Sphere (https://www.ibm.com/developerworks/ru/websphere/newto/).

e Streaming assembly by J. Greenfield [58].

e Chart assembly use case by G. Lenz and M. Fowler's continuous

integration.

e Programs assembling according to V. Glushkov [47, 64].

e BEA WebLogic Oracle, SAP NetWeaver, and other factory systems.
For planning and making economic calculations at the factories programs was
development special disciplines [46-48]. The production of PP is based on the
technological processes of manufacture of certain product types using the theory of
the design and usage of tool environments. These disciplines are used in the
program CS-Curricula-2013 and was demanded many organizations of China, India
and other countries [39, 45, 54].

Brief description of Software Engineering (SE) domains is presented below.
Scientific disciplines of SE include classic Sciences (theory of algorithms, set
theory, proof theory, mathematical logic, discrete mathematics); theory of

19

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

programming of the theory of abstract data, management science, etc. This
discipline defines the basic concepts of the objects and the formalism of the
description of the system components and data description [15-20] etc.

Engineering disciplines of SE include methods of using technology rules and
procedures, processes, life cycle, methods of measuring and assessing the quality of
development PP. This discipline defines the set of engineering methods, techniques,
tools and standards focused on the production of the target PP. Basic concepts of
engineering SE include: core knowledge SWEBOK; the basic processes of SE;
infrastructure environment [45].

Project management is based on the theory of management of projects and the IEEE
Std.1490 PMBOK (Project Management Body of Knowledge); method CRM
(Critical Path Method) for the graphic representation of works, operations and their
execution time; method of network planning PERT (Program Evaluation and
Review Technique), etc. In the PMBOK defined processes lifecycle of the project
and the main areas of knowledge and processes of planning, monitoring,
management and completion.

Economic disciplines. This disciplines are used for the analysis of the different
parties activities of developers in the implementation of the project and identify the
costs. The time and economic indicators are according to the requirements of PP.
Used methods: predicting the size of PP (FPA — Function Points Analyses, Feature
Points, Mark Il Function Points, 3D Function Points, etc.); the evaluation effort for
the development of PP by using models COCOMO and systems (Angel, Slim, Seer-
SEM, etc.), as well as the quality of PP [35].

Production disciplines determine the production of PP. In software industry mass
software products are produced by such worldwide leaders as Microsoft, IBM, Intel,
Oracle, and other factory programs owners [13, 58, 59, 64].

5.3. The way of automation systems modeling

This paper does not assume a detailed analysis of the current state of computer
science neither in Russia nor abroad. Nevertheless, it can be stated that intellectual
systems are nowadays the main direction of computer science development. An
important area of research in this direction is the development of robots in the
manufacturing industry, medicine and other areas of their application. Robot
automation is understood as the automation of the production of individual objects
based on the usage of industrial unmanned technologies. The purpose of robot
automation is to improve working conditions, increase technical and economic
indicators of enterprises, and ensure the highest and most efficient production. This
area is the most developed in Japan. They were one of the first to develop robots,
starting from the late 1960s — early 1970s. Today, this country plans to launch the
first unmanned taxi. In 2015, a prototype was presented bearing the name of Robot
Taxi. It was shown in 2016 at the top level — during the G7 summit. It is expected
that the full implementation of such machines in the market will occur in 2020 and
be prepared by the time of the Olympics in Tokyo.

20

JlaBpumesa E.M., Iletperko A.K. Undopmarnka. CTaHOBICHHE IPOrpPaMMHPOBAHHS U TEXHOJIOTHIT IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

In terms of the evolution of design technologies, the development and analysis
programs, the problems of ensuring information security, reliability and resiliency
of software and hardware of the critical infrastructure come to the fore. One of the
important aspects of the reliability and information security of software systems is
designing and verification of so-called “variable” software systems or software
product families.

One of the important aspects of reliability and information security of computer
systems is modeling and verification of «variable» systems or software product
families. The project of RFBR 16-01-00352 «Theory and methods of development
of variable software systems» (head E. M. Lavrisheva) is devoted to the solution of
a number of problems of modeling of variable systems. These include the
implementation of the following tasks:

- modeling of software, operating and Web systems from ready-made software
resources (GOR) by OCM method and creation of MF (Feature Model), Msys and
Mconfig models [58-63];

- verification of data models, GOP, information and Web systems from using of
services and services component, which founding in Internet libraries reuses and
CPI [67-74] ;

- testing of GOR and configured systems on models Mconfig, MF, Msys with data
collection about errors, defects, failures, etc. [54];

- integrated testing of evaluation of reliability and quality of the created the
information and Web systems [74].

A description of the methods to implement the above processes, modeling of
complex software, information and web-systems are given in the works of the
participants of the project RFBR 16-00-00352. The main results of this project are
published in [65-74].

6. Conclusions

The ways of establishing informatics and programming technologies for automating
the creation of software and application systems since the advent of the first
Electronic computers, as well as the new discipline for processing information on
both the first computers and modern ones during the period of the informational
support, are considered. Computer and information systems, as well as technologies
for the automation and intellectualization of development of software and
application systems of various types, are provided (the program of informational
support of Russia after 1992 is described. According to the tasks developed and
described new domestic technologies and tools of systems analysis, modeling of
system and site with the help of ready GOR (objects, components, services, etc.) on
new variable models and method of Configuration (assembling) are presented.
There are new ways of development of intelligent systems in the direction of
robotics devices, machines, etc. for different areas, especially for medicine.
Innovative developments in the field of intellectualization, ontologization and
ensuring the reliability and information security of software systems are noted.

21

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

References

22

[1] Bauer F.E., Gooz G. Informatics. M: 1976, 484 p. (in Russian)

[2] V.M. Glushkov "Fundamentals of paperless Informatics” // M.: Nauka, 1982, 552 p.

[3] Ivannikov V.P., Korolev L.N., Lyubimsky E.Z. et al. Development of the Moscow
school of computer OS. International Symposium Computers in Europe: Past,
present and future, Kyiv, Ukraine, 5-9 October 1998, pp. 265-270 (in Russian)

[4] Ivannikov V.P., Gontarenko S.V., Govorun N.N. Architecture of operating systems
for supercomputers. Problems of Cybernetics. Problems of creating high-
performance computers, 1984. pp. 117-126 (in Russian).

[5] Shura-Bura M.R., Lyubimsky E.Z. Translator from ALGOL-60. Computational
Mathematics and Mathematical Physics, vol. 4, Ne 1, 1964 (in Russian).

[6] Babetskii G.l., Bezhanova M.M., Ershov A.P. et al. Programming System
ALPHA.- Computational Mathematics and Mathematical Physics, Ne2, 1965, pp.
317-325 (in Russian).

[7] Lavrischeva E.M., Borisenko, L.G., Grishkevich E.I. et al. The translator from the
language of D-ALGAMS for UVK Dnepr-2. K: IK Ukrainian Academy of
Sciences, 1970. - 186 p. (in Russian)

[8] Terekhov A.N. Identification and structure of a compiler language ALGO-68.
Programmirovanie, N2, 1975 (in Russian)

[9] A.P. Ershov and M.R. Shura-Bura. The Early Development of Programming in the
USSR. In History of Computing in the Twentieth Century, Academic Press; First
Edition edition, October 12, 1980, pp. 125-136. (in Russian)

[10] Safonov V.O. Languages and methods of computer programming Elbrus. M.:
Nauka, 1989

[11] E.M. Lavrishcheva, V.N. Grishchenko. Assembly programming. K.: 1991, 213 p.
(in Russian)

[12] V.V. Lipaev, B.A. Posin, A.A. Shtrik. Technology of Assembly programming. M.:
1992, 271 p. (in Russian)

[13] E.M. Lavrishcheva, V. N. Grishchenko. Assembly programming. The basics of the
industry systems”, Kiev, Naukova dumka, 2009.-371 p. (in Russian)

[14] Lipaev V.V. Processes and standards of life cycle of complex software tools.
Reference book. M.: SYNTEG, 2006, 260 p. (in Russian)

[15] Lavrishcheva E.M. Development of the theory of programs and systems in the
USSR: History and modern theories. In Proc. of the Fourth International
Conference on Computer Technology in Russia and in the Former Soviet Union
(SORUCOM). Moscow, Zelenograd, 2017, pp. 31-43.

[16] Kahro M.I., Kalia, A.P., Tyugu E.X. Instrumental programming system UCS
(PRIZ). M.: Finance and statistics, 1981 (in Russian).

[17] Tyugu E.X. Conceptual design. M., Nauka: 1984, 287 p. (in Russian)

[18] Red’ko V.N. Program compositions and composition programming //
Programmirovanie, Ne 5, 1978, pp. 17-26. (in Russian)

[19] Nikitchenko N.S., Shkilnyak S. S. Mathematical logic and theory of algorithms. K.:
Kiev University: 2008, 528 p. (in Ukrainian)

[20] Lavrischeva E.M., Nikitchenko N. S. Omelchuk L.P. Programming technology of
information systems: methods, tools, tools. K., Kiev University: 2017, 457p.

[21] Systems of computer algebra of the ANALYTIC family, group of authors. K.:
NASU, IPMI, 2010, 762 p. (in Russian)

http://link.springer.com/journal/11470
http://link.springer.com/journal/11470
http://link.springer.com/journal/11470

JlaBpumesa E.M., Ilerpenko A.K. Mndopmarnka. CraHoBIeHHE TPOrpaMMHPOBAHHs U TEXHOJIOIHii IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

[22] Turchin V. F. the Algorithmic language of recursive functions (REFAL). Moscow:
Preprint of IAM AN SSSR, 1968 (in Russian)

[23] Smirnov V. K., the Hardware realization of the language Refal in IPM im.M. V.
Keldysh. Preprint KIAM RAS, Ne99, 2003, pp. 1-21 (in Russian).

[24] Fuksman, A. L. Technological aspects of building software systems. M.: Statistika,
1979, 183 p. (in Russian).

[25] Aspect-oriented programming. AspectJ (http://aspect.org).

[26] Kapitonova Y.V., Letichevsky A.A. Methods and Means of Algebraic
Programming. Kibernetika/Cybernetics, 1993, issue 3, pp. 7-12 (in Russian).

[27] Letichevsky A., Gilbert D. A general theory of action languages. Cybernetics and
Systems Analysis, vol. 34, no. 1, 1998, pp. 12-30 . DOI: 10.1007/BF02911258.

[28] Trakhtengerts E. A. The Interaction of agents in multi-agent environments.
Automation and telemechanics, Ne 8, 1998, pp. 3-52 (in Russian).

[29] Trachtengerts E. A. Computer methods of realization of economic and information
management decisions. Volume 1. Methods and means. Volume 2 the
Implementation of solutions. Moscow, 2009 (in Russian).

[30] A.A.Evstigneev. Application of graph theory in programming. Moscow, Nauka,
edited by A.P. Ershov, 1985, 351 p. (in Russian).

[31] Christofides N. Graph theory. Algorithmic approach. M.: Mir. 1978 (in Russian)

[32] Pohl K., Bockle G., van der Linden F. J. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, 2005. DOI: 10.1007/3-
540-28901-1.

[33] Lavrischeva E.M. Theory and Practice of Software Factories. Cybernetic and
Systems Analyses, vol.47, No.6, 2011, pp.961-972.

[34] J.Hebeler, M.Fisher, R.Blace, A.Perez-Lopez. Semantic Web Programming. Wiley
Publiching.Inc., 2008, 565 p.

[35] Lavrishcheva E.M. Software engineering and programming technology of complex
systems. Moscow, Yurayt, 2018, 432 p. (in Russian).

[36] Lavrishcheva E.M. The theory of object-component modeling of modified software
systems. Preprint of ISP RAS, 2016. ISBN 998-5-91474-025-9 (in Russian),

[37] E.M. Lavrischeva, A.K. Petrenko. Software Product Lines Modeling. Trudy ISP
RAN/Proc. ISP RAS, vol, 28, issue 6, 2016, pp. 49-65 (in Russian). DOI:
10.15514/1SPRAS-2016-28(6)-4

[38] Catalogue of Technologies. ISP RAS. Moscow, 2017, 34 p.
http://www.ispras.ru/downloads/ISPRAS-Catalogue-En.pdf

[39] E.P. Velikhov. Computer science is an important direction of Soviet science. In
Cybernetics. The formation of Informatics, 1986 (in Russian).

[40] A.A. Dorodnitsin. Informatics. Subject and tasks In Cybernetics. The formation of
Informatics, 1986 (in Russian).

[41] V.S. Mikhalevich et al. Informatics — new field of science and practice. In
Cybernetics. The formation of Informatics, 1986 (in Russian).

[42] Shileiko A., Shileiko T. Conversations about informatics. Moscow, Molodaya
Gvardia, 1989, 287 p. (in Russian)

[43] V.M. Glushkov. Cybernetics, computers, informatics. K.: Naukova Dumka, 1990
(in Russian).

[44] V.M. Glushkov. The Basics of Paperless Informatics. M.: Nauka, 1982, 552 p. (in
Russian).

23

https://www.researchgate.net/journal/1060-0396_Cybernetics_and_Systems_Analysis
https://www.researchgate.net/journal/1060-0396_Cybernetics_and_Systems_Analysis

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

24

[45] Curricula Recommendations. Available at:
https://www.acm.org/education/curricula-recommendations

[46] E.M. Lavrischeva. Classification of software engineering disciplines. Cybernetics
and Systems Analysis, vol. 44, Issue 6, 2008, pp. 791-796.

[47] Lavrishcheva E.M. Software engineering. Training manual in 3 parts. Moscow:
MIPT, 2016 (in Russian).

[48] Czarnecki K., Eisenecker U. Generative programming. Methods, tools, application.
SPb.: Peter, 2005, 730 p. (in Russian).

[49] H. Ueno, V. Isudzuka. Representation and use of knowledge. M.: Mir, 1987, 220 p.
(in Russian).

[50] G.S. Pospelov. Artificial intelligence — new information technology. In
Cybernetics. The formation of Informatics, 1986 (in Russian).

[51] Standard ISO / IEC 2382-1:1993, Information technology — Vocabulary — Part 1:
Fundamental terms.

[52] T.A. Gavrilova et al. Knowledge bases of intelligent systems. Textbook for
technical universities. SPb.: Peter, 2000 (in Russian)

[53] Lavrischeva E.M. Ontology of Domains. Ontological Description Software
Engineering Domain — The Standard Life Cycle. Journal of Software Engineering
and Applications, vol. 8 No. 7, 2015.

[54] Lipaev V. V. Software engineering of complex custom software products. Tutorial.
M.: MAKS-press, 2014 (in Russian)

[55] E.M. Lavrishcheva, L.E. Karpov, A. N. Tomilin. Approaches to the representation
of scientific knowledge in the Internet science. In Proc. of the XIX all-Russian
scientific conference "Scientific service on the Internet", 2017, pp. 310-326 (in
Russian).

[56] Lavrischeva Ekaterina. (2015). Ontological approach to the formal
specification of the standard life cycle. In Proc. of the 2015 Science and
Information Conference (SAI), 2015, pp. 965-972.

[57] Lavrishcheva E.M. Fundamentals of software engineering. In Proc. of the 5th
International conference on Actual problems of system and software engineering.
CEUR Workshop Proceedings, vol. 1989, 2017, pp. 163-177 (in Russian).

[58] Lavrischeva K.M. Theory and Practice of Software Factories. Cybernetic and
Systems Analyses, vol. 47, no. 6, 2011, pp. 961-972.

[59] Lavrischeva K., Aronov A., Dzyubenko A. Programs Factory — A conception of
Knowledge Representation of Scientific Artifacts From Standpoint of Software
Engineering. Computer and Information Science, Vol. 6, No. 3, 2013, pp. 21-28.

[60] Gorodnyaya L.V. Programming Paradigms: Analysis and comparison. Novosibirsk,
SB RAS, 2017, 223 p. (in Russian).

[61] Lavrischeva E.M. Software Engineering. Programming technology. Moscow,
MIPT, 2016, 52 p. (in Russian).

[62] Scientific and technical bases of informatization of Russia. Ministry of Science and
Technical Policy of the Russian Federation. Moscow, 1992, 151 p. (in Russian).

[63] E.M. Lavrischeva, 1.B. Petrov, Ways of Development of Computer Technologies to
Perspective Nano. In Proc. of the Future Technologies Conference (FTC-2017),
2017, pp.539-547.

[64] Lavrischeva E. M. Assembly line of program factories — the idea of academician V.
M. Glushkov. In V. M. Glushkov: The past is looking to the future. K.:
Academperiodica, 2013, p. 130-143 (in Ukrainian)

https://www.scirp.org/journal/Home.aspx?IssueID=6697#58252

JlaBpumesa E.M., Ilerpenko A.K. Mndopmarnka. CraHoBIeHHE TPOrpaMMHPOBAHHs U TEXHOJIOIHii IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

[65] E.M. Lavrischeva, L.E. Karpov, A.N. Tomilin. Semantic resources for the
development of ontology of scientific and engineering subject areas, In Proc. of the
XVIII all-Russian scientific conference "Scientific service on the Internet”, 2016,
pp. 223-239 (in Russian).

[66] Lavrishcheva E.M. Theoretical foundations of modeling software systems from
objects and components. In Proc. of the International scientific-practical conference
on Theory of active systems (TAS-2016), 2016, pp. 314-325 (in Russian).

[67] Kuliamin. V.V., Lavrishcheva E.M., Mutilin V.S., Petrenko A.K. Verification and
analysis of variable operating systems. Trudy ISP RAN/Proc. of ISP RAS, vol. 28,
issue 6, pp. 48-59 (in Russian). DOI: 10.15514/ISPRAS-2016-28(3)-12

[68] Lavrischeva E. Assembling Paradigms of Programming in Software
Engeneering. Journal of Software Engineering and Applications, vol. 9, no. 6,
2016, pp. 296-317.

[69] Lavrischeva Ekaterina. Ontological Approach to the Formal Specification of the
Standard Life Cycle. In Proc. of the Science and Information Conference, 2015, pp.
965-972.

[70] Lavrischeva E. M., V. S. Mutilin, A. G. Ryzhov. Aspects of modeling of variable
software and operating systems. In Proc. of the XIX all-Russian scientific
conference "Scientific service on the Internet", 2017, pp 327-341 (in Russian).

[71] Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for
software, operating systems and their families. Trudy ISP RAN/Proc. ISP RAS,
vol. 29, issue 5, 2017, pp. 93-110. DOI: 10.15514/ISPRAS- 2017(5).

[72] Lavrischeva E. Scientific Basis of System Programming. Journal of Software
Engineering and Applications, No. 11, pp. 408-434.

[73] E.M. Lavrischeva. The Scientific basis of Software Engineering. International
Journal of Applied and Natural Sciences, vol. 7, issue 5, 2018, pp. 15-32.

[74] Lavrischeva E.M., Pakulin N.V., Ryzhov A.G., Zelenov S.V. Analysis methods for
assessing the reliability of equipment and systems. Application practice methods'.
Trudy ISP RAN/Proc. ISP RAS, vol.30, issue 3, 2018, pp.99-120 (in Russian).
DOI: 10.15514/ISPRAS-2018-30(3)-8

UHdopmaTUuKa: cTaHOBNEHUE NporpaMmmMHOro
obecne4vyeHUss U TEXHONOINMU NPOrpaMMHbIX CUCTEM

L3 E M. Jlaspuwesa <lavr@ispras.ru>
124 4 K ITempenko <petrenko@ispras.ru>
! Hucmumym cucmemnoco npoepammuposanusi um. B.I1. Ueannuxosa PAH,
109004, Poccus, 2. Mocksa, yn. A. Conocenuywina, 0. 25
% Mockosckuii I ocyoapcmeennuvlil ynugepcumem umenu M. B. Jlomonocosa
Mockea, 119991, I'CII-1, Jlenunckue 2opwi, 0. 1
3 Mockosckuii usuKo-mexHu ecKuil UHCMumym,
141700, Mockosckas obracme, 2. /lonconpyounsiii, Uncmumymckuii nep., 9
*HUY “Bricwas wikona sxoHomuku”,
101000, Poccus, . Mockea, yn. Macnuykas, 0. 20

AHHoTaums. PaccmaTpuBaercst craHOBiIeHHE HMH(DOPMATHKH M ACHEKTOB KOMIBIOTEPHOM
HOJICP)KKH CO3/IaHUs IPOTPAaMMHOT0 00ECIIeUeHNs, B TOM YHCIIE CUCTEMHBIX U MPUKIIAIHBIX

25

mailto:lavr@ispras.ru

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

MIPOTpaMMHBIX CHCTEM, Ha4MHasl OT Iepuoja nosBieHus nepBeix OBM 1948-1990-x romos
XX Beka. Paccmorpena nporpamma napopMarnsanuu Poccun 1992 roma u mytH pasBUTHS
(yHOaMEHTaNbHBIX OCHOB COBPEMEHHBIX KOMIIBIOTEPHBIX HAayK WM HHOOPMATHKH U
MHTEIUIEKTyalIn3aluy pa3paboTKU Pa3IHYHbIX BUJIOB IPOTPAMMHBIX CUCTEM.

KiroueBble ci1oBa: nHPOpPMATHKA; KOMIBIOTEPHAs!, CHCTEMHAas U MIPOrpaMMHasi HH)XEHEepHS,
TEXHOJIOTHs; HayKa, MH)OPMALMOHHBIC CHCTEMBI; HHTEIICKTYalbHbIE CHCTEMbI; HHIYCTpPUS,
nuppoBas SIKOHOMHUKA.

DOI: 10.15514/ISPRAS-2018-30(5)-1

Jasn umutnpoBanms: JlaBpumesa E.M., Ilerpenxo A.K. Hudopmarmka. CraHOBICHHE
MIPOrpaMMHUpPOBaHUs M TeXHOsIorui nporpamMusix cucteM. Tpyasl ICII PAH, tom 30, Beim.
5,2018 r., ctp. 7-30. DOI: 10.15514/ISPRAS-2018-30(5)-1

Cnucok nutepartypbl

[1]. @. Baysp, I'. Too3. Uudopmaruka. M.: Mup, 1976, 484 c.

[2]. Tnymkos B.M. OcHoBbl 6e36ymaxHO# nHpopMaruku. M.: Hayka, 1982, 552¢.

[3]. ViBaunukoB B.II., Kopones JI..H., JlroOumckuii 3.3. u ap. PaspaGorka MOCKOBCKOM
mkonel OC OBM. Mexnaynaponssiii cummosuym «Kommnbioteps! B EBpomne. Ilpomuioe,
nacrosiee u Oymymee (Computers in Europe. Past, Present and Future) 5-9 oxrsiGpst
1998. Kues, Ykpauna, 265-270 ctp.

[4]. VBannukoB B.II., Tonrapenko C,B., T'oBopyn H.H. Apxurekrypa OC cynepdOBM.-
Bomnpocsl knbepHetnku. [Ipobnembl co3anus BEICOKONPOU3BoAuTENbHBIX DBM.- Coser
o mpobieme «KubepHeruku», 1984. -M., ctp.117-126.

[5]. Ulypa-Bypa M.P., Jliobumckuit D.3. Tpaucastop ¢ s3eika Anron-60. XKypuan
BBIYUCIMTENFHON MaTeMaTHKH U MaTeMaTHdeckoil puzuku, Tom 4, Ne 1, 1964,

[6]. Babeukuit I''MI., M.M.BexanoBa, EpmoB A.IIl. u ap. Cucrema mporpaMMHUpOBaHHS
AJIb®A.)KypHan BIMHCIUTEIFHON MAaTEMAaTHKU U MaTeMaTHIeckoi ¢usuku, Ne2, 1965,
ctp. 317-325.

[7]. JTaBpumeBa E.M., Bopucenko JL.I., I'pumikeBuy E.W. u ap. Tpaucasrop ¢ s3bika -
AJITAMC nns YBK Iuenp-2. K.: UK AH YCCP, 1970, 186 ctp.

[8]. Tepexos A.H. TIpo6iembl naeHTHGHUKAIIMK U CTPYKTypa KoMmmisatopa ¢ sizbika AJITOJI
68. [Iporpammuposanwue, No 2, 1975, ctp. 61-67.

[9]. A.ILEpmos, M.P.Illypa-Bypa. Cranopienue nporpammupoBanus B CCCP (mepexon ko
BTOPOMY TIOKOJNIEHHIO s3bIKOB M MammH). Hosocmbupck: M3x. BIl CO AH CCCP,
[Mpenpunt Nel3, 1976.

[10]. B.O. CagonoB. SI3biku U MeTOABI TiporpaMmpoBanus st IBM «Dip0pyc», M.: Hayka,
1989, 389 crp.

[11]. E.M. JlaBpumeBa, B.H. I'punienko. COopounoe nporpamMmmupoBanue. HaykoBa aymka,
Kues: 1991, 213 crp.

[12]. B.B. Jlunaes, B.A. TTo3un, A.A. Illtpuk. TexHOJIOTHsI COOPOIHOrO HPOrPAMMUPOBAHHSI.
Mocksa:1992, 271 ctp.

[13]. E.M. JlaBpuiesa, B.H. I'puienko. C6opouHoe nporpammupoBanue. OCHOBBI HHIYCTPHH
cucrem, Kues.: 2009, 371 ctp.

[14]. Jlunaes B.B. Ilporeccsl W CTaHAApPTHl KM3HCHHOTO LHMKJIA CIOXHBIX HPOrPAMMHBIX
cpencts. CripaBounuk. Mocksa, Cunrer. 2011, 260 ctp.

26

JlaBpumesa E.M., Iletperko A.K. Undopmarnka. CTaHOBICHHE IPOrpPaMMHPOBAHHS U TEXHOJIOTHIT IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

[15]. JlaBpumesa E.M. PasButue teopuu mnporpammupoBanuss B CCCP. Hcropus u
coBpeMeHHEIe Teopun. Sorucom-17. Passurue BT B Poccun u crpanax 6sBiiero CCCP,

2017, ctp. 162-177.

[16]. Kaxpo M. HU., Kames A. II, Teiyry 3. X. UWHCTpyMeHTaNbHasi CHCTEMa

nporpammuposanust EC 9BM (ITPU3). M.: ®unanch U ctatuctuka, 1981.
[17]. Teiyry O. X. KonuentyansHoe npoektupoBanue. M.: Hayka: 1984, 287 ctp.

[18]. Pempko B.H. Kommnosuimu mporpaMM W KOMIIO3UIHOHHOE IPOrPaMMHPOBaHHUE.

[Mporpammuposanue, Ne 5, 1978, crp. 17-26.

[19]. Hukuruenko H.C., llkmnpnsik C.C. MareMarideckas JOTHKa U TEOpHs alroputMoB. K.,

WIIL] Kuescknit yausepcurer, 2008, 528 ctp.

[20]. JTaBpuiueBa E.M., Hukuruenko H.C., Omenbuyk JL.II. TexHOMOrus NMporpaMMHUpPOBaHHs

nHpopmarmonnsix cucrem. K.: BIITH KHY, 2010, 351 ctp.

[21]. Cucrembr kommbroTepHOi anre6psr cemeiictBa AHAJIUTHUK, Komektus aBropos. K.:

HAHY UIIMMMU, 2010, 762 ctp.

[22]. Typuun B. ®. AnropurMudeckuii 36k pekypcuBHbIX (yrkmuii (PEDOAJI). M.: UTIM AH

CCCP, 1968.

[23]. CmuproB B.K. AmmaparHas peanusaumst sizbika Pedan B MIIM um.M.B.Kenasima.

[penpunt UTIM um. M.B.Kenapima, Ne 99, 2003, 21 ctp.

[24]. ®ykcman A.JI. TeXHOIOTHYECKHE AacCIEKThl CO3JaHWS MPOrPaMMHBIX CHCTeM. M.:

Crarucruka, 1979, 183 ctp.
[25]. AcnekrHO-OpHeHTHpOBaHHOE porpammuposanune. Aspect) (http://aspect.org).

[26]. Kanutonosa FO.B., JlermueBckuit A.A. Meromsl H CpelCTBA anreOpanyecKoro

nporpamMmupoBaHus. Kubepreruka, Ne 3, 1993, ctp. 7-12.

[27]. Letichevsky A., Gilbert D. A general theory of action languages. Cybernetics and Systems

Analysis, vol. 34, no. 1, 1998, pp. 12-30 . DOI: 10.1007/BF02911258.

[28]. Tpauxtenrepi 3.A. B3aumoieiicTBUE areHTOB B MHOTOAreHTHBIX Cpenax. ABTOMaTHKa W

Tenemexanuka, Ne 8, 1998, ctp.3-52.
[29]. Tpaxrenrepny 3.A. KoMmbloTepHBIE METOABI PEATH3AUHA IKOHOMHUYECKHX

WHPOPMAIOHHBIX yTpaBieHYeckux pemenuidi. Tom 1. Meroner u cpencrea. Tom 2

Peamuzanus pemenmii. M.:2009.

[30]. EcruraeeB A.A. Ilpumenenue teopuu rpadoB B mporpammupoBanue. Mocksa.-Hayka,

1985, 351ctp.
[31]. Kpucrodunec H. Teopus rpados. Anropur™mudeckuii noaxoa. M.: Mup. 1978.

[32]. Pohl K., Bockle G., van der Linden F. J. Software Product Line Engineering: Foundations,

Principles and Techniques. Springer-Verlag, 2005. DOI: 10.1007/3-540-28901-1.

[33]. Lavrischeva E.M. Theory and Practice of Software Factories. Cybernetic and Systems

Analyses, vol.47, No.6, 2011, pp.961-972.

[34]. J.Hebeler, M.Fisher, R.Blace, A.Perez-Lopez. Semantic Web Programming. Wiley

Publiching.Inc., 2008, 565 p.

[35]. JlaBpumiesa E.M. [IporpaMMHas MH)XEHEPUS M TEXHOJIOTHS IPOrPAMMHUPOBAHMS CIIOMKHBIX

cucreM. Mocksa, FOpaiir, 2018. 432 ctp.

[36]. E.M. JlaBpuiueBa. Teopuss OOBEKTHO-KOMIIOHEHTHOTO MOJEIMPOBAHUS MPOrPAMMHBIX

cucreM. [Ipenpunt UCIT PAH Ne29, 2016, 52 ctp. ISBN 978-5-91474-025-9

[37]. JTaBpuiueBa E.M., Tlerpenko A.K. MozenupoBaHue ceMEiCTB MPOTPaMMHBIX CHCTEM.
Tpyast UCIT PAH, tom 28, Bemt. 6, 2016, crp. 49-64. DOI: 10.15514/ISPRAS-2016-

28(6)-4
[38]. Kartaunor texuonoruii ICII PAH. Mockga, 2017, 34ctp.

https://www.researchgate.net/journal/1060-0396_Cybernetics_and_Systems_Analysis
https://www.researchgate.net/journal/1060-0396_Cybernetics_and_Systems_Analysis

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

[39]

[40].
[41].
[42].
[43].
[44].
[45].
[46].
[47].
[48].
[49].
[50].
[51].
[52].

[53].

[54].

[55].

[56].

[57].

[58].

[59].

[60]

. EII. BemuxoB. MHdopmatika — akTyalbHOE HaNpaBICHHE COBETCKOH Haykwio. B c0.

"Kubepueruka. Cranosnenne nadopmaruku", M.:Hayka, 1986.

Hopomnunbin A.A. Wadpopmatuka: mpeamer u 3amaud. B c6. "Kubepneruka.

Cranosienue nadopmaruku", M.:Hayxka, 1986.

B.C. Muxanesnu u ap. Mudopmatuka — HOBas 00nacTb HayKH M TNpakTUku B cO.

"Kubepnernka. CtanoBnenue nadpopmaruku", M.:Hayxka, 1986.

Huneiiko A., Huneiiko T. Becenst 06 uabOopMaTuke.-MockBa. Monoaas I'sapaus, 1989,

287 crp.

B.M. I'mymxoB. KuGepnermka. Brrmcmurensnas texnuka. Wudopmaruka. Kues,

HayxoBa qymka, 1990..

B.M. I'mymkoB «OcHoBEI 6e30ymakHO# nHbOpMaTnkm». M.: Hayka, 1982, 552 ctp.

Curricula Recommendations. https://www.acm.org/education/curricula-recommendations.

E.M. Lavrischeva. Classification of software engineering disciplines. Cybernetics and

Systems Analysis, vol. 44, issue 6, 2008, pp. 791-796.

JlaBpumesa E.M. IlporpamMmuas wuHxeHepus. Y4UeOHO-METOAWYECKOE mocodue B 3-X

gactax. M.: MOTH, 2016.

Uepneuxku K., Aiizenexkep VY. Ilopoxnaromee mnporpaMMmupoBaHue. Mertonsl,

HHCTPYMEHTBHI, TpuMeHeHue. M3narensckuit nom «Turepy, 2005, 730 ctp.

X. ¥Yano, T. Kosma, T. Oxamoro, b. Manybou, M. Hcunsyka. IlpeacraBnenue u

Ucmojb30oBanue 3HaHuil. Mocksa, Mup,1987, 220 ctp.

I".U. TlocnienoB. McKycCTBEHHBIH HHTEIEKT — HOBast HHPOPMAIIMOHHAS TeXHOJOorHA B 6.

"Kubepuernka. CranoBnenne nHdpopmaruku', M.:Hayxka, 1986.

ISO/IEC 2382-1:1993, Information technology — Vocabulary — Part 1: Fundamental

terms.

T.A.T'aBpunoBa u nap. ba3wel 3HaHWII MHTEIIEKTYaJbHBIX CHUCTEM. YUeOHHK JJIs BY3OB.

CII6.: Murep, 2000.

Lavrischeva E.M. Ontology of Domains. Ontological Description Software Engineering

Domain — The Standard Life Cycle. Journal of Software Engineering and Applications,

vol. 8 No. 7, 2015.

JIunaes B.B. [IporpaMmHas MHXEHEPHs CIOXKHBIX 3aKa3HBIX MPOrPaMMHBIX MPOIYKTOB.

VYuebnoe nmocobue. M.: MAKC-ITPECC, 2014.

E.M. JlaBpumesa, JI.LE. Kapnos, A.H. Tomunun. [Togxonsl K MpeacTaBiICHUI0 HAYYHBIX

3Hannit B MHreprer Hayke. Tpynsl. XIX Bceepoccuiickuii Hay4HOH KOH(EpEeHIMN

«Hayunsrii cepsuc B cetn Mutepuer», 2017, ctp. 310-326.

Lavrischeva Ekaterina. (2015). Ontological approach to the formal specification of the

standard life cycle. In Proc. of the 2015 Science and Information Conference (SAIl), 2015,

pp. 965-972.

JlaBpumeBa E.M. ®yHnamMeHTalbHBIE OCHOBHI MPOTPaMMHON WHXeHepuH. Tpymel 5-

MEXTyHapOITHON KOH(EpeHIMH «AKTyaJbHBIE MPOOJIEMBI CHCTEMHOH M IIPOTrpaMMHOIT

umxeHepuy, 2017, ctp.163-177.

Lavrischeva K.M. Theory and Practice of Software Factories. Cybernetic and Systems

Analyses, vol. 47, no. 6, 2011, pp. 961-972.

Lavrischeva K., Aronov A., Dzyubenko A. Programs Factory — A conception of

Knowledge Representation of Scientific Artifacts From Standpoint of Software

Engineering. Computer and Information Science, Vol. 6, No. 3, 2013, pp. 21-28.

. Toponuss JI.B. IapagurMer nporpamMmupoBanus: AHanmu3 U cpaBHeHue. HoBocuOupck:
U3zn-Bo CO PAH, 2017 r.,232 ¢

28

https://www.ozon.ru/person/28656425/
https://www.ozon.ru/person/28656426/
https://www.ozon.ru/person/28656427/
https://www.ozon.ru/person/28656429/
https://www.ozon.ru/person/28656431/
https://www.scirp.org/journal/Home.aspx?IssueID=6697#58252

JlaBpumesa E.M., Iletperko A.K. Undopmarnka. CTaHOBICHHE IPOrpPaMMHPOBAHHS U TEXHOJIOTHIT IIPOrpaMMHBIX
cucreM. Tpyowt UCIT PAH, Tom 30, Beim. 5, 2018 1., ctp. 7-30

[61].
[62].

[63].

[64].

[65].

[66].

[67].

[68].
[69].

[70].

[71].

[72].
[73].

[74].

JlaBpumesa E.M. IIporpammuas unxenepus. TexHonorus nmporpamMmmupoBanusa. Mocksa,
M®TH, 2016.

Hayuno-TexHnyeckue ocHOBBI HHpopMaTuzanuu Poccun. MuH. Hayku, BbIcIelt IKOIB 1
TexHu4eckoi nonutuku PO. Mocksa, 1992, 151 ctp.

E.M. Lavrischeva, 1.B. Petrov. Ways of Development of Computer Technologies to
Perspective Nano. In Proc. of the Future Technologies Conference (FTC-2017), 2017, pp.
539-547.

JlaBpumeBa E.M. COopounslii koHBedep (aOpuk IporpaMM — HIes aKaaeMHKa
B.M.I'mymkoBa. B xunre «B.M.I'mymikos: Iponmioe ycrpemienHoe B Oymaymee». K.
Axanemnepuonunka, 2013, ctp. 130—13.

JlaBpumesa E.M., Kapnos JLE., Tommmun A.H. CemaHTHueckue pecypcsl Uit
Ppa3paboOTKH OHTOJIOTHMH HAay4YHOH M MHXXEHEpHOW mpeameTHbIX obmactedt. Tpyner. XVIII
Bcepoccuiickuii HayuHO# KoH(pepeHunu «Haydansrit cepsuc B cetu UaTepHETY», 2016, CTp.
223-239.

JlaBpumeBa E.M. Teopernueckue OCHOBBI MOJAEIMPOBAHUS MPOIPAMMHBIX CHUCTEM W3
O0BEKTOB M KOMIOHEHTOB. Tpyabl MexIayHapomHOil HaydHO-NIPaKTHYECKOi
koH(epenmn «Teopust akTHBHBIX cuctem», 2016, ctp. 314-325.

Kynsimun B.B., JlaBpumesa E.M., Mytnmun B.C., Ilerpenko A K. Bepuduxamus u
aHaM3 BaprabelbHbBIX onepaimoHHbx cucteM. Tpyael UCIT PAH, 2016, Tom 28, B 6,
crp. 48-59. DOI: 10.15514/ISPRAS-2016-28(3)-12

Lavrischeva E. Assembling Paradigms of Programming in Software Engeneering. Journal
of Software Engineering and Applications, vol. 9, no. 6, 2016, pp. 296-317.

Lavrischeva Ekaterina. Ontological Approach to the Formal Specification of the Standard
Life Cycle. In Proc. of the Science and Information Conference, 2015, pp. 965-972.

E.M. JlaBpuiuesa, B.C. Mytunus, A.I'. Ppix0B. ACIEKThl MOJCIHPOBAHUS BapHaOeIbHbIX
MPOTPaMMHBEIX W ONepalnoHHBIX cucteM. Tpyael. XIX Bceepoccuiickuii HayqHO#M
koH(epenn «Hayunsrit cepsuc B cetn utepuer», 2017, ctp. 327-341.

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software,
operating systems and their families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5,
2017, pp. 93-110, DOI: 10.15514/ISPRAS- 2017(5).

Lavrischeva E. Scientific Basis of System Programming. Journal of Software Engineering
and Applications, No. 11, pp. 408-434.

E.M. Lavrischeva. The Scientific basis of Software Engineering. International Journal of
Applied and Natural Sciences, vol. 7, issue 5, 2018, pp. 15-32.

JlaBpumena E.M., Ilakynua H.B., Prokos A.I'., 3enenos C.B. AHanu3 MeTOJOB OLIEHKH
HaJeKHOCTH 00OpynoBaHUS M cucTeM. [IpakThka nmpuMeHeHust meronos. Tpymer MCIT
PAH, Tom.30, BbIm. 3, 2018, ctp. 99-120. DOI: 10.15514/ISPRAS-2018-30(3)-8.

29

Lavrischeva E.M. Petrenko A.K. Informatics. Formation of computer software and technologies of software systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 7-30

30

MeToa aHanu3a aTtak nOBTOPHOIO
ncnonb3oBaHUA KOAa*

' A.B. Buwnsxos <vishnya@ispras.ru>
L A.P. Hypmyxamemos <oleshka@ispras.ru>
Y111 ®. Kypmaneanees <kursh@ispras.ru=>
1234 C.C. TIaiicapsmn <ssg@ispras.ru>
1HHcmumym cucmemnozo npoepammuposanusi um. B.11. Heannuxosa PAH,
109004, Poccus, . Mockea, yn. A. Conxcenuysvina, 0. 25.
22119991 I'CII-1 Mocxea, Jlenunckue 2opvl, MI'Y umenu M.B. Jlomonocosa, 2-ii
yuebnwlii kopnyc, ghaxynomem BMK
® Mockosckuii @u3sUKO-MexXHUYeCKUll UHCMUmym,
141700, Mockosckas obnacmes, . [oneonpyousiti, Hncmumymcxuii nep., 9
* Hayuonanvhuiii uccredosamensckuti ynusepcumen « Bolcuias wkona 5SKOHOMUKIY
101000, Poccus, 2. Mockea, yn. Macuuykas, 0. 20

Annotanusi. OOecriedeHHne OE30MACHOCTH TIPOTPAMMHOTO OOECIeYeHUs SBISETCA Ha
CeTOMHIIIHUN [eHb OJHOW W3 TEPBOCTENEHHBIX 3amad. COom B paboTe MpOrpaMMHOTO
obecriedeHns1 MOTYT NPUBECTH K CEPHE3HBIM MOCIEICTBUM, a 3T0HAMEPEHHAs! SKCIUTyaTalus
YSI3BUMOCTEH MOJKET NMPUYUHUTH KOJOCCAIBHBIA ymiep0. KpymHble kopropauuy yaensior
oco0oe BHHMaHWE aHAIU3y WHIMACHTOB HWH(OPMAIMOHHON 0e30macHOCTH. ATaku
MOBTOPHOTO MCIOJB30BaHMUS KOJa, OCHOBAaHHbIE HAa BO3BPaTHO-OPUEHTHUPOBAHHOM
nporpammupoBainu (ROP), mproOpeTaroT BCio GONBIIYIO MOMYIAPHOCT C KAKIABIM FOJIOM H
MOTYT OBITH NMPUMEHEHBI JaXe B YCIOBHAX pabOTHI 3aIUTHBIX MEXAaHH3MOB COBPEMEHHBIX
ONICpallMOHHBIX CcHUCTeM. B oTiamdame oT 0OBYHOTO INEe/UI-KOJa, TA€ HWHCTPYKIHUU
pa3MemaloTcs IociefoBaTebHO B maMATH, ROP-memouka cOCTOMT W3 MHOXKECTBa
MaJICHPKUX OJIOKOB HMHCTPYKIMH (TamKEeTOB) M HCHONB3YyeT CTEK JUIS CBS3BIBAHHUS STHX
OmokoB, uro 3arpyaHser aHanmn3 ROP-skcmmoiitoB. Llenmpto maHHON pabOTHI sIBISETCS
ynpouieHue o0paTHoil uxwxeHepun ROP-skcmiolitoB. B 370l crathe mpemaraercss MeTon
aHajgM3a aTak IIOBTOPHOTO HCIOJIb30BAaHUS KOJA, KOTOPBIA IO3BOJSIET BOCCTAHOBHUTH
ceMaHTUKy ROP-merouku: pa3OMTh LENOYKY Ha TaDKEThl, ONPENeIUTh CEMaHTHKY
OTACJIbHBIX T'a/IPKETOB U BOCCTAHOBUTD IPOTOTUIIBI BBISBAHHBIX B XOA€ BBINMOJTHCHUA LIEIOYKH
(GyHKIMIT W CHCTEMHBIX BBI30BOB M 3HAUeHHMS HMX apryMmentoB. CeMaHTHKa TraJpkeTa
OTIPEMIENSETCS] €T0 MPHHAUISKHOCTRIO MAapaMeTPH30BaHHBIM THIaM. Kakaeril Tun 3amaercs
nocTyciaoBueM (OyJeBBIM MpEIUKATOM), KOTOPOE IOJDKHO OBITH BCErJa MCTHHHO IIOCIE
BBINIOJIHEHUS Tramkera. MeTox ObUI peann3oBaH B BUAE NPOTPaMMHOTO HWHCTPYMEHTa U
anpoOupoBaH Ha peanbHbIX ROP-3kcmioiiTax, HaliIEeHHBIX B UHTEPHETE.

* PaGora noayepsxana rpantom POOU Ne 17-01-00600
31

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

KiroueBbie cJI0oBa: KOMITBIOTEpHas O€30MAaCHOCTh; OWHApPHBIN aHaIW3; YSI3BHMOCTH,
BO3BPaTHO-OPUCHTUPOBaHHOE MporpammupoBanne; ROP; kiaccudukanus ramkeroB; aTaka
MOBTOPHOTO HCIOJIB30BAHUS KOA; MHIUACHT HHPOPMAIIMOHHONW 6€30IacCHOCTH

DOI: 10.15514/ISPRAS-2018-30(5)-2

Jas unurupoBanusi: Bummnsakos A.B, Hypmyxameros A.P., Kypwmanranees 111.0.,
Taticapsu C.C. Meton ananu3a aTak MOBTOPHOTO Hcroib3oBaHua koxa. Tpyasr UCIT PAH,
tom 30, Beim. 5, 2018 ., ctp. 31-54. DOI: 10.15514/ISPRAS-2018-30(5)-2

1. BeedeHue

Obecnieuenne 0e30mMacHOCTH NPOTpaMMHOTO obecriedeHHs — ABISETCS Ha
CETOIHAIIHUKA AE€Hb OJHON M3 MEPBOCTENECHHBIX 3amad. IIporpaMMHBIE MPOIYKTHI
NPUMEHSIOTCS B IIOBCEAHEBHO OKPYXAIOIMIMX HAc BeIax: KOMIBIOTEPAX,
cMapTdOoHaAX, aBTOMOOHIIIX, OaHKOMaTax, 00BEKTaX TOPOACKON MH(PPaCTPYKTYpHL,
MEIUIUHCKOM O0OpYIOBaHHU JKH3HEOOECHeUeHNUsT U TEXHOJIOTHSX «HHTEpPHETa
Bemieit». CObom B paboTe mNpPOrpaMMHOTO OOeCHeueHHs MOTYT MPHUBECTH K
CepbE3HBIM IOCIEACTBHUSIM: JCHE)KHBIM YOBITKaM, Jerpajaldd CpeicCTB
KOMMYHUKAIIUU, 3aJiepKKe B pPa0dOTE€ OSKCTPEHHBIX CIYXO, aBapusiM U Jaxe
NPUYMHEHUIO Bpela 370pPOBbIO YellOBEKa. A 3JIOHAaMEpeHHas JKCILTyaTalus
ySI3BUMOCTEM MOXKET NPUYMHUTH KoJoccainpHbI ymiep6. Ilo maHHBIM
HaunonaneHoro wuHcrutyra crapgaptoB u TexHoioruit CIIA exeronHo
nyONMKYIOTCS ThICSYM omucaHuii HOBeIx ysi3BuMocteit CVE (puc. 1) [1,2].
KpynHble kopmopauuu ynenstoT oco0oe BHHUMAaHHE aHaInW3y HWHIUICHTOB
UHPOPMATMOHHON 0€30T1aCHOCTH.

1.5 —

Nl (=N
o e
))
[a] [a\]

Puc. 1. Konuuecmeo (decsimxu moicsaw) noguix yazeumocmeii (CVE) 6 200
Fig. 1. Tens of thousands of vulnerabilities (CVE) by year

1.25
1
0.75
0.5
0.25

ml]

S

o O
o O
A AN

2007
2008
2010
2011
2014
2015
2016

2017

2002 ||
2003 ||

2004

2005
2012
2013

1999 []

Jnst sKcmyataiuy ys3BUMOCTEH B YCJIOBHUSIX Pa0OThl 3alMTHBIX MEXaHH3MOB
COBPEMEHHBIX OINEPAI[MOHHBIX CHUCTEM YacTO MPUMEHSETCS TEXHHUKA BO3BPATHO-
opueHTHUpoBaHHOrOo mporpammupoBanus (ROP). Dto araka TOBTOpPHOTO

32

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

UCIIONB30BaHUSA KOJA, IO3BONSIONAs OOXOAWTh 3aIIMTHBIH ~ MEXaHHU3M,
3aIpeINaoIi PETHOHY NaMsTH OBITh OJHOBPEMEHHO JOCTYITHBIM Ha 3aliCh H
ucnionaenne (DEP), u coBpeMeHHBIC pealM3aliy pPaHAOMH3AINAN pPa3MEIICHUSI
agpecHoro mpoctpanctBa (ASLR), KOTOpble OCTaBIAIOT YacTh agpecHOTO
NPOCTPAHCTBa MPOrpaMMbl HEpaHIOMHU3UpOBaHHOW. B wactHocTH, B Linux aapec
3arpy3KH KoJa MpOrpaMMbl 4YacTO OCTaeTcs IIOCTOSHHBIM, a HEKOTOpbIe
JuHaMudeckue oudanorekn Windows 3arpykarorcs 1o (pUKCHPOBAaHHBIM apecam.
370yMBIIIJICHHUK ~ MCHOJB3YeT KYCOYKM KOJa W3 HEpaHJOMH3HPOBAaHHOTO
a/IpecHOT0 MPOCTPAHCTBAa NPOTPaMMBbI, KOTOPbIE HAa3bIBAIOTCA rajykeramu. Kaxmplid
Ta/pKET BBINOJHIET HEKOTOpPBIC BBIYMCICHUS (HANpHMeEp, CKJIAABIBACT 3HAYCHHSA
IBYX PETHCTPOB) M II€pElacT YIpaBICHHE CIEAYIOMEMY TaKeTy. [amkeTsl
CBSI3BIBAIOTCS B IIEMOYKY ITOCIIEIOBATEIBHO BBITOJIHAEMBIX KyCOUKOB Koja. Takum
00pa3oM, C TIOMOIIBIO [EMOYKH TaKETOB MOXKHO BBIOJHUTh HEKOTOPHIE
BPEIOHOCHBIE ICHCTBUSL.

lamker — 53TO MOCHEAOBATENBFHOCTh WHCTPYKIMH, KOTOpas 3aKaHUYMBACTCS
MHCTPYKIWEH mepenaun ynpasieHus (ret). B oramume or 0oOBMHON mporpaMmsl,
uHCTpykuu ROP-Lenoukn He pa3MeInaroTcsi IMOCie[OBaTelbHO B MaMsTH, a
BMECTO 3TOTO Pa3OHMBAIOTCS Ha MAJICHBKHE TaJKEThI, CBA3aHHBIC HHCTPYKIHIMH,
KOTOpBIC TMONY4YaroT ajpec CIEIYyIOUIEro TraJpkeTa cO CTeKa. Takoe CTEeKoBOE
CBA3BIBAHHME MHCTPYKLUH 3aTpyAHseT aHanu3 ROP-uenouek.

OKCIUIONUT — 3TO MporpaMMa, BXOJHBIE JaHHBIC WM IOCJIEI0BATEIHbHOCTh KOMaHI,
UCTIONB3YIOIINE YSI3BUMOCTb, YTOOBI JOOWTHCA HENPEAyCMOTPEHHOTO MOBEICHHMS
cucreMbl. llenpro naHHOWH paboOTHI SBISETCS YNPOIIEHWE OOpaTHONH HHXEHEPUH
ROP-3kcIunoiToB.

B a0l craThe mpeuaraeTcs MeETOJ aHAJIM3a aTak IIOBTOPHOTO HCIIOJIB30BAHUS
KOJla, KOTOPBIH MO3BOJIIET BOCCTAaHOBUTH ceMaHTHKy ROP-menoukn: pa3outsb
IEeMOYKy Ha TaJUKEThl, ONPENeNIUTh CEMaHTHKy OTACNBHBIX TaPKETOB |
BOCCTAaHOBUTH BBI3BAaHHBIE B XOJIC BBHIIOJHEHHs HETOYKH (YHKIUU W CHCTEMHBIC
BBI30BBI M 3HAYCHHUS HX apPTIYMEHTOB.

Cratest opraHuzoBaHa ciefyrommM oOpazoM. Bo BTopoM paszene npuBOAMTCS
0030p aTak W 3alIMTHBIX MEXaHW3MOB, IIOCIHYXXMBIIMX HPEANOCBUIKAMH K
nosieiieHnto ROP (monpasnen 2.5). B Tperbem paszene npoBomutcs 0030p
CyIIecTBYIOIMX MeTonoB aHanmu3a ROP-arak. B wetBepTom pasmene ommceiBaeTcs
Npe/IoKEHHBI METO/I aHallM3a aTak MOBTOPHOTO HMCHOJBb30BaHUs Kojaa. B msTom
pa3gene paccMaTpHWBAIOTCS JETAIM pealu3alid IpeiaraéMoro MeToja.
Pe3ynbTaThl MPakTHUECKOTO MPUMEHEHHUS TIPUBOJISTCS B IIECTOM pa3jede.

2. 0630p amak u 3aWUMHbIX MexaHU3MO8

B atoMm pazmene mpuBomMTCS 0030p arak Ha TepernosiHeHne Oydepa Ha cTeke.
OnuChIBAIOTCS 3ALIUTHBIE MEXAHW3Mbl OMNEPALMOHHON CHCTEMBI: OrpaHUYCHHE
ucnonasieMbix obOmactelt (DEP) w pangoMusanmus pa3MmemieHdss aapecHOTo
npoctpanctBa (ASLR). B pasmene 2.5 pmaercs ompenmeneHHe BO3BpPaTHO-
OPUCHTHUPOBAHHOTO INPOrPaMMHPOBAHUS — METOJA O3KCIUIyaTallud YSI3BUMOCTH

33

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

nepenoHeHus Oydepa Ha cTeke, mo3Bojstoniero obortu DEP u coBpemennbie
peamm3anun ASLR.

2.1 YasBuMocTb nepenonHeHua 6ycepa Ha cTeke

Ya3BUMOCTh NepernoyHeHnsT Oy(epa Ha CTEKEe BO3HHKAET, KOTZa pa3Mep AaHHBIX,
3alKMCHIBAEMBIX B Oydep Ha CTeKe, MpeBBIMIaeT pasmep storo Oydepa [3].
Hanpuwmep, B npuBeneHHON Hike mporpamme Ha Cu ys3BuMmas ¢yHKnms vul ze
MpOBEpsIeT [UTMHY cpoku Str, 3ammceiBaeMoil B Oydep Ha cTeke (UKCHPOBAHHOTO
pasmepa buf. Ecim nnmuHa mepBoro aprymeHta KOMaHAHOW cTpoku argv[1l]
OKaxeTcs OompImeli wiam paBHOHW pasmepy Oydepa buf, To mnpomsoiiger
nepenoiHeHue 0ydepa Ha creke.
void vul(char *str) {
char buf[512];
strcpy(buf, str);

}

int main(int argc, char *argv[]) {
vul(argv[1l]);
return 0;

}

Ha pucynke 2a moka3aH ctekoBbIid ppeiim Gyrkmm vul mo nepenonnenus. Ctek B
apXUTEKType X86 pacTeT OT OONBIINX aJAPECOB K MECHBIIMM (Ha PUCYHKE — CBEPXY
BHH3). ApryMeHThl (YHKIHH MOOYEPETHO KIIAXyTcs Ha CTEK crpaBa HaneBo. [lpu
BBI30BE (DYHKIMH ajpec BO3BpaTa KIAAETCs Ha CTEK, Iocie 4ero QyHKIUS MOXKET
COXpaHHTh CTapoe 3HAYCHHE perucTpa €bp ¥ BBIACIUTH HA CTEKE NaMATh JUIS
JIOKaJBhHBIX MEPEeMEHHBIX, B HameM ciydae — A Oydepa buf. Jlanasie B Oydep
3aIMCHIBAIOTCS B TIOPSAKE BO3pAcTaHMsi aJpecoB (HA PHUCYHKE — CHH3Y BBEpX).
Ilepenonnenne Oydepa MPUBOAMUT K TEpE3aNUCU SYEEK BBIIIE MO CTEKY, B TOM
4uCIie afpeca BO3Bpara, OCIe Yero IMOYTU BCeTAa CliefyeT aBapuilHOe 3aBeplIeHHe
HNPOTPaMMBI.

OkcrutyaTanusl ysI3BUMOCTH TEePEToHeHHs Oydepa Ha CTeKe MO3BOJISET BBITOJIHSITH
NpOU3BOJIBHBIA ~ KOjA. PaccMOTpuUM — cuTyauuio, Korjua 3JI0YMBIIUICHHUK
KOHTPOJIMPYET 3HAueHHEe IEePBOro apryMmeHTa KOMaHIHOW cTpoku argv[l], a
CJIe/IOBATENIbHO, KOHTPOJMPYET 3HA4eHHs, 3amuchiBaeMbie B Oydep buf. B Takom
cilydae 3JOYMBIIIJICHHHMK MOXET JOOWThCS Iepe3alncH ajpeca BO3Bpara
yKazaTeleM Ha pa3MeLICHHBI Ha CTeKe BPEHNOHOCHBIH Kon (puc. 2b). Takum
obpa3zoM, 1mocne Bo3Bpata U3 (yHKuMM Vul ympaBieHHe TnepenacTcs Ha
c(OPMHUPOBAHHBIA 3JIOYMBIIUICHHUKOM KojA. OOBIYHO B KayecTBE TaKOro KOJa
UCIIOJNIb3YETCsl KOJI, MPUBOJSIIIMKA K BBI30BY KOMaHJHOWH 00OJOYKH ONEparioHHON
CHCTEMBI, KOTOpBII Ha3bIBaeTCs MIEI-KOAOM. YTOObI H30eKaTh HEraTHBHBIX
MOCJIC/ICTBUH OT IepenosHeHus: Oydepa Ha CTeKe, IOSBHINCH pPas3IM4HbIC
3aIUTHbIE MEXaHU3MBI.

34

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

2.2 OrpaHuyeHue ncnonHsemoix obnacren (DEP)

Orpannuenne wucnonHseMbix obmacteit (DEP) — sammTHBIE — MexaHH3M
OTIePAalIMOHHON CHCTEMBI, 3allPEHIAONINi MCIIONHEHHE KoJa M3 o0JacTell mamsTH,
IIOMEYCHHBIX KaK «JaHHBIE». [lOmMBITKa WCHOMHEHWS KoIa M3 TOMEYCHHBIX
oOnacTeil BBI3BIBACT HWCKIIIOYEHHE W BIICUET 3a COOOH aBapHifHOE 3aBepIICHHE
mporpaMmbl. B dWacTHOCTH, CTEK W Ky4da CTAHOBSTCS HEIOCTYIHBIMH JUIS
BBINIOJIHEHUSI, YTO TPENOTBpAIIAaeT BHINOJIHEHHE pa3MEMIEHHOTO0 Ha HHUX
BPEJIOHOCHOTO KoJa. MeXaHu3M YCNEUIHO TPUMEHSIETCS B ONEPAlMOHHBIX
cucremax Windows, Linux u mp.

"/bin/sh"

BpenonocHbrit Ko |:
— Ykazaresb command

VYkazaresb str

Crapoe 3matemnue ebp

HaHpaBIIeHI/Ie pocTa aJapecoB

Bydep buf

(a) Crekosorit dpeitm bynkiuu (b) Pasmemenne spesonoctnoro koga (c¢) Araxka Bosspara B GHO/IMOTEKY
vul JI0 HepenoHeHus Ha cTeKe

Puc. 2. Cmexosvii ppeiim ghynxyuu vul u cnocobul sxcniyamayuu ysizgumocmu
nepenonnenus oygepa buf na cmexe
Fig. 2. A stack frame and different buffer overflow exploitation techniques

2.3 Ataka Bo3BpaTa B 6Mbnumoteky

s o6xoma DEP ncnone3yercs ataka Bo3BpaTa B OMOIHOTEKY. ATaka 3aKIIF09aeTCs
B TOAMEHE ajapeca BO3BpaTa aapecoM HEKOTOpoH OmOImoTedHOH (yHKIMH,
Hanpumep, QyHKINH system nu3 oubmmorekn 1libc.

Ha puc. 2¢c moka3aHO COCTOSIHHE CTEKa MOCIe IEeperoNHeHus. AIpec BO3BpaTa
nepesanucan aapecom ¢Gyukiuu system(const char *command). Beire

35

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

JIOKHUT TPOU3BOJBHBIN agpec Bo3Bpara M3 (QyHKUIMH system M ee eJUHCTBEHHbIH
apryMeHT command, KOTOpbIA SBJISETCS yKa3aTeleM Ha HyJb-TePMUHHPOBAHHYIO
cTpoky "/bin/sh", pasMerieHHyro cienoM 3a ykazareiaeMm. TakuMm o0pa3om, mocie
Bo3Bpata W3 GyHKmmH vul BbeBoBeTcs ~ OwOmmoTedHas — (QYHKIHSA
system("/bin/sh™), xoropas B cBOIO ouepe/ib BHI30BET KOMaHAHYIO O0OJIOYKY
OTIEPAIIMOHHON CHCTEMBI.

2.4 PaHoomunsaums pasMelleHUuss afpecHoro npocTpaHcTBa
(ASLR)

Pargommzamuu pasmemeHus anpecHoro mpoctpaHctBa (ASLR) — 3amuTHBIH
MEXaHN3M OIEPallMOHHOM CHCTEMbI, MO3BOJSIONMA pa3MeIaTbh KIIOUYEBEIC
3JIeMeHTHI Tporecca (00pa3 mporpaMMBl, CTEK, Kyda, THHAMHICCKAE OMOIMOTEKH)
0 PAa3IMYHBIM aJpecaM BO BPeMs 3arpy3Kd HUCIOIHAEMOro ¢aiina. JlaHHas 3amuTa
3aTpyIHSIET NMPOBEICHNUE aTaKy BO3BpaTa B OMONMOTEKyY, T.K. ajpec OMONMMoTeuHOM
(YHKIIMM HEW3BECTCH OO 3arpy3KH NPOrpaMMbl M OTJIMYACTCS UL KaXKIOTO
3arycka.

Crenyer OTMETUTD, YTO PAHAOMM3AIMSA aAPECOB UCIIONHIEMBIX CEKIHH POrPaMMBI
win Oubmuoreku Tpedyer, yTOOBl OHU OBLIM CKOMITMJIMPOBAHBI B IMO3HIIMOHHO-
HE3aBHUCHMBII KOJI, YTO HE BCceraa BhinojHsercs. Tak B Linux ajpec 3arpy3ku konua
MporpaMMbl 4acTo OCTaecTCA IIOCTOSIHHBIM, a HEKOTOPELIC JUHAMHUYCCKHEC
oubmmorekn Windows 3arpyxarorcst 10 (UKCHPOBaHHBIM ajapecaM. Takum
o6pa3om, B yCIIOBUSIX pabOTHI COBpeMEHHBIX peanusanuii ASLR dacte ampecHOro
MPOCTPAHCTBA MIPOTrPaMMBbI OCTAETCsI HEPaHJOMU3UPOBAHHOM.

2.5 Bo3BpaTHO-OpueHTUpOBaHHOe nporpammupoBaHue (ROP)

BosBparHo-opueHTHpoBaHHOe mporpammupoBanne (ROP) [4] - wmeron
9KCIUTyaTaIlid yS3BHUMOCTH IIepenoyiHeHus Oydepa Ha cTeke, KOTOPBIH MO0 CYTH
ABJISIETCA 0000IICHNEM aTaky BO3Bpara B OMOIHOTeKy. MeTos Tak e MPUMEHUM B
ycnoBusix paborel DEP, HO npezcTaBisier O0bIIYI0 ONACHOCTB, T.K. MOXKET OBITH
UCIIONb30BaH Il 00Xola coBpeMeHHbIX peanmzamuii ASLR, korma dwactsb
aJIPECHOTO MPOCTPAHCTBA OCTACTCS] HEPAHIOMHU3UPOBaHHOH (pasa. 2.4).

ROP mpenmosaraer WMCHONB30BaHUE —IIOCIENOBATEIBHOCTEH HHCTPYKIMH B
HEpaHIOMH3HPOBAHHBIX MCIIOJIHAEMBIX 00JIaCTSIX MaMsATH, KOTOPBIE 3aKaHIMBAIOTCS
MHCTpyKIWed mepenadn ynpasineHus (ret). Takue mnocnenoBaTenbHOCTH
WHCTPYKIUH Ha3BIBAIOTCS rajpkeTaMu. CleyeT OTMETHTh, YTO apXUTEKTypa X86 He
TpeOyeT BBIpDABHUBAHUS aJPeCcOB HWHCTPYKIMH, T.€. TIO3BOJISET BBIIOJIHEHUE
UHCTPYKLUH, pPa3MELIEHHBIX IO MPOU3BOJBHBIM aJpecaM MaMATH. A 3HAuuT,
HEKOTOpasi MOCIEJ0BaTEIbHOCTh MHCTPYKLUI B MPOrpaMMe MOKET COAEpKaTb B
ce0e TrajpKeT, OTCYTCTBOBaBIINIT B KoJie IporpaMMbl. Huke mpuBoasiTcss OMHApHBIH
M acceMOJEpHBIH KOABI Ta/pKeTa, KOTOPBIH CONCPXKUTCS BHYTPH
MOCJIE0BATEILHOCTU UHCTPYKIMH OPUTHHAILHON IPOTPaMMBI.

£7c707000000019545c3 » test edi, Ox7 ;

36

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

setnz BYTE PTR [ebp-0x3d]
Cc707000000019545c3 - mov DWORD PTR [edi], ©xf000000 ;

xchg ebp, eax ; inc ebp ; ret
TamxeTsl cOOMpAIOTCS B LIEMOYKH, a MX aJpeca pa3MEIIalTcs OT ajpeca Bo3Bpara
Ha CTEKE TaK, YTOOBI MEPBBI Tra/pKET MepenaBai yIpaBicHUE BTOPOMY, BTOPOIl —
TpeTbeMy ¥ T.O. Takum o00pa3oM, C TOMOIINBI IEMOYKH TaPKETOB MOXKHO
BBIIIOJIHUTh HEKOTOPBIE BPEJOHOCHBIE AEHCTBHUSA.
Ha pucynke 3 mpuBOIUTCS COCTOSHHE CTEKa MOCIE pa3MenicHus Ha HeM ROP-
LEMOYKH, KOTOpasi MPOU3BOIUT 3alUCh 3HaYcHus memValue mo aapecy memAddr.
Anpec Bo3BpaTa mepes3amnucaH aapecoM MepBoro ramkera. llocie BosBpaTa u3
(hYHKIHMH, B KOTOPOU MPOHU30IILIO MEPEIOTHCHUE, YITPABICHHUE MIEPEAACTCS IIEPBOMY
TapKeTy, KOTOPBIM 3arpy3uT co cTeka 3HaueHue memValue Ha peructp eax. Ilpu
BO3Bpare (TOCNIE BBINIOJHECHUS HWHCTPYKIHMH ret) mepBBIii TakKeT mepesact
YOpPaBJIEHUE BTOPOMY TaJKETy, KOTOPBIA B CBOI OYEpEb 3arpy3uT 3HaUCHHE
memAddr nHa peructp edx. I[Totom TpeTuii ramkeT COXpaHHUT 3HAYCHHE PETHCTPa
eax (memValue) mo aapecy edx (memAddr). [laigee ympaBjeHHE TMepeaacTCs
YETBEPTOMY TaJKETY U T.[.

Anpec 4-ro rajpxera

Ajpec 3-ro rajzkera mov [edx], eax ; ret
g memAddr
g
g
§ Ajpec 2-To rajzKera pop edx ; ret
g
Q
o)
2‘ memValue
= L Pacmonozkenne agpeca Bo3BpaTta u3 GyHKIUI
[}
5 Ajpec 1-ro rajpkera pop eax ; ret
2
=
|
jus)

Puc. 3. Cocmosnue cmexa nocne pasmewenus na nem ROP-yenouxu, xomopas npouzeooum
3anuce 3Hauenus memValue no adpecy memAddr
Fig.3. AROP chain, storing memValue to memAddr, stack frame

37

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

Hwxe npuBogutcs 3ta ke ROP-1iemodyka B OWHApHOM BHJIE, KOTOpas 3alliChIBACT
3HageHne "/bin" mo agpecy ©x0830caad. Drta moCIeNOBAaTENHHOCTH OaWTOB
pa3MelnaeTcs 3JI0yMBIIIJICHHUKOM Ha CTEKe OT aJipeca Bo3BpaTa.

00000000 47 65 06 @8 2f 62 69 6e 3d 76 @7 08 a@ ca 30 08 |Ge../bin=v....0.|
00000010 b5 8b 08 08 [....]

00000014

3. O630p cywecmeyrowux peweHuu

B sTOM pasnene ONMUCHIBAIOTCS CYIIECTBYIOIIME PEIICHHUS MPOOIEM OIPEAEICHUS
CEMaHTHKH ra/DKETa U aHaJM3a aTaKk HOBTOPHOT'O MCIONB30BaHUS KO/,

3.1 OnpegeneHue CeMaHTUKN ragxera

Schwartz w np. [5] mpeanoxunu onpeaenaTs (QYHKIMOHAIBHOCTH TajKeTa €ro
NPHHAUISKHOCTRIO THIIaM, KOTOpBIC mpuBeneHbl B Tabmuue 1. HaGop TumoB
raJDKETOB 3a7aeT HOBYIO apXHUTEKTypy Habopa xoMaHxa (ISA), B KoTOpod KaXKablit
THUII TaJpKeTa MCIHONHSET posib MHCTpYKUMU. CeMaHTHKa KaXIOro THIA rajpkera
OTpEeNEeNIAeTCs MOCTyCa0OBHEM (OYJICBBIM MPEIUKATOM) 9B, KOTOPOE NOJDKHO OBITH
BCET/la HICTHHHO TI0CJIC BHITTOJIHEHHS TaKeTa.

Ta6n. 1. Tunwi 2adxcemos. [Addr] oznauaem oocmyn xk namsimu no adpecy Addr, o —
ounapuyio onepayuio. a < b oznavaem, yumo Koneunoe 3Hauenue a PA6HO HAYATLHOMY
sHayenuro b. X o« Y — coxpawenue ona X « X o Y

Table 1. Gadget types

Tun ITapameTpsl Onpenesienne ceMaHTHKH

NoOpG — He mensier Hudero B maMsTH U Ha
perucTpax

JumpG AddrReg IP « AddrReg

MoveRegG InReg, OutReg OutReg <« InReg

LoadConstG OutReg, Offset OutReg « [SP + Offset]

ArithmeticG InRegl, InReg2, OutReg, o OutReg « InRegl o InReg2

LoadMemG AddrReg, OutReg, Offset OutReg « [AddrReg + Offset]

StoreMemG AddrReg, InReg, Offset [AddrReg + Offset] « InReg

ArithmeticLoadG AddrReg, OutReg, Offset, o OutReg o« [AddrReg + Offset]

ArithmeticStoreG AddrReg, InReg, Offset, o [AddrReg + Offset] o« InReg

Bynem roBoputh, YTO MOCIENOBATEIbHOCTh WHCTPYKIUH 4 YIIOBJIETBOPSET
MOCTYCJIOBUIO 3, €CIIU JJIS II0OOT0 HAYaILHOTO COCTOSIHUS TIOCIIE BBIIOJTHECHUS
MocTycloBue & HCTUHHO. HavalbHOE COCTOSIHME COCTOMT W3 NPHUCBAWBAHMIMA
perucTpam u naMsTi HEKOTOPBIX HaYaJIbHBIX 3HAUCHUH.

CnenyeT OTMETHUTbh, YTO OAMH Ta/pPKET MOXKET MNpPUHAIJIEKATh Cpa3y HECKOJIbKUM
tunam. Hampumep, ramxer push eax ; pop ebx ; pop ecx ; ret
OTHOBPEMEHHO IIepeMeIIacT eax B ebx u 3arpyxaeT 3HaueHHE CO CTeKa B €CX, 4TO

38

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

cooTBeTCTBYeT THaM MoveRegG: ebx « eax u LoadConstG: ecx « [esp +
0].

3.1.1 CemaHTHM4YecKu aHanus

Juist TOTO 4TOOBI OTIPEACHTE, YIOBICTBOPSET JIM TOCIE0BATEIIFHOCTS MHCTPYKIIHI
J mocrycrmosuto B, Schwartz u mp. [5] HCmoONB3ylOT W3BECTHYIO TEXHUKY W3
(dopmanbHON BepuUKaIMU — BBIUKMCIICHHE cinabeiimero npemyciosus [6]. Tpomre
roBops, ciabeiimee npeayciosue WP(Z, %) Ui MOCIEA0BATEIbHOCTH HHCTPYKITUIA
4 ¥ mocTycioBuss A — 3TO OyJICBO MPEIYCIOBUE, KOTOPOE OMNKCHIBAET, Korjma 4
3aBepIIacTcs B COCTOSHHUM, YJOBIeTBOpstomiem JB. Crabeimine mnpeayCcioBUs
HCTIOJIB3YIOTCS, YTOOBI YOETUTHCS, YTO OMPEICIICHHE CEMAHTHKH TajpKeTa BCerja
BBIMOJIHACTCS TOCJIC BBIMIOJHECHUS MMOCIEA0BATCIBHOCTH UHCTPYKIHit 4. [l aToro
JIOCTATOYHO MPOBEPHUTH:

wp(4, $) = true.
Ecmu ¢opmyna BepHa, TO 9B Bcerja HCTUHHO MOCIIE BBIMOJHCHUS ¢, a 3HAYUT, 4 —
rajyKeT C CEMaHTUYECKUM TUIIOM .
Onnako (opmanibHasi BepuUKaIUs TaPKETOB MOKa3ana ce0sl OUYeHb MEUICHHON Ha
npakTuke. (s yckopeHus mporiecca OmnpeAe/eNeHus, MPUHAJICKUT JIU TaJKeT
TOMY WM HHOMY THITy, MHCTPYKIIMH TaJpKeTa MPEABAPUTEIHHO HECKOJIBKO pa3
BBIMOJTHSIOTCSI ¢ KMCIIOJb30BAHMUEM CIyYaiHBIX BXOJIHBIX JaHHBIX, M MPOBEPSIETCS
UCTUHHOCTh . Ecnu B okakeTcs JIOXKHBIM XOTS OBl 7Sl OJJHOTO BBIMOJIHEHUS, TO
MOCJIEIOBATEIIEHOCTE HHCTPYKIIMA HE MOXKET OBITh Ta/DKETOM 3TOTO THMA. TakuM
o0pa3oM, OoJiee CIOKHOE BBIYHCICHHE CIAOCUIIEro MPEeAyCIOBHS MPOU3BOIUTCS,
TOJIBKO €CJIH 8 MICTUHHO JIJIsI BCEX BHITIONTHECHUI.
BrmonHeHHe co CilydailHBIMH BXOJHBIMH JaHHBIMH MOXET OBITh TaKke
UCIIONIb30BAHO JUIsl BBISIBICHHS BO3MOXKHBIX 3HAa4YeHWil mnapameTpoB (Tabu. 1)
rajpkeToB. Hanmpumep, MocMOTpeB Ha 3HAYCHHUS PETHCTPOB M HA ajpeca YTCHHS U3
MaMsITH, MOKHO BBIYUCIUTH HAOOp BO3MOXKHBIX cMemieHuid (Offset) msa ramkera
3arpy3ku u3 namsata LoadMemG.

3.2deRop

B oTiiMumre OT UCMOIb30BaHKS TPAIUIIHOHHOTO MIEIUT-KO/Ia, KOTOPbIN BHEAPSIETCS B
naMsTh MPOIECCa, BO3BPATHO-OPHEHTUPOBAHHOE MPOTPAMMUPOBAHUE MO3BOJISIET
MPOU3BOIUTH MMPOU3BOJILHBIC BBIYHCICHHS, UCIIONB3YS YXKE MMEIOIIMNACS B aMSTH
kon. Ilostomy s ananmmza ROP-atak — 3aTpyJHUTENBHO — HCIIOJB30BATh
CYIIECTBYIOIIMUE TPAJAUIMOHHBICE HWHCTPYMEHTHI aHajam3a OWHApHOro Koma. Jlist
pelieHust 03By4EeHHOM MmpobieMbl ObLT Mpeaioked nucrpymMenT deRop [7] — ROP-
IKCIUIONT MPUBOAMTCSI K CEMAaHTUYECKH JKBUBAJICHTHOMY OOBIYHOMY LIEIUI-KOIY,
KOTOPBIN yXKe MOXET ObITh MPOAHAIU3UPOBAH CYIIECTBYIOIUMU HHCTPYMEHTAMH.
ABTOpBI MPEUMYIIECTBEHHO HCIMOJB3YIOT CTATUYECKUI aHAIM3 W BBIICISIOT
cieayromme TpynHocty ananuza ROP-atak:

39

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

Oonapy:xeHue raakeroB. [Ipu sKcruTyaTanmu TepernoyHeHus Oydepa Ha cTeke
mepes ampecoM MepBOro rajpkera (KOTOPHIM OyAeT IepesanmicaH aapec BO3Bpara)
3amuceiBaeTcs Oydep MNpPOM3BOINBHBIX HE3HAUHMTENBHBIX MaHHBIX. bojee Toro,
MEXIy aapecoM MEepBOTO W BTOPOTO Ta/DKETa TAakke MOTYT OBITh IPOITYIICHEI
s4elikn (Hanpumep, Korga (GYHKIMS, B KOTOPOW IPOMCXOAWT II€PEIOHEHHE,
YHUCTHUT 3a COOOM apryMeHThl CO cTeKa MHCTpyKIMi ret n). Hecmorpst Ha To 4TO
deRop mbITaeTCs MCIMONB30BaTh CTATHUCCKUEM aHANN3, HACKOJIBKO 3TO BO3MOXHO,
n30eras WCHOJB30BaHME ITUHAMUYECKOTO aHaiu3a, OOHapyXeHHE IIEPBBIX JBYX
TaJDKETOB MPOU3BOIUTCS C UCIIOIB30BAaHUEM OTIIaIHKa.

OrcaexnBanue yka3zaTeass creka. B ROP-skcmmoiite ykasarenb cTeka
UCTIONB3YeTCS LIS MOTydeHHS aapeca CICAYIOIIEro rapkera Tak ke, Kak yKa3aTelb
WHCTPYKIWH (CUCTUYMK KOMAH[) — [UIS MTOMYYCHUS afpeca CIeAYIomei HHCTPYKIUH.
[TosToMy HEOOXOJMMO OTCIEXKHBATh yKa3aTelb CTeKa Uil OOHapyKeHHs
CIIEYIOLIETO TajKeTa.

Pacnoso:keHune creka W KOHCTAHT. [3arpy3Kd KOHCTAHT B PETHCTP B IIEIUI-
KoJle OOBIYHO MCHOJIB3YIOTCS MOV reg, imm, B To Bpems kak B ROP o0Obr4HO
ucnoae3yrorcss pop reg. Pacnonoxenue creka B ucxogHoil ROP-uenouxe
OTIIMYHO OT PACIOJIO0XKEHUSA B BBIXOJHOM CEMAHTHUECKU SKBHBAJCHTHOM €l IIes-
koze. [ToaToMmy HEOOXOIMMO OTCIIEKUBAThH PACTIONIOKEHHE KOHCTAHT Ha CTEKe.
Boi3oBbl (pynknmii. Hexoropsie ramxersi B ROP-mienouxe ucmonb3yroTcs Uis
BbI30Ba QyHKIMH. Heo0X0qMMO BBISBIISATH TaKKe BBI3OBBI (DYHKIMH U BbI3BIBATH UX
TpaauLIMOHHBIM 00pa3om. bonee TOro, HeoOXOAUMO OMpenessiTh 3HAYCHUS
apryMeHToB (QYHKIMH (B T.4. apryMEHTOB, KOTOPBIC SIBISAIOTCS KOHCTAHTOW WU
yKa3aTelleM) IS KaKI0TrO BBI30BA.

Hukabl. ROP-rmiemouka MOXET conaepkaTth UKL HeobXxoamMo yMmeTh HX
00Hapy>KUBATh U OMPECIATh YCIOBHE BBIXOa U3 IUKIIA.

3.2.1 TocTobpaboTka

Kak Tompko Bce rajpkeThl OBUTH NMPOAaHAIM3UPOBAHBI, MPOU3BOMATCSA HECKOIBKO
3TaIoB NOCTOOPAaOOTKH AJIsl YIPOIIEHHMS BBIXOIHOTO KOJIa!

JlanHple B NaMATH. BBIUUCISIIOTCS 3HAYEHUS ONEPAHJOB UMHCTPYKLHUH,
oOpamaromuxcs K TaMATH, U OTIePaHIbl 3aMEHAIOTCS] KOHCTAHTaMH.

HyneBble 0aiiTbl. OObIYHO TpeOyeTcs, YTOOBI MIENI-KOM HE COJEepKal HYJIEBBIX
6alTOB, T.K. 3TO MPHUBOANT K 0OpPE3aHMIO IIEIUI-KOAA MOCIe HEKOTOPBIX OIeparui
(manpumep, strcpy). Jannas npobiaema pemaeTcsi 3aMEeHON BCEX HYJIEBBIX OANTOB
Ha HEHYJIEBbIC 3HAUYEHUS U JT0OaBJIIEHUEM JIeKOAepa B HA4aJo IIEeNI-KOga, KOTOPBIHA
BOCCTAHOBUT OPHUT'HHAJIBHBIC 3HAYCHUSI.

Anpec Bo3BpaTa. AJlpec BO3BpaTa B OSKCIUIOWTE 3aMEHSETCA aJpecoM Hadasa
PE3YJIBTUPYIOLIETO MIEI-KOJA.

40

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

3.3 ROPMEMU

ROPMEMU [8] — ¢peiiMBopK s aHaimW3a CIOXKHBIX aTak I[OBTOPHOTO
UCIIOJIB30BAaHMS KOZJA. ABTOPBI HCIHONB3YIOT IHHAMUYSCKUH IMOAXOA K aHAIU3Y
OMHAPHOTO KOJa W BBIACILIOT CieAyromme npodiemsl ananmmza ROP-arak (C1—C3
yKe OBLIH YIIOMSHYTHI B mojipaseie 3.2):

[C1] WH36bITOouHOCTH — OGonbmmHCTBO ROP-TamKeTOB ComepskarT JIMITHHC
MHCTpYKUMHU. Hampumep, ramker, NpeIHa3HaYeHHBIH IS HHKPEMEHTHPOBAHHS
eax, MOXET TaKkKe 3arpy’arh (pop) 3HaUCHHE CO CTeKa 10 Hepefayd yIpaBJICHUS
cleayromemMy ramkery (ret).

[C2] CrekoBoe cBsI3bIBaHME HMHCTPYKIMIA — B OTIINYHE OT OOBIYHOM IIPOTPaMMBI,
rIe HMHCTPYKIMH pa3MEIlAIoTCs IocienoBaTeNnsHo B mamsard, ROP-skcmoiit
pasOHBaeTCs HAa MaJICHbKHE TaDKETBl, CBA3aHHBIC B ILEMOYKY HHCTPYKLHAMH
KOCBEHHOI#T riepeiauu ynpasnenus (ret).

[C3] HexBarka 3Hauenuii KoHCTAHT — ROP-menouku 0GBIYHO COCTABISAIOTCS U3
HapaMeTPU30BAaHHBIX TaKETOB (HANpHUMep, 3arpy3Ku MPOU3BOJIFHOTO 3HAYCHUS B
PETHCTP rax), KOTOpPBIE HCIONIB3YIOT ITAPAMETPHI, COXpPAaHEHHBIE HA CTEKE.

[C4] VYcaoBHble BeTBlIEHHS — B OTJIMYHC OT TPAAHUIMOHHOTO W3MCHCHHSI
yKa3aTelsl MHCTPYKIMK (CUeTYMKAa KOMaHa) ycioBHOe BeTBiieHHe B ROP-nienouke
W3MEHsET YyKazaTelb cTeka. TakuMmM 00pa3oM, MPOCTON YCIOBHBIA Mepexon
peanu3uzyercss HecKoJdbkuMu rajpketamu (ctp. 18—19 [9]). Hdust mpuBenenus
LEernoYKky K Oojiee YnTaeMoOMy KOJy HEOOXOIMMO paclo3HaBaTh TaKHE YCIOBHBIC
BETBJICHUS U 3aMEHSTh UX OJHOW MHCTPYKIMEH BETBICHHUSI.

[C5] Bo3epar B ¢ynkumn — Bb30BeI (yHKImA B ROP 06BMHO peamusyroTcs
MPOCTHIM BO3BpaToM (ret) Bo BXxogHyro TOUYKy (pyHKIMH. T.K. OOBIYHBIEC I'aJKETHI
TaKXke 9acTto OepyTcs M3 KOJa, PacloOKEHHOTO BHYTPH OMOIHOTEK, HEOOXOIUMO
YMETb OTJIIMYATh BBI30B (DYHKIIMU OT OUEPETHOTO I'a/HKETa.

[C6] Nuuamuyecku reHepupyembie nenouku — ROP-nenouka He 00s3aTensHO
cpa3y LEeJIMKOM Pa3MeEIaeTcsi B MaMsTH, & MOTYT OBITh HCIIOJb30BaHbI T'aJKETHI,
KOTOPBIE MTOJI'OTOBST BBITIOJIHEHNE JIPYTUX TAJHKETOB B OYIYILEM.

[C7] VYcaoBue ocTtaHoBa — aBTOPHI MPEINOJArarT, YTO AHAIUTHK CIOCOOCH
onpenenuth Hadamo ROP-nemoukn B mamstu. OgHAKO HEOOXOIUMO 3aBEPIIHTH
MPOLIECC IMYJISIIIMH, KOT/1a BCE TaKEThI ObLIM U3BJICUEHBI.

B ¢peiimBopke ROPMEMU ncnions3yercst HaOop pa3inyHBIX TEXHUK VIS aHATIU3a
ROP-ueno4yek M BOCCTAaHOBIICHHsSI SKBHBAJIECHTHOIO MM Koja B (opme, KoTopas
MOXeET OBbITh MNpPOAHATM3UPOBAHA TPAAUIMOHHBIMH HHCTPYMEHTaMH OOpaTHOM
umkenepun, takumu kak IDA Pro [10]. Tlpeamosmaraercs, 4to y aHaJMTHKA
UMEIOTCSI JaMl TMaMsaTH W BxoaHas Touka (mepBoii) ROP-menoukd B HeM.
OcraBmuecss TMHAMHYECKH TEHEPUPYEMBbIE LEMOYKH BOCCTAHABIMBAIOTCA CaAMHM
(peiiMBOPKOM, KOTOPBIH UMEET ISTh OCHOBHBIX (a3 aHaIH3a.

41

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

3.3.1 MHoronyTteBas amynauus

Ha stoM mrare smymupyrorcsi acceMOJIEpHBIE HHCTPYKILHUH, U3 KOTOPBIX COCTOUT
ROP-nenouxka (C2). UccnenyroTcst Bce BO3MOXHBIE BETBICHUS U IS K&KIOTO IYTH
BBINIOJTHEHHSI T€HEPHpYETCs HE3aBUCHMAs Tpacca (AaHHOTHPOBAaHHAS 3HAYCHUSIMH
PETUCTPOB W MAMSTH). DMYISATOP TAaKKE PACIO3HACT BO3BPATHl B OHMOIMOTEUHEIC
(YHKIMH, TPOIYCKaeT WX TEI0 M CHMYJIHPYeT WX BBINOIHCHHE, T€HEpUPYS
(uKTHUBHBIE TaHHBIC U Bo3Bpammaemoe 3HadeHue (C5).

OMyIATOp W3HAYaJbHO CYHUTHIBACT COICPKUMOE IMaMATH W3 JaMIa MaMATH |
nojiepXkuBaeT TeHeByro Tmamsth [11]. Vemosue ocramoa (C7) ompenersercs
HaOOpOM 3BPHCTHK, OCHOBAaHHBIX Ha MPHHIMIE JIOKAIBHOCTH (3MYIATOD
oOHapyxuBaeT OOJBLIOE OTHOCHTEIFHOE HM3MEHEHHE YKa3aTels CTeKa) W JUIMHE
raJpKkeTa, UCKItouasi oOHapyKeHHbIe BbI30BBI (yHKIMH. Kak Tombko cpabarhiBaeT
YCIOBHE OCTaHOBA, COAEPKUMOE TEHEBOH TMaMATH U Tpacca BBIIOIHEHUS
COXpPAaHSIOTCS Ha JUCK M MCCIIEAYIOTCS Ha MpeaMeT Haluuus HoBbIX ROP-nenouex.
Ecnu TakoBble HaiiieHBI, IMYJSTOpP Iepe3anyckaeTcs, 4ToObl MPOaHATU3UPOBATH
CIEIYIOUIYIO LIENOYKY, U TaK 0 TeX IOp, MOKa Bce TUHAMUYECKH TeHepHpyeMble
[ETOYKH He OyIyT oOHapyKeHBI U MpoaHaTu3upoBansl (C6).

Jns ROP-memouex co CIOXHBIM ITIOTOKOM YIPaBJEHUs, IPOCTOW IOJXO[,
OCHOBAHHBIM Ha AMYNALMHU, HE JOCTaTOYEH A aHainu3a Bcero ROP-skcmioiita.
Benp MOKphITHE OTpaHWUYEHO TOJBKO BBINOJIHEHHBIMH YCIOBHBIMH HEPEXOJaMHu,
KOTOpBIE YacTO 3aBUCAT OT (UKTUBHBIX BO3BpAIlaeMbIX 3HAueHWH (QyHKUui,
CT€HEPHPOBAHHBIX AMYJIATOPOM. JlaHHyI0 mpoOsieMy pemaeTr MHOTOITyTeBas
SMyJIILMA, KOTOpas sBiseTcs agantupoBaHHod K ROP-uenoukam Bepcueit
aJITOPUTMa MHOTOITYTEBOrO BBITIONHEHHs [12]. B yacTHOCTH, SMYIATOP paclo3HaerT,
KOTJ]a yKa3aTelb CTeKa M3MEHSETCS B 3aBHCHMOCTH OT COAEPKUMOIO pPErucrpa
(baroB. B KoHIIe mporiecca SMYISIIUN U3 TPACCHI MOJTYYaeTcsl CIIMCOK BCEX TOYEK
BETBJICHUS] BMECTE CO 3HAueHMsIMH (JaroB B Kaxaoi u3 Hux. Jlanee smynsTop
nepe3anyckaeTcsi ¢ ykazaHHeM HHBEPTHPOBATh Mepexo]] B TOYKE BeTBIeHHs. Takum
00pa3oM, BBIMONIHEHHE NPOHIET Mo JpyroMy MyTH. MccienoBaHue BETBICHUH
MpeKpamaeTcs, KOraa BCe BETBU MPOAHAIN3HPOBAHBI.

OpHako, mpu Hannuuk 1HUKIOB B ROP-mienouke, sMyssaTop MOXET 3acTpsiTh B
OECKOHEYHOM IyTH BBIMONHEHUS. sl pemieHust 3Toil mpoOIeMbl OTCICKUBACTCS
YHCIIO TOBTOPEHUI YyKa3zaTelsl CTeKa BO BpeMs BBINOJHEHHS HHCTPYKIUA
BeTBNICHUS. Ecim 3TO YHMCIO IPEBOCXOANT HEKOTOPBIH JOIMYCTUMBIA ITOpOT,
SMYJSATOpP HWHBEPTHUPYET Mepexoj],, 4TOObl HACWIBHO TNPEKPaTuTh IHUKI H
HCCIIeI0BaTh OCTABLIYIOCS 4acTbh Ipada IMoToKa yrnpasJeHusl.

3.3.2 Pa3bueHue Tpacchl

Ha »roit (1)336 AHAJIM3UPYIOTCA BCC€ CICHCPUPOBAHHLIC OMYJIITOPOM TpPACCHI,
YAQJIAKOTCA NOBTOPCHUS U HU3BJICKAIOTCS YHUKAJIbHBIC O0KHU KoJa. Ka)KZ[aH Tpacca
pa3pe3acTcsa B Ka)KI[Oﬁ TOYKC BCTBJICHUS, I'CHCPUPYCTCA HOBBII 6J'IOK, KOTOpLIﬁ

42

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

COXpaHseTCs B OTHENbHYIO Tpaccy. B pesymbrate, Oyner momydeH Habop Tpacc,
ACCOITMMPOBAHHBIX € KAXKIBIM «0a30BBIM OJIOKOM» B IETIOUKE.

3.3.3 OTBA3bIBaHME UHCTPYKLUN OT CTeKa

Ha sToM sTame w3 Tpacchl yAaIsIOTCS BCe MHCTPYKIMH O€3yCIOBHOHM mepemadn
yrpasnennst (ret, call, jmp) u comepkuMoe MOCIICIOBATENHHO BHIMTOIHACMBIX
raJpkeToB CIMBaeTCs B OAWH 0a3oBeid Omok (C2). 3aTeM MHCTPYKIMH MOV
yrnpomarTes, Onaromaps BBIYHCICHHIO MX ONEpaHAOB (HampuMmep, MoV rax,
[rsp + ©x30]). UHcTpykuuu pop 3aMeHSIOTCS HMHCTPYKLHMSIMH MOV, BCE
HeOoOXOIMMbIe 3HAUCHHUS MTOTYYArOTCS W3 COOTBETCTBYIOIHUX siaeek Ha cteke (C3).

3.3.4 BoccTaHoBneHue rpacpa notToka ynpaBrieHUs

Ha »Tom mpoxosme Bce Tpacchl CIMBAIOTCS B €AWHOE rpadoBOE IPEICTaBICHHUE.
[lotrom rpad TpaHciampyeTrcs B HACTOSIIyI0 TporpaMMmy Xx86, Omaromaps
pacro3HaBaHUIO MHCTPYKIHWH, ACCOIMHPOBAHHBIX C YCIOBHBIMH BETBICHUSAMH, U
3aMEHE HX TPaJULIUOHHBIMHU, HCIOJB3YIOIMMH YKa3aTeldb HHCTPYKLHMH (CUSTYHK
KOMaHJ) yCJIOBHBIMHU Tiepexonamu (C4).

Crenyromeil 3amadeii JaHHOTO MPOXOAa SBISIETCS OOHAPY)KEHWE W CBOpauMBAHHC
mukiaoB. ROP-memoukn Moryr cojepkaTh Kak BO3BPAaTHO-OPHEHTHPOBAaHHBIC
IUKIBI, TaK M pa3BepHyTble IWKIBL. B mnepBom ciaydae ROP-unCTpyKINm
UCTIONB3YIOTCSA ISl TIOBTOPEHMSI OJHOTO U TOTo e OJIOKa raJpKeTOB Ha CTEKE C
BBIXOJIOM IO yCJIOBHIO. Pa3BepHyThIe IUKIIBI B CBOIO OYEPEb MOBTOPSIOT OJHY U TY
e TII0CIEJ0BATeNbHOCTh Ta/KETOB 3apaHee OINpelclieHHOEe (KOHCTaHTHOE)
KOJINYECTBO pa3. PpeliMBOPK aBTOMATHYECKH OTIPeIeNIIeT PEKypPEHTHBIE MaTTEPHBI
U 3aMeHseT wuXx Oolee KOMIAKTHBIM KyCKOM acceMOJIepHOro KoAa,
MPE/ICTABIISIONINM U3 ce0sl MK C TOH)K€ CEMaHTHKOM.

[TomyuyeHHsIN B pe3ynbpTaTe Ko o0opadnBaeTcs pabOYMMU MPOJIOTOM M SIMUIOTOM
¢yHKuMu ¥ BKmMoyaercs B otaensHbI ELF daiin, 9To0b1 MO3BOJIUTE HCIOIB30BAThH
TpaIULMOHHBIE WHCTPYMEHTHI 00paTHOW uHxeHepuun (Hanpumep, IDA Pro [10])
JUIst pabOTHI C HHUM.

3.3.5 bBwuHapHasa onTumMusaums

Ha 3akmounTenbHOM — mare NPUMEHSIOTCS W3BECTHBIE KOMIMJISITOPHBIE
npeoOpa3oBaHusl Ui JajbHEHIIero ymnpouieHus accemOuepHoro koma B ELF
¢aiine. B wactHOCTH, ynansercss MEpTBBIH KO, NPUMEHSIOTCS NpeoOpa3oBaHus,
ormucaHHple B 1. 3.2.1, W reHepupyeTcs YHMCTas W ONTUMH3UPOBAHHAs BEPCHS
skcmnoiTa (C1).

4. MemoO aHanu3a amak rnoemopHOo20 UCIMOoJIb3068aHUsi KOOa

IIpennaraemolii B JaHHOW CTaThbe METOJ aHAJIM3a aTaK MOBTOPHOIO MCIOIb30BAHUS
KOJla MO3BOJISIET BOCCTAHOBUTHh ceMaHTUKy ROP menouku u mpocieauts 3a X0A0M
ataku. [lo Ownaphoit ROP-menoyke BOCCTaHABIMBACTCS IMOCICIOBATEILHOCTh

43

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

BBI3BAaHHBIX TapkeToB. HalimeHHBle Ta/pKeThl KIACCUPHUIHUPYIOTCS IO
CEMAHTHYECKUM THIIAM, MW OIPENEeNAIOTCS 3HAYCHHS IapaMeTpOB TaKETOB.
[ToMuMO TOTO B IIEMOYKE BEBIABIAIOTCS BBI3OBBI (DYHKIHH M CHCTEMHBIC BBI3OBEI,
BOCCTaHABIIMBAIOTCS WX MPOTOTHIBI W 3HaYCHHUS apryMeHToB. CieqyeT OTMETHTb,
9TO0 B JaHHOW paboTe HE CTaBUTCA 3ajada MPOAHAJIM3UPOBATh BCE IYTH
BeImoNHeHUs: ROP-1iemouku, a MocTtaToyHO pa3dopa XOTsS OBl OJHOTO U3 HUX.
ITosToMy mnpezasaraemMblii METOJ HE YYUTHIBAE€T YCIOBHBIE BeTBieHUS B ROP-
LENnOoYKax.

4.1 ®penm ragxerta

Jnst nexommnosuru OuHapHod ROP-niemoukn Ha TamKeThl BBOJUTCS TOHSITHE
¢peiima ramKeTa aHAJIOTMYHOE CTEKOBOMY Kaapy x86. llemouka ramxeroB
pazbuBaercs Ha (peiimbl. DpeiiM rajkera CONEpKUT B ceOe 3HAUCHHS ITapaMETPOB
rajpkera (HampuMep, 3HA4YCHHE, 3arpy’kaeMoe Ha PETUCTp CO CTeKa TaKeToM
LoadConstG) m anmpec crexyromero ramkera. Hawamo ¢peiiMa ompenensercs
3HAYEHUEM yKa3aTellsd CTEKa Iepe]l BBIIIOJIHEHUEM NIEPBOM HHCTPYKLUU TaJKeTa.

Cremyromuii rajzxer

«3arpyxKaeMblit» eax

Hanpasiienue pocra aapecos

pop eax ; ret 8

Puc. 4. @peiim eadocema pop eax ; ret 8
Fig.4. pop eax ; ret 8gadget frame

Ha pucynke 4 ¢urypHoii ckoOkoii 0003HaueHBl rapaHMIbl (peiiMa rajxera pop
eax ; ret 8. I'axer 3arpy’aer 3HaAUYCHHE CO CTE€Ka B €aX, YTO COOTBETCTBYET
TUIY 3arpy3ku KoHCTaHTBI LoadConstG: eax « [esp + @]. lamxer mmeer
pasmep ¢peiiva FrameSize = 16, a aapec CIIEAYIOIIETO rapKeTa pacloiaraeTcs
1o cMenieHnio 4 ot Havana ¢ppeiima (NextAddr = [esp + 4]).

4.2 Knaccudukauuma ragxertoB

Kraccudukaumu ramxeroB [13] mo3BoisieT OmpenenuTh CEMAHTHKY TaKETOB.
CemaHTHKa Trajpkera OIpeAessieTcss HaOopoM OyJeBBIX IOCTYCIOBHH (THUIIOB
raJpkeTa) M 3HAUCHMSAMH WX [apaMeTpoB, KOTOPHIM YJOBJIECTBOPSIOT MHCTPYKLUH

44

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

rapkera (pasg. 3.1). s amanmza ROP-menodex, HalIeHHBIX B HHTEPHETE,
npemmoxennoro Schwartz u ap. [5] Habopa Tumos ramkeros (Tabi. 1) okasamoch
HEJIOCTATOYHO, W OH OBbUI pacUIMpPeH [OMOJHUTEIbHBIMU THUIIAMH, KOTOPBIC
npuBonsATcs B Tabmmie 2. bonee Toro, ObUM T0OABIEHB! THITHI TaI)KETOB, KOTOPHIE
HE TapaHTHPYIOT COXPAHEHHS YIPABICHUS (BHU3Y TaOIHUIIBI 2).

Ta6ux. 2. Jononnumenvihvie munsi 2adxcemos. [Addr] oznauaem oocmyn k namsmu no
adpecy Addr, o — bunapHyro onepayuto. a < b osnauaem, ymo Koneunoe 3nauenue a pasHo
HauanbHoMy 3Havenuto b. X o« Y — cokpawenue ona X « X o Y

Table 2. Extended gadget types

Tun IMapameTpsl OnpeaesieHne ceMaHTHKHU

JumpMemG AddrReg, Offset IP « [AddrReg + Offset]

GetSPG OutReg OutReg « SP

InitConstG OutReg, Value OutReg « Value

InitMemG AddrReg, Value, Offset, Size [AddrReg + Offset] « Value

NegG InReg, OutReg OutReg <« -InReg

ArithmeticConstG InReg, OutReg, Value, o (+/@) OutReg « InReg o Value

ShiftStackG Offset, o (+/-) SP o« Offset

PushAllG — ([ESP - 4] « EAX) A
([ESP - 8] « ECX) A
([ESP - 12] « EDX) A
([ESP - 16] « EBX) A
([ESP - 20] « ESP) A
([ESP - 24] « EBP) A
([ESP - 28] « ESI) A
(EIP « EDI)

He coxpaHsiioT ynpasJieHue

JumpSPG — IP « SP

Callag AddrReg IP « AddrReg

CallMemG AddrReg, Offset IP « [AddrReg + Offset]

IntG Value BeBats npepriBanne Value

SyscallG — CucTeMHBIH BEI30B

Knaccudukanus rampkera NpOM3BOAMTCS Ha OCHOBE aHaium3a d(PQeKToB
BBIITOJIHEHHS Ta/DKeTa Ha CIIyYaiHBIX BXOJIHBIX JaHHBIX. VHCTpyKIMH TajKeTra
TPAHCIHUPYIOTCS B MPOMEXYTOYHOE TpeacTaBieHue. [lanmee 3amyckaercs Imporecc
MHTEPIPETalNH TPOMEXYTOUHOTO TIpejacTaBieHus. Bo BpeMs HWHTepIpeTanin
OTCIIEKHUBAIOTCA OOpaIieHus] K PEerucTpaM M MaMsATH. Eciam IpoMcXoauT mepBoe
YTEHHE PErucTpa WiIn OO0JacTH MaMATH, CYNTAHHOE 3HAYCHUE T'CHEpUpYeTCs
cily4aiiHbIM 00pa3oM. B pesynbrare nHTepnperanuu OyayT MOJy4eHbl HaYalbHbIC U
KOHEYHBIC 3HAUCHMSI PETHCTPOB M MamsaTH. Ha ocHOBe 3Toi MHpOpManuu nenaercs
BBIBOJ] O BO3MOXKHOH MPUHAIEKHOCTH rajkeTa TOMy Wik HHoMy Tumy. Hanpumep,
JUld TOpUHAANEKHOCTH Tunmy MoveRegG pomkHa CylecTBOBaTh Takas IIapa

45

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

PErHCTPOB, YTO HAYAIBHOE 3HAYCHHE IIEPBOTO PETrUCTpa pPaBHO KOHEYHOMY
3HAYeHUIO BTOpOro. B pesynprare aHamu3a COCTaBIIeTCS CIIMCOK — BCEX
YIOBJICTBOPSIOIIMX T'aJDKETY THIIOB U MX ITapaMETPOB (CHHCOK KaHINIATOB). 3aTeM
IPOU3BOAUTCS €II¢ HECKOJIBKO 3aIlyCKOB IIPOIIecca MHTEPIIPETAMH ¢ OTINYHBIMU
BXOJHBIMHM IaHHBIMH, B Pe3yJIbTaTe KOTOPHIX M3 CHHCKa KaHJUIATOB YIAJISIOTCS
OLIMOO0YHO OIPE/ICIICHHbIE THITHI.

B pesynbraTte KiaccHpHKaMU TajykeTa OyAyT MONYyYeHBl CEMaHTHYECKHE THIIBI
rajpKketa M MX MapaMeTpsl, a Takke uHopmaims o gpeiime ramkera (pasza. 4.1) —
pasmep ¢peiima (FrameSize) u cMemieHue sUEHKH C aapecoM CIELYIOIIEro
rajpKeta OTHOCHTENBHO Havaia ppeitma (NextAddr).

Crenyer OTMETHTb, YTO KiacCUpHKalMs TrajpkeTa IPOU3BOJUTCS B PE3yJbTaTe
BBINIOJIHEHHSI Ta/PKeTa Ha OrPAaHWYEHHOM KOJHUYECTBE HAa0OPOB KOHKPETHBIX
BXOJIHBIX JIAaHHBIX, 4TO B OOIIEM Cilyyae He TapaHTUPYET COOTBETCTBUSI CEMAaHTHKE
pe3ysibTaTa BBIIOJIHEHHS TajpPKeTa Ha IPOW3BOJBHBIX BXOJAHBIX JAaHHBIX. Jlis
TOYHOHM KiacCH(UKAMKH HEOOXOAMMO MPOM3BOIUTH (GOPMATBEHYIO BEpHUBHKALHIO
CEeMaHTHKU TaJDKETa, Kak onmchiBaeTcs B moxpaszgene 3.1.1. Taxum obGpasom,
BO3MOXKHA HeBepHas Kiaccupukanms ramkera. OpHaKO OO HEBEpHO
KIaCCU(QUIMPOBAHHBIX TaJDKETOB mocie 10 3amyckoB Ha CIyYaifHBIX BXOJIHBIX
JAaHHBIX HE3HAYUTENIbHA, YTO SBIISCTCS MPUEMIIEMBIM JUIS 3aa4d BOCCTAHOBJICHHS
cemanTukd ROP-menogexk.

4.3 BocctaHoBneHue cemaHTukn ROP-uenovek

bunapnas ROP-uenouka 3arpyxaeTcsi Ha TeHeBO# crek. Mcnonb3ys nHpopMamio
0 (peliMe mpeAbIAYLIEro TajyKeTa, MONYYCHHYIO B pe3yibTaTe KIacCH()UKALUH,
OIIMH 32 JPYTrUM KiacCU(PUUMPYIOTCS Ta/pKeThl B liernoyke. CMeleHne sYeiKu C
aJIpecoM CIIEAYIOLIETO raJukeTa OTHOCUTEIbHO Havaja Qpeiima u pazmep ¢peiima
M0 CYTH MOKa3bIBAIOT, IJie OpaTh aJipec CIeAYIOLIEero rajpkera sl KiaccupuKanim
U IJie HaYMHAeTCsl ero ()peiiM COOTBETCTBEHHO. YKa3aTeib TEHEBOI'O CTeKa BCerjaa
yKa3bIBaeT Ha Havaio (peliMa rmocieaHero KiaaccuGpupoBaHHOTO Ta/KETa.

J1yist BOCCTAHOBJICHHS 3HAYCHU I PETHCTPOB U IAMSITH MIepe]l BHIIIOIHEHUEM I'aJpKETa
(Hanpumep, AJIsl BOCCTAHOBIICHHSI apI'yMEHTOB CHCTEMHOT'O BBI30Ba MM (DYHKIIUH)
MOJIEPI)KUBAETCS O0IIAst Ui BCEX TaJpKETOB TeHeBas mamsth [11]. M3Hauanbho
TeHeBas MaMsATh mycTta. llocinenoBaTeIbHO ISl KaXJIOro KIACCU(PHUIUPOBAHHOTO
raJpkeTa HEeTOYKH MPOM3BOJMTCS HECKOJIBKO 3aITyCKOB IPOIecca WHTEPIIPETaluy
€ro IPOMEKYTOYHOTO TIPEJCTABICHHUS C TEHEBOM IaMATHIO, BBHICTyHamomeHd B
KauecTBe HavalbHBIX 3HAYCHUH pPErucTpoB M HamsTH. CUUTAHHBIC PETHCTPHI U
NaMsITh, HE COJEPIKalMecs B TCHEBOH MaMATH, TCHEPUPYIOTCS CIydaliHOM 006pa3om
OpH KOKAOM 3amycke uHTeprperann. KoHedHble 3HAYCHHUs PErMCTPOB U MAMSTH,
KOTOpBIE HE MEHSUIUCH OT 3aITycKa K 3aIlycKy, OOHOBIISIIOTCS B TEHEBOW IaMSTH.
3HaueHuss Bcex 3arpyxaeMblx ROP-memoukoif kKOHCTaHT MOTryT — OBITH
BOCCTAHOBJIEHBI M3 TEHEBOTO cTeka. OJHOM JHIIb KiacCU(PHUKALMK TaJKETOB JUIs
9TOr0 HEJOCTAaTOYHO, T.K. OHA HE YYUTHIBAET AAaHHBIC, PACIIOJIOKEHHBIC HA TEHEBOM
CTEeKe, a TEeHepUpyeT CYHMTAHHBIE CO CTEKa 3HAYCHUS CIIydalHbIM 00pa3oM.
46

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

Knaccupukanus ramkera 3arpy3kd KoHcTaHThl LoadConstG mo3Boiser
ornpezaenuTth peructp OutReg, Ha KOTOPBINA MPOM3BOJUTCS 3arpy3Ka KOHCTaHTHI, U
cmentenne Offset, mo KOTOpoMy IPOHMCXOMUT YTEHHE 3HAYEHHS KOHCTaHTBI CO
creka. Ilocne kmaccnpukamum ramkera LoadConstG B TeHeBYO MaMsATh
nobasnsiercs 3HadeHue peructpa OutReg, 3arpykeHHOE C TEHEBOrO CTEKa II0
cmemennto Offset ot ykaszaremns TeHeBOTO cTeKa.

Hnst o6xoxa DEP B 32-6utHbix Windows mporpaMMax 4acto HCHONB3YETCs TaKEeT
PushAllG (pushad ; ret), mpu mOMOIIM KOTOPOTO BBI3BIBACTCS (YHKLIHS
WInAPIl VirtualProtect [14] (xoTopas chenaeT CTEK HCIOJHSICMBIM) H
HepenaeTcst yrnpaBjieHHe OOBIYHOMY MLIEII-KOIY, Pa3MELICHHOMY BBIIIE Ha CTEKE
(puc. 5). Heno B ToM, uto MHCTpyKIMs pushad coxpaHser peructpbl 0O0IIEro
Ha3Ha4YeHHs Ha CTeK. Ecin mpenBapuTesIbHO NPOUMHUIMAIN3UPOBATH PETHCTPBI
COOTBETCTBYIOIMMH 3HAYCHUSIMH, TO Ha CTEKe OKaxeTcs OObIKHOBeHHas ROP-
eToYKa.

Bpemonocusrit kot

jmp esp
mn
8
g, eax staeiika VirtualProtect B Import Table
)
<
g ecx aJpec, TOCTYIHLIN Ha 3aIIUCh
&
5]
= edx (0x40)
=
z
& ebx (4096)
3
jas

«Crapslii» esp

ebp pop eax ; ret
esi jmp [eax]
edi ret

esp

Puc. 5. Cocmosanue cmexa nocne evinonnenus uncmpykyuu pushad
Fig.5. A pushad stack frame

47

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

Takum oOpasom, cHauvama Ha peructp edi sarpyxkaercs aapec NoOpG ramkera
(ret), na esi — aapec ramkera, KOTOpbIi BbI3oBeT QyHKuHO VirtualProtect
(mampumep, jmp [eax], mpu 3TOM Ha eaxX MPEABAPUTEIBHO 3arpyKaeTcs aapec
sueiiku VirtualProtect B Tabmmne nMnopTHpOBaHHBIX CHMBOJIOB). Ha peructpst
ebx, edx wu ecx 3zarpyxatorcs 2—4 aprymentsl VirtualProtect
COOTBETCTBEHHO. A B KadecTBe ajpeca Bo3Bpara w3 ¢yHkumu VirtualProtect
Ha peructp ebp sarpyxkaercs ampec ShiftStackG ramkera (pop eax ; ret),
MHKPEMEHTHPYIOLIEro yka3arenb creka. [locne BeImonHeHus MHCTpyKumu pushad
3HAYCHUS STHUX PETUCTPOB OYAYT JIeXKATh HA CTEKe, KaK M300pa)KeHO Ha PUCYHKE 5.
B cBot0 0Yepenp BEITOIHEHHE MHCTPYKIHWS BO3BpaTa ret mepenact ympaBieHHE I10
aJpecy rajpkera, 3allMCAHHOMY B TMOCHEOHHI coxpaHeHHb peructp edi (ret).
[Hanee yIIpaBIeHUE repenacTest TaJKETY, KOTOPBIH BBI30BET
VirtualProtect(esp, ebx, edx, ecx). A mocie Bo3Bpara u3 (pyHKIUH
VirtualProtect cTek craHeT HCIOMHICMBIM U YIIPABJICHUE MEPEIACTCS TalKETY,
yeil aapec OBLT MPeIBAPUTENLHO 3arpyeH Ha peructp ebp (pop eax ; ret). B
pe3ynbTare, BbBI30OBETCS ramkeT JumpSPG (jmp esp), KOTopblil mepenact
yIpaBJICHUE OOBIYHOMY ILEIUI-KOIY, Pa3MEIIEHHOMY Cpa3y K€ BBIIIE MO CTEKy M
JIOCTYITHOMY TeIeph Ha UCTIOJIHEHHE.
Jst Takoro ramxeta PushAllG Ha TeHEBOM CTEK 3aMHMCHIBAIOTCS COOTBETCBYIOLIUE
3HaueHus peructpoB. ['ampker JumpSPG B CBOIO OYepenb WHTEPIPETHPYETCS Kak
neperaya yNpaBJICHUs OOBIYHOMY INEIUI-KOXY, pa3sMEIIEHHOMY Ha CTeKe, H
MPOU3BOJIUTCS TU3acceMOINpPOBaHUE €ro OalnToB.
Crenyer orMeTuTh, 4T0 ROP-11€1104Ka MOXKET NpEeBApUTENBHO 3aIlUCaTh TaXKET B
HaMsTh, YTOOBI MOTOM €ro HWCIOJIb30BaTh. Himke NPUBOAMTCS TIpPHUMEp TaKOH
neriouky. CHavyanma B peructp edX 3arpykaercsi MallMHHBIA KOJ ra/pkeTa mov
[eax + ebp * 4], ebx ; ret.3arem 3TOT rajpkeT COXpaHsICTCS B AMSTH I10
azpecy eax. [lamee 3arpyxaroTcst mapamerpbl rajkera: ebx um ebp. Hakoner
IepesiaeTcsl yrnpaBlIeHHEe MO ajgpecy eax, KyAa ObUI IpeiBapUTEIbHO COXpaHEH
Ta/KET, 3allMChIBAIONINIA B TAaMsTh 3HAUEHUE PeTUCTpa ebx mo ajpecy eax + ebp
* 4,

pop edx ; ret // edx = "\x89\x1lc\xa8\xc3"

mov [eax], edx ; ret

pop ebx ; pop ebp ; ret

jmp eax // mov [eax + ebp * 4], ebx ; ret
Takum oOpasom, ecian Bo Bpems pazbopa ROP-menouxu anpec ciemyromiero
raJpkeTa COAEPKUTCS B TCHEBOW MaMSITH, TO KJIACCUPUIIPYETCS TaKeT U3 TEHEBOH
namsati. Ecnmu ske mocnie KimaccHM(UKanuM OKaXeTcs, YTO 3TOT Ta/PKeT HeJNb3s
OTHECTH HU K OJHOMY M3 THIIOB, TO CUMTAETCs, YTO DTO Iepejada yIpaBICHHs
OOBIYHOMY ILIEJUI-KOJY, NPEABAPUTEIILHO COXPAHEHHOMY B MaMsTh. baiTel miemn-
KOJla N3 TEHEBOH MMaMATH TaKXe TU3acCEMOINPYIOTCSL.

48

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

4.3.1 BocctaHoBneHue PyHKUUNA U CUCTEMHbBIX BbI3OBOB

OyHKIUSA MOXeT OBITh BbI3BaHa w3 ROP-Temoukn ¢ HWCHONIB30BAHHEM TaIKETOB
JumpG, JumpMemG, CallG, CallMemG, umm ke ee agpec MOXXET OBITh MPOCTO
pasmeneH Ha crteke. CHUCTEMHBIM BBI30OB BBIMOJHAETCS raxerom IntG B 32-
pa3psAoHON OIEeparMoHHON cHcTeMe, a TamkeToM SyscallG B 64-pa3psmgHOii.
Homep cucremHOro BBI30Ba, a TaKKe 3HAYCHHS apryMeHTOB (yHKOUM u
CHCTEMHOTO BBI30Ba BOCCTaHABIMBAIOTCA M3 TeHEBOW mamsaTH. Ecimm mo axmpecy
apryMeHTa B TCHEBOM MaMATH PacIONOraeTcs HyJIb-TEPMEHHPOBAHHAS CTPOKA, TO
OHA TOKE BOCCTAHABIIMBACTCH.

Jt ROP-nierrouek mo Linux 1mo HOMepy CHCTEMHOTO BBI30Ba TOIYIaETCs €T0 UMSI.
VmeHa BBI3BaHHBIX (YHKIMH MOKHO BOCCTAHOBWTbH, €CIH (YHKIMA ObIJa BBI3BaHA
0 azpecy, CANTaHHOMY U3 TaOnumbl UMnoptupoBaHHEIX cuMBonoB (GOT B ELF u
IAT B PE). [IpoTtoTumsl ¢GyHKOHH W CHCTEMHBIX BBI30BOB Linux WIIyTcs B man-
pages [15], a npororumnst ¢pyukiuit Windows — 8 API Monitor [16].

5. MpoecpaMmHas peanusayusi

OnucaHHBIi MeTOX OBUT peann3oBaH B BHIE MPOTPAMMHOTO HHCTPYMEHTA.
WucTpyMeHT nony4daeT Ha Bxox OmHapHy ROP-nenouky n ncnoiaHseMsiid Qaiin, B
KOTOPOM COJAEPKaTcsl UCIOIb30BaHHBIE B LEMOYKe rajkeTsl. Ciemayer OTMETHUTh,
YTO B JaHHON paboTe He cTaBHTCA 3a1ada moucka ROP-miernouku B IKCIUIOWTE.
Pemenne 3Toif 3amaun Bo3naraeTcsl Ha aHanuTHKa. [loanepKuBaloTCs Clemyrone
dbopmatel ucnonusiembix (aiinos: ELF32, ELF64, PE32 u PE32+. llenoukw,
UCIIOJNIb3YIOIINE T'a/PKEThI U3 Pa3HbIX HUCIIOJHAEMbIX (DailyioB, B IaHHBI MOMEHT He
MOICP’KUBAIOTCS.

51 I/IHTepnpeTau,ml NMPOMEeXyTO4YHOro npeacTtaBneHusA
UHCTPYKUHN M ragxera

B nanHO# pabore mcmomp3yercsi pa3padorannoe B MCII PAH mpomexxyrodHoe
npeacraBieHre MHCTpyKuuii [17], ymoenerBopsitomee SSA-dpopme u uMeromiee
TpexaJpecHbIi KoA. AJpecHble IPOCTpaHCTBA MaMSITH M PETHCTPOB
NPE/ICTABISIOTCS B BHJIE JBYX OaWTOBBIX MacCHBOB. AJPECHOE IPOCTPAHCTBO
PETHCTPOB COCTOMT M3 BCEX PErHCTPOB MAaIMHBI C YYETOM HAIOXKCHUH U
nepeceueHuit. J{nsg ydera moOOYHBIX 3PPEKTOB HCIOIB3YETCS CIOBO COCTOSHUSA,
aHAJIOTHYHOE peTucTpy (aros x86.

WHCTpyKIMU TajpkeTa TPAHCIUPYIOTCS B MPOMEXKYTOYHOE IPEJCTaBIICHHUE,
MHTEPIpETAIisi KOTOPOTrO MO3BOJISIET MOJYYHTh HAYAIbHbIE U KOHEUHbIC 3HAUYCHHS
perucTpoB u mnamstd. M3HayanbHO AJISI KQKIOTO aIpecHOr0 MPOCTPAHCTBA KapThl
CUNTAHHBIX M COXPAaHEHHBIX 3HAYEHHH MyCThl. VIHCTPYKIMM MHpPOMEXYTOUHOTO
MIPEICTaBICHHSI 3aMEHSIFOTCS SKBUBAJICHTHBIMH OJOKaMH MHCTPYKIuH Xx86-64. I1pu
otoM wHCTpyknmu coxpaHeHust (STORE) 3aMmeHstoTcss Ha BBI30BBI (DYHKITWH,
OOHOBIISIIOIIEH KapTy COXpaHEHHBIX 3HayeHWi. A uHCTpykumu urenus (LOAD)

49

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

3aMEHSIOTCSI BBI30BOM (DYHKITUH, BO3BpAIIAIONICH aKTyaJlbHOE 3HAYCHHE, KOTOpast
BBITNIOJIHAET OHO U3 CIEAYIOIINX ACHCTBUMN:

® CUMTHIBAaeT 3HAYCHHE M3 KApPTHl COXPAHCHHBIX 3HAYCHHMI, €CIM OHO TaM
NPUCYTCTBYET;
® CUMTHIBAaCT 3HAYCHUE M3 KAPThl CUUTAHHBIX 3HAYCHHMIl, €CIII OHO TaM
HPUCYTCTBYET U OTCYTCTBYET B KapTe COXPAHCHHBIX 3HAUCHHII;
e jo0aBnsieT B KapTy CUMTAHHBIX 3HAYCHUH CIy4allHO CreHEpHpOBaHHOE
3HAYEHHE MPH IIEPBOM OOpPALIEHHH 110 apecy.
Janee TpOM3BOOUTHECA BBIIOJHECHHE IONydeHHOTO X86-64 koma. B pesymbrate
OyZIyT MOJTy4eHbl HaYaJIbHOE M KOHEYHOE COCTOSIHUS aJJPECHBIX ITPOCTPAHCTB.

5.2 Pa36op ROP-uenouku

OMynupyercss 3arpy3ka HCHOJHsIeMoro (aiima B BHPTyaldbHOE aIpecHOE
MPOCTPAHCTBO C pa3pelieHueM penokamuid. [lo aapecy Kakaoro ramkera B
3arpy’kKCHHOM HCHONHsAeMOM (ailie Iu3acCeMONMPYIOTCS HHCTPYKIHH 110
WHCTPYKLMU Tiepenaun ymnpasieHus. [lonydeHHble HHCTPYKIIMUA TPAaHCIUPYIOTCS B
MPOMEKYTOYHOE MPEACTABICHAC U KIACCHPHUIUPYIOTCS. APryMeHThl (DYHKIMHA U
CHCTEMHBIX BBI30BOB BOCCTAHABJIMBAKOTCSA COIJIACHO COTJIAIICHUIO O BBI3OBE W3
TEHEBOM MaMsATH, a B Ka4eCTBE BO3BPAlACMOI0 3HAYCHUSA (DYHKIMH B TCHEBYIO
maMsiTh J00aBiIsieTCss HEKoTopoe (UKTHBHOE 3HadyeHWe. Jlajmee MPOUCXOAUT
0OHOBJICHHE TEHEBOTO CTEKa U TCHEBOW MaMsITH, KaK OMICaHO B pa3jene 4.3.

B pesysbrare, OyieT HonydeH TEKCTOBBIN (aiiia, B KOTOPOM OyAyT MepeqrclIeHbI
MOCJIEIOBATEIFHO BRI3BaHHBIC TA/DKETHI, a TaK)Ke MX THUIBI M HapameTpsl. boree
TOTO0, OYAYT MPUBEICHBI IPOTOTHITHI BRI3BAHHBIX (PYHKITMI H CHCTEMHBIX BHI30BOB C
BOCCTAaHOBJIEHHBIMU 3HaueHHUsIMH aprymMeHToB. Eciim ROP-skcmoiit 3aBepiiaercst
BBI30BOM OOBIYHOTO IIEIDI-KOAA, TO OYIOYT BEIBEACHBI €0 AM3acCEMOIMPOBAHHBIC
WHCTPYKIIHH.

6. Pesynbmambl Npakmu4ecKo20 rnpuMeHeHUs!

[IpeanoxeHHbIH B 3TOH CTaThe METOJ aHAIM3a aTaK MOBTOPHOTO HCIHOJIB30BAHUS
KoJia ObuT arpoOupoBaH Ha peanbHbIX ROP-sKkcmoiiTax, HaliIeHHBIX B UHTEPHETE.
bunapueile ROP-nenouxku u3BIEKanuch BPYYHYHO. 3aTeM OIpefessics
WCTIOJTHAEMBIN (aiiy1, U3 KOTOPOTO HCIIOIB30BAIICH I'aKETHI B IICTIOUKE.

XopomuMy OTHPaBHBIMU TOUKaMU Uil Moucka ROP-3KCIIIONTOB MOCTYyXKUIH
(bpeiiMBOpK I TecTHpPOBaHUS Ha mpoHukHoBeHHe Metasploit [18] u oTkpsiTas
6asza gammbix okcrutoiToB EDB [19]. K coxaneHuio, HCHONHSIEMBIH (ailn, u3
KOTOPOTO COOMpaNiCh TaJKEeThl B IETMOYKY, PEAKO IpHiIaraeTcs K IKCIUIOWTy. B
TydmieM ciydae OyayT yKa3aHbl BEPCHsI IPOTPaMMBbI, ONIEPAIMOHHAs CUCTEMA U/HITH
JuctpuOyTus. [ToaToMy BcnonHseMble (aiiiibl 4aCTO MPUXOANTCSA UCKATh BPYIHYIO
Y TIPOBEPSTH, HAXOIATCS JIU 110 TEM XK€ aJpecaM 3asBICHHbBIC B SKCIIONTE TaJKeTHI.
Jlnst oucka cTapbIX BepCHil MakeToB MUCTpuOyThBa Debian cymiecTByeT MPOEKT
snapshot.debian.org [20], koTopblii HECKOJIBKO pa3 B ACHb COXpAHSET TEKyllee

50

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

coctosiHue AUCTpuOyTMBa Debian, 4To 3HAYUTENHLHO YIpOIAET 3aaady ITOMCKa
CTapbIX BEPCHIl MAKETOB.

B Tabn. 3 mpuBommrcs crmcok ROP-3KCIUTONTOB, KOTOpBIE OBIIM YCIICIIHO
MPOAHAIM3UPOBAHEl PEANN30BAaHHBEIM HWHCTpyMeHTOM aHanmm3a ROP-memodek.
Bpems aHanm3a He MPEBOCXOAMIIO TTAPBI CEKYHI.

Tabun. 3. Cnucok npoananusuposannvix ROP-axcniotimos
Table 3. Analyzed ROP exploits

IIpunoxenue Homep CVE IInardopma INagxers! u3
MongoDB CVE-2013-1892 Linux x86 mongod
Nagios3 CVE-2012-6096 Linux x86 history.cgi
ProFTPd CVE-2010-4221 Linux x86 proftpd
Nginx CVE-2013-2028 Linux x64 nginx
AbsoluteFTP CVE-2011-5164 Windows x86 MFC42.dll
ComSndFTP N/A 2012-06-08 Windows x86 msvcert.dll

7. 3aknroyeHue

B nanHOII cTaThe OBLT MPENTIOKEH METO/I aHAIN3a aTaK IIOBTOPHOTO HCIIOJIb30BAHMSA
KOJla, KOTOPBIH OBUI pealn3oBaH B BHAE MNPOTPAMMHOTO HMHCTPYMEHTA.
Pa3paboTaHHbBIii MeTOJ| MO3BOJISIET YNPOCTUTH JAJsl aHAJIMTHKA 3ajady oOpaTHOM
utkenepun ROP-skcrutoiitoB. [lo Ounapnoit ROP-nenoudke BoccTaHaBiMBaeTCs
CIHMCOK BBI3BAHHBIX Ta/DKETOB M ONMKCHIBACTCS HMX (YHKIMOHAIBLHOCTD
CEeMaHTHYECKH C MOMOIUIBI0 OyJIeBOr0 NpeinKaTa, KOTOPBIH JOJKEH OBbITh BCeraa
UCTUHHBIM TIOCJIE BBINOJHEHUs] Tra/pkeTa. bojee TOro, BOCCTaHABIMBAIOTCS
NPOTOTUIIBI ¥ 3HAYSHUSI aPTYMEHTOB BBI3BAHHBIX (D)YHKIHH M CHCTEMHBIX BBI30BOB.
Taxum 006pa3om, aHATUTHK MOXET aBTOMAaTH3UPOBAHHO TOJIyYHUTh TIPEJICTABICHHIE O
cemanTuke ROP-1ienmoukn. Peanm3oBaHHBIN MeTO] OBLT aipoOMPOBaH HA pPeabHBIX
ROP-skcrutoiiTax, HaffICHABIX B HHTEPHETE.

Metosr OCHOBBIBae€TCS Ha JUHAMHYECKOW WHTEPIPETALMH IPOMEKYTOYHOTO
npeacraBiaeHus nHCTpykuuid ROP-nenouxu. CemMaHTHKa rajpkeTa ONpelensercs B
pesynbrare aHanu3a 3()(EKTOB BBHIIOJHEHUS Ta/DKETa HA PA3IMYHBIX CIIyYaiHBIX
BXOJHBIX JaHHBIX. JIs1 BOCCTaHOBIEHHS 3HAYCHUI aprymMeHToB (QyHKIMH wu
CHCTEMHBIX BBI30BOB BO BpeMsI aHAJIM3a ITO/ZIEP’KUBAETCS TEHEBAsI TaMSTh.
[lepcnieKTUBHEIM HANpaBJICHHEM sl AIbHEHIIMX paboT SIBISETCS MOIJIEpIKKa
aHaJM3a YCJOBHBIX IepexoJoB M HUKiIoB B ROP-menoukax. A Uil NMOBBIIIEHUS
TOYHOCTH OIIPEJENICHNS] CEMaHTHKH TaJpKeTa MOXKHO HCIIOJIb30BaTh H3BECTHHIC
TEXHUKHA (QOpManmbHON BepuuKanuu. Takke TEXHHYECKOH 3amaueil sBIseTCS
noanepkka anannza ROP-nienouek, nemos3yomux rapkeTbl Cpa3y U3 HECKOIBKUX
WCTIONHAEMBIX (ailyioB.

51

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

Cnucok nutepatypbl

[1].
[2].
[3].
[4].

[5]-
[6].
[71.

[8].

[al.

[10].

[11].

[12].

[13].
[14].

[15].
[16].

[17].
[18].

[19].
[20].

52

Common Vulnerabilities and Exposures (CVE). Available at: https://cve.mitre.org,
accepted 10.11.2008.

Cratucruka yszsumocreii (CVE) mo rogam. Available at:
https://www.cvedetails.com/browse-by-date.php, accepted 10.11.2008.

CWE-121: Stack-based Buffer Overflow. Available at:
https://cwe.mitre.org/data/definitions/121.html, accepted 10.11.2008.

Shacham H. The Geometry of Innocent Flesh on the Bone: Return-into-libc Without
Function Calls (on the x86). In Proc. of the 14th ACM Conference on Computer and
Communications Security, CCS’07, 2007, pp. 552-561.

Schwartz E.J, Avgerinos T., Brumley D. Q: Exploit Hardening Made Easy. In Proc. of
the 20th USENIX Conference on Security, SEC’11, 2011, p. 25.

Jager I., Brumley D. Efficient Directionless Weakest Preconditions. Technical Report
CMU-CyLab-10-002, 2010.

Lu K., Zou D., Wen W., Gao D. deRop: Removing Return-oriented Programming from
Malware. In Proc. of the 27th Annual Computer Security Applications Conference,
ACSAC’11, 2011, pp. 363-372.

Graziano M., Balzarotti D., Zidouemba A. ROPMEMU: A Framework for the Analysis
of Complex Code-Reuse Attacks. In Proc. of the 11th ACM on Asia Conference on
Computer and Communications Security, ASIA CCS’16, 2016, pp. 47-58.

Roemer R., Buchanan E., Shacham H., Savage S. Return-Oriented Programming:
Systems, Languages, and Applications. ACM Transactions on Information and System
Security, vol. 15, no. 1, 2012, pp. 2:1-2:34.

Huctpyment IDA Pro. Available at: https://www.hex-rays.com/products/ida/, accepted
10.11.2008.

Nethercote N., Seward J. How to Shadow Every Byte of Memory Used by a Program. In
Proc. of the 3rd International Conference on Virtual Execution Environments, VEE’07,
2007, pp. 65-74.

Moser A., Kruegel C., Kirda E. Exploring Multiple Execution Paths for Malware
Analysis. In Proc. of the 2007 IEEE Symposium on Security and Privacy, SP’07, 2007,
pp. 231-245.

BumiasikoB A.B. Knaccudukarms ROP ramxeros. Tpyast UCIT PAH, Tom 28, BbIN. 6,
2016 r., ctp. 27-36. DOI: 10.15514/ISPRAS-2016-28(6)-2

VirtualProtect function (Windows). Available at: https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366898(v=vs.85).aspx, accepted 10.11.2008.

The Linux man-pages project. Available at: https://www.kernel.org/doc/man-pages/.

APl Monitor: Spy on APl Calls and COM Interfaces. Available at:
http://www.rohitab.com/apimonitor, accepted 10.11.2008.

[Mapapsin B.A., ConoBeeB M.A., KononoB A.M. MoaenupoBaHue oInepannoHHON
CeMaHTHKH MalIuHHBIX nHCTpYKuuit. Tpyast UCIT PAH, tom 19, 2010 r., ctp. 165-186.
Metasploit Framework. Available at: https://github.com/rapid7/metasploit-framework,
accepted 10.11.2008.

Exploit Database. Available at: https://www.exploit-db.com, accepted 10.11.2008.
snapshot.debian.org. Available at: http://snapshot.debian.org, accepted 10.11.2008.

Bummnsikos A.B., Hypmyxameros A.P., Kypmanranees I11.®., Iaficapsu C.C. Metoxa aHaiM3a aTak IOBTOPHOTO
WCToNb30Banust Kopa. Ipyost UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 31-54

Method for analysis of code-reuse attacks

L A.V. Vishnyakov <vishnya@ispras.ru>
! A.R. Nurmukhametov <oleshka@ispras.ru>
' sh.F. Kurmagaleev <kursh@ispras.ru>
12345 5. Gaisaryan <ssg@ispras.ru>
! Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
% Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
* Moscow Institute of Physics and Technology (State University)
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
* National Research University Higher School of Economics (HSE)
11 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. Providing security for computer programs is one of the paramount tasks nowadays.
Failures in operation of program software can lead to serious consequences and exploitation
of vulnerabilities can inflict immense harm. Large corporations pay particular attention to the
analysis of computer security incidents. Code-reuse attacks based on return-oriented
programming are gaining more and more popularity each year and can bypass even modern
operating system protections. Unlike common shellcode, where instructions are placed
consequently in memory, ROP chain contains of several small instruction blocks (gadgets)
and uses stack to chain them together, which makes analysis of ROP exploits more difficult.
The main goal of this work is to simplify reverse engineering of ROP exploits. In this paper |
propose the method for analysis of code-reuse attacks, which allows one to split chain into
gadgets, restore the semantics of each particular gadget, and restore prototypes and
parameters values of system calls and functions called during the execution of ROP chain.
Parametrized types define gadget semantics. Each gadget type is defined by a postcondition
(boolean predicate) that must always be true after executing the gadget. The proposed method
was implemented as a program tool and tested on real ROP exploits found on the internet.

Keywords: computer security; binary analysis; vulnerability; return-oriented programming;
ROP; gadgets classification; code-reuse attack; computer security incident.

DOI: 10.15514/ISPRAS-2018-30(5)-2

For citation: Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S.
Method for analysis of code-reuse attacks. Tpyast UCII PAH, tom 30, Bbim. 5, 2018 r., crp.
31-54 (in Russian). DOI: 10.15514/ISPRAS-2018-30(5)-2

References

[1]. Common Vulnerabilities and Exposures (CVE). Pexxum nocryma: https://cve.mitre.org,
nara obpamenus 10.11.2008.

[2]. Cratucruka yszsumocreii (CVE) mo rogam. Pexxum goctymna:
https://www.cvedetails.com/browse-by-date.php, nara o6pamenus 10.11.2008.

53

Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev Sh.F., Gaisaryan S.S. Method for analysis of code-reuse
attacks. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 31-54

[3].
[4].

[5].
[6].
[7].

[8].

[al.

[10].

[11].

[12].

[13].
[14].

[15].
[16].

[17].

[18].
[19].

[20].

54

CWE-121: Stack-based Buffer Overflow. Pexum nocryma:
https://cwe.mitre.org/data/definitions/121.html, nata o6pamenus 10.11.2008.

Shacham H. The Geometry of Innocent Flesh on the Bone: Return-into-libc Without
Function Calls (on the x86). In Proc. of the 14th ACM Conference on Computer and
Communications Security, CCS’07, 2007, pp. 552-561.

Schwartz E.J, Avgerinos T., Brumley D. Q: Exploit Hardening Made Easy. In Proc. of
the 20th USENIX Conference on Security, SEC’11, 2011, p. 25.

Jager I., Brumley D. Efficient Directionless Weakest Preconditions. Technical Report
CMU-CyLab-10-002, 2010.

Lu K., Zou D., Wen W., Gao D. deRop: Removing Return-oriented Programming from
Malware. In Proc. of the 27th Annual Computer Security Applications Conference,
ACSAC’11, 2011, pp. 363-372.

Graziano M., Balzarotti D., Zidouemba A. ROPMEMU: A Framework for the Analysis
of Complex Code-Reuse Attacks. In Proc. of the 11th ACM on Asia Conference on
Computer and Communications Security, ASIA CCS’16, 2016, pp. 47-58.

Roemer R., Buchanan E., Shacham H., Savage S. Return-Oriented Programming:
Systems, Languages, and Applications. ACM Transactions on Information and System
Security, vol. 15, no. 1, 2012, pp. 2:1-2:34.

Wncrpyment IDA Pro. Pexxum noctyma: https://www.hex-rays.com/products/ida/, nara
obpamenust 10.11.2008.

Nethercote N., Seward J. How to Shadow Every Byte of Memory Used by a Program. In
Proc. of the 3rd International Conference on Virtual Execution Environments, VEE 07,
2007, pp. 65-74.

Moser A., Kruegel C., Kirda E. Exploring Multiple Execution Paths for Malware
Analysis. In Proc. of the 2007 IEEE Symposium on Security and Privacy, SP’07, 2007,
pp. 231-245.

Vishnyakov A.V. Classification of ROP gadgets. Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 6, 2016, pp. 27-36 (in Russian). DOI: 10.15514/ISPRAS-2016-28(6)-2
VirtualProtect function (Windows). https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366898(v=vs.85).aspx.

The Linux man-pages project. Pexxum mocryma: https://www.kernel.org/doc/man-pages/.
APl Monitor: Spy on APl Calls and COM Interfaces. Pexum nocryma:
http://www.rohitab.com/apimonitor, nata o6pamenust 10.11.2008.

Padaryan V.A., Soloviev M.A., Kononov A.l. Modeling operational semantics of
machine instructions. Trudy ISP RAN/Proc. ISP RAS, 2010, vol. 19, pp. 165-186 (in
Russian).

Metasploit Framework. Pexum mocryma: https://github.com/rapid7/metasploit-
framework, nara o6pamenust 10.11.2008.

Exploit Database. Pexum mocryma: https://www.exploit-db.com, nara obparuesus
10.11.2008.

snapshot.debian.org. Pexum mocryma: http://snapshot.debian.org, nara oGpamieHus
10.11.2008.

O6 ogHOM noagxoae K aHanu3y CTPOK B
A3blke Cn AnAa nomcka nepenonHeHus

oydepa

HU. A. Jlyouna <eupharina@ispras.ru>
H. E. Mansuues <neket@ispras.ru>
Mockosckuii eocyoapcmeennbiil yrugepcumem umenu M. B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwl, 0. 1
Hnemumym cucmemnozo npoepammupoganusi um. B. Il. Heannukosea PAH,
109004, Poccus, 2. Mockea, yn. A. Conocenuyvina, 0. 25

AnHoTtanmsi. Omubku npu padoTe ¢ OMOMHOTEYHBIMH (QYHKIUSAMH OOpabOTKH CTPOK B
s3b1ke CH SBJIAIOTCS YaCTOW NPUYMHOH MEepenoIHeHns Oydepa, 4To B CBOIO OUepeb HEPEIKO
NPUBOJAUT K OTKa3y B OOCITY)XMBaHHH, HEKOPPEKTHOH paboTe MporpaMMbl MM IOSBICHUIO
IKCIUTyaTHPyeMOH ysi3BUMOCTH. OIHHM M3 CIOCOOOB YCTpaHEHUs Pa3iIMYHBIX OMIMOOK Ha
CTaauM Pa3pabOTKU NMPOTPaMMBI SBISIETCSI CTaTHYECKHH aHanu3. CyIIecTBYIOIINE METOJbI
CTaTMYECKOT0 aHAJIN3a, OPHEHTUPOBAHHBIE HAa PabOTy CO CTpOKaMH, JINOO He 00ecIeunBaloT
JOJDKHBII ypOBEHb HMCTHHHBIX CpabaThIBaHMH, TMO0 MPOIMYCKAIOT OONBIIOE KONMYECTBO
omuboK, MO0 HEMPUMEHUMBI K IPOMBIIIICHHBIM TpOrpaMMaM OOJBIIOro pazMepa, 00
peann3oBaHBl B paMKaxX 3aKPBITBIX HHCTPYMEHTOB. [l Hamboiee ITOIHOTO MOKDPBITHS
neeKTOB B PEATbHBIX MpOrpaMMax HEOOXOOMMO OOHApyXHBATh OMIMOKH, MPOUCXOISAIINE
JMIIF Ha HEKOTOPBIX MYTSX BBINONHEHUS W HE OINpeAesieMble €IMHCTBEHHOH TOYKOM
NpOrpaMMbl, W, KpOME TOTO, HAaxOAWTh OMIMOKH, CBSI3aHHBIE C HEKOPPEKTHBIM
UCIIOIb30BaHUEM HE TOJBKO OWOJIMOTEYHBIX, HO W IIOJb30BAaTeNbCKUX (QyHKuuMH. [lenbsro
JTAHHOTO HCCIIEOBAHUS SIBIISIETCS OCTPOCHHE aNrOpUTMa IOHMCKA ONIMOOK MpH paboTe co
CTPOKaMH, YHOBIETBOPSIOIIETO 3THM CBOWHCTBAM, OTPAaHHYEHHWIO HA KOJHMYECTBO JIOXKHBIX
cpabareBannii (He Gomee 40%), MPUMEHUMOTO K JIOOBIM IIporpamMmaM Ha si3bike CH U
MacIITabHPYIOMErocss Ha MPOEKTH U3 HECKONBKUX MIJUIHOHOB CTPOK. J[isi permeHust 3Toi
3ama4n ObLT HCIONIB30BAaH paHee pa3pabOTaHHBIA MOAXOX CHMBOJBHOTO HCIIOJHEHHS
¢ 00BeIMHEHHWEM COCTOSHHMA, KOTOPBIH OBUT aganTHPOBaH I TMOAACPKKH CTPOKOBBIX
omepaiit. Ha ocCHOBe anmroputMa OTCICKHBAHUS OMNEpAlUil C [EIBIMH YHUCIAMH ObUT
MPEUIOKEH AJITOPUTM OTCIICKUBAHUS JJIMH CTPOK. Pa3paboTaHHbIH alrOpUTM peanu3oBaH B
KayecTBe OJHOTO U3 JICTEKTOPOB CEMEHCTBa JIETEKTOPOB IepernoiHeHus Oydepa B pamkax
HHCTPYMEHTa CTATHYECKOro aHanu3a Svace. B pesynbrare Ha TectoBoM Habope Juliet test
Suite Ha TecTax, CBSI3aHHBIX C IIEPENOJHEHHEM IpaBod TIpaHMuBl Oydepa, MOKpeITHE
cpabaTelBaHMSIMU yBemH4IHIoch ¢ 15,4% mo 41,5%, npu sToM He OBUIO BEIIAHO HHU OJHOTO
JOXKHOTO IpexynpexaeHus. [lo cpaBHeHHIO ¢ M3BECTHBIM aHaim3aTopoM Infer ma mHaGope
Juliet mHCTpyMeHT Svace 0e3 MOANEPKKU CTPOK MOKAa3bIBAaCT MNPHOIM3UTENBHO TE HKe
pe3ynabTaThl, 3a HCKIIOUCHHEM CIIydas CIIOXKHBIX LHUKJIOB, a CBSI3aHHBIE CO CTPOKaMHU
nepenoiHenus Infer, kak npaBuIo, HE HAXOIMT.

55

mailto:eupharina@ispras.ru

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

KiroueBble €JI0Ba: CTATUYECKUH aHATINU3; CUMBOJIBHOE HCIIOJIHEHHE; aHAIU3 CTPOK
DOI: 10.15514/ISPRAS-2018-30(5)-3

Jas nuruposanusi: dynuna U. A., Mansiues H. E. O6 ogHOM nozaxoze K aHaIU3y CTPOK B
s3pike Cu 171t moucka nepenonHenus Oydepa. Tpyasr UCII PAH, tom 30, Bem. 5, 2018 .,
ctp. 55-74. DOI: 10.15514/ISPRAS-2018-30(5)-3

1. BeedeHue

BaxxHpIM citygaeMm OmMOKHM TepernonHeHust Oydepa SBISIETCS MEpEroHeHUE MpH
pabote co crpokamu. Ctpoka B si3pike CH IpeaCcTaBseT cOO0H MacCHB CHMBOJIOB,
KOHIIOM CTPOKHM CUHMTACTCS MO3MLUS OJVDKaKIIero K Hayaly HYJEBOTO JJIEMEHTA.
Oco0eHHOCTBIO TaKHX JC(EKTOB NEPETIOIHEHUS SIBISETCS. TOT (akT, 4To padboTa co
cTpokamMu B s3blke CH NIPEMMYIIECTBEHHO OCYLIECTBISIETCS C [OMOIIBIO
CrelUaJIbHbIX OHONMMoTeuHbIX (GyHKUMHA. [Ipy 3TOM, Kak NpaBUIIO, MPOHMCXOIUT
JOCTYII K 3JIEMEHTaM MacCHBa IO pa3jIMuHbIM MHAEKCcaM, HauOOJBLINN U3 KOTOPBIX
MOXET OBITh PaBeH JUIMHE CTPOKH. DTO ITOBEJCHHE caMo Mo cebe HeOe30IacHo
TOrZla, KOIJla HEBO3MOXHO T'apaHTHPOBATh, YTO IJIMHA CTPOKH 3aBEJOMO MEHBIIC
pasMepa OTBENEHHOTO MOA He€ MacchBa. B TakMx cCioy4asx HCIOIBb3YIOT
«be3omacHbIe» BepcuHM (QYHKIHMH, IONONHUTENBHO INPHHUMAIOIINE B KadeCTBE
napaMeTpa 4HcIiIo, ¢ TOMOIIbI0 KOTOPOTO OTPaHNYMBACTCS MaKCHMaJbHBIA MHICKC
JIOCTyNa K CTPOKE, HO JaXKe TaKOH MOJXO0J HE MOXET TapaHTHPOBATh OTCYTCTBHSA
OIINOOK.

OnmHuM M3 CIOCOOOB yCTpaHEHHs pa3IMYHBIX Je()EeKTOB HA CTaguM pa3pabOTKH
MPOTPaMMBEI SIBJISIETCS cTaTHYecKuil aHamu3. CyIecTBYIOIHE METO bl CTATHIECKOTO
aHanM3a, OpUEHTHUPOBAaHHBIE Ha PaboOTy co CcTpokamu, JuOO0 HE 00eCreunBarOT
JOJDKHBIH YpOBEHb HWCTHHHBIX CcpabaTbIBaHMM, JHOO MPOIYCKAlT OojbIIoe
KOJINYECTBO OWIMOOK, JHOO HENPUMEHMMBI K MPOMBIIIICHHBIM IPOTpaMMaM
OoJIbIIOrO pa3Mepa, MO0 pealM30BaHbl B PaMKaX 3aKpBITHIX MHCTPYMEHTOB. J[is
HanboJee MOJHOTO TOKPBITHS Ae()EKTOB B PEANBHBIX IpOrpaMMax HE0O0XOIHMMO
OGHapy)KI/IBaTB OH_II/I6KI/I, MPOUCXOAAIIHNE JINIb HA HEKOTOPBIX IMYTAX BBINTOJIHCHUA
U He oIpezessieMble eAMHCTBEHHOW TOYKOW MPOrpaMMBbl, U, KpOME TOTO, HAXOIUTh
OLIMOKH, CBSI3aHHBIE C HEKOPPEKTHBIM HCIIOJIb30BAaHUEM HE TOJIBKO OMOIMOTEUHBIX,
HO M TOJIb30BATENILCKUX (yHKIMH. [BBIONHEHMS 3THX TpeOOBaHWI aHAIM3
JIOJDKEH OBITh MEXIIPOLEAYPHBIM U UyBCTBUTEIILHBIM K ITYTSIM.

B nmanHol pabore mpearaeTcs HOAXOJ K aHAIN3Y CTPOK B s3bike CH Ha OCHOBE
CHMBOJILHOT'O MCIIOJHEHHS C 00bEIMHEHUEM COCTOSHUM. PaccMaTpuBaemblii MeTox
ObLT peanu3oBaH B paMKax MHCTPYMEHTa cTaTuueckoro adaimsa Svace [10].
[JanbHeiimee H37I0KEHHE OPraHW30BaHO cledylomuM oOpasoM. B pasm. 2
NPUBOAMTCS KPAaTKOE OMHCaHWe Oa30BOTO aJrOPWUTMA, BKIIOYAIONIEE OIHCAHHE
BHYTPHUIIPOLIEAYPHOTO aHalW3a METOAOM CHMBOJBHOTO HCIIOJIHCHHS,
MEKIPOLETYPHOTO aHalN3a C MOMOINBI0 METOJa PE3loMe M OOMIETo mojaxona K
MOWCKY TepenonHenus Oydepa. Pasn. 3 MOCBAMEH pacHIMPeHHIO alTOPUTMA
CHMBOJIbHOTO HCIIOJIHEHHSI M alroputMa mnoucka Oydepa mmst aHammsa CTPOK

56

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Bbim. 5, 2018 r., ctp. 55-74

B sbike Cu. Pa3zn. 4 comepuT pe3yibTaThl TECTUPOBAHUS —PeaU3aLMH
paccMoTpeHHOro Meroxa. OIMCaHWE CYIIECTBYIOIIMX METOHOB CTaTHYECKOro
aHaM3a Il IOMCKa OIMMOOK IpH paboTe CO CTPOKaMH NMPUBOIUTCS B pasd. 5. Pazm.
6 3aBepIIaeT CTaThIo.

2. O6wuti nodxo0 Kk noucky deghekmos rneperosIHeHus1

2.1. CumBoOnbHOE NcnosriHeHue ¢ oo LeANHEeHneM COCTOAHUN

ANTOpPUTM BHYTPUIIPOLIEAYPHOTO aHAIM3a OCHOBaH Ha IOAXOJAE CHMBOJIBHOTO
UCIIOJIHEHUSI ¢ OOBEIMHEHHEM COCTOSIHUMA. AHAJIN3 IPOU3BOJUTCS HAJl Pa3BEPTKON
rpadga TOTOKa YNpaBJCHUS HAa HECKOJBKO HTepaluid. AOCTPaKTHOE COCTOSHUE
B Ka&X/IOH TOYKE MPOTrpaMMbl BKIOYAET B ceOsl MpeauKar JOCTHXKHUMOCTH ATOW
TOYKH T ¥ a0CTpaKTHbIC 3HAUCHNUS IIEPEMEHHBIX U AUCEK MaMATH.
AOcCTpakTHBIE ~ 3HAY€HHMs I[POTPaMMbl NPEICTABIAIOTCS CHMBOJBHBIMH
BBIPXKCHUSIMH, MHOKECTBO KOTOPBIX 0003HaunM kak SE. K takoBeIM oTHOCSTCS:

1) KkoHCTaHTHbIC OUTOBBIC BEKTOPa (PUKCHPOBAHHOTO pa3Mepa;

2) CcHUMBOJIbHBIC IEPEMEHHBIC (MX MHOXKECTBO 0603HaunM S C SE);

3) apudmeTHUECKHE ONEPAIMH HAJl CAMBOJIBHBIMU BHIPAKEHUSIMHU.
Eciu MHOXecTBO niepeMeHHBIX 0003HAa4UTh Kak V, TO COOTBETCTBHE MEPEMEHHBIX
X abCTpakTHBIM 3Ha4YeHWsIM 3anaércs otoOpaxenueMm o :V — SE. Ilpeankar
JOCTHKUMOCTH, B CBOIO Ouepe/b, 3allMChIBAETCSI KaK CBOOOIHAs OT KBaHTOPOB
(opmyna B Teopur OUTOBBIX BEKTOPOB, T7ie B KAUECTBE MEPEMEHHBIX BBICTYMAIOT
CHMBOJIbHbIE TIEPEMEHHBIX U3 MHOXKECTBA S.
B HayaJsbHOM COCTOSHMM Ha BXOA€ B (YHKIMIO TPEAUKAT JIOCTHIKHMOCTH
TOXJICCTBEHHO DPABEH WMCTHHE; 3HAUYCHHSAM (OPMAIBHBIX MapaMeTpoB W sUeHKaM
B NaMSTH COIOCTABJIEHBI pa3JIMuHbIC HOBBIE CHMBOJIBHBIE IIE€PEMEHHBIC. AHAIN3
OCYIIECTBIISIETCS ITyTEM IIPOJBIDKCHHS a0CTPAKTHOTO COCTOSHHMS 10 pEOpam rpada
Pa3BEPTKHU.
[Ipn poxo’kaeHNH WHCTPYKIMU, U3MEHSIONIEH 3HaYeHHe HEeKOTOPOH NepeMeHHOM
WU SYCHKH MaMsITH, €€ CUMBOJIHOE BBIpQ)KEHHE B OTOOpaXEHHH G OOHOBIISETCS
B COOTBETCTBHHU C CEMaHTHKOM MHCTpYKIMU. [Ipy IpOX0XKICHUH Yepe3 HHCTPYKIUN
BETBJICHUSI OOHOBJIAETCS NpEIUKAT JOCTH)KUMOCTH: TPOUCXOANUT KOHBIOHKIIHS
npe/uKaTa T ¢ yCJIOBHEM BBIOPaHHOM BETKH, KOTOPOE BBIYUCIISIETCS C TOMOUIBIO G.
Eciu B HEKOTOpPOW HWHCTPYKIIMIO BXOIUT OOJbIIe OAHOTO pedpa Ha rpade, TO
MPOUCXOJHUT CIUSIHAE COOTBETCTBYIOIUX aOCTPAKTHBIX COCTOSHHUN Ha BXoje. Ilpu
9TOM MPEAMKAT TOCTHKUMOCTH BBIYHCIISIETCS KaK IM3bIOHKIIMS YCIOBHH C BXOIHBIX
pédep, Kax10€ U3 KOTOPBIX MPEICTABISIET COO0H KOHBIOHKIIMIO COOTBETCTBYIOIIETO
IpennKaTa JOCTHKUMOCTH M YCJIOBHH PaBEHCTBA 3HAYCHUS IIOCIEC OOBEIMHEHHS
3HAYEHHIO HAa PACCMATPUBAEMOM BETKE JUISl BCEX IIEPEMEHHBIX U STYEEK MaMsITH.

57

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

2.2. Mouck nepenonHeHus 6ycepa B pamkax ogHOW (pyHKLUMN

3ajgayell aHanM3a SBISIETCS OOHApy)KeHHWE TaKUX IyTell Ha rpade pa3BEPTKH
(Ha30BEM DT MYTH OWUOOUHBIMU), KOTOPBIE, BO-TICPBBIX, SIBISIFOTCS BBITIOIHUMBIMA
Y, BO-BTOPBIX, IPOX0XKJICHUE KOTOPHIX Bcer/a (TpH JIFOOBIX BO3MOKHBIX 3HAUCHHUIX
BXOJHBIX IIEPEMEHHBIX) MPHBOJIUT K OmMOKe mepenonHenus Oydepa. Takoii
MOAXOA BBIOpaH C IENbl0, C OJHOH CTOPOHBI, OOHapyXUBaTh Je(EKTHI, s
KOTOPBIX HE CYIIECTBYET €ANMHCTBEHHOW OIIMOOYHOM TOYKH IPOrPaMMBbI, U B TO Ke
BpeMs He BbIIaBaTh OOJBLIOE KOJMYECTBO JIOXKHBIX MPEAYNPEKACHHH, CBA3aHHBIX
C HEM3BECTHBIMH BO3MO)XHBIMH KOHTPAKTaAMH aHAIM3UPYEeMbIX GyHKIwmi [7].

st petieHust 3Toi 3aauu B abCTPAKTHOE COCTOSHUE MPOrpaMMbl GbUTO 106aBICHO
yacTuyHOe oroOpaxenue VS :SE — Summary, xotopoe it HEKOTOPBIX
HCJIIOYHNCIICHHBIX 3HAYEHUH IporpaMMmBbl, MpEACTaBJICHHBIX CHUMBOJIbHBIMHA
BBIPpAXKCHUAMU, OIPCACIIACT COOTBCTCTByIOHlI/Iﬁ DJICMEHT U3 MHOXXECTBA Summary.

DneMeHTHl MHOXKECTBa SUMMary 0600maT HHPOPMAIHIO O HEKOTOPOM 3HAYCHUH
B JIAHHOW TOYKE MPOrPaMMBI, KOTOpask MOXET ObITh HCIIOIb30BaHA IS
oOHapy)XeHHs1 OIIMOKM TEPeNoJHeHUs, €CIM JTO 3HAYCHHE HCIOJIb3yeTCs
B KaueCTBE MHJIEKca ISl JocTyna K Oydepy. B nmpou3BonsHON Touke IporpamMMsl (,
ecad Ui HEKOTOPOTO CHMBOJBHOTO — BBIpaKeHHs: X € SE M3BECTHO
VS(X) =s € Summary, To mais 3HAYCHHS S W TMPOU3BOJBHOIO CHMBOJBHOTO
BeIpakeHust h € SE, He 3aBHCSIIEro OT BXOJHBIX IapaMeTPOB, MOYKHO MOCTPOHTh
dbopmynsr NotLess(q, s, h) u NotGreater(q, s, h) B Teopuu OHTOBBIX BEKTOPOB,
YIOBJICTBOPSIIOIINE CICAYIOUIEMY YCJIOBHIO: ISl JIIOOOr0 KOHKPETHOTO IYTH
BBITIIOJTHEHHST (DYHKIMH OT Havana (pyHKLHH 0 TOYKK J, €CIIM BBIIOIHEHA (hopMyria
NotLess(q, s, h) (NotGreater(q, s, h)), To mis npoiinensoro myru no ['TIY npu
JTFOOBIX BO3MOXKHBIX JUISI OTOTO IyTH 3HAYCHMSIX BXOJHBIX MApaMETPOB BCETa
B Touke (BeimomHeHO X >h (X <h). Takum o6pa3om, eciu B TOuke aC AOCTyIa
Kk Oydepy pazmMepoM S CHUMBOIBHOE BBIPAKEHHUS /I WMHAEKCA B JaHHOW TOYKE
paBHo | € SE, nmpeaukaT TmyTH paBeH M M BRIIONHEMA (opmysa
n A NotLess(ac, i, S), To cymecrByer myts Ha ['TIY, npoxoasiumii yepe3 TOUKy ac
U TaKOM, 4TO:

1. oH sBusSeTcs BBHINOJIHUMBIM (Tak Kak JJIsi HEKOTOPOro Habopa BXOIHBIX
MIepeMEHHbBIX UCTHHHA (hopMyIa);

2. Bcerma Ha TOM IIyTH B TOYKE AC BBINOJIHEHO 1> S (Tak Kak BHIIOJHEHA
dopmyna NotLess(ac, i, S)), To ecTh mpoucxoauT nepenonHeHue oydepa.

3ameTHM, 9TO HallICHHBINH TyTh YIOBICTBOPSCT OMPEICICHHUIO OMHOOYHOTO MYTH,
a, 3HAYMT, BHIMOJHUMOCTH (opmyibsl T A NotLess(ac, i, S) siBisieTcst 10CTATOUHBIM
ycnoBueM omMOKH. JlaHHBIH (akT MO3BONIET CBECTH 3a7ady I[OMCKA OIIMOOK
K 3aJa4e MOCTPOCHHUsI KaK MOXKHO OoJiee cadblX W YIOBJICTBOPSIOLINX YKa3aHHBIM
Boile TpeboBanumsiM yenosuid NotLess(q, s, h) u NotGreater(q, s, h).

[loapoOHOE paccCMOTpEHHE JIEMEHTOB MHOXKECTBA SUMMAry W MOCTPOCHUS
MCKOMBIX YCJIOBHH JJIS HUX BBIIIOTHEHO B craThe [8]. 3mech B KauecTBe mpumepa

58

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 55-74

OTMETHUM, YTO OJHHMM U3 THIIOB DJIEMEHTOB 3TOI0 MHOKECTBA ABIISIOTCS KOHCTAHTBHI,
KOTOpbIe oToOpakenmeMm VS Bcerma mepeBoastes B ceOs. sk TPOM3BOIBHOM
KOHCTaHTHI c € SE HCKOMBIM yCIIOBHEM SIBIISICTCSI dopmyna
NotLess(q, ¢, h) = ¢ >h. [eiicTBUuTEIpHO, TaK KaK 3HaYCHHs C ¥ N HE 3aBHCAT OT
BXOJIHBIX [IEPEMEHHBIX, TO Juis ito6oro mytu ['ITY ycnosue ¢ > h Boimoaanmo 1160
JUTSL BCeX HaOOPOB 3HAYEHHI BXOIHBIX MAPaMETPOB, JTUOO HU JUIs OJHOTO.

2.3. MexnpouenypHbI aHanus3

MeXmpornefypHBIii aHANU3 MPOU3BOIUTCA C IOMOIIBI0O MeToma pestome. [pad
BBI30BOB MPOTpaMMbl MPHUBOANTCA K AUKINYECKOMY BHAY pPa3pblBOM OOpaTHBIX
pédep, m 3aTeM Bce (YHKIHHU MPOTPAMMBI aHATM3UPYIOTCS SIHMHOXABI B 00paTHOM
TOIIOJIOTUYECKOM TIOpsiike. B pesynpraTe BHYTPHIIPOLEAYPHOTO aHamU3a (QyHKIUH
(hopMupyeTCst M COXpaHIETCs Al TTOCIETYIOIEro UCTIONb30BaHMS TaK HAa3bIBaeMOE
«pe3roMe» — KpaTKOe ONHCaHNE MOBEACHUS (QYHKINKM B TEPMUHAX CAMOT'O aHAJIH3a.
Janee mpu aHanu3e WHCTPYKUMH BBI30OBOB II0JIb30BATEIBCKUX (YHKIMH B CHITY
nopsaka ananuza (QyHkuuii rapantupyercs (B OTCYTCTBHE PEKYpPCHH), 4TO
BbI3bIBaeMass (YHKIUs YK€ MPOaHAIN3UPOBAaHA, 3HAUUT, Ml HEE yKE HMMeEeTcs
pes3ioMe, KOTOpOoe IPUMEHSAETCS B TOUKE BBI30BA.

Hdns mpoctoTbl OyneM cuuMTaTh, YTO B pe3ioMe (YHKIMU 3amvChIBAETCS
00BeTMHEHHOE aOCTPAKTHOE COCTOSIHME W3 COCTOSHHMH B TOYKax BO3Bpara M3
¢yaxuun. PaccMoTpuM B 00mMX uyepTax, Kak IPHU BBI30OBE (YHKIIUH MPOUCXOIUT
NpUMEHEHUE e€ pe3toMe, T.€. C MOMOIIbI0 COXPAaHEHHOTO aOCTPAKTHOTO COCTOSHUS
BBI3BaHHOH (DyHKIMHM MOIU(HIMPYETCs TEKyIee COCTOSHUE B TOUKE BBI30BA. DTO
MPOUCXOJHUT B HECKOJIBKO JTAIIOB:

1. CUMBOJBHBIM TEpPEMEHHBIM, COOTBETCTBYIOIIUM B pe3loMe (opMasbHBIM
aprymMeHTaM (QYHKIWH, CTaBsTCS B COOTBETCTBHE CHMBOJIBHBIC BBIPAXEHUS,
COOTBETCTBYIOIIME B TOYKE BbHI30Ba (DAKTMUECKUM apryMeHTaM (DyHKIHUH.
[lepemeHHO#, B KOTOpPYIO B TOYKE BBI30BAa COXPAHIETCS PE3yJbTaT (QYHKIIHH,
CTaBUTCS B COOTBETCTBHE CHMBOJIEHOE BBIPAKEHHME, COOTBETCTBYIOILIEE B PE3IOME
BO3BPALAEMOMY 3HAUEHHIO.

2. OOHOBINAIOTCS OTOOpA)XEHHE G W NPEANKAT M B TOYKE BbI30BA. CHMBOJIBHBIC
BBIPOKEHUS] «MUTPHUPYIOT» B KOHTEKCT BBI3BIBAEMOW (DYHKIIMH PEKYpCHUBHO, 06a30it
PEKypCHH SIBISIETCS COOTBETCTBHE CHMBOJBHBIX IIEPEMEHHBIX M CHMBOJBHBIX
BBIp)XEHUH, IOTy4eHHOE B 11. 1.

3. Ilpu cONOCTaBIEHNH CHMBOJIBHBIX BBIPAXKCHUI MHUIPUPYIOT Takxke 3HaYeHUs! VS
JUTSI 9TUX BBIpakeHuH [8].

Jns opraHM3anM MeXIIPOLEAYPHOTO TOMCKa INepenosHeHus: Oydepa B IEpBYIO
ouepenb HEOOXOAWMO TMOANEP)KATh Ciydail MEXIPOLEAYPHOTO BBIYHUCICHUS
uHAeKca. M 3TOrO pealiM30BaHO OTCIIEKHMBAaHWE 3aBUCHMOCTEH MEXIY
[EJIOYNCICHHBIMI TIapaMeTpaMy (YHKOIHM M BO3BPAI[AEMOTO M H3MEHIEMBIX
BHYTPH (DyHKLIMH [EJOYUCICHHBIX 3HaYeHHUH (C Y4ETOM YCIIOBUI IyTeH).

59

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

Kpome sToOro, Takxke BaKHO Y4YeCTb BO3MOXKHOCTH MEKIIPOLEAYPHOIO AOCTYIA
K Oydepy. dnsd HHCTpYKUMH [OCTyma, KOPPEKTHOCTH KOTOPBIX BO3MOXKHO
MIPOBEPUTH TOIBKO BO BHEIIHEM KOHTeKcTe (Oydep W/uinn HHACKC BBIYUCIIIOTCS M3
mapaMeTpoB), B pe3oMe (QYHKIHMU AOOaBISETCS yCIOBHE OMMOKH. YCIOBHE HpHU
NPUMEHEHUH Pe3l0Me MUTPHUPYET B KOHTEKCT BBI30BA, TJie JINOO mpoBepseTcs (eciau
uHopManuK yXkKe TOCTaTOYHO), JMOO CHOBAa 3alUCHIBACTCS B PE3lOME, €CIH
MPOBEPUTH €ro MO-IPEKHEMY MOXKHO TOJBKO B BBI3bIBAEMON (YHKIIMH.

3. AHanus cmpok

INoamepxKa CTPOKOBBIX OIepanuii OyAeT 3aK/IF09aThCs, BO-TIEPBBIX, B PACIINPCHUN
abCTPaKTHOTO COCTOSHHUSA OTOOpaKCHHEM, 3aJalOlIMM JUIMHY KaKIOH CTpOKH,
M y4éTOM €ro 3HAa4eHHH TIIpH IIOCTPOCHUH TIpeauKara m. OTO IO3BOJIUT
OoOHapy)XMBaTh HECOBMECTHBIC H3-3a OTPAaHMYCHUI HA AJIMHBI CTPOK IYTH, YTO
COKPAaTUT KOJHMYECTBO JIOKHBIX cpadaThlBaHM HE TONBKO I JIETEKTOpa
nepenoyHeHus Oydepa mnpu paboTe co cTpokamMu (JUIi KOTOPOIO aHAIIU3
BBIMOJIHUMOCTH TaKUX IIyTe OCOOCHHO KpUTHYEH), HO M JUI1 OCTalbHBIX
qYBCTBHUTENBHBIX K IyTSIM JETEKTOPOB.

Bo-BTOpEBIX, NpeaiaraeTcs paciiupuTh oTodpakenue VS 1iisi oOHapyKeHUs OIHO0K
npu paboTe o CTpOKaMU. JTO MO3BOIUT UCIIONIB30BATh Y)KE UMEIOIUNCI MEXaHU3M
aHaIM3a [1EJOYUCICHHBIX 3HAUSHUH [UIs aHaJIN3a JUIUH CTPOK.

3.1. PacwumpeHune abGCTpaKTHOro COCTOSIHUA AnNA paboTbl €O
cTpokamu

Conepxumoe KaxJIOH CTPOKM B aOCTPAaKTHOM COCTOSHHM IIPEJCTaBICHO OJHUM
CHUMBOJIBHBIM BBIPDOKEHHEM, O3HAUaloOIleM [UIMHY JaHHOW cTpoku. Beibop Takoii
a0CTpakiuu, ¢ OJHOM CTOPOHBI, IOMOKET HAWTH OOJIbIIE OMUOOK W HE BBIJABATH
JIOXKHBIX MPEIYNPEXKAEHHH Ha HEBBIIOIHUMBIX TYTSIX, HPEAUKATBl KOTOPBIX
CoJiepXKaT YCIOBUS Ha JUIMHBI CTpoK. C pyroil CTOpOHBI, J00aBIeHHE BCETO JIHIIh
OHOTO CHMBOJBHOTO BBIPOKECHHS I KaXIOW CTPOKH HE MPUBEAET
K 3HAUATEIIFHOMY YBEJIIMYEHHUIO pa3Mepa abCTPaKTHOTO COCTOSTHUSL.

Takum o00pazoMm, K aOCTPaKTHOMY COCTOSHHIO MpPOTPaMMBI J00aBISIETCS HOBOE
orobpaxenne Slen : P — SE, rime P — MHOXeCTBO MepeMEHHBIX, KOTOPBIE MOTYT
YKa3pIBaTh Ha CTPOKY C TOUYKM 3peHus s3pika Cu (HampuMmep, MOXHO BBIOpATh
MHO)KECTBO BCEX IEPEMEHHBIX yKa3aTeIbHOTO THIIA).

B HayaspHOM COCTOSIHMM IPOTpaMMBI KaXIOW mepeMeHHOW n3 P comocraBmsercs
HOBas CHUMBONbHAas mepeMeHHas. CTPOKOBBIM JUTEpajaM COIOCTaBIISIOTCS
KOHCTAaHTBI, paBHbIE 3HAYCHUIO JUIMH OTUX JIUTEpaJoB B 0E33HAKOBOM
IpeCTaBICHUN.

Pacmmpsitorcss mepemaTouHble (YHKOMH UIT WHCTPYKIWH NPHCBaMBAHUS
NepeMEHHBIX U3 MHOXKeCTBa P, apndmeTnyeckux onepanuii HaJ HUMH, HHCTPYKLUH
JIOCTyIIa K MAaCCHUBY.

60

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 55-74

Taxke cpenu WHCTPYKLMH BbI30Ba (YHKIMH OTIEIBHO pPaccMaTpUBAalOTCA
WHCTPYKIUHU BBI30Ba OMOIMOTEUHBIX (YHKIWH paboTH co cTpokamu. Paccmorpum
COOTBETCTBYIOLIYIO NIepeNaTOYHYI0 (QyHKIHIO HA MpuMepe QyHKIMU strncpy.

Sleng, Fsrc—Ils Slen;, Fdst - 1ld obFn— wn
v >y, s A lr=ls
=\ m<yls ANon<, ld Alr=1d
n <y ls A vn >, ld Allr =, vn

STRNCPY
Slenoyt = Slenip{dst — Ir} mwout = Tin A7’

JanHass QyHKUMS NpUHUMaeT TpH mHapaMerpa: aapec dst, Kylda KOMUPYKOTCS
JaHHBIC, aJpec SrcC, OTKyla KOMUPYETCs CTPOKa, M IEJIOYHCICHHOE 3HA4ECHHUE I,
oTpezensoniee HanoopIee KOIMIECTBO CKONMMPOBaHHBIX OaifT. IlycTs Ha pebpe,
BXOJSIIIIEM B MHCTPYKLHMIO BBI30Ba JaHHOW (YHKIMH, 3HaUCHHS oToOpaxkeHus Slen
st cTpok dst u src paBHsl Id 1 IS cOOTBETCTBEHHO, CHMBOJIBHBIM BBIPa)KCHHEM
JUIsL TIepeMeHHOM n siBisietcst VN. Toraa Ha BBIXOTHOM pebpe M3 ATOH MHCTPYKLUH
UL 3HaYeHHWs JUIMHBL dst BEIOEpEM HOBYIO CHMBOJIBHYIO IlepeMeHHywo I,
a ycJIoBus Ha e€ 3Ha4eHHs J00aBUM K MPETUKATY TOUKH.

st ompenenenust 3HadeHus Ir ciemyer paccMoTpetsh Tpu ciydas. Ecimu 3HaueHue
nepeMeHHoM n Goubiie UHB src (VN > 1S), To mnHa dst mocse BeI30Ba OyIeT
pasusthes aaude src (Ir = 1s). Ecnu 3Hauenune n He Gonbiie mmubl src (Vvn <1S),
TO CpeIH MEPBHIX N OalT CTPOKM ST¥C 3aBEAOMO HET HYJIEBOTO, U 37I€Ch BO3MOKHBI
nBa ciaydas. Ecii 3HaYeHWe n TakXkKe HE MPeBOCXoAuT MiuHy dst (vh <Id), To
mmmHa dst ocranercst mpexkHed (Ir =1d), Tak kak monokeHue OnvKaniero
K Hayvaly CTPOKHM HyJeBOro OaiiTa He M3MEHHTCS. B IPOTHBHOM ke ciydae Ipo
JUIMHY dst MOXXHO CKa3aTh JIMIIb, YTO OHA 3aBEIOMO HE MEHbIIE n. AHAJIOTUYHbIE
MOCTPOCHHUS MOXHO TMPOBECTH U AJIS IPYTUX (PYHKIHH pabOThI CO CTpOKaMHU.

CBs3b MeEXAy 3HAUEHUSIMM LEJIOYUCICHHBIX IEPEMEHHBIX M JUIMHAMH CTPOK
BO3HMKAeT NPU BbI30BE (YHKUMH, BBMHCIAIONNX JIMHY CTPOKH, M paborte
C MaccHMBaMH NIOCHMBOJBHO. Tak, Hampumep, HpH 00pabOTKe HWHCTPYKINH
X = strlen(str) CUMBOJIBHOE BBIPOKEHUE [JId JUIMHBI CTPOKU sStr
KOMUPYETCsl U1 NEPEMEHHON X.

Slen;, - str — Is

STRLEN
Tout = Tin{x > s}

Ilpu mnpucBamBaHMM HOBOTO 3HAUYEHHA B DJEMEHT MaccuBa str[i] = x
BO3MOXHBI JIBa CJIy4as: €CJHM IpUCBAaMBAaEMOE 3HAYCHHE PaBHO HYJIIO M HMHJICKC
MEHBIIIC TEKYIICH MJIUHBI, TO JJIMHA CTPOKM Str cTaHeT paBHAa 1 ImOO He
W3MEHHUTCS B IPOTUBHOM CITydae.

61

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

Sleni, Fstr = 1ls obx=vw okbi=w
oy (ve #0 V Is <, vi) A lr=1s
= (ve =0 A ls 2, vi) A lIr =i

Slen gy = Slen, {str — Ir} mou = mm A7

BUFASSIGN

IMomnepkka HOBOrO OTOOpaXKEHUs TPeOyeTcs M INMpH OOBCIUHCHHUU COCTOSHHMA
B TOYKaX CIMSHHA: IpH OOBbEAMHEHHMH 3HAUCHMI IEpeMEHHBIX W3 MHOXecTBa P
OOBEIMHAIOTCS HE TOJIBKO MX CHMBOJIGHBIC BBIPAXKEHHS, HO M JUIMHBI HX CTPOK
OOBEIUHSIOTCS AHAJIOTHYHBIM CIIOCOOOM € yYETOM YCIOBHM Ha OO0BEIUHIEMBIX
BETKaX.

Jnst opraHuM3anuy MEXIPOLEIYPHOro aHanu3a oObeIuHEeHHe oToOpaxeHui Slen
Ul TOYEeK BBIXOJA W3 (QYHKIMHM NOMeIaercs B pestome OQyHKuud. I[lpm
NPUMEHCHUY PE3lOMe B TOYKax BBI30Ba 3HaueHUs Slen u3 pesrome TpaHCIUpPYOTCS
B KOHTEKCT BBI3BIBAIOIICH (YHKIMH M COIOCTABIAIOTCA COOTBETCTBYIOLIMM
MEepeMEHHbBIM K3 MHOXecTBa P 1Mo ToMy k€ MNPUHLIMIY, Kak HPOHCXOTUT
TPaHCIISIUS OTOOPaXKEHUs G.

3.2. PacuumpeHue otobpaxeHuna VS ans obHapyXeHusa ownbokK
npu paboTe co cTpokamm

Wnest paccmMaTpuBaeMoro airopuTMa 3akKiIOdaeTcs B TOM, YTOOBI aHAJIM3UPOBATH
JUIMHBl ~ CTPOK aHAJIOTHYHO TOMY, KaK aHaJIM3UPYIOTCS [EJIOYHCIICHHbIC
HepeMeHHBIe, TIPH 3TOM 00ecreyrBasi COBMECTUMOCTh 3THX ABYX aHAJIH30B, TO €CTh
yTOOBI MH(OpMAIMI O JJIMHAX CTPOK MOTJa OBITH HCIONB30BaHA I aHaIN3a
LEJIOYMCIICHHBIX 3HaueHHd u obpatHo. C »3Toil wHenbto orobOpaxeHue VS
pacumpsiercss JUisi CHMBOJIBHBIX — BBIP@KEHHI, CONOCTABISIEMBIX CTPOKaM
orobpaxxeruem Slen.

Kak yxe ObLIO CKa3aHO, BCE KOHCTaHThI oTOOpakeHHeM VS mepeBoasTcs B ceos,
MO3TOMY [UISi CTPOKOBBIX JIMTEPANOB, 3HaueHMs Slen it KOTOPBIX SIBISIOTCS
KOHCTAaHTaMHU, paciiupenne VS nmpoucxouT eCTECTBEHHBIM 00pa3oM.

CraHJapTHbIE OIIEpPALUK HAJl CTPOKAMHU MOJIEIUPYIOTCS [0 aHAJIOTHH C OIepaLlUsIMU
C LeNbIMH YHUCIAMHU: TaK, BBI30B (YHKIMH Strcpy MOJACIUPYETCs Kak
NpUCBaWBaHUE JUIMH, Strcat — Kak CIOXEHHEe M T. 1. {11 IMpOBEpPKH BHI30BOB
OMONMMOTeYHbIX (QYHKIMI Ha BO3MOXKHOE IEPEMOHEHHE CTPOSATCS (HOPMYIIBI
NotLess u NotGreater, anajormuHble TeM, YTO HCHOJB3YIOTCS TPH aHaJIN3e
MHCTPYKIMH JocTyna K Oydepy, HO B KayecTBE MHJAEKCA HCIOJIB3YETCs
MaKCHMaJIbHOE CMEIEHHE, 110 KOTOPOMY B COOTBETCTBHM C CEMaHTHKOH
MHCTPYKIUH OYAET MPOU3BOAUTHCS AOCTYII K CTPOKE.

PaccmorpuMm ommcaHHBI B 0OIIMX Yeprax MOAXOX Ha mnpumepe. B ¢yHkimw,
npuBenEHHONH Ha Jmctunre 1, myth 2-3-4-5-6-7 sBisiercss ommOoyHbIM. UTOOBI
OOHapYXUTh 3Ty OWIMOKY, HEOOXOIUMO J0Ka3aTh, YTO /S HEKOTOPOTo IyTH
B TOYKE Ha CTpoke 7 Bcerga strlen(s) 2 10un > 10.

62

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 55-74

strncat (dst, s, n);

1 void foo (int cond, int n) {

2 char s[100], dst[10]="";

3 if (cond)

4 strcpy (s, "very very long string");
5 if (n > 15)

6 YV

7

8

Jlucmune 1. Ilpumep owubku
Listing 1. Defect example

[TepBoe ycioBHe 3aBEJOMO BBINOJHEHO, €CIM B S ObUla CKOINHMPOBaHa CTPOKa,
JUTMHA KOTOpOW Bcerja He MeHblie 10, T.e. eciau UCKOMBINA MyTh MPOXOJIUT 4Yepe3
Touky 4 u strlen ("very very long string")>10. lns Touku 7 3TO
MOJKHO 3amucaTh Kak cond A 21>10.

Btopoe ycioBue BBIIOIHEHO, €CIM OBUIO BBHIIONHEHO CpaBHEHHE Ha CTPOKE 5
u 15210. B Touke 7 MJOCTAaTOYHBIM YCIOBHEM OJTOTO OyzmeT Qopmyma
n>15 A 15210.

C yuy€ToM TOro, YTO MpEeIUKaT JOCTHKMMOCTH TOUYKH 7 TOXKIECTBEHHO paBeH
HCTHHE, HTOTOBOE JOCTATOYHOE YCIOBUE OIIMOKU OyIET UMETh BH/I;

cond A 21>10 A n>15 A 15210.

JarHOE yCIIOBHE TOCTPOCHO TAaKMM OOpa3oM, YTO HAJIMYHE XOTS OBl OJHOTO
VIOBJICTBOPSIONIETO €My Habopa 3HaueHWH BXOJHBIX IMEPEeMEHHBIX n U cond
ABTOMATHYECKH O3HAaYaeT HalM4We OMMOOYHOro myTH. Jlerko momoOpaTh Takue
3HaueHus: n = 16, cond = 42. IloacTtaBUB 3TH KOHKPETHBIE 3HAYEHUS
B YCJIOBUS MIEPEX0/10B () YHKIIMH, MOXHO MMOJIyYUTh UCKOMBII OIINOOYHBINA MYTh.

4. Peanu3sauyus u pesynbmamsl

4.1. Peanusauusa getekropa

3aaveii HACTOSIIETO MCCICIOBAHUS OBLIO YIYUIICHHE CTATHIECKOTO aHAIH3aTOpa
Svace [10] nytém pacuiMpeHusi YyBCTBUTEIBHOTO K MYTSIM aHalu3a MOIICPIKKOM
ctpok si3bika Cu. B mpenpuiymieid Bepcuu ObUT peain30BaH HEUYBCTBUTENbHBIN K
OyTsIM aHANIW3 JUIMH CTPOK, OCHOBAHHBIA HA WHTEpBAIbHOM aHanmm3e. Kak
Clie/ICTBHE, WHPOPMAIIMK, MOTYYSHHOW B pe3ysibTare JAHHOTO aHayiu3a, He ObLIO
JIOCTATOYHO JIJISi OPTaHU3alMU YYBCTBUTEIBHOTO K MYTSM MOUCKA MEPEMOTHEHUsI
Oydepa npu oOpaboTke cTpok. Kpome TOro, MIMHBI CTPOK HE YYUTHIBAIHCH IS
MOCTPOEHHST JJOCTATOYHBIX YCJIIOBHH TOYKH ITPH CUMBOJILHOM HCIOJHEHHH. Takke
HUMEJICSI HEYYBCTBUTENBHBIM K IyTAM [ETEKTOpP TIEPEONHEHus Oydepa mpu
00paboTKe CTPOK, HO OH BBIJABa OOJBIIOE KOJWIESCTBO JIOKHBIX CpabaThIBaHUH U
He 00eCIeynBa XOpoIIee MOKPHITHE OMIHOOTHBIX CUTYAITHIA.

63

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

Jns pemenus 3Tux mpobireM Oblla peanu3oBaHa IOLAEPKKA CTPOK IIPH
CHMBOJIbHOM HCIIOJTHEHHHU C MOMOIIBIO aJITOPHTMa, ONMCAHHOTO B paszene 3.1, u
paclmmpeH WMEIOIUICSA AETEKTOp IEperodHeHHs Oydepa B COOTBETCTBHU C
MMOIXO0M, OIMMCAaHHBIM B pasmene 3.2. PaccMoTpeHHBIE aNTOPUTMBI OBLITH
peanu30BaHbl Kak Julsi OOBIYHBIX CTPOK, TaK U JUIS CTPOK C IMMPOKUMH CHMBOJAMHU
(wide characters — cumBoubl, Xpansmuecs B tune wchar t s3eika Cu). Taxoxe
ObIT peann30BaH HEYYBCTBUTENBHBIM K IMYyTSIM IETCKTOP OIIMOKH, CBSI3aHHOH C
HCTIONIb30BaHNEM OOBITHOH CTPOKH B KAQUECTBE «IIMPOKOI» CTPOKH, HAIIPUMEP IPH
BbI30BE (PYHKIUHN WCSCPY.

Jnst onleHKM MacmTabupyeMOCTH HOBOM Bepcuu SVace oHa Oblila MPOTECTUpOBaHa
Ha mpoekte Android 5.0.2 Ge3 3aMeTHOTO YXYHIICHUS IPOHM3BOIUTEIBHOCTH IO
CpaBHEHUIO ¢ 0a30BOM BepcHeil. BbUIO BBIIAHO MIECTh UCTHHHBIX TPETyPexk ICHHUH,
CBSI3aHHBIX C IepernosHeHneM Oydepa mpu BbeI3oBe OOEPTKM Han (yHKIUEH
strcpy.

B C noonepmeEon CTROK
Be3 NOAASRHKN CTPOK

b (1) i
= = L=

KonuqecTio HEAAeHMEX OWHbor, %
=]
1=

CWEL21 CWEL122 CWEL26

Puc. 1 Cpabamuvieanus ananuzamopa na pasiuunvix CWE
Fig. 1. Reported warnings by CWE

4.2. TectupoBaHue ¢ nomoulbto Juliet Test Suite

Jnst TecCTUpOBaHMS HCIONb30BajIcs Habop cuHTeTHYecKux TectoB Juliet Test Suite
C/C++, paspaborannsiii 8 NSA’s Center for Assured Software [11]. Iist si361K0B
Cu/Cut++ B »TOM Habope TIpeACTaBICH pAA TECTOB, pa3MEYEHHBIX II0
kiaccupukanmn CWE. K ommbke nepenonHenus Oydepa cpemy Bcex TIpyII
Habopa ortHocarcs rpymmel CWE 121 — «Stack-based Buffer Overflow»
(nepenonuenne Oydepa Ha creke npu 3ammcu), CWE 122 — «Heap-based Buffer
Overflow» (mepenonuenue Oydepa Ha kyde mpu 3amucu), CWE 124 — «Buffer
Underwrite» (3ammuch 3a seBoil rpanuuein 6ydepa), CWE 126 — «Buffer Over-
read» (ureHue 3a mpaBoil rpanuieil 0ydepa), CWE 127 — «Buffer Under-read»
(urenme 3a seBoil rpanunei Oydepa). s 3amad HaAcTOSIIEro MCCICIOBAHUS
nHTepec npencrasisum rpymnsl CWE 121, CWE 122, CWE 126, 1.x. npu pabore
CO CTPOKaMH IIEPENOIHACTCS, KaK IPaBHJIO, ITpaBasi paHKIa MacCUBa.

64

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Bbim. 5, 2018 r., ctp. 55-74

Jlns Kaxxaoro Tecta M3 Habopa TakkKe ykasaH HOMep T. H. sapuanma nomoxka (flow
variant), KOTOpBIi COOTBETCTBYET OTPEICICHHOMY BHIY TIIOTOKA YIIPABJICHUS
W [OTOKa MAaHHBIX U JaHHOTO Tecta. Cpeld BapHaHTOB IMOTOKA YIIPABJICHUS
pacCMaTpUBAIOTCS Pa3IMYHBIC CITydad YCIOBHH Mepexo/a, B TOM YHCIe MPOBEPKa
r06aibHOM MEePEMEHHOMN, YCIOBHE U3 II00aibHONM (DYHKIHMH, pasiuyHbIC BUIbI
oneparopa si3bika (switch, while, ...). BapuaHTbl IOTOKA JaHHBIX OIUCHIBAIOT
pasIMYHBIC CIyYal MEKIPOIEIYPHON M BHYTPHUIPOIEAYPHON Tepeiaun JTaHHBIX,
TaKKe Kak: MepechlIka yepe3 apryMeHThl GYHKIUH (B T. 4. [0 YKa3aTeNo, CChIIKE,
KaK 3JIEMEHT MAacCHBa WIJIM KOJUICKIIMM W IIp.), Yepe3 BO3BpaIllacMoe 3HAUCHHE
GbyHKIMH, Yepe3 DIOOANBHYIO [epeMeHHyl. HekoTopble ©3 BapUaHTOB
cenuuyHbl 1uist A3bika Cut+ U He mpUMeHUMBI K TectaM Ha Cu.

CymecTByeT Takke KIaCCHQUKAIMA TECTOBBIX (DYHKIMH 10 (YHKYUOHALLHBIM
sapuanmam (functional variants) —c y4értoM 3aBHUCSIIMX OT KOHKPETHOTO THIIA
nedekra ocobeHHOCTEH TecToBOro mpumepa. B ciydae nepenonHenust Oydepa k
TAKAM KPUTCPUSIM MOXKHO OTHECTH: UMsI OHMOTMOTEYHON (DYHKIIHMH, BHI30OB KOTOPOIt
HpI/IBéﬂ K TEPCIOJTHCHUIO, THUII 3JICMCHTOB MacCCHBa, CHOCO6 BBIJICJIICHUS IIaMATH
moj mMaccuB u T.0. JlaHHas kimaccuuKaius, Kak MPaBHIO, OTPAKACTCA B MMEHHU
Gaiina ¢ Tectom, HanmpuMep, char _alloca ncpy.

0 C rogaepesod crpos

B0 NORLEPs# CTDO

3
8
3
3
4
<
3
o
H

Koo

n

234567 F9%10M132)3141516171821223132333
Hosten Ba D

JAJ4545515253%A6 024836305004 TE8 2 T340 B0 a3 Bs

Puc. 2. Cpabamuléanus anamuzamopa Ha pasiuidiblx 6apUanmax nomoxa
Fig. 2. Reported warnings by flow variants
I/I3yquHe pacope€acicHua TECTOB B HMHTEPECHBIX C TOYKU 3PCHUA JaHHOTO
HCCIICAOBAaHUA TpyImax IIOKa3bIBa€T, 4YTO TECTBI pacCHpeaciICHbl IMMPUMEPHO
PaBHOMEPHO MEXIy BCEMH BapHaHTaMU MOTOKa. [IoYTH TpeTh TECTOB HCIOIB3YET
CTPOKH C UIMPOKMMH CHMBOJAaMH. TakKe 3HAYUTEIBHOC KOIUYECTBO TECTOB
MPOBEPSIOT HCIOJIb30BAaHUE OHONMOTEYHBIX (YHKIMH, TaKUX KaK memcpy—
nmonoOHple QyHKINK, QYHKIHH OOpPabOTKH CTPOK, HCIOJB3YIOIMKE (OpMaTHYIO

65

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

CTpOKy, W T.1H. Ha paccMOTpeHHBIX TIpynmax TeCTOB OBIT [BaKAbl 3allylIcH
aHanmm3aTop SvVace: ¢ BKIIIOYECHHON MOANEepKKOH cTpok W 0e3. [lamee mpuBeneH
aHaIM3 PE3yIbTaTOB TECTHPOBAHUS.

Bo-nepBBIX, HM Ha OHOM U3 3aITyCKOB HE OBLIO OTMEYEHO JIOXKHBIX CpabaThIBAHUH
JETEKTOPOB OIIMOKH MEpPEToNHEHUs Oydepa Ha BEIOPaHHBIX TPYyTIax TECTOB.
Bo-BTOpBIX, aHamM3 pe3yabTAaTOB IIOKas3al, dYTO 4YHCIO cpabaTbIBaHUH B
MHTEPECYIOIINX TPYIIIaX YBEIHMIMIOCh TPUMEPHO B 2,5-3 paza (cM. puc. 1). Obmree
YHuCcIo OOHAapyXXHBaeMbIX OMMOOK yBenwmduiaoch ¢ 15,4 % mo 41,5 %. Taxoke
OT/IENIbHO OBUIM PacCMOTPeHbl (DYHKIMH, MCIONB3YIOIIME TUN wchar t; 4HCIIOo
cpabaTbIBaHUIl IETEKTOPOB HA HUX YBEIUYMIOCH IPUMEPHO B IIATH pas.

B-Tperpux, ObUIO TPOM3BEACHO CpaBHEHHE pE3yJbTaTOB BHYTPH TIpYIII,
COOTBETCTBYIOIIMX BapuaHtaMm nortoka. Yucno cpabarteiBanuii B 40 u3 48 rpymnmax
BEIpocio B 2-10 pa3 (cm. puc. 2). OcraBmmMcs BapHaHTaM IOTOKa B 00OMX
3aIlyCKaX COOTBETCTBYET HYJICBOE KOJIMYECTBO CPaOaTHIBAHWH — 3TH BapHaHTHI
MIOTOKA HE MOAICPKUBAIOTCS (K TAKOBBIM OTHOCSTCS, HAIPUMEp, BBI30B (DYHKIUH
TI0 yKa3aTello, BBI30B BUPTYalbHONW (PyHKINH, Tepeaada JaHHBIX depe3 KOJUICKIHH
si3pika Cut+).

AHanorn4HeIM 00pa3oM pacCMaTpPHUBAINCh TPYNNBI TECTOB, OOBEAWHEHHBIC IIO
(yHKIIMOHATBHBIM BapuaHTaM. PesynbTarsl amst 49 % ot obmiero 4ncia rpymm He
M3MEHWINCH TI0CJIE pealn3aliy ajIropuTMa — 3TO B ITIEPBYIO OuYepenb TECTHI, B
KOTOpBIX IepenosiHeHne Oydepa He cBs3aHO ¢ paboToit co crpokamu. Ilpum sToMm
st 21 % Tpynm ObUTO0 BBIJAHO HYJIEBOE KOJIMYECTBO CpadaThHIBAHWM; B OCHOBHOM,
3TO TECTHI, TJE HMCHOJB3YIOTCS (PyHKUUMU ¢ (HOPMATHBIMU CTPOKaMH (Hampumep,
snprintf). Pa36op popmaTHOIl cTpOKH, HEOOXOUMBIH ST HAX0XKIEHHS OIIHOOK
B OJTHX TeCTaxX, PeaJn30BaH B HHCTPYMEHTE Svace B OTACIBHOM JAETEKTOpeE,
KOTOPBIA HE BXOIWUT B pPaMKH JaHHOH paboTel. Ywmcino cpabaTeiBaHUH ISt
octanbHBIX 51 % Tpynm ObIIIO HYJIEBBIM /10 BKIIOYESHUS MOJEPKKH CTPOK U CTallo
paBHo 30-80 % ot uncna GpyHkuumii B rpyme. [Ipu 3ToM Jydiine pe3yabTaTbl ObLIH
MOJMy4eHbl Ha (YHKOMAX, TI7Ae OMHUOKa BO3HUKAeT MPHU HCHOJIB30BAHUHU
6ubnnoreynbIx QyHKIH (strcat, strcpy, memcpy, memmove), a XyAlIue
TaMm, TJe OIMOKa BO3HMKAeT B IMKJIE WM IPU HCIOJIB30BAaHMM (QYHKIMH C
(hopMaTHOI CTPOKOH.

4.3. CpaBHeHue ¢ UHCTpYMeHTOM Infer

Jnst oneHkn 3¢G(GEKTUBHOCTH METOAa OBLIO TPOM3BEACHO CpPaBHEHHE CO
cratnueckum ananmsaropom Infer static analyzer [14, 15]. Drtor wmHCTpyMeHT
paspabarbiBaeTcss KoMmaHuei Facebook, wmeer OTKpPBITBIH HMCXOAHBIA KOX |
MHTCHCUBHO pa3BUBacTCs B Hactosimee Bpems. OH aKTUBHO HCIOJb3YyeTCs B
UHYCTPUH, HApUMeEp, B TakuxX KpymHbeix |T-kommanmsx, kak Amazon, Spotify,
Uber, Mozilla Corporation [12].

66

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 55-74

i o
B [noggepseon CTEGR
Eird MDA CTD0

50 Infer
§
g a0
o
3
B
&

30 1
2
2
(=}
]
G 209
¥
=
-
3 101

u.d

CWELZL OWELIZ CWELZE

Puc. 3 Cpabamwisanus anaruzamopos Svace u Infer na pazmuuneix CWE
Fig. 3. Svace and Infer warnings by CWE

st moucka omubok mepenonaenns 6ydepa B Infer umeercst sxcrepruMeHTaIbHBIH
nerekrop InferBO [13]. Ha mnauHbIit MOMEHT TSl 3TOTO JAETEKTOPA 3asiBICHA TOJIBKO
nojaepkka si3pika CH, IOPTOMY M3 TECTOBOTO Ha0oOpa, OMUCAHHOTO BHIIIE, OBLIN
uckimoueHbl QyHkumu Ha s3pike Cut+. Ha ocraBmmxcst (yHKUOUSIX ObLIM
MIPOTECTUPOBAHBl BEepcMM Svace ¢ W 0e3 MOIJNEpKKH CTPOK B CPaBHEHHUH C
ananuzatopom Infer (cm. puc. 3).

Tak ke, kak u Svace, Infer He umeeT NOXHBIX cpabaThIBaHHI HA PACCMOTPEHHOM
Habope. [IpoueHT oOHapyKHUBaeMbIX OIKUOOK coctasiseT 15,2 % mus Infer, 19,5 %
st Svace 6e3 mojep Ku cTpok u 48,7 % TpH UCIOIb30BAaHWU OMHCHIBAEMOTO
Mmetoaa. ['oBopst 00 otaensHbIx rpynnax CWE, MoxxHO otmeTHTh, uTo Infer myume
6a30Boi Bepcuu Svace crpasiisieTcs ¢ olnOKamMHu nepernoyiHeHus Oydepa Ha Kyde u
Xy’Xe ¢ OIMOKaMH IepenoHeHns Oydepa Ha cTeKe M YTEeHUs 3a rpaHuLei Oydepa,
3HAYUTEJIBHO YCTyMasi BEPCHH C aHAJIM30M CTPOK BO BCEX IpyIINax.

Tonbko B Tpex BapHaHTax MOTOKa U3 37 OMMOKM He ObLTH OOHAPYKEHBI HU OJHUM
HHCTpYMEHTOM. Infer ¢ pasnudHpIMEM BapHaHTaMHU TIOTOKa CIIPABIISETCS MPUMEPHO
onuHakoBo, Haxos 15-20 % omubok B 31 Bapuante u 0 % B ocraBimxcst 7. B 15
BapuaHTax 0Oa3oBas Bepcus Svace npesocxomur Infer ma 10-15 mpoueHTHBIX
MYHKTa, Ha 1-2 MyHKTa ycTymas B OCTAJbHBIX BapHaHTaX C HEHYJEBBIM YHCIOM
HalJIeHHbIX omOoK. B 23 BapuaHTax BepcHs SVACE ¢ MOAJEPIKKOM CTPOK HAXOIUT
3HaYUTENbHO Oosbmie ommOok uem Infer, ma 30-60 MPOLEHTHBIX TYHKTOB,
BEIMTpPEIBast 0-10 MPOIEHTHBIX ITyHKTOB B OCTAJIBHBIX BapHaHTaX.

67

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

Tabn. 1. Cpasrenue pesyrsmamos Svace u Infer
Table 1. Warnings types detected by Svace and Infer

Yucio Svace ¢ Svace 6e3
¢ynknnii B NOJIePAKKOMH MOJ/IePKKH Infer, %

rpynme CTPOK, % CTPOK, %
Memcpy 1294 63,1 33,9 23,8
Memmove 1258 64,5 349 245
Loop 1222 229 16,5 23,7
Cpy/Cat/Ncat 1532 65,7 0,0 0,0
Ncpy 652 56,7 15,0 17,8
Other 1350 20,1 18,4 6,7

[Ipn cpaBHeHMM pe3ynbTaTOB MO BapuWaHTaM OIIMOKKM B ILEJOM HaOmogaercs
crenyroomas — kaptuHa. [Ipaktuueckn Bce (YHKIMOHAJIbHBIE BAapHAHTBHI,
nokpsiBaembie Infer, oGnapyxuBaer u 0asoBas Bepcusi Svace. Ilpu sToM Ha
GonbmnHCTBE 3THX BapuaHTtoB Infer mokaseiBaetT Ha 10-15 MPOLEHTHBIX TYHKTOB
Jy4lIMA pe3yiabTaT, B OCHOBHOM Juisi TeX (YHKIHMH, KOTOpbIE HMEIOT
nomonautensHyto mometky CWE 805 — «Buffer Access with Incorrect Length
Value» (moctym k Oydepy ¢ HEKOPPEKTHBIM 3HAUCHHEM JJIMHBI). B TO ke Bpems
Svace oOHapyHBaeT HECKOJIBKO (YHKIIMOHAIBHBIX BAPHAHTOB, KoTOphle Infer He
OoOHapy)XMBaeT BOBCE, 3a CUET YEero MMEeT HEMHOro OoJyiee BBICOKMH OOIIMHA
NPOLIEHT OOHApYKMBAaEMBIX OMIMOOK. Bepeust ¢ monuepkkoi cTpok oOHapyKHBaeT
OGosee yemM B 2 pasa Oomblle pa3IMYHBIX (QYHKIMOHAIBGHBIX BapHAHTOB IO
cpasHenwuo ¢ Infer.

B Tabn. 1 mpuBemeHbl pe3ysibTaThl MHCTPYMEHTOB B YKPYMHEHHBIX TpYMNIax
(YyHKIMOHAJIBHBIX ~ BapuaHToB. JlaHHBIE TPyNmbl OBUIM MONYYCHBl IyTeM
o0bearHEeHNsT (YHKIMOHAJIBHBIX BapHaHTOB IO TIOCIETHEMY CJIOBY HX HMEHH.
Hanpumep, dyHKnnoHampHBI BapmaHT char type overrun memcpy
HOMNajeT B IPyniy memcpy. OTo ObUIO CHIENaHO /sl KPaTKOCTH B CBSI3M C OYEHb
OOJIBIIUM KOJIMYECTBOM (PYHKIMOHAIBHBIX BapuaHToB. B rpymnme loop ommoOka
NPOSBISIETCS BO BpeMst 0OpaleHuii K Oydepy 1o HHIEKCY, BBIYUCISIEMOMY B IUKIIE
U MIPEBBIIAIONIEMY €ro pasMmep. B rpynmax memcpy, memmove omuOKa BOSHUKAET
IpU BBI30BE COOTBETCTBYIONIMX OMOIMOTEUHBIX (YHKIMI C HEKOPPEKTHBIM
napameTpoM pasmepa Oydepa, B rpymnne Cpy/Cat/Ncat — npu BbI3oBe QyHKIUH
strcpy, strcat, strncat. OTtaenpHO ObLIa pPacCMOTpPEHa Tpylna ncpy ¢
O6ubmmoTeyHol (QyHKIMEH strncpy, A oOHapyXKEHHs NEPEeroIHEHUS TEPBOro
apryMeHTa KOTOpPO He HY>KHO 3HaTh JUIMHBI CTPOK-apryMeHTOB. OyHKIIMOHAIbHbIE
BapUAaHTHI, HE TONABIINE HU B OJHY U3 IEPEUUCICHHBIX TPYMII, OBLTH OOBEANHEHBI
B rpymnny other. OHu cozpepxkar HeOonbIloe KoaudecTBO (QyHKUM
XapaKTEepU3yIOTCSI OTHOCHUTEIBHO HHU3KMM KOJHYECTBOM CpalaThIBaHMH Ka)kIOTO
aHanM3aTopa.

68

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 55-74

N3 tabnuubl BuaHO, uto Infer mydmne oOpabaThiBaeT MUKIBI M 9yTh Jy4Ile, YeM
Svace 6e3 moAIep KU CTPOK, HAXOIUT OIINOKH, CBSI3aHHBIC C Strncpy, IpU 3TOM
MOKa3bIBas Oosiee Ca0blil pe3y/nbTaT Ha (PYHKIUSAX memmove W memcpy. Takke
MOYHO 3aKJIIOYHTh, YTO MOJJIEPXKKa CTPOK B Infer orcyTcTByeT.

CretyeT OTMETHTB, YTO TeCTOBBIN Habop Juliet He sBiseTCst penpe3eHTaTHBHON
BBIOOPKO# THUMOB Je(eKTOB, BCTPEUAIONIMXCS B KOJE PEAIbHBIX IPOrpamM,
MOATOMY Ha OCHOBAHUH TOJIHKO JIMILb PE3yJIbTATOB TECTUPOBAHMUS HENb3s CHIENATh
HCUCPIIBIBAIONINX BBHIBOJIOB O KAYECTBE M CPABHUTCIBHOW MPAKTHYCCKON MOJIB3E
paccMaTpUBacMBbIX HHCTPYMEHTOB.

5. 0630p cywecmeyrouwux peweHuu

OI[HI/IM N3 TEPBBIX CTATUYCCKHUX aHAJIU3aTOPOB, OPUCHTHUPOBAHHBLIX Ha aHAJIN3
CTPOK JUI1 IOWCKA IepenoyHeHMs, cTaid co3maHHelf B 2000 r. HHCTPYMEHT
BOON [1]. Ananuzatop MOAENUPYET KaXIYI0 CTPOKY TMapoi IepeMEeHHbIX,
OTIpeIeNAIONINX pa3Mep BbIJICIEHHON MaMATH U JUIMHY CTPOKHU. B mporecce o6xona
abCTPaKTHOTO CHMHTaKCHYECKOTO AepeBa MCXOJHOW MPOrpaMMbI CTPOUTCS CHUCTEMa
HCJIOYUCIICHHBIX HWHTCPBAJIBHBIX HCPABCHCTB. ITocne peuicHus nonyquHoﬁ
CUCTEMBI Uil KaKOOW CTPOKH aHATU3UPYETCS yCIOBHE OE30MacCHOCTH: €CIH He
JIOKa3aHO, YTO [UIMHA CTPOKH MEHBIIE pa3sMmepa Oydepa, TO BbIIaeTCA
npeaynpexaeHiue. AHAINA3 SBISIETCS MEKIPOICTYPHBIM, HEYYBCTBUTCIHHBIM K
MOTOKY M KOHTEKCTY BbI30Ba. lccienoBaHusi HE3aBUCHMBIX aBTOpPOB [2, 3]
OTMEYAIOT XOPOIIYI0 MPOM3BOIUTEIBHOCTD, HO TPH STOM OOJBIIOE KOJIHYECTBO
JOXHBIX ~ cpabarbiBaHuii. KosimuecTBO OOHapyKMBaeMbIX OLIMOOK TaKKe
CYIIECTBEHHO HMXXE€ TII0 CPAaBHECHUIO C JPYIUMHU JETCKTOpaMH TIEPECIIOJTHCHUA
Oydepa, dYTO OTYACTH MOXKET OBITh OOBSICHEHO Y3KOW CreIHaTu3aIen
MHCTPYMEHTA KaK aHaJi3aTopa CTPOKOBBIX ONepaluii.

B 2003 r. O6b1 co3man wuHCTpyMeHT CSSV [4], 1enbpio KOTOPOTO SIBISIETCS
obHapyxeHHe Bcex ook nepemnoynHeHus: Oydepa B mporpamme Ha si3bike CoreC
(moamHOX)ecTBO CH) ¢ HEOOMBIIIMM KOJTHMYECTBOM JIOKHBIX CpabaThiBaHWUN. AHAIU3
OCYIIECTBIISICTCS OTHENBHO M KaXAOH (YHKINH, MEXNPOLEAYPHBIA aHaJH3
OpPTraHM30BaH C MOMOINBI0 aHHOTAIMH, MPEIOCTaBICHHBIX IMoib30BarereM. CSSV
npeoOpasyer MCXOAHYIO IPOrpaMMy B IIPOrpaMMy HaJl LEJIOYHCICHHBIMH
3HA4YEHUSAMH U KOHCEPBAaTHBHO NPOBepsET e€ Ha Hajanuue ommbok. Heo6xoaumocTsb
HAITHCaHUS aHHOTAIUN IOJIb30BaTENIeM CYIIECTBEHHO OTpaHUYMBAET
NPUMEHUMOCTh JIAHHOTO WHCTpyMeHTa. K HemocraTkaM Takke MOXKHO OTHECTH
OTCYTCTBHE MaclITaOUPyeMOCTH Ha GOJIbIINE MPOTPAMMBI.

Ioxxon, npeanoxeHusid B padore [5], kak u CSSV, rapantupyer oOHapyKeHHE
BCEX OIIMOOK TepenosHeHuss npu pabore co crpokamMu. OH OCHOBaH Ha
aOCTpakTHOW MHTEpIpPETallMM C HCIOJb30BAaHHEM IOJMIAPOB B KauyecTBE
abCTpakuMu JUIl MOJECJIMPOBAHUS BO3MOXKHBIX 3HAYCHUII pa3sMEpOB MacCHBOB
W JUIMH CTpOoK. B pabote [6] mpeanaraercs B kadecTBe 0ojiee TOYHOW aOCTpaKIIUH
WCIIONB30BaTh Mponuyeckue TOIMSIPH — aHAOT BBITYKIBIX TTOJNHAAPOB
B Tpomuueckoi anredpe. Takol TOAXOi MO3BOJIIET BBIYUCIATH Oojiee TOYHBIE

69

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

MHBAPUAHTBl HAJA [UIMHAMH CTPOK B PE3yJIbTaTe CTPOKOBBIX MPEoOpa3OBaHMIA.
JaHHbIe METOOBI IO3BOJSIIOT TapaHTUPOBATh OOHApY)XCHHE BCEX OIIHOOK
paccMaTpHBaEeMOro THIA, ONHAKO I[UIOXO MAaCIITA0MPYIOTCS HAa MPOrPaMMBI
0opImoro paMepa.

Psim coBpeMeHHBIX MPOMBINUICHHBIX aHAIN3aTOpOB, Takux Kak Coverity Prevent,
Klocwork, HP Fortify, Bkmrouator B cebst JeTeKTOPHI TepenoaHeHus oydepa mpu
paboTe CO CTpPOKaMH, OAHAKO HCIIOJIb3yEeMble WMH AITOPUTMBI 3aKPBITHI, HYTO
3aTPYIHAET CY)KACHHUS O KAUeCTBE ITUX JIETEKTOPOB.

IepcreKTHBHBIMH B KOHTEKCTE aHaIM3a CTPOK Ui TeperoiHeHus Oydepa
HPEJICTABISIIOTCS pelarelid ¢ moanepkkoi crpok [9]. B Hacrosimiee Bpems oHU
NOJYYWJIM INUPOKOE TPUMEHEHHe JUIsi aHajiu3a 3HaueHHH CTPOK B BeO-
MPUITOKCHUAX, rac OHH IIO3BOJIAKOT O6Hapy)KI/IBaTL u AaBTOMATHYCCKU
aHATM3UPOBATh NPOLEAYPHl NPOBEPKH BXOAHBIX NAHHBIX («CaHHUTAM3ephD») AL
YCTpaHCHUA NMOTCHIUAJIbHBIX yﬂ3BHMOCTeI7[. Croco0OHOCTH JaHHBIX WMHCTPYMCHTOB
AHAJM3UPOBATh HE TOJBKO pasMep, HO U COINEPKUMOE CTPOK MOXKET OBITh TAKKE
HoNe3Ha W MpH aHalW3e MepemnojHeHus Oydepa, OTHAKO UHCIO PEanbHO
BCTPETHBINUXCS HAM HA IPAKTHKE MPUMEPOB, IUISI KOTOPBIX TPeOYeTCs BBIHOCHUTH
CY)KICHHS O COAEPIKIMOM CTPOK, OTHOCUTEIIBHO HEBEIHKO.

6. 3akmovyeHue

B cratbe mpencTaBiieH METO MTOKCKA TEPETIOTHEHIH Oydepa, MPOUCXOIIIMUX IpH
pabore co crpokamu s3eika CH. MeTon OCHOBaH Ha CHMBOJBHOM HCIIOJTHEHUH
C OOBEOWHEHHWEM COCTOSHHH, SBIICTCS MEXKIPOLUEAYPHBIM, OOJamaeT
YyBCTBUTEIHHOCTHIO K IYTAM BBITIOJHEHHS W KOHTEKCTaM BBI30BOB. Mmes merona
3aKIFOYAaeTCs B PACHIMPCHWH [UIA OIEpaluid CcO CTPOKaMHU MPEIJIOKSHHOTO
B TIpeapIaymux paborax moaxoza [7, 8], KOTOpsIi 3aKII0YaeTCsl B OTCIICKUBAHHI
onepaum‘/'l C MNCJIOYUCICHHBIMHU 3HAYCHUAMU U TOCTPOCHUIO Ha 9TOM OCHOBE
JOCTAaTOYHBIX yCHOBI/Iﬁ BO3HUKHOBCHUS OIHI/I6KI/I.

Pa3paboTaHHbIl METOJ peai30BaH B CTATHYECKOM aHali3arope Svace u o0iiajaer
TEMHU XK€ ITOKa3aTCIsIMU MaCH_ITa6I/IpyeMOCTI/I U TOYHOCTH aHaJIn3a, YTO U OCHOBHBIC
JIETEKTOpHI OMMOKK TepenosHeHns Oydepa. B gacTHOCTH, IS TECTOB M3 HakeTa
Juliet mouck mepenoNHEHUH CTPOK TMO3BOJMI PE3KO YBEIUYUTH IOKPHITHE (YHCIIO
HaXOJMMBIX OIIMOOK) B YaCTH, OTHOCSINEHCS K MEpemnoTHeHHI0 Oydepa,— pocT
COCTaBWJI OKOJIO TPEX pa3. OcTaBmiasics He HAHJIEHHON 4acTh OMMOOK B OCHOBHOM
CBsI3aHA C HEJOCTaTKAMHU HE NPEJIOKCHHOTO METOJa KaK TaKOBOTO, a OCHOBHOM
4yacTu (AIpa) aHajIM3aTopa Svace — 3TO aHAIM3 CJIOXKHBIX IUKIOB M KOJUICKITHHA
s3pika Cut++. Pa®oThl Hajx yiydIleHHEM aHalW3aTopa B STHUX HAMPaBICHUIX
BEAYTCS B HACTOSIIEE BpEMSI.

CpaBHEHHE pe3yJNbTaTOB TeCTHpoBaHWs Ha makere Juliet ¢ pesymeTaramu
CTaTU4eCcKoro ananuzaropa Infer mos3somun caenateh BeIBOA, uTO B Infer moanepxka
CTPOK TMpH IIOWCKE TMepenoidHeHudl Oydepa He peann3oBaHa, a OOBIYHBIC
MCPETIOIHECHUS UIYTCSA MPUMEPHO C TEM KE KAaueCTBOM, UYTO W B 0a30BOH Bepcuu
Svace. Infer nyume oGpabaThIBa€T TECTOBBIA HCXOAHBIH KOI CO CJIOXHBIMH
70

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Bbim. 5, 2018 r., ctp. 55-74

[IUKJIAMH, 9TO TMOATBEP)KIIAET HAIll BBIBOJ O HEOOXOTMUMOCTH HOpaboTKu Svace B
3TOM HAlpPaBJICHUH.

C TOoukM 3peHHS O0pabOTKM MPEIUIOKEHHOTO MeTola MEePCHEKTUBHBIM
HarpasJjeHUEM aBTOpam BHIUTCS MHTETpanus pemiareneit
¢ moanepxkkoi cTpok (Z3str2, Z3str3, CVC4 u T.1.), 9YTO TO3BOJHUT HAXOJUTH
OLIMOKH TMEPENOTHEHH S, ISl KOTOPBIX HYKHO BBIHOCHTH CYXKACHHS O COICPKUMOM
CTPOK.

Cnucok nutepaTtypbl

[1]. Wagner D., Foster J., Brewer E., Aiken A. A first step towards automated detection of
buffer overrun vulnerabilities. In Proc. of the Network and Distributed System Security
Symposium, 2000, pp. 3-17.

[2]. Zitser M., Lippmann R., Leek T. Testing static analysis tools using exploitable buffer
overflows from open source code. ACM SIGSOFT Software Engineering Notes, vol. 29,
issue 6, 2004, pp. 97-106.

[3]. Kratkiewicz K. Evaluating Static Analysis Tools for Detecting Buffer Overflows in C
Code. Master's Thesis, Harvard University, 2005.

[4]. Dor N., Rodeh M., Sagiv M. CSSV: Towards a Realistic Tool for Statically Detecting
All Buffer Overflows in C. ACM SIGPLAN Notes, vol. 38, 2003, pp. 155-167.

[5]. Simon A., King A. Analyzing String Buffers in C. Algebraic Methodology and Software
Technology, vol. 2422, 2002, pp. 365-379.

[6]. Allamigeon X. Static analysis of memory manipulations by abstract interpretation.
Algorithmics of tropical polyhedra, and application to abstract interpretation. PhD
Thesis, Ecole Polytechnique, 2009.

[7]. Oynuna N. A., Komenes B. K., Bopoaun A. E. Tlouck omubok nocryma x Oydepy B
nporpammax Ha sizeike C/C++. Tpymst UCIT PAH, Tom 28, Beimn. 4, 2016 r., ctp. 149—
168, 2016. DOI: 10.15514/ISPRAS-2016-28(4)-9

[8]. Dudina l. A., Belevantsev A. A. Using static symbolic execution to detect buffer
overflows. Programming and Computer Software, vol. 43, issue 5, pp. 277-288, 2017.
DOI: 10.1134/S0361768817050024

[9]. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang, X.
Z3str2: an efficient solver for strings, regular expressions, and length constraints. Formal
Methods in System Design, vol. 50, 2017, pp.249-288.

[10]. A.E. Boponun, A.A. BeneBanueB. CTaTHYeCKHil aHAIM3aTOp SVACE KaK KOJUICKLHS
aHANM3aTOPOB pa3HBIX ypoBHeH cmoxkHoctH. Tpyast UCIT PAH, Tom 27, Bem. 6, pp.
111—134, 2015. DOI: 10.15514/ISPRAS-2015-27(6)-8

[11]. Juliet Test Suite v1.2 for C/C++. User Guide. Center for Assured Software National
Security Agency, December 2012.

[12]. Infer static analyzer Infer. URL: https://fbinfer.com/ ([Jata o6pamenus: 21.09.2018)

[13]. Inferbo: Infer-based buffer overrun analyzer. URL: https://research.fb.com/inferbo-infer-
based-buffer-overrun-analyzer/ (Iara o6pamenus: 21.09.2018)

[14]. Calcagno C., Distefano D. et al. Moving Fast with Software Verification. Lecture Notes
in Computer Science, vol. 9058, 2015, pp. 3-11.

[15]. Calcagno C., Distefano D., O’Hearn P., Hongseok Y. Compositional Shape Analysis by
means of Bi-Abduction. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on principles of programming languages (POPL '09), 2009, pp. 289-300.

71

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

An approach to the C string analysis for buffer
overflow detection

I. A. Dudina <eupharina@ispras.ru>
N. E. Malyshev <neket@ispras.ru>
Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. Many buffer overrun errors in C programs are caused by erroneous string
manipulations. These can lead to denial of service, incorrect computations or even exploitable
vulnerabilities. One approach to eliminate such defects in the course of program development
is static analysis. Existing static analysis methods for analyzing strings either produce many
false positives, miss too many errors, scale poorly, or are implemented as a part of
a proprietary software. To cover a significant amount of the real program defects it is
necessary to detect errors that could happen only on a particular program path and cannot be
defined by a single erroneous point. Also, it is essential to find misusage of library functions
and user functions. The aim of this study is to develop a detection algorithm that will cover
such cases, will produce at most 40% false warnings, will be applicable to any C programs
without any additional restrictions, and will scale up to millions of lines of code.
We have extended our approach of symbolic execution with state merging to support string
manipulations. Also we have developed a string overflow detector based on our buffer
overflow approach with integer indices. The new algorithm was implemented in the Svace
static analyzer. As a result, the coverage of the buffer-overflow related testcases from
the Juliet test suite has increased from 15.4% to 41.5% with zero false positives. Also we
have compared our Juliet results to those of the Infer static analyzer. The basic Svace version
(without string support) is on par with Infer except for the flow variant of complex loops,
whereas string-related buffer overflows are not detected by Infer.

Keywords: static analysis; static symbolic execution; string analysis
DOI: 10.15514/ISPRAS-2018-30(5)-3

For citation: Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer
overflow detection. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 55-74 (in
Russian). DOI: 10.15514/ISPRAS-2018-30(5)-3

References

[1]. Wagner D., Foster J., Brewer E., Aiken A. A first step towards automated detection of
buffer overrun vulnerabilities. In Proc. of the Network and Distributed System Security
Symposium, 2000, pp. 3-17.

[2]. Zitser M., Lippmann R., Leek T. Testing static analysis tools using exploitable buffer
overflows from open source code. ACM SIGSOFT Software Engineering Notes, vol. 29,
issue 6, 2004, pp. 97-106.

[3]. Kratkiewicz K. Evaluating Static Analysis Tools for Detecting Buffer Overflows in C
Code. Master's Thesis, Harvard University, 2005.

72

Hynuna U. A., Mansiues H. E. O6 oHOM 10ax0/1¢ K aHaJIM3y CTPOK B si3bike CH JUIsl TOMCKA nepenonHeHus oydepa.
Tpyowt UCII PAH, Tom 30, Bbim. 5, 2018 r., ctp. 55-74

[4]

[5].
[6].

[7].

[8].

9.

[10].

[11].

[12].
[13].

[14].

[15].

. Dor N., Rodeh M., Sagiv M. CSSV: Towards a Realistic Tool for Statically Detecting
All Buffer Overflows in C. ACM SIGPLAN Notes, vol. 38, 2003, pp. 155-167.

Simon A., King A. Analyzing String Buffers in C. Algebraic Methodology and Software
Technology, vol. 2422, 2002, pp. 365-379.

Allamigeon X. Static analysis of memory manipulations by abstract interpretation.
Algorithmics of tropical polyhedra, and application to abstract interpretation. PhD
Thesis, Ecole Polytechnique, 2009.

Dudina I. A., Koshelev V. K., Borodin A. E. Statically detecting buffer overflows in
C/C++. Trudy ISP RAN/Proc. ISP RAS, vol 28, issue 4, pp. 149-168, 2016. DOI:
10.15514/ISPRAS-2016-28(4)-9

Dudina I. A., Belevantsev A. A. Using static symbolic execution to detect buffer
overflows. Programming and Computer Software, vol. 43, issue 5, pp. 277-288, 2017.
DOI: 10.1134/S0361768817050024

Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang, X.
Z3str2: an efficient solver for strings, regular expressions, and length constraints. Formal
Methods in System Design, vol. 50, 2017, pp.249-288.

Borodin A., Belevantcev A. A static analysis tool Svace as a collection of analyzers with
various complexity levels. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 6, 2015, pp.
111134,

Juliet Test Suite v1.2 for C/C++. User Guide. Center for Assured Software National
Security Agency, December 2012.

Infer static analyzer Infer. URL: https://fbinfer.com/ ([{ara o6pamenus: 21.09.2018)
Inferbo: Infer-based buffer overrun analyzer. URL: https://research.fb.com/inferbo-infer-
based-buffer-overrun-analyzer/ (lata o6pauiexus: 21.09.2018)

Calcagno C., Distefano D. et al. Moving Fast with Software Verification. Lecture Notes
in Computer Science, vol. 9058, 2015, pp. 3-11.

Calcagno C., Distefano D., O’Hearn P., Hongseok Y. Compositional Shape Analysis by
means of Bi-Abduction. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on principles of programming languages (POPL '09), 2009, pp. 289-300.

73

Dudina I. A., Malyshev N. E. An approach to the C string analysis for buffer overflow detection. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 55-74

74

Approach to analyzing executable code
based on the software architecture recovery

D.S. Kononov <dspr2@yandex.ru>
Federal State Unitary Enterprise «18 CSRI», Ministry of Defence of RF,
4 Svobodny prospect, Moscow, Russia, 111123

Abstract. The article discusses a hew approach to obtaining additional information about the
software module under study based on the preliminary software architecture recovery during
the executable code analysis. As a result, it is possible to reduce the requirements for the
resources spent by limiting the field of research, rational choice of priorities, and abstraction
from secondary elements. The paper demonstrates the feasibility of restoring the software
architecture in a two-step process: first, the separate components are isolated, and then their
purposes and relationships are determined. An automated method for decomposing a software
module is proposed, which allows allocating components corresponding to static libraries,
classes, and their groups. This method is based on the functions clustering by the distances
between them in the address space and on the call graph. A description of the implementation
of the developed method as a plug-in for the IDA disassembler is given.

Keywords: executable code analysis; software architecture; clustering; call graph; distance
between functions; software module; decomposition

DOI: 10.15514/ISPRAS-2018-30(5)-4

For citation: Kononov D.S. Approach to analyzing executable code based on the software
architecture recovery. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 75-88. DOI:
10.15514/ISPRAS-2018-30(5)-4

1. Introduction

The need to analyze the executable code is widely encountered in practice when
addressing issues related to the protection of intellectual property, the search for
software backdoors and vulnerabilities, the analysis of computer viruses,
certification of compilers, and software development. It should be noted that despite
all the achievements in this area, the task in question is still far from being solved.
This is due to the fundamental limitations expressed in the extreme complexity of
formalizing and automating the analysis of executable code (Kayman, Mapkus,
Manapsia, & Tuxonos, 2013). If, when searching for vulnerabilities, there are still
effective automatic methods (fuzzing, symbolic execution), then, when restoring the
executable code algorithm, the result of the study is largely determined by the
quality of expert analysis. In this case, automation is limited to local signature or
statistical methods that facilitate the search for constants or a special set of

75

https://context.reverso.net/перевод/английский-русский/Ministry+of+Defence

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

instructions in specific algorithms. Particularly acute shortcomings of the modern
scientific and methodological apparatus appear when it is impossible to use dynamic
analysis methods. Taking into account the volume of the software modules under
study, which in the case of embedded systems reach tens and hundreds of thousands
of functions, the solution of practical tasks in this area requires significant
investments of both material and time resources and the availability of substantial
human capital.

Thus, it becomes necessary to provide an expert with information about a software
module, important for achieving a positive result. As practice shows, first of all, an
expert needs to understand the logic of the software module (Quist & Liebrock,
2009), since it allows targeted search through "reverse engineering” (Streekmann,
2012, ctp. 27)p. 27]. In this case, the model of the expert's work changes: instead of
the direct restoration of the algorithms implemented in the program code, the
assumptions regarding their implementations are confirmed and specific parameters
are determined.

One of the important components of the "reverse engineering™ approach is the
restoration of the software architecture, information about which is lost during
compilation. Software architecture (Streekmann, 2012, ctp. 9)p. 9] can be described
in the framework of a hierarchical model of the structure of complex systems
(KocsixoB & Caur, 2014).

2. Hierarchical model of software

The development of complex software requires high-quality software architecture
with well-defined systems and subsystems that solve a specific problem and have
weak coupling (Makkonsuet, 2010, ctp. 96). Modern non-specialized programming
languages clearly support such programming paradigm (Microsoft Corp., 2006).
When examining a software module, it is possible to break it up into components
that correspond to the initially programmed systems and subsystems (for example,
using source code or debugging information (Ebert, Riediger, & Winter, 2008),
(Bohnet & Dollner, 2006)). For definiteness, one can designate such selected
subsets of a software module as components, and the process of breaking up a
software module — decomposition. According to the model used, the set of
components is hierarchical, in which the components located at the upper level
consist of a combination of the underlying ones. As part of the research, the
components classification is proposed, presented in Table 1.

Table 1. Classification of components

No. Name Description

1 Software A component that fully incorporates the software under
investigation. Always present in a single instance.

2 File A separate file in the corresponding file system included in the
software. For embedded systems without a file system, all
firmware is considered as a single file.

76

Kononos [I.C. ITonxon k aHaan3y UCHOJIHAEMOr0 K0JIa HA OCHOBE BOCCTAHOBJICHHUSI TIPOrPAMMHOM apXUTEKTYpbl. Tpyout

UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

3 Embedded For systems with multiple processors, there can be several
operating system | embedded operating systems running in parallel within the same

address space.

4 Static library For software modules (including embedded operating systems)
the presence of built-in libraries is typical. For example,
OpenSSL encryption libraries, various drivers, libraries of
standard functions (memcpy, strlen), etc. Components of a
similar size (500-3000 functions) that have a weak connection
(for example, only using API) with the rest of the code also
belong to this level.

5 Class group This level corresponds to a group of classes in the object-
oriented programming terminology. Typical size from 100 to
1000 functions. Differ from level 4 in a greater connectivity
with the rest of the code. For example, various classes that
implement the same interface (plug-ins), network protocol
handler, etc.

6 Class This level corresponds to a class in the object-oriented
programming terminology or an object (compiled) module in
the C language. They have a size of up to 100 functions. Differ
from level 5 in a greater connectivity with the rest of the code.
For example, the implementation of a circular buffer, hash
tables, etc.

7 Function Currently, the task of the allocation of automating functions
from executable code is solved and implemented in modern
disassemblers at a sufficient level.

8 Logical block in | The part of the function consisting of basic units designed to

a function solve a subtask. For example, inline functions, condition
checking, loops, etc.

9 Basic unit A sequence of instructions without transitions automatically
isolated by modern disassemblers (cycle body, the condition
being checked, etc.).

10 | Logically Part of the basic unit, designed to solve some subtasks. For
isolated example, loading data from memory, untwisted cycle, etc.
sequence of
instructions

11 | Instruction Executable machine instruction. Automatically isolated by
modern disassemblers.

12 | Instruction The executable machine instruction argument. Automatically

argument isolated by modern disassemblers.

In the modern scientific and methodological apparatus for analyzing executable
code, the information only about levels 1, 2, 3, 7, 9, 11, 12 is used due to the
absence of additional debugging data (Meng & Miller, 2016). The existing
significant gap between levels 3 and 7 makes it necessary to analyze software
modules consisting of tens and hundreds of thousands of functions using methods

77

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

that have exponential computational complexity (fuzzing, character execution, etc.)
(Kayman, Mapxun, IMagapsa, & Tuxonos, 2013). To overcome the existing
limitations, it is necessary to take into account levels 4, 5, 6 (Streekmann, 2012),
which will significantly reduce the requirement for the resources needed to conduct
the software module investigation (Quist & Liebrock, 2009). Thus, existing methods
with high computational complexity can be scaled for software modules with a
volume of more than 10,000 functions due to their decomposition into components
with a characteristic size falling within the range of effective application of the
corresponding methods. For embedded systems, this process is, in fact, analogous to
isolating dynamic libraries and programs from the general-purpose operating system
(OS) and examining them separately. At the same time, to implement the considered
approach, it is necessary that the separated integral parts have a specific isolated
functionality, that is, they would be components according to the terminology
adopted in the paper.

There are a large number of software architecture definitions (Clements, Bachmann,
& Bass, 2010, ctp. 27), (Ian, 2011, ctp. 20). The conceptual apparatus of the
research is based on the IEEE 1471 standard (ANSI/IEEE Standart 1471-2000
Recommended Practice for Architectural Description of Software-Intensive
Systems, p. 9), p. 9]: software architecture is the fundamental organization of the
system, embodied in its components, their relationships to each other, and to the
environment, and the principles guiding its design and evolution. Thus, from the
definition, it follows that the restoration of the disassembled software module
architecture (Streekmann, 2012, c¢tp. 30)p. 30] should be carried out in two stages.
The first is the decomposition of the disassembled software module into levels 3-6
components, and the second is the determination of the functionality of the selected
components and the restoration of their relationships with each other and with the
environment.

3. Analysis of the executable code, taking into account the
software architecture

In the modern scientific and methodological apparatus, the main element of the
research is the function, which leads to the need to analyze and restore the
algorithms of a large number of interrelated functions to determine their common
purpose. In contrast, the preliminary decomposition of a software module allows
determining the role of a specific component in the architecture by analyzing only a
few of its functions (in some cases just one) or the data and strings used in it. As a
result, based on the described approach, a reasoned conclusion is made on the
assignment of hundreds and thousands of functions that form the corresponding
component by analyzing a small amount of data. Furthermore, additional
information about the purpose of the components is provided by an analysis of their
relationships.

Knowledge of the software architecture makes it possible to rationally prioritize the
research within the framework of solving a specific practical problem. For example,

78

Kononos [I.C. ITonxon k aHaan3y UCHOJIHAEMOr0 K0JIa HA OCHOBE BOCCTAHOBJICHHUSI TIPOrPAMMHOM apXUTEKTYpbl. Tpyout
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

if it is necessary to restore the network interaction protocol of the botnet, then the
emphasis in the study should be placed on the appropriate handler. One of the
features of this approach to restoring the executable code algorithm is the ability to
limit the study of functions from non-priority components to the conceptual level.
As an example, one can cite the situation when the algorithm of the bootloader is
investigated and the component of interaction with flash memory is isolated.
In this case, one should not restore the entire algorithm for writing or reading flash
memory, but logically assign the values "write" or "read" to the component
functions called from the bootloader. In addition, the joint analysis of a single
software module by several experts is significantly simplified due to the rational
differentiation of the studied areas into separate components.

Information about the software module architecture is also required when
conducting dynamic analysis. Thus, the lack of information about the components
used significantly complicates the analysis of execution routes and slicing
(IMapapsin, T'etbman, & ma.p., 2014). Even when examining programs for the
Windows OS family under the x86 architecture, it is difficult to draw an
unequivocal conclusion about the algorithm being performed and its purpose
without separating the called functions by the system API. In the case of embedded
OS («firmwarey), this problem is only aggravated.

In the framework of «fuzzingy, it is impossible to correctly emphasize its direction
without knowing the architecture of the software module. The cases of work only
within one component from the study of their entirety are indistinguishable. The
availability of information about the software architecture makes it possible to
rationally select the area of study, excluding components that are not interesting in
the current context. This leads to the possibility of multiple reductions in
computational costs. For example, by isolating the component of working with
strings or with memory, one can prevent loop traversal in the functions of copying
memory or comparing strings, replacing them with appropriate heuristics.

Despite all the advantages described, in modern scientific and methodological
apparatus for analyzing executable code in the absence of debugging data, there are
no effective automated methods not only for restoring the software architecture but
also for decomposing a software module into components. As a result, such an
approach is not used in practice in the overwhelming majority of cases, since the
time and cost of resources do not pay off in the current realities. This situation
significantly limits the ability to analyze executable code.

4. Method of the software module decomposition

As the applied methods for decomposing a software module into components, apart
from the expert one, one can single out various modifications of the task of finding
strongly connected components (Hoeukos, 2009, ctp. 283) of the call graph and
various imaging techniques. However, due to limited disassembling capabilities
(Meng & Miller, 2016), low call graph density, and the presence of widely used
functions (for example, working with strings and memory) that are called from

79

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

almost anywhere, there are low informative results that do not allow the software
module decomposition
(Streekmann, 2012, ctp. 52, 96). Dynamic analysis methods simplify this process
insignificantly (Quist & Liebrock, 2009), but they themselves are not applicable in
the general case and work for relatively small amounts of code due to the coverage
problem (Kaymian, Mapkuw, [Tagapsia, & Tuxonos, 2013), (ITagapsu, ['etbman, &
I.p., 2014). In this regard, similar approaches to the analysis of executable code are
practically not used, although they are quite widespread for the source code (Bohnet
& Dollner, 2006), (Kienle & Muller, 2010).

At the same time, the experience of software research has shown that often
interrelated functions are located nearby in the address space. This arrangement is
explained both by the optimization for the hardware architecture and by the
simplification of compiler development. For example, with paging memory, a speed
gain occurs when finding jointly called functions within a single page (Eagle, 2011,
ctp. 114). On the other hand, the simplest implementation of the linker involves the
sequential addition of object modules (Bryant & O'Hallaron, 2016, ctp. 672), and
shuffling the functions between them implies some optimization. As a rule, an
object module corresponds to a separate source code file (a class in object-oriented
programming) and, therefore, is a component by definition in software with a well-
developed architecture. Thus, to carry out the decomposition of the software
module, it is proposed to perform clustering of functions based on distances both in
the address space and on the call graph. It should be noted, however, that the
interrelated functions are absolutely not obliged to be located near each other in the
address space, but these cases are associated either with a significant level of
optimization or with the use of some protection measures (for example, small
granular randomization of address space allocation during compilation
(Hypmyxameros, Kypmanranees, Kayman, & C.C., 2014)).

As the distance between two functions in the address space, it is proposed to use the
number of positions enclosed between them in the list of functions sorted by starting
address. Such a choice is explained by the need to eliminate the dependence of the
distance on the size of the functions and the data placement order. However, it
should be taken into account that there is a certain selected size of a component of a
certain level (for example, 1000-3000 functions in the case of static libraries), and,
at the same time, it is necessary to consider the interaction of all functions in the
software module under study. Based on these prerequisites, in order to obtain the
final distance in the address space, an increasing step function was chosen
corresponding to the estimated sizes of the components at various levels
(see Table 1).

80

Kononos [I.C. ITonxon k aHaan3y UCHOJIHAEMOr0 K0JIa HA OCHOBE BOCCTAHOBJICHHUSI TIPOrPAMMHOM apXUTEKTYpbl. Tpyout
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

d(fif;) =1G -0
(0,x=1r,=0
| k1,0 <x<n
l(x) = kz,r]_ S x < rz (1)

kkK, Tgog Sx <™
kivi > kst > 1

ki,ri eEN
where f; is a function with a sequence number i in the list of functions, sorted in
order of increasing starting addresses; k; — step function coefficient for the i-th
range; r; — limit of the i-th range; K — the number of ranges in the step function.
Then each edge of the call graph is assigned a weight equal to the distance d(f,-,f]-)
between the functions in the address space (1). As a result, the distance between
functions on the call graph is defined as the minimum sum of edge weights that
form the path from one function to another. It is necessary to clarify that the call
graph, in this case, is considered as an undirected graph, that is, there is a path in the
graph from the calling function to the called one, and vice versa. It should also be
borne in mind that with an arbitrary choice of the step function, it is possible that the
distance calculated from the call graph will be less than the corresponding value of
the step function. The simplest example of this kind is

0,x=0
lx)=4 1,x=1 2
+oo,x > 1

To eliminate this inconsistency, it is necessary to ensure that the selected step
function satisfies the condition: the coefficient value for each interval of the step
function must be less than or equal to the sum of the coefficient values for the
previous interval and the minimum possible edge weight (i.e., the coefficient of the
first interval). Indeed, consider the first point of any interval and draw an edge to it
from the previous point (located in the previous interval, respectively). Then if the
difference between adjacent intervals is greater than the minimum coefficient of the
step function, then the length of the edge from the origin to the selected point will
be greater than the length of the path through the immediately preceding point. The
formally described condition can be expressed by the formula (3).
kivy < ki+ky €))

Since the weight of the edge in this problem is non-negative, it is possible to use the
Dijkstra algorithm to find the distances between all the functions (Kopwmen,
Jleitzepcon, Pusect, & Wlraitn, 2013, ctp. 595)p. 595]. Then the computational
complexity of finding the distances from the current function to all the others will
be 0(n? + m), where n is the number of nodes (functions) on the call graph, and m
is the number of edges (calls). Given that clustering requires the calculation of the
distance matrix between all functions, then the total computational complexity will
be O(n®+ nm). Using the binary heap in Dijkstra’s algorithm can reduce the

81

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

computational complexity to O(n?logn + nmlogn). At the same time, it is
necessary to consider that m = 0(n?). However, in practice, the call graphs of real
programs are strongly sparse: the density of call graphs for all checked software
modules with volumes from a few hundred to tens of thousands of functions tends
to 0. The latter is explained by the decrease in connectivity between subsystems
with increasing software scale. The calculated values of the ratio m/n (the average
number of edges per node) for the studied software modules did not exceed 4 and
tends to decrease with an increase in the module volume. Consequently, in the
analysis of the executable code, the relationship for the call graph is satisfied
m = 0(n) and the evaluation can be used for the computational complexity of
constructing the distance matrix 0(n? logn).

In the framework of the experiments, it was found that the parameters of the step
function can be specified considering the expected sizes of the components within
fairly wide limits. Thus, the proposed method for decomposing a software module is
robust. Additionally, this conclusion is confirmed by the fact that the experiments
were conducted under the conditions of the existing limitations of modern means of
disassembling (IDA software) to restore the call graph. As a result, one can
conclude that the information about the original software architecture is stored in
the executable code and can be restored.

5. Practical implementation

Currently, interactive clustering is implemented based on the creation of a heat map
for the distance matrix. In the distance matrix, functions are sorted in ascending
order of their starting addresses. In this case, no additional computational costs are
required apart from converting the calculated matrix into a graphic image in the
BMP format. An example of such an image ("code map") is shown in Fig. 1; the
darker the point, the smaller the distance between the functions.

Interactive clustering is performed by manually selecting rectangular blocks visually
different from adjacent areas. As a result, a hierarchical structure is formed on the
"code map" consisting of a number of square blocks located on the diagonal, which
either do not intersect or are nested in another block. This structure corresponds to
the software architecture of the module under study, and the diagonal blocks
themselves corresponds directly with the components of different levels. Blocks
outside the diagonal determine the degree of interaction between the components.
Also, for additional confirmation of the decision on the correctness of the
components selection and the initial assessment of their assignment, strings and
other data, which are used in the functions from the block selected on the "code
map", are automatically displayed on request for the operator.

The following optimizations are added during implementation:

1) individual disconnected components of the call graph are excluded if the

number of nodes is less than the threshold (the recommended value is 20);

82

Kononos [I.C. ITonxon k aHaan3y UCHOJIHAEMOr0 K0JIa HA OCHOBE BOCCTAHOBJICHHUSI TIPOrPAMMHOM apXUTEKTYpbl. Tpyout
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

2) individual disconnected call graph components having a diameter (Hosukos,
2009, ctp. 249)p. 249] less than the threshold are excluded (the recommended
value of 3, excluding graphs with the star topology);

3) excluded functions that are called only from a single function and do not call
anything;

4) springboard functions (mediating long-distance calls) are excluded from the
distance matrix by signature, but are taken into account when constructing
routes;

5) stub functions and imported functions are excluded.
The program for calculating the distance matrix and interactive clustering is
implemented as a plug-in for the IDA disassembler. The minimum input data is the
call graph and start addresses of functions, which allows analyzing the executable
modules for unsupported IDA processors upon independent receipt of the specified
data. Information about the selected components is stored in the IDB file and is used
to display functions in the form of a tree-like list, similar to that used when
displaying projects in modern integrated software development environments.

The PC with average computing capabilities was used as a test bench: dual-core

processor with a frequency of 3.1 GHz (Core i3 2100), 8 GB RAM, SSD drive. In

the study of software modules of up to 10,000 functions, the calculation and
construction of the "code map" takes place within a minute. Such delays are
insignificant in the context of the study of the program code for the operator. The

applied step distance function is given by the formula 4:

(0,x=0
1,0 <x<100
2,100 <x <400
1) =4 37400 < x < 800 “)
4,800 < x < 1600
\'5,1600 <x

The experiments performed using the example of Nmap software version 7.10 x86
for Windows OS*' (Nmap.org, 2016) showed that the selected components in the
executable code correspond to specific subsystems and classes in the source code
(fig. 1). In addition, the dependence of the isolation degree of the components on
their level and on the size of the software module was confirmed, which is fully
consistent with the need to improve the quality of the software architecture while
increasing the size and complexity of the project. In turn, the high quality of the
latter is provided mainly by strengthening the cohesion of the components and
weakening the coupling between them.

It should be noted that in the process of decomposition, the specific features of the

software module (including those introduced by the compiler) are revealed, the

information on which allows simplifying and automating the study of the executable

1
nmap.exe module disassembled in IDA Pro 7.0 environment contains 3436 functions, 3082 functions were allocated
after the use of heuristics.
83

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

code. Due to the additional analysis, functions of the main cycles, standard service
functions of working with memory and strings, error handling functions,
springboard functions, designed to link the high-level components to each other are
determined.

6. Areas for further research

For the full implementation of the approach to analyzing the executable code
considered in the article, it is necessary to develop automatic methods for restoring
the software architecture, making it possible to explore the entire existing range of
sizes of software modules. In addition, these methods should be universal both in
terms of hardware architecture and the technologies, languages, and programming
paradigms used. To achieve these properties, it is required to work out the issues of
the restoration of components interconnections and effective hierarchical clustering,
including the case of random allocation of address space.

In the near future, the proposed method for decomposing a software module will be
developed. It is planned to implement automatic clustering methods; to take into
account the relationship graph of functions based on the using data in addition to the
call graph; to perform software modules classification based on the characteristics
that affect the decomposition process (hardware architecture, programming
paradigms, code size, etc.); to optimize the parameters of the step function of the
distance for the extracted classes of modules.

It should be noted that the result is influenced by the quality of the call graph
recovery and, accordingly, the improvement of this indicator is also one of the
directions of the described approach development.

Nmap 7.10 Windows x86 OcHOBHAA DYHKUMOHAbHOCTD

f
D

i Wl A

Fig. 1 — Code map of the Nmap.exe software module version 7.10 x86 for Windows OS after
contrast correction. The components corresponding to the classes and their groups in the
source code are partially labeled. Small parts are not displayed due to scale limitations

84

Kononos [I.C. ITonxon k aHaan3y UCHOJIHAEMOr0 K0JIa HA OCHOBE BOCCTAHOBJICHHUSI TIPOrPAMMHOM apXUTEKTYpbl. Tpyout
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

7. Conclusion

Knowledge of the software architecture makes it possible to significantly reduce the
requirements for consumed resources during the analysis of executable code by
limiting the field of research, rational choice of priorities, abstraction from
secondary elements, and joint analysis. As a result, the software module under study
is divided into separate components with a characteristic size of several thousand
functions, which, in fact, leads to a decrease in the dimension of the original
problem. Moreover, there is an additional way of expansion of the obtained
intermediate results of the analysis for the entire software module. To achieve the
indicated advantages, it is necessary to restore the software architecture of the
executable code.

It is proposed to carry out this process in two stages:
1) decomposition of the disassembled software module into separate components;
2) the definition of the functionality of the selected components and their
relationships. To perform the first stage, an automated method has been developed
that allows selecting components corresponding to static libraries, classes, and their
groups. This method is based on the functions clustering by the distances between
them in the address space and on the call graph. Currently, interactive heat map
clustering for the distance matrix is implemented as a plug-in for the IDA
disassembler. The conducted experiments confirmed the possibility of restoring the
software architecture only by the software module, which made it possible to
demonstrate in practice the advantages of the approach to the analysis of executable
code considered in the article.

References

[1]. Kaushan V.V., Markin Yu.V., Padaryan V.A., Tikhonov A.Yu. Methods for Finding
Errors in a Binary Code. Technical Report. ISP RAS, Moscow, 2013 (in Russian).

[2]. Quist D.A., Liebrock L.M. Visualizing Compiled Executables for Malware Analysis.
Proc. of the International Workshop on Visualization for Cyber Security (VisSec09),
2009, pp. 27-32.

[3]. Streekmann N. Clustering-Based Support for Software Architecture Restructuring.
Springer, 2012, 241 p.

[4]. Kosyakov A., Svit U. Systems Engineering. Principles and Practice. 2nd ed. Moscow:
DMK Press, 2014, 624 p. (in Russian).

[5]. McConnell S. Code Complete. Workshop. 2nd ed. Moscow: Russian edition, 2010,
896 p. (in Russian).

[6]. Microsoft Corp. ECMA-334 C# Language Specification. Ecma International. 2006.
Available at: http://www.ecma-international.org/publications/filessECMA-ST/Ecma-
334.pdf, accessed 13.10.2017.

[7]. Ebert J., Riediger V., Winter A. Graph Technology in Reverse Engineering. The TGraph
Approach, Proc. of the 10th Workshop Sowtware Reengineering (WSR 2008), vol. 126,
2008, pp. 67-81.

85

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

[8]. Meng X., Miller B.P. Binary Code Is Not Easy. Proc. of the 25th International
Symposium on Software Testing and Analysis (ISSTA16), Saarbrucken, Germany,
2016, pp. 24-35.

[9]. Clements P., Bachmann F., Bass L. et al. Documenting Software Architectures: Views
and Beyond. 2nd ed. Addison-Wesley Professional, 2010, 517 p.

[10]. lan G. Essential Software Architecture, 2nd ed. Springer, 2011, 242 p.

[11]. ANSI/IEEE Standard 1471-2000 Recommended Practice for Architectural Description
of Software-Intensive Systems.

[12]. Padaryan V.A., Getman A.l. et al. Methods and Software Supporting the Combined
Analysis of a Binary Code. Programming and Computer Software, vol. 40, issue 5,
2014, pp. 276-287.

[13]. Novikov F.A. Discrete Mathematics for Programmers: Textbook for Universities, 3rd
ed. Piter, 2009, 384 p. (in Russian).

[14]. Bohnet J., Dollner J. Visual Exploration of Function Call Graphs for Feature Location in
Complex Software Systems. Proc. of the 2006 ACM Symposium on Software
Visualization, 2006, pp. 95-104.

[15]. Kienle H.M., Muller H.A. Rigi — An Environment for Software Reverse Engineering,
Exploration, Visualization and Redocumentation. Science of Computer Programming,
vol. 75, issue 4, 2010, pp. 247-263.

[16]. Eagle C. IDA Pro Book, 2nd ed. No Starch Press, 2011, 672 p.

[17]. Nurmukhametov A.R., Zhabotinsky E.A., Kurmangaleev S.F., Gaisaryan S.S,,
Vishnyakov A.V. Fine-grained address space layout randomization on program load. .
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017, pp. 163-182 (in Russian). DOI:
10.15514/ISPRAS-2017-29(6)-9

[18]. Bryant R.E., O'Hallaron D.R. Computer Systems: A Programmer's Perspective. 3rd ed.
Pearson, 2016, 1084 p.

[19]. Nurmukhametov A.R., Kurmangaleev S.F., Kaushan V.V., Gaisaryan S.S. Compiler
protection techniques against software vulnerabilities exploitation. Trudy ISP
RAN/Proc. ISP RAS, vol. 26, issue 3, 2014, pp. 113-126 (in Russian). DOI:
10.15514/ISPRAS-2014-26(3)-6

[20]. Kormen T. Kh., Leyzerson Ch.l., Rivest R.L., Stein K. Algorithms: Construction and
Analysis, 3rd ed. Williams LLC, 2013, 1328 p. (in Russian).

[21]. Nmap: the Network Mapper, 2016. Available at: https://nmap.org/dist/nmap-7.10-
win32.zip, accessed 21.08.2018.

MNoaxoa kK aHanu3y UCNOMHAEMOro Koga Ha OCHoBe
BOCCTaAHOBJIEHUSI MPOrPaMMHON apXUTEKTYpblI

J.C. Kononos <dspr2@yandex.ru>
QI'VII «18 THUW» MO P®,
111123, Poccus, e. Mockea, Ceob00Hblil npocnexkm, 0. 4.

AHHoTanus. B crathe paccMaTpuBaOTCs HOBBIH MOAXOM K ITOMYYEHHIO JOMONHHTEIHHON
nHpopMany 00 HCCIeIyeMOM IPOTPAaMMHOM MOJYJIE Ha OCHOBE MpPEIBAPUTENHHOTO
BOCCTAHOBIICHUS IIPOrPaMMHOM apXUTEKTYpbl B XOJE aHalu3a MCIONHAEMOro koja. B
pe3yabTaTe MOSBIISIETCS BO3MOXKHOCTh COKPAaTUTh TPEOOBAaHMS K 3aTpauylBacMBIM PecypcaM
3a C4éT OrpaHMUCHHUs] OOJACTH MCCIEIOBAHUS, PALMOHATIBHOIO BBIOOpA MPHOPHUTETOB,
a0cTparupoBaHus OT BTOPOCTENEHHBIX 3JeMEHTOB. B pabore nemoHcTpupyercs

86

https://link.springer.com/journal/11086/40/5/page/1
https://nmap.org/dist/nmap-7.10-win32.zip
https://nmap.org/dist/nmap-7.10-win32.zip

Kononos [I.C. ITonxon k aHaan3y UCHOJIHAEMOr0 K0JIa HA OCHOBE BOCCTAHOBJICHHUSI TIPOrPAMMHOM apXUTEKTYpbl. Tpyout
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

OCYIIECTBUMOCTh BOCCTaHOBJICHHSI TPOTPAMMHON apXHTEKTYPhl B paMKaX IBYXJTAIHOTO
mporecca: BHaYaje MPOBOIUTCS BBIIENCHAE OOOCOOJICHHBIX KOMIIOHCHTOB, a 3aTeM
OTPE/ICNAIOTCS. UX Ha3HA4YeHMs W B3aMMOOTHOIIEHHMs. [IpearaeTcss aBTOMAaTH3UPOBAHHBIN
METOJ] eKOMITO3HMIMHA HPOrPAMMHOTO MOAYJSI, MO3BOJLSIFOLUIMA BBIACISITE KOMIIOHEHTHI,
COOTBETCTBYIOIINE CTATUYECKUM OHOIHOTEKaM, KiaccaM W uX rpynnam. J[aHHBIH MeTon
GazupyeTcss Ha KiacTepusauud (QyHKIMH MO pPACCTOSHUSIM MEXAy HHMH B aJpecCHOM
MPOCTPAHCTBE W Ha Tpade BBI30BOB. [IpHBeleHO ommcaHWe peanu3anud pa3paboTaHHOTO
METO/Ia B BHJIC TUTarvHa Juts au3accemboinepa IDA.

KnwueBbie CJI0BA: aHaJIn3 HUCIIOJIHAEMOI'O KoIa; nporpaMmmMHas APXUTEKTYpa,
KJ1acTepusanus; rpa(b BBI3OBOB; PAaCCTOSAHUE MEKIY Q)yHKHI/ISIMI/I; HpOFpaMMHI;IfI MOIYJIb,
JACKOMITO3UIIUA.

DOI: 10.15514/1ISPRAS-2018-30(5)-4

Jas uutupoBanus: Kononos /I.C. I[logxon k aHamm3y HCIOMHAEMOTO KoJa Ha OCHOBE
BOCCTaHOBJICHHS IporpaMMHoil apxutektypsl. Tpyast UCII PAH, tom 30, Bem. 5, 2018 1.,
crp. 75-88 (na anrmmiickom s3bike).. DOI: 10.15514/ISPRAS-2018-30(5)-4

Cnucok nutepatypbl

[1]. Kaymran B.B., Mapkun 0.B., [Tagapsia B.A., TuxonoB A.JO. MeTo/ibl MoMcKa OmmOoK
B OMHapHOM Koze, Texuuueckuii oryer, ICII PAH, Mocksa, 2013.

[2]. Quist D.A., Liebrock L.M. Visualizing Compiled Executables for Malware Analysis.
Proc. of the International Workshop on Visualization for Cyber Security (VisSec09),
2009, pp. 27-32.

[3]. Streekmann N. Clustering-Based Support for Software Architecture Restructuring.
Springer, 2012, 241 p.

[4]. KocsixkoB A., Ceur Y. CucreMHas WHXEHepHs. [IPHHIMIIBI M TNPaKTHKA. 2-¢ W3
Mocksa: JIMK Ilpecc, 2014. 624 c.

[5]. Makkouremn C. CoBepuieHnsiii kox. Macrep-kimace. 2-e u3a. Mocksa: M3gaTenbcTBo
«Pycckas pegakuusy, 2010. 896 c.

[6]. Microsoft Corp. ECMA-334 C# Language Specification. Ecma International. 2006.
URL: http://www.ecma-international.org/publications/filessECMA-ST/Ecma-334.pdf
(mara obpamienus: 13.0krs16ps.2017).

[7]. EbertJ., Riediger V., Winter A. Graph Technology in Reverse Engineering. The TGraph
Approach, Proc. of the 10th Workshop Sowtware Reengineering (WSR 2008), vol. 126,
2008, pp. 67-81.

[8]. Meng X., Miller B.P. Binary Code Is Not Easy. Proc. of the 25th International
Symposium on Software Testing and Analysis (ISSTA16), Saarbrucken, Germany,
2016, pp. 24-35.

[9]. Clements P., Bachmann F., Bass L. et al. Documenting Software Architectures: Views
and Beyond. 2nd ed. Addison-Wesley Professional, 2010, 517 p.

[10]. lan G. Essential Software Architecture, 2nd ed. Springer, 2011, 242 p.

[11]. ANSI/IEEE Standard 1471-2000 Recommended Practice for Architectural Description
of Software-Intensive Systems.

[12]. Magapsa B.A., Tersman AWM. u gp. Meroasl M IPOrpaMMHBIC CPEACTBa
MOJICPXKUBAOIIE KOMOMHUPOBAHHBIA aHanmu3 OwHapHOro koxa. Tpymst UCIT PAH,
Tom 26, Beim. 1, 2014 r., ctp. 251-276. DOI: 10.15514/ISPRAS-2014-26(1)-8

87

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

[13].

[14].

[15].

[16].
[17].

[18].

[19].

[20].

[21].

88

HosukoB @.A. JluckperHass MaTeMaTHKa A IPOTPaMMUCTOB: YUEOHUK I BY30B. 3-€
m3x. CII6: ITutep, 2009. 384 c.

Bohnet J., Dollner J. Visual Exploration of Function Call Graphs for Feature Location in
Complex Software Systems. Proc. of the 2006 ACM Symposium on Software
Visualization, 2006, pp. 95-104.

Kienle H.M., Muller H.A. Rigi — An Environment for Software Reverse Engineering,
Exploration, Visualization and Redocumentation. Science of Computer Programming,
vol. 75, issue 4, 2010, pp. 247-263.

Eagle C. IDA Pro Book, 2nd ed. No Starch Press, 2011, 672 p.

HypmyxameroB A.P., XaGorunckuii E.A., Kypmanramees LI.®., Taiicapsa C.C.,
Bummnsaxkos A.B. MenkorpanyisipHas —paHIOMU3alMsA apeCHOr0 IPOCTPAHCTBA
nporpammel nipu 3amycke. Tpyast UCIT PAH. tom 29, Beim. 6, crtp. 163-182. DOI:
10.15514/ISPRAS-2017-29(6)-9

Bryant R.E., O'Hallaron D.R. Computer Systems: A Programmer's Perspective. 3rd ed.
Pearson, 2016, 1084 p.

HypmyxameroB A.P., Kypmanranees I.d., Kayman B.B., C.C. I'. IIpumenenue
KOMITUJIATOPHBIX HpeO6pa30BaHI/Iﬁ JUIA HpOTI/IBO,Z[eﬁCTBI/Iﬂ OKCIUTyaTalluu yH3BHMOCTeﬁ
nporpammuoro obecrieuenns. Tpynsr VICIT PAH, tom 26, Beim. 3, ctp. 113-126. DOI:
10.15514/ISPRAS-2014-26(3)-6

Kopmen T.X., Jletizepcon Y.W., Pusect P.JI., Illraiin K. Anroputmsl: moctpoeHue u
aHamms. 3-¢ 3. Mocksa: OO0 «.JI. Bumssimey, 2013. 1328 c.

Nmap.org. Nmap: the Network Mapper 2016. URL: https://nmap.org/dist/nmap-7.10-
win32.zip (nara obpamienus: 21.08.2018).

Platform for interprocedural static analysis
of binary code

H.K. Aslanyan <hayk@ispras.ru>
Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. This paper describes the developed platform for static analysis of binary code. The
platform is developed based on interprocedural, flow-sensitive and context-sensitive analysis
of the program. The machine-independent language REIL is used as an intermediate
representation. In this representation basic data flow analyzes are developed and implemented
- reaching definitions analysis, construction of DEF-USE and USE-DEF chains, analysis for
deletion of dead code, value analysis, taint analysis, memory analysis and etc. The
implemented approach for functions’ annotations allow propagating data between function
calls, thereby making the context-sensitive analysis. The platform provides an API for using
all implemented analyzes, which allows adding new analyzes as plugins.

Keywords: static analysis; binary code analysis; interprocedural analysis
DOI: 10.15514/ISPRAS-2018-30(5)-5

For citation: Aslanyan H.K. Plarform for interprocedural static analysis of binary code.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 89-100. DOI: 10.15514/ISPRAS-
2018-30(5)-5

1. Introduction

Software developers always strive to create high-quality software, meaning that it
should be reliable, safe and easy to maintain. However, with increasing size and
complexity of projects, the developed code contains more errors [1]. Fixing those
errors can be done at any phase of the software development life cycle. Ideally, all
errors are detected during the testing phase. Error detection at the later phases or
after deployment may cause many difficulties. Moreover, erroneous software may
result in money loss. However, even a very thoroughly tested software sometimes
contains errors. Currently, various code analysis tools are widely used to detect
these errors.

Static code analysis is one of the common defect detection approaches. Static
analysis examines examining a code without executing a program. Through a
complete analysis of syntax, semantics, control and data flow, static code analysis
can find errors that are difficult or impossible to find during testing, especially on

89

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue
5, 2018. pp. 89-100

rarely executed paths. Static analysis is based on methods and approaches both from
fundamental and applied research.

There are lots of approaches for static analysis of source code [2-8]. However, static
analysis of executables is less studied, despite the fact that it has several advantages
over the source code analysis. The first advantage of the binary code analysis
compared to the source code analysis is the fact that the source code is not always
available. The second advantage is that aggressive compiler optimizations may
create defects in binary code that were non-existent in the source, and it is very hard
to prove the optimization correctness [9-10]. The third advantage is the undefined
semantics of certain language constructs that may create difficulties for a static
analyzer. For example, in C/C ++ the order in which actual function parameters are
evaluated is implementation defined, which can lead to false positive reports in the
source code analyzer.

A production quality static analysis tool should have the following features:
interprocedural analysis support, flow sensitivity, path sensitivity. In addition, a
high-quality analyzer should be able to analyze large files (binary file sizes can
reach hundreds of megabytes) in a few hours, provide high accuracy (a small
number of false positives), and it should be easy to extend for supporting new error

types.

2. Platform architecture

The proposed tool architecture was developed taking into account the following
requirements:

e target architecture independent;

e context-sensitive interprocedural analysis with flow-sensitive
intraprocedural analysis;

o scalability: analyzing tens of megabytes of executable files in a few hours;

e easy platform extension.

The first step is producing assembler code from an executable. Assembler language
instructions are created by a disassembler using the object code as input. The tool
uses the IDA Pro [2] disassembler since it supports many executable file formats for
a large number of processors, automatically restores control flow graphs and call
graphs. The disassembler also restores calling conventions. Then the resulting
assembly code is transferred to the Binnavi [3] tool, which converts it to the REIL
representation (Reverse Engineering Intermediate Language) [4]. REIL
representation is an intermediate low-level language that can be used to write
platform-independent analysis algorithms. It has only 17 instructions. Each
instruction calculates no more than one result and has no side effects (flag settings,
etc.). REIL representation is created for a virtual processor with unlimited memory
and an unlimited number of registers denoted as t0, t1, t2, etc. Target machine
registers can be also accessed in REIL. Fig. 1 shows the scheme for getting the
assembler and REIL representation.

90

Acnansin A K. TTnardgopma MeXIpoLeaypHOro CTaTHISCKOro aHamu3a OunapHoro koxa. Tpyowr UCIT PAH, tom 30,
Boim. 5, 2018 r., cTp. 89-100

Executable file

3. Function summaries and interprocedural analysis

IDA Pro

e Assembler Binnavi
¢ Control flow graphs e REIL

e Call graph

Fig. 1.Getting a REIL representation

After generating a REIL representation, the call graph is made acyclic. First, the
classical Tarjan approach [5] is used to find strongly connected components (SCCs).
Second, directed cycles are identified, and an arbitrary edge is removed from each
of them. This process breaks the connectivity properties of the SCCs.

Then call graph nodes are divided into groups (fig. 2) as follows: the first group has
nodes that have no outgoing edges. The second group includes nodes whose
descendants are in the first group. Thus, each subsequent group includes the nodes
that have their successor nodes processed as belonging to the previous groups. Since
the call graph has no more directed cycles, the algorithm will be completed in a
finite number of steps, and each node will fall into a certain group.

Call graph Bringing the call Spliwing in to groups
graph into an agclic
o

Fig. 2. Splitting nodes of the call graph into groups

Next, call graph traversal is performed according to the node groups built.
Intraprocedural analyses are run starting from the first group’s nodes, and each next
group is only considered if the functions corresponding to all previous group’s
nodes have been analyzed. It should be noted that the analysis is performed only for
functions with available bodies, i.e. functions from dynamic libraries are not
analyzed (only summaries are available for such functions). When interprocedural
analyses are completed, so-called function summaries are saved (summaries contain
function-specific data calculated by the analyses). For example, a function returns
the value that is user-controlled (like e.g. gets function in C/C++), or a function
frees the memory pointed to by the first parameter. When analyzing a function, its
callees’ summaries are used. Obviously, in the absence of recursive calls, all called
functions’ summaries are available. In the case of recursive calls, some edges are

91

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue
5, 2018. pp. 89-100

removed from the call graph and thus some called function summary may not be
available. Such cases are handled as calls of unknown functions (without a
summary). We have used the C standard library summaries from the Svace tool [6].
Also, summaries can be extended with new types of data in our platform.

Intraprocedural analyses for each function are run only once, which allows
achieving scalability w.r.t. the number of functions. Splitting call graph nodes into
groups gives the advantage of analyzing the functions within each group in parallel.

4. Intraprocedural analysis

Basic intraprocedural analyses that form the platform contents are performed using
the REIL representation. Function summaries are used when processing function
calls, and the analysis data is evaluated taking into account actual call parameters
and calling conventions. This process makes the analysis context-sensitive.
Currently, value analysis, reaching definitions analysis, DEF-USE and USE-DEF
chains construction, dead code removal, liveness analysis, taint analysis, and
dynamic memory analysis are implemented. The intraprocedural analysis
architecture makes it easy to extend the set of analyses (fig. 3) and to add plugins.

/ Basic analyzes \

o Value analysis

o Reaching definitions analysis

e Development of DEF-USE and USE-
DEF chains

e Dead code removal transformation User interface Plugins
o Analysis of active variables
e Analysis of tagged data

e Dynamic memory analysis

- /

Fig. 3. Intraprocedural analysis architecture

2.1 Value analysis

Value analysis is used to track values in registers and memory cells. All registers
(target architecture registers and temporaries) and all memory cells that are used in
the program are called variables. During the analysis process all variables get values
for all program points. For values stored in memory, a memory model, which tracks
memory accesses for stack, heap, and static memory areas, was developed and
implemented.

Value analysis is implemented based on a classic iterative data flow approach [7].
For this purpose, a semilattice is defined, that is, initial values for all variables are

92

Acnansin A K. TTnardgopma MeXIpoLeaypHOro CTaTHISCKOro aHamu3a OunapHoro koxa. Tpyowr UCIT PAH, tom 30,
Boim. 5, 2018 r., cTp. 89-100

specified and transfer functions are defined. All other analyses are based on the
value analysis.

4.1.1 Value types

The developed value analysis has several symbolic value types: an integer type, a
target architecture register, a temporary REIL register, a memory area, and a special
values bottom and top. The bottom value is assigned to variables that have unknown
value (the lowest element in the semilattice), and the top value is assigned to
variables that may have any value (the uppermost element in the semilattice). Fig. 4
shows the value analysis semilattice.

[Integer type] [Temporary register] [Target architecture register l [Memory poillt]

Fig. 4. Diagram of the value analysis semilattice

4.1.2 Memory model

A simple memory model is just a byte array. Memory stores and loads in this model
are emulated as stores or loads to the corresponding array element. However, such a
simple model has some drawbacks. It is impossible to determine concrete addresses
for certain memory areas, e.g. those that are heap allocated. Moreover, function
calls sequence may change during each subsequent program run, which will
generally result in the ambiguity of memory values.

For proper analysis, the tool must separate different memory areas. To address the
challenge, the following memory model is proposed. Memory is addressed as
follows: * (reg + constants array) + constant, where reg is a
register, constants array is an array of constant values, and constant is a
constant value. constants array and constant play the role of offset, and
constants array provides the ability to model multidimensional array
elements and structure fiels. reg has a basic symbolic value. It is important to note
that all formula elements are not necessarily needed to model the given cell.

e Stack memory model. Since it is impossible to determine the precise
value of the function stack top statically, the model refers to local variables
by the offset from the stack top of the current function. Therefore, the
symbol stack for the initial address of the analyzed function’s stack is
used, and all local variables are modeled relative to this address. For
example, in the x86 architecture, after the instruction mov eax, esp+4
the value of eax will be stack+4, and after the instruction mov ebx,

93

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue
5, 2018. pp. 89-100

4.1.3

[esp+8] the value of ebx will be *(stack+{8}).
constants_array provides the ability to model values of structure
fields. For example, if the value of the a->b->c expression in C code is
in ebx, then after processing all REIL instructions the value of
constants array for ebx will be {offset b in structure
a, offset c in structure b}.

Heap memory model. To model heap memory accesses, the heap symbol
is used and the instruction address of the memory allocation function call is
put into constants_array. For example, after processing the malloc
call with the address equal to OxFFFFFFEFF (on the x86 architecture with
the cdecl calling convention), eax will be * (heap+{0xFFFFFFFF}).
Static memory model. Static and global variables are modeled directly
with their address with or without an offset. After compilation, all static
variables’ addresses are known, and the variable address is put in
constants_array, and its offset is put to constant.

Value analysis implementation

The value analysis algorithm is based on the iterative data flow approach [7]. The
semilattice, transfer functions and initial values are defined. The top/bottom
semilattice elements are denoted as top/bottom, respectively. Bottom is the
initial value for all variables except stack top and function arguments.

Transfer functions are defined for REIL instructions as follows. Let us define the
register value ti as val (ti). For example, for the instruction add t1, t2,
£ 3 (it adds the value t1 to t2 and stores in t3) the transfer function is defined as
follows: all variables’ values remain unchanged except for t3, and val (t3) will
be defined as follows:

94

top, ifval (tl)=toporval (t2)=top;

bottom, if Val (tl)=bottomorVval (t2)=bottom;
Val(tl)+Val(t2),ifval(tl) andVal (t2) are integer constants;

* (reg+constants_array)+ (constant+v), if val (t1l)=* (reg
+ constants array)+constant and val (t2) is an integer
constant that is equal to v;

* (reg+constants_array) + (constant+v), if val (t2)=* (reg
+ constants array)+constant and val (tl) is an integer
constant that is equal to v;

* (reqg) +v, if val (t1) is a register that equals to reg, and val (t2)
is an integer constant that is equal to v;

* (reqg) +v, if Val (t2) is a register that equals to reg and val (t1)
is an integer constant that is equal to v;

top, if none of the above applies.

Acnansin A K. TTnardgopma MeXIpoLeaypHOro CTaTHISCKOro aHamu3a OunapHoro koxa. Tpyowr UCIT PAH, tom 30,
Boim. 5, 2018 r., cTp. 89-100

Similarly, transfer functions for other 17 REIL instructions are defined. The
iterative algorithm converges as we limit the number of calculated values for each
variable, so the algorithm stops when no values are changed or the above limit is
reached.

4.2 Data flow analyses implementation

Based on the value analysis, other classical data flow analyses are implemented
(reaching definitions analysis, dead code removal, liveness analysis, taint analysis,
and dynamic memory analysis). The above analyses are also performed using the
iterative data flow algorithm [7]. Semilattices and transfer functions are similarly
defined, and initial values are assigned to variables. DEF-USE and USE-DEF chain
construction is based on reaching definitions. The platform provides an API for
working with all existing analyses, which allows implementing new analyses as
plugins.

5. Related work

Balakrishnan and Reps describe in [8] an approach for analyzing value intervals. It
is implemented in the CodeSurfer/x86 tool, which can be used to analyze
executables for the x86 architecture. The tool uses the IDA Pro disassembler to
restore the program assembly code, its control flow graphs and the call graph. The
tool implements a memory model, based on which the interprocedural, context-
sensitive value interval analysis is performed.

In [9] [10] [11], platforms for analyzing x86 executables are developed and
implemented. These works implement an intermediate language and a disassembler,
also adapting value interval analysis of [8] values for their intermediate
representation. In [10], tainted data analysis is developed in addition to the above.
The paper [12] presents the BAP tool for analyzing executable files built for the x86
and ARM architectures. Both dead code removal and DEF/USE chain construction
are implemented, but the analyses do not take into account memory data
dependencies, which significantly lowers their quality.

The platform described in our work has two main functional advantages: it does not
depend on target architecture and uses the function summary approach, which
allows achieving linear scalability w.r.t. the number of analyzed functions.

6. Experimental results

All algorithms described in the paper were implemented and tested on real and
artificial examples. Table 1 shows running times of all the described analyses for
lepton, php and clam projects. Tests were run on a machine with a Core i5
processor, 4 cores and 16 GB RAM.

As can be seen from the table, php has a larger size compared to clam, but the
analysis time of this project is shorter. Such results can be explained by the fact that

95

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue

5, 2018. pp. 89-100

functions in the clam project are much larger on average than php functions.

Therefore, parallel function analysis in php is much more efficient.
Table 1. Experimental results

Executable file Architecture Size Thz;‘g;sgsf all

lepton x86 5 MB 19 min 21sec
php x64 29 MB 3 h 12min
clam x86 18 MB 4 h 20min

7. Conclusion and further work

In this work, we have presented a platform for binary code analysis that is target
independent and supports a variety of classical data flow analyses. The application
of the developed platform using the implemented APIs can be found in [20-24].
These projects, in particular, used reaching definitions analysis and USE-DEF/DEF-
USE chains for building program dependency graphs.

In the future, we plan to add analyzers for finding critical errors in binary code. In
addition, as the REIL representation does not support floating point numbers, the
described analyses currently work only with integer types, and we plan to add such
support, which will increase the analyzers’ accuracy.

References

[1]. S. C. Misra and V. C. Bhavsar. Relationships between selected software measures and
latent bug-density: Guidelines for improving quality. In Proc. of the International
Conference on Computational Science and its Applications, ICCSA, Monreal, Canada,
2003.

[2]. V. P. lvannikov, A. A. Belevantsev, A. E. Borodin, V. N. Ignatiev, D. M. Zhurikhin and
A. I. Avetisyan. Static analyzer Svace for finding defects in a source program code.
Programming and Computer Software, vol. 40, no. 5, 2014, pp. 265-275.

[3]. Coverity scan. Synopsys, https://scan.coverity.com/.

[4]. Klocwork static code analysis. RogueWave software,
https://www.roguewave.com/products-services/klocwork/static-code-analysis.

[5]. Fortify Static Code Analyzer. Micro Focus, https://software.microfocus.com/ru-
ru/products/static-code-analysis-sast/overview.

[6]. 1BM AppScan. IBM, https://www.ibm.com/us-en/marketplace/ibm-appscan-source.

[7]. V. K. Koshelev, V. N. Ignatiev, A. I. Borzilov and A. A. Belevantsev. SharpChecker:
Static analysis tool for C# programs. Programming and Computer Software, vol. 43, no.
4, 2017, pp. 268-276.

[8]. A. A. Belevantsev. Multilevel static analysis for improving program quality.
Programming and Computer Software, 2017, pp. 321-336.

[9]. G. Balakrishnan and T. Reps. WYSINWY X: What You See Is Not What You eXecute.
ACM Transactions on Programming Languages and Systems, vol. 32, no. 6, 2010, pp. 1-
84.

96

Acnansin A K. TTnardgopma MeXIpoLeaypHOro CTaTHISCKOro aHamu3a OunapHoro koxa. Tpyowr UCIT PAH, tom 30,

BBIIL

.5,2018 r., ctp. 89-100

[10]

[11].
[12].
[13].
[14].
[15].
[16].

[17].

[18].

[19].
[20].

[21].

[22].

[23].

[24].

. H. J. Boehm. Threads cannot be implemented as a library. In Proc. of the 2005 ACM
SIGPLAN conference on Programming Language Design and Implementation, 2005,
pp. 261-268.

IDA Pro disassembler. Hex-Rays, https://www.hex-rays.com/products/ida.

Binnavi. Zynamics, https://www.zynamics.com/binnavi.html.

REIL - The Reverse Engineering Intermediate Language. Zynamics,
https://www.zynamics.com/binnavi/manual/html/reil_language.htm.

R. E. Tarjan. Depth-first search and linear graph algorithms. In Proc. of the 12th Annual
Symposium on Switching and Automata Theory, 1971, pp. 114 - 121

V. Aho, R. Sethi and J. D. Ullman. A formal approach to code optimization. In
Proceedings of a Symposium on Compiler Optimization, 1970, pp. 86-100.

J. Kinder. Static analysis of x86 executables. Ph.D. Thesis, Technische Universitat
Darmstadt, 2010.

S. Cheng, J. Yang, J. Wang, J. Wang and F. Jiang. LoongChecker: Practical Summary-
Based Semi-simulation to Detect Vulnerability in Binary Code. In Proc. of the 10th
International Conference on Trust, Security and Privacy in Computing and
Communications, Changsha, 2011, pp. 150-159.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam and P. Saxena. BitBlaze: A New Approach to Computer Security via
Binary Analysis. In Proc. of the 4th International Conference on Information Systems
Security, 2008, pp. 1-25.

D. Brumley , I. Jager , T. Avgerinos and E. J. Schwartz. BAP: A Binary Analysis
Platform. Lecture Notes in Computer Science, vol. 6806, 2011, pp. 463-469.

H. K. Aslanyan. Effective and Accurate Binary Clone Detection. Mathematical
Problems of Computer Science, vol. 48, 2017, pp. 64-73.

G. S. Keropyan, V. G. Vardanyan, H. K. Aslanyan, S. F. Kurmangaleev and S. S.
Gaissaryan. Multiplatform Use-After-Free and Double-Free Detection in Binaries.
Mathematical Problems of Computer Science, vol. 48, 2017, pp. 50-56.

H. Aslanyan, A. Avetisyan, M. Arutunian, G. Keropyan, S. Kurmangaleev and V.
Vardanyan. Scalable Framework for Accurate Binary Code Comparison. In Proc. of the
2017 Ivannikov ISPRAS Open Conference, Moscow, 2017, pp. 34-38.

H. Aslanyan, S. Asryan, J. Hakobyan, V. Vardanyan, S. Sargsyan and S. Kurmangaleev.
Multiplatform Static Analysis Framework for Programs Defects Detection. In CSIT
Conference 2017, Yerevan, Armenia, 2017.

H.K. Aslanyan, S.F. Kurmangaleev, V.G. Vardanyan, M.S. Arutunian, S.S.Sargsyan.
Platform-independent and scalable tool for binary code clone detection. Trudy ISP
RAN/Proc. ISP RAS, vol. 1, issue 2, 2016. pp. 215-226 (in Russian). DOI:
10.15514/ISPRAS-2016-28(5)-13.

MNMnarcopma mexnpoueaypHOro ctaTUMECKOro aHanusa
OuHapHoro Koga
A.K. Acnansn <hayk@ispras.ru>

Hucmumym cucmemnozo npoepammuposanus PAH,
109004, Poccus, . Mocksa, ya. A. Conxncenuysvina, 0. 25.

AHHOoTaumMs. B paMkax naHHOH cTaThM oOnHMChIBaeTcs paspaboTaHHas Iuatdopma mis
CTAaTUYECKOTO aHanu3a OuHapHoro koma. Ilmatrdpopma paspaboTaHa Ha OCHOBE

97

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue
5, 2018. pp. 89-100

MEXKIIPOIEYPHOTO, MOTOKO-UYyBCTBUTEIFHOTO M KOHTEKCTHO-UyBCTBHTEIHHOTO aHAIIN3a
mporpaMMbl. B KadecTBE NpPOMEXYTOUHOTO NPEICTaBICHHS MHCIOJIB3YeTCSl MAIIWHHO-
He3aBucuMbIH 1361k REIL. Ha 3TOM npencrasienun pa3paboTaHbl U peaIi30BaHbBl OCHOBHBIE
aHaNM3bl MMOTOKA JAaHHBIX - aHAIN3 JOCTHrAIOIINX ompeaeneHui, moctpoenne DEF-USE u
USE-DEF uemnouek, Tpancdopmarus uisl yAaleHHs MEPTBOrO KOJa, aHAIU3 3HAa4YCHHH,
aHaNU3 MOMEYEHHBIX JaHHBIX, aHAN3a NMaMATH U T.1. Peann3oBaHHBIA MOAX0X aHHOTAIUU
(yHKIMI MO3BOJISIET PACIPOCTPAHATH JaHHBIE MEXIy BBI30BaMH (YHKIWI, TeM CaMbIM
ClleNlaB aHaNW3 YyBCTBUTENBHBIM K KOHTeKcTy. [lmardopma mpemocraBisieT mporpaMMHBIN
uHTepQeic st paboThl CO BCEMM PEalTN30BAaHHBIM aHAIM3aMH, YTO ITO3BOJISIET JOOABIATH
HOBBIE aHAJM3bI B KAYECTBE IUIaTHHOB.

Knw4eBble cjoBa: craTmdecKuit aHaJIn3, aHaJIu3 6I/IHapHOFO KO/Ja, Me)KHpOHeﬂypHBIﬁ
aHaJInu3

DOI: 10.15514/ISPRAS-2018-30(5)-5

Jas uutupoBanus: AcmansH A.K. [Inardpopma MeXIponeaypHOro CTaTHYECKOTO aHAIN3a
6unapuoro koxa. Tpymast ICIT PAH, Tom 30, Beim. 5, 2018 r., ctp. 89-100 (Ha anrnuiickom
s3bike). DOI: 10.15514/ISPRAS-2018-30(5)-5

Cnucok nutepatypbl

[1]. S. C. Misra and V. C. Bhavsar. Relationships between selected software measures and
latent bug-density: Guidelines for improving quality. In Proc. of the International
Conference on Computational Science and its Applications, ICCSA, Monreal, Canada,
2003.

[2]. V. P. Ivannikov, A. A. Belevantsev, A. E. Borodin, V. N. Ignatiev, D. M. Zhurikhin and
A. I. Avetisyan. Static analyzer Svace for finding defects in a source program code.
Programming and Computer Software, vol. 40, no. 5, 2014, pp. 265-275.

[3]. Coverity scan. Synopsys, https://scan.coverity.com/.

[4]. Klocwork static code analysis. RogueWave software,
https://www.roguewave.com/products-services/klocwork/static-code-analysis.

[5]. Fortify Static Code Analyzer. Micro Focus, https://software.microfocus.com/ru-
ru/products/static-code-analysis-sast/overview.

[6]. 1BM AppScan. IBM, https://www.ibm.com/us-en/marketplace/ibm-appscan-source.

[7]. V. K. Koshelev, V. N. Ignatiev, A. |. Borzilov and A. A. Belevantsev. SharpChecker:
Static analysis tool for C# programs. Programming and Computer Software, vol. 43, no.
4, 2017, pp. 268-276.

[8]. A. A. Belevantsev. Multilevel static analysis for improving program quality.
Programming and Computer Software, 2017, pp. 321-336.

[9]. G. Balakrishnan and T. Reps. WYSINWY X: What You See Is Not What You eXecute.
ACM Transactions on Programming Languages and Systems, vol. 32, no. 6, 2010, pp. 1-
84.

[10]. H. J. Boehm. Threads cannot be implemented as a library. In Proc. of the 2005 ACM
SIGPLAN conference on Programming Language Design and Implementation, 2005,
pp. 261-268.

[11]. IDA Pro disassembler. Hex-Rays, https://www.hex-rays.com/products/ida.

[12]. Binnavi. Zynamics, https://www.zynamics.com/binnavi.html.

98

Acnansin A K. TTnardgopma MeXIpoLeaypHOro CTaTHISCKOro aHamu3a OunapHoro koxa. Tpyowr UCIT PAH, tom 30,

BBIIL

.5,2018 r., ctp. 89-100

[13]

[14].
[15].
[16].

[17].

[18].

[19].
[20].

[21].

[22].

[23].

[24].

.REIL - The Reverse Engineering Intermediate Language. Zynamics,
https://www.zynamics.com/binnavi/manual/html/reil_language.htm.

R. E. Tarjan. Depth-first search and linear graph algorithms. In Proc. of the 12th Annual
Symposium on Switching and Automata Theory, 1971, pp. 114 - 121

V. Aho, R. Sethi and J. D. Ullman. A formal approach to code optimization. In
Proceedings of a Symposium on Compiler Optimization, 1970, pp. 86-100.

J. Kinder. Static analysis of x86 executables. Ph.D. Thesis, Technische Universitat
Darmstadt, 2010.

S. Cheng, J. Yang, J. Wang, J. Wang and F. Jiang. LoongChecker: Practical Summary-
Based Semi-simulation to Detect Vulnerability in Binary Code. In Proc. of the 10th
International Conference on Trust, Security and Privacy in Computing and
Communications, Changsha, 2011, pp. 150-159.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam and P. Saxena. BitBlaze: A New Approach to Computer Security via
Binary Analysis. In Proc. of the 4th International Conference on Information Systems
Security, 2008, pp. 1-25.

D. Brumley , I. Jager , T. Avgerinos and E. J. Schwartz. BAP: A Binary Analysis
Platform. Lecture Notes in Computer Science, vol. 6806, 2011, pp. 463-469.

H. K. Aslanyan. Effective and Accurate Binary Clone Detection. Mathematical
Problems of Computer Science, vol. 48, 2017, pp. 64-73.

G. S. Keropyan, V. G. Vardanyan, H. K. Aslanyan, S. F. Kurmangaleev and S. S.
Gaissaryan. Multiplatform Use-After-Free and Double-Free Detection in Binaries.
Mathematical Problems of Computer Science, vol. 48, 2017, pp. 50-56.

H. Aslanyan, A. Avetisyan, M. Arutunian, G. Keropyan, S. Kurmangaleev and V.
Vardanyan. Scalable Framework for Accurate Binary Code Comparison. In Proc. of the
2017 Ivannikov ISPRAS Open Conference, Moscow, 2017, pp. 34-38.

H. Aslanyan, S. Asryan, J. Hakobyan, V. Vardanyan, S. Sargsyan and S. Kurmangaleev.
Multiplatform Static Analysis Framework for Programs Defects Detection. In CSIT
Conference 2017, Yerevan, Armenia, 2017.

A. Acmansn, UI. Kypmanranees, B. Bapmansn, M. Apytionss u C. CapresH,
«[InarpopMeHHO-HE3aBUCUMBIE W MAacIITaOWPyeMbIii HWHCTPYMEHT IIOWCKa KIIOHOB
ounapuoro koma,» Tpymst MCIT PAH, 1. 28, Ne 5, pp. 215-226, 2016. DOI:
10.15514/ISPRAS-2016-28(5)-13.

99

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue
5, 2018. pp. 89-100

100

Tracing ext3 file system operations in the
QEMU emulator

V.M. Stepanov <vladislav.stepanov@ispras.ru>
P.M. Dovgalyuk <pavel.dovgaluk@ispras.ru>
D.N. Poletaev <poletaev@ispras.ru>
Yaroslav-the-Wise Novgorod State University,
11 Lasarevskaya Street, Velikiy Novgorod, Russia, 173000

Abstract. The paper proposes an approach to monitoring file operations through capturing
virtual disk accesses in the emulator. This method allows obtaining information about file
operations in the OS-agnostic manner but requires a separate implementation for each file
system. An important problem for implementing this approach is the correct handling of
changes in the file system. Operating systems that cache write requests can perform
operations in any order. The authors have created a method for detecting read, write, create,
delete and rename operations, and a module for QEMU, which monitors operations in the
ext3 file system. The advantage of this method over others is that it does not interfere with
the operation of the OS and does not depend on it. It is assumed that the QEMU module for
file systems other than ext2/3 can be implemented using the methods described in this article.

Keywords: virtual machines; file systems; monitoring; QEMU; introspection
DOI: 10.15514/ISPRAS-2016-30(5)-6

For citation: Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system
operations in the QEMU emulator. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018.
pp. 101-108. DOI: 10.15514/ISPRAS-2018-30(5)-6

1. Introduction

The task of monitoring file operations is relevant when debugging the OS and its
file system drivers, as well as researching the behavior of systems with an unknown
internal organization, particularly performing the security audit of the information
processed by such systems. The essence of the task is to display the actions and the
names of the files with which the operations are performed.

Current solutions for file system monitoring are typically based on using the tools of
the operating system and tracing system calls. These solutions differ depending on
the operating system, and some exotic OSes might not have the appropriate tools for
this task.

The approach described in this article does not require any knowledge about the
operating system used. The information about file system operations is obtained

101

Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system operations in the QEMU emulator. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 101-108

through capturing the disk requests of the virtual machine. The implementation that
has been created is based on the QEMU emulator [1]. By modifying the source code
of the project, functionality has been added to monitor and log the file operations of
the system.

A data read or write query contains the disk sector number and the number of bytes
to read or write. The QEMU module identifies the file names based on the sector in
the query, the virtual disk information and the knowledge about the structure of the
file system. Every file system type has its own distinctive internal organization
different from others and thus requires its own implementation of the module. As an
example, a monitoring tool for the ext3 file system [2] has been implemented, which
is one of the file systems used in Linux-based operating systems.

As a result of this project, a module was created to monitor file operations of any
guest OS, but only if it uses an ext3 file system. It is expected that the ideas used in
this implementation can be applied to other file systems as well.

2. Overview of existing solutions

First, the authors would like to review several tools for file system monitoring.
Inotify is a Linux kernel subsystem intended for monitoring file system events [3].
This mechanism can be used to monitor such file operations as reading, creating,
deleting, changing files, etc., by subscribing to events. The application creates an
inotify object and informs the kernel about the files needed. The kernel responds by
sending notifications, which can be received by the application by reading the file.
Users can monitor the activity of the file system by using command-line utilities
from the inotify-tools library.

Other operating systems have similar mechanisms. For example, Windows uses
FileSystemWatcher [4]. FreeBSD and Mac OS X allow monitoring changes using
kqueue [5].

QEMU-Based Framework for Non-intrusive Virtual Machine Instrumentation and
Introspection [6] is a system that uses a binary application interface to analyze the
state of the virtual machine. The system includes a file monitoring plugin, which
receives information about file operations by capturing the corresponding system
functions. Since these system calls are different for different operating systems, a
specific plugin is created for each operating system. Currently, file monitoring is
implemented for Windows and Linux. Unlike the preceding mechanisms, this tool
allows monitoring the file operations of the virtual machine without interfering with
the guest operating system processes.

The proposed approach, like the plugin described above, does not require modifying
the operating system. The difference is that the implementation of this approach
does not have any dependencies on the operating system. Instead, it depends on the
file system.

One of the possible use cases of this project implies monitoring file operations in
exotic file systems where information about system calls is not present or which do

102

CrenanoB B.M., Jlosraok I1.M., TToneraes JI.H.. OtciexuBanue oneparuii ¢ GpaiinoBoii cucreMoii ext3 B amMysiTope
QMU. Tpyowr UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 101-108.

not have system calls in their traditional sense because the whole system operates in
a privileged mode. The information about what files are being used in such an
operating system can be useful for analysis.

3. Ext3 file system

The authors will now briefly describe the structure of the ext3 file system, which the
tool is intended for. The space of the file system is divided into fixed-size blocks.
For the purposes of optimization, the blocks are combined into groups. Each group
has a description block, bit masks, and an inode table (fig. 1).

Boot Block Block group 0 Block group n
/L
=10
Group Data block | Inode Inode)
Super Block Descriptors Bitmap Bitmap Table Data blocks

Fig. 1. Ext3 file system structure

An inode is a structure which contains the addresses of all blocks of the file, as well
as its attributes, such as the file type and access permissions. The name of the file is
contained in a separate structure — the parent directory. The directory contains a
table, in which each of the entries represents a child file and includes the name and
number of the respective inode.

Directory Entry

| Name | Inode |

Inode

Accessed Time | Size

uiD | GID

Block 1| Block 2 Indirect Block 1

/ ‘//y File Content

Block
\ File Content

File Content File Content Addresses
Fig. 2. General information structure of the ext3 file system: directories, inodes, and data
blocks
The physical location of the file is represented as data block numbers in the inode. If
any inode does not have sufficient space to store all the addresses of the data blocks,
references to additional address blocks are used. Address block entries can refer to

103

Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system operations in the QEMU emulator. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 101-108

other address blocks, and so on. In this case, such address blocks are called double
and triple indirect blocks. The interconnections of the described file structures are
depicted in fig. 2.

When opening a file, the OS uses the path name to access the data. The directory
system converts the ASCII name into information needed to find the data. However,
for the purposes of monitoring file operations, the authors are interested in the
reverse process. A method is needed that will make it possible, by using a specific
sector number, to obtain the name of the corresponding file.

4. Possible ways of finding the file name based on its
sector number

The task to find the full file name based on one of its sector numbers has several
possible solutions.

The first way implies that every disk operation should be accompanied by iterating
through all the files and the addresses of their data blocks until the file with the
particular sector is found. The time to complete such iteration is, in the worst case,
linearly dependent on the space used in the partition.

Implementing this solution showed that for the 6.0 GB disk with 4.0 GB used, in an
ext3 file system, one such disk query may take up to 12 seconds. This time
measurement was performed on a computer configuration using an AMD FX-8370E
processor and 16 GB of RAM. Thus, it may be concluded that to achieve high
performance, the number of full file system iterations should be minimized.

Another way to do this implies creating special data structures with the aim to
achieve higher searching speed. A directory tree with file names and an associative
array with fast search functionality allow completing this task in logarithmic time. It
is only required for the keys of the associated array to be the block numbers, and for
the values to be the names of the respective files in the directory tree.

Creating these fast search structures is performed on capturing the first query to the
partition. The question of how these structures should change while capturing new
operations in the file system has several answers.

The first option is: the structures can remain unchanged. In this case, file accesses
performed before the operating system has been loaded can also be traced.
However, changing the size and location of these files makes the output data about
file operations irrelevant or incomplete.

The second option is: the structures can be rebuilt from scratch with some
determined periodicity. In this case, operations with new and changed files can be
traced. However, some situations are possible when an operation with a recently
created or enlarged file takes place, but the fast search structures have not yet been
updated. In this case, such an operation can be left untraced.

The third option is: the structures can be rebuilt after writing to index descriptors,
address blocks, and directories. This allows the fast search structures to always
correctly reflect the current file system state. However, this method leads to a

104

CrenanoB B.M., Jlosraok I1.M., TToneraes JI.H.. OtciexuBanue oneparuii ¢ GpaiinoBoii cucreMoii ext3 B amMysiTope
QMU. Tpyowr UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 101-108.

significant increase in time needed to process all the operations that change the file
system state, which can negatively affect the performance of the guest OS.

The fourth option implies that when operations that change the file system occur,
the existing fast search structures also change. With this method, fast processing of
any disk accesses and monitoring of the current information about file operations
can be achieved. The drawback of this solution is its implementation complexity.
Operations that change the file system include creation, deletion, expansion,
truncation, renaming and moving of files. The mechanism to recognize these
operations is based on detecting the structure to which data is written and then
comparing old data with new. For example, if an operation results in adding a new
entry to a directory, it indicates that a new file was created, or that an old file has been
moved to this directory. For each type of operations, a specific processing mechanism
exists, which performs required changes to the directory tree and the associated array.

5. The problem of unspecified order of queries to the disk

There is a problem which results in some file operations not being detected using
the described methods. The problem is that most OSes do not perform writing to the
disk immediately but delay it for a period of time. At the same time, the order in
which the pending writing operations will eventually be performed can vary. In
some cases, the information is registered in structures even though no information
about their existence has been written to the disk yet.

The time diagram in fig. 3 demonstrates one of the possible sequences of operations
when writing data to a new file.

A
Parent
directory
Parent directory;
3
2 Inode —
=
o
£
2| Datablock 1 'L ¢ l‘
f | Data block 1 | | Indirect block 1 | | Indirect block 2
i | Indirect block 1 | |
Indirect block 2 i‘ ¢
Data block 2 | Indirect block 3|
Data block 2
Data block 3
Indirect block 3 —
Data block 3

Time

Fig. 3. Time diagram of writing data in case of new file creation
The solution to this problem is to store the information about unidentified
operations for some time. When adding addresses to an inode and indirect blocks,
previously unidentified operations are checked. If the address of the new block
matches the destination of any of the earlier operations, this operation is processed.

105

Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system operations in the QEMU emulator. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 101-108

A separate case occurs when creating files. In this situation, writing to the parent
directory and the inode can be performed in any order. If, at the moment of writing
to the directory, writing to the inode has already taken place, then this file operation
is processed. Otherwise, the processing will be postponed until writing to the inode.
One more case is file moving. Sometimes the file information is added to the new
directory first and is removed from the old one only after that. In this case, the file is
moved in the directory tree while the deletion is ignored.

6. Testing

The implemented module creates its additional structures once during its operation,
and then changes them in accordance with the new file system state. To verify that
the module operates as expected, a series of tests were conducted using different
guest OS images. The tests involved opening applications, navigating from folder to
folder, as well as reading, creating, changing, deleting, renaming and moving files.
Various situations were checked when the order of operations is ambiguous.

The following is an example of the module operation. In the guest OS (in this case,
Debian), the command “dd if=test of=testl” is performed. This command copies the
data in file “test”, 1 Kb in size, into file “testl”. The entries added to the log file are
presented in fig. 4.

read 6926160 16384 /bin/dd
read 6926192 32768 /bin/dd
read 6926256 12288 /bin/dd
read 10263952 4096 /home/debian/test

create /home/debian/testl
write 2640360 4096 /home/debian

write 10490400 4096 /home/debian/testl
Fig. 4. Fragment of a log file generated by the module

Log entries contain information about the operation type, the sector number, the
number of bytes affected and the file name. In this case, first, the executable file
“dd” from the directory “bin” is read, and then the file “test” is read. Approximately
20 seconds after the input of the command, pending operations of writing to the disk
are performed, and the log file is updated with new events. Then, the file “testl” is
created, which is populated with data from “test”.

The testing was performed using Linux, FreeBSD, Windows 10 and KolibriOS
operating systems [7]. The tests show that the module successfully registers file
operations and processes the file system changes. At the same time, no lags due to
the module monitoring were observed.

KolibriOS was chosen for testing as an example of an exotic operating system. This
is a miniature OS, with its core and most of its programs written in assembly
language. While testing, it was found that writing operations in this OS are not
cached but performed immediately. Consequently, the problem of the order of
operations being ambiguous is irrelevant for KolibriOS.

106

CrenanoB B.M., Jlosraok I1.M., TToneraes JI.H.. OtciexuBanue oneparuii ¢ GpaiinoBoii cucreMoii ext3 B amMysiTope
QMU. Tpyowr UCII PAH, Tom 30, Beim. 5, 2018 1., cTp. 101-108.

Thus, it was verified that the module functions correctly with each of the tested OSes.

7. Conclusion

In this paper, an approach to file operations monitoring has been described. This
approach allows analyzing operations with operating system files and applications
in a virtual machine. The implemented module works with the ext3 file system. It is
intended for capturing virtual disk accesses in the guest system and writing the
operation type and file name into a log. In contrast to internal file system monitoring
tools, such as inotify, the created QEMU module can monitor file operations
without interfering with the operation of the guest OS. In addition, the module does
not depend on system calls, which allows it to work with any OS. While
implementing the module, it has also been made possible to achieve a high speed of
file operations processing. To do this, QEMU creates and maintains special
structures: binary search trees and directory trees. The solutions described in the
article can be applied to develop monitoring instruments in other file systems,
including FAT32, NTFS, ext4.

References

[1]. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the
USENIX Annual Technical Conference, 2005, pp. 41-46.

[2]. Brian Carrier, File System Forensic Analysis. Addison-Wesley Professional, 2005.

[3]. Koen Vervloesem. Inotify: Watch your filesystem. Linux format, Ne LXF140, 2011.

[4]. FileSystemWatcher. https://msdn.microsoft.com/en-
us/library/system.io.filesystemwatcher(v=vs.110).aspx

[5]. Jonathan Lemon. Kqueue - A Generic and Scalable Event Notification Facility,
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference,
2001, p.141-153

[6]. P. Dovgalyuk, N. Fursova, I. Vasiliev, V. Makarov. 2017. QEMU-based framework for
non-intrusive virtual machine instrumentation and introspection. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017),
pp. 944-948. https://dx.doi.org/10.1145/3106237.3122817

[7]. Artem Jerdev. Kolibri-A: a lightweight 32-bit OS for AMD platforms, Postgraduate
Conference for Computing: Applications and Theory (PCCAT 2011), pp. 20-22.

OTtcnexuBaHue onepauun ¢ hannosomn cuctemomn ext3 B
amynaTtope QMU

B.M. Cmenanos <viladislav.stepanov@ispras.ru>
IIL.M. Jlogeaniox <pavel.dovgaluk@jispras.ru>
. H. [lonemaes <poletaev@ispras.ru>
Hoseopoockuii cocyoapcmeennwiti ynugepcumem umenu Apociasa Myopoeo,
173000, Poccus, e. Benukuii Hoseopoo, yn. Jlazapesckas, dom 11

AHHoTanms. B pabore paccmarpuBaercs HOAXOJ K OTCICKHBAHUIO (DAaMIOBBIX OIepaiuii ¢
TIOMOIIBIO TIepexBaTa 3alpoCOB K BHPTYaIbHOMY IHCKYy B JMyisTope. Takoi croco0

107

https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=vs.110).aspx
https://dx.doi.org/10.1145/3106237.3122817

Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system operations in the QEMU emulator. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 101-108

MI03BOJISIET TOJIydaTh MH(OPMAIHIO O (aiiIoBBIX onepanusx He3aBUcuMo oT rocteBoit OC,
OTHAKO TpeOyeT OTHEeNbHON peamu3amud Ui Kaxinod ¢aitmoBoit cucteMbl. BaxHoii
npo6IeMoit 11 pean3aliy JAHHOTO MOJX0a SIBISETCsl KOppeKkTHas 00paboTka H3MEeHEHHH
B (ailnoBoit cucreme. C ONepalMOHHBIMH CHCTEMaMHd, KOTOpPbIE HMEIOT CBOMCTBO
KEeIIMPOBaTh OMEPAIMU 3alUCH, BO3HUKAIOT OCIOXKHEHUS, TaK KaK ONepaIlu 3alHUCH MOTYT
BBINIOJIHATECA B IMPOU3BOIBHOM mopsake. [ns mpuMepa moaxoga ObUT CO3[aH MOIYJb
smyisitopa QEMU, orcnexxuBaronuii oneparmu ¢ gaitnosoit cucremoit ext3. [IpenmymiectBo
JTAHHOTO MHCTPYMEHTA Iepe IPYTUMH COCTOUT B OTCYTCTBHU BMeIIaTeNnscTBa B paboty OC,
a Takxke oTcyrcTBHM 3aBucuMoctu oT OC. brnarogaps 3ToMy BO3MOXHO HCIOJNB30BaHUE HA
Takux dK30THdeckux OC, ¢ KOTOpBIMH He paboTaroT Apyrue MHCTPYMEHTH MOHHUTOPHHIA
¢aitnoBeix omepanuid. [lpexnomaraercst, yro Moxyns QEMU mns daiinoBeix cucrem,
OTIMYHBIX OT ext2/3, MoXeT OBITh peaqu30BaH C HCIOIb30BAHHEM METOJOB, MOJOOHBIX
OIIHCAaHHBIM B CTaThe.

KiroueBble cj0Ba: BHUPTyalbHbIE MAIIWHBI, (ailioBble cucteMmbl; MoHuTOpHHT; QEMU;
HHTPOCTIEKIIUS

DOI: 10.15514/ISPRAS-2018-30(5)-6

Juasi uutupoBanusi: CrenanoB B.M., Hosramok [1.M., IToneraes [.H.. OtcnexxuBanue
omepaiyii ¢ ¢ainoBoi cucremoit ext3 B amymsatope QMU. Tpynst UCIT PAH, tom 30, BBII.
5,2018 r., ctp. 101-108 (na anrmuiickom si3bike). DOI: 10.15514/ISPRAS-2018-30(5)-6

Cnucok nutepaTtypbl

[1]. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the
USENIX Annual Technical Conference, 2005, pp. 41-46.

[2]. Brian Carrier, File System Forensic Analysis. Addison-Wesley Professional, 2005.

[3]. Koen Vervloesem. Inotify: Watch your filesystem. Linux format, Ne LXF140, 2011.

[4]. FileSystemWatcher. https://msdn.microsoft.com/en-
us/library/system.io.filesystemwatcher(v=vs.110).aspx

[5]. Jonathan Lemon. Kqueue - A Generic and Scalable Event Notification Facility,
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference,
2001, p.141-153

[6]. P. Dovgalyuk, N. Fursova, I. Vasiliev, V. Makarov. 2017. QEMU-based framework for
non-intrusive virtual machine instrumentation and introspection. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017),
pp. 944-948. https://dx.doi.org/10.1145/3106237.3122817

[7]. Artem Jerdev. Kolibri-A: a lightweight 32-bit OS for AMD platforms, Postgraduate
Conference for Computing: Applications and Theory (PCCAT 2011), pp. 20-22.110

108

https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=vs.110).aspx
https://dx.doi.org/10.1145/3106237.3122817

Reading the contents of deleted and
modified files in the virtualization based
black-box binary analysis system Drakvuf

S.G. Kovalev <skovalev@ptsecurity.com>
Positive Technologies
8 Preobrazhenskaya Square, Moscow, 107061, Russia

Abstract. The article discusses ways to get the content of files, which are modified during the
processing in the well-known open source dynamic analysis environment Drakvuf. Drakvuf
initially implemented file saving functionality based on the use of undocumented mechanisms
for working with the system cache. The author of this article proposes a new approach to
obtaining the content of files on Microsoft Windows family systems using Drakvuf. The
proposed approach is based solely on the use of the public interface of the kernel by the
hypervisor and provides portability between different versions of the operating system. In the
conclusion of the article, the advantages and disadvantages of both approaches are presented,
and directions for further work are proposed.

Keywords: malware; dynamic analysis; injection; Drakvuf; Virtual Machine Introspection.
DOI: 10.15514/1ISPRAS-2016-30(5)-7

For citation: Kovalev S.G. Reading the contents of deleted and modified files in the
virtualization based black-box binary analysis system Drakvuf. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 109-122. DOI: 10.15514/ISPRAS-2018-30(5)-7

1. Introduction

In recent years, a steady increase in the number of malicious programs has been
registered [1]. A direct consequence was the impossibility of manual analysis of this
thread, which led to the emergence of the need for scalable and automated tools for
collection and analysis of malware. Such tools include honeypots [2, 3] and
sandboxes [4, 5]. At the same time, it is worth noting that malware uses various
techniques to detect analysis tools [6], which imposes large restrictions on such
tools.

The use of virtual machine monitors provides several advantages for creating such
tools: isolation of a program of interest, the ability to quickly and easily restore a
compromised system, as well as scalability. Dynamic analysis requires the
completeness and accuracy of collected data. The use of virtual environments also
allows meeting these requirements, providing an analysis environment with
information about code execution, disk and memory usage in real time.

109

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis
system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

There are at least two approaches to the use of virtualized environments for dynamic
analysis. In the first case, the virtual machine is used as a replacement for the
physical one, which allows for scalability and a greater speed of restoring the
analysis environment; wherein, the kernel driver or injection of DLL into the
address space of a process of interest is used for the analysis. In the second case, the
virtual machine monitor is expanded with new possibilities of studying the virtual
machine state and does not require the installation of additional software in the
system of interest. This approach is called “virtual machine introspection” [7] or
VMI.

One of the important components of dynamic analysis is reading the contents of
deleted and modified files. This is due to the fact that some malicious programs
download the payload over the network and save it in a temporary file. This class of
malware was named Trojan Downloader [8]. Reading the contents of a newly
created file is necessary for further analysis. Another class of malware, called
Ransomware Trojans [9], encrypts many files on the disk. The presence of
information about a large number of newly created files with similar names or about
modified contents is a necessary condition for detecting malicious behavior.

Further, this article discusses the dynamic analysis environment Drakvuf [10, 11],
and two ways to read the contents of files. The first method was present initially and
was built on the knowledge of internal structures of the operating system kernel.
The second method was added by the author of this article and is based on the
injection of system functions. Thus, this approach relies on the stable public API of
the operating system kernel and in some cases allows reading the full contents of
files.

2. Overview of the dynamic analysis environment Drakvuf
Drakvuf is a virtualization based agentless black-box binary analysis system based
on «virtual machine introspectiony.
To build this environment, the following solutions were used:
e Xen virtual machine monitor [12];
o LibVMI library [13], which allows access to the low-level state of a virtual
machine;
o Rekall framework for studying the virtual memory of an operating system
of interest [14].
Further, each of the components and the way to use them together with Drakvuf are
discussed.

2.1. Xen

Xen is a bare-metal (i.e. independent of the operating system) hypervisor that
supports hardware virtualization technology. Xen allows running multiple virtual
machines, the so-called DomU. In this case, one of them is considered to be
controlling, the so-called DomoO.

110

Kopanés C.I'. TlomydeHne cofepXMMOTo yaaaieMbIX 1 H3MEHACMBIX (aillIoB B Cpe/ie TMHAMHYCCKOTO aHAIIN3a
ucnonusemsix daitnos Drakvuf. Tpyost HCIT PAH, Tom 30, Ben. 5, 2018, ctp. 109-122

VM, (DomU,)

o (or Dom0) VM, (DomU,) VM, (DomU;)

Applications

Applications

Kpplic'aﬁtiionsr
(X X]
Guest OS

Guest 0S Guest OS

Fig. 1. Xen architecture

Xen provides resource allocation for virtual machines, scheduling of virtual kernels,
and interrupt control. DomoO is used to interact with the user, providing the system
with external device drivers (NIC, SATA, etc.). Dom0 typically runs the QEMU
process [15] associated with each virtual machine. QEMU provides emulation of a
virtual machine target platform (system logic set, BIOS or UEFI, external devices).
QEMU execution is supported in dedicated domains, the so-called subdomains,
which increases safety and performance.

Starting from Xen 4.5, the API for VMI is added to the hypervisor. Subsequently,
this interface is constantly being improved.

2.2. LibvVMI

LibVMI is a library that provides access to the state of a virtual machine. It provides
the following capabilities (the list is not complete):
¢ reading and changing the contents of the virtual memory of a VM of
interest;
setting permissions to the physical memory of a VM;
reading and changing the values of VM processor registers;
stopping and resuming VM operation;
installing handlers for certain hardware events in a VM:

changing values of control registers (CR0, CR3, CR4);

access violations to the physical memory of a VM;

single-step debugging of the VM execution;

debugging interrupt (INT 3).

e LibVMI uses Xen VMI API for hidden analysis and change of the VM
state.

111

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis
system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

2.3. Rekall

Rekall is a virtual memory analysis framework. In the context of Drakvuf, the
feature of building an operating system profile based on debugging symbols of a
specific operating system is promising.
For example, for operating systems of the Microsoft Windows family, symbols of
the kernel and main modules are provided in the PDB format. Rekall allows
converting a PDB file to the JSON format. Such JSON file is called a profile [16]
and contains the following information:
o a brief description of the kernel for which the profile has been compiled
(family, version, build number);
o alist of constants and their offsets in the kernel,
e description of structures (names of members and their offsets within
structures).
The presence of such information allows overcoming the semantic gap between the
analysis environment and a system of interest.

2.4. Drakvuf

Drakvuf combines the ability to analyze and change the state of the VM provided by
LibVMI and the debugging information provided by Rekall with the knowledge of
the internal structure of an operating system of interest. This allows achieving the
following features:
detection of the current process and thread at an arbitrary point in time;
detection of the virtual address of a symbol (of constant or function) by
name;

e setting a virtual address trap;

e getting the file name according to the file handle.

¢ Inaddition, Drakvuf provides a plugin architecture and an initial set of
plugins. Plugins include the following ones:

e syscalls — allows tracking entry points to system call handlers;

o filedelete — allows reading the contents of deleted and modified files.

¢ Inthe presented work, the filedelete plugin has been significantly
improved, as will be discussed in section 5.

e Itis important to note that all useful activities are performed during the
processing of exit from a VM (the so-called “VM exit”). Thus, the Drakvuf
operation scheme is as follows:

e at the very beginning of Drakvuf operation, the VM is stopped,;

e traps and event handlers are configured (in plugins);

e the main loop is started:

e VM operation is resumed, and Drakvuf begins to wait for
notification of an event;
o one of the expected events occurs in the VM;

112

Kopanés C.I'. TlomydeHne cofepXMMOTo yaaaieMbIX 1 H3MEHACMBIX (aillIoB B Cpe/ie TMHAMHYCCKOTO aHAIIN3a
ucnonusiemsix aiinos Drakvuf. Tpyost HUCIT PAH, Tom 30, Beim. 5, 2018, ctp. 109-122

e Xen stops the VM and transfers control to Dom0, where Drakvuf
is usually running;

o Drakvuf (LibVMI) bypasses the list of handlers for events of this
type, transferring the control to each of them by rotation.

2.5. Using the Drakvuf trap mechanism to determine deleted and
changed files

To determine deleted and changed files, traps on the following system functions are
installed from ntoskrnl.exe:

o NtSetInformationFile — is used to delete a file when closing the last file

handle;

o NtWriteFile — records data to a file;

o NtClose — closes the file handle.
The NtWriteFile handler adds the following data to the list: PID of the process, file
handle, and file name. The NtClose handler for modified files removes an entry
from the list and proceeds to reading the contents of a file. The
NtSetInformationFile handler proceeds to read the contents of any deleted file.

3. Reading the contents of files by analyzing the cache manager

For a detailed presentation of the material see [17]. The following is a general
description of the approach which is necessary and sufficient for comparison.

In the beginning, the _FILE_OBJECT structure location is determined according to
the file handle. Next, using the value of a member of the SectionObjectPointer
structure, the location of the _SECTION_OBJECT_POINTERS structure is
determined, the DataSectionObject member of which points to the
_CONTROL_AREA structure. At the end of this structure, there is the first member
of a linked list, consisting of _SUBSECTION structures. Each such structure
defines a sequential memory chunk mapped to a file. Having read the contents of all
such chunks, one can compile a file (or at least part of it, see below).

In the _SUBSECTION structure, the following members are significant:

e SubsectionBase — the first member of the array of _MMPTE entries, each
of which defines the physical address of a page (in terms of VM) and some
flags;

e PtesInSubsection — the number of array members;

e StartingSector — the offset of the first page of this section in the file,
expressed in chunks of 512 bytes.

Each _MMPTE entry is a 4 KB virtual memory page descriptor (the so-called PTE,
or “page table entry”). Collectively, PTEs describe a continuous virtual memory
block that represents a portion of the file starting from the StartingSector*512
offset. However, some pages can be paged out from the RAM of the VM. This is
indicated by the zero value of the Present flag in PTE.

113

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis
system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

Thus, in order to read the cache manager contents, Drakvuf just needs to bypass the
list of PTEs for each section and to read the contents of each page for which the
Present flag is set.

3.1. Limitations of this approach

Although this approach provides reading of the cache manager content in a way that
is fast and invisible for the VM, it has several limitations:

e large files can be accessed in parts; in this case, the cache manager may
contain one or more fragments of the file, while the rest of the file even
will not be downloaded;

e the current implementation does not take into account the fact that some
pages with cleared Present flag may still contain data not downloaded to
disk;

¢ memory for cache manager structures is allocated from the system working
set and can be paged out to disk;

o the current implementation does not support working with memory-
mapped files [18].

The above limitations led to the beginning of work on injection of system functions
to read the contents of files.

4. Injection of system calls

Initially, the linbinjector library was added to Drakvuf, which provided an injection
of the CreateProcess system function. This allowed for the direct launch of an
application of interest in the VM, requiring only the presence of a file on the VM
disk. This approach (the so-called agent-free approach) provides greater secrecy
compared to the classical solution in which the remote control process was launched
in the VM. Since the injection of functions is an integral part of the proposed
solution, here is a general description of the approach.

The function injection implies a change in the state of the current instruction stack
and register (IP on x86 architecture), which emulates the sequence of operations
used by the compiler when calling a function (the word “call” can be further used
instead of the word “injection”).

Since operating systems of the Microsoft Windows family are considered, the rules
for calling functions in the kernel are well documented [19]. For example, let us
consider the injection of the ZwQueryVolumelnformationFile function call on a 64-
bit system.

This function takes five arguments: object handle (integer), pointer to the
I0_STATUS BLOCK structure, pointer to the
FILE_FS DEVICE_INFORMATION out structure (for the example), size of out
structure, structure type (integer, for FILE_FS_DEVICE_INFORMATION is 4). In
accordance with the accepted ABI, the first four arguments are transferred in RCX,
RDX, R8, R9 registers, and the last argument is transferred on the stack.

114

Kopanés C.I'. TlomydeHne cofepXMMOTo yaaaieMbIX 1 H3MEHACMBIX (aillIoB B Cpe/ie TMHAMHYCCKOTO aHAIIN3a
ucnonusiemsix aiinos Drakvuf. Tpyost HUCIT PAH, Tom 30, Beim. 5, 2018, ctp. 109-122

However, there are some limitations that shall be considered:

o before calling a function on the stack, space for four arguments is reserved
(the so-called “home space”);

e when transferring a pointer to a structure, the address of the structure
beginning must be aligned with a value equal to the greatest alignment of
any member of the structure;

o before calling a function, the stack shall be aligned by a multiple of 16 B.
The last two requirements were not initially taken into account, which led to a time-
consuming debugging of various fatal kernel errors (the so-called BSOD).

After all arguments of the function are prepared, the return address is set on the
stack. As a rule, it coincides with the trap address, which allows continuing
execution of the VM. In this case, the trap is not deleted, which is necessary for
processing the exit from ZwQueryVolumelnformationFile.

Lastly, the ZwQueryVolumelnformationFile address is entered to the RIP register
and the VM operation is resumed.

Since it is possible to setup new trap, after the ZwQueryVolumelnformationFile
function completes, the trap handler receives control again, which allows processing
returned data, restoring registers and the stack, and continuing operation of the VM.

Further development of this approach led to the idea of the possibility of sequential
execution of several injections, which allowed reading the contents of files without
reference to the cache manager structures.

5. New approach to reading the contents of files by injection of
system calls

The proposed approach was a direct consequence of the desire to achieve
guaranteed reading of the contents of arbitrarily large files, not limited to what is
contained in the cache manager. The kernel already provides the ZwReadFile
system function. However, one cannot simply call ZwReadFile on the handle of an
arbitrary object:

o the handle can be linked with a logical disk volume, 1/0 device, etc.;

e toread files, one needs to prepare a memory buffer of sufficient size;

o for files that do not fit into the buffer, several read operation calls are

required;

o reading of asynchronous files can lead to unexpected errors.
In the course of the work, the author discovered at least two more circumstances
that were not initially taken into account:
The stack size in the kernel mode is limited (16 KB for 32-bit systems and 24 KB
for 64-bit systems), so it is impossible to reliably allocate a sufficiently large
memory buffer on the stack;
in a multithreading OS, a process or a thread may switch while the contents of the
file are being read;

115

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis
system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

in LibVMI, all trap handlers registered to a virtual address are sequentially called,
so it is necessary to distinguish the beginning of the chain from its middle.

Here is the brief description of solutions for each of these limitations.

5.1. Solving the problem of determining the type of the handle

The ZwQueryVolumelnformationFile function called with the
FileFsDevicelnformation parameter returns the
FILE_FS DEVICE_INFORMATION structure. The first member of this structure
DeviceType takes one of the values [20]. During the research, it was revealed that
regular files are of FILE_DEVICE_DISK type (i.e., 0x7).

5.2. Solving the problem of buffer preparation

In the beginning of work, the author did not take into account the fact, that the
kernel stack size is not only limited but also rather small (16 kB for 32-bit systems
and 24 kB for 64-bit systems). Thus, in the first version, the 4kB buffer was
allocated directly on the stack. However, the author has soon noticed that in some
cases OS has a fatal error when reading a file. It was suggested that the reason is a
kernel stack overflow.

In order to eliminate such an error, it was decided to allocate the buffer in a non-
paged memory area (so-called «NonPaged Pool»). This provides an additional
advantage of the possibility to allocate more memory (for example, 64 KB).

For further optimization, the allocation of new memory buffer on request was
added. All allocated memory buffers are put in the list. Initially, the list is empty.
Each new thread first accesses the list. If there is a free memory buffer in the list, it
is marked as busy and used for reading operation. If there are no free buffers in the
list, the ExAllocatePoolWithTag function is called (injected) first.

In practice, it turned out that a single memory buffer is sufficient for a VM with two
kernels.

5.3. Solving the problem of reading large files

In practice, there are often large files that do not fit in one memory buffer.
Therefore, it becomes necessary to perform the file read operation in a loop.
However, the file size is not known in advance. It would be possible to use one of
the system functions to read the file size, but this would extend the call chain and
reduce system performance. In addition, there is a need to move the carriage in the
file. Fortunately, the ZwReadFile function already has all the necessary properties to
solve this problem.

One of the ZwReadFile arguments is a pointer to the 10_STATUS BLOCK
structure. Upon the completion of the read operation, this structure contains two
members: the operation completion code and the number of bytes read.

The second useful argument in the context of this task is the ZwReadFile argument,
which is a pointer to the LARGE_INTEGER ByteOffset structure. This argument
116

Kopanés C.I'. TlomydeHne cofepXMMOTo yaaaieMbIX 1 H3MEHACMBIX (aillIoB B Cpe/ie TMHAMHYCCKOTO aHAIIN3a
ucnonusiemsix aiinos Drakvuf. Tpyost HUCIT PAH, Tom 30, Beim. 5, 2018, ctp. 109-122

allows setting the offset in the file from which ZwReadFile will start reading the
contents.

Using the second member 10_STATUS BLOCK and ByteOffset allows creating a
simple read algorithm for a large file: as long as the read operation returns
STATUS_SUCCESS and the number of bytes read is equal to the size of the
transferred memory buffer, continuing the read operation, increasing the offset by
the memory buffer size. Wherein, at the beginning it is necessary to explicitly
specify a zero offset, because in practice, at the time of calling NtClose, the carriage
was shifted to the end of the file. This resulted in a read error
STATUS_END_OF_FILE.

5.4. Solving the problem of asynchronous files

At the beginning of the research, it was noticed that ZwReadFile often returns the
STATUS_PENDING error code. This means that an attempt to read a file opened
for asynchronous access is being made [18]. The first solution was to add a call to
the WaitForSingleObject function. This call is different from others. There was the
need to keep the stack from the previous call ZwReadFile and the lack of its own
handler. The only thing that the trap handler did on WaitForSingleObject was
transferring control to the ZwReadFile handler, which again checked the error code
and read the memory buffer.

However, it soon became clear that the operation of the system became unstable.
Often there were fatal kernel errors associated with breaking the stack. Debugging
of the kernel showed that in almost all cases the stack pointer was more than 1 MB
from the base of the nuclear stack (so-called “stack underflow”). A further study of
the stack showed that the violation of the stack began with calling ZwReadFile. It
was not possible to establish the exact cause of the error, but there was a clear
dependence of the error reproducibility on the type of files read. Errors were
reproduced when accessing asynchronous files.

Thus, it was decided not to attempt to read such files. Finding out whether the file
was open for asynchronous access turned out to be trivial. The _FILE_OBJECT
structure contains the Flags member. If the FO_SYNCHRONOUS 10 flag is set,
the file has been opened for synchronous access. So it is possible to read its
contents.

This simple revision led to an increase in the reliability of the entire system.
However, the issue of reading the contents of files opened for asynchronous access
remained open. The answer to this question is partly given below.

5.5. Solving the problem of processing several traps at one
virtual address
The need to process the returned values of called functions results in at least two

handlers at one virtual address: a constant handler at NtClose and a temporary
handler for the function being called. The situation is aggravated by the fact that the

117

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis
system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

handler of each stream can be installed to the same address. Thus, it is necessary not
only to distinguish the beginning of a call chain but also to distinguish between
processes and threads. Moreover, it turned out that all handlers of traps to a given
virtual address are traversed in LibVMI. Therefore, upon completion of the read
operation, one cannot simply delete a trap. This will lead to looping attempts to read
the file.

To solve this problem, a map was added, which maps a pair of process and thread
values to a marker for completion of a read operation. When a trap on NtClose is
triggered and a decision is made to read the contents of a file, a new process thread
pair is added to the map with an empty marker. When a file read operation is
completed in any form, a marker in the map for the current process thread is filled,
and the trap is deleted. Since in LibVMI new traps are added to the top of the list,
for the current process thread a trap on NtClose is executed the last. It checks the
marker and, if it is full, the entry is deleted from the map, and the handler ends.

At the same time, the handler of each called function checks the compliance of the
current process-thread with the stored value, which eliminates the accidental
triggering of the handler.

5.6. Solution algorithm

By putting together all of the above, the following file reading algorithm is
obtained:

e Step 1. Check that the file is open for synchronous access, otherwise shut
down.

e Step 2. Check that no read operations are performed for the current
process-thread and add a marker to the map, otherwise remove the marker
from the map.

e Step 3. Call ZwQueryVolumelnformationFile and check that the regular
file is processed, otherwise fill in the marker and complete the work.

e Step 4. Allocate a memory buffer if there is a free one, otherwise call
ExAllocatePoolWithTag.

e Step 5. In the loop, call ZwReadFile as long as the error code is
STATUS_SUCCESS and the number of bytes read is equal to the size of
the memory buffer.

e Step 6. Fill in the marker for the current process thread.

If one of the steps fails by mistake, the attempt to read the file is considered failed,
and an attempt to read parts of the file from the cache manager is made. This partly
solves the problem with asynchronous files.

Thus, the proposed approach significantly expanded the existing one, allowing
reading the contents of files reliably, using the documented system functions.

118

Kopanés C.I'. TlomydeHne cofepXMMOTo yaaaieMbIX 1 H3MEHACMBIX (aillIoB B Cpe/ie TMHAMHYCCKOTO aHAIIN3a
ucnonusiemsix aiinos Drakvuf. Tpyost HUCIT PAH, Tom 30, Beim. 5, 2018, ctp. 109-122

6. Conclusion

The paper presents a new approach for reading the contents of deleted and modified
files during automated dynamic analysis of applications on Microsoft Windows
operating systems. This approach has a distinctive feature of using the mechanism
for injecting system functions of the operating system running in a virtual machine
from the side of the hypervisor. This technique avoids the presence of agent
applications or drivers in the virtual machine and increases secrecy, which is
extremely important in studying the malware. It uses documented system functions,
which allows achieving transferability between different versions of operating
systems of this family.

The problem of reading the contents of files opened for asynchronous access is not
fully solved, which sets the direction for further activities.

In addition, this paper provides an overview of the dynamic analysis environment
Drakvuf, its constituent parts and some principles of work. It considers the initial
approach to reading the contents of files based on reading internal structures of the
cache manager, and its limitations.

References

[1]. The Independent IT-Security Institute. Malware. Available at: https://www.av-
test.org/en/statistics/malware/, accessed 17.11.2018.

[2]. Asrigo K., Litty L., Lie D. Using VMM-Based Sensors to Monitor Honeypots.
Department of Electrical and Computer Engineering University of Toronto, 2006.
Available at: https://security.csl.toronto.edu/papers/asrigo-vee2006.pdf, accessed
17.11.2018.

[3]. Rangian M.K., Attri U. Design and Implementation of Malware Collection System
Based on Client Honeypot. International Journal of Scientific & Engineering Research,
vol. 4, issue 3, 2013, pp. 775-780.

[4]. Cuckoo Sandbox. Available at: https://cuckoosandbox.org/, accessed 17.11.2018.

[5]. Willems C., Holz T., Freiling F. Toward Automated Dynamic Malware Analysis Using
CWSandbox. IEEE Security & Privacy, vol. 5, issue 2, 2007, pp. 32-39.

[6]. Malware Anti-Analysis Techniques and Ways to Bypass Them. Available at:
https://resources.infosecinstitute.com/malware-anti-analysis-techniques-ways-bypass/,
accessed 02.05.2017.

[7]. Garfinkel T., Rosenblum M. A Virtual Machine Introspection Based Architecture for
Intrusion Detection. Computer Science Department, Stanford University, 2003.
Available at: https://suif.stanford.edu/papers/vmi-ndss03.pdf, accessed 17.11.2018.

[8]. Kaspersky Lab. Malware Classification (in Russian). Available at:
https://www.kaspersky.ru/blog/klassifikaciya-vredonosnyx-programm/2200/, accessed
17.11.2018.

[9]. Symantec Corporation. What Is Ransomware? Available at:
https://us.norton.com/internetsecurity-malware-ransomware.html, accessed 17.11.2018.

[10]. Drakvuf. Available at: https://drakvuf.com/, accessed 17.11.2018.

[11]. Lengyel T.K. Malware Collection and Analysis via Hardware Virtualization. University
of Connecticut, 2015. Available at: https://tklengyel.com/thesis.pdf, accessed
17.11.2018.

119

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://security.csl.toronto.edu/papers/asrigo-vee2006.pdf
https://cuckoosandbox.org/
https://resources.infosecinstitute.com/malware-anti-analysis-techniques-ways-bypass/
https://suif.stanford.edu/papers/vmi-ndss03.pdf
https://www.kaspersky.ru/blog/klassifikaciya-vredonosnyx-programm/2200/
https://us.norton.com/internetsecurity-malware-ransomware.html
https://drakvuf.com/
https://tklengyel.com/thesis.pdf

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis
system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

[12]. Xen Project. Available at: https://xenproject.org/, accessed 17.11.2018.

[13]. LibVMI. Available at: http://libvmi.com/, accessed 17.11.2018.

[14]. Rekall Forensics. Available at: http://www.rekall-forensic.com/, accessed 17.11.2018.

[15]. QEMU. Available at: https://www.gemu.org/, accessed 17.11.2018.

[16]. Rekall ~ Profiles. Available at: http://blog.rekall-forensic.com/2014/02/rekall-
profiles.html, accessed 17.11.2018.

[17]. Russinovich M., Solomon D., lonescu A. Microsoft Windows Internal Design. The Main
OS Subsystems, 6th ed. (in Russian). Saint Petersburg, Piter, 2014, 672 p.

[18]. Richter J., Nazar C. Windows via C/C++. Visual C++ Programming (in Russian). Saint
Petersburg, Piter, 2009, 896 p.

[19]. Building C/C++ Programs. Available at: https://docs.microsoft.com/en-
us/cpp/build/building-c-cpp-programs?view=vs-2017, accessed 17.11.2018.

[20]. Specifying Device Types. Available at: https://docs.microsoft.com/en-us/windows-
hardware/drivers/kernel/specifying-device-types, accessed 17.11.2018.

Mony4yeHne cogepXMMoro yaanseMbiX 1 U3MeHAeMbIX
c¢hannoB B cpeae AMHAMUYECKOro aHanu3a UCrnoJsiHAeMbIX
c¢dannos Drakvuf

C.I". Kosanée <skovalev@ptsecurity.com>
Positive Technologies
107061, Mocxaa, Ilpeobpadicenckas nai., 0. 8

AnHoTanusi. B cratee paccMaTpuBaroTCS CIOCOOBI TONYYEHHS COIEPKUMOTO (aiiiios,
M3MEHsIEMBIX B IPOIlecce paboTHl M3BECTHOM CpeIbl AMHAMHYECKOTO AHAIM3a C OTKPHITHIM
ucxomusiM komom Drakvuf. B Drakvuf wusnauampHo peanm3oBaHa (YHKIHOHATIBHOCTH
coxpaHeHus (aillioB, OCHOBaHHAsh Ha MCIOJIb30BAHHH HEIOKYMEHTHPOBAHHBIX MEXaHH3MOB
paboThl C CHCTEMHBIM K3IIEM. ABTOPOM [aHHOM CTAaThd MPEIJIOKEH HOBBIH IOIXOJ
HOJTyYeHHs coziepkuMoro (aiiioB B cucremax cemeiicrea Microsoft Windows ¢ momoristo
Drakvuf. TIpeasioxkeHHBbI# MOX0/] OCHOBAH HCKIIIOYHTENILHO Ha MCIOIb30BAaHHH MYyOIHYHOTO
uHTEpdeiica sapa CO CTOPOHBI THIIEPBH30pAa M OOECIEYHBACT MEPEHOCHMOCTh MEXIY
pa3MMYHBIMA BEpCHSAMH OIEPAlOHHON CHCTEMBI. B 3aBeplueHHe CTaTbd IPUBEACHBI
JOCTOMHCTBA M HEIOCTAaTKH O0OWMX IOJXOJOB, MPEUIOKEHbl HAIPABICHAS TalbHEHIINX
pabor.

Keywords: BpenoHocHas mporpamMma; JMHaAMUYeCKMi aHamus; uabekims; Drakvuf, Virtual
Machine Introspection.

DOI: 10.15514/ISPRAS-2018-30(5)-7

Jaa uurtupoanusi: Kosanés C.I'. IlonyueHue coaepKUMOIo yAanseMbIX U M3MEHSIEMBIX
(aiitoB B cpene AMHAMHYECKOTo aHanu3a ucnomHseMmbix ¢aitmoB Drakvuf. Tpymsr UCIT
PAH, tom 30, Bem. 5, 2018 1., crp. 109-122 (Ha aHMIMICKOM S3BIKE). DOI:
10.15514/ISPRAS-2018-30(5)-7

Cnucok nutepaTtypbl

[1]. Malware. The Independent IT-Security Institute. locrymso mo cesike: https://www.av-
test.org/en/statistics/malware/.

120

https://xenproject.org/
http://libvmi.com/
http://www.rekall-forensic.com/
https://www.qemu.org/
http://blog.rekall-forensic.com/2014/02/rekall-profiles.html
http://blog.rekall-forensic.com/2014/02/rekall-profiles.html
https://docs.microsoft.com/en-us/cpp/build/building-c-cpp-programs?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/building-c-cpp-programs?view=vs-2017
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

Kopanés C.I'. TlomydeHne cofepXMMOTo yaaaieMbIX 1 H3MEHACMBIX (aillIoB B Cpe/ie TMHAMHYCCKOTO aHAIIN3a
ucnonusiemsix aiinos Drakvuf. Tpyost HUCIT PAH, Tom 30, Beim. 5, 2018, ctp. 109-122

2.

3].

[4].
[5].
[6].

[71.

[8].
[9].
[10].
[11].

[12].
[13].
[14].

[15].
[16].

[17].
[18].
[19].

[20].

Kurniadi Asrigo, Lionel Litty, David Lie. Using VMM-Based Sensors to Monitor
Honeypots. Department of Electrical and Computer Engineering University of Toronto,
2006. Tocrymuo mo cebuike: https://security.csl.toronto.edu/papers/asrigo-vee2006.pdf,
nara obpamenus 17.11.2018.

Manpreet Kaur Rangian, Upasna Attri. Design and Implementation of Malware
Collection System Based on Client Honeypot. International Journal of Scientific &
Engineering Research, 2013.

Cuckoo Sandbox. HoctymHo mo cesuike: https://cuckoosandbox.org/, nara obpatieHns
17.11.2018.

Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dynamic
malware analysis using cwsandbox. Security & Privacy, IEEE, 2007.

Malware Anti-Analysis Techniques and Ways to Bypass Them. JlocTymnHo mo cchbuIKe:
https://resources.infosecinstitute.com/malware-anti-analysis-techniques-ways-bypass/,
nara obpamenus 02.05.2017.

Tal Garfinkel, Mendel Rosenblum. A Virtual Machine Introspection Based Architecture
for Intrusion Detection. Computer Science Department, Stanford University, 2003.
Hocrynso 1o cesuike: https://suif.stanford.edu/papers/vmi-ndss03.pdf, nata o6parenust
17.11.2018.

Knaccnduxanus BPEIOHOCHBIX porpaMm. JoctynHo 1o CCBIIKE:
https://www.kaspersky.ru/blog/klassifikaciya-vredonosnyx-programm/2200/.

What is ransomware?. JlocrymHo mo cchuike: https://us.norton.com/internetsecurity-
malware-ransomware.html, nara o6pamenns 17.11.2018.

Drakvuf. ToctymHo mo cepuike: https://drakvuf.com/, nara obpamenus 17.11.2018.
Tamas Kristof Lengyel. Malware Collection and Analysis via Hardware Virtualization.
University of Connecticut, 2015. Tocrymnuo mo ceeuike: https://tklengyel.com/thesis.pdf,
nata obparmenus 17.11.2018.

Xen Project. ToctymnHo 1o cebuike: https://xenproject.org/, nara o6pamienus 17.11.2018.
LibVMI. HocrymHo mo cepuike: http://libvmi.com/, nata o6parmenns 17.11.2018.

Recall Forensics. octymuo mo cceutke: http://www.rekall-forensic.com/, npara
obpammenus 17.11.2018.

QEMU. Hocrymro no cepuike: https://www.gemu.org/, nara obpamennst 17.11.2018.
Rekall Profiles. JocrynHo mo ccsuike: http://blog.rekall-forensic.com/2014/02/rekall-
profiles.html, nara o6pamenus 17.11.2018.

M. PyccunoBuu, JI. ComomoH, A. Wouecky. BuyrpenHee ycrtpoiictBo Microsoft
Windows. 6-e uznanue. Ocuosusie noacucremsl OC. CII6.: ITutep, 2014, 672 c.
Jxeddpu Puxtep, Kpuctod Hazap. Windows via C/C++. IlporpamMmmpoBaHne Ha
si3pike Visual C++. CII6.: TTutep, 2009, 896 c.

Building C/C++ Programs. Joctymuo mo ccbuike: https://docs.microsoft.com/en-
us/cpp/build/building-c-cpp-programs?view=vs-2017, nara obpamienus 17.11.2018.

Specifying Device Types. Jocrymso mno cceuike: https://docs.microsoft.com/en-
us/windows-hardware/drivers/kernel/specifying-device-types, nara obparieHust
17.11.2018.

121

https://security.csl.toronto.edu/papers/asrigo-vee2006.pdf
https://cuckoosandbox.org/
https://resources.infosecinstitute.com/malware-anti-analysis-techniques-ways-bypass/
https://us.norton.com/internetsecurity-malware-ransomware.html
https://us.norton.com/internetsecurity-malware-ransomware.html
https://drakvuf.com/
https://tklengyel.com/thesis.pdf
https://xenproject.org/
http://libvmi.com/
http://www.rekall-forensic.com/
https://www.qemu.org/
http://blog.rekall-forensic.com/2014/02/rekall-profiles.html
http://blog.rekall-forensic.com/2014/02/rekall-profiles.html
https://docs.microsoft.com/en-us/cpp/build/building-c-cpp-programs?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/building-c-cpp-programs?view=vs-2017
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis
system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

122

Methodology and Tools for Development
and Verification of formal fUML Models of
Requirements and Architecture for Complex
Software and Hardware Systems

A.V. Samonov <a.samonov@mail.ru>
G.N. Samonova <g.samonova@mail.ru>
Mozhaiskiy Military Space Academy,
13, Zhdanovskaya St., Saint Petersburg, 197088, Russia

Abstract. The article presents models and algorithms to support end-to-end quality control of
complex software and hardware systems through the implementation of the software-
controlled process of development and verification of formal models of requirements and
architecture of such systems, Firstly, we give the analysis of scientific publications and the
normative-methodical base in the field of development and application in practice of the
model-based approach is given. We establish that least provided by model, algorithmic and
software solutions are issues related to the development of a complete and correct set of
requirements, as well as the formalization and verification of technical projects of software
and hardware systems. To solve the existing problems, we propose to develop a special
unified environment for the development, modeling and testing formal models of
requirements and architecture of complex software and hardware systems. These models
provide an optimal set of interconnected fUML diagrams presented in ALF notation and
verified in the fUML virtual machine and using SMT/SAT solvers.

Keywords: activity diagrams; class diagrams; design and implementation; life cycle of
automated systems; model of requirements; model of architecture; software and hardware
systems; verification and validation

DOI: 10.15514/1SPRAS-2016-30(5)-8

For citation: Samonov A.V., Samonova G.N. Methodology and Tools for Development and
Verification of formal fUML models of Requirements and Architecture for Complex
Software and Hardware Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp.
123-146. DOI: 10.15514/ISPRAS-2018-30(5)-8

1. Introduction

Now, when the confrontation in the political, economic and military fields is
growing, one of the most important activities of the state is to ensure the safe
operation of critical information infrastructure (CIl). According to the Federal Law
of the Russian Federation [1], Cll objects are automated control systems (ACS) for

123

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

production and technological processes of the critical objects of the Russian
Federation and information and telecommunication networks providing them, IT
systems and communication networks for solving public administration tasks,
ensuring defense capability, security and law enforcement. Disruption of the
functioning of CII objects can lead to disastrous consequences in the field of
defense capability, economy, health care and security of the nation.

Automation means complexes, which form the basis of the CIl objects, are complex
software and hardware systems (CSHS); their foundation of reliable and safe
functioning is laid in the process of their design, development, and verification. The
main factors and conditions for achieving the required quality indicators of CSHS
are:

1) implementation of a quality management system defined by modern
normative-methodical documents (NMD) in the field of system and
software engineering at companies developing CSHS;

2) highly qualified designers, developers, and testers of CSHS;

3) use of modern technologies, methods and tools for design, development,
and testing of CSHS.

The most important issues relate to the implementation of the third direction, which
is being developed in system and software engineering [2] and model-based
methodology [3]. The need to improve the technology and development tools of
CSHS is due to distressing statistics on the implementation of IT projects both in
Russia and abroad. Thus, according to the research of The Standish Group, the
analysis of the results of work on the creation of information systems showed that in
the United States (over the past 15 years), only 20% of the projects were completed
on time and according to the original budget. At the same time, 30% of the projects
failed; 50% faced various problems: the total budget exceeded the initial one by 2
times on average; the terms increased by 1.5 times; less than 75% of the required
functionality was implemented [4]. The development process of CSHS consists of
three main stages: justification of requirements, design, and implementation, each of
which, according to the methodology of the model-based approach, includes a
verification procedure of the corresponding artifact. As the analysis showed, issues
related to the automation of the processes of generating and verifying computer
code created at the implementation stage have been solved quite successfully. At the
same time, the stages of requirements formation and system architecture design
require the participation of specialists in the field of system engineering and
information technology and end users.

As the analysis showed, the main limiting factors in achieving qualitative
improvements in solving these tasks are:

e absence of a rigorous mathematical model describing the processes of
implementation and application of methods and tools of model-based
systems engineering in the main stages of the life cycle of CSHS in a
uniform model-language environment;

124

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

e objective complexity of the task of creating a formal presentation of system
requirements based on their original informal representation;

e availability of a wide range of languages and tools proposed for building
models of the analysis, architecture, and implementation of a system in the
absence of clear and specific rules and recommendations for their application;

e lack adequate tools for automated construction and execution of test
scenarios for the verification of requirements and architecture.
The second section provides a brief overview of scientific and technical
publications, in which the described issues are considered and solved. The third and
fourth sections of the article present the models and algorithms for building a formal
specifications requirements. The fifth section describes the models and algorithms
for developing and verification the architecture of CSHS. The sixth section presents
the methodology for constructing test scenarios to verify models of requirements,
architecture, and implementation of CSHS using the SAT/SMT solvers.

2. Overview of the Current Normative-methodical Base and
Scientific Publications in the Field of Development and
Verification of CSHS

The exceptional relevance of the problems described above has led to the great
attention and efforts taken by international and national organizations, scientific and
professional communities, development teams and individual researchers to solve
them. In the authors’ opinion, the most important ones are methodical documents
and specifications developed under the auspices of the OMG (Object Management
Group) organization that cooperates with about 800 research organizations (DISA,
INCOSE, NIST, etc.) and industrial companies (AT & T, IBM, Oracle, Microsoft,
Cisco Systems, NASA, etc.). In Russia, active research in this area is carried out by
such organizations as ISP RAS, the Faculty of Computational Mathematics and
Cybernetics of Lomonosov Moscow State University, Saint Petersburg State
University, Novosibirsk State Technical University, Military Space Academy
named after A. F. Mozhaisky, etc.

Currently, more than 230 methodical documents and specifications have been
published on the OMG website. Considering the issues described above, the most
important specifications are: MOF (Meta Object Facility), UML (Unified Modeling
Language), XMI (XML Metadata Interchange), SysML (System Modeling
Language), OCL (Object Constraint Language), UTP (UML Testing Profile), ALF
(Action Language for Foundational UML), FUML (Semantics of a Foundational
Subset for Executable UML Models), ReqlF (Requirements Interchange Format).
These documents are the scientific and methodical base for their application, further
improvement, and development. A brief analysis of the most important scientific
publications and papers starts with monographs and practical guidelines in the field
of industrial development of CSHS.

125

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

The fundamental paper written by Dragan Milicev, the Serbian scientist and MBSE
expert, Professor of University of Belgrade [5], outlines the principles and methods
of applying modern information technologies based on the object-oriented paradigm
and model-based approach for the industrial development of CSHS. This is
especially valuable in the context of the problems considered in this article. Also,
the paper provides recommendations and examples of using the fundamental UML
(FUML) language, which is used to create and verify executable formal UML models.

In the monograph [6], the techniques and methods of applying the constructs and
mechanisms of the SysML language are described in a summary and illustrated
form containing practical examples, the idea and principles of this language are
explained. This monograph is written by the group of active developers of many
OMG methodical documents and specifications, and those who apply this
knowledge in practice at such companies as Lockheed Martin and Raytheon
Company: S. Friedenthal, A. Moore, R. Steiner. Useful information on applying the
SysML language mechanisms for designing CSHS is presented in the monograph by
Lenny Delligatti [7] (Lockheed Martin Corporation).

From among all publications of Russian organizations and researchers, it is worth to
mention the papers by the ISP RAS team dealing with both theoretical and practical
aspects of these problems. The theoretical foundations of the design and verification
of CSHS based on a category-theoretic approach to metaprogramming are described
in publications written by S. Kovalev, the leading ISP RAS researcher [8] [9]. They
present the ways to apply category theory to solve the problem of representing
heterogeneous software engineering technologies in a common format that would be
convenient for their integration and coordination in the software system design life
cycle. Particular attention is paid to such modern technologies as model checking
development and aspect-oriented programming, for which universal category-
theoretic semantic models are built.

One of the modern means to describe the architecture of software and hardware
systems is Architecture Analysis & Design Language (AADL) [10]. On the basis of
this language, the system for supporting the design and verification of MASIW
onboard aircraft systems developed by ISP RAS together with GosNIIAS as part of
the state program for the development of Integrated Modular Avionics (IMA) is
being actively used. When developing MASIW, the following libraries and tools
were used: Eclipse Modeling Framework, Graphical Editing Framework, Eclipse
Team Providing, SVN Team Provider, GIT Team Provider. As noted in the article
[11], the MASIW tools allow solving the following tasks:

e creation, editing, and management of models of hardware-software
complexes (HSCs) using the AADL language;

e analysis of models for the sufficiency of hardware resources and interface
consistency, the evaluation of the characteristics of projected data networks
built in accordance with the AFDX standard (Avionics Full-Duplex
Switched Ethernet);

126

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

e distribution of functional applications over computation modules, taking
into account the limitations of the hardware platform resources and the
requirements for the reliability and security of HSCs;

e generation of computer code and configuration data for VxWorks653 RT
OS and termination units of the AFDX network.

An example of using the special extension of the AADL language — Error Model
Annex (EMA) and the MASIW tool for modeling and analyzing the security of the
designed HSCs is presented in [12]. The model is created using EMA, in which a
finite-state machine (FSM) is developed for each component of HSCs. The states of
FSM are normal states and emergencies, including dangerous and failure situations
of this component. The effect of system component failures on other components is
described by specifying the logical conditions for the propagation of errors between
different types of components in different states, taking into account the
probabilities of their occurrence. The following algorithms are used for risk
analysis: Fault Tree Analysis, Failure Mode and Effects Analysis, Markov Analysis.
The implementation of the approach described in this article helps to identify and
eliminate the security-critical defects in design solutions at the design stage.
The ISP RAS team has developed the technology called UniTESK (Unified TEsting
Specification based toolkit) for testing software interfaces. This is a unified set of
testing tools based on specifications. UniTESK is unified due to the fact that the
general testing methodology and general architecture can be used to test modules
using almost all programming languages. Currently, there are the UniTESK
implementations for C (CTESK), C ++ (C ++ TESK), Java (JavaTESK and
Summer), Python (PyTESK). The UniTESK technology has two main differences
from common testing tools [13]:

e UnIiTESK helps to describe the specifications of a software contract of
modules in the form of pre- and post-conditions using the extensions of
programming languages (in case of C ++ TESK, no extension is required);

e instead of manual development of test cases, UniTESK allows describing a
generalized scenario — a compact description of test logic that allows the
test sequence generator to call each specified interface in all its uses
automatically and to verify the correctness of the result for compliance
with a specified post-condition.

The next group of publications consists of papers devoted to the solution of
particular problems of developing and verifying CSHS. The thesis written by A.V.
Markov, the employee of Novosibirsk State Technical University, is devoted to the
issues of automation of design and software analysis processes using the UML
language and Petri nets [14]. The paper describes the software design methodology
using UML sequence diagrams in the .xmi format and presents the method for their
automatic convert to the .cpn format used to describe Petri nets. The result of using
this method is hierarchical Petri nets being analyzed for verifying the software

127

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

project, which is represented in the form of UML diagrams. The following solutions
presented in this paper are the most valuable in practice:

o algorithm of transforming UML diagrams to Petri network;

e algorithm and rules of implementing inversion in Petri nets to check the
reachability of the selected network state;

e algorithms and software for constructing and analyzing Petri nets to
identify and eliminate defects in the developed software.

The review of modern methods for automatic test generation presented in [15] is
quite useful. The paper describes the following methods:

e structural testing using symbolic execution;

e model-based testing;

e combinatorial testing;

e random testing;

e search-based testing.
The article [16] presents the automated method for making UML sequence diagrams
using the description of UML use case diagrams and class diagrams. To implement
this method, it is necessary to use the ATL language and metamodels of use case
diagrams, class diagrams and sequence diagrams developed by the authors of the
article, as well as the rules for obtaining the third diagram from the first and second
ones. The result of this transformation is a sequence diagram in the XMI format,
which is then converted to the XSLT format to display a sequence diagram in a
graphical editor for viewing, analysis, and making changes. The disadvantage of the
proposed algorithm is the lack of automatic correction of the original models if any
new changes are made to a sequence diagram. This is due to the fact that the
transformations using the ATL language are unidirectional — they work with read-
only source models and create write-only target models.
In the work [17], experts at Shanghai University have described the approach to
verify large-scale web projects by developing and analyzing the executable model
of the corresponding software. To build this executable model, the authors have
developed the method that uses live sequence charts (LSCs) as input data. A UML
model using LSCs diagrams is transformed into a symbolic finite-state machine.
Test scenarios are created by traversing a finite-state machine with the Depth-first
Search method (DFS).
The paper [18] describes the method of automatic generation of computer code
based on the project (architectural model) of a program presented in the ALF
language. Of particular interest is the conceptual scheme of the mechanism for
generating computer code from the project description in the ALF format using the
rules in the extended Backus-Naur (EBNF) notation). The authors point out the
following advantages of the tool to transform the model of the architecture of the
ATL language: the ability to describe both declarative and imperative language
constructs, the presence of means to combine modules that allow creating and

128

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

reusing sets of transformation rules. The result is a Java code that corresponds to the
Modisco Java metamodel.

The article [19] describes two methods for implementing automatic testing of real-
time loaded systems using scenarios. In the first, the system is modeled as the
network of timed automata (TA). In the second, it is modeled as a set of live
sequence charts (LSCs) and requirements in the form of a separate LSC diagram to
analyze. The authors of the article have developed temporal extensions for a subset
of the core of the LSC language and defined its semantics based on tracing. The
analyzed LSC diagram is transformed to its behavioral equivalent in the notation of
the TA diagram. The correctness verification of a model is carried out by modeling
the TA diagram in real time using Computational Tree Logic (CTL) followed by the
comparison of the obtained result with the standard. Both methods are implemented
with the tools of UPPAAL.

The paper [20] describes the method for generating unit cases based on the
architecture of a model presented in the form of UML activity diagrams. The tests
are created with the SMT/SAT solvers, which analyze the control flow graph of a
program presented in A Modeling Language for Mathematical Programming
(AMPL). This paper proposes test coverage criteria based on control flow analysis.
Particular attention is paid to mixed integer nonlinear programming, as well as to
the construction of logical formulas for OCL (Object Constraint Language)
constraints.

One of the serious disadvantages of modern approaches is the lack of ability to take
into account the composition and structure of designed systems, as well as to
establish and synchronize the relations between system requirements and design
elements. To eliminate these disadvantages, the paper [21] proposes to make a
system design based on SysML behavioral diagrams. To verify automatically the
project created in this way, it is proposed to use the following methods:

o transformation of SysML activity diagrams to modular Petri nets presented
in PNML (Petri Net Markup Language);

e mathematics and such tools as CPN Tools and SPIN for analyzing Petri
nets;

e algorithm for verifying the time requirements in SysML activity diagrams,
which are pre-converted to formulas of Linear Temporal Logic (LTL)
using Active Temporal Requirement Language (AcTRL) developed by the
authors.

To create tools for the dynamic verification and validation of project behavioral
models, it is proposed to use Executable Domain-specific Modeling Languages
(XDSMLs) in [22]. Means based on them make it possible to monitor the states of
analyzed models (transitions, events, variable values) during their execution. The
new generative approach based on a multidimensional and domain-specific trace
metamodel is proposed. This method helps to construct and manage execution
traces for models corresponding to a specified xXDSML. According to the authors of

129

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

this paper, this method has higher performance compared to the standard UML
metamodel due to the ability to exclude redundant data from processing (for
example, analyzed traces) using the mechanisms of the corresponding xDSML.

To conclude the analysis of publications and the solutions presented in them, the
following ideas can be summarized:

e main efforts of researchers are aimed at developing methods and tools for
the automated generation and verification of software implementations of
CSHS [13] [214] [15] [17] [18] [20]; fewer efforts are aimed at automating
the development and verification of design solutions [11] [19] [20] [22];
there are practically no solutions for the automated formation and
verification of a set of requirements;

e mathematics and analysis of Petri nets, SMT/SAT solvers, such modeling
languages as AADL, UML, fUML, SysML and domain-specific languages
(XDSMLs) developed on their basis are used as the basic mathematical
models and tools for automatic verification based on these models.

In this regard, the main purpose of research and papers, the results of which are
presented in this article, was to develop a model, algorithmic and methodical
support of the processes of building and verifying formal models of requirements
and the architecture of CSHS used in state CIl objects.

For create unified conceptual, language and instrumental environment for the
development and verification of analysis models and the architecture, it is proposed
to use:

e UML, OCL, fUML and ALF modeling languages;

e VM fUML, SPIN (Promela), Rodin (Event-B), SMT-Lib, Z3, CVC-4, Alt-
ERGO;

e environment, libraries and software products implemented within the
Eclipse project: Eclipse Modeling Framework, Graphical Editing
Framework, Papyrus, Moka.

The choice of these models, languages and tools is conditioned by the following
circumstances. First, their development is actively supported by leading
development enterprises and consumer organizations of CSHS. The second is that
both the technologies and means based on them are open and available for study,
application, and improvement.

3. Models and Algorithms of Formal Description of the
Requirements for a System Based on the Original Informal
Representation

To solve the problem of building a formal description of the requirements for
automated systems and software, you must perform the following operations and
procedures:

130

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

1.

First, additional content control elements are developed and installed in a
text editor (MS Word or Writer). These elements are XML schemas
(tz_as.xsd, tz_sw.xsd.) based on a universal Requiment Interchage Format
(ReglF). XML schemas describe the composition and structure of
requirements for automated systems and software defined in the relevant
normative-methodical documents.

Then in the environment of a text editor in accordance with the established
in the previous step xml schemas (tz_as.xsd and tz_sw.xsd) structured text
documents are developed containing requirements to the system.

The next step is the automatic generation of the first version of the formal
model of the set of requirements. to implement this procedure, use the
metamodel shown in the Fig. 1. This metamodel is a conceptual and logical
union of a use case diagram and a class diagram.

Block B UseCase

name : EString

O name : EString B Actor : 'y .
- iption : EString || name: EString

1 Class

1 Oname : EString -
0.1 extension ; /0
1

1 . +
ownedAttribute |, O- BlExtension

5 AlternativeFlow B gasicFlow
| | — BasicFlow _} B Attribute
name : EString

0..1 . ctype : EString
0 I::Isgompuslls : Eboolear tereot
g - caisUnique : Eboolear tereolypRly 1
| — Conditon | B FlowofEvents Colower : Elnt

Texpression:Estring || YD F——————— | | oupper :Elnt | Bstereotype
| 1
1 0.1 ' . | memberEnd
L | 0..* | ownedOperation
1 B Step navigableOwnedEnd 0.1
= order : EInt | E TR EOperalIon
1 | name : EString
| = name : EString
1.
0.1 E Action > L |
> 8 = ption : EString | R, J
0.1

type 0.* parameter
? ? =] Sentense L

- = noun: EString | B type E Parameter
= LoopStatement B conditionalStatement = verb:EString Sname : EString = name : EString
1 [| = _ object: EString - = __dir: EString

Fig.1. Comprehensive model of the use case diagram and class diagram

To develop this metamodel, the official specifications of these diagrams on the
OMG website and the models proposed in publications [16] [22] [23] were used. In
addition to the explicit establishment of relationships between diagram elements of
these diagrams, the proposed model includes the new class — “Sentence” and
excludes two classes — “Subject” and “Agent”. The program implementing the
generation procedure uses the xmi representation of this metamodel and developed
before structured text documents containing requirements to the system.

Each i-th use case is a functional requirement and is described as follows:

uc; = (nameug,actor,, function,block;),

131

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

where nameuc; — use case name uc; ;

actor, — user or external system that initiates uc;;

function; — system function that implements uc;;

block; — system component that implements function (input, operation,result),
where inputinput — input data;

operationoperation — algorithm that implements function ;

result result — result of the implementation of functior .

function; = (basicflow, alterflow) ,

where

basicflow — algorithm that implements the main flow of the function;

altersflow — algorithms that implements alternative flows of the function.

The class construction is developed for each functional block (module) and
information object. Its attributes, operations (methods), restrictions and semantics
are specified. The sets of interacting classes are combined into class diagrams —
d_class. Formally, a class diagram can be described as follows:

d_class = (Classes, Relations),

where Classes = { class;} i = 1, ..., I — diagram classes;

Relations — class relationships;

class = (nameclass, attributes, operations),

Relations = {Rgs, Rin, Rag, Raes Rsp, Rye} — relations between classes of the
following six types;

R.s —associations;

Ri, —inheritances;

Rag —aggregations;

Rqe — dependences;

Rsp —specializations;

R, —realizations.

The next step in building a requirements model is to develop non-functional
requirements specifications for each system function:

d_regs= (rlfi , rzfi , r3fi , r4fi)

where rlf' — requirements for the efficiency of execution of T ;

r2fi rgi — performance requirements (for example, the amount of data stored,

processed and transmitted, the number of users, the number and size of requests per
unit of time, etc.);

132

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

r;i rgi —requirements for reliability (availability rate, uptime, recovery time, etc.);

r4fi — security requirements.

The model built in this way is preliminary, and it is used as input data for the
algorithm for building a model formal requirements in the fUML language which
described in the next section.

4. Algorithm for Building a Formal Model Requirements

The scheme of the algorithm that implements the second stage of the procedure of
building a formal requirements model using the fUML language is shown in Fig. 2.
Use case diagrams (UCDs) — d_uc, class diagram (CDs) — d_class and requirements
diagrams (RDs) — d_reqs are used as initial data. The analyst and future system user
develop an interaction overview diagram (IOD) — d_io for each UCD (d_uc). In this
diagram, the functions implemented by the system are described from the user's
point of view in more detail using activity diagrams, sequence diagrams, and
statechart diagrams. Formally, an interaction overview diagram can be represented
as follows: d_io, = (actork,ioi“,block j), where iof =
(ioft = (a £, b;) iof ™, io/'*) describes the algorithm for implementing the
function by the j-th block (class) of the designed software, which includes the
description of main (io/"™) and alternative (io,"®) flows.

l

Alternate flows describe the operation of programs in case of abnormal situations,
such as erroneous user actions, unexpected influences from the external
environment, etc. The main and alternative flows can have subordinate flows, which
are described in 10D using frames with “ref”. The subordinate IOD flows show the
work of a program from the user's point of view and can be represented with activity
diagrams, sequence diagrams or statechart diagrams depending on the features of
the functioning of CSHS and ways of the interaction with the user and environment.
To describe the procedure and possibility of realization of those or other threads are
used pre - and post- condition.

the model of requirements constructed in this way should be subjected to validation
and verification procedures. The validation procedure is to assess the completeness
and correctness of the set of requirements. It is carried out both by software tools
and by the informal expertise of specialists in a particular subject area. Such
properties of a model as consistency, systematicity, non-redundancy, security,
liveliness, absence of deadlocks, impossible operations, looping are checked during
verification. The verification of the requirements model is carried out through its
execution and testing in the fUML virtual machine environment and analysis using
SAT/SMT solvers.

133

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

?

Obtaining and analyzing Use Case diagrams
uc; (actory, function;, block;)

jagrams
l‘ s ¢ _—/

v

Use Cases dlagrams and Class
@ A1 (Data collection
~d and analysis)

¢

[Developing Interaction Overview diagram d_io (actory, io; block) \

—

Qeery from DB next d_uc;

‘Adding a new entry
d_iojen

_ o

v

Class diagrams refinement
d_class(classes, relations)
while read (class bx) {create class(bx attributesk, functionsy),
write class(bx attributesy, functionsy) }

v
)

“~a| private data_info: Type1

Class | | Functlon H Class

=D
Preparation)
|

\
N

Function
fi

\.

Interaction Overview diagram

d_io A0

|Class Collecton [, | [Class
a 8Analyse Decion a
Funfcltion .

1 Function

Class diagrams
d_class (class, relations)

class collection_data

public receive_data(source, format, data_info)
%ubhc analyse_data(data_| info, data roc) }
lic receive data(souroe “Tormat, da _info)

Fig.2. Construction algorithm of the technical project model

The description of these methods and tools is provided in sections 5 and 6.

5. Algorithm for Building a formal model of architecture of CSHS
The architecture development of CSHS is implemented in accordance with the

algorithm shown in Fig. 3

134

CamonoB A.B., Camonosa I'.H. Metoauka u cpenctsa pazpabotku u Bepudukarmu popmansusix FUML mopereit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,

crp. 123-146

The initial data are the interaction overview diagram — d_io, diagrams of quality
requirements for the implementation of functions — d_reqs, class diagrams — d_class
and the requirements for development technologies and operating environment.

?

=(Query from DB of : d_class, d_io)

no

Case:
Cef,act (1), ref_seq (2), ref_sm (3D

S={sm}, 20e
sm = {entry, do_inter,
val_var, exit }

/ d_seq 2\
Create_class {boundary,
control, entity}

Create Lifeline, = classn

Create {[condition]
[constraint] messagex}

Create {[condition]
[constraint] do actiony}

(__Addinganewentryto DB)

v
CConverting d_seq to d_act; d_sm to d_acD<—

Refinement d_class

v
®

{control_nodey }
{object_node,}

{pre-conditiony}

{post-conditiony}

T={ty), 20e
t, = {event, guard_cond,
t_action}

def (So, Stin)

Fig.3. Algorithm of the architecture model development

In each interaction overview diagram (d_io) searches for a reference to activity
diagrams (ref_act), sequence diagrams (ref_seq) and statechart diagram (ref_sm). If
such references are found, the architect is asked to build or modify the
corresponding diagrams. Activity diagrams are described using control nodes
(control_node: decision node, merge node, fork node, join node, interaction,
interaction use); object nodes (object_node); pre-conditions and post-conditions.

When constructing sequence diagrams, the additional boundary, control, and entity
classes are first created, which perform the functions of intermediate (boundary)
classes, control, and information objects, respectively. Then the lifelines are defined
corresponding to classes that exchange messages. Messages are defined by the

135

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

conditions and limitations of their transmission and reception, and the actions that
are performed (do action). When developing state diagrams, the S ={sm} states and
T = {tn}transitions between them are defined. Each sm state consists of a
description of the attributes - val_var, as well as the actions performed: entry — at
the entrance, do_inter — internal, exit — at the exit.

The tn transitions include descriptions of the event initiating this transition — event,
the pre- and post- implementation conditions — guard_cond and actions that must be
performed before the actions of a new state — t_action).

The constructed diagrams are added to the database. To obtain a consistent and
bound set of CSHS technical project (architecture) diagrams, class diagrams
(d_class) and requirements diagrams (d_regs) are refined by establishing relations
with new activity, sequences and statechart diagrams that were developed or
modified. Fig. 4 shows the diagram illustrating the relationships between class and
activity diagrams. Each d_act; has a relationship with a specific class by describing
the algorithm for implementing the corresponding class method.

_behavioredClassifier ownedBehayj MultolcityElement

i ultiplicityElemen

Classifier | 0.1 gl . Class behavior _ownedParameter prypgaemen{
BehavioredClassifier | behavioredClassifier classifierBehavi 0.1 1 parameter

0.1 o.r method

ownedParameter| *

specification 0.1

Feature
BehaviorFeature

class = (nameclass, attributies, methods) °‘"“‘3d°pe"“i°“?

method = operation(inp, act, out) gperation

*

act(inp, act, out) ‘—0 1

Fig. 4. Relationships and dependencies between the main components of the technical project
model: class and activity

To implement the architecture model verification procedure in the virtual machine
environment, fUML sequence diagrams (d_seq) and statechart diagrams (d_sm) are
transformed to activity diagrams (d_act), which are then described in the language
ALF (Action Language for Foundational UML).

Fig. 5 presents the diagram illustrating the verification procedure of the formal
fUML model of the CSHS architecture in a virtual machine environment consisting
of three components: ExecutionFactory, Executor and Locus.

ExecutionFactory is used to create instances of the visitor semantic classes
corresponding to the executable elements of the fUML model. The Executor class is
a top-level abstraction for the executable fUML model and provides three
operations:

e evaluate — evaluate a value specification, returning the specified value

136

CamonoB A.B., Camonosa I'.H. Metoauka u cpenctsa pazpabotku u Bepudukarmu popmansusix FUML mopereit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

e execute — synchronously execute a behavior, given values for its input
parameters and returning values for its output behaviors;

e start — asynchronously start the execution of a stand-alone or classifier
behavior, returning a reference to the instance of the executing behavior or
of the behaviored classifier.

Each execution is performed on a specific VM (Locus), which is the abstraction of a
physical or virtual computer capable of executing and verifying f{UML models.

Formal model of archi ire O Formal verification Tools and
ﬁ —_ Techniques
& 3 Promela
ALF
Class | I - A o
— attribute : Type || class Class { HE I | ’ i Rodin o
private attribute1 : Type; L
+ operation1(Type) : void public operation1(in param1: Type) { -
— operation2() : Type param1.op(); I 2
> 1 e}
activity private operation2(): Type { SPIN
return type; o X
! (CreateObjoc ; 1 3
reateObjec . }
action
init result: CPN Tools Q

classifiie

Next tasks
for fUML Virtual
Machine

§ Execution execution = this.locus.false | [1] + getTi p() :long

execution execute (); TraceEvent

parameter
values

> execute
> next step
> resume

- activityExecutionlD : int
| Locus |0—| ExecutionFactory | ctivityExecution!D - in
+ gefactivityExecutionlD() : int

|
|
|
i E
: - - - ! -
| Virtual machine for fUML (ALF) model execution I Events Analysis o
— =] . | parent
fUML (AL Event
Sl | [e | [e T
public ParameterValueList | - timestamp : long
%ﬁn execute (Behavior behavior |

Fig.5. Scheme of executable fUML-model verification

The following basic requirements are imposed on the software architecture of
CSHS:

e completeness of the implementation of functional requirements defined in
the interaction overview diagrams — d_io;

e completeness and correctness of the implementation of non-functional
requirements defined in requirements diagrams — d_reqs;

e coherence and consistency of all model diagrams;
e lack of redundancy.

Testing the architecture model in the fUML virtual machine environment also makes
it possible to detect defects that can lead to security and liveliness violations, the
occurrence of deadlocks, impracticable operations, and loops. In addition, it is

137

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

advisable to use SAT/SMT solvers to verify the architecture model. The description
of their application is presented in the next section of the article.

6. Methods for Constructing Test Scenarios to Verify Models of
Requirements, Architecture and Implementation of CSHS using
SAT/SMT solvers

The main stages of the process of constructing test scenarios to verify models of
requirements, architecture, and implementation of CSHS are presented in Fig. 6:

— building a control flow graph (CFG);

— description of CFG in language ALF;

— generation of test scenarios (TSs) for verification of a set of requirements and
technical project (architecture);

— generation of TSs for implementation verification;

— adding test scenarios to database (DB).

| input: FUML diagram I
~

)\
(fef 1.)4. Building a control flow graph based on UML diagrams (CFG))

ref2_12. Transformation CFG to ALF (Action Language for Foundational UML) notation)

A

ref3.1 3 Generation of TSs for the analysis model and architecture model veriﬁcation)

refd). Generation of TSs for the implementation model veriﬁcation)

C 5.Adding TSs to DB)

®

Fig.6. Generalized algorithm of test scenarios development for verification of requirement,
architecture and implementation models

With the help of this algorithm, the requirements model and the architecture model
can be verified. The original format for representing these models is .xmi. Based on
these descriptions, the corresponding verifiable CFG model is built, in which both
functional and non-functional requirements for the system being developed are
taken into account. To represent non-functional requirements, Object Constraint

138

CamonoB A.B., Camonosa I'.H. Metoauka u cpenctsa pazpabotku u Bepudukarmu popmansusix FUML mopereit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

Language (OCL) is used. A SMT/SAT solver checks CFG for defects and, if they
are found, creates counterexamples. Using them, the developer determines the
causes of defects and makes the necessary corrections to the analyzed artifact. To
implement this approach, it is proposed to use the ALT-ERGO, CVC4 and Z3
solvers, integrated into the Frama-C framework [24] [25].

ﬂ'eﬂ input: - refh
FUML diagram aaEere I N o t

-
Transform OCL-variables into ALF variabl
Get FULM diagram /I (ransform variables into variables)
(Check the accuracy of the source data) // (Transform local Post- conditions into Alf constraints)
- /
C Execute OCL parsing / Transform the guard conditions (Guards)
/ in the ALF- restrictions

cgalf: 7z

J\[CFeinatr [é Y
/ ﬁ' cgalf: I\ refh
~

flow graph (CFG) of abstract test set
(atcg : abstract test case graph)

)
[Transform FUML diagram to the oonlrol]

Add integrity constraints

I |/ |CFGinALF

/
/
K /i (Breadth-first) (Depth-first)
/ search search
method method
ﬂeﬂ)_ —y < R\
= 8
tests: Develop Develop Except the first
Unit Test Mode! I SM?’?g A7 [7] testcaseto | test case for[] unenforceable
| verify the analysis way
SONER architecture models (€
Create a test case to model (tests) (paths)
verify the unit tests A J J
implementation - Construct a
model (unit-test) \ | [tests: counter example
il ‘/ \ | |Unit Test Mode! with the SMT/
unil_ tests: i SATsolver
J ; S
_ Lhatiyeas \bsiract Test Case J

Fig. 7. Detailed algorithm of test scenarios development for verification models of
requirement, architecture and implementation

Concluding the presentation of the developed models and algorithms, let us present
a generalized scheme for the implementation of software-controlled process of
development and verification of formal models of requirements and architecture of
CSHS, which provides end-to-end quality control of all artifacts of the life cycle of
CSHS (Fig. 8).

139

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

controls

. Develop
structured
requirements
in text editor
environment
according the
xml scheme

1.3. Generate
use case diagram,

2. Develop the forma
requirements model:
d_uc, d_io, d_class,
d_regs

4.3. Develop tests
for verification of the
requirements model

C Verify the requirements modeD

block(class
diag(;ram) 4.3. Develop the
Corgplregnensw test case for the
K go lgss duce requirements
/ G reg model verification

.1. Develop:
d_io (ak, ioi, bj),
ref_act, ref_seq,
ref_sm

2.2. Refine :
d_class(classes,
relations)

)

4.4, Develop tests for
verification of the
comprehensive Software

and Software: d_act, d_seq,
d_sm, d_class, d_reqs ad Alﬁ?cmhﬁ;ﬁu?g Gl

__l+

(\/en‘fy the Architecture (project) model)

3. Develop the Architecture
model of Automated Systems

Formal Requirements model:
d_io + d_class + d_regs

.1. Develop and
complete
d_act, d_seq,
d_sm

3.2. Complete

d_class™=(class,
relations)

3. Complete
d_regs*=
1, 12, 13, 14, ...

-

~N

i O i

4.5. Develop tests to verify the
implementation

C)

——

7 Y

The Architecture model:
d_act, d_seq, d_sm,

d_class, d_reqs

Requirements
of the -
(1 ~ > Automated ~ Requirements and

; Systems and N Architecture

1.1. Develop Software N

xml-scheme 7~ 1. Constract preliminary formal model of

olimrsetgllljﬁemgist' & requirements: comprehensive d_uc and =~

editor content d_class model 4

4.1. Constuct a
control flow
graph (CFG)

4.2. Transform
the CFG
fo ALF notation

4.4. Develop the
test case for the
architecture

model verification

4.5. Develop the
test case for the
implementation

verification

Fig.8. Stages of implementation of software-controlled of the process of development and

140

verification of software and hardware systems

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

The main stages of the implementation of this approach are:

1.

4,

Construction of a preliminary formal model of requirements for CSHS in
the form of a set of interrelated use case diagrams, class diagrams, and
requirements diagrams.

Development of a formal requirements model in the form of a set of
interrelated use case diagrams, overview interaction diagrams, class
diagrams, and requirements diagrams.

Development and verification of the formal model of the architecture of
CSHS through testing in the fUML virtual machine environment and
analysis using SAT/SMT solvers — ALT-ERGO, CVC4 and Z3.
Development and verification of the software implementation.

7. Conclusion

One of the most important directions of improving the development processes and
achieving the required quality indicators of complex software and hardware systems
is the creation and implementation in practice of their industrial development of
model-based technologies for justifying requirements, design, and implementation
followed by the procedures of their formal verification and semi-formal validation.
Currently, the most problematic issues are related to the verification of requirements
and the CSHS architecture. To solve these problems, it is proposed to implement the
approach described in this article. The distinctive features of this approach are:

formation and use of a single model-language and information-software
environment for the development and verification of formal models of
requirements, architecture and software implementation based on the
necessary and sufficient set of interrelated fUML diagrams and the model
of internal and inter-model relations developed for them;

implementation of the software-controlled development process of CSHS
in accordance with the developed algorithm that performs sequential-
iterative operations of generating and transforming formal models of
requirements and architecture presented in fUML, XMI, ALF, and that also
performs their verification in the fUML virtual machine environment and
SMT/SAT solvers.

To implement the proposed approach, the following models, algorithms, and
methods were developed:

algorithm of a formal description of the requirements for the developed
system based on the initial informal representation;

fUML diagram models that are necessary and sufficient to develop
complete, correct and consistent formal models of requirements and
architecture;

models, algorithms and guidelines for the development of formal models
requirements and the architecture in languages fUML, XMI and ALF;

141

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

o verification algorithms for models of requirements and the architecture of
CSHS in the environment of fUML virtual machine;

o verification of the formal model of the architecture and program
implementation through the analysis using the SAT/SMT solvers.

Currently, work is underway to create a set of software tools to ensure the
implementation of this approach. The development tools, libraries, and applications
implemented in the Eclipse project (EMF, GMP, RCP, Papyrus, Moka, Titan) are
used as a development environment and prototypes. The implementation of this
software package in the relevant technological processes at companies will ensure
the most complete accounting and correct implementation of requirements for
functional and operational characteristics, environment and conditions for the use of
CSHS. It will also significantly reduce the cost of finding and eliminating the most
critical and resource-intensive defects made at the stages of the formation of
requirements and design of their architecture.

References

[1]. Federal law "On security of critical information infrastructure of the Russian
Federation". 12.07.2017 (in Russian)

[2]. Systems Engineering and Software Engineering,
https://www.sebokwiki.org/wiki/Systems_Engineering_and_Software_Engineering.
(accessed 25.07.2018).

[3]. Laura. Introduction To Model-Based System Engineering (MBSE) and
SysML.https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-
incose-30-july-2015.pdf. (accessed 21.06.2018).

[4]. The Standish Group Report CHAOS. https://www.projectsmart.co.uk/white-
papers/chaos-report.pdf. (accessed 25.08.2018).

[5]. Dragan Milicev. Model-Driven Development with Executable UML. John Wiley &
Sons, 2009, 720 p.

[6]. Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann, 3 edition, 2014, 630 p.

[7]. Lenny Delligatti. SysML Distilled: A Brief Guide to the Systems Modeling Language.
Addison-Wesley Professional, 2013, 304 p.

[8]. Kovalev S.P. Theoretical and categorical approach to metaprogramming. M., IPU
Russian Academy of Sciences, 2014, 112 p. (in Russian)

[9]. Kovalev S.P. Category-Theoretic Approach to Software Systems Design. Journal of
Mathematical Sciences, vol. 214, issue 6, 2016, pp. 814-853.

[10]. Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,
2012, 480 p.

[11]. D.V., Buzdalov, S.V. Zelenov, E.V. Kornykhin, A.K. Petrenko, V.A. Fear, AA.
Ognenko, A.V. Khoroshilov. Design tools for integrated modular avionics systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 26, issue 1, 2014, pp. 201-230. DOI:
10.15514/ISPRAS-2014-26(1)-6 (in Russian)

142

https://link.springer.com/journal/10958/214/6/page/1

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

[12].
[13].
[14].
[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

S.V. Zelenov, S.A. Zelenova, Modeling of hardware and software systems and analyze
their security. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 257-282. DOI:
10.15514/ISPRAS-2017-29(5)-13 (in Russian)
http://www.ispras.ru/technologies/unitesk (accessed 17.10.2018) (in Russian)

Markov, A.V., automation of design and analysis software using UML and Petri nets.
PhD Thesis, NSTU, Novosibirsk, 2015 (in Russian).

Saswat Anand et al. An Orchestrated Survey on Automated Software Test Case
Generation. Journal of Systems and Software, vol. 86, Issue 8, 2013, pp. 1978-2001.
Yachai Limpiyakorn, Photchana Sawprakhon. Sequence Diagram Generation with
Model Transformation Technology. In Proc. of the International MultiConference of
Engineers and Computer Scientists, IMECS 2014, vol |

Liping Li, Honghao Gao, Tang Shan. An Executable Model and Testing for Web
Software based on Live Sequence Charts. In Proc. of the 2016 IEEE/ACIS 15th
International Conference on Computer and Information Science (ICIS).

Thomas Buchmann and Alexander Rimer. Unifying Modeling and Programming with
ALF. The Second International Conference on Advances and Trends in Software
Engineering, vol |, IARIA, 2016. pp .10-15.

Shuhao Li, Sandie Balaguer et al. Scenario-based verification of real-time systems
using Uppaal. Formal Methods in System Design, vol. 37, Issue 2-3, 2010, pp 200-264
Felix Kurth. Automated Generation of Unit Tests from UML Activity Diagrams using
the AMPL Interface for Constraint Solvers. Master Thesis, Hamburg University of
Technology (TUHH), 2014.

Messaoud Rahim, Malika Boukala-loualalen, Ahmed Hammad. Petri Nets Based
Approach for Modular Verification of SysML Requirements on Activity Diagrams.
PNSE'14, a satellite event of Petri Nets 2014 and ACSD 2014, Tunis, Tunisia, pp 233-
248.

Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and
efficient execution trace management for executable domain-specific modeling
languages. Software & Systems Modeling, 2017,
https://link.springer.com/article/10.1007/s10270-017-0598-5 (accessed 20.07.2018)

D. Savic, S. Vlgjic, S. Lazarevic. Use Case specification using the SilabReq domain
specific language. Computing and Informatics, vol. 34, 2015, 877-910.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis using
Conflict-Driven Learning. In Proc.b of 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’18). ACM, New York, NY,
USA, 16 p.

Efremov D. V., Mandrykin M. U. Formal verification of Linux kernel library functions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017, pp. 49-76. DOI:
10.15514/ISPRAS-2017-29(6)-3 (in Russian)

143

https://dl.acm.org/author_page.cfm?id=81100232024&coll=DL&dl=ACM&trk=0
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://link.springer.com/journal/10703/37/2/page/1
file://///elena-laptop/share/Сборник_30_5/Редактированное/Software%20&%20Systems%20Modeling

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

MeToauka n cpeactBa pa3paboTku u Bepudmkaumm
dopmanbHbix fUML moaenen Tpe6oBaHU U apXUTEKTYPbI
CNOXHbIX NPOrpaMMHO-TEXHUYECKUX CUCTEM

A.B.Camonog <a.samonov@mail.ru>
I'"H.Camonosa <g.samonova@mail.ru>
Boenno-xocmuueckas akademus umenu A.@. Moocatickoeo,
197088, Poccus, Canxm-Ilemepbype, yn. JKoanosckas, 0.13

AnHoTtammsi. B crartee mpencraBieHBl MOJAENH M aITOPUTMBI OOECIICUEHUS CKBO3HOTO
KOHTPOJISI KauyecTBa CIOXHBIX MHporpammHo-TexHuueckux cucreM (CIITC) mocpenctBom
peann3anuy HPOTPAMMHO-YIPABISIEMOTO IIpolecca pa3pabOTKH M BepHUpUKAIUU
dopmanbHBIX Mozenelt TpeboBanuit u apxurekTypbl CIITC. [lam aHanmm3 Hay4YHBIX
myOnuKanuii 1 HOPMAaTHBHO-METOIUYECKON 0a3bl B 00JacTH pa3paboTKu U NPUMEHEHUS Ha
NPaKTUKE MOJAENHHO-OPHEHTUPOBAHHOTO IOAXOAa. YCTaHOBJIEHO, 4YTO HauMeHee
00eCIeYeHHBIMI ~ MOJICTIbHBIMH, ~QITOPUTMHUYECKHMHM U TIPOTPaMMHBIMH PEIICHUSIMU
SIBJIAIOTCSL BOIIPOCHI, CBSI3aHHBIE C pa3pabOTKOM ITOJIHOTO M KOPPEKTHOTo Habopa TpeGoBaHuiA,
a Takke ¢ Gpopmanuzanuei U Bepudukanuei Texamdeckux npoektoB CIITC. IpennoxeHst
CIOCOOBI pEIIeHUSI CYIIECTBYIOIIMX MPOOJeM IOCPEACTBOM (OPMUPOBAHUS EOMHOM
MOJICJIFHO-SI3BIKOBOM M MH(POPMAIIMOHHO-IIPOTPAMMHOM cpebl pa3paOOTKH U BepUPUKALIUT
(dopmanpHbIX Mozened TpeOoBaHmid u apxutekTypsl CIITC, mocTpoeHHBIX Ha OCHOBE
onTHMaIbHOTO Habopa B3amMmocBszaHHbIX fUML nmarpamm, MpencTaBIeHHBIX B HOTAIMH
s3pika ALF u Bepudummmpyemsix B cpene BupTyansHoit mMammubel fUML n ¢ momouipio
SAT/SMT pemiarerneii.

KmioueBble cioBa: BepuduKanus W Baluaalus; JUAarpaMMbl aKTUBHOCTH; AHArpaMMBbI
KJIACCOB; >KU3HEHHBIH LUK aBTOMAaTU3UPOBAHHBIX CHUCTEM; MOJEIH apXUTEKTyphl; MOAEIH
TpeOoBaHMiA; IPOEKTHPOBAHUE M PEATH3aLHsl; IIPOTPAMMHO-TEXHHIECKHE CUCTEMEL.

DOI: 10.15514/ISPRAS-2018-30(5)-8

Jas uutupoBanusi: Camonos A.B., CamonoBa ['.H. Meroauka u cpeactBa pa3paboTKu U
Bepudukarmu ¢popmanbHeix fUML Monenmeit TpeGoBaHMH ¥ apXHUTEKTYPHI CIOKHBIX
nporpammHo-TexHudeckux cucreM. Tpyast UCII PAH, Tom 30, Bein. 5, 2018 r., ctp. 123-146
(na anrmmiickom s3bike). DOI: 10.15514/ISPRAS-2018-30(5)-8

Cnucok nutepaTtypbl

[1]. ®enepanbubit 3akoH «O 0€30HACHOCTH KPUTHUYECKOH HMH(OpPMAIMOHHOI
nHpacTpykTyphl Poccuiickoit @enepammm». 12.07.2017 r.

[2]. Systems Engineering and Software Engineering
https://www.sebokwiki.org/wiki/Systems_Engineering_and_Software_Engineering.
(mata obpamenus 25.07.2018).

[3]. Laura E. Hart. Introduction to Model-Based System Engineering (MBSE) and SysML
https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-
july-2015.pdf. (nata obpamuienns 21.06.2018).

[4]. The Standish Group Report CHAOS. https://www.projectsmart.co.uk/white-
papers/chaos-report.pdf. (nata obpamierns 25.08.2018).

144

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

[5].
[6].
[71.
[8].
[9].

[10].

[11].

[12].

[13].
[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

Dragan Milicev. Model-Driven Development with Ex ecutable UML. John Wiley &
Sons, 2009, 720 p.

Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann, 3 edition, 2014, 630 p.

Lenny Delligatti. SysML Distilled: A Brief Guide to the Systems Modeling Language.
Addison-Wesley Professional, 2013, 304 p.

Kosanés C.I1. TeopeTnko-KaTeropHbBIA MOAXOA K MeTanmporpammupoBanuio. M., UITY
PAH, 2014, 112 ctp.

Kosanes C. II. TeopeTHKO-KaTeropHbBI MOAXOA K MPOEKTHPOBAHMIO MPOTPAMMHBIX
cuctem. OyHIaMeHTa bHas W MPUKIAAHAs. Maremaruka, ToMm 19, Bem. 3, 2014, ctp.
111-170.

Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,
2012, 480 p.

J.B. By3nanos, C.B. 3enenos, E.B. Kopusixun, A.K. Ilerperko, A.B. Ctpax, A.A.
Vruenko, A.B. XopommunoB. MHCTpyMeHTalIbHBIE CPEACTBA NMPOEKTUPOBAHUS CUCTEM
HUHTErpUpoBaHHON MonynbHOU aBuoHHMKU. Tpyner UCIT PAH, Ttom 26, Bem. 1, 2014,
ctp. 201-230. DOI: 10.15514/ISPRAS-2014-26(1)-6

3enenos C.B., 3enenoBa C.A. MozenupoBaHue MPOrpaMMHO-aNapaTHBIX CHCTEM U
aHamm3 ux OezomacHoctu. Tpynst UCIT PAH, tom 29, Beim. 5, 2017 t., ctp. 257-282.
DOI: 10.15514/ISPRAS-2017-29(5)-13

http://www.ispras.ru/technologies/unitesk (zara o6pamenus 17.10.2018)

MapkoB A.B. ABroMaTu3amus NpPOSKTHPOBAHMS U aHAIW3a [POrPaMMHOI0
obecrieueHnss ¢ wucnonb3oBanneM s3bika UML u cereit Ilerpu. Kama. muc.,
Hosocubupck, HI'TY, 2015.

Saswat Anand et al. An Orchestrated Survey on Automated Software Test Case
Generation. Journal of Systems and Software, vol. 86, Issue 8, 2013, pp. 1978-2001.
Yachai Limpiyakorn, Photchana Sawprakhon. Sequence Diagram Generation with
Model Transformation Technology. In Proc. of the International MultiConference of
Engineers and Computer Scientists, IMECS 2014, vol I,

Liping Li, Honghao Gao, Tang Shan. An Executable Model and Testing for Web
Software based on Live Sequence Charts. In Proc. of the 2016 IEEE/ACIS 15th
International Conference on Computer and Information Science (ICIS).

Thomas Buchmann and Alexander Rimer. Unifying Modeling and Programming with
ALF. The Second International Conference on Advances and Trends in Software
Engineering, vol |, IARIA, 2016. pp .10-15.

Shuhao Li, Sandie Balaguer et al. Scenario-based verification of real-time systems
using Uppaal. Formal Methods in System Design, vol. 37, Issue 2-3, 2010, pp 200-264
Felix Kurth. Automated Generation of Unit Tests from UML Activity Diagrams using
the AMPL Interface for Constraint Solvers. Master Thesis, Hamburg University of
Technology (TUHH), 2014.

Messaoud Rahim, Malika Boukala-loualalen, Ahmed Hammad. Petri Nets Based
Approach for Modular Verification of SysML Requirements on Activity Diagrams.
PNSE'14, a satellite event of Petri Nets 2014 and ACSD 2014, Tunis, Tunisia, pp 233-
248.

Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and
efficient execution trace management for executable domain-specific modeling
languages. Software & Systems Modeling, 2017,

145

https://dl.acm.org/author_page.cfm?id=81100232024&coll=DL&dl=ACM&trk=0
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://link.springer.com/journal/10703/37/2/page/1
file:///F:/Temp/_ISP/_done/2018/v30/v5/orig/Software%20&%20Systems%20Modeling

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

[23].

[24].

[25].

146

https://link.springer.com/article/10.1007/s10270-017-0598-5 (nara obpauieHus
20.07.2018)

D. Savic, S. Vlajic, S. Lazarevic. Use Case specification using the SilabReq domain
specific language. Computing and Informatics, vol. 34, 2015, 877-910.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis using
Conflict-Driven Learning. In Proc. of 39%th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’18). ACM, New York, NY,
USA, 16 p.

Edpemos [I.B, Mauapeikua M.Y. ®opmanbHast BepuduKaius On0IMoTedHbIx GyHKIui
sapa Linux. Tpymet MCII PAH, tom 29, Bem. 6, 2017 r., crtp. 49-76. DOI:
10.15514/ISPRAS-2017-29(6)-3

TLA+ based access control model
specification

A.V. Kozachok <a.kazachok@academ.mks.rsnet.ru>
Academy of the Federal Guard Service,
35, Priborostroitelnaya St., Oryol, 302034, Russia

Abstract. The article describes TLA+ access control model specification for computer
systems, ensuring compliance with the mandatory integrity and confidentiality monitoring
requirements with considering memory-based covert channels. The distinctive feature of the
model is taking into account the characteristics of the lifecycle of electronic documents and
their operating procedure. To specify the access control model, Lamport's Temporal Logic of
Actions language was chosen (TLA+). Its notation seems to be the closest to generally
accepted mathematical notation and its expressive capabilities and tools allow describing and
verifying systems specified as finite automata. The following actions are defined in the
model: create/delete a subject, read, write, append (blind write), create/delete an object,
grant/remove access rights, include an object, exclude a nested object, approve an object
(document), archive an object (document), cancel an approved object (document), copy an
object (document). The following invariants are also defined: the type invariant (includes
checking the compliance of all fields of the object, the compliance of the subject type, the
uniqueness of the subject and object identifiers) and the safety invariant (includes checking
the confidentiality and integrity labels of the interacting subjects and objects, the correctness
of rights assignment procedures).

Keywords: security models; computer systems; verification; modelling; temporal logic;
security policy; access control.

DOI: 10.15514/ISPRAS-2018-30(5)-9

For citation: Kozachok A.V. TLA+ based access control model specification. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 147-162. DOI: 10.15514/ISPRAS-2018-
30(5)-9

1. Introduction

The problems of ensuring information security become more acute when
information technologies are developing and penetrating in all spheres of life. The
complexity and amount of software being developed and used are constantly
increasing, which leads to the emergence of new threats and vulnerabilities.

It should be noted that some vulnerabilities are caused not by typical errors when
programming, but by errors when designing software systems in general. Such
defects are quite difficult to detect and to correct during the operation phase.

147

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

One of the possible solutions to solve this problem is the modeling and verification
of the algorithms being developed for compliance with specified properties.

It is especially important to model the protection mechanisms of computer systems.
For example, "The Information Security Requirements for Operating Systems" by
FSTEC of Russia and developed on the basis of these requirements and according to
GOST R ISO/IEC 15408 protection profiles and security targets contain the
requirements of the ADV_SPM.1 functional component to present a formal security
policy [1, 2]. In scientific studies, the formal description of security policies and
access control models in operating systems is also given special attention [3-6].
There are a number of formal languages and relevant software tools providing the
ability of the formalized description of a mathematical model [7]: Alloy [8], B [9],
Event-B [10, 11], VDM [12], Z [13], TLA + [14-17].

2. Problem Formulation
Access control systems in computer systems provide mechanisms for controlling
and restricting access for users or processes (subjects) to a variety of objects.

As part of the research, the task was to develop a model for controlling access to
computer system resources, which would ensure that the requirements of mandatory
integrity and confidentiality monitoring are met, taking into account information
flows by memory [18].

The distinctive feature of the model is taking into account the characteristics of the
lifecycle of electronic documents and their operating procedure.

To specify the access control model, Lamport's Temporal Logic of Actions
language was chosen (TLA+). Its notation seems to be the closest to generally
accepted mathematical notation and its expressive capabilities and tools allow
describing and verifying systems specified as finite automata [19-21]. Also, in some
research works, this notation was used to solve the problem of verifying access
control models [22, 23].

3. Model Specification

The extension of temporal logic [24] is Lamport's Temporal Logic of Actions. It
allows describing interacting and open-loop systems.

Unlike predicate logic, temporal logic of actions has the following operators [14]:
o "always in the future" operator;

B "always in the past" operator;

O "next-time" operator;

© "at one point in time" operator;

¢ "once in the future" operator;

¢ “once in the past" operator;

U "until" binary operator;

148

Kozauox A.B. Crienndukaiiist MOJICIIN yIPABICHUS JOCTYIIOM Ha sI3bIKE TEMITOPAIBHOMN JIOTUKH AeiicTBuit JIammopra.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 147-162

S "since" binary operator.
The basic relations between the operators can be represented as follows:
OF = —o—F oF =—B-F

OF = (F v —F)UF oF = FS(F v—F)

Logical formulas in the proposed access control model are defined as follows (in the
Backus-Naur form):

(#) |= PredAction | p(t,,...,t,) | —¢
¢V londle—>p|UXig
|3x: gl op| 0p| O | pUs

| Mg | og| O | §S9,

where PredAction — actions, p — arity of a predicate n, t,...,t —terms, x —
variable.
In general, the specification of the access control model in TLA+ is as follows

Spec £ Init AC[Next]__, (1)

where Init — initialization procedure of initial values of model variables, Next —
action predicate that changes the state of the model and the values of variables,
vars — variables of the model.

3.1 Definition of Model Variables

Variable values may change after the execution of action predicates:
VARIABLES A, 0O, S,

vars 2 (A,0,S).
()

where A — set of current (happened) access events, O — set of objects, S — set of
subjects, £ — "equal by definition" symbol.

3.2 Creating Data Types Describing Objects and Subjects of the
Model

TLA + does not have strong typing (only embedded types are checked by default);
however, checking of invariants of types is an integral part of the specification,
because the verification is performed by the ModelChecking method [25]. A
number of values specified in the model are model for reducing the resource-
intensiveness of the verification process, but they do not affect the generality and
adequacy of the model as a whole.

Description of the type that specifies the objects:

149

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

Objects £ [oid : ObjectIDs, meta : ObjectMeta, body : ObjectBody,
owner : SubjectIDs, grantm : GrantedRights,
grantb : GrantedRights, incl : ObjectlDs,

st : ObjectStates .
Description of the type that specifies the subjects:
Subjects £ [sid : SubjectIDs, cnfl : ConfidLevels,

intl : IntegrLevels, cat : SUBSET Categories,
owner : SubjectIDs].
Sets of identifiers of subjects and objects (model values):
SubjectlDs £ 0...5,

ObjectlDs £ 0...5.

Sets of labels for the levels of confidentiality, integrity, and categories (model
values):

ConfidLevels £ 0...1,
IntegrLevels £ 0...1,
Categories = {"c1","c2","c3"}.

Set of object states ("work", "approved", "archived", "cancelled"):
ObjectStates £ {"work","approved ", "archived ", " cancelled "}.
Set of types of access and tuple of rights assignment
Rights = {"read"," write""},
GrantedRights £ (sid : SubjectlDs, r : Rights).

For electronic documents in electronic document management systems, there is the
separation of rights of access to meta information and the content of a document
[26]. This opportunity was also taken into account in the developed model:

ObjectParts £ {"meta","body"},
ObjectMeta = [cnfl : ConfidLevels, intl : IntegrLevels],

ObjectBody = [cnfl : ConfidLevels, intl : IntegrLevels].

Auxiliary operators and functions were also identified for the selection: child
element of an object (sc(0)), set of child elements of an object (scs(0)), set of

copies of an object (scp(0)), set of child objects of a subject (sw(s)) and update
the owner of a subject (UpdateOwner (sh, sp)).

150

Kozauox A.B. Crienndukaiiist MOJICIIN yIPABICHUS JOCTYIIOM Ha sI3bIKE TEMITOPAIBHOMN JIOTUKH AeiicTBuit JIammopra.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 147-162

3.3 Initialization of Initial Values

The set of current access events is empty at the initialization stage. The set objects
can also be empty at this stage. However, the set of subjects in this case must
contain at least one subject. For example, the values of the sets of subjects and
objects are initialized with model values:

s0 £ [sid — 0,cnfl — 1,intl — 1,

cat — {"c1","c2"}, owner — 0],
s1 2 [sid — 1,cnfl — 1, intl — O,

cat — {"c2","c3"}, owner — 1],
00 £ [oid ~— 0,

meta — [cnfl — 0, intl — 0],

body — [cnfl — 0,intl — 0],

cat — {"cl1","c2"},

owner — 1, (2)

grantm — {(0," write"), (0," read ")},

grantb — {(0,"read ")},

incl — {3},

copy — {},

st — "work",
Init = AA={}

A S ={s0, s1}
A O ={o0}.

where oid - object identifier, meta — object meta information, body — object
content, cnfl — level of confidentiality, intl — level of integrity, cat — category,
st — object state, owner — owner, incl — set of included documents, grantm —

access rights assigned to meta information, grantb — access rights assigned to the
content of an object, sid — subject identifier.

151

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

The model provides actions to create and delete subjects and objects; therefore, the
values presented in (2) only allow modeling possible states and finding errors faster.

3.4 Predicates of Actions

The following possible actions are specified in the model:
Next £ v CreateSubjectD v DeleteSubjectD

v ReadD v CreateObjectD
v WriteD v AppendWD

v DeleteObjectD v GrantRightsD

v RemoveRightsD v IncludeObjectD
v ExludeObjectD v ApproveObjectD
v ArchiveObjectD v CancelObjectD

v CopyObjectD,

where CreateSubjectD — create a subject, DeleteSubjectD — delete a subject,
ReadD - read, WriteD — write, AppendWD - write at the end ("blind" writing),
CreateObjectD — create an object, DeleteObjectD — delete an object,
GrantRightsD — assign access rights, RemoveRightsD — remove access rights,
IncludeObjectD - include an object to an object, ExludeObjectD — exclude an
included object, ApproveObjectD — approve an object (document),
ArchiveObjectD — archive an object (document), CancelObjectD — cancel the
action of an approved object (document), CopyObjectD - copy an object
(document).

Taking the example of the action presented in (3), one can consider the order in
which the necessary pre-conditions and post-conditions are specified. Pre-conditions
are predicates, the execution of which is necessary to ensure the safety of an action.

Post-conditions determine how model variables may be changed according to the
results of an action.

The Read(s,0,r,op) action is performed by s (subject) in relation to 0 (object)
with the r="read"right and the specific component of the meta information
document (op ="meta") or its content (op ="body"). The action in the model
defines the following post-conditions: the current access to the set of access events
is added (A" = Au{(s.sid,0.0id, r,op)}) and sets of subjects and objects remain as
unchanged (UNCHANGED(S, O)).

152

Kozauox A.B. Crienndukaiiist MOJICIIN yIPABICHUS JOCTYIIOM Ha sI3bIKE TEMITOPAIBHOMN JIOTUKH AeiicTBuit JIammopra.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 147-162

The ReadD action imposes requirements to account all possible states of the model
(IreR:3seS:30 €0 :30p e ObjectParts) and to verify the necessary safety
predicates of the execution of the action (pre-conditions).
ReadD £ 3r € Rights :

IseS:
JoeO:
Jop € ObjectParts :
AT ="read"
A0.cat c s.cat
AV AOp="meta"
A s.cnfl > o.meta.cnfl 3)
Av{{s.sid, r)} < o.grantm
v 0.owner = s.sid
v Aop ="body"
A s.enfl > o.body.cnfl
Av{(s.sid, r)} c o.grantb
v 0.0wner = s.sid

A Read(s,0,r,0p)

Important ones are checks of confidentiality labels (s.cnfl > o.meta.cnfl and
s.cnfl > o.body.cnfl), as well as checks of categories as a part of mandatory
confidentiality monitoring (o.cat ¢ s.cat). It then checks the condition if s
(subject) has the r access right to 0 (object) depending on op (
(ssid, r) c o.grantm or({ssid, ry c o.grantb).

It is also possible that the subject s is the owner of the object o; in this case, the
requirement to have a right in the set of access rights to the object is not imposed;
the owner has full rights (0.owner = s.sid).

Consider also the action to create a copy of the CopyObjectD object in (4).

153

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

CopyObject(s,0,id) £2A0"' =0 u{[oid — id,
meta — [cnfl — o.meta.cnfl,
intl — o.meta.intl],
body — [cnfl — o.body.cnfl,
intl — o.body.intl],
owner — s.sid,
grantm — o.grantm,
grantb — o.grantb,
cat — o.cat,
incl — o.incl,
st — "approved",
copy — {o.0id}]}
A A= Au{(s.sid,0.0id,"copy",id)}
A UNCHANGED(S)
CopyObject £ (4)
IseS:
AO={}
A 30 € O: A0.0Wner = s.sid
Aoincl ={}
A 0.5t ="approved”
As.cat c o.cat
A s.enfl = o.meta.cnfl
A s.intl > o.meta.intl
A s.cnfl = o.body.cnfl
A s.intl > o.body.intl
A Cardinality(scp(0)) < 2
A 3Jid € ObjectIDs :
AV00eO:
154 Aid # 00.0id
A CopyObiject(s, 0,id)

Kosagox A.B. Crenudukanust MojiesIM yHpapiieHHs JOCTYIIOM Ha 3bIKE TEMIIOPAIbHOM JIOTUKHM JiekcTBIi JIammopra.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 147-162

The CopyObject(s,o,id) is performed by s (subject) in relation to o (object). As a

parameter, the identifier is also passed for the object being created, the selection of
which is carried out taking into account the requirement for the unique identifiers of
all objects (3id e ObjectIDs : Voo € O : id = 00.0id). In this action, a new object is

added to a set of objects possessing the attributes of the o original object with the
exception of the copy field, in which it is indicated which object is a copy of this

object. It also adds the current access to the set of access events and indicates that
the set of subjects does not change when performing this action.

The CopyObjectD imposes requirements to account all possible states of the model
(Fse S:0={}A3Joe0)and to check the necessary pre-conditions:

e the subject is the owner of the object (0.owner = s.sid);

e the object has no included objects (o.incl ={3});

o the object is in an "approved" state (0.st ="approved ");

e subject categories are a subset of object categories (s.cat < o.cat);

o the privacy level of the subject is equal to the privacy level of the object (
s.cnfl = o.meta.cnfl A s.cnfl = 0.body.cnfl);

o the level of integrity of the subject is greater than or equal to the level of
integrity of the object (s.intl > 0.meta.intl A s.intl > o.body.intl);

e the number of copies of the object does not exceed the specified value (
Cardinality(scp(0)) < 2);
e the created object must have a unique identifier.

3.5 Model invariants

In addition to specifying the pre- and post-conditions in the model, it is possible to
set invariants for global properties, which are mandatory for all states of the model.
The basic and generally accepted invariant is an invariant of types in (5).

It verifies that all fields match all objects and also checks the conformity of the type
of all subjects, as well as it checks the uniqueness of all identifiers of subjects and
objects.

155

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,

pp. 147-162

ObjTypelnv £

Typelnv

AY0 e O: Ao0.0id € ObjectlDs
A 0.meta e ObjectMeta
A 0.body € ObjectBody
A 0.0wner € SujectlDs
~q{o.incl} < SUBSET ObjectIDs
~{o.copy} — SUBSET ObjectIDs
A 0.5t e ObjectStates
A0.cat ¢ SUBSET Categories
£ A'S c Subjects (5)
A ObjTypelnv
AVsSneS:IFIsmeS:Asm=#sn
Asn.sid = sm.sid
THEN FALSE
ELSE TRUE
AVoneO:IFdomeO:Aom=on
A on.oid = om.oid
THEN FALSE
ELSE TRUE

The second invariant specified in the model is the safety invariant in (6). It checks
the following conditions:

156

the level of confidentiality of object meta information does not exceed the
level of confidentiality of the content of the object (
o.meta.cnfl < o.body.cnfl);

the integrity level of object meta information is equal to the integrity level
of object content (0.meta.intl = o.body.intl);

if the object contains an included object, then the set of access rights to the
parent object is a subset of access rights to the child object, and the state of
the parent object is equal to the state of the child one (
o.grantm < oi.grantm A o.grantb < oi.grantb A o.st = o.ist)

Kosagox A.B. Crenudukanust MojiesIM yHpapiieHHs JOCTYIIOM Ha 3bIKE TEMIIOPAIbHOM JIOTUKHM JiekcTBIi JIammopra.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 147-162

e the number of included objects does not exceed the specified value (
Cardinality(scs(0)) <1);
o the number of copies of the object does not exceed the specified value (
Cardinality(scp(0)) <2);
o if the subject is the owner of the object, the rights for it are not assigned,
because the subject has full rights (

—o.grantm < (s.sid x Rights) A —o.grantb < (s.sid x Rights));

e if the object is in the "archived" or "canceled" state, then it is forbidden to
assign the right to “record" to any of the subjects (
o.grantm m (SubjectIDs x{" write"}) = {} v o.grantb n (SubjectIDs x {" write"}) = {}

).
The execution of invariants for all states of the model provides the proof of the
following theorem (7) regarding the specification of the model (1) and the invariants
(5), (6):
Theorem. Spec =[(Typelnv A Safety) .)

3.6 Model verification

The significant limitation of the approach to the verification based on the
ModelChecking method is the need to check all possible model states. That is, if
one specifies any conditions for countable sets, for example, sid € Nat or
oid € Nat, the verification process does not end, because the number of model
states will also be countable. Therefore, in the specification, model values were used
to reduce the time required for model verification.

The verification of the developed model was performed using the TLC2 tool version
2.13 [27]. Thus, the time spent on verification was about 2835 minutes (more than
47 hours) on the server with the Ubuntu 16.04 operating system, Intel Xeon E5-
2620 v2 24 cores 2.10 GHz and 32 GB of RAM. 16,284,800,554 states were
verified with the average system performance of 5,743,616 states per minute.

4. Conclusion

The developed model can be used to set policies for controlling access to computer
system resources, where information of various confidentiality categories, as well as
various levels of confidentiality and integrity, circulates. The TLA + language
notation used in the model has sufficient flexibility and expressive capabilities for
solving a wide range of modeling problems in computer security. We should note
that the requirements for the absence of covert timing channels in this model were
not taken into account; that is the direction for further research.

157

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,

pp. 147-162

Safety £ A Vo € O : A 0.meta.cnfl < 0.body.cnfl
A 0.meta.intl = o.body.intl
AlFo.incl = {}
THEN Vi € a.incl :
AdoieO:
A 0i.0id # o0.0id
~0.0id =i
A 0.grantm c oi.grantm
A 0.grantb c oi.grantb
A 0.5t = 0i.st
ELSE TRUE
A Cardinality(scs(0)) <1
A Cardinality(scp(0)) < 2
AdseS:
A0.0wner = s.sid
A IFo.grantm = {}
THEN —o.grantm < ({s.sid}x Rights)
ELSE TRUE
A IFo.grantb = {}
THEN —o.grantb < ({s.sid}x Rights)
ELSE TRUE
A—=30e€ 0 :Avo.st ="archived"
v 0.st ="cancelled"
A v o.grantm (SubjectIDs x{" write"}) = {}
A v o.grantb m (SubjectIDs x{"write"}) = {}

158

(6)

Kozauox A.B. Crienndukaiiist MOJICIIN yIPABICHUS JOCTYIIOM Ha sI3bIKE TEMITOPAIBHOMN JIOTUKH AeiicTBuit JIammopra.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 147-162

References

[1].

(2].

(3]
[4].

[5].

[6].

[7].

[8].
[9].
[10].

[11].

[12].

[13].

[14].
[15].
[16].

[17].

Devyanin P.N. On the problem of representation of the formal model of security policy
for operating systems. Trudy ISP RAN/Proc. ISP RAS. vol. 29, issue 3, 2017, pp. 7-16
(in Russian). DOI: 10.15514/ISPRAS-2017-29(3)-1.

Devyanin P. N. Approaches to formal modelling access control in postgresql within
framework of the mrosl DP-mode. PDM. Prilozhenie/Applied Discrete Mathematics.
Supplement, no. 10, 2017, pp. 111-114 (in Russian.) DOI: 10.17223/2226308X/10/44.
Devyanin P. N. System administration in MROSL DP-model. . PDM/Applied Discrete
Mathematics. Supplement, 2013, no 4, pp. 22-40 (in Russian).

Devyanin P. N. Security violation necessary conditions for time information flows in
MROSL DP-model. . PDM. Prilozhenie/Applied Discrete Mathematics. Supplement, no
8, 2015, pp. 81-83 (in Russian) DOI: 10.17223/2226308X/8/30.

Devyanin P. N. About results of designing hierarchical representation of mrosl DP-
model. PDM. Prilozhenie/Applied Discrete Mathematics. Supplement, 2016, no 9. pp.
83-87 (in Russian) DOI: 10.17223/2226308X/9/32.

Devyanin P. N. The level of negative roles of the hierarchical representation of MROSL
DP-model. PDM/Applied Discrete Mathematics, 2018, no 39, pp. 58-71 (in Russian)
DOI: 10.17223/20710410/39/5.

P.N. Devyanin et al. Modeling and verification of security policies for access
management in operating systems. ISP RAN, 2018, 181 p. Available at:
http://www.ispras.ru/publications/security_policy_modeling_and_verification.pdf (in
Russian)

Jackson D. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2012, 376 p.

Abrial J.-R. The B-book: Assigning Programs to Meanings. Cambridge University
Press, 1996, 779 p.

Jean-Raymond Abrial. Modeling in Event-B. System and Software Engineering.
Cambridge University Press, 2010.

P.N. Devyanin, V. V. Kulyamin, A.K. Petrenko, A.V. Khoroshilov, 1.V. Shchepetkov.
Comparison of specification decomposition methods in Event-B. Programming and
Computer Software, wvol. 42, no. 4, 2016, pp. 198-205. DOI:
10.1134/S0361768816040022.

Jones C. B. Systematic Software Development Using VDM (2nd Ed.). Prentice-Hall,
Inc., 1990, 333 p.

Singh M., Sharma A. K., Saxena R. Formal Transformation of UML Diagram: Use
Case, Class, Sequence Diagram with Z Notation for Representing the Static and
Dynamic Perspectives of System. Proc. of the International Conference on ICT for
Sustainable Developmen, 2016, pp. 25-38, DOI: 10.1007/978-981-10-0135-2_3.
Lamport L. The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst, vol. 16,
no. 3, 1994, pp. 872-923.

Lamport L. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

L. Lamport et al. Specifying and verifying systems with TLA+. Proc. of the 10th ACM
SIGOPS European Workshop, 2002, pp. 45-48.

Lamport L. The PlusCAL Algorithm Language. Lecture Notes in Computer Science,
vol. 4229, 2006, pp. 23-23. DOI: 10.1007/11888116_2.

159

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

[18]. Devyanin P. N. Security conditions for information flows by memory within the mrosl
DP-model. PDM. Prilozhenie/Applied Discrete Mathematics. Supplement, issue 7, 2014,
pp. 82-85 (in Russian).

[19]. Denis Cousineau et al. TLA + Proofs. Lecture Notes in Computer, vol. 7436, 2012, pp.
147-154. DOI: 10.1007/978-3-642-32759-9_14.

[20]. Kaustuv Chaudhuri et al. A TLA+ Proof System. In Proc. of the Combined KEAPPA -
IWIL Workshops, 2008, pp. 17-37, URL: http://ceur-ws.org/\VVol-418/paper2.pdf.

[21]. Merz S., Vanzetto H. Encoding TLA+ into Many-Sorted First-Order Logic. In Proc. of
the 5th International Conference on Abstract State Machines, 2016, pp. 54-69.

[22]. Xinwen Zhang et al. Formal Model and Policy Specification of Usage Control. ACM
Transactions on Information and System Security, vol. 8, no. 4, 2005, pp. 351-387. DOI:
10.1145/1108906.1108908.

[23]. Gouglidis A., Grompanopoulos C., Mavridou A. Formal Verification of Usage Control
Models: A Case Study of UseCON Using TLA+. In Proc. of the 1st International
Workshop on Methods and Tools for Rigorous System Design, 2018, pp. 52-64.

[24]. Stirling C. Modal and temporal logics. LFCS, Department of Computer Science,
University of Edinburgh, 1991.

[25]. McMillan K. L. Eager Abstraction for Symbolic Model Checking. Lecture Notes in
Computer Science, vol. 10981, 2018, pp. 191-208. DOI: 10.1007/978-3-319-96145-
3 11

[26]. Storey V. C., Song l.-Y. Big data technologies and Management: What conceptual
modeling can do. Data & Knowledge Engineering, vol. 108, 2017, pp. 50-67. DOI:
10.1016/j.datak.2017.01.001.

[27]. Chris Newcombe et al. How AmazonWeb Services Uses Formal. Communications of
the ACM, vol. 58, no. 4, 2015, pp. 66-73.

Cneuundmkauma mogenm ynpaBrneHUA 4OCTYNOM Ha A3blKe
TeMnoparnbHOW NOrnuku gencTtemn Jlamnopra

A. B. Kosauok <a.kazachok@academ.mks.rsnet.ru>
Axademusi Dedepanvhoii cyaxcovl oxpanvl Poccuiickoil ¢pedepayuu,
302015, Poccus, 2. Opén, ya. Ilpubopocmpoumenvuas, 0. 35

AHHoTanus. B crartee mpencTaBiIeHO ONMMCAaHWE MOMAENN YIPABJICHUS JTOCTYIIOM Ha S3bIKE
TEMITOPANFHON JIOTUKK AelicTBuil JIammopra, obecneunBaroniell BHIONHEHUE TpeOOBaHUI
MaHIATHOTO KOHTPOJS LEIOCTHOCTH M KOH(HACHINAILHOCTH C YIeTOM HH()OPMAITMOHHBIX
MOTOKOB TI0 MaMATH. OTINYNTENEHOH 0COOEHHOCTHIO MOJIEIH SIBIISICTCS y9eT 0COOEHHOCTEeH
JKM3HEHHOTO IIMKJIa OJJICKTPOHHBIX JOKYMEHTOB (3aJaHMsi HpaB K MeTanHpopMaluu u
COJEP)KUMOMY JTOKYMEHTA OTJIEJIbHO, OTpaHUYEHHE YUCIa KOMUM NToKyMeHTa). /s 3ananus
MOJICNT YIPABIICHUsT JOCTYNOM OBUT BBIOpaH SI3bIK TEMIIOPATBHOI JIOTMKH AeicTBHI
JIamriopTa, MOCKOJIBKY €ro HOTAIMsl MPEACTaBIsieTcs] Hanbosee OJIM3KOIM K OOIIeNpHHSTOM
MaTeMaTHIEeCKOH, BBIPA3UTENILHbIE BOZMOKHOCTH M HHCTPYMEHTAJIBHBIC CPE/ICTBA TTO3BOJISIOT
OIIUCHIBATh M BEPUQHIPOBATH CHCTEMEI, 3a/laHHBIE B BU/IC KOHEYHBIX aBTOMATOB. B Mozmenn
OIIPENeNICHEl CIIEAyIomNe MAEHCTBHS: CO3JaHue/ynaleHHe CyObeKTa, YTEHHE, 3allHCh,
nosamuch ("cuemas" 3ammch), Co3jaHMe/ylaleHHEe OOBEKTa, Ha3HAa4YeHWe/yJaJeHHe IIpaB
JIOCTyHa, BIOKEHHE O0BEKTa B OOBEKT, UCKIIOUEHHE BJIOKEHHOTO OOBEKTa, YTBEP)KICHUE
o0BeKTa (OOKyMEHTa), OTmpaBKa OOBEKTa (JOKYMEHTa) B apXuB, OTMEHAa JEHCTBUSA
YIBEP)KAEHHOTO O0BeKTa (ZOKyMEHTa), KONHUpOBaHHE OOBEKTa (HOKyMeHTa). Taxxke

160

Kozauox A.B. Crienndukaiiist MOJICIIN yIPABICHUS JOCTYIIOM Ha sI3bIKE TEMITOPAIBHOMN JIOTUKH AeiicTBuit JIammopra.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 147-162

OIIPE/ICJICHBI CIICAYIOIINe WHBapHAHTHL: IHPOBEPKH THUIOB (BKIIOYaeT B ceOs INIPOBEPKY
COOTBETCTBHUS BCEX IIOJIeH OOBEKTOB, TaKXkKe IPOBEPKY COOTBETCTBHS THUITy CYOBEKTOB U
MPOBEPKY YHHUKAJIBHOCTH WACHTH(OUKATOPOB CYOBEKTOB U OOBEKTOB) M IPOBEPKH
Oe3onacHOCTH (BKJIIOYaeT B ceOsl MPOBEPKY METOK KOH(GHUICHIHUAIBHOCTH U LEJIOCTHOCTH
B3aUMOJICHCTBYIOIIMX CYOBEKTOB M OOBEKTOB, a TAKKe KOPPEKTHOCTh HPOLELYpPHI
Ha3HA4YeHUs MpaB JOCTYIa).

Knw4eBble ciaoBa: Mojaenu 6e3OHaCHOCTI/I, KOMITBIOTEPHBIC CHUCTEMBI, BepI/I(bI/IKaL[I/ISI,
MOACIIUPOBAHUE, TEMIIOpAJIbHAs JIOTUKA, IOJIUTHKA 6630H3CHOCTI/I, YIIpaBJICHUE JOCTYIIOM.

DOI: 10.15514/ISPRAS-2018-30(5)-9

Jas murupoBanmsi: Kozadox A.B. Crenmdukanus Momenu YIpaBICHHs IOCTYIIOM Ha
sI3bIKE TeMnopanbHoi storuku neifcreuit JIamnopra. Tpyast UCIT PAH, Tom 30, Beim. 5, 2018
r., ctp. 147-162 (na anrmmiickom s3eike). DOI: 10.15514/ISPRAS-2018-30(5)-9

Cnucok nutepartypbl

[1]. depsuua IL.H. O mpobGneme mpejacraBieHusi (HOPMAIBHOW MOJIEIH IOJUTHKH
6e3omacHocTy onepanuonnsix cucteM. Tpyast UCIT PAH, tom 29, Beim. 3, 2017 ., ctp.
7-16. DOI: 10.15514/ISPRAS-2017-29(3)-1.

[2]. depsiauu I1.H. Peanuzanus HEeBbIPOKICHHON PELIETKH YPOBHEH LIETOCTHOCTH B paMKax
uepapxudeckoro npezacrasiaenus MPOCII [Il-moxenu. [1JAM. Ilpunoxenune, Ne 10,
2017 r., ctp. 111-114. DOI: 10.17223/2226308X/10/44.

[3]. Aepsiuua I1.H. AAMHHHCTpUpOBaHHE CHCTEMbI B paMKaX MaHIATHOH CYI[HOCTHO-
poneBoit AIl-Momenu ympaBieHHs IOCTYNOM M WHPOPMAIMOHHBIMH moTokamu B OC
cemeiicta Linux. [1IJIM. IIpunoxenue, Ne 4, 2013 ., ctp. 22-40.

[4]. Oessaun I1.H. HeoOxomuMbie ycioBusi HapylieHus 6e30MacHOCTH WH(GOPMAIHOHHBIX
nmoTokoB 1o Bpemenn B pamkax MPOCJI All-moxenn. [IAM. [punoxenne, Ne 8, 2015
r., crp. 81-83. DOI:10.17223/2226308X/8/30.

[5]. Aepsuua IL.H. O pesymbratax (GOpPMHPOBAHHS HEPApXHUECKOTO IPEACTABICHUS
MPOCJI All-monenu. IIJIM. Ilpunoxenwe, Ne 9, 2016 r., crtp. 83-87. DOI:
10.17223/2226308X/9/32.

[6]. deBsuuua I1.H. VYpoBeHp 3ampemiaoiinX pojieil HepapXu4ecKoro MpeaCcTaBIeHHs
MPOCIJI AIT-moaenu. IIAM, Ne 39, 2018 r., ctp. 58-71. DOI: 10.17223/20710410/39/5.

[7]. TLH. [HeBsstur u np. MoaenupoBaHne ¥ BepU(PHKAIUSA IIOJUTHK OE30IIaCHOCTH
YIpaBIeHHS JOCTYIIOM B ONEPalMOHHBIX CHCTeMaxX. VHCTHTYT CHCTEMHOTO
nporpammupoBanuss uMm. B. II. HMeammmkoa PAH, 2018, 181 <c¢. URL:
http://www.ispras.ru /publications/2018/security_policy_modeling_and_verification.

[8]. Jackson D. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2012, 376 p.

[9]. Abrial J.-R. The B-book: Assigning Programs to Meanings. Cambridge University
Press, 1996, 779 p.

[10]. Jean-Raymond Abrial. Modeling in Event-B. System and Software Engineering.
Cambridge University Press, 2010.

[11]. P.N. Devyanin, V. V. Kulyamin, A.K. Petrenko, A.V. Khoroshilov, I.V. Shchepetkov.
Comparison of specification decomposition methods in Event-B. Programming and
Computer ~ Software, vol. 42, no. 4, 2016, pp. 198-205. DOI:
10.1134/S0361768816040022.

161

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

[12].

[13].

[14].
[15].
[16].
[17].
[18].
[19].
[20].
[21].

[22].

[23].

[24].

[25].

[26].

[27].

162

Jones C. B. Systematic Software Development Using VDM (2nd Ed.). Prentice-Hall,
Inc., 1990, 333 p.

Singh M., Sharma A. K., Saxena R. Formal Transformation of UML Diagram: Use
Case, Class, Sequence Diagram with Z Notation for Representing the Static and
Dynamic Perspectives of System. Proc. of the International Conference on ICT for
Sustainable Developmen, 2016, pp. 25-38, DOI: 10.1007/978-981-10-0135-2_3.
Lamport L. The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst, vol. 16,
no. 3, 1994, pp. 872-923.

Lamport L. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

L. Lamport et al. Specifying and verifying systems with TLA+. Proc. of the 10th ACM
SIGOPS European Workshop, 2002, pp. 45-48.

Lamport L. The PlusCAL Algorithm Language. Lecture Notes in Computer Science,
vol. 4229, 2006, pp. 23-23. DOI: 10.1007/11888116_2.

Hepstaua I1. H. YcnoBust Oe3omacHOCTH WH(OPMAIMOHHBIX TOTOKOB IO ITTAMSTH B
pamkax MPOCIJI JII1-monemu. I[TJ]IM. [punoxenune, Ne 7, 2014 r., ctp. 82-85.

Denis Cousineau et al. TLA + Proofs. Lecture Notes in Computer, vol. 7436, 2012, pp.
147-154. DOI: 10.1007/978-3-642-32759-9_14.

Kaustuv Chaudhuri et al. A TLA+ Proof System. In Proc. of the Combined KEAPPA -
IWIL Workshops, 2008, pp. 17-37, URL: http://ceur-ws.org/VVol-418/paper2.pdf.

Merz S., Vanzetto H. Encoding TLA+ into Many-Sorted First-Order Logic. In Proc. of
the 5th International Conference on Abstract State Machines, 2016, pp. 54-69.

Xinwen Zhang et al. Formal Model and Policy Specification of Usage Control. ACM
Transactions on Information and System Security, vol. 8, no. 4, 2005, pp. 351-387. DOI:
10.1145/1108906.1108908.

Gouglidis A., Grompanopoulos C., Mavridou A. Formal Verification of Usage Control
Models: A Case Study of UseCON Using TLA+. In Proc. of the 1st International
Workshop on Methods and Tools for Rigorous System Design, 2018, pp. 52-64.

Stirling C. Modal and temporal logics. LFCS, Department of Computer Science,
University of Edinburgh, 1991.

McMillan K. L. Eager Abstraction for Symbolic Model Checking. Lecture Notes in
Computer Science, vol. 10981, 2018, pp. 191-208. DOI: 10.1007/978-3-319-96145-
3 11

Storey V. C., Song l.-Y. Big data technologies and Management: What conceptual
modeling can do. Data & Knowledge Engineering, vol. 108, 2017, pp. 50-67. DOI:
10.1016/j.datak.2017.01.001.

Chris Newcombe et al. How AmazonWeb Services Uses Formal. Communications of
the ACM, vol. 58, no. 4, 2015, pp. 66-73.

Formalizing Metamodel of Requirements
Management System

D.s. Kildishev <kildishev@ispras.ru>
1234p v, Khoroshilov <khoroshilov@ispras.ru>
! Ivannikov Institute for System Programming of RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
¥ Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
*Higher School of Economics.
20, Myasnitskaya Ulitsa, Moscow 101000, Russia

Abstract. Requirements play an important role in the process of safety critical software de-
velopment. To achieve reasonable quality and cost ratio a tool support for requirements man-
agement is required. The paper presents a formal definition of a metamodel that is used as a
basis of Requality requirements management tool. An experience of implementation of the
metamodel is discussed.

Keywords: Requirement, model, requirements management

DOI: 10.15514/ISPRAS-2018-30(5)-10

For citation: Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements
Management System. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 163-176.
DOI: 10.15514/ISPRAS-2018-30(5)-10

1. Introduction

The development of complex systems is always a sophisticated task. The develop-
ment of complex safety-critical systems, where the cost of errors is especially high,
is particularly complicated. Modern best practices suggest that precise and accurate
requirements management is an important element to solve that task.

Requirements managements in the context of safety-critical system development
include the following aspects:

* building a catalogue of requirements;
» traceability links to sources of requirements;

163

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

» traceability links from other development artefacts like tests and code to
requirements;

» configuration and version management;

» change management including change impact analysis.
The paper presents a formal definition of a metamodel that is used as a basis of
Requality requirements management tool that is aimed to cover all the aspects. Im-
plementation details of the metamodel in the tool are also discussed and future di-
rections are considered.

2. Related works

The problem of requirements management is not a new one. This activity was
known as a very important one for years. As an example we may cite a publication
from 1997:

“The inability to produce complete, correct, and unambiguous software require-
ments is still considered the major cause of software failure today” [1].

But the requirements engineering task is still the subject of different investigations.
Some of them defines a methodology [2], a model [3] or a framework [4]. Also,
there are papers presenting development story of some tools, like [5].

Some papers describe both requirements model and its application in a specific tool.
For example [6] designs a tool for management of requirements in form of specific
models or [7] that defines some details about a feature management tool for product
lines. Another paper [8] defines requirements as constraints and examine core con-
cepts related to its implementation in a real tool.

There are many commercial requirements management tools with a little infor-
mation about architecture and implementation details. There only a few open source
tools are known and cited in publications like ProR [9] or RegLine [10].

None of the papers on the tools discusses its core model in a formal way. Some ap-
proaches and models are listed in [11] but it specifies mostly methodological as-
pects.

3. Base model

3.1 Preliminaries

The process of software development can be made in different ways. There are
some general views on requirements management tool’s functions but the set of
requirements for this tool in specific areas may be different.

One of the ways to deal with such problem is to develop a model for that tool. This
approach can be found in [7] or [8]. The model helps to define core concepts of the
tool and prove some theorems over its functions.

We need to provide some terminology before starting a model. First, we will define
what the requirement is. In this paper, requirement means a limitation or definition

164

Kunpumes J1.C., Xopomuinos A.B. dopmanuzanus MeTaMoJIen CHCTEMbI ypasieHus TpeboBanusamu. Tpyowr UCIT
PAH, Tom 30, BeIm. 5, 2018 1., cTp. 163-176

of some system’s or component’s functional. For our model requirements are
unique objects that may have a specific description written by natural language and
are placed in some tree structure defined below.

3.2 Base model

Definition 1. A tree G is a triple (V, E, o), where:

* V -asetof vertices.
EcV xV

r,€V

- a set of edges that is an asymmetrical relation on V.

- aroot of the tree.

» There are no incoming edges for r, and there are no more than one incom-

ing edge for the other vertices.

« All vertices are reachable from r,,.
If (vi, V) € E then v, is denoted as a parent(v,), while v; is called a child of v;. We
define relation reachableg(vy, V,) as a transitive and reflexive closure of the relation
E.
Definition 2. Attributed tree AT = (G, Key, Value, attrs) consists of:

« atreeG=(V,E, r);

+ asetof attribute keys Key;

» asetof attribute values Value;

+ a functional relation attrs: V — (Key — Value) that provides each vertex

with a set of attributes.

A set of all possible attributed trees is denoted as ATrees.
An attributed tree is a convenient framework to represent requirements [12] with the
following semantics. If a vertex v € V represents a requirement for a target system
and there are children vy, ... v, of v, then the children represent a decomposition of
the requirement v. In other words, if a system satisfies to requirement v then it satis-
fies to all requirements vy, ... v, and vice versa.
Attributes of vertices contain various information about the requirements, for exam-
ple a unique identifier, description of the requirements in natural language, its repre-
sentation in a formal notation, version, etc.
An interesting particular case is the attributes, whose value is a vertex v € V or a set
of vertices vs € V. It allows to define and to manage relations between different
vertices. For example, such attributes can be used to represent traceability links be-
tween high level and low level requirements. Formally, this case is achieved if V U
@ (V) € Value.

165

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

4. Declarative model

4.1 The extension of the base model

The base model of requirements catalogue is an attributed tree, where each require-
ment has a particular set of attributes. This model is convenient for analysis of the
catalogue, e.g. for formal analysis, analysis of test coverage, traceability analysis,
etc. At the same time, it is difficult to manage such model manually because there
are usually many interdependencies between elements and its attributes. Here and
after term vertex (element of set V) and elements of requirements catalogue are used
interchangeably.

That is why we introduce a declarative model of requirements catalogue that allows
us to automate the handling of such dependencies. The purpose of the declarative
model is to store requirements catalogue in more compact and manageable way.

The declarative model is defined stepwise. Each step is accompanied by definition
of the transformation of the declarative model to the raw basic model.

4.2 Predicates

If requirements are developed for a product line, there is a number of requirements
shared between different variations of the product. A natural wish is to have a single
requirements catalogue for the product line and the ability to build a specific one for
a particular version of the product. That means there is a need to delete a subset of
requirements from the catalogue if the subset is not applicable to the target product.
The similar situation happens when a catalogue is used to represent requirements of
several revisions of a standard or to represent requirements of a standard with op-
tional elements.
To introduce such ability we propose to choose especial key predicate € Key,
whose values are boolean. If an element has attribute predicate with value false, this
element and all its children are removed from the catalogue during transformation.
The first declarative model DM is an attributed tree ((V, E, ro), Key U {predicate},
Value, pattrs) that is transformed to the base model ((V', E', ro), Key, Value, attrs)
according the following rules:

e V'={ve V:V V' e V reachableg(v'v)

predicate ¢ pattrs(v') v pattrs(v')(predicate) # false };
« E=ENV'xV)
o Vv veV'attrs(v) = {(k,val)€ pattrs(v): k # predicate}

4.3 Calculated attributes

It is an often situation when attribute value depends on values of the other attributes
of the same element or even on attributes of the other elements. To express such
dependencies explicitly we propose the second declarative model DM, that is an
attributed tree (G, Key, FValue, fattrs), where

166

Kunpumes J1.C., Xopomuinos A.B. dopmanuzanus MeTaMoJIen CHCTEMbI ypasieHus TpeboBanusamu. Tpyowr UCIT
PAH, Tom 30, BeIm. 5, 2018 1., cTp. 163-176

¢ FValue = Func x Value;

* Func = ATrees x V x Key x Value — Value.
The declarative model DM, corresponding to the model DM, is an attributed tree
(G, Key, Value, attrs):
Vv v e V (kval) € attrs(v) iff

3 (k, (func,fval)) € fattrs(v): val = func(AT, v, k, fval)

To build such requirements model it is required to solve a set of equations defined
by fattrs. A simple approach is to apply fixed point iteration, while some additional
implementation details will be considered in section V. There are declarative mod-
els that define a set of equations with no solutions or with non-unique solutions. A
simple but reasonable limitation that allows avoiding such models is a prohibition of
cyclic dependencies between attributes.
A particular case when an attribute has a constant value val is represented in the
declarative model DM, as a pair (prjs, val), where prj, is a projection function by the
fourth argument: prj4(AT, v, k, val) = val. Please note that in DM, predicate is con-
sidered as a regular element of the set Key.

4.4 Attribute scope
Another often situation happens when an attribute is applicable to the whole subtree
and it has the same value for all elements. Or a similar case is when an attribute is
applicable to all children of the particular element.
To handle such situations we propose the third declarative model DM, that is an
attributed tree (G, Key, SValue, sattrs), where SValue = FValue x Scope, Scope =
{SL, Spc. Ss} with an element having the following semantics:
e S| —an attribute is available only in the element where it is defined.
e Spc— an attribute is available in the element where it is defined and in all
its direct children.
* Sg— an attribute is available in the element where it is defined and in all its
SUCCESSOrs.
An example of attribute scope can be seen on Fig. 1. White rectangles are Vs. Ar-
rows mean child-parent relation. Attribute with some scope is defined in ro. Grey
rectangles represent different possible scopes of A and the subtrees where it will be
accessible.
\A transformation of declarative model DM; to the model DM, is straightforward:
DM; is an attributed tree (G, Key, FValue, fattrs), where fattrs(v) = {k — fval} such
that
* (1) {k — (fval, anyscope)} € sattrs(v)
* (2) {k — (fval, Spc)} € sattrs(parent(v)) if rule (1) is not applicable,
* (3) {k — (fval, Sg)} € sattrs(v') if rules (1) and (2) are not applicable A
reachableg(V',v) A

167

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

vV v' € V V val € Value (reachableg(v",v) A reachableg(v',v")) = {k — (val, Sg)}
¢ sattrs(v").

S Ss

r
=]

Fig. 1. Attribute scopes

It is interesting to note that nonconstant scoped attributes can get different values in
different elements because its function can depend on the vertex as a third argu-
ment.

4.5 Reuse of subtrees

The next item to consider is a situation when there are several subtrees of require-
ments that are very similar each other up to some limited number of details. In this
case, it would be ideal to have a single copy of the subtree and the ability to clone it
with some modifications. This approach is usually called reuse [13].
The fourth declarative model DM, is an attributed tree ((V, E, ro), Key U {cp},
SValue, cpattrs) with especial key cp that satisfies the following constraints:
e V VE VV value € Valuev s € Scope cp € cpattrs(v) A cpat-
trs(v)(cp) = ((prjaval), s) =
vale VAV VEV(v,V)¢E;
« EU{(v, cp(v))| v e CC(DM,)} does not contain loops, where CC(DM,) =
{v € V|cp € cpattrs(v)} and cp(v) - vale V from the constraint above.
The transformation of the model DM, to the model DM; =
((V', E', rp), Key, SValue, sattrs) is performed by the following algorithm:
1. curDM,:=DM,
2. If CC(curDM,) is empty, take DM3 = curDM, with removing cp from the
Key set and finish.
3. LetcurDMyis ((V, E, ro), Key LI {cp}, SValue, cpattrs).
4. Choose any vy € CC(curDMy) such that A ve CC(curDM,) reacha-
blee(cp(vo),v). Existence of such element follows from lack of loops in E U
{(v, cp(v))| v € CC(DM,)}.
5. Assume without loss of generality vV ve V (vo,v)€ V.
6. Build newDM, = ((V', E', rp), Key U {cp}, SValue, cpattrs'’), where
e V'=VU {(vo,V) | V'EV A reachableg(cp(vo),v) }

168

Kunpumes J1.C., Xopomuinos A.B. dopmanuzanus MeTaMoJIen CHCTEMbI ypasieHus TpeboBanusamu. Tpyowr UCIT
PAH, Tom 30, BeIm. 5, 2018 1., cTp. 163-176

+ E = E u { (Vo,(Vo,cp(Vo))) } u
{ ((vo,v), (Vov")) | (Viv)eE A
reachableg(cp(vo),v")}
* V ve V\{v} cpattrs'(v) = cpattrs(v)
» cpattrs'(vo) = {(k,val) € cpattrs(vp): k # cp}
o cpattrs'((vo,v") = cpattrs(v')
Please note that newDM, satisfies both constraints of the fourth declarative model.
7. curDM, := newDMj, and goto step 2.
Lemma 1. The algorithm terminates for any DM4 satisfying the constraints.
The proof is based on the fact that the cardinality of CC(curDMy) is decreased eve-
ry iteration because of the choice of the v, at step 4 that guarantees that elements
with attribute cp are not cloned, while one such element loses that attribute.
Lemma 2. The result of transformation does not depend on the order of the selec-
tion of elements at step 4.
The idea of the proof is that transformations that can be chosen in non-deterministic
order make modifications in non-intersecting subtrees.
Interesting to note that combination of reuse and predicate transformation can be
used to define a generic subtree that is instantiated several times with different ar-
guments using reuse transformation and the original generic subtree is eliminated
with predicate transformation. Also, predicate transformation can be useful to elim-
inate unneeded elements from the cloned subtrees.

5. Implementation details

5.1 Identification

One of the important aspects of requirements management is requirements identifi-
cation. One of the common approaches it to assign a unique identifier to each ob-
ject, for example, some number or string.

In addition to that it is possible to provide each element with a qualified identifier
QID defined recursively on top of identifiers ID that are unique within children of
the same parent: ro has QID ="/ID', child v has QID = 'QID(parent)/ID".

Let us take some example of requirements for some system. If we use QID we can
have a human-readable path for each requirement. For example, we may have an
element with QID = "Functional requirements/Ports/req001". As seen from the path
it has a parent "Functional requirements/Ports/* and its ID is req001.

5.2 Calculated attributes

There are two objects related to attributes in the implementation. The first one, at-
tribute definition A_DEF represents a pair (func,fval) from the formal declarative
mode, where func is of type ATrees X V x Key x Value — Value. The second one,

169

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

attribute A, represents a value of the attribute in the base model. A_DEF is used to
calculate an actual value A when it is required.

There are several kinds of functions supported in attribute definitions.

The first kind is the constant functions prj, that always returns fval value stored in
attribute definitions.

The second kind is template functions that stores in fval value a string with parame-
ters encoded in curly brackets, e.g. "Hello, {K}". The value of the parameters to be
used for substitution is taken from attribute with the encoded name, 'K' in the exam-
ple above, of the same element.

The third kind is formula value generator that stores in fval value a string with an
expression in a subset of JavaScript language that has access to attributes of the
same element.

The fourth kind is virtual attributes that are implemented in Java. They have no
stored fval value at all, but they have access to the whole context of the element
including the complete attributed tree.

For example, Label attribute can take value of user-defined Name attribute if there
is one or return system-defined identifier otherwise. Another example could be QID
that calculates qualified identifier of the element as a concatenation via /' of parent's
QID with a Name of the target element.

An important additional information that the tool is able extract from attribute defi-
nition is a set of attribute keys which values are required to calculate the actual val-
ue for the given attribute by the corresponding function.

5.3 Attributes life-cycle
For each attribute stored data includes function kind and fval. The pair (func-
kind,fval) is denoted A_ST. System-defined virtual attributes have no stored data,
they are added to elements on the fly.
Let us describe a common process of attributes loading for some requirement.
1. Setof A_ST is loaded from storage to A_DEFS.
2. Set of scoped attributes that are applicable to the target one is taken from
its parent and is added to A_DEFS.
3. The A _DEFS set is handled by Attribute_Calculation procedure described
below.
If attributes are changed by the user using GUI session, the tool has the same
A_DEFS set that contains a subset of changed attribute definitions. Then the tool
applies the same Attribute_Calculation procedure as follows.
1. A _DEFS set is extended with attributes of the target element that depends
on any attribute already belonging to A_DEFS.
2. The order of evaluation of attributes from A_DEFS is calculated. The order
can be defined as ORDER = (K;..K,) where K;is the key of the attribute.
-v Ki,Kje ORDER if K;depends on K; then i<j.

170

Kunpumes J1.C., Xopomuinos A.B. dopmanuzanus MeTaMoJIen CHCTEMbI ypasieHus TpeboBanusamu. Tpyowr UCIT
PAH, Tom 30, BeIm. 5, 2018 1., cTp. 163-176

The algorithm is described in the next section.

3. For each A_DEF in the A_DEFS value of A is calculated and placed to
AS.

After this procedure AS contains an actual state of attributes after provided changes.

5.4 Order extraction algorithm

As an input of order extraction, we have KEYS = (K;.. K,) that is set of attributes
name in some random order and DEPS = (K; — (Kj;..Kjn)) - a map of attributes
dependencies. The algorithm is as follows:
1. ORDER is set to empty collection.
2. OSET is the set of handling nodes.
3. Extract revert dependencies DEPS_R. DEPS_K=(K; — (Ki1.. Ky)). If K;
depends on K; then DEPS_K contains K; — K; record.
4. Place KEYS to OSET.
Set flag MOD is to False.
6. In OSET look for candidate KK with DEPS_K[KK] = KSET that com-
plies one of following rules:
o KSET is empty.

o

OR
o 13 K;e KSET: Kie OSET.
7. If K was found then:
1. MOD setto True.
2. Kk removed from OSET.
3. Kk added to ORDER.
8. If MOD = True & [SET]|!= 0 then go to step 4.

At the end of execution, the ORDER will contain the order in which A’s values cal-
culation.

5.5 Attribute change management

The introduction of scope and calculated attributes requires the management of at-
tributes changes to keep all dependent attributes up-to-date.

There are two possible strategies to deal with attribute updates. The first approach is
to commit all changes at runtime. The second one is to collect changes in AS and
then apply them all by request. Immediate commit is tending to be simpler but more
computing - intensive. Late updates require fewer calculations but need more
memory. For our tool, we use the second approach because we have large cata-
logues with a possibility of complex relationships between its elements.

Late changes can be defined in form of new object — changes set CS=(K — OP,
K— Aoip, K— Anew) Where K is the key of attribute, OP € (remove, create, modi-

171

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

fy) is the operation over attribute, Ao, p is the value of attribute in AS before opera-
tion, Anew is the new attribute value after operation.

For attribute changes change set needs to store A DEFS, so minimal CS = (K, K—
AoLp, K— Anew). To use these changes set we need to extend the model of attrib-
utes set of A.

When all attribute modifications are collected we need to apply all that changes to
calculate actual values of attributes. It is implemented in the same way as it was
described in section V.C.

One more problem with attribute changes is that some of the changes need to be
propagated from one requirement to another. To deal with this problem we define a
concept of change propagators. If A_DEF (virtual attributes only for now) depends
on attributes from the external element it registers a function-change propagator that
is called when some change set is applied to attributes of that element. The change
propagator evaluates if the changes impact the target attribute and initiate its recal-
culation if it is required.

5.6 Lazy loading

When we speak about a model of requirements in some common application like
avionics we need to take into account the number of distinct requirement. Some-
times the number of artefacts for such models tends to be in the thousands or tens
thousands. In that case, direct management of requirements may require a lot of
resources.

To solve this problem we use the lazy loading principle. That means that AT will
contain only those Vs that are requested during the usage of the model. In most cas-
es that means that in G we have a subtree G_€ G that contains ry and some subtrees
that are used during the current working session.

But laziness of model leads to some difficulties. First of all, we need to overlook AT
instead of AT if we need to assure that VV with given ID exists. This problem can be
solved by caching id-related information in CacheStore that is always available.

5.7 Attribute types

In practice, the value of an attribute may have one more property — a type. One pos-
sible set of types includes Integer, Boolean, String, Float. Also, we may define types
for Collection and Enumeration. In most cases, the value still is the simple constant.
But some attribute types cannot be defined as a single value and need to store and
manage some additional data. For example, Collection type may use specific object
LIST = (Ty, V1..V,) where Ty, is the type of collection's value and (V;..V,) are the
values stored in the collection.

One more specific type is Enumeration. First, enumeration requires definitions of its
values. It can be made by means of ENUM_DEF = (V+, V;...V,) that is similar to

LIST one. But to define an attribute with one selected enumeration value we need to
define one more object ENUM = (Kg, Vs) where Kg is the key of A with
172

Kunpumes J1.C., Xopomuinos A.B. dopmanuzanus MeTaMoJIen CHCTEMbI ypasieHus TpeboBanusamu. Tpyowr UCIT
PAH, Tom 30, BeIm. 5, 2018 1., cTp. 163-176

ENUM_DEF and Vs is the selected value. But in a case we introduce an ENUM, we
need to ensure that for every ENUM we will have an Ap where T = ENUM_DEF
and Vp will contain V.

5.8 References

One more problem is the implementation of relations between elements of the cata-
logue. Some tools manage them as the set of specific objects placed in the distinct
set.

In our model relations are presented in form of specific attribute type REFERENCE.
For this type we introduce value object REF_VALUE (REF, V, ERR) where REF is
a string that can be resolved to V, usually containing some kind of identifier, V is
the corresponding element if there is any matched by identifier, ERR is a string with
an error message if REF cannot be resolved or contains incorrect value.

In this case, REF_VALUE initially contains only REF field. If someone requires the
result of REF_VALUE resolution then the tool tries to resolve the REF and then
fills V or ERR.

References are also required some additional handling to support its consistency. In
a case REF or target V is changed we may need to track its changes and update re-
lated REF_VALUE.

One more specific problem is reverted links. If we have a relation V; — V, we may
need to know for V, that it has a relation to V;. This kind of relations is called "re-
verse references”.

If links are stored in AT then we may use one more function (V,, LN) — V, to store
reverse relations. If we define a new type of attributes or the specific state of
REF_VALUE then we face a problem of keeping it up-to-date.

In our model, we store reverts links in the cache in form of (V,, LN) — (V1... V))
function. That allows us to easily get revert links on V, if the state of cache is valid.
In a case of completely loaded AT the problem is not so difficult to solve because
we always have the actual state of every V. But we cannot guaranty the V’s state in
case of a partially loaded AT that happens in case of lazy loading.

If we have some loaded AT S AT relation (V1, LN) — V,, V & ATA V,€ AT then if
we need to get revert links on V, we may need to load the whole AT to be sure that
all possible V; were found.

In our case, this problem is solved by storing reverse links in the cache. But in this
case, we still have one necessary problem. Let us introduce some link L(Vy, V5,
LN). If we already resolve this link then the record in cache tends to be present. But
what if we introduce V, in the model when V; is loaded and the link is resolved was
not found? The situation takes place when V, is loaded by the lazy method, created
or modified.

In the worst case, we need to track changes of the whole AT for all links. A better
solution is to manage some kind of scope for which link tends to be resolved. That
is not implemented yet, but it is in our plans.

173

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

Relations can be used for some specific activities. One of them is changes manage-
ment. Changes management is performed when some V; with links (L;..L,) is
changed. In this case, some operations will be performed on V’s obtained from
L;..L,. The nature of such operation can be different. For some tools, those Vs will
be marked in a model with the specific flag. In other cases, the models can define
additional actions depending on the kind of change.

Conclusion

We presented a formal metamodel that is used as a basis for building Requality re-
quirements management tool. We covered different difficulties related to its imple-
mentation. But the experience demonstrates that the model allows handling quite
big requirements catalogue with many relations between its elements.

The future work includes analysis and implementation of new kinds of functions for
calculated values and development of user-friendly patterns for solving common
user tasks on top of the semantics defined in the paper. Another direction is research
of possible compositions of the formal model provided by the tool and formal mod-
els used to represent particular requirements.

Acknowledgment
This study was supported by RFBR grant #17-07-00734.

References

[1]. R. Thayer. M. Dorfman. Software Engineering. IEEE Computer Society press, 1997.,
552 p.

[2]. M. Palumbo. Requirements Management for Safety Critical Systems. Available:
http://www.railwaysignalling.eu/wp-
content/uploads/2015/06/Req_mgt_safety critical_system_Mpalumbo.pdf. Accessed:
3-Apr-2018

[3]. P. Roques. Modeling Requirements with SysML. Requirements Engineering Magazine,
issue 2015-02, 2015.

[4]. Open Group Standard. Dependability through Assuredness (O-DA) Framework. The
Open Group Releases, 2013.

[5]. A. Nordin, A. Ikhwan Omar, M. Usamah Megat Mohamed Amin, N. Salleh.
.Development of scenario management and requirements tool (SMaRT): towards sup-
porting scenario-based requirements engineering methodology. International Journal of
Engineering & Technology, Vol 7, No 2.14, Special Issue 14, 2018, pp 62-65.

[6]. D. Lozhkina, S. Staroletov. An online tool for requirements engineering, modeling and
verification of distributed software based on the MDD approach. In Preliminary Pro-
ceedings of the 11th Spring/Summer Young Researchers’Colloquium on Software Engi-
neering, 2017, pp. 23-28.

[7]. T. von der MaBen, H. Lichter. RequiLine: A Requirements Engineering Tool for Soft-
ware Product Lines, Software Product-Family Engineering, 2003, Heidelberg, pp. 168-
180.

174

Kunpumes J1.C., Xopomuinos A.B. dopmanuzanus MeTaMoJIen CHCTEMbI ypasieHus TpeboBanusamu. Tpyowr UCIT
PAH, Tom 30, BeIm. 5, 2018 1., cTp. 163-176

[8]. N. W. Mogk. A Requirements Management System based on an Optimization Model of
the Design Process. In Proc. of the Conference on Systems Engineering Research
(CSER 2014), 2014, pp 21-22

[9]. ProR Requirement Engineering Platform. [Online]. http://www.eclipse.org/rmf/pror/.
Accessed: 2-Apr-2018.

[10].RegLine Download (RegLine.exe). [Online]. Auvailable:
http://downloads.informer.com/reqline/. Accessed: 3-Apr-2018.

[11].S. Hallerstede, M. Jastram, L. Ladenberger. A method and tool for tracing requirements
into specifications. Science of Computer Programming, vol. 82, 2014, pp. 2-21.

[12]. Alexey Khoroshilov. On formalization of operating systems behaviour verification. In
Proceedings of 11th International Conference on Computer Science and Information
Technologies (CSIT-2017), 2017, pp. 168-172.
DOI:10.1109/CSITechnol.2017.8312164

[13].W. Frakes, C. Terry. Software Reuse: Metrics and Models. ACM Computing Surveys
Vol. 28, No. 2, 1996.

dopmanusauma meTamogenu cucTteMbl ynpaBneHus
TpebGoBaHNAMU

! J1.C. Kunvouwes <kildishev@ispras.ru>
1234 4 B Xopowunos <khoroshilov@ispras.ru>

1PIHcmumym cucmemnozo npoepammupoganus um. B.I11. Heannukosa PAH,

109004, Poccus, e. Mockea, yn. A. Conxcenuysvina, 0. 25
2 Mockosckuii eocyoapcmeennbill yrusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwl, 0. 1
SMockosckuii usuko-mexuueckusi uncmumym,
141700, Mockosckas obnacme, . [oaconpyousiii, Hncmumymcxuii nep., 9
* Buicuias wikona sKonomuxu,

101000, Poccus, e. Mockea, ya. Macnuyxas, 0. 20

AnHoTanms. B pamkax gaHHOH cTaThbM paccMaTpHUBAETCS MeTaMoO/elIb, JIeXallas B OCHOBE
CHCTEMBI ynpaBieHus TpedoBanmsiMu Requality. ba3oBas Mmozens mpezncrasiser coboii nepe-
BO, K&XIOW BEpIIMHE KOTOPOTO COIMOCTAaBICH HA0Op MMEHOBAaHHBIX M THITU3UPOBAHHBIX
cBoifctB. ba3oBas Mozenps mpocrta U yJo0Ha ISl PEICTABIICHUS] CEeMaHTHUKH Habopa Tpedo-
BaHUH, HO OKa3bIBACTCS HE 0CO00 MPHUTOAHOM T HOPMHUPOBAHKS M COIPOBOXKIACHHUS CKOJb-
KO-HUOY/Ib CJIOKHBIX KaTanoroB TpeboBanuii. [loaToMy aBTOpaMu BBOAUTCS HaOOp JeKiIapa-
THUBHBIX MOJIEJIeH, MMO3BOJISIONINX OMUCHIBATH KaTajaor TpeOoBaHui 60Jiee KOMIIAKTHBIM 00pa-
30M. [Ipu 3TOM ceMaHTHKa JeKJapaTUBHBIX MOJEel 3amaércs mpH MOMOIIU ONpEesIeHUs
TPaHCIIIHUH B 0230BYI0 MOJICNb. DTH BO3MOKHOCTH 00ECIIEUHBAIOT THOKUIT HHCTPYMEHTApUI
JUTST KOMIIAKTHOTO OIUCAHUsI THIIOBBIX HA0OpOB TpeOoBaHMi. Takke B CTaThe paccMarpuBa-
FOTCSL OCOOCHHOCTH Pean3alliii MPEACTaBICHHOW METaMOJICIH B CUCTEME YIIPABICHUS Tpe-
OoBanmsMu Requality. B 3akmoueHHu mpejiaractcsi HCCIIEA0BaTh KOMOHHAIIMIO TPE/ICTaB-

175

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

JICHHOM MOJIENIN KaTayiora Tpe6OBaHI/II71 C Q)OpMaHbeIMI/I MOICIIAMH, ITO3BOJIAOIINUMU OITHUCHBI-
BaTb CCMAaHTUKY KaXJ10T'0 Tpe60BaHI/IH B OTACJIIBHOCTH.

KuroueBble ciioBa: TpeOOBaHUE; MOJIENb; YIPABICHUE TPEOOBAHUIMU
DOI: 10.15514/ISPRAS-2018-30(5)-10

Jas uutupoBanusa: Kwipaumes /J[.C., XopommioB A.B. dopmanmuzamuss MeTaMmonenu
cucTeMbl ynpasnenus TpedoBanusmu. Tpyast ICII PAH, tom 30, Beim. 5, 2018 ., ctp. 163-
176 (ua anrmmiickoM si3eike). DOI: 10.15514/ISPRAS-2018-30(5)-10

Cnucok nutepatypbl

[1]. R. Thayer. M. Dorfman. Software Engineering. IEEE Computer Society press, 1997.,
552 p.

[2]. M. Palumbo. Requirements Management for Safety Critical Systems. Available:
http://www.railwaysignalling.eu/wp-
content/uploads/2015/06/Req_mgt_safety critical_system_Mpalumbo.pdf. Accessed:
3-Apr-2018

[3]. P. Roques. Modeling Requirements with SysML. Requirements Engineering Magazine,
issue 2015-02, 2015.

[4]. Open Group Standard. Dependability through Assuredness (O-DA) Framework. The
Open Group Releases, 2013.

[5]. A. Nordin, A. Ikhwan Omar, M. Usamah Megat Mohamed Amin, N. Salleh.
.Development of scenario management and requirements tool (SMaRT): towards sup-
porting scenario-based requirements engineering methodology. International Journal of
Engineering & Technology, Vol 7, No 2.14, Special Issue 14, 2018, pp 62-65.

[6]. D. Lozhkina, S. Staroletov. An online tool for requirements engineering, modeling and
verification of distributed software based on the MDD approach. In Preliminary Pro-
ceedings of the 11th Spring/Summer Young Researchers’Colloquium on Software Engi-
neering, 2017, pp. 23-28.

[7]. T. von der MaBlen, H. Lichter. RequiLine: A Requirements Engineering Tool for Soft-
ware Product Lines, Software Product-Family Engineering, 2003, Heidelberg, pp. 168-
180.

[8]. N. W. Mogk. A Requirements Management System based on an Optimization Model of
the Design Process. In Proc. of the Conference on Systems Engineering Research
(CSER 2014), 2014, pp 21-22

[9]. ProR Requirement Engineering Platform. [Online]. http://www.eclipse.org/rmf/pror/.
Accessed: 2-Apr-2018.

[10].RegLine Download (RegLine.exe). [Online]. Available:
http://downloads.informer.com/reqline/. Accessed: 3-Apr-2018.

[11].S. Hallerstede, M. Jastram, L. Ladenberger. A method and tool for tracing requirements
into specifications. Science of Computer Programming, vol. 82, 2014, pp. 2-21.

[12]. Alexey Khoroshilov. On formalization of operating systems behaviour verification. In
Proceedings of 11th International Conference on Computer Science and Information
Technologies (CSIT-2017), 2017, pp. 168-172. DOI:
10.1109/CSITechnol.2017.8312164.

[13].W. Frakes, C. Terry. Software Reuse: Metrics and Models. ACM Computing Surveys
Vol. 28, No. 2, 1996.

176

CpaBHUTEsNbHbIN aHaNN3 HEMPOHHbLIX ceTen
B 3agaye Kknaccudumkaumm no604YHbIX
3achheKToB Ha YPOBHE CYLHOCTEN B
aHrMNoA3bIYHbIX TEKCTAX

U.C. Anumosa <alimovailseyar@gmail.com>
E.B. Tymy6anuna <tutubalinaev@gmail.com >
Kasanckuii (Tlpusonsicckuil) ghedepanvhvitl yrusepcumen,
420008, Kasanw, yr. Kpemnéeckas, 18

AnHoTtammsi. B naHHOII paboTe TpencTaBIeHO SKCIEPUMEHTAIBHOE HCCIIEI0BaHHE
3¢ PeKTHBHOCTH psia Mojelied HEHpPOHHBIX ceTel Ui 3aiadyn KiIacCH(UKAIMK IMOOOYHBIX
s¢dexToB Ha ypoBHE cymHOCTeH. 3ajada aHanu3a TOHAIBHOCTH HA YPOBHE ACIEKTHBIX
TEpPMHHOB, B KOTOPBIX HEOOXOJMMO OMNPENEeINTh MHEHHE 10 OTHOIICHHIO K KOHKPETHOMY
aCIIeKTy, aKTHBHO HCCIIEYEeTCSI B TEUCHUH ITOCIEAHETO JecATHIeTrs. I pemeHus TaHHOH
3a7a4d B TMPOIIEAMINE TOAbI OBUIO MPEIOKEHO HECKOJIBKO apXHTEKTyp HEHPOHHBIX CeTeil.
Hecmotps Ha TO, 9YTO MOAENHN, OCHOBAaHHBIE HA ITHX apXUTEKTypax, UMEIOT MHOTO OOIIero,
€CTh HEKOTOpPbIE KOMIIOHEHTHI, KOTOPBIE OTJIMYAIOT MX APYT OT Apyra. B naHHoi craThbe ObLTa
HCCIIe/IoBaHa IPHUMEHUMOCTh pa3pabOTaHHBIX JUIS aCIEKTHO OPHEHTHUPOBAHHOIO aHajM3a
TOHAJIBHOCTH HEHpPOCEeTeBBIX Mojened il Kinaccupukanuum mo6ovHslx 3ddexros. s
OLeHKU 3((GEKTUBHOCTH AaHHBIX METOJOB OBUIM MPOBE/IEHHI OOIIMPHBIE YKCIEPHMEHTHI Ha
Pa3IUYHBIX AHTJIOSI3BIYHBIX TEKCTaX OMOMEIWIIMHCKOH TEMaTHKH, BKIIOYAIOMNX B ceOs
3aMHCH KIMHAYECKNX KapTO4eK, HAaydHYIO JINTEPaTypy W NaHHBIE M3 CONMAIBHBIX CETEeH.
Taxke MBI CpaBHIIH TIpEAJIaraeMyi0 MOJENb C OJHOM M3 HAaWIydIINX HA JAHHBIH MOMEHT
MoJereil, OCHOBaHHOW Ha METO/I€ OTIOPHBEIX BEKTOPOB M OOJIBIIOM Ha0OpE IPH3HAKOB.

KiawueBbie cioBa: mMOOOYHBIH 3QdekT; 00paboTka eCTECTBEHHOTO s3bIKa; aHAaJH3
COLMAJBHBIX MENa; MalIMHHOE 00y4YeHHe; ITy0oKoe 00ydeHne; HeIfPOHHbIE CeTH

DOI: 10.15514/ISPRAS-2018-30(5)-11

Junst muruposanns: Ammumosa U.C., Tyry6annna E.B. CpaBHuTeNnsHBIA aHANIN3 HEHPOHHBIX
cerel B 3amadye KiIaccHpUKanuM TOOOYHBIX H(P(eKToB Ha ypOBHE CYIIHOCTEH B
anrnos3eraHbIX Tekcrax. Tpynst CIT PAH, tom 30, Bem. 5, 2018 1., ctp. 177-196. DOI:
10.15514/ISPRAS-2018-30(5)-11

1. BeedeHue

B Hacrosimee BpeMst B CBSI3M C OYPHBIM Pa3BUTHEM CETH MHTEPHET U JJCKTPOHHBIX
KOJUISKIIMA HAyYHBIX MyOJUKAIMi WMEIOTCS OOWiINe HeCTPYKTYPHpPOBaHHON

177

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

uH(OpMALUK, TNPEICTAaBICHHON TEKCTAMH Ha ECTECTBEHHOM s3blke. B wmcio
AaKTUBHO DPAa3BUBAIOIINXCSA HANpaBICHUH OOpaOOTKM TEKCTOBOW WH(POPMALIUU
BXOJAT 3aJaddl MEIWIMHCKOW HayKH, B YaCTHOCTH, 3aJaddl (papMakoJOTHU H
MIePCOHANM3UPOBAHHON MeTUIIHEL. Bcé Oostee BocTpeOOBaHHOW CTAHOBUTCSA 3aa4a
AaBTOMATHYECKOl 00pabOTKM TEKCTOB MEAMIMHCKOW HAINpPaBICHHOCTH C LENbIO
W3BJICYCHHS CTPYKTYPUPOBAHHBIX JaHHBIX, KOTOpBIE 3aT€M HCIHOJB3YIOTCS IpH
PELIeHNH Pa3InYHOr0 PoAa MpobieM: Noucka HHPOPMaIMK O TTOOOYHBIX PEaKIHIX
JIEKapCTBEHHBIX ~ IIPENaparoB, WCIOJb30BAaHWM JIEKAPCTB C HApYIICHHEM
NpeANnucaHui WHCTPYKIMHU, ONpPEAETICHUH JEHCTBHS JICKApCTBEHHBIX IPENaparoB
[0 OTHOLICHWIO K CHCTEMaM OpraHW3Ma, H3JICUCHHS HOBBIX OTHOIICHHH MEXIY
JEeKapcTBAMH M CHMOTOMAaMH I MOCTPOEHHS THUIIOTE3 O HEpernpopHuINpOBaHUN
npenapara.

s BBIABIEHHS HOBBIX MOOOYHBIX 3((EKTOB, HE YKa3aHHBIX B MHCTPYKIHUH IO
NPUMEHEHUIO TIpernapaTa, BCEe OONBIIYIO MOMYJSPHOCTh MPHUOOPETAeT MOAXOJ C
NPUMEHEHHEM TEKCTOB MEIWIMHCKOW TEMAaTHKH: JJICKTPOHHBIX KapTOYeK
NalMeHTOB, HAay4YyHOH IMTepaType, 3alucell MalMeHTOB B COLMAIBHBIX CETSIX U
MemuuuHCKuX (opymax. OOpaboTka Takoro o0beMa HWH(POpMAUUU HEBO3MOXKHA
BPYUYHYIO, IIO3TOMY aKTHBHO MPUMEHSIOTCS METOJbl aBTOMaTHYECKOW 00paboTKu
€CTeCTBEHHOTO si3bIKa [1-5].

Krnaccudukaumio moboyHbix 3((GEKTOB MOXKHO paccMarpuBarh B JBYX
HarpaBjeHusx: (i) Ha ypoBHe cooOleHust u (il) Ha ypOBHE CYIIHOCTH. B mepBom
cilyqae HEOOXOAMMO OIpPEIENHNTh HAJIWYIHE YINOMHHAHHUS 1MOOOYHOro 3(dekra BO
(parmMeHTe TeKcTa, HamNpHMeEp, NPEUIOKCHWH MM TEKCTe TBUTA. JlaHHBIH THI
KIacCU(UKAMM HEOOXOJUM ISl OYMCTKU KOJUIEKIIMH TEKCTa OT HEPEeIEeBaHTHBIX
JOKyMeHTOB. Bo BTOpoM ciryyae kiaccuduKamus NpUMEHSeTCs K pe3ysbTaTram
paboTHl ANTOPUTMOB U3BJICYEHHUS NMEHOBAHHBIX CYIIHOCTEH. B nanHO# paboTe MBI
COCPEIOTOUMIINCH HAa BTOPOH 3a/1a4e.

OnHa M3 pa3HOBHIHOCTEH 3ajay KiIacCU(HUKALUK OTHOCUTEIBHO CYIIHOCTEH - 3TO
ACMEeKTHO-OPUEHTHPOBAHHBIN aHAJIM3 TOHAIBHOCTH. B acnekTHO-OpHeHTHPOBaHHOM
aHaJM3e TOHAIBHOCTH OIPENeNISIeTCs OTHOLICHHE II0JIb30BATENsl HE TOJNBKO K
0O0BEKTY B LIEJIOM, HO M K OT/AENBHBIM €ro 4acTsaM uiu acnekram. CyliecTByroue
paboThl MOKa3aJIM YCHEUIHOCTh NPUMEHEHHUS Pslla apXUTEKTYp HEHpPOHHBIX CeTeH,
OCHOBAHHBIX Ha CETSAX C KOPOTKOH JOJITOCPOYHON mamsTeio (aHri. long short-term
memory; LSTM). B nanHo#i ctathe pa3paboTaHHbIE METOABI OBLIH aJaNTUPOBAHbI U
NPUMEHEHBI 1S 3a]ja4M Kiaccudukauy moooyHbIX () EeKToB.

HccnenoBanus ObUIM HAYATHI C MPOCTBIX MOAENEH, UCNONB3yIOMUX Toiabko LSTM,
Jlajiee apXUTEKTYpbl PacIIUPSUINCh MEXaHW3MaMW BHUMAaHHS M JOTOJHHUTEILHOM
namsThio. B kauecTBe Mojieneil ObUTH B3SITHI CIIEAYIOIINE apPXUTEKTYPbl HEHPOHHBIX
CceTel:

i CeTh ¢ KOPOTKO# jmoirocpounoi mamsarteio (auri. long short-term memory;
LSTM) - OGaszoBas Mojelb, KOTOpas MCIOJIb3YET BCE IPEUIOKEHHE,
3aKOMPOBAHHOE BEKTOPHBIM NPECTaBICHUEM CIIOB, B KAUECTBE BXO/a;

178

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ hexToB Ha ypoBHE CYIIHOCTEH B aHIIOA3BIUHBIX TeKCTaX. Ipydst UCII PAH, Tom 30, Beim. 5, 2018 1., cp. 177-196

MozeNns ¢ 3amanHoi 1ensio (amrr. Target-Dependent LSTM; TD-LSTM) [6]
KOTOpas UCToNb3yeT ABa ciosi LSTM it MoaenupoBaHus MpaBOTo U JIEBOTO
KOHTEKCTa OTHOCHTEIIBHO CYITHOCTH;
CeTh C MeXaHWM3MOM HWHTepakTHBHOTO BHUMaHHA (Interactive Attention
Network; 1AN) [7], xoropas coctrour wu3 naByx cioeB LSTM s
MIPE/CTABIICHUS NIPEJUIOKEHHS U LEJICBOM CYIIHOCTH U CJIOEB C MEPEKPECTHBIM
BHUMaHHEM, OOBCIMHEHHBIE BBIXOABI KOTOPBIX IIEPEAAIOTCS CIOK C
JIOTHUCTHYECKOW (DYHKIMEH JUIsl IPUHSTHS PEIISHUs O KJIacCU(HUKALIUHT;
ceth ¢ Tirybokoi mamsaTeio (Deep Memory Network; MemNet) [8], koTtopas
NPUMCHSET HECKOJBKO pa3 MEXaHW3M BHHUMAHHSA K BXOJHOMY CIIOKO
BEKTOPHOTO IPEJCTABICHHS CJIOB, BBIXOM IOCJIEIHEr0 U3 KOTOPBIX IeperaeTcs
B CJIOH C JIOTHCTHYECKOH (QYHKINEH Ui MpeAcKa3aHus Kilacca,
CeTh C PeKYPPEHTHBIM MEXaHW3MOM BHHMaHUs K mamsatu (Recurrent Attention
Memory; RAM) [9] pacuupsier moaens MemNet AOMOJHUTEIBHBIMEA CIOSMHE
LSTM © MHOTOKpAaTHBIM NPUMEHEHHEM MEXaHH3Ma BHHMAaHHS K BBIXOJaM
9THX CJIOEB.
OnucaHHbIe MOZEIH MPUMEHSIINCH B 3a7a4e KJIaCCU(UKALUK MHEHUH JJIsI OT3bIBOB
NOJIb30BaTeNIeil O pecTopaHax M HOYTOyKax, OJHAKO padoT MO NPUMEHEHHIO
Mojiened K KiaccupUKanuy NOOO0YHBIX S(PQPEKTOB Ha YPOBHE CYLIHOCTEH WH3
pa3IMYHbIX HMCTOYHHKOB TeKCTa (papMakoHai3opa HaiiieHo He Obuio. B pamkax
JIAHHOTO HCCJIeIOBaHMsl OBbLIM TPOBE/IEHBI OOIIMPHBIE SKCIEPUMEHTHI Ha IISATH
0a30BBIX HaboOpaX [aHHBIX, KOTOpbIEé COCTOAT M3 TEKCTOB AHHOTALMH
OMOMEIMIIMHCKHX CTaTeil, DJIEKTPOHHBIX KapTOYEK IIAllMEHTOB M TEKCTOB W3
colmanbHeIX cetedl. IIpoBeneHo cpaBHeHHE A(P(EKTHBHOCTH ONHCAHHBIX
HEHPOHHBIX CeTed W MeToJa Ha OCHOBE OIIOPHBIX BEKTOPOB C TOYKH 3PEHHUS
CTAQHJAPTHBIX METPUK Ka4eCTBa KIACCH(PHUKALIUH.

2. 0630p cywecmeyroujux Nodxo0oe

B nccnenoBaHUAX MPUMEHSIOTCS pa3MYHbIE TTOJIXOJBI ISl BBISBICHHS MOOOYHBIX
peakuuii B Tekcrax. Hamboiee MIMPOKO HMCHONB3YeMBIH METOA - 3TO IOAXOM,
ocHoBaHHBIH Ha cioBapax [10-15]. CrnoBapu cOCTOSAT U3 CHHCKOB MOOOYHBIX
peaxknuii, M3BJICYCHHBIX M3 HHCTPYKIHUH IO NPUMEHEHHWIO JIEKapCTB, 3aluced o
KIMHAYECKUX UCITIBITAHUAX, OT3BIBAaX IMOJIb30BaTeNeil B CONMANBHBIX ceTax. [lepBrie
paboThl OBUIM OTpaHWYEHBI B KOJIMYECTBE MCCIEAYEMBIX JIEKAPCTB M IIEJIEBBIX
moO0YHBIX () PEeKTOB M3-3a OrpaHUUCHUN TEPMHUHOB B CJIOBapsiX. s mpeoposeHus
9TOTO OTPAHWYCHHUS CTAJIHM HCIOJB30BAaThCS METOABI Ha OCHOBe TpaBmi [16-17].
OcHOBHasi uxes dTHX METOAOB 3aKIOYaeTCs B TOM, YTOOBI BBLAETHTH Hamboee
pacnpocTpaHeHHbIE KOHCTPYKIIUU IIPEeUI0KEHUH, KOTOpBIE MOTYT
CBHJIETEJILCTBOBATH 00 ONMUCAHUM NMOOOYHBIX peakiuid. OqHaKko pa3paboTKa IpaBuil
SBJISIETCS JUIMTEIBHBIM U TPYIOEMKHUM IPOLECCOM, ISl 3TOr0 TpeOyeTcst HajInunue
CIeLUaJINCTa B JaHHOW IpEIMETHOH OoO0JacTH, NPH ITOM JAaHHBIH IOAXOJA HE
MacmrTabupyem JUis HOBBIX KOJUICKIMH JTOKYMEHTOB.

179

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

BonpmHCTBO pabOT OMMCHIBAIOT HCCIECAOBAHUS C HCIOIB30BAHUEM METOJOB
ManmmHHOTO 0OyueHusi. Hampumep, B paborax [18-23] wucmonbsyercs MeTon
OTMOpHBIX BeKTOpoB (SVM), B crarhsax [16, 24] mpumeHsieTcs METOI YCIOBHBIX
cnyuaitaeix moneit (CRF), a B pabore [25] meron cayuaiinoro meca (Random
Forest). B kauecTBe NMpH3HAKOB, IO/JAaBAaCMBIX Ha BXOJ JITOPUTMaM MAaIIMHHOTO
0o0y4eHHs, MWCHOJB3YIOTCS: N-TpaMMBbl, 4YacTH peuH, MIPUHAUISKHOCTD K
CEeMaHTHYECKUM THUIaM U3 YHU(QHIUPOBAHHOTO S3bIKA MEIULUHCKAX CHCTEM
(UMLS), xonu4ecTBO CIIOB C OTpUI@HHEM, MPHHAICKHOCTh PACCMATPHBAEMOrO
TEpMHHA K CJIOBAapsSM IOOOYHBIX pEaKlWii, HaJIW4YKMe B TEKCTE Ha3BaHMUS JIEKAPCTBa,
BekTopa word2vec, BeKTOpa KJacTepH3alny.

B 2016-m un 2017-M romax MpOBOIMINCH COPEBHOBAHWSA IO TIOMCKY MOOOYHBIX
a¢dekToB B coobiienusix u3 Teurrepa [26-27]. B pamkax copeBHOBaHUs
NPUCYTCTBOBAJIN 3aJaydl KiacCH(UKAlMM HAa YpPOBHE BCEro TBUTA M HAa YPOBHE
cymHocTd. [loGemurenn mepBoro COpeBHOBAHUS HCHONB30BA KOMOWHALIMIO U3
JEBATH KIAacCH(HKATOPOB, OCHOBAHHBIX Ha MOJENU Clly4aiiHoro jeca [27] co
CJICAYIOIIMM HabOpOM MPHU3HAKOB: 1, 2, 3 - rpaMMBbI, TIOSBJICHHE BMECTE JICKapCTBa
U oGo4yHoro >¢pQeKra, HaINUYNe OTPULAHHUS U OLCHKAa TOHAJBHOCTH. B kauecTBe
HaboOpa MaHHBIX ISl KaKAOro KiaccudukaTtopa Ha BXOJ IOJABAJIHCh BCE
MOJIOKUTENIbHBIE TPUMEPHl M TaKoe JK€ KOJIMYECTBO CIIy4ailHBIM 00pazom
BBIOpaHHBIX OTPULATENBHBIX INPUMEPOB, YTO MO3BOJIMJIO YYaCTHUKAM pEIIUTh
npobiieMy HecOaTaHCHUPOBAHHOCTH KiaccoB. OmHcaHHAas cHUCTEMa TOIy4YWIia
41.95% F-mepsl. B copeBHoBarmmu 2017-ro roma B 3amade Kiaccupukanuud Ha
YPOBHE TBHUTOB IIEPBOE MECTO 3aHsUIA CHCTEMa, MCIOJb30BaBIIasi METO]] OMOPHBIX
BEKTOPOB B KauecTBe Mojenu [28]. OngHako, B OTIMYME OT NMPEABIAYLIErO roia,
Ha0Op Tpu3HAKOB OBUT Ooiee OOIMpPHBIM, Monens momyumwia 43.5% F-mepsl u
TaKUM 00pa3oM yIydIIuia pe3yJbTaThl MPebIAyIero copeBHOBaHus Ha 1.55%. B
3ajjade KiracCH(pUKalMU Ha YpPOBHE CYIIHOCTEH IIydIlIMe pe3ysbTaThl ITOKa3aja
CHCTEMa, HCTIOIB30BAaBIIIAs aHCAMOIb CBEPTOUHBIX HEHpOHHBIX ceteil [29]. Cuctema
npocturia 69.3% F-mepsr.

B 2016-M romy mMOSBISIOTCS MEpBbIE Pa0OTHI MO KIACCH(HKAIWK TEKCTOB Ha
HaJn4yre NoOO0YHBEIX d(P(PEKTOB, OCHOBAHHBIE Ha HEMPOHHBIX ceTssx. B padore [30]
NPUMEHSUIUCh CBEPTOYHAST PEKYPPEHTHAs HEWpOHHAash CeTh M CBEPTOYHAs CEeTh C
BHUMaHHEM. DKCIIEPHMEHTH! IPOBOJMIINCH HA IBYX HaOOpax JaHHBIX: TBUTOB U3
copeBHoBanus 2016-ro rojaa, OMMCaHHOM B JaHHOM pasjeie Bbiue [26] u oTueToB
cuctembl MEDLINE [31]. CeeprouHasi peKyppeHTHasi HEHpOHHAasi CeThb MOKa3ana
51% F-mepsl Ha kopmyce TBUTTEepoB M 87% F-mepsl Ha kopmyce MEDLINE,
MOJIeNIb ¢ BHUMaHHeM Tokazana 49% wu 83% F-meper coorBercTBeHHO. Takmm
obpa3zoM, Obul ToONydeH npupocT Ha 7.5% B CpaBHEHHHM C pe3ylbTaTaMH
COPEBHOBaHHSI.

Mertopl IO aHAJIM3y TOHAJIBHOCTH aKTHBHO HMPUMEHSIIOTCS B NMPEIMETHOH 00macTi
MEIWIMHBI W B TEKCTax apyrux teMaTuk [32-35]. B obmactu acmekTHO
OPHEHTHPOBAHHOTO aHAJIN3a TOHAJTBHOCTH AKTHBHO MPHMEHSIOTCSI HEHPOHHBIE CETH
[36]. Taur u ap. npeacTaBWwiIM apXHTEKTYypy HelponHoii cern TD LSTM (Target-
Dependent LSTM; TD_LSTM) [6] u cetp ¢ nmamsareio MemNet (Deep Memory
180

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ hexToB Ha ypoBHE CYIIHOCTEH B aHIIOA3BIUHBIX TeKCTaX. Ipydst UCII PAH, Tom 30, Beim. 5, 2018 1., cp. 177-196

Network; MemNet) mis knaccuduranuyn Ha ypoBHe acrekra [8]. IIpemiokeHHbIC
MOJIETIH JIEMOHCTPUPYIOT CPABHUMBIEC C CYIIECTBYIOIIMMHU METOAAMH PE3yIbTaThl.
Yen u Ap. UCTIONB30BAN PEKYPPEHTHYIO ceTh ¢ BHuManueM (Recurrent Attention
Memory; RAM) [9]. Mozens npuMeHsCT MEXaHU3M BHUMAaHHS HECKOJBKO pa3 st
OXBaTa TOHAJBHBIX IIPU3HAKOB, HAXOJISIIUXCS Ha OONBIIOM Jpyr OT Apyra
paccrositHuu. RAM mpeB3onuia pe3ynbTaThl ONMCaHHBIX paHee MOJIENICH Ha YeThIpeX
KOpIycax W3 pa3HbIX MNpeIMETHbIX oOiacTed. Ma W Ap. NpemIoKWIN CeTh C
uHTepakTUBHBIM BHUMaHueM (Interactive Attention Network; IAN), kortopas
TEHEPUPYET OT/IeNIbHBIC MPEACTABICHNUS Ul KOHTEKCTA M aCTIeKTa U IPUMEHSET ISt
HHUX TIepeKpecTHOe BHUMaHMe [7]. Moaens moka3ana BEICOKYIO 3(p(QEeKTHBHOCTE 10
CPaBHEHHIO C Pa3TUYHBIMU MOAU(DUKAIUIMI HEHPOHHOW CETH C IITMHHOW KOPOTKOH
namsTeio (Long Short Term Memory; LSTM).

Ha ocHoBe anammsa mpeaMeTHOW 00JacTH MOXHO CHENaTh BBIBOZA, 4YTO
CPaBHHUTEIHHO Majio pabOT MOCBSIICHO NPUMEHEHNIO HEWPOHHBIX ceTell B 3ajade
KIaccu(UKaIy MOO0YHBIX 3(P(PeKTOB. BONMBIIIMHCTBO pabOT MUCIONB3YIOT METOIBI
MAalIuHHOI'O O6y’~IeHI/ISI, KOTOPBIC OrpaHNYCHBI JIMHEMHOCTBIO MOACIIN n
HEO0OX0IMMOCTBIO IIOUCKa ONTUMAaJbHBIX IIPU3HAKOB BPYYHYIO
[2,12,18,21,25,27,37,38]. KpoMe TOro GOJBIIMHCTBO METOIOB U3BJIEKAIN TPU3HAKU
HETOCPEICTBEHHO M3 KJAacCU(UIUPYEMOW CYIIHOCTH, YJAENss Majloe BHUMaHHE
KOHTEKCTY WJIM HCIIOJIb3Yysh MaJICHbKHH KOHTEKCT pa3MepoM B 4-5 ciioB cieBa u
crpaBa oTHocuTeNnbHO cymHocTH [21,25,39,40]. CtouT Takke OTMETUTh, YTO B
OoJIBIIMHCTBE PaOOT MPOBOAMINCH MCCIIEIOBAHMS Ha OJTHOM KOPITyCE JaHHbIX.

3. Kopnyca

OkcnepuMeHTbl MO OLeHKe A(P(EKTUBHOCTH METOAOB KiacCU(pHKALMH
MPOBOAWIIMCh HA YETBIPEX CYLIECTBYIOLIUX aHrios3blyHbIX Kopmycax: CADEC,
Teurrep, MADE, Twimed. O0mast CTaTUCTHKA [T BCEX KOPITYCOB MPEACTaBICHA B
tabn. 1. B Tabmume wimacc ‘ADR’ o0o3Hauaer kimacc ¢ moOOYHBIM 3ddeKTom,
COOTBETCTBEHHO, Kiacc ‘NON-ADR’ obo3nauaer ero orcyrcrBue. Kak BuaHO U3
cratuctuky, kopnyca CADEC u MADE coznepxat Gosblliee KOJI-BO aHHOTAIWH,
YeM OCTaJbHBIE KOpITyca.

3.1 CADEC

Kopmyc CADEC cocronT w#3 pa3MeUeHHBIX OT3BIBOB IIOJIb30BATEleH O
JIEKapCTBEHHBIX IpemapatoB ¢ (Gopyma askapatient.com [41]. B kopmyce
pa3medeHsl 5 BHAOB aHHOTaIuil: JekapcTBo (drug), mobounsrit 3¢ ekt (adverse),
3aboneBanne (disease), cuMITOM (Symptom) u Apyrue MEANIIMHCKUE TEPMHHBI, HE
BoIIeANMe B onucaHHble kaTteropun (finding). AHHOTanmeil 1ekapcTBO OTMEUYECHBI
BCE Ha3BaHWUS JICKAPCTBEHHBIX IpenaparoB B Tekcre. Bce mobounble 3¢ (dexTsl,
CBSI3aHHBIC C JIGKAPCTBOM, OTMEYEHBl aHHOTaLUen oO0ouHBIH 3(DeKT.
AnHOTanuel 3a0oneBaHne 0003HAYEHBI ITOKa3aHUs K HpHUMeHeHHo. CUMIITOM
0003HAYaeT COIYTCTBYIOIIME NpPU3HAKM OONE3HH. AHHOTAIMK 3a00JIeBaHHE H

181

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

CUMITOM OBUIM CTPYNIHPOBAaHBI BMECTE C aHHOTanueHd, oOo3Hadaromedl npyrue
MEIUIIMHCKIE TEPMHUHEI B OJIHY TPYIIITY.

3.2 Twitter

Kopmyc Twitter comep>xut TBUTHI TONb30BaTeNeld Ha TeMy 310poBbs [42]. B
KaXJOM TBUTE OTMeuYeHbl 1MoOo4HbIe A(PQEeKTh MM CYLIIHOCTH, 00O03HAuYaroIIUe
3aboneBanue. [Tonutrka TBUTTEpa HE NO3BOJISIET XPAHUTh M PACHIPOCTPAHSATH TBUTHI
B OTKpbITOM JocTyre. Co3aaTesy Kopiyca IpeIoCTaBIsIIoT TOIBKO HACHTH(UKATOD
MOJIB30BATENS U TBUTA MO KOTOPBIM MOXHO 3arpy3UTh UCXOJHBIN TEKCT. B cBsA3m ¢
STHM YacTh TBHTOB HE YIAJOCh 3arpy3uTh. Bo Bpems mpenoOpaboTky TekcTa ObLTH
yZaJeHbl BCE CCBUIKH, YIOMUHAHUS MONb30BaTENEH H PETBUTHI.

3.3 MADE

Koprmyc MADE coctour u3 00€3MMYEHHBIX 3aluCeil 3JIEKTPOHHBIX KapTO4eK
NalnueHToB, 00JBHBIX pakoM. Kopryc ObUT co3aH AJisl COpEeBHOBAaHUS 10 00paboTKe
€CTECTBEHHOT'O S3bIKa, B 3aJa4d KOTOPOTO BXOJWIIO M3BICYEHHUE MEIMIIMHCKUX
TEPMHUHOB, MOOOYHBIX 3(D(PEKTOB U OTHOUICHHH Mexay Humu [43]. AHHOTaIWMH,
cBs3annbele ¢ 3a0oneBanusamu ‘SSLIF’ u ‘Indication’, ObliM 00OBEIMHEHBI B KIIACC
‘non-ADR”.

3.4 Twimed

Kopmryc Twimed cocTonut U3 AByX 9acTeil: TBUTOB MOJB30BATEICH U TEKCTOB CTaTel
¢ pecypca PubMed [44]. Kopmyc coaepKUT aHHOTAIMH: OOJIE€3Hb, CHMIITOM H
JiekapcTBO. Eciy oTHOIIEHNE MEeX Ty JIeKapCTBOM U 00JIE3HBIO OBLIO pa3ME4eHO Kak
HEeraTHBHOE, TO O0JIEe3Hb OTMEYaIach Kak HOOOYHBIH AP HeEKT.

Tabn. 1. Cymmapnas cmamucmuxa no Kopnycam
Tab. 1. Summary statistics of corpora

Kopmyc Hcrounnk Kon-Bo Kon- | Kon- MakcumasbHas Cpennsist
JIOKyMEHTOB BO BO JUTHHA JUTHHA
ADR non- TIPEATIOKEHUS NPEIIOKEHUS
ADR
CADEC OT3bIBBI HA 1231 5770 | 550 236 28
[41] (opyme
MADE Onextponubie | 876 1506 | 37077 | 173 21
[43] KapTOYKH
MAHEHTOB
TwiMed- AHHOTaLIMHA 1000 264 983 150 39
Pubmed craTeit
[44]
TwiMed- TButTep 637 329 308 42 27
Twitter
[44]
Twitter TButTep 645 569 76 37 22
[42]

182

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ ¢eKToB Ha YPOBHE CYIIHOCTEH B aHIIIOA3BIYHBIX TeKCTaxX. Tpyost UCII PAH, tom 30, Boim. S5, 2018 r., ctp. 177-196

4 Apxumekmypbl HelipOHHbIX cemel

B mannom pa3acic OMmrMCaHbl apXUTCKTYPbl CPABHUBACMBIX HeﬁpOHHLIX CeTeH.

41LSTM

Krnaccuueckas HeHWpOHHAs CETh, SIBIIONIASACA Pa3sHOBUAHOCTBIO PEKYPPEHTHBIX
HEHpOHHBIX ceTel, Obuia mpexactaBieHa B [45]. CeTh COCTOMT M3 TpEX CIIOCB:
BXOZHOTO, CIIOSA C KOpPOTKO# momrocpounoit mamsateio (LSTM) m BeIXOmHOTO. B
nepBoMm cioe cetdn (Embedding) mpomcxomnT KOAMpOBaHWE BXOTHOTO TEKCTa B
BEKTOpPHOE TIpeCTaBICHNE U nepenarorcs B ciod LSTM. JlaHHEBIH IO CUUTHIBaET
TIOCJIOBHO BXOJIHOE TPEIIOKEHHUE M COXPAaHSIET CKPBITHIC COCTOSIHUS C ITOMOIIBIO.
IMocme mpodTeHWsT BCETO MPEIUIOKEHHS CKPBITHIC COCTOSIHHS IIepelaloTcs B
Ka4yeCTBE MPU3HAKA B BEIXOIHOM KIaCCUGBHUIMPYIOIHIA CII0H ¢ BhyHKIMeH softmax.

4.2 TD_LSTM

Hannast Mojenp Oblia mpemioxkeHa B pabore [6] m siBisleTcss pacumpeHueM
npeapaymei Moaenu. Mojenbs COCTOMT M3 ABYX vacTed, Kaxkaas M3 KOTOPBIX
oOpabaThIBaeT JIEBBIH W TpPaBBIi KOHTEKCTHI COOTBETCTBEHHO. AHAJIOTHYHO C
OpeAbIAyINed MOJENBI0 BXOAHBIE TEKCTHl MNOMAAAalOT B CIOH BEKTOPHOTO
MpeCTaBICHUs CJIOB, BbIXOABl KoToporo mnepeaairorcs B LSTM cnoii. Bekropa
CKpBITBbIX coctosstHud LSTM crnoeB st J€BOro M MpaBOro KOHTEKCTOB
KOHKAaTEHUPYIOTCA B OJUH BeKTOp. K NHOIyd4eHHOMY BEKTOpy, TakK K€ Kak U B
npeablayIieil Mojieny, IpUMeHsieTcst cloi ¢ ¢yHkimeid softmax W BeramcnseTCS
KJacc ¢ Haubompmied BeposTHOCTBIO. Cxema apXWTeKTypsl [aHHOH CeTH
npejcTaBieHa Ha puc. 1.

or Hidden
Embeddings States

Left
context

Label

Right
context

Puc. 1. Apxumexmypa modeau TD_LSTM
Fig. 1. The overall architecture of TD LSTM

183

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

4.3 IAN

Mopenb ¢ MEXaHU3MOM MHTEPAKTHBHOTO BHHMaHUs ObUIa IpencTaBieHa B paboTe
[7]. Cerw cocrouT W3 mBYX uacTei, Kakaas M3 KOTOPBIX CTPOHWT TIPEACTABICHUE
KOHTEKCTa M KJIACCHQUIMPYEeMOHl CYIIHOCTH C IIOMOLIBI0 BEKTOPHOTO
npencraBieHns cioB U LSTM cmos. IlomydeHHBIE BEKTOpa YCPENHSIOTCS W
UCIOJIB3YIOTCS AU BEIYMCIICHUS BEKTOpAa BHHMAaHHA. B IepBoM clioe BHUMAaHHSA
HCIIOJIB3YeTCSl BEKTOP KOHTEKCTa M YCPEAHCHHBII BEKTOpP CYLIHOCTH, BO BTOPOM -
BEKTOp CYLIHOCTH W YCPEAHEHHBI BEKTOp KOHTeKcTa. [loimydyeHHbIE Ha BBIXOHE
BEKTOpa KOHKATCHHUPYIOTCS U TEPEAAroTCs 1ok ¢ (yHKuuen aktuBaumuu Softmax
st knaccugukanun. Cxema apXuTeKTyphl CETH NPE/ICTaBIeHa Ha pHC.2.

e Hidden
Embeddings States

Context

Puc. 2. Apxumexmypa mooenu |1AN
Fig. 2. The overall architecture of IAN

4.4 RAM

CeTb C PEKyppEeHTHBIM MEXaHH3MOM BHUMAaHUS K MaMsTH Oblia IMpeacTaBieHa
Yenom c coaBropamu [9]. CeThb COCTOMT W3 Tpex TIJIABHBIX YacCTCH: IepBas
NOCBsillieHa 00paboTKe KOHTEKCTa C MCHOJIb30BaHUEM JByHanpapieHHOH LSTM,
MOJTyYeHHbIE BEKTOpA COXPAHSIOTCS B MAMSTh; BTOPAs OTBEYAET 3a IPEICTaBICHHE
KJI1acCU(DUIMPYEMOi CYIIIHOCTH M TaKKe UCIOJb3yeT JByHanpasieHHyto LSTM, na
BBIXO/I€ TIOJIy4aeTcsl Cpe/lHee 3HaUCHHE BCEX BEKTOPOB CKPHITOTO COCTOSHHMS CIIOB
CYIIHOCTH; TPEThsl YacTh INPHMEHSET MEXaHM3Mbl BHUMAHHS K MOJYYEHHBIM
BBIXO/IHBIM JIaHHBIM BTOPOH YacTH M COXPAaHCHHBIM JIaHHBIM MEpPBOH YacTH.
BbIXoaHOM BEKTOp BHUMAHUS IIOJIACTCSl Ha BXOJA CIIOI0 C YIPaBisieMbIMHU
pekyppentHeiMu 6nokamu (Gated Recurrent Unit; GRU). Ha crienyrorueit urepaunn
Ha BXOJl CJIOI0 ¢ BHUMaHueM nozaercsi Beixoa u3 GRU u BekTopa, COXpaHeHHBIE B

184

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ ¢eKToB Ha YPOBHE CYIIHOCTEH B aHIIIOA3BIYHBIX TeKCTaxX. Tpyost UCII PAH, tom 30, Boim. S5, 2018 r., ctp. 177-196

MaMATd. OTO TO3BO/SIET NPUMEHHTh MEXAaHU3M BHHUMAHUS K COXPaHEHHBIM B
NMaMATh JaHHBIM HECKOJIBKO pa3 M H3BICYb Oosiblle HEOOXOAMMON Ams
Kknaccudukanuu HHpOpMaKu. BeKkTop, MONydeHHBIH B PE3yNbTAaTe HECKOJIBKUX
MOTOOHBIX HWTEpanni, TepenacTcs B IIOJHOCBS3HBINA CIOM C KIACCH(PHUKATOPOM.
Apxurexrypa RAM mnpezncrasnena Ha puc. 3.

Context

F— 00 0——i00 00— O O
o >< ><
‘OO0 O——0 O Or

Puc. 3. Apxumexmypa mooenu RAM
Fig. 3. The overall architecture of RAM

4.5 MemNet

Monems MemNet Orpita ipencraBnena Tanrom ¢ coaBTopamu [8]. laHHas Momeib
COCTOMUT W3 [BYyX TIJIABHBIX YaCTCH: MOMYJS MaMATH, KOTOPBIA XpaHUT B cebe
BXOJIHBIC JaHHBIC JJI1 KOHTCKCTa B BUJE PACHPEACICHHOTO MPEACTABICHUS CIIOB U
MexaHu3Ma BHUMaHus. Ha BX0J CIIOI0 ¢ BHUMAaHHEM IOJAIOTCS CYIIHOCTh B BHIE
BEKTOPHOTO TMPEICTABJICHHS CJIIOB M BEKTOPa, COXPAHEHHBIC B MaMsTH. Bwixom u3
CJIOSl TAMSTH CYMMHUPYETCS ¢ BEKTOpaMH MaMSITU U MMOJACTCS B CICAYIOIIUN CII0H ¢
MeXaHU3MOM BHUMaHus. Apxutektypa RAM mpencrasieHa Ha puc. 4.

Word
Embeddings

Context

Aspect

Puc. 4. Apxumexmypa moodeau MemNet
Fig. 4. The overall architecture of MemNet

185

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

5. 9kcnepumeHmbl

B oaroM pasmene Mbl mpeacTaBisieM cpaBHEHHE A()(EKTHBHOCTH OIHMCaHHBIX
HEeHpPOHHBIX CeTel ¢ MOJENBI0 Ha OCHOBE METOJa OIOPHBIX BEKTOPOB (Support
vector Machine; SVM) ¢ GombpmmM HaOOpoOM NPU3HAKOB, YTOOBI OTBETUTH Ha
KITIOYEBBIE BOIPOCH! HCCIIEIOBAHMS, N3JI0KEHHBIC BO BBSICHUH.

5.1 MeTop Ha ocHoBe SVM

MbI CpaBHWIIM HAIIK MOAXOJBI C KIaCCH(PHUKATOPOM TIPEIIOKEHHOM B padore [37].
HanHprii Metox ocHoBaH Ha SVM ¢ nmuHEHHBIM siapoM. HaOop skcnepHMeHTOB
MOKa3aJl, YTO TIPU3HAKH Ha OCHOBE YHUTpaMM, OWHpaMM, dacTell pedw,
TOHAJIBHOCTH, BEKTOPOB KJAacTepa W CEMAaHTHYSCKUX THIIOB U3 cioBaps UMLS
SBISIIOTCST HanOosiee d(h(HEKTUBHBIMU I KIAaCCH(DUKAIUK TMOOOYHBIX 3((HEKTOB.
IIpusHak Ha OCHOBE YacTedl peuYd COCTOUT U KOJIUYECTBA CYIIECTBUTEIIbHBIX,
rarojoB, Hapeuyuid W OpwiaraTteiabHbIX. i TOHaJIbHOTO — MpHU3HAKa
ucnonb3oBanuck ciosapu: SentiWordNet [46], MPQA Subjectivity Lexicon [45],
Bing Liu’s cnoBapp [47]. IlpusHak Ha OCHOBE KJIACTEPHOTO IPEACTABIECHUS
UCIIONIb30Bal Kiactepa u3 [38], mosydeHHbIE C MCHOIb30BAaHUEM HEPAPXHYECKOTO
anroput™Ma Kimactepusanuu bpayna. [lociemnmii mpu3HaK NpeAcTaBiIsgeT COOOH
KOJIMYECTBO TOKCHOB M3 KXKIOTO ceMaHTHIecKoro tuma ciaoBaps UMLS.

Ornenka 3(dexkTuBHOCTH MaHHOIO MeEToJa II0Ka3aja ero IPEBOCXOJICTBO B
CpPaBHEHHH C TPEABIIYIIAME MOJIXOaMH, OCHOBaHHBIMH Ha METOAAaX MAIIHHHOTO
00y4YeHHS U CBEPTOYHON HEHPOHHOU CETH.

5.2 NapameTpbl mogenen

MBI UCTIONB30BAI BEKTOPHOE MPEACTABICHHE CJIOB, OOyYEHHOE Ha 3alHCAX U3
connaneHBIX Menwa [38]. BekTopHOE mNpencTaBieHHE CIOB OBLIO TMOIYYCHO C
UCIIONB30BaHUEM Mojaenn word2vec, oOydeHHOW Ha HEpa3MEYCHHOM KOpITyce,
cocrosmeM wu3 2.5 MWDUIMOHA aHIJIOS3BIYHBIX OT3BIBOB IIONB30BATENCH O
JieKapCTBeHHbIX npenaparax. Jnuna BextopoB 200. CraTHCTHKa MOKPHIBAEMOCTH
KOPITYCOB CIIOBaMH M3 MOJIeNIN BeKTopHOTo npeacrasieHus cinos: CADEC - 93.5%,
Twitter - 80.4%, MADE - 62.5%, TwiMed-Twitter - 81.2%, TwiMed-Pubmed -
76.4%. J1ns cI0B, OTCYTCTBYIOIIMX B MOJENH, T€HEPHUPYETCS BEKTOP CITydailHBIX
Yhceld C HOPMAaJbHBIM paclpeieiIeHHeM M 3HAYCHHSIMH, PAHKHUPYIOUIMMHUCST B
paMKax 3HAYEHWH BEKTOPOB MOJEIH BEKTOPHOTO TIPEICTAaBICHUS CIOB. MBI
WCTIONB30BANK 15 3mox i 00y4eHus KaKJI0H MOJeNnu Ha KaXIOM W3 KOPIYCOB,
pasmep BxoaHoro Ooka 128 nns kopmycoB CADEC u MADE u 32 st ocTaiabHBIX
KOPITyCOB, KOJHYECTBO CKPBITBIX coctosiHuit 300, mar oOyuenus (learning rate)
0.01, 12 perymspusanus co 3nadenueM 0.001. B xome sKkCnepuMEHTOB MOJENB C
JaHHBIM Ha0OpOM IapaMeTpoB IIOKa3ajla Hambojiee BBICOKMH pe3ysbrar. s

186

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ hexToB Ha ypoBHE CYIIHOCTEH B aHIIOA3BIUHBIX TeKCTaX. Ipydst UCII PAH, Tom 30, Beim. 5, 2018 1., cp. 177-196

peamm3anMi MOIENM OBUI WCIONB30BAaH IMYONWYHO JIOCTYNHBIH KOX W3
perosuTopus’.

5.3 PesynbTarthl

Bce Momenn OputM OIleHEHHI Ha 5-()OJIOBOM KpOCC BaNUAAIMH C ITIOMOIIBIO
CTaHIAPTHBIX METPUK OLIEHKM KadecTBa Kiaccudukanuu: To9HOCTh (P), momHoTa
(R) m F-mepa — cpemHee TapMOHHYECKOE MEXIY TOYHOCTHIO W TIOJHOTOM.
PesynbraThl 3KCIEPHIMEHTOB NpHBEACHBI B Tabm. 2-6. B Ttabmmmax kmacc ‘ADR’
0003HauaeT Kiaacc ¢ MOOOYHBIM 3((PEKTOM, COOTBETCTBEHHO, Kiacc ‘Non-ADR’
0003HaYaeT ero OTCYTCTBUE.

W3 pe3ynpTaToB BUAHO, YTO HA BCEX KOpPITycax, Kpome Twitter JIydmne pe3ynbTaTsl
o makpo F-mepe moxasana moznens IAN. Hanbosee 3HauMMBIH IpUPOCT KadecTBa
M0 CPaBHEHHIO C IPYTUMH MOJEISIMU ObLI MoJly4eH Ha Kopiycax Twimed-Twitter u
Twitter-Pubmed, rme momens IAN nocrurma 81.9% wu 87.4% wmakpo F-mepsr
cooTBeTcTBeHHO. Ha xopmyce Twitter mydive pe3ynpTaThl Mokaszaia Moaear RAM
¢ makpo F-mepoii 83.4%.

Hcxoas M3 MONYyYEHHBIX PE3yJbTaTOB, MOXKHO CHAEJIaTh BBIBOJN, YTO pa3JeiicHUE
BXOJIHOTO TIPEJUIOKEHHUS Ha MTPaBbId U JIEBBI KOHTEKCT OTHOCUTEIBHO BBIIEIICHHON
CYIIHOCTH MOXKET YJIY4YLIMTh Ka4eCTBO KJIacCH(DUKAILMU Ui KOPITYCOB, COCTOSIINX
U3 TBUTOB. JTO ciexyeT u3 toro, uto TD _LSTM c pesynpTatamu mMakpo F-mepsr
75.8% mn 70.3% mna kopmycax Twitter m Twimed-Twitter coOTBETCTBEHHO
npes3ouutn Mozens LSTM ¢ pesymbratamn 61.3% u 70% wmakpo F-mepsr. s
OCTaJIbHBIX KOPIIYCOB pa3jieleHHe KOHTEKCTa HE CMOIJIO YIYYIIHTh PE3YJIbTAaTOB.
Ha xopmyce Twimed-Pubmed LSTM mpes3onuta mopens TD LSTM Ha 7% mo
merpuke F-mepel. Ha ocTanbHBIX KopITycax pe3yibTaThl CPaBHUMBI M OTJINYAIOTCS
Bcero Ha 2%.

CpaBHeHHe pe3ynsTaToB paboTel Momenedi RAM m MemNet MOKa3bIBalOT, 9TO
Hanmure LSTM cros mepen cioeM ¢ maMsaTH OKasanoch 3()(EKTHBHO TOJBKO Ha
onHOM Kopiryce Twitter, rme RAM mokasana CyImecTBeHHO BBICOKHE pe3yiabTaThl F-
Mepsl (83.4%) o cpaBrennto ¢ MemNet (76.3%).

IIpeBocxoactBo IAN no cpaBHeHnto ¢ RAM n MemNet Ha ueTblpex U3 NATH
KOPIIYCOB TaKXe IOKa3bIBACT, YTO HAJIMYUE JOMOJHUTEILHON MaMsITH JAJIeKO He
BCer/Ia JIaeT IPEUMYIIECTBO.

Ta6n. 2. Pesynemamel knaccuguxayuu Ha xopnyce Twitter

Tab. 2. Classification results of the compared methods for Twitter corpus

Mogens Kiacc non-ADR Kimacc ADR Makpo
P R F P R F P R F

SVM 602 | 520 | 554 | .602 | 520 | 554 | .769 | .736 | .749

! https://github.com/songyouwei/ABSA-PyTorch
187

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

IAN 654 | 627 | .634 | .951 | .957 | .954 | .802 | .792 | .794

RAM 779 | 653 | .705 | .955 | .973 | .964 | .867 | .813 | .834

MemNet | 559 | 667 | .590 | .954 | .918 | .935 | .757 | .792 | .763

TD-LSTM | 606 | 547 | 570 | .940 | .952 | .946 | .773 | .749 | .758

LST™M 388 | 427 | 392 | .920 | .889 | .903 | .618 | .621 | .613

Tabux. 3. Pezyromamer knaccupuxayuu na kopnyce CADEC
Tab. 3. Classification results of the compared methods for CADEC corpus

Mogens Knacc non-ADR Kimacec ADR Makpo

p R |F P R [F |P R |F
SVM 659 | .620 | .638 | .964 | .969 | .967 | .811 | .795 | .802
IAN 699 | 637 | .662 | .966 | .972 | .969 | .832 | .805 | .815
RAM 696 | .406 | .506 | .946 | .981 | .963 | .821 | .694 | .734

MemNet | 575 | 570 | 559 | .960 | .955 | .957 | .767 | .762 | .758

TD-LSTM | 630 | 557 | 582 | .958 | .967 | .962 | .794 | .762 | .772

LST™M 664 | 554 | .602 | .958 | .973 | .966 | .811 | .764 | .784

Tabn. 4. Pesynomamur kniaccugurayuu Ha kopnyce MADE
Tab. 4. Classification results of the compared methods for MADE corpus

Mopens Kiace non-ADR Knacc ADR Makpo
P R F P R F P R F

SVM 984 | 981 | .982 | 551 | 582 | 562 | .767 | .782 | .772
IAN 982 | 991 | .986 | .740 | .524 | 585 | .861 | .758 | .786
RAM 980 | .989 | .985 | .615 | .486 | .538 | .798 | .737 | .761

MemNet 979 | 991 | .985 | .684 | .447 | 535 | .832 | .719 | .760

TD-LSTM | 980 | .988 | .984 | .606 | .470 | .515 | .793 | .729 | .750

LST™M 981 | 989 | .985 | .636 | .510 | .557 | .809 | .749 | .771

Tabn. 5. Pesyriomamor knaccugpuxayuu na kopnyce Twimed-Twitter
Tab. 5. Classification results of the compared methods for Twimed-Twitter corpus

Mozens Knacc non-ADR Knacc ADR Maxkpo
P R F P R F P R F

SVM J79 | 707 | 739 | 752 | 810 | .778 | .766 | .758 | .758

188

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ hexToB Ha ypoBHE CYIIHOCTEH B aHIIOA3BIUHBIX TeKCTaX. Ipydst UCII PAH, Tom 30, Beim. 5, 2018 1., cp. 177-196

IAN 802 | 825 | 813 | .83 | .813 | .824 | .819 | .819 | 819
RAM 799 | 736 | 764 | 773 | 823 | 796 | .786 | .779 | .780
MemNet | 770 | 821 | 789 | .823 | .791 | .801 | .798 | .806 | .795
TD-

LSTM 731 | 711 | 717 | 741 | 751 | 742 | 736 | 731 | .730
LST™M 669 | 757 | 709 | 743 | 649 | 691 | .706 | .703 | .700

Tabn. 6. Pesynomamei kiaccupuxayuu na xkopnyce Twimed-Pubmed
Tab. 6. Classification results of the compared methods for Twimed-Pubmed corpus

Mogens Kmace non-ADR Kmace ADR Maxkpo
P R F P R F P R F

SVM 925 | 955 | 0.939 | .799 | 681 | .728 | .862 | .818 | .834
IAN 936 | 977 | .956 | .878 | .738 | 0.792 | .907 | .858 | .874
RAM 917 | 916 | .916 | .675 | .669 | 0.662 | .796 | .792 | .789
MemNet | 929 | 912 | 917 | .736 | .748 | 0.705 | .833 | .830 | .811
ISDW 495 | 493 | 487 | 932 | 930 | 0.931 | .714 | .712 | .709
LSTM 929 | 949 | 939 | .786 | .707 | 0.740 | .858 | .828 | .839

6 3aknmoyeHue

B nanHO# cTathe OBbIIAa HMCCIEOBaHA NMPUMEHUMOCTD OOLICTIPUHSATHIX apXUTEKTYp
HEWPOHHBIX ceTell B 00J1aCTH aCTIeKTHO-OPUEHTHPOBAHHOTO aHaIN3a TOHAIBHOCTH K
3amade Kiraccupukanud MOO00YHBIX 3ddekros. [ns omeHkH 3PPEKTHBHOCTH
JaHHBIX MoJeNiell OBl TPOBENEHbI OOIIMPHBIE O3KCIEPUMEHTHl Ha ISATH
00ILEI0CTYTHBIX TEKCTOBBIX KoprycaxX. COrjlacHO MOJy4eHHBIM pe3yiibTaTaM, JJIs
YeThIpeX M3 IATH KOPIYCOB HAWIIyYIlUE pe3ysbTaThl mokasana mozaens IAN u Ha
onHOM Koprryce RAM. Takxe MOXXHO cIenaTh BBIBOJ, YTO 0a30BBIE apXUTEKTYPHI
He YCTYNaloT pe3ysibTaTaM paboThl CYLIECTBYIOLIEr0 MeTola Ha ocHoBe SVM, a
CEeTH C JIONOJIHUTENBHON MaMsThI0 U MEXaHM3MOM BHUMAaHUSI PEBOCXOJAT MX, YTO
JIOKa3bIBaCT IMPUMEHUMOCTh JAaHHBIX apXUTEKTYp K 3ajade KiaccupUKaiuu
1o604uHbIX 3 dexToB.
B nanpHeiineM mIaHupyrOTCs] HCCIIEIOBAHUS IO TPEM HaIPaBJICHHSIM:
1) omeHKa BIHMSHHE MAPAMETPOB MPEAIOKCHHBIX APXUTEKTYP HEHPOHHBIX CeTei
Ha Ka4eCTBO KJIACCU(PUKALIUH;
2) ajamTalys ONMMCAHHBIX MOJENEH TS KiIacCH(UKALMK Ha YPOBHE COOOIICHN;
3) mnpuMeHeHWe MAaHHBIX MOJAENCH UL 3amadd KiIacCH(DUKAMK HOGOYHBIX
5 PEKTOB Ha APYTHX S3BIKAX.

189

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

7 BnazodapHocmu
Pa6ora monnep>xana rpaatoM PH® Ne 18-11-00284.

Cnucok nutepaTtypbl

[1]. Murff HJ, Patel VL, Hripcsak G, Bates DW. Detecting adverse events for patient safety
research: a review of current methodologies. Journal of Biomedical Informatics, vol. 36,
issue Y2, 2003, pp. 131-143.

[2]. Sarker A, Ginn R, Nikfarjam A, O’Connor K, Smith K, Jayaraman S et al. Utilizing
social media data for pharmacovigilance: A review. Journal of Biomedical Informatics,
vol. 54, 2015, pp. 202-212.

[3]. Lardon J, Abdellaoui R, Bellet F, Asfari H, Souvignet J, Texier N et al. Adverse Drug
Reaction Identification and Extraction in Social Media: A Scoping Review. Journal of
Medical Internet Research, vol 17, no 7, 2015.

[4]. Harpaz R, Callahan A, Tamang S, Low Y, Odgers D, Finlayson S, et al. Text mining for
adverse drug events: the promise, challenges, and state of the art. Drug Safety, vol. 37,
2014, pp. 777-790.

[5]. Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-
mining methodologies for adverse drug event discovery and analysis. Clinical
Pharmacology & Therapeutics, vol. 91, no. 6, 2012, pp. 1010-1021.

[6]. Tang D, Qin B, Feng X, Liu T. Effective LSTMs for Target-Dependent Sentiment
Classification [Internet]. arXiv [cs.CL], 2015. Available at:
http://arxiv.org/abs/1512.01100, accessed 15.11.2008

[7]. MaD, Li S, Zhang X, Wang H. Interactive attention networks for aspect-level sentiment
classification. arXiv preprint arXiv:1709 00893, 2017.

[8]. Tang D, Qin B, Liu T. Aspect level sentiment classification with deep memory network.
arXiv preprint arXiv:1605 08900, 2016;

[9]. Chen P, Sun Z, Bing L, Yang W. Recurrent attention network on memory for aspect
sentiment analysis. In Proc. of the 2017 Conference on Empirical Methods in Natural
Language Processing. 2017, pp. 452-461.

[10].Benton A, Ungar L, Hill S, Hennessy S, Mao J, Chung A, et al. Identifying potential
adverse effects using the web: a new approach to medical hypothesis generation. Journal
of Biomedical Informatics, vol. 44, 2011, pp. 989-996.

[11].YYang CC, Yang H, Jiang L, Zhang M. Social Media Mining for Drug Safety Signal
Detection. In Proc. of the 2012 International Workshop on Smart Health and Wellbeing,
2012. pp. 33-40.

[12].Liu X, Chen H. AZDrugMiner: An Information Extraction System for Mining Patient-
Reported Adverse Drug Events in Online Patient Forums / Lecture Notes in Computer
Science, vol. 8040, 2013. pp. 134-150.

[13]. Yeleswarapu S, Rao A, Joseph T, Saipradeep VG, Srinivasan R. A pipeline to extract
drug-adverse event pairs from multiple data sources. BMC Medical Informatics and
Decision Making, vol. 14, no. 13, 2014.

[14].Freifeld CC, Brownstein JS, Menone CM, Bao W, Filice R, Kass-Hout T, et al. Digital
drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Safety,
vol. 37, 2014, pp. 343-350.

[15].0’Connor K, Pimpalkhute P, Nikfarjam A, Ginn R, Smith KL, Gonzalez G.
Pharmacovigilance on twitter? Mining tweets for adverse drug reactions. In Proc. of the
AMIA Annual Symposium, 2014, pp. 924-933.

190

https://www.jmir.org/
https://www.jmir.org/
https://www.jmir.org/2015/7

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ hexToB Ha ypoBHE CYIIHOCTEH B aHIIOA3BIUHBIX TeKCTaX. Ipydst UCII PAH, Tom 30, Beim. 5, 2018 1., cp. 177-196

[16].Nikfarjam A, Gonzalez GH. Pattern mining for extraction of mentions of Adverse Drug
Reactions from user comments. In Proc. of the AMIA Annual Symposium, 2011, pp.
1019-1026.

[17].Na J-C, Kyaing WYM, Khoo CSG, Foo S, Chang Y-K, Theng Y-L. Sentiment
Classification of Drug Reviews Using a Rule-Based Linguistic Approach. Lecture Notes
in Computer Science, vol. 7634, 2012. pp. 189-198.

[18].Yun Niu et al. Analysis of polarity information in medical text. In Proc. of the AMIA
Annual Symposium, 2005, pp. 570-574.

[19].Leaman R. et al. Towards internet-age pharmacovigilance: extracting adverse drug
reactions from user posts to health-related social networks. In Proc. of the 2010
workshop on biomedical natural language processing, 2010, pp. 117-125.

[20].Yun Niu, Xiaodan Zhu et al. Predicting adverse drug events from personal health
messages. In Proc. of the AMIA Annual Symposium, 2011, pp. 217-226.

[21].Bian J., Topaloglu U., Yu F. Towards large-scale twitter mining for drug-related adverse
events. In. Proc. of the 2012 International workshop on smart health and wellbeing,
2012, pp. 25-32.

[22].Yang M., Wang X., Kiang M. Y. Identification of Consumer Adverse Drug Reaction
Messages on Social Media. In Proc. of the Pacific Asia Conference on Information
Systems, 2013.

[23].Sarker A., Gonzalez G. Portable automatic text classification for adverse drug reaction
detection via multi-corpus training. Journal of biomedical informatics, vol. 53, 2015, pp.
196-207.

[24]. Aramaki E. et al. Extraction of adverse drug effects from clinical records. Studies in
Health Technology and Informatics, vol. 160, Ne. Pt 1, 2010, pp. 739-743.

[25]. Rastegar-Mojarad M., Elayavilli R.K., Yu Y., Liu H. Detecting signals in noisy data-can
ensemble classifiers help identify adverse drug reaction in tweets. In Proc. of the Social
Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing,
2016.

[26].Sarker A, Nikfarjam A, Gonzalez G. Social Media Mining Shared Task Workshop. In
Proc. of the Pacific Symposium on Biocomputing, 2016, pp. 581-592.

[27].Sarker A, Gonzalez-Hernandez G. Overview of the Second Social Media Mining for
Health (SMM4H) Shared Tasks at AMIA 2017. In Proc. of the 2nd Social Media Mining
for Health Research and Applications Workshop, 2017, pp. 43-48.

[28].Kiritchenko S, Mohammad SM, Morin J, de Bruijn B. NRC-Canada at SMM4H Shared
Task: Classifying Tweets Mentioning Adverse Drug Reactions and Medication Intake.
arXiv preprint arXiv:1805 04558. 2018.

[29].Friedrichs J, Mahata D, Gupta S. InfyNLP at SMM4H Task 2: Stacked Ensemble of
Shallow Convolutional Neural Networks for Identifying Personal Medication Intake
from Twitter. arXiv preprint arXiv:1803 07718. 2018.

[30].Huynh T, He Y, Willis A, Riiger S. Adverse drug reaction classification with deep
neural networks. In Proc. of the 26th International Conference on Computational
Linguistics: Technical Papers, 2016, pp. 877-887.

[31].Gurulingappa H., Rajput A.M. et al. Development of a benchmark corpus to support the
automatic extraction of drug-related adverse effects from medical case reports. Journal
of Biomedical Informatics, vol. 45, 2012, pp. 885-892.

[32].Serrano-Guerrero J., Olivas J.A. et al. Sentiment analysis: A review and comparative
analysis of web services. Information Sciences, vol. 311, 2015, pp. 18-38

191

https://www.ncbi.nlm.nih.gov/pubmed/?term=Niu%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=16779104

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

[33]. Rusnachenko N., Loukachevitch N. Using convolutional neural networks for sentiment
attitude extraction from analytical texts. In Proc. of the Third Workshop on
Computational linguistics and language science (to be published in CEUR Workshop
Proceedings), 2018

[34]. Ivanov V., Tutubalina E., Mingazov N., Alimova |. Extracting aspects, sentiment and
categories of aspects in user reviews about restaurants and cars. Computational
Linguistics and Intellectual Technologies. Papers from the Annual International
Conference “Dialogue”, issue 14, vol. 2, 2015, pp. 22-34

[35]. Solovyev V., Ivanov V. Dictionary-based problem phrase extraction from user reviews.
Lecture Notes in Computer Science, vol. 8655, 2014, pp. 225-232.

[36]. Zhang L., Wang S., Liu, B. Deep learning for sentiment analysis. A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, issue 4, 2018.

[37].Alimova 1., Tutubalina E. Automated detection of adverse drug reactions from social
media posts with machine learning. Lecture Notes in Computer, vol. 10716, 2017, pp. 3—
15.

[38].Miftahutdinov Z.S., Tutubalina E.V., Tropsha A.E. Identifying disease-related
expressions in reviews using conditional random fields. Computational Linguistics and
Intellectual Technologies: Papers from the Annual conference “Dialogue”, issue 16, vol.
1, 2017, pp 155-166

[39].Korkontzelos 1., Nikfarjam A. et al. Analysis of the effect of sentiment analysis on
extracting adverse drug reactions from tweets and forum posts. Journal of biomedical
informatics, vol. 62, 2016, pp. 148-158.

[40].Dai H.-J., Touray M., Jonnagaddala J., Syed-Abdul S. Feature engineering for
recognizing adverse drug reactions from twitter posts. Information, vol. 7, no. 27, 2016.

[41].Karimi, S. Metke-Jimenez,A., Kemp M., Wang C.: Cadec. A corpus of adverse drug
event annotations. Journal of biomedical informatics, vol. 55, 2015, pp. 73-81.

[42].Nikfarjam A., Sarker A. et al. Pharmacovigilance from social media: mining adverse
drug reaction mentions using sequence labeling with word embedding cluster features.
Journal of the American Medical Informatics Association, vol. 22, no. 3, 2015, pp. 671—
681

[43].Nlp challenges for detecting medication and adverse drug events from electronic health
records (madel.0) (2018). University of Massachusetts Lowell, Worcester, Amhers.
Available at: https://bio-nlp.org/index.php/projects/39-nlp-challenges, accessed
15.11.2008.

[44].Alvaro N., Miyao Y., Collier N. Twimed: Twitter and pubmed comparable corpus of
drugs, diseases, symptoms, and their relations. JMIR public health and surveillance, vol.
3, no. 2, 2017.

[45].Wilson T., Wiebe J., Hoffmann P. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proc. of the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing, 2005, pp. 347—

[46].Baccianella S., Esuli A., Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource
for sentiment analysis and opinion mining. In Proceedings of the Seventh conference on
International Language Resources and Evaluation, 2010, pp. 2200-2204 (2010)

[47]. Hu M., Liu B. Mining and summarizing customer reviews. In Proc, of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004,
pp. 168-177.

192

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ hexToB Ha ypoBHE CYIIHOCTEH B aHIIOA3BIUHBIX TeKCTaX. Ipydst UCII PAH, Tom 30, Beim. 5, 2018 1., cp. 177-196

Entity-level classification of adverse drug reactions:
a comparison of neural network models

I.S. Alimova <alimovailseyar@gmail.com>
E.V. Tutubalina <tutubalinaev@gmail.com >
Kazan Federal University,
18 Kremlyovskaya street, Kazan, 420008, Russian Federation

Abstract. This paper presents our experimental work on neural network models for entity-
level adverse drug reaction (ADR) classification. Aspect-level sentiment classification, which
aims to determine the sentimental class of a specific aspect conveyed in user opinions, have
been actively studied for more than 10 years. In the past few years, several neural network
models have been proposed to address this problem. While these models have a lot in
common, there are some architecture components that distinguish them from each other. We
investigate the applicability of neural network models for ADR classification. We conduct
extensive experiments on various pharmacovigilance text sources including biomedical
literature, clinical narratives, and social media and compare the performance of five state-of-
the-art models as well as a feature-rich SVM in terms of the accuracy of ADR classification.

Keywords: adverse drug reactions; text mining; natural language processing; health social
media analytics; machine learning; deep learning

DOI: 10.15514/ISPRAS-2018-30(5)-11

For citation: Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug
reactions: a comparison of neural network models. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 177-196 (in Russian). DOI: 10.15514/ISPRAS-2018-30(5)-11

References

[1]. Murff HJ, Patel VL, Hripcsak G, Bates DW. Detecting adverse events for patient safety
research: a review of current methodologies. Journal of Biomedical Informatics, vol. 36,
issue %2, 2003, pp. 131-143.

[2]. Sarker A, Ginn R, Nikfarjam A, O’Connor K, Smith K, Jayaraman S et al. Utilizing
social media data for pharmacovigilance: A review. Journal of Biomedical Informatics,
vol. 54, 2015, pp. 202-212.

[3]. Lardon J, Abdellaoui R, Bellet F, Asfari H, Souvignet J, Texier N et al. Adverse Drug
Reaction Identification and Extraction in Social Media: A Scoping Review. Journal of
Medical Internet Research, vol 17, no 7, 2015.

[4]. Harpaz R, Callahan A, Tamang S, Low Y, Odgers D, Finlayson S, et al. Text mining for
adverse drug events: the promise, challenges, and state of the art. Drug Safety, vol. 37,
2014, pp. 777-790.

[5]. Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-
mining methodologies for adverse drug event discovery and analysis. Clinical
Pharmacology & Therapeutics, vol. 91, no. 6, 2012, pp. 1010-1021.

[6]. Tang D, Qin B, Feng X, Liu T. Effective LSTMs for Target-Dependent Sentiment
Classification [Internet]. arXiv [cs.CL], 2015. Available at:
http://arxiv.org/abs/1512.01100, accessed 15.11.2008

193

https://www.jmir.org/
https://www.jmir.org/
https://www.jmir.org/2015/7

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

[7]. MaD, Li S, Zhang X, Wang H. Interactive attention networks for aspect-level sentiment
classification. arXiv preprint arXiv:1709 00893, 2017.

[8]. Tang D, Qin B, Liu T. Aspect level sentiment classification with deep memory network.
arXiv preprint arXiv:1605 08900, 2016;

[9]. Chen P, Sun Z, Bing L, Yang W. Recurrent attention network on memory for aspect
sentiment analysis. In Proc. of the 2017 Conference on Empirical Methods in Natural
Language Processing. 2017, pp. 452-461.

[10].Benton A, Ungar L, Hill S, Hennessy S, Mao J, Chung A, et al. Identifying potential
adverse effects using the web: a new approach to medical hypothesis generation. Journal
of Biomedical Informatics, vol. 44, 2011, pp. 989-996.

[11].'Yang CC, Yang H, Jiang L, Zhang M. Social Media Mining for Drug Safety Signal
Detection. In Proc. of the 2012 International Workshop on Smart Health and Wellbeing,
2012. pp. 33-40.

[12].Liu X, Chen H. AZDrugMiner: An Information Extraction System for Mining Patient-
Reported Adverse Drug Events in Online Patient Forums / Lecture Notes in Computer
Science, vol. 8040, 2013. pp. 134-150.

[13]. Yeleswarapu S, Rao A, Joseph T, Saipradeep VG, Srinivasan R. A pipeline to extract
drug-adverse event pairs from multiple data sources. BMC Medical Informatics and
Decision Making, vol. 14, no. 13, 2014.

[14].Freifeld CC, Brownstein JS, Menone CM, Bao W, Filice R, Kass-Hout T, et al. Digital
drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Safety,
vol. 37, 2014, pp. 343-350.

[15].0’Connor K, Pimpalkhute P, Nikfarjam A, Ginn R, Smith KL, Gonzalez G.
Pharmacovigilance on twitter? Mining tweets for adverse drug reactions. In Proc. of the
AMIA Annual Symposium, 2014, pp. 924-933.

[16]. Nikfarjam A, Gonzalez GH. Pattern mining for extraction of mentions of Adverse Drug
Reactions from user comments. In Proc. of the AMIA Annual Symposium, 2011, pp.
1019-1026.

[17].Na J-C, Kyaing WYM, Khoo CSG, Foo S, Chang Y-K, Theng Y-L. Sentiment
Classification of Drug Reviews Using a Rule-Based Linguistic Approach. Lecture Notes
in Computer Science, vol. 7634, 2012. pp. 189-198.

[18].Yun Niu et al. Analysis of polarity information in medical text. In Proc. of the AMIA
Annual Symposium, 2005, pp. 570-574.

[19].Leaman R. et al. Towards internet-age pharmacovigilance: extracting adverse drug
reactions from user posts to health-related social networks. In Proc. of the 2010
workshop on biomedical natural language processing, 2010, pp. 117-125.

[20].Yun Niu, Xiaodan Zhu et al. Predicting adverse drug events from personal health
messages. In Proc. of the AMIA Annual Symposium, 2011, pp. 217-226.

[21].Bian J., Topaloglu U., Yu F. Towards large-scale twitter mining for drug-related adverse
events. In. Proc. of the 2012 International workshop on smart health and wellbeing,
2012, pp. 25-32.

[22].Yang M., Wang X., Kiang M. Y. Identification of Consumer Adverse Drug Reaction
Messages on Social Media. In Proc. of the Pacific Asia Conference on Information
Systems, 2013.

[23].Sarker A., Gonzalez G. Portable automatic text classification for adverse drug reaction
detection via multi-corpus training. Journal of biomedical informatics, vol. 53, 2015, pp.
196-207.

194

https://www.ncbi.nlm.nih.gov/pubmed/?term=Niu%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=16779104

Anumosa N.C., Tyry6amuna E.B. CpaBHHTeNIbHbIN aHATN3 HEHPOHHBIX ceTeil B 3a/aue KIacCU(UKAIN MOOOYHBIX
3¢ hexToB Ha ypoBHE CYIIHOCTEH B aHIIOA3BIUHBIX TeKCTaX. Ipydst UCII PAH, Tom 30, Beim. 5, 2018 1., cp. 177-196

[24]. Aramaki E. et al. Extraction of adverse drug effects from clinical records. Studies in
Health Technology and Informatics, vol. 160, Ne. Pt 1, 2010, pp. 739-743.

[25].Rastegar-Mojarad M., Elayavilli R.K., Yu Y., Liu H. Detecting signals in noisy data-can
ensemble classifiers help identify adverse drug reaction in tweets. In Proc. of the Social
Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing,
2016.

[26].Sarker A, Nikfarjam A, Gonzalez G. Social Media Mining Shared Task Workshop. In
Proc. of the Pacific Symposium on Biocomputing, 2016, pp. 581-592.

[27].Sarker A, Gonzalez-Hernandez G. Overview of the Second Social Media Mining for
Health (SMM4H) Shared Tasks at AMIA 2017. In Proc. of the 2nd Social Media Mining
for Health Research and Applications Workshop, 2017, pp. 43-48.

[28].Kiritchenko S, Mohammad SM, Morin J, de Bruijn B. NRC-Canada at SMM4H Shared
Task: Classifying Tweets Mentioning Adverse Drug Reactions and Medication Intake.
arXiv preprint arXiv:1805 04558. 2018.

[29].Friedrichs J, Mahata D, Gupta S. InfyNLP at SMM4H Task 2: Stacked Ensemble of
Shallow Convolutional Neural Networks for Identifying Personal Medication Intake
from Twitter. arXiv preprint arXiv:1803 07718. 2018.

[30].Huynh T, He Y, Willis A, Riiger S. Adverse drug reaction classification with deep
neural networks. In Proc. of the 26th International Conference on Computational
Linguistics: Technical Papers, 2016, pp. 877-887.

[31].Gurulingappa H., Rajput A.M. et al. Development of a benchmark corpus to support the
automatic extraction of drug-related adverse effects from medical case reports. Journal
of Biomedical Informatics, vol. 45, 2012, pp. 885-892.

[32].Serrano-Guerrero J., Olivas J.A. et al. Sentiment analysis: A review and comparative
analysis of web services. Information Sciences, vol. 311, 2015, pp. 18-38

[33]. Rusnachenko N., Loukachevitch N. Using convolutional neural networks for sentiment
attitude extraction from analytical texts. In Proc. of the Third Workshop on
Computational linguistics and language science (to be published in CEUR Workshop
Proceedings), 2018

[34]. Ivanov V., Tutubalina E., Mingazov N., Alimova |. Extracting aspects, sentiment and
categories of aspects in user reviews about restaurants and cars. Computational
Linguistics and Intellectual Technologies. Papers from the Annual International
Conference “Dialogue”, issue 14, vol. 2, 2015, pp. 22-34

[35]. Solovyev V., Ivanov V. Dictionary-based problem phrase extraction from user reviews.
Lecture Notes in Computer Science, vol. 8655, 2014, pp. 225-232.

[36]. Zhang L., Wang S., Liu, B. Deep learning for sentiment analysis. A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, issue 4, 2018.

[37].Alimova I., Tutubalina E. Automated detection of adverse drug reactions from social
media posts with machine learning. Lecture Notes in Computer, vol. 10716, 2017, pp. 3—
15.

[38].Miftahutdinov Z.S., Tutubalina E.V., Tropsha A.E. Identifying disease-related
expressions in reviews using conditional random fields. Computational Linguistics and
Intellectual Technologies: Papers from the Annual conference “Dialogue”, issue 16, vol.
1, 2017, pp 155-166

[39].Korkontzelos 1., Nikfarjam A. et al. Analysis of the effect of sentiment analysis on
extracting adverse drug reactions from tweets and forum posts. Journal of biomedical
informatics, vol. 62, 2016, pp. 148-158.

195

Alimova I.S., Tutubalina E.V. Entity-level classification of adverse drug reactions: a comparison of neural network
models. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 177-196

[40].Dai H.-J., Touray M., Jonnagaddala J., Syed-Abdul S. Feature engineering for
recognizing adverse drug reactions from twitter posts. Information, vol. 7, no. 27, 2016.

[41].Karimi, S. Metke-Jimenez,A., Kemp M., Wang C.: Cadec. A corpus of adverse drug
event annotations. Journal of biomedical informatics, vol. 55, 2015, pp. 73-81.

[42].Nikfarjam A., Sarker A. et al. Pharmacovigilance from social media: mining adverse
drug reaction mentions using sequence labeling with word embedding cluster features.
Journal of the American Medical Informatics Association, vol. 22, no. 3, 2015, pp. 671—
681

[43].Nlp challenges for detecting medication and adverse drug events from electronic health
records (madel.0) (2018). University of Massachusetts Lowell, Worcester, Amhers.
Available at: https://bio-nlp.org/index.php/projects/39-nip-challenges, accessed
15.11.2008.

[44].Alvaro N., Miyao Y., Collier N. Twimed: Twitter and pubmed comparable corpus of
drugs, diseases, symptoms, and their relations. JMIR public health and surveillance, vol.
3, no. 2, 2017.

[45].Wilson T., Wiebe J., Hoffmann P. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proc. of the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing, 2005, pp. 347—

[46].Baccianella S., Esuli A., Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource
for sentiment analysis and opinion mining. In Proceedings of the Seventh conference on
International Language Resources and Evaluation, 2010, pp. 2200-2204 (2010)

[47]. Hu M., Liu B. Mining and summarizing customer reviews. In Proc, of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004,
pp. 168-177.

196

Rock Flow Simulation by High-Order
Quasi-Characteristics Scheme

Mikhail P. Levin <mlevin@ispras.ru>
Ivannikov Institute for System Programming of RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. A pure second-order scheme of quasi-characteristics based on a pyramidal stencil
is applied to the numerical modelling of non-stationary two-phase flows through porous
media with the essentially heterogeneous properties. In contrast to well-known other high-
resolution schemes with monotone properties, this scheme preserves a second-order
approximation in regions, where discontinuities of solutions arise, as well as monotone
properties of numerical solutions in those regions despite of well-known Godunov theorem. It
is possible because the scheme under consideration is defined on a non-fixed stencil and is a
combination of two high-order approximation scheme solutions with different dispersion
properties. A special criterion according to which, one or another admissible solution is
chosen, plays a key role in this scheme. A simple criterion with local character suitable for
parallel computations is proposed. Some numerical results showing the efficiency of present
approach in computations of two-phase flows through porous media with strongly
discontinuous penetration coefficients are presented.

Keywords: Quasi-Characteristics; Two-phase Porous Media Flows; Heterogeneous Media
DOI: 10.15514/ISPRAS-2018-30(5)-12

For citation: Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics
Scheme. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 197-212. DOI:
10.15514/ISPRAS-2018-30(5)-12

1. Introduction

In recent fifteen years many high-resolution numerical schemes modifying Godunov
scheme have been proposed (see, for instance, [1-5]). However, the problem of
development of high-order schemes with monotone properties in regions near the
discontinuities of solutions remains in the focus of activities for many researchers in
numerical methods for partial differential equations (PDE) and in computational
fluid dynamics (CFD). According to the well-known Godunov’s theorem, second-
order explicit monotone schemes on the fixed stencils do not exist. Up to now, two
different ways to resolve this restriction are known. The first one uses the idea of
lowering the approximation order in the narrow regions near the discontinuities of
solution. In fact, this approach has been realized in most of the modern high
resolution schemes, because they set some restrictions on the recovery functions or

197

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

limiters to provide the monotone properties of solutions in zones where the
discontinuities could arise. An excellent analysis of this approach is presented in
[3,5]. Therefore, most of high-resolution schemes cited above are hybrid schemes,
because their approximation order is lowered in the zones near the discontinuities.
Various hybrid quasi-characteristics schemes for the solution of supersonic
aerodynamics problems and two-phase porous media problems were developed and
considered in [6-11].

The second way consists in the construction of high-resolution schemes on the non-
fixed stencils. For instance, one can apply two or more high-order schemes defined
on different stencils and choose a final solution in each nodal point among
admissible solutions to provide a monotone properties in regions where the
discontinuities could arise. Such approach was considered in [12-14]. In these
articles, various quasi-characteristics schemes of the second-order were proposed
and considered. All these schemes use a combination of two second-order
approximation scheme solutions having the different dispersion properties. A
special criterion according to which, one or another admissible solution is chosen
between two admissible solutions to provide the monotone properties near the
discontinuities, plays a key role in this scheme. In [12-13], a heuristic criterion
based on the third-order theoretical estimation of the average value of the governing
equation operator with respect to the grid cell is proposed. Unfortunately, it has a
non-local and directed character and could not be easily adopted in multi-
dimensional case and in parallel computations. In [14], simpler local and non-
directed heuristic criterions suitable for parallel computations are proposed. As is
shown in [12], the quasi-characteristics schemes are more accurate than fourth-order
approximation schemes in computing of the initial-value problems for the PDE of
hyperbolic type, because the quasi-characteristics schemes are generalization of
well-known back-ward characteristics schemes which are essentially more accurate
in comparison with all other well-known numerical schemes. The reason of this
consists in the naturally accurate treatment of the characteristic properties of the
governing equations by the quasi-characteristics schemes in comparison with
Godunov’s type schemes based on the conservation laws treatment. Therefore, in
recent years, various numerical schemes based on characteristics were proposed
[15-19] for the solution of initial boundary value problems for reaction-diffusion
equation and for correct setting of boundary conditions in decomposition of such
problems.

In this article, we consider the application of a new multidimensional scheme of
quasi-characteristics to the numerical simulation of two-phase flows through porous
media with strongly discontinuous penetration coefficients. This scheme
approximates a transport equation in the system of the porous media equations on
the pyramidal stencil without any splitting. A simple criterion suitable for the
selection of final solution among two admissible solutions to provide the monotone
properties of the final solution without spuriuos oscillations is proposed. Numerical
results for various ratio of penetration coefficients are presented. These results show

198

Jleun ML.II. YncneHHOE MOJICITHPOBAHHE IBYX(A3HBIX TCUCHUH Yepe3 CYIECTBCHHO IeTEPOreHHYIO IIOPHUCTYIO CPeITy
CXeMOH KBa3HMXapaKTEePUCTHK BBICOKOTO nopsiika. Ipyost UCIT PAH, Tom 30, Bbim. S5, 2018 ., ctp. 197-212

that the technique considered here could be efficiently used for the accurate
numerical modelling of flows through the essentially heterogeneous porous media.

2. Governing equations, initial and boundary conditions

Let us consider the problem of a numerical simulation of two-phase flows through
essentially heterogeneous porous medium with piece-wise constant absolute
penetration factor. In the two-phase case, the governing equations [20] can be
presented in the following form with respect to the water saturation s and the
pressure p as unknown functions

m(@)_ﬁ(k‘kw@ _2(@@)_0

ot Ox " e Ox oy py Oy’

O (i Fw | FoyOpy 0w | KoyOpy
oz " [+uo)8w} 82/[(uw uo)f)y]fo'

Here m is a porosity factor, k = k(z,y) is an absolute penetration factor of porous
medium, k., = k. (s) and k, = k,(s) are a relative penetration factors of water and
oil, 1, and p, are a viscosity of water and oil. Let us notice that the oil saturation
s, can be evaluated by the water saturation according to the following simple
formulas, =1 —s.

Since the relative penetration factors %, and k, are functions only of water
saturation s, then equation (1) can be presented as follows

@_(k a_p&)&_(k apﬁ)%:
Y

ot mpg, O ds / Ox My Oy ds

_ kw0 (k Op o (kD
= lor G 52) + 3y Gy 3yl

Now we see that the system of governing equations (23) is of mixed type. Equation
(3) is a nonlinear transport equation of hyperbolic type and the equation (2) is of
elliptic type. Let us consider the transport equation (3) as a main governing equation
and the elliptic equation (2) as a nonlinear restriction for coefficients of the main
governing equation. Then we can apply the quasi-characteristics technique to solve
the initial boundary-value problem for the transport equation and also on each time
level we need to solve the boundary-value problem for elliptic equation to define the
coefficients of the governing equation. In our approach, for the solution of the
boundary-value problem for the elliptic equation we use the well-known five points
finite difference conservative scheme and bi-conjugate gradient algorithm as in [7,
11].

Let us consider rectangle flow regions D =0 <2z <L, 0 <y < H divided into
two subregions D1 = 0.2L <z <0.8L, 0<y < Zand D, = D — D;.

The absolute penetration factor % in each subregion is a constant function, therefore
in all region we have

199

M)
@)

©)

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

— k17if (x,y)ED,
k_{ koo . if (.)€ D, @

Initial conditions for the transport equation (3) are
_[02, if 0<z<L, 0<y<H,
S(.’L‘yy70)_{ 1.0, if =L, 0<y<H (5)

and the boundary conditions are

%zo,ﬁt>ay=QHyogng;

s(Lyy,t)=1.0,if 0<y<H, t>0.

(6)

0.5H|-

£ 6L | . @sE &
X

Fig.1. Flow region

For the pressure equation (2) of the elliptic type we set a mixed Neumann and
Dirichlet boundary conditions as follows
I —0,if O<z<L,y=0H;

dy
= if a=L, 0<y<H.

P, and Qg are known parameters here. The relative penetration factors of the water
k., and oil k, are chosen as follows

0, if s<0.1;
¥, if 01<s<0.8; (8)
1, if s>0.8;

1, if s<0.1;
)3
0

kuw(s) = (56.07'1

if 0.1<s<08; (9)
, if $>0.8.

200

Jleun ML.II. YncneHHOE MOJICITHPOBAHHE IBYX(A3HBIX TCUCHUH Yepe3 CYIECTBCHHO IeTEPOreHHYIO IIOPHUCTYIO CPeITy
CXeMOH KBa3HMXapaKTEePUCTHK BBICOKOTO nopsiika. Ipyost UCIT PAH, Tom 30, Bbim. S5, 2018 ., ctp. 197-212

Physically, the initial boundary value problem (2-9) describes two-phase porous
media flows between two horizontal wells, where the left boundary = =0
corresponds to the production well and the right boundary = = L corresponds to the
injection well.

3. Numerical scheme

In this section, we consider a non-splitting quasi-characteristics scheme on the
pyramidal stencil applied to the solutions of the transport equation (3). Non-splitting
scheme means that we do not use in our scheme any splitting technique for solution
of the couple system of finite difference equations approximating the governing
partial differential equation. It is very important in application to problems with
heterogeneous coefficients, because in such problems sometimes splitting leads to
the lowering of exactness of solutions. We develop this scheme with respect to the
3D transport equation written in the generalized form as follows

hudiad == = 10
8t+b18x+b28y bs, (10)

satisfying the following initial conditions
U(O,I’,y) = uo(x,y) . (11)

Here u(t, ,y) is a searching function and b; = b;(t,z, y, u, 9%, g—’;), (i=1,2,3)
and ug(z,y) are given.
In quasi-characteristics schemes [10], we approximate the governing equation

written in the expanded characteristics form along some spatial grid lines [(quasi-
characteristics) in (¢, x, y) space as follows
du dx. ,0u dy. . 0u

(—)H-[bl—(E)z]%+[b2—(ﬁ)z]a—y =b3 . (12)

Here (%)z is a total derivative of the searching function « with respect to ¢ along
line .

As quasi-characteristics usually are used some grid lines belonging to the
considering stencil. They should lie in close vicinity with respect to the
characteristics of governing equation, and sometimes can coincide with them.

Now we consider a uniform, for simplicity, in each direction finite-difference grid
in space (¢, x,y). We denote grid steps 7, h,, and h, respectively. Let us consider a
pyramidal stencil P,P,P;P,R in the grid space. suppose that its basement
P, P, P; P, belongs to some data layer t =t and vertex R belongs to the new layer
t=to+ 7. Coordinates of the above mentioned vertices are follows:
Pi(to,zo + hayyo — hy), Pa(to,xo + hayyo + hy), Ps(to,zo — ha,yo + hy),
Py(to, o — hayyo — hy), R(to+ 7,20,90). Also we take into consideration
mo(to, Zo, yo) @ center point of the basement of the pyramid stencil and denote the
nodal points corresponding to the central points of the pyramid basement ribs as

201

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

follows: my(to, o + hasYo), m—(to,To — hayYo), n4(to, To, Yo + hy),
’n,,(to, Zo,Yo — hu)
We suppose that the characteristics of the transport equation going through the point
R is lying inside the considering stencil and as a quasi-characteristics we can
choose ribs P;R of the pyramidal stencil. Then approximating the expanded
characteristic form of the governing equation along these lines, we obtain

URUP; TR—TP; 1/ 0u

———+[b1)p,r — —(55) PRt

+H(b2) PR — (G) PR = (b3) PR,

where: =1,2,3,4,

(13)

Fig.2. The pyramidal stencil

According to [10] we take the following approximation of the outward derivatives
at the middle layer t = to + 3

ou ou

(%)t:twg = (%)0 + (x = 20)W +d(y — vo) , (14)
(Godimiors = (5o + (= w0V +do = z0) 15)

Here we take a center point of the middle section of our stencil (o + %, x0,%0) as

the point C' (or C;) and choose values W and V' (or W; and V7) at the middle
layer to + 5 by the formulas

W[= W(mo) = %[

Upy —2Un_ tup,

h 2
Um . —QUmQO U _ + uUp, —2u7m12+ +up,] (16)
h(t ha: ’
o _1 up, —21LM+ +up,
Vi=V(mg) =3 [7%2 a”)
Un | —2Umg+Un _ Upy —2Um _ +UP,
h?/2 + h‘yz] ’

202

Jleun ML.II. YncneHHOE MOJICITHPOBAHHE IBYX(A3HBIX TCUCHUH Yepe3 CYIECTBCHHO IeTEPOreHHYIO IIOPHUCTYIO CPeITy
CXeMOH KBa3HMXapaKTEePUCTHK BBICOKOTO nopsiika. Ipyost UCIT PAH, Tom 30, Bbim. S5, 2018 ., ctp. 197-212

We denote as W (mg) and V' (my) the finite difference operators approximating the

second order derivatives of the searching function with the second order
approximation error on the appropriate stencil with middle point mo .
By substitution of relations (14-17) into (13), we obtain a system of four equations

with respect t0 ur , (5%)c, (§%)c and d. Solving it we obtain %, . In non-linear

case, we need to do three iterations on nonlinear coefficients as is usually done in
the method of characteristics. We call the scheme considered above scheme I.
Now we construct a second scheme of the second order approximation with
different dispersive properties in comparison with scheme I. For this purpose we
choose point C7; and values W;, V;; according to the following formulas
Zf bl(zo,yo,to) > 0 and bz(xo,yo,to) > O
then W[[= VV(P4), ‘/]] = V(P4) 5
Cr1 = (Pag, Pay,to + %)
Zf bl(xo,yo,to) >0 and bg(l‘o,yo,to) <0,
then Wi =W(Ps), Vip=V(Ps),
Cr1 = (P3g, Py, to + 3)
Zf bl(xo,yo,to) <0 and bg(l‘o,yo,to) <0,
then W[[= W(Pg), ‘/]] = V(Pg) ,
Cr1 = (Pag, Poy,to + 5) ,
if bl(zo,yo,to) <0 and bg(xo,yo,to) >0,
then Wi = W(Pl), Vir = V(Pl) ,
Crr = (Piz, Pry,to + %) .
By substitution of relations (14-15) and (18) into (13), we obtain a system of four
equations with respect to uz , (3%)c, (%)c and d. Solving it we obtain u%!. As

was mentioned above in non-linear case, it is necessary to do three iterations in
evaluation of u£!. We call this scheme scheme I1.

In [12-13] for 2D case, it was shown that by choosing one of two non-monotonous
admissible solutions of the second order approximation with different dispersive
properties, one can construct the final solution with monotone properties. As in the
papers cited before, the criterion for the choosing the final solution is based on the
analysis of the average value of the governing transport equation operator evaluated
on each elementary mesh cell by the high order quadrature formulas. In this
criterion, the history of computations in previous grid points is taken into account
and therefore is not suitable for the parallel computations and in multi-dimensional
case. For 2D case, a simpler heuristic criterion based on the minimization of the
rough approximation of the average value of governing operator was proposed in
[14]. This criterion does not take into account the history of computations. It has a
local character and it is suitable for the parallel realization.

In this paper, we construct a simple heuristic criterion as a minimal principle for the

increment of searching function over the stencil in following form
U final Coumy+Cirup, +Coupy, +C3up; +Caup, ‘
R Co+C1+C24C3+Cy ’

— mi %
=M= T |uR —

203

(18)

(19)

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

Here C;, 1 =0,1,2,3,4 are some constants to be chosen. As our numerical tests
show, the best result corresponds to the following set
Co=1,C;=0,i=1,2,3,4

Thus the final solution in each grid point is chosen among two admissible solutions
ul, and u£! according to the following simple mi_nimal principle

up™ = min,_s rr |[ul — Um, |- (20)

It is easy to see that this principle has a local character and it is very suitable for
parallel computations, because it allows in principle to provide computations of
searching function in each grid node independently in separate processors in
computers with massive parallel processors and in computers with pipe-line
processors it allows to provide the maximal loading of pipe-line.

4. Results of computations

Now let us consider some numerical results obtained by the proposed method.
Computations were carried out for the following values of parameters m = 0.2,
kp, =1.0- 1072 m?2, 4y =1-100 N-sec-m™2, o =3-10"6 N - sec- m =2
, L=H=100m, Py=0, Qp=0.69444-10"12 m? - sec™!. Parameter kp,
varies in the range from 0.50- 1072 m? to 0.01- 102 m2. Thus the absolute
penetration in the subregion D, is 2 to 100 times less than those in subregion D, .
Presented results correspond to the uniform grid with 61*61 nodal points in (X,y)-
space.

The first series of results corresponds to kp, = 0.5-10~'2 m?. Fig.3 shows the
isolines of water saturation s and appropriate 3D chart for time ¢ = 400 hours.
Fig.4 and 5 show the same results for ¢+ =800 hours and ¢ = 1200 hours
respectively.

Fig.6 shows two functions characterizing the efficiency of the oil recovery process
by the water drive. Line 1 corresponds to the ratio of the recovery oil to the total oil
volume in initial moment ¢ = 0 with respect to time

J11 = s(z,y,t)|dzdy

o(t) =2 21
€ JI1 = s(z,y,0)]dzdy *)
D
and line 2 corresponds to the function
L
YL -
Y(t) = 7 (22)

L
J (B Eo) SE]ody
0

-
s
Q

204

Jleun ML.II. YncneHHOE MOJICITHPOBAHHE IBYX(A3HBIX TCUCHUH Yepe3 CYIECTBCHHO IeTEPOreHHYIO IIOPHUCTYIO CPeITy
CXeMOH KBa3HMXapaKTEePUCTHK BBICOKOTO nopsiika. Ipyost UCIT PAH, Tom 30, Bbim. S5, 2018 ., ctp. 197-212

describing the water content in ihS development mixture at the production well
corresponding to the boundary =y According to the presented results we can see
that the solution of the considering problem has a wave type and the %ont of water
wave solution is spreang faster in the upper part of the flow region ~2 with high
penetration. Subregion ! with low penetration plays the role of the partial obstacle
and the water wave also is spre%ding_irbtﬂ?seléegip% but more slowly. The second
series of results corresponds to "t and the appropriate results
are presented on Fig.7-10. In this case, we can see that there are two shock-type
water waves in the considering flow. The first wave corresponds to isolines 0.25 and
0.35 and the second corresponds to 0.45 and 0.55. According to the presented
results it is easy to see that the first shock wave is spreading through the region with
the low penetration, but the second wave stays near the right border of the low
penetration subregion.

The third series of results corresponds to kp, = 0.01-107'2 m? and the
appropriate results are presented on fig. 11-14. In this case, the water is not
spreading through the region with the low penetration and the water wave front is
stopping near the right border of the low penetration subregion, which plays a role
of a solid obstacle in the flow region.

Time t=400 hours Time t=400 hours

L)
8 8
90 e 5 &
80 £
N
3
70
&0
Y 2
50 5 2, E o
40 s
0
20
88 53
i 11 1 511
. i
0 10 20 30 40 &1 B0 70 8 8l 100

Fig.3. The water saturation at ¢ = 400 hours. kp, = 0.50 - 10712 m?.

Time =800 hours Time 1=B00 hours

e
90 /

55—
075 |

8
y T e N) 8 I
50 -
A0 Z‘Qa s
30
20 o
o 3 T

205

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

Fig.4. The water saturation at¢ = 800 hours. kp, = 0.50 - 10712 m?.

Time t=1200 hours Time 1=1200 hours
b
It

o0 ;_j
a0 (/_‘g "
7

o,

&
L5 E
=) =
y > 5
&0
40

2 ﬂ
10
E 2
% 2
0 10 20 30

9
40 &0 B0 70 &0 90 100
x

Fig.5. The water saturation at ¢ = 1200 hours. kp, = 0.50 - 10712 m?.

09r

0s8r

07 r

0B -

0ar

04r

03F

02r

01 rF

1600
t, hours

0 500 1000 2000 2500

Fig.6. Characteristics of efficiency of oil recovery.
Line 1-6(t),line2 -y(t). kp, = 0.50 - 10712 m?.

The analysis of the efficiency of the oil recovery process shows that after the
moment ¢ = 250 hours, when the water wave in the upper part of the flow region is
close to the production well (boundary = = 0), the efficiency falls down and oil
from the low penetration subregion and even from the high penetration subregion
(0<z<0.2L, 0 <y <0.5H) almost can not be developed by the water drive.

206

Jleun ML.II. YncneHHOE MOJICITHPOBAHHE IBYX(A3HBIX TCUCHUH Yepe3 CYIECTBCHHO IeTEPOreHHYIO IIOPHUCTYIO CPeITy
CXeMOH KBa3HMXapaKTEePUCTHK BBICOKOTO nopsiika. Ipyost UCIT PAH, Tom 30, Bbim. S5, 2018 ., ctp. 197-212

Time =400 hours oy
i Time =400 hours

BD\b l
| o 8

5
B0
y Q\D
ol g g ou 2
ro, 35\/’2//_:—0-—’_U

. 2 ko)
[

=
=]

@
=1

I
=]

=

v -
o
Slogs opo—————085—]
s "

o 10 20 30 40 &0 B0 70 a0 9 100

Fig.7. The water saturation at¢ = 400 hours. kp, = 0.20 - 10712 m?2.

i Time t=800 hours Time =800 hours
2 M)
a0 é ’:\
y Z
s
a0 100
Fig.8. The water saturation at¢ = 800 hours. kp, = 0.20 - 10712 ;2.
Time t=1200 hours Time 1=1200 hours
100 \\o é
a0 5,—_/) G
&
ED/_BSS/_/" o
70
B0
% S —— T £

==
Lo
Sy
=g

Fig.9. The water saturation att = 1200 hours. kp, = 0.20 - 10712 m?2,

207

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

09r

0s8r

07 r

0B

0ar

04r

03r

02r

01 r

i =00 1000 1500 2000 2500
t, hours

0

Fig.10. Characteristics of efficiency of oil recovery. Line 1-6(t), line 2 - (t).
kp, = 0.20- 10712 m?2.

According to our results, we see that in the case considered in this paper, it is
possible to develop only about 35 percents of oil by the usual water drive
technology although 70 percents of oil is contained in the high penetration
subregion. These results are in good correspondence with well-known practice.

Time =400 hours Time =400 hours

T
¥}

\"!"l’i‘f"’l it
\\\‘\Q‘ﬂ' "J'l', R i)
A

1

T
]
g ""IJJ'Imn'-':]

Wi i

Fig.11. The water saturation att = 400 hours. kp, = 0.01- 10712 m2.

5. Conclusions

Our high-precision numerical quasi-characteristics technique developed for the
transport equation of hyperbolic allows us to obtain solutions of complicated porous
media problem with essentially heterogeneous parameters without mesh fitting
procedures on rough spatial meshes. This technique can be implemented even on
small computers and workstations for fast evaluation and exact modeling of oil and
gas development technological processes.

208

Jleun M.II. YncneHHOE MOJICITMPOBAaHHE IBYX(A3HBIX TCUCHUI Yepe3 CYIECTBCHHO IeTEPOreHHYIO TIOPHUCTYIO CPeITy
CXeMOH KBa3HMXapaKTEePUCTHK BBICOKOTO nopsiika. Ipyost UCIT PAH, Tom 30, Bbim. S5, 2018 ., ctp. 197-212

100

Time t=800 hours

Time t=800 hours

iy
."ulu,,,"'lu.,,"ll,,,'”'uu
N
sy

I
ll’ﬂ i

Fig.12. The water saturation att = 800

Time 1=1200 hours

hours. kp, = 0.01 - 10712 m?.

Time 1=1200 hours

o 500

1000

1500 2000

t, hours

2500

Fig.14. Characteristics of efficiency of oil recovery.
Line1-6(t),line2 -~(t). kp, = 0.01- 10712 m?.

209

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

References

(1]

2.
3].
[41.

(5]

[6].

[71.

(8].

(9]

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17]

. B. Engquist, B. Sjogreen. High-Order Shock Capturing Methods. Computational Fluid

Dynamics Review, John Willey and Sons, 1995, pp. 210-233.

E. Godlewsky, P.A. Raviart. Numerical Approximation of Hyperbolic Systems of

Conservation Laws. Springer-Verlag, 1996, 524 p.

K.W. Morton. Numerical Solution of Convection-Diffusion Problems. Chapman and

Hall, 1996, 384 p.

S.B. Hazra, P. Niyogi, S.K. Chakrabartty. Study in non-oscillatory schemes for shock

computation using Euler equations. Computational Fluid Dynamics Journal, vol. 7,

1998, pp. 163-176.

Sh. Wo, B.M. Chen, J. Wang. A High-Order Godunov Method for One-Dimensional

Convection-Diffusion-Reaction Problems. Numerical Methods for Partial Differential

Equations, vol. 16, 2000, pp. 495-512.

M.P. Levin. A difference scheme of quasi-characteristics and its use to calculate

supersonic gas flows. Computational Mathematics and Mathematical Physics, vol. 33,

no., 1993, pp. 113-121.

M.Yu. Zheltov, M.P. Levin. Application of the quasi-characteristics scheme for the two-

phase flows through porous media. Computational Fluid Dynamics Journal, vol. 2, 1993,

pp. 363-370.

M.P. Levin. Computation of 3-D supersonic flow with heat supply by explicit quasi-

characteristics scheme. Computational Fluid Dynamics Journal, vol. 4, 1995, pp. 311-

322.

M.P. Levin, L.V. Sidorov. Hybrid modification of the scheme of the method of quasi-

characteristics on a pyramidal pattern. Computational Mathematics and Mathematical

Physics, vol. 35, no. 2, 1995, pp. 253 258.

M.P. Levin. Quasi-characteristics numerical schemes. In Hyperbolic Problems: Theory,

Numerics, Application, Springer, 1999, pp. 619-628.

A.l. lbragimov, M.P. Levin, L.V. Sidorov. Numerical investigation of two-phase fluid

afflux to horizontal well by quasi-characteristics scheme. Computational Fluid

Dynamics Journal, vol. 8, 2000, pp. 556-560.

V.M. Borisov, Yu.V. Kurilenko, I.E. Mikhailov, E.V. Nikolaevskaya. A method of

characteristics for calculation of vortex spatial supersonic stationary flows. Computing

Centre of USSR Academy of Sciences, Moscow, 1988 (in Russian).

E.V. Nikolaevskaya. One class of running finite difference schemes. Computing Centre

of USSR Academy of Sciences, Moscow, 1987 (in Russian).

D.Y. Kwak, M.P. Levin. High-Resolution Monotone Schemes Based on Qasi-

Characteristics Technique. Numerical Methods for Partial Differential Equations, vol.

17,2001, 262-276

S.-H. Chou, Q. Li. Characteristics-Galerkin and mixed finite element approximation of

contamination by compressible nuclear waste-disposal in porous media. Numerical

Methods for Partial Differential Equations, vol. 12, 1996, pp. 315-332.

H. Wang, M. Al-Lawatia, A.S. Telyakovskiy. Runge-Kutta characteristic methods for

first-order linear hyperbolic equations. Numerical Methods for Partial Differential

Equations, vol. 13, 1997, pp. 617-661.

. H. Wang, M. Al-Lawatia, R.C. Sharpley. A characteristic domain decomposition and
space-time local refinement method for first-order linear hyperbolic equations with
interfaces. Numerical Methods for Partial Differential Equations, vol. 15, 1999, pp. 1-
28.

210

Jleun ML.II. YncneHHOE MOJICITHPOBAHHE IBYX(A3HBIX TCUCHUH Yepe3 CYIECTBCHHO IeTEPOreHHYIO IIOPHUCTYIO CPeITy
CXeMOH KBa3HMXapaKTEePUCTHK BBICOKOTO nopsiika. Ipyost UCIT PAH, Tom 30, Bbim. S5, 2018 ., ctp. 197-212

[18]. M. Marion, A. Mollard. A multilevel characteristics method for periodic convection-
dominated diffusion problems. Numerical Methods for Partial Differential Equations,
vol. 16, 2000, pp. 107-132.

[19]. C.N. Dawson, M.L. Martinez-Canales. A characteristic-Galerkin approximation to a
system of shallow water equations. Numerische Mathematik, vol. 86, Issue 2, 2000, pp.
239-256.

[20]. Yu.P. Zheltov. Mechanics of Oil and Gas Bearing Formation. Nedra, Moscow, 1975 (in
Russian).

UucneHHoe MoaenupoBaHue ABYX(a3HbIX TeYeHUN Yepes
CyLLeCTBEHHO reTeporeHHyIo NOPUCTYIO cpeay CXeMou
KBa3nxapaKTepUCTUK BbICOKOro nopsiaka

M.II. Jlesur <mlevin@ispras.ru>
HUnemumym cucmemnozo npoepammupoganus um. B.11. Heannuxosa PAH,
109004, Poccus, . Mockea, yn. A. Conscenuyvina, 0. 25

AHHOTanMsi. PaccMaTpuBarOTCsl BOMPOCHI YHCICHHOTO MOJACIUPOBAHUS HECTAMOHAPHBIX
JBYX(a3HBIX MOTOKOB B MOPUCTHIX Cpelax ¢ CYLIECTBEHHO HEOAHOPOJHBIMU CBOMCTBAMH C
HOMOIIBI0 YHCIICHHONW CXEMbI KBa3MXapaKTePHCTHK BTOPOTrO MOpsAKA ammpoKcHMaiud. B
OTJIMYHE OT H3BECTHBIX CXEM BBICOKOTO MOPS/AKA, MPEICTABICHHAS CXEMa HMEET BTOPOii
HOPSIOK aNNpOKCHMAIMKH B 00JacTsAX ¢ OONBIIMMH TpajHCHTAMH DEIICHHH, a Takke
COXpaHsieT MOHOTOHHBIH XapakTep pelieHuil. DTO JOCTUTaeTcs 3a CYET BHIOOpa HTOTOBOTO
pelieHnst B Ka)KI0H pacueTHOW TOYKE U3 HECKOJBKUX JOIMYCTUMBIX PELICHHH C Pa3INIHBIMU
IUCTICPCHOHHBIMHA ~ CBOMCTBaMH. MOHOTOHHBI XapakTep pemeHus OO0ecreunBaeTCs
CIIEIMANBHBIM KPUTEpUEM BBIOOpa pelieHns, CHOPMYIUPOBAHHBIM B MPEICTABICHHON
pabote. DTOT KpHTEpHil WMEET JIOKAJIbHBIM XapakTep W yA00€H Uil MapajuielbHBIX
BBIUKMCIICHHN. D(GQEKTUBHOCT TMOJX0Ja MNPOMUTFOCTPUPOBAHA HA pEUICHHH 3ajad
BBITCCHCHHsT He(TH BOMOH B CYIIECTBEHHO HEOJHOPOJHBIX MOPUCTBHIX IUIACTAX C
ko3 durrieHTaMu aOCONMIOTHON MPOHUIIAEMOCTH, CKauyKOOOpa3HO H3MCHSIOMMMHUCS B
JECSITKA M COTHH Pas3.

KiioueBble ci10Ba: METON KBa3UXapaKTCPUCTHUK, IMaPaJUICIIbHBIC BBIYUCIICHUA, HBqu)a3HLIS
TCUCHUS, IIOPUCTHIE I'ETEPOTCHHBIC CPE/IbI.

DOI: 10.15514/ISPRAS-2018-30(5)-12

Jas mutupoBanus: Jleun M.II. UnucnenHoe MoaenupoBaHue ABYX(a3HBIX TEUESHHUH depe3
CYLIECTBEHHO T€TEPOr€HHYIO IOPUCTYIO CpEeAy CXEMOH KBa3MXapaKTEPUCTHK BBICOKOTO
nopsiaka. Tpynst UCIT PAH, tom 30, Beim. 5, 2018 1., ctp. 197-212 (Ha aHrmiickoM si3bIKe).
DOI: 10.15514/ISPRAS-2018-30(5)-12

Cnucok nutepatypbl

[1]. B. Engquist, B. Sjogreen. High-Order Shock Capturing Methods. Computational Fluid
Dynamics Review, John Willey and Sons, 1995, pp. 210-233.

[2]. E. Godlewsky, P.A. Raviart. Numerical Approximation of Hyperbolic Systems of
Conservation Laws. Springer-Verlag, 1996, 524 p.

[3]. K.W. Morton. Numerical Solution of Convection-Diffusion Problems. Chapman and
Hall, 1996, 384 p.

211

https://link.springer.com/journal/211/86/2/page/1

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

[4].

[5].

[6].

[7].

[8].

[al.

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

212

S.B. Hazra, P. Niyogi, S.K. Chakrabartty. Study in non-oscillatory schemes for shock
computation using Euler equations. Computational Fluid Dynamics Journal, vol. 7,
1998, pp. 163-176.

Sh. Wo, B.M. Chen, J. Wang. A High-Order Godunov Method for One-Dimensional
Convection-Diffusion-Reaction Problems. Numerical Methods for Partial Differential
Equations, vol. 16, 2000, pp. 495-512.

M. I1. JleBuH. Pa3HocTHas cxema KBasUXapaKTEPUCTUK U €€ NPUMEHCHUE IJIA pacueTa
CBEPX3BYKOBBIX TeUCHUI raza. JK. BRIUMCI. MaTeM. U MaTeM. ¢us., Tom 33, no. 1, 1993
r., ctp. 131-141.

M. 10. Xenros, M. II JleBun, MeTon KBa3suUXapaKTepUCTUK B 3aJadax MEXaHUKU
nopucThiX cpen. JK. BEIUUCI. MaTeM. u MateM. ¢u3., Tom 33, n0.10, 1993 r., ctp. 1594~
1599.

M.P. Levin. Computation of 3-D supersonic flow with heat supply by explicit quasi-
characteristics scheme. Computational Fluid Dynamics Journal, vol. 4, 1995, pp. 311-
322.

M. 1L JleBun, JI. B. CumopoB, I'mOpumnas moaudukanms CXEMBI METOJa
KBa3sUXapaKTEPUCTUK Ha HNUPpaMUAAIBHOM mabnone. JK. BBIYMCII. MaTEM. M MAaTEM.
¢wus., rom 35, no.2, 1995 r., crp. 310-317.

M.P. Levin. Quasi-characteristics numerical schemes. In Hyperbolic Problems: Theory,
Numerics, Application, Springer, 1999, pp. 619-628.

A.l. Ibragimov, M.P. Levin, L.V. Sidorov. Numerical investigation of two-phase fluid
afflux to horizontal well by quasi-characteristics scheme. Computational Fluid
Dynamics Journal, vol. 8, 2000, pp. 556-560.

B.M. bopucos, 10.B. Kypunenko, W.E. Muxaiinos, E.JI. Hukonaesckas. Merox
XapakTEPUCTUK JUIsA pacuecra BUXPEBBIX CBEPX3BYKOBBIX YCTaHOBUBIIUXCS
npocTpaHCTBeHHBIX Teuenuit. M.: BI] AH CCCP, 1988 r..

E. JI. Hukonaesckas. O6 0IHOM Ki1acce pa3HOCTHBIX cxeM Oeryinero cuera. M.: BI[AH
CCCP, 1987 r..

D.Y. Kwak, M.P. Levin. High-Resolution Monotone Schemes Based on Qasi-
Characteristics Technique. Numerical Methods for Partial Differential Equations, vol.
17,2001, 262-276

S.-H. Chou, Q. Li. Characteristics-Galerkin and mixed finite element approximation of
contamination by compressible nuclear waste-disposal in porous media. Numerical
Methods for Partial Differential Equations, vol. 12, 1996, pp. 315-332.

H. Wang, M. Al-Lawatia, A.S. Telyakovskiy. Runge-Kutta characteristic methods for
first-order linear hyperbolic equations. Numerical Methods for Partial Differential
Equations, vol. 13, 1997, pp. 617-661.

H. Wang, M. Al-Lawatia, R.C. Sharpley. A characteristic domain decomposition and
space-time local refinement method for first-order linear hyperbolic equations with
interfaces. Numerical Methods for Partial Differential Equations, vol. 15, 1999, pp. 1-
28.

M. Marion, A. Mollard. A multilevel characteristics method for periodic convection-
dominated diffusion problems. Numerical Methods for Partial Differential Equations,
vol. 16, 2000, pp. 107-132.

C.N. Dawson, M.L. Martinez-Canales. A characteristic-Galerkin approximation to a
system of shallow water equations. Numerische Mathematik, vol. 86, Issue 2, 2000, pp.
239-256.

TO.I1. XKentoB. Mexanuka HedrerazonocHoro miacta. M.: Henpa, 1975.

http://37.26.174.102/cgi-bin/koha/opac-search.pl?q=Provider:%D0%92%D0%A6%20%D0%90%D0%9D%20%D0%A1%D0%A1%D0%A1%D0%A0,
https://link.springer.com/journal/211/86/2/page/1

Specialized robust CFD RANS microscale
meteorological model for modelling
atmospheric processes and transport of
contaminants in urban and industrial areas

0.S. Sorokovikova <olga_sorokov@mail.ru>
D.V. Dzama <diman_sw@mail.ru>
D.G. Asfandiyarov <dasfandiyarov@ibrae.ac.ru>
The Nuclear Safety Institute of the Russian Academy of Sciences,
52, Bolshaya Tulskaya Street, Moscow, 115191, Russia

Abstract. State-of-the-art models of dispersion of contamination in the urban environment
and industrial areas employ a CFD approach in order to calculate turbulent characteristics of
flow around buildings with complex geometry. The main area of application of these models
is to facilitate licensing of potentially hazardous facilities and assessment of meteorological
conditions in the urban environment. The usage of the most popular commercial CFD
software with regard to modelling flows in the urban environment is significantly limited by
the requirement for computational mesh refinement near the surface of the building in order
to adequately resolve the characteristic scales in the viscous and buffer sublayers. On the
other hand, models based on the traditional gaussian approach cannot take into account the
complex aerodynamic effects in order to calculate turbulent characteristics of flow around
buildings with complex geometry, including the subtleties concerning atmospheric emissions
of gas-aerosol substances. Therefore, the authors developed a robust, highly specialized CFD-
RANS model and a calculation code for modelling the atmospheric dispersion of
contamination under conditions of a complex three-dimensional geometry that do not require
mesh refinement. The authors verified this model using extensive database obtained both in
the course of field experiments as well as of wind tunnel experiments. The verification results
showed that the developed model satisfies the acceptance criteria for the quality of modelling
along with foreign general-purpose codes and highly specialized codes.

Keywords: microscale meteorological models; passive tracer transport; dose calculation.
DOI: 10.15514/1ISPRAS-2018-30(5)-13

For citation: Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD
RANS microscale meteorological model for modelling atmospheric processes and
contamination transport in urban and industrial areas. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 5, 2018. pp. 213-234. DOI: 10.15514/ISPRAS-2018-30(5)-13

213

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

1. Introduction

A characteristic feature of the atmospheric transport of contaminants on a local scale
is that the vertical and horizontal dimensions of the plume are comparable with the
size of sharply outlined obstacles such as industrial buildings. Urban conditions
entail three-dimensional flows around buildings. Hence, aerodynamic effects such
as generation of recirculation zones, aerodynamic shadows, et cetera, dominate,
thereby radically changing the local wind direction and velocity from the mean
values at a larger scale. All these factors strongly influence the movement and
dispersion of the contaminant plume. Figs. 1 and 2 show typical examples of the
volume concentration distribution of contaminants near the surface obtained by
three-dimensional modeling under urban conditions and under assumption of a
smooth surface without obstacles with a uniform vertical profile of the wind
velocity. A transition from red to blue signifies a difference in concentration of
several orders of magnitude.

As can be seen from the figures, simplified approaches that do not take into account
the real geometry of the obstacles lead to a non-realistic Gaussian distribution of
contaminants.

Fig. 1. Pollutant concentration distribution taking into account the 3D model of the urban
area

State-of-the-art models of atmospheric dispersion of pollutants under urban
conditions use the CFD approach to calculate the characteristics of the turbulent
flow around buildings of arbitrary geometry. In accordance with the international
classification, such models belong to the class of microscale meteorological models
(MMM) [1]. The main area of application of such models is the analysis of the

214

Copoxosukosa O.C., [13ama JI.B., Acpanauspos JI.I'. Criermanusuposannas podactaas CFD RANS
MHKpOMaCHJTaﬁHa}I METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOC(bCpHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

environmental impact of industrial facilities, as well as the assessment of
meteorological conditions in urban areas.

Fig. 2. Pollutant concentration distribution with a uniform wind field without buildings

A distinctive feature of the modern approach to modeling the transport of
contaminants near industrial facilities and urban buildings is that it takes into
account the three-dimensional pattern of flow around buildings. As a result, it has
become possible to model aerodynamic effects and to obtain more realistic
concentration distributions, which is fundamentally impossible within the
framework of traditional Gaussian techniques.

Popular commercial CFD codes for pollutants atmospheric dispersion that take into
account realistic geometry of urban or industrial buildings are mostly limited to
simplified problems. The use of such codes for modeling flows around buildings
with complex geometry is limited by the need to refine the computational mesh near
the surfaces of buildings and the ground. Mesh refinement is necessary for the
correct modelling of processes in the viscous and buffer layers. Though, such a
significant mesh refinement can be very computationally demanding.

Current trends in tackling this problem are to employ highly specialized microscale
meteorological models designed to simulate atmospheric processes taking into
account 3D geometry of buildings.

A distinctive feature of highly specialized models is the parametrization of turbulent
flow near the surfaces of the ground and buildings based on the Monin-Obukhov
theory. Thus, one can avoid mesh refinement to resolve the viscous and buffer
layers, thereby alleviating computational demands, in contrast with general-purpose
software. A comparison was made with several foreign models of this class put to
practical use.

215

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

This paper presents a model related to the MMM class. In comparison with other
models of this class, its distinctive feature is the parametrization of the turbulent
heat flux and the kinetic energy of turbulence near the surface under both stable and
unstable temperature stratification.

In addition to calculating the concentration fields, the developed code calculates the
doses of external and internal exposure (from inhalation). External exposure is
divided into radiation from the cloud and the surface. Calculation of radiation from
the cloud and the surface takes into account the shielding effect assuming that large
buildings represented in a three-dimensional model of an industrial object
completely absorb radiation.

Therefore, the developed model and the code allows modelling flows around
buildings and calculation of volume and surface concentrations as well as the
radiation situation in the territory of an industrial facility or a city. However, this
paper describes only the MMM and verification of a part of the general software
complex modelling key parameters of atmospheric non-isotropic processes (wind,
turbulence). These parameters are the input data for modelling pollutants transport
in case of complex geometry.

There is an analog put to practical use in Europe - a commercial software MISKAM
(passive tracer, chemical compounds in urban areas, no version dealing with
radioactivity issues) [2].

In the US, there is the FEM3MP model of the Livermore laboratory. It takes into
account the specifics of radioactive contamination, but the model is not available to
third-party users [3].

2. Model Description

The paper presents a CFD-RANS model belonging to the category of microscale
meteorological models. This model allows obtaining fields of contaminant
concentrations in the atmosphere, surface deposition of buildings and the ground as
a result of the gas-aerosol release, taking into account the real geometry of the
object, the stratification of the atmosphere, and heterogeneous turbulence in the
atmospheric boundary layer.

The model is based on the incompressible Reynolds-averaged Navier-Stokes
equations. Instead of using the wall functions in the first computational cell, the
parametrization of heat flux and impulse is used in accordance with [4].

Input vertical profiles of speed and temperature are constructed in accordance with
the model of the atmospheric boundary layer using the classification of the
atmospheric stability classes according to Turner.

All calculated variables are treated as deviations from the hydrostatic balance. The
Boussinesq approximation is used.

All physical quantities in the model are dimensional, the SI system is used.

The basic equations are as follows:

216

Copoxosukosa O.C., /I3ama J1.B., Acdanauspos JI.I'. CnermanuzupoBantas pobactias CFD RANS
MHKpOMaCmTaGHaﬂ METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOCdJepHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

e Continuity equation

divi=0 1)
e Momentum transfer equation
p0@+po(ﬁ§)ﬂ:—§5P+§(pOVT§)H+pogﬁ+f (2)
ot 6,

e Heat transfer equation
do 06 - — -
E:E'FUVQZV(lTVH) (3)

e The passive contaminant (i-th radionuclide) transfer equation
%Hmwi)ﬁgzﬁ(q%q)mq 4)

In (1) — (4), U - three-dimensional vector of averaged flow velocity (m/s); p, —
undisturbed input air density near the surface of the earth (constant, ~ 1 kg/m?); t —
time (s); 6P — pressure deviation from unperturbed hydrostatic at a given height
with neutral stratification (Pa); v, — model coefficient of turbulent viscosity (m?/s);
g — the vector of gravitational acceleration (m/s?); 6, — unperturbed value of
potential temperature at a given height (K); 66 — the deviation of the potential
temperature from the unperturbed value at a given height (K); f - possible force
effect per unit volume of air (N /m?); % — model coefficient of turbulent thermal
diffusivity associated with constant factor v, ; C; — concentration value of the i-th
component of the impurity (kg/m* or Bg/m? for radioactive impurity): W, — velocity
vector of gravitational subsidence (for the aerosol component of the impurity, m/s);
Dt — model coefficient of turbulent diffusion of the contaminants associated with
constant factor v, (m?/s); Q¢ — dependent on the coordinate and time of the
emission power of the i-th component (kg/s or Bg/s).
A two-layer model of turbulence is used for the closure of the basic equations.
The classical model of turbulence k—¢ is applied to non-surface cells, that is, to
those that do not have solid faces.
The kinetic energy equation for turbulence k is as follows:

%+§(kﬂ) =§(V—T§k]+S+G—g, (5)

ot o,
where k is the kinetic energy of turbulence (m?/s?); o, — dimensionless empirical

constant (equal to 1). The term G on the right-hand side of the equation is
responsible for the generation of turbulent energy due to temperature stratification.
The parameter G is proportional to the gradient of potential temperature:

217

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

In (6), G' and @' — pulsations of the vector of the flow velocity and potential
temperature, respectively; o, — dimensionless empirical constant (0.9).

The first term on the right-hand side of the equation (5) is a parameterization of the
transfer of turbulent energy by velocity pulsations:

ouik’
o 0 [v ok %
X, 8x o, ax

J

The parameter S on the right side of the equation (5) is responsible for the
generation of turbulence energy due to shear deformations and is determined as
follows (summation is performed over repeated indices in accordance with the

Einstein rule):
ou;
Sy, | M M C)
oX; O

In the definition (8), u; is the i-th component of the averaged flow velocity. The
transfer equation for turbulent energy dissipation is as follows:

(e}

2
%\ V(et)= 6[% w} (C,S+C,4G)S-C, < (9)
ot ; k 2k
In the equation (9), & — the turbulent energy dissipation rate (m?/s>); o,, C, C,,
and C_, are dimensionless empirical constants, which are equal to, respectively:
1.3; 1.21; 1.92; 1.44 (for atmospheric problems).

The transfer equations (5) and (9) have five empirical constants: C_, C_,, C_,, o,
o, . In this form, model equations k —& are widely used to simulate turbulence, as,
for example, in [5].

The coefficient of turbulent viscosity, which is used in the Reynolds-averaged
Navier-Stokes equations, is calculated using the following formula:

k2
v =C,— (10)

In (10), C, is a dimensionless empirical constant (0.03 — for atmospheric

problems). In contrast with the classical k—¢ turbulence model, the following
parametrization for k and ¢ is used in the subsurface cells. These values are
determined by the value of the dynamic velocity (friction velocity), which is
determined by the value of the tangential component of the velocity along a solid
surface and also depends on the stability class of the atmosphere. For example, the
following relation is used for unstable (A, B, C according to Turner's classification

218

Copoxosukosa O.C., [13ama JI.B., Acpanauspos JI.I'. Criermanusuposannas podactaas CFD RANS
MHKpOMaCHJTaﬁHa}I METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOC(bCpHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

with minor modifications) and neutral stratification (D according to the same
classification) [4]:

u(z):%{In(éj—{ln[%j+2In(%)—2arctg(§)+%H, (11)

e 7 —the distance from the measurement point of the tangential component of
the flow velocity to the streamlined surface (m);

e u(z) — the tangential component of the averaged flow velocity (m/s);
e U* —the actual value of the dynamic velocity or friction velocity (m/s);
e =0.41 — the Karman constant;

where:

o r—the surface roughness, m;
e y—adimensionless constant, equal to 15;

e L —the Monin-Obukhov scale, which depends on the stability class of the
atmosphere [6] (the values are given in Table 1);

E=(1-yz/ L)”4 , dimensionless parameter.

Table 1. Monin-Obukhov scale depending on the stability class

Atmosphere stability class A B C D E F G
Mean value =5 =25 =70 | —500 55 5 1
Minimum value -10 —40 | —100 —o0 10 1 0
Maximum value 0 -10 —40 | +100 100 10 1

To determine the turbulent heat flux W&’ , where w' — the pulsation of the vertical
component of the flow velocity (m/s), and @' — the potential temperature pulsation
(K), (12) and (13) parameterizations are used, which are given below [7]. In the case
of unstable and neutral stratification, these parametrizations are as follows:

— . aAIR _HGROUND

=-Uu ; (12)
R(In(ZJ—ZIn[lM7 D
K r 2

eAIR _HGROUND

For stable stratification:

wo' =-u’

(13)

219

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

1/4

where n7=(1-Az/L) ", R=0.74, 1=9; B=4.7 (all are dimensionless constants); 6*'%

— the potential temperature in the surface layer; 0°7°“NP _ the potential temperature
of the earth, which is kept constant during calculations.

The use of such parametrizations limits the size of the computational mesh to be
20-30 times larger than the roughness value.

To calculate k and ¢, (14) and (15) formulas are used in the near-surface cells,
accordingly:

u?

k=L (14)
Ci/Z
3
=2 (15)
KZ

The model requires the following input data: three-dimensional Cartesian grid;
three-dimensional models of the buildings; wind speed and direction at a height of
10 m; atmospheric stability class; geographical latitude of the object; roughness
value of the underlying surface. The initial and boundary conditions for the
hydrothermodynamic problem are set automatically from the data listed above,
which is provided by the user.

To solve the transfer problem, it is necessary to set the parameters of the source of
release: the release rate, the nuclide composition of the source, the position of the
source in space. For each nuclide, the dry precipitation rate is required. If necessary,
there may be several point sources, and they can be placed at different points in the
computational domain.

3. Verification and Validation

Below there are some results of verification of the model and examples of its
application.

Studies have shown that the existing data sets obtained during the experiments are
not always suitable for the verification of microscale models. This impelled the
international scientific community to initiate the creation of a database that would
be more suitable for these purposes [8].

There are two approaches to solve this problem. The first approach is to create a
database for verification by collecting information from experiments conducted in
wind tunnels. The second approach gives priority to experiments conducted under
natural atmospheric conditions [9].

Both approaches have their pros and cons, it is very difficult to simulate some
phenomena in a wind tunnel experiment, such as: stratification, thermal effects as a
result of heating or cooling of building surfaces, chemical reactions, and aerosol
precipitation.

220

Copoxosukosa O.C., /I3ama J1.B., Acdanauspos JI.I'. CnermanuzupoBantas pobactias CFD RANS
MHKpOMaCmTaGHaﬂ METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOCdJepHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

On the contrary, a coarse measurement grid, which is typical of field experiments,
does not allow accurate estimation of the parameters of the inhomogeneous and
unsteady flow, which is necessary for comparison with the data obtained by
modeling.

At the present time, there exist quantitative parameters of the quality of simulation
results obtained by using microscale meteorological models. In the literature, the
simulation results are mainly characterized by two quantitative parameters.
Quantitative assessment of simulations is based on the comparison of two series of
the same size consisting of C,c and C,ps — model (calculated) and measured values
for a given physical quantity, respectively. Each element of these two series
corresponds to a certain point of measurement of the physical quantity value, which
can be either one of the components of the flow velocity or tracer concentration.

In order to verify the model, the quality of modeling was estimated by the following
values [1]:

o FA-2 (factor of 2 of observation) shows the proportion of the total number
of measurement points for which the condition (17) is met:

SN
N &
FA-2=—=-"2—(16)
n n

1L, if12<C IC, <2
N, =41, ifC, <W . (17)
0, else

e Hit Rate is defined as:
N 1

HR=—==)"N,, (18)
nono
1, if |—ee o=l < p
obs
N, =<1, if [cl, -CL|<w. (19)

0, else

In (17) and (19), C.,. and C), — elements of the series of the calculated and

measured physical quantities with the same index. In (16), N — the total number of
pairs (measurement points) for which the condition (17) is fulfilled, n — dimensions
of the input arrays (measured and calculated), that is, the total number of

221

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

measurement points. In (17), W — the threshold value of the measured flow velocity
or concentration, below which the condition (17) is considered to be satisfied
regardless of the value of the calculated flow velocity or concentration.

Similarly, in the ratio (18), N — the total number of pairs for which the condition
(19) is fulfilled; D — the accepted relative error of calculation of a physical quantity;
W — the threshold value of the absolute error of calculation of the physical
parameter, below which the condition (19) is considered to be satisfied regardless of
the actual measured and calculated values.

The parameter D takes into account the relative uncertainty of the comparison, and
the parameter W reflects the measurement uncertainty in the experiment. The value
of D recommended by the expert community is 25% [5, 10]. The value of W is
determined using statistical analysis of the variation of measurements in a series of
experiments conducted under the same conditions.

Within the COST732 project [10], a database called CEDVAL [1] (compilation of
experimental data for the validation of microscale meteorological models) was
created, consisting of a set of experiments in a wind tunnel. The geometry of the
obstacles was of varying difficulty: from one obstacle in the form of a rectangular
parallelepiped to experiments in which there were four obstacles with slanted roofs,
as well as experiments with an almost regular arrangement of 21 a rectangular
parallelepipeds.

Let us focus on the experiments themselves. Verification was performed for a series
of experiments A and B.

Experiments of the Al-1 series were characterized by a frontal flow around one
obstacle in the form of a rectangular parallelepiped, the dimensions of which are
20m x 30 m x 50 m. In this series of experiments, pairs of flow velocity
components in (u, w) and (u, v) were measured in two mutually perpendicular
planes.

In experiments of series Al-2 and Al-3, a rectangular parallelepiped strongly
elongated along the Y-axis, the dimensions of which are 25 m x 324 m x 25 m,
appeared as an obstacle. Wind direction is along the X-axis. In experiments Al-2,
measurements were taken in the vertical plane running through the center of the
obstacle. The pair of components of the flow velocity (u, w) were measured. In
experiments Al-3, measurements were carried out both in the horizontal and in the
vertical plane. In the horizontal plane, the components (u, v) were measured, and the
vertical components (u, w).

In a series of experiments Al-4, a cube measuring 25 m was frontally flown around.
The measurements of the components of the flow velocity were carried out in
several horizontal and vertical sections. In horizontal sections, pairs of components
(u, v) were measured, in vertical sections — pairs (u, w).

In experiments of the A1-5 series, a rectangular parallelepiped measuring 20 m x
30 m x 25 m was frontally flown around. A constant point source of the tracer acted

222

Copoxosukosa O.C., /I3ama J1.B., Acdanauspos JI.I'. CnermanuzupoBantas pobactias CFD RANS
MHKpOMaCmTaGHaﬂ METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOCdJepHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

near the obstacle. In the experiments, the steady-state values of the tracer
concentration in several planes of different orientations were measured.

In experiments of the A1-6 series, a cube measuring 25 meters flowed around one of
the faces at an angle of 45°. In this series of experiments, pairs of flow velocity
components (u, v) and (u, w) were measured in the horizontal and vertical planes,
respectively.

In the experiments of A1-7 series, a cubic obstacle was also considered, but the flow
was made at an angle of 40°. In this series of experiments, several components of
the flow velocity were measured in several planes of different orientations.

In the experiments of B1-1 series, there were 20 obstacles measuring 20 m x 30 m x
25 m each, arranged in a 7 x 3 pattern (one building of 21 points was missing).
Measurements of a pair of velocities (u, v) were carried out in one horizontal plane,
a pair (u, w) — in four vertical planes. In addition, a constant point source of the
tracer was present in the experiments and the steady-state field of its concentration
in one plane was measured.

In the experiments of B1-2 series, there were 4 ring obstacles with dimensions of
250 m x 250 m x 60 m, arranged according to a 2 x 2 scheme. An annular obstacle
could be obtained geometrically by separating a smaller parallelepiped from a
rectangular parallelepiped with dimensions of 130 m x 130 m x 60 m. The pairs of
velocity components (u, v) and (u, w) were measured in two horizontal and two
vertical planes.

In the experiments of B1-3 series, 4 obstacles were distant along the X-axis to a
greater distance than in the experiments of B1-2 series. The pairs of components (u,
w) and (u, v) were measured in the vertical and horizontal planes.

In the experiments of B1-4, B1-5, and B1-6 series, there were similar ring obstacles,
but with a more complex roof shape, part of which had a sloping shape. The wind
direction in these experiments differed. In all experiments, pairs of components of
the flow velocity (u, w) and (u, v) were measured in several planes of different
orientations.

The verification results based on the CEDVAL database include about 20,000 single
measurements and are presented in Table 2. This table presents the parameters FA-2
and Hit Rate for the three components of the flow velocity.

The average value of FA-2 and Hit Rate is defined as the weighted sum of these
characteristics over all experiments. The weight in each experiment is equal to the
ratio of the number of data points in this experiment to the total number of
measurement points in all experiments.

Table 2. The total values of the statistical parameters FA-2 and HIT RATE for the three
components of the flow velocity for all experiments (series A and B)

Criterion Value

FA-2 (U) 87%

223

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

FA-2 (V) 96%
FA-2 (W) 93%
Hit-rate (U) 76%
Hit-rate (V) 82%
Hit-rate (W) 75%

In Table 2, U, V, and W are the components of the flow velocity along the X, Y,
and Z axes, respectively. The verification results in Table 2 are given for all
experiments of A and B series. These results were obtained by combining the data
sets in all experiments. For several series of experiments, the verification results are
given below.
In accordance with the COST732 project documents, the acceptance criterion for
microscale meteorological models is 66% and 55% for FA-2 and Hit Rate,
respectively.
Methods for analyzing the results of modeling against measurement data have been
fairly well developed and are widely used in practice in relation to microscale
meteorological models. For verification other quantitative characteristics are also
used.
PCC (Pearson correlation coefficient):
Z (Cclalc - Ccalc)(Ctllbs - Cobs)
P=—=2L , (20)

\/i (Ccialc - C_calc)2 z (C;bs - Cobs)2

n
i=1 i=1

where P is in the range from —1 to 1. The ideal case for the model is achieved at P =

1. In the ratio (20), C_Icalc and C,, are the average values of the calculated and

measured physical quantity over the whole array. Each of the three summations is
performed over all pairs of arrays of measured and calculated values.

Statistical parameters formulated in terms of overestimation or underestimation of
measured values and representing the average offset of the calculated values are also
widely used. The following criteria are the most popular in this category.

BIAS estimates the deviation of the calculated average values from the measured,
expressing the deviation in physical units of measurement (in this case, in units of
concentration):

S

BIAS = 6calc - Cobs = %i(cri:alc - Cci>bs) (21)
i=1

The BIAS value shows the absolute value of underestimating or overestimating the
calculated values in comparison with the measured ones.

224

Copoxosukosa O.C., [13ama JI.B., Acpanauspos JI.I'. Criermanusuposannas podactaas CFD RANS
MHKpOMaCHJTaﬁHa}I METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOC(bCpHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

SAA (Scaled Average Angle difference) is a weighted average angular deviation,
which is used less frequently [11], but was used to verify the developed model:
N
2_1:|Ui||¢’i|
SAA = —— (22)

2

i=1
where ¢; — the angle between the calculated and measured flow velocity, |Ui| — the

module of the measured flow velocity at the i-th point.

SAA is used if there is a detailed measurement network that can contain data on the
direction and magnitude of the wind in several sections. It characterizes the
accuracy of wind direction modeling by calculating a weighted sum with weights
equal to the modulus of the flow velocity. The greater the flow velocity at a given
point, the more it contributes to the total amount.

The results of the statistical comparison of calculated and measured values for the
Al experiment are shown below (in Tables 3-5).

Table 3. Statistical criteria for the longitudinal velocity component (along the main flow).
Vertical section. Experiment Al

Criterion Value Best value

FA-2 98% 100%
HR 90% 100%
BIAS | —0.09260 0
PCC 0.96194 1
SAA 6.85260 0

Table 4. Statistical criteria for the vertical velocity component. Vertical section. Experiment Al

Criterion Value Best value

FA-2 98% 100%
HR 90% 100%
BIAS —0.09260 0
PCC 0.96194 1
SAA 6.85260 0

Table 5. Statistical criteria for the longitudinal velocity component (along the main flow).
Horizontal section. Experiment Al

‘ Criterion ‘ Value ‘ Best value

225

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

FA-2 93% 100%
HR 75% 100%
BIAS —0.46255 0
PCC 0.93649 1
SAA 7.61284 0

In addition to laboratory experiments, the comparison of simulated and measured
concentration values was carried out using the data of the experiment JOINT
URBAN 2003 (downtown Oklahoma). The essence of the experiments consisted in
the artificial creation of a permanent source of atmospheric emission of a passive
tracer for the subsequent restoration of the pollution pattern under the conditions of
the complex urban development of the center of Oklahoma. Elegas (SF¢) was used
as a passive tracer that does not enter into chemical reactions and does not
precipitate on solid surfaces. In one of the experiments, the results of which were
used to compare the results of the described model, SF6 gas was ejected at a
constant intensity for half an hour with neutral temperature stratification. During the
same period of time, the concentration of SF6 gas in the air was continuously
monitored with high-precision equipment, both using stationary and mobile
laboratories (installed on vehicles). The steady-state concentrations of SF6-gas
obtained by the described model with the highest readings of high-precision sensors
were compared. In the same period of time, the flow was measured at various
altitudes with the help of high-precision equipment. This dataset allowed finding an
approximation of the vertical input profile of the horizontal component of the wind
speed, which was used to simulate hydrodynamics using the developed model.

Fig. 3 shows the position of the source against the background of the three-
dimensional model of the city. Fig. 4 shows the concentration isosurfaces. Fig. 5
shows the position of the source against the background of the map and the
positions of the concentration measurement points. Fig. 6 shows profiles of
measured and calculated tracer concentrations depending on the number of the
measurement point. Green squares represent the calculation results for the
developed model, blue triangles — measurement data by stationary stations.

The tracer concentration field on the streets of a real city can be very complex. The
ratio of concentrations at close points can be at the level of three orders of
magnitude. A significant discrepancy was obtained at station number 13, where the
model results are underestimated compared to the measurement results. However,
the absolute maximum concentration (measurement station 20) corresponds to the
model results with a relative accuracy of 5%.

Let us consider the situation associated with the measuring station 13, where there
was the greatest discrepancy. Fig. 7 shows the location of this station (and station
14), as well as the isolines of the calculated tracer concentration in this area. It can
be noted that the concentration field of the tracer in this area is highly non-uniform

226

Copoxosukosa O.C., /I3ama J1.B., Acdanauspos JI.I'. CnermanuzupoBantas pobactias CFD RANS
MI/IKPOMBCH_ITHGHH?{ METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOCdJepHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

— the horizontal gradient is high. Consequently, the concentration of the tracer in the
vicinity of point 13 is much greater than in the point itself.

Fig. 4. Isosurfaces of concentration (results of modeling)

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

B -
Devon (» 3 Subway (11 F7
i US Post Office o ';f
12n13 10m1l 3 Hhank
8 " 9 Real Estate
3anag-Meiu-crpur
demy.
15 er 14 W) Church In Oklahoma City
IRS (@ Cont 1al Res . Crowe & Dunlevy
:) ontinental SOUrces . Julie D Smnky
&
5 She Oklahom 22
R raton Oklal a
17 16 ;: City Downtown
nt Center, 50th :I:
von Tower 3
Colcord (s :—é
18mn 19 2u3
21
Rnan-Lilenunan-anario 20‘ neridan Ave 3anap-UlephpaH-aseHio 3anag-Lepupa
3anan-lepunan-aseH
6un7
source -
Fig. 5. Release point and measurement stations
1E+003 A
m ¥ by
& A
l'q . 4 \
2 AA - AlE
Q, 1E+002 - A '/ S i \
\\ / ol
& L/ \ ” \
a ‘ X ! A n
o VA ! \
o A /I A
+ 1e+001 X A i
S : ! A
2 !
. ® A |
= '
g A
8 1E+000
(¢} B
]
H
ls.eel ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Measurement point number

Fig. 6. Model results against experimental values

228

Copoxkosukosa O.C., [13ama JI.B., Achanmusipos JI.I'. CnienmanusupoBannas po6actaas CFD RANS
MI/IKpOMaCH_ITa6Ha$[METEOPONOTHYECKast MOJACIb Il MOACIIMPOBAHUS aTMOC(bCpHLIX TIPOLIECCOB U MEPEHOCAa MPUMECHU B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

Fig. 7. Isolines of surface concentration in the vicinity of station 13 and 14

In addition to the calculations of the concentration fields in the model, the doses of
external and internal exposure (from inhalation) are calculated. External exposure is
divided into radiation from the cloud and the contaminated surface. Calculation of
doses from external exposure is made taking into account the effect of radiation
shielding by buildings, on the basis of the assumption that large buildings
represented in a three-dimensional model of an industrial object completely absorb
the dose-forming radiation.

The results of simulation at the Beloyarsk NPP is shown in Fig. 8 as an example of
practical usage of the model. A hypothetical scenario characterized by loss of
systemic and reliable power supply (failure of active reactor shutdown systems,
failure of the EHRS (emergency heat removal system)), depressurization of 25% of
nuclear reactor core fuel elements, which have a maximum burnout was considered.
One of the nuclides of the release is **'Cs (5-10™ Bq). The duration of the release
was 30 minutes and the source was located at the level of the roof of the reactor
building (in Fig. 8 — building with a pipe). Fig. 8 shows distribution of **'Cs surface
contamination of land and buildings (Bg/m?) at the time of the end of the source
action.

4. Cross-verification of the developed code with foreign
calculation codes

The results of the cross-verification based on the Hit Rate statistical parameter for
the vertical component of the flow velocity of the developed model with different
models are shown in Fig. 9. The measurement data was obtained as a result of a
tunnel experiment conducted by the University of Hamburg in the framework of the
COST732 project.

229

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

Fig. 8. Visualization of a concentration deposition field in the area of the Beloyarsk NPP.

100 +
OpenFoam 1.6.x (SFCD)

1t 6.2

M[SCAM 5.02

Hit rate, %
= Ok W B WU O -
o O O O O O O O
_
_
_
_
_
]
_
_
_
_
_
_

0

Fig. 9. Results of cross-verification of the developed model

Cross-verification was carried out using the results of modeling of five different
experiments (A2, A4, A6, A7, B1 of the COST 732 database — Fig. 9) by four
different calculation codes. Each component of the flow velocity was compared.
Fig. 9 shows the results of verification of the longitudinal (along the X-axis —
typical wind direction in all experiments) components of the flow velocity. The Hit
Rate values gained by foreign models are presented for several experiments of
series A and one experiment of series B separately. For the model described in this

230

Copoxosukosa O.C., /I3ama J1.B., Acdanauspos JI.I'. CnermanuzupoBantas pobactias CFD RANS
MHKpOMaCmTaGHaﬂ METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOCdJepHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

paper, the Hit Rate value is given in sum for all the experiments carried out, both
series A and series B.

Thus, the verification of the model on an international database showed that the
calculation code and the model meet the criterion of the modeling quality developed
by the international expert community [9].

5. Conclusion

In accordance with current trends in applied computational meteorology, a reliable
CFD model has been developed. The verification matrix of the developed model
and design code contains various data obtained from both large-scale field
experiments in a real city (Oklahoma City) and from laboratory experiments. It is
shown that the developed model meets the quality criteria of the simulation, defined
by the expert community for models of the same class.

References

[1]. Michael Schatzmann, Helge Olesen, Jorg Franke: COST 732 Model Evaluation Case
Studies: Approach and Results. University of Hamburg Meteorological Institute Centre
for Marine and Atmospheric Sciences, 2010, http://www.mi.uni-hamburg.de/Official-
Documents.5849.0.html

[2]. SoundPlan. MISKAM advanced. http://www.soundplan.eu/english/soundplan-air-
pollution/miskam-advanced/

[3]. Stevens T. Chan, Martin J. Leach. A Validation of FEM3MP with Joint Urban 2003
Data. Journal of applied meteorology and climatology. Vol. 46. 2007. pp. 2127-2146
Data base CEDVAL at Hamburg University, http://www.mi.zmaw.de/index.php?id=432

[4]. Randerson D., Atmospheric science and Power production. Technical Information
Center, Office of Scientific and Technical Information. United States Department of
Energy. — Vol. 1. — [S.1.], 1994 INTERNATIONAL ATOMIC ENERGY AGENCY,
Isotope Techniques in Water Resources Development and Management, C&S Papers
Series No. 2/C, IAEA, Vienna (1999) (CD-ROM).

[5]. VDI (2005). Environmental meteorology — Prognostic microscale windfield models —
Evaluation for flow around buildings and obstacles. VDI guideline 3783, Part 9.
BeuthVerlag, Berlin.

[6]. V.V. Belikov, V.M. Goloviznin, U.V. Katishkov et. all Proceeding of IBRAE RAS/ Ed.
By L.A. Bolshov Issue 9 Modeling of radionuclide transport in the environment.
Moskow:-Nauka, 2007.-229pp.

[7]. Deardorff D.W., Parameterization of the planetary boundary layer for use in general
circulation models, Mon. Wea. Rev., Vol. 100, Ne2, 1972.

[8]. COST ES1006 — Best practice guidelines, COST action ES1006, april 2015. ISBN: 987-
3-9817334-0-2

[9]. Special Issue Joint Urban 2003. Journal of Applied Meteorology and Climatology,
Volume 46, Issue 12 (December 2007)

[10]. Jorg Franke, Antti Hellsten, Heinke Schliinzen and Bertrand Carissimo: Best practice
guideline for the CFD simulation of flows in the urban environment. COST 732 report,
Hamburg, 2007, ISBN: 3-00-018312-4

231

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model

for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

[11]. A Validation of FEM3MP with Joint Urban 2003 Data Stevens T. Chan and Martin J.
Leach Lawrence Livermore National Laboratory, Livermore, California 94551, USA

CneuunanunsupoBaHHasa pobacTtHaa CFD RANS
MUKpoOMacLuTabHasa meTeoporiornyeckasa moaenb Ans
MoaenupoBaHUa aTMocdepHbIX NPOLEecCoB U NepeHoca
npMMecu B YCITOBUAX FOPOACKON U NMPOMbILLSIEHHON
3aCTpPOUKU

O.C. Coporosuxosa <olga_sorokov@mail.ru>
J.B. [[3ama <diman_sw@mail.ru>
I.T". Acghanousipos <dasfandiyarov@ibrae.ac.ru>
Hncmumym npobiem bezonacno2o pazeumus amomHou snepeemuxu PAH,
115191, Poccus, . Mockea, yn. Bonvwas Tynvckas, 0. 52

AHHoTamms. B mnocnenHue roxpl B MHUPOBOM TPAaKTUKE CYLIECTBYET TEHIEHLHA K
HCTONB30BaHUI0 cnenuanu3upoBanHeix CFD momemeit B 3agadax BBIYHCIUTENBHOM
Mereopormoruu. K TakuMm 3agagaMm OTHOCHTCA, B YaCTHOCTH, 3ajada OOOCHOBaHMS
0€30MacHOCTH TPOMBIIIICHHBIX OOBEKTOB, B TOM 4YHCIE paJHallMOHHO-OMACHBIX. OTa
TeHJEeHIUsT o0ycioBlIeHa TeM (akToM, YTO NPUMEHEHHE YHHBEPCAIBHBIX HH)KCHEPHBIX
KOJIOB OOIIEr0 Ha3HAYeHUsl TpeOyeT M3PSIHBIX BHIYMCIUTEIBHBIX MOIIHOCTEH U CBSI3aHO JTO
B IIEPBYIO OYepeab ¢ HEOOXOIMMOCTBIO CTYIIEHUs PACYETHOM CETKH K IIOBEPXHOCTSIM 3eMITH
U 31aHUH A7 paspelleHys BI3KOro U MpOMeKyTOYHOTO cnoéB. C Ipyroi CTOPOHBIL, TayCCOBBI
MOJETM HE MOTYT Y4YeCTb CIIOXHBIE a’poAnHaMH4ecKHe 3()(EKTH, BO3ZHHKAIONIWE IIPH
OOTeKaHUH 3[JaHUH CI0XKHOH KOH(UTYpaIiy, B TOM YHCIIE OMHUCATh BCE TOHKOCTH OOTEKaHMUs
COOPYKEHHH MPUMECHIO TIPH aTMOC(EPHBIX BEIOpOCax ra30-a3po30ibHEIX BemecTs. [losTomy
aBTOpaMu ObuTa paspaboraHa podactHas y3kocneunamusupoBanHas CFD-RANS mozpens u
pacu€THBIl KOA JUIT MOJAENUPOBAHMS aTMOC(EpHON MAUCIIEPCHU TPUMECH B YCIOBHSIX
CIIOXKHOWH TPEXMEPHOI TI'eOMEeTpHM, He TpeOyIoUlMe CIryLIICHUs CeTOK. ABTOpBI pabOTHI
NpOBENM BepHU(UKALUIO 3TOH MOJAENTH Ha PA3IUYHbIX JAHHBIX, IOJYYEHHBIX KaK B XOJIe
HaTYPHBIX KPYIMHOMACIITaOHBIX, TaK ¥ B XOJ€ J1aOOPaTOPHBIX TYHHEJIBHBIX YKCIIEPHMEHTOB.
Jnst oTHX menel ObUTa MCHONB30BaHA, B YAaCTHOCTH, PEKOMEHIOBAHHAs MEKTYHAPOJHBIM
OKCHEPTHBIM ~ COOOmECTBOM 0a3a MAaHHEIX W COOTBETCTBYIONIME CTATHCTHYECKHE
XapaKTePUCTHKH COOTBETCTBHS PACCUMTAHHBIX U IIOMYYEHHBIX B XOJAE AKCHEPHMEHTOB
3HAQUCHNS! KOMIIOHEHT CKOPOCTH TEYeHHS W KOHIEHTpAIMM TNpHMecH. Pe3ynbTars
Bepu(UKALMK TI0Ka3ald, 4YTO pa3padOTaHHash MOJETb YAOBICTBOPSET NPUEMOYHBIM
KPUTEPHUSIM KauecTBa MOACIMUPOBaHHS HapaBHE C 3apyOeKHBIMHU KOJIaMHU OOIIIEro Ha3HAuYSHHUsI
U y3KOCHIEUAIN3UPOBAHHBIMHU KOJaMH.

KiroueBble cioBa: MI/IKpOMaCLLlTa6HbIe METCOPOJIOTHYECKHUE MOICIIHN, NEPEHOC NPUMECH,
pacueTr no3.

DOI: 10.15514/ISPRAS-2018-30(5)-13

232

Copoxosukosa O.C., [13ama JI.B., Acpanauspos JI.I'. Criermanusuposannas podactaas CFD RANS
MHKpOMaCHJTaﬁHa}I METEOPOJIOTHYIECKAsA MOJCIb MJII MOACIUPOBAHUS aTMOC(bCpHLIX IIPOLIECCOB U NEPEHOCA IIPUMECH B
YCIIOBHSIX TOPOJICKON U MPOMBILIICHHOM 3acTpoiiku. Tpyost UCIT PAH, Tom 30, Bbin. 5, 2018 r., crp. 213-234

Jas wurupoBanusi: CopoxoBukoBa O.C., [Izama J.B., Acdauguipos JI.I'
CneunanusupoBannas podactHass CFD RANS wmukpomacmTabHas MeTeoposorndecKas
MOJIENb JUISI MOJEIHPOBAHUS aTMOC(HEPHBIX MPOILECCOB M IIEpeHOCa IPHMECH B YCIOBHUSIX
ropozackoil u mpomslnuieHHo# 3actpoiiku. Tpynsl ICII PAH, Tom 30, Bemm. 5, 2018 r., ctp.
213-234 (na anrmmiickoM si3bike). DOI: 10.15514/ISPRAS-2018-30(5)-13

Cnucok nutepatypbl

[1]. Michael Schatzmann, Helge Olesen, Jorg Franke: COST 732 Model Evaluation Case
Studies: Approach and Results. University of Hamburg Meteorological Institute Centre
for Marine and Atmospheric Sciences, 2010, http://www.mi.uni-hamburg.de/Official-
Documents.5849.0.html

[2]. SoundPlan. MISKAM advanced. http://www.soundplan.eu/english/soundplan-air-
pollution/miskam-advanced/

[3]. Stevens T. Chan, Martin J. Leach. A Validation of FEM3MP with Joint Urban 2003
Data. Journal of applied meteorology and climatology. Vol. 46. 2007. pp. 2127-2146
Data base CEDVAL at Hamburg University, http://www.mi.zmaw.de/index.php?id=432

[4]. Randerson D., Atmospheric science and Power production. Technical Information
Center, Office of Scientific and Technical Information. United States Department of
Energy. — Vol. 1. — [S.1.], 1994 INTERNATIONAL ATOMIC ENERGY AGENCY,
Isotope Techniques in Water Resources Development and Management, C&S Papers
Series No. 2/C, IAEA, Vienna (1999) (CD-ROM).

[5]. VDI (2005). Environmental meteorology — Prognostic microscale windfield models —
Evaluation for flow around buildings and obstacles. VDI guideline 3783, Part 9.
BeuthVerlag, Berlin.

[6]. V.V. Belikov, V.M. Goloviznin, U.V. Katishkov et. all Proceeding of IBRAE RAS/ Ed.
By L.A. Bolshov Issue 9 Modeling of radionuclide transport in the environment.
Moskow:-Nauka, 2007.-229pp.

[7]. Deardorff D.W., Parameterization of the planetary boundary layer for use in general
circulation models, Mon. Wea. Rev., Vol. 100, Ne2, 1972.

[8]. COST ES1006 — Best practice guidelines, COST action ES1006, april 2015. ISBN: 987-
3-9817334-0-2

[9]. Special Issue Joint Urban 2003. Journal of Applied Meteorology and Climatology,
Volume 46, Issue 12 (December 2007)

[10]. Jorg Franke, Antti Hellsten, Heinke Schliinzen and Bertrand Carissimo: Best practice
guideline for the CFD simulation of flows in the urban environment. COST 732 report,
Hamburg, 2007, ISBN: 3-00-018312-4

[11]. A Validation of FEM3MP with Joint Urban 2003 Data Stevens T. Chan and Martin J.
Leach Lawrence Livermore National Laboratory, Livermore, California 94551, USA

233

Sorokovikova O.S., Dzama D.V., Asfandiyarov D.G. Specialized robust CFD RANS microscale meteorological model
for modelling atmospheric processes and contamination transport in urban and industrial areas. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018. pp. 213-234

234

Numerical simulation of motions of a ship
with a moonpool in head waves

K.D. Ovchinnikov <ovchinnikov_kd@mail.ru>
Saint Petersburg State Marine Technical University,
3, Lotsmanskaya St., Saint Petersburg, 190121, Russia

Abstract. The paper shows the results of assessing the possibilities of computational fluid
dynamics for predicting the motions of a ship with a moonpool and vertical water motions in
a moonpool in regular head waves with a zero ship speed. A moonpool is a well which is
used in different types of ships such as cable laying, drill and FPSO, survey, research and so
on. This well is used for launching and lifting of different devices, divers, rescue bells, cables
and risers, which are protected from outboard wind and waves. The results of the numerical
simulation in the OpenFOAM software of heave and pitch motions of the DTMB 5415 model
in regular head waves with and without ship speed show good agreement with the
experimental data. The experiment was organized with a series 60 model, which was
equipped with different moonpool shapes modules in regular head waves with a zero ship
speed for determining heave and pitch RAOs and vertical water motions in the moonpool.
The results do not show any influence of the moonpool for heave and pitch ship motions.
These data are necessary for numerical simulation verification. The results of the numerical
simulation of experimental research show good agreement, which means the good efficiency
of computational fluid dynamics in heave and pitch motions and vertical water motions in
moonpool calculation of a ship with a moonpool. Numerical simulation should be advised for
calculations during the ship design process.

Keywords: numerical simulation; CFD; experiment; moonpool; heave motions; pitch
motions; RAO; DTMB 5415; series 60; OpenFOAM.

DOI: 10.15514/ISPRAS-2016-30(5)-14

For citation: Ovchinnikov K.D. Numerical simulation of motions of ship with moonpool in
head waves. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 235-248. DOI:
10.15514/ISPRAS-2016-30(5)-14

1. Introduction

The moonpool is a vertical well that is used on different types of ships, such as
cable laying, mining and drilling, rescue, research, supply and support, is called the
moonpool. This moonpool is intended for lowering and lifting various equipment,
divers or rescue bells, cables or risers protected from external waves.

There are vertical water motions in the moonpool. Usually the amplitudes of water
motions are no greater than the amplitudes of incoming waves. In rare cases,

235

Ovchinnikov K.D. Numerical simulation of motions of ship with moonpool in head waves. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 235-248

resonant motions can occur, which can be four times larger than the amplitude of
the incoming wave, and which can lead to the damage of the ship or the equipment
located in the moonpool [1].

An experiment is organized to determine the characteristics of ship motion. The
most common method for studying ship motion is forced motions in regular waves,
which result RAO and phase lags of the studied types of ship motion [2].

However, the experiment is a complicated and expensive event; therefore, the use of
numerical methods to solve the problems of ship hydromechanics is becoming
increasingly popular.

Nowadays, methods of computational fluid mechanics (CFD) are widely used for
calculating ship resistance and are also actively used for developing approaches to
calculations ship motions.

In this paper, the following tasks are solved:

e The verification of CFD methods for calculations of heave and pitch
motions RAO and phase lags;

o The experimental research of the motions of the ship with a moonpool
without ship speed in head waves;

e The verification CFD methods for calculations of heave and pitch motions
and vertical water motions RAO of the ship with moonpool.
The experimental research is needed because there are not any open experimental
data of motions of ship with moonpool.
OpenFOAM software is used like CFD methods [3].

2. Preparation of numerical simulation in OpenFOAM

The Navier-Stokes equation for an incompressible fluid is defined as a system of
momentum conservation equations and the continuity equation.

At high Reynolds numbers, computations with direct numerical simulations are
accompanied by either large time costs or large computational powers; therefore,
the time-averaged Navier-Stokes equations, called Reynolds equations, are
commonly used to simulate turbulent flows. These equations are derived from the
Navier-Stokes equations by splitting the pressure velocity fields into an average
value and fluctuation [4].

The two-parameter turbulence model k-o SST is used to close the system of
equations [5].

Discretization of fundamental equations in the OpenFOAM software is performed
using the finite volume method; the free surface is simulated using the modified
volume of fluid method.

The motion of a solid body with six degrees of freedom can be described by the
dynamic Euler equations [6]. The standard interDyMFoam solver was chosen for
solving assigned tasks.

236

OpunnHukoB K.JI. YnclieHHOE MOJICITHPOBAaHHE KAUKU Cy/HA C ITAXTHBIM YCTPOMCTBOM Ha BCTPEYHOM BOJHEHHH.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 235-248

The internal utilities of the OpenFOAM package, such as topoSet, refineMesh and
snappyHexMesh, are used to create the mesh.

Built-in boundary conditions, such as waveVelocity and waveAlpha for velocity and
phase fraction respectively, at the input boundary, and functions like
verticalDamping for the fvOptions file in the numerical beach zone that appeared in
the OpenFOAM-5.0 version, are used to simulate regular waves.

In order to simulate the ship dynamics at sea, it is necessary to create a high-quality
mesh not only in the free surface zone but also on a general scale. The
recommended dimensions of the mesh in the numerical simulation of ship dynamics
at sea are presented in fig. 1. In fig. 1 L is the length of ship or the wavelength,
whichever is greater.

2L L L 2L (3-4)L
|
-
~
Wave-making Object Zone Wave-damping Numerical beach
zone zone behind zone zone
the object|

Fig. 1. Recommended dimensions of mesh for numerical simulation of ship dynamics

3. Numerical simulation of heave and pitch motions

According to the recommendations of ITTC, the study of ship motions at regular
waves should be carried out under the following conditions [7]:

¢ the ratio of wave height to its length or wave height to model length should
be constant (the recommended ratio of wave height to its length is about
1/50);
o wavelengths should vary in the range from 0.5 to 2 lengths of the model
under study;
o the optimal number of motions in tests for analyzing the motion
characteristics is not less than 10.
The heave and pitch motions were simulated for the DTMB 5415 model (a ship of
the Arleigh Burke-class, US Navy). Experimental data used to verify the results of
numerical simulations are presented in [8].
Characteristics of the DTMB 5415 hull: length between perpendiculars Ly, =
3.048 m, width B = 0.409 m, draft T = 0.132 m, displacement D = 83.5 kg, vertical
center of gravity zy = 0.163 m, moments of inertia Jsy = 1.92 kg:m® and Jss =
48.5 kg-m®.

237

Ovchinnikov K.D. Numerical simulation of motions of ship with moonpool in head waves. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 235-248

The simulation was performed at two ship speeds corresponding to Froude numbers
of Fn = 0 and Fn = 0.28. Head waves was simulated. The model had only two
degrees of freedom — heave and pitch motions.

It was created the mesh with an axis of symmetry possessing the following
characteristics: the number of cells was ~ 1.5 million, the maximum proportionality
coefficient was ~ 57, the maximum twist factor was ~ 2.4, the average non-
orthogonality was ~ 4.3, the average value of the dimensionless characteristic was
y+=1.

All calculations were made on the computer cluster of the Department of Hydro and
Aeromechanics and Marine Acoustics and the Department of Applied Mathematics
and Mathematical Modeling of St. Petersburg State Marine Technical University.

2 /h,
0.60 *
050 -
040
0.30 *
020 > _—Tf_""
0.10 ‘
0.00 T
a 3.00 350 400 450 5.00 5.50 6.00 6.50 m,radfs
/oy
0.80 *
\ *
o \
040 \
020 .
———
0.00
b 3.00 3.50 ‘A.UU 4.50 5.00 5.50 . E.lUU . 6.50 m,radfs
¢ Experiment == Numerical simulation

Fig. 2. RAO of heave (a) and pitch (b) motions without ship speed.

200
L4
4
150 ""__.—-—- \\\\\
100 *)
/ .
50
/{
a e
a 300 350 4.00 450 500 550 600 650 o, radls
0
.
Py 29 /._.————‘
50 // *
.
-50 {/
|
-120
-150
3.00 3.50 4.00 450 5.00 5.50 6.00 6.50 ©, rad/s
b + Experiment =#—Numerical simnlation

238

OunnnnkoB K.J[. YucaeHHOE MOJICIMPOBaHHE KauKU CYHA C IIAXTHBIM YCTPOICTBOM HA BCTPEYHOM BOJHCHHH.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 235-248

Fig. 3. Phase lags of heave (a) and pitch (b) motions without ship speed

2 /h,
1.00 I :
0.80 '\‘
0.60 \
0.40 &
020 -— - "
0.00 hd
a 3.00 350 4.00 450 5.00 550 6.00 6.50 (o,radJ's
.
1.00 x
0.80 “
0.60 \‘
0.40 \
*
0.20
T~
0.00
b 3.00 3.50 .4.00 4.50 5.00 5.50 . E.UU . 6.50 ©, rad’s
+ Experiment =—a—Numerical simulation

Fig. 4. RAO of heave (a) and pitch (b) motions with Fr = 0.2

80

9, 40 . +
20 yARNS
4 a
0 T /]
20 —— y 4
40 i //_
50 ‘\ ’/
~
-80
a 300 350 400 450 5.00 550 600 650 ©,rads
0
Py

-50

-100

-150 i . /‘(

TE—
[
200 . *
-250
3.00 350 400 450 5.00 5.50 6.00 6.50 m,raﬂfs
b ¢ Experiment == Numerical simulation

Fig. 5. Phase lags of heave (a) and pitch (b) motions with Fr = 0.28

According to the simulation results, the RAO and phase lags of heave and pitch
motion are obtained and presented in figs. 2-5. In figs. 2-5, the following notation is
used: 2¢/h,, — dimensionless amplitude of the heave motions of the ship (ratio of
absolute heave motions { to the amplitude of incoming waves h,/2, where h,, —
height of the incoming waves), ¢ — the phase lags of heave motions of the ship,
yla,, — dimensionless amplitude of the pitch motions of the ship (the ratio of

239

Ovchinnikov K.D. Numerical simulation of motions of ship with moonpool in head waves. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 235-248

absolute pitch motions v to the angle of the incoming wave oy), ¢, — the phase lags
of pitch motions of the ship, o — the frequency, rad/s.

Analyzing figs. 2-5, it can be concluded that numerical simulation allows estimating
well enough the RAO and phase lags of heave and pitch motion both without and
with ship speed.

At the same time, there is no need for additional calculations to assess the effect of
grid convergence since the obtained results satisfy engineering accuracy, and the
speed of calculation (about 24 hours for one RAO and phase lags) allows using this
approach in the different stages of ship design process.

4. Experimental research of motions of ship with moonpool

The place of the research is the towing tank of the Ship Theory Department of the
St. Petersburg State Maritime Technical University.
A plunger wave producer is used to create the incoming waves. The installed wave
producer can create only two-dimensional regular waves.
In order to perform the experiment, the series 60 model was created with the
following characteristics: length between perpendiculars Ly, = 2.09 m, width B =
0.289 m, draft T = 0.125 m, displacement D = 45 kg. In order to study the effect of
the presence of moonpool, a model was created with a modular insert in the
longitudinal center of buoyancy. Three modules have been developed:
e module No. 1 —no moonpool;
¢ module No. 2 — a circular moonpool with an internal diameter of d., =
0.044 m and a relative diameter of d,,/B = 15%);
e module No. 3 —a moonpool of the circular cross-section with an inner
diameter d,, = 0.074 m and a relative diameter d,,,/B = 25%.
Three-dimensional models of the ship with different modules are presented in
Fig. 6.

Fig. 6. Bottom view for 3D models with different moonpool modules: upper — module No. 1,
middle — module No. 2, lower — module No. 3

240

OBYHHHHKOB K.,H. YucnenHoe MOJCIIMPOBAHUE KAYKHA Cy/IHA C ITAXTHBIM yCTpOﬁCTBOM Ha BCTPEYHOM BOJIHCHHH.

Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 235-248

The following model characteristics were obtained based on the results of static and
dynamic calibrations: the longitudinal center of gravity from the midsection
Xg =-0.03 m, the transverse center of gravity y, = 0.00 m, the vertical center of
gravity z, = 0.10 m, the moments of inertia J,4 = 0.8 kg-m? and Jss = 6.5 kg-m”.

The model was tested in regular head waves with length ranging from 1.5 to 4.0 m.
The image of the motions of the model on the 4.0 m wave is shown in fig. 7.

Fig. 7. Ship motions in head waves with a length of 4.0 m

As the experimental results, the heave and pitch motions data were obtained, as well
as the vertical water motions in moonpool. After processing the data, RAO of heave
and pitch motions of the model with different modules, as well as the vertical water
motions in moonpool, which are shown in Figs. 8-10 respectively. In Figs. 8-10,
approximating lines for each RAO are additionally presented.

2/h, \
0.70 .
0.60 '?\ -e\ .
050 \\\'
.

040 “ *
030 *

od -
0.20 RSN

e

0.10 -
0.00

3.00 3.50 4.00 4.50 5.00 5.50 600 o,rads 700
* ModuleNo.1 *ModuleNo.2 e ModuleNo.3

241

Ovchinnikov K.D. Numerical simulation of motions of ship with moonpool in head waves. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 235-248

Fig. 8. RAO of heave motions for the model with different moonpool modules.

W/ O
0.90

0.80
0.70 \

0.60 \ i
0.50 ™

\l
0.40
0.30 “ \K

0.20 L

0.10
0.00

3.00 3.50 4.00 4.50 5.00 3.50 600 w,rads 700
¢ ModuleNo.1 e ModuleNo.2 e ModuleNo.3

Fig. 9. RAO of pitch motions for the model with different moonpool modules.

0.40 e

030

020

0.00

3.00 3.50 4.00 4.50 5.00 550 6.00 @,rad/s 7.00
* ModuleNo.2 *ModuleNo. 3

Fig. 10. RAO of water vertical motions in the moonpool for the model with different
moonpool modules.

Analyzing the RAO presented in figs. 9 and 10, it can be concluded that the
presence of a circular moonpool with a diameter up to 25% of the ship width does
not affect the heave and pitch motions.

5. Numerical simulation of motions of ship with moonpool

In order to perform numerical simulations, three-dimensional models of the series
60 ship shown in fig. 6 were developed.

242

OBYHHHHKOB K.,H. YucnenHoe MOJCIIMPOBAHUE KAYKHA Cy/IHA C ITAXTHBIM yCTpOﬁCTBOM Ha BCTPEYHOM BOJIHCHHH.

Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 235-248

In order to study the heave and pitch motions, meshes were created with an axis of
symmetry with the number of cells ranging from 1 to 1.5 million, depending on the
wavelength. The characteristics of meshes are similar to those obtained in the
numerical simulation of the DTMB 5415 hull.

According to the results of the numerical simulation, RAO of the heave and pitch
motions of the ship, as well as the vertical water motions in moonpool were
obtained and are presented in figs. 11-13 for models with modules No. 1-3,
respectively.

22/hy
0.50 L\

0.60 '\.\

0.40 N.\

0.20 o

0.00

g 300 350 400 430 500 550 600 @,rads 7.00
v/ v

0.80 T~

™~

0.60 1\\
L
™~
0.40 ~
0.20 —

0.00
p 300 350 400 450 500 550 600 @,radfs 700

——Experiment ¢ Numerical simulation

Fig. 11. RAO of heave (a) and pitch (b) motions of the model with module No. 1.

243

Ovchinnikov K.D. Numerical simulation of motions of ship with moonpool in head waves. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 235-248

2¢/hy
0.80 \\
060 PN

020 ;‘"'"""-——-...

0.00

g 300 350 400 450 500 550 600 @,radls 7.00
Y/ Oy

030 L\-..:

060
N

™~
040 \\
0.20 “*-..__‘\
0.00

b 3.00 350 4.00 450 5.00 550 6.00 ¢, rad/s 7.00

2h/h,

0.80

0.60 —

——

0.40 —

0.20

0.00
¢ 300 350 400 450 500 550 600 @,rads7.00

—— Experiment ® Numerical simulation

Fig. 12. RAO of heave (a) and pitch (b) motions and vertical water motions in the moonpool
(c) of the model with module No. 2.

244

OpunnHukoB K.JI. YnclieHHOE MOJICITHPOBAaHHE KAUKU Cy/HA C ITAXTHBIM YCTPOMCTBOM Ha BCTPEYHOM BOJHEHHH.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 235-248

22/hy
0.80 \\
.\
0.60 -~
\
0.40
L
0.20 . ——a
0.00
g 300 350 400 450 500 550 600 @,rad/s 7.00

b 300 350 4.00 4.50 5.00 5.50 6.00 @, rad/s 7.00

2h/h,
0.80 e
l/
0.60 /
.
0.40
.._-—---;""'
0.20 .
0.00

. 300 350 400 450 500 550 600 @,rads7.00

——Experiment ® Numerical simulation

Fig. 13. RAO of heave (a) and pitch (b) motions and vertical water motions in the moonpool
(c) of the model with module No. 3.

Upon analyzing the data presented in figs. 11-13, it can be concluded that numerical
simulation allows determining the characteristics of the heave and pitch motions of
ships with moonpools of different diameters in head sea with good accuracy.
In this case, attention should be paid to figs. 12¢ and 13c, which present RAO of the
vertical water motions in moonpool. It can be noted here that in the considered
frequency range, numerical simulation allows determining the motions
characteristics of the water in moonpool with sufficiently good accuracy. However,
in fig. 12b, there are differences in the trends of numerical simulation and the
experimental results, especially during subsequent extrapolation to the high-
245

Ovchinnikov K.D. Numerical simulation of motions of ship with moonpool in head waves. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 235-248

frequency zone. This remark is unfair for the results of the model with module No. 3
simulation.

Numerical simulation of the motion of ship with moonpool can be recommended in
the different stages of ship design process for determining the characteristics of ship
motions and the vertical water motions in moonpool.

6. Conclusion

The paper shows the results of assessing the possibilities of computational fluid
dynamics for predicting the motions of a ship with a moonpool and vertical water
motions in a moonpool in regular head waves with a zero ship speed.

The results of the numerical simulation in the OpenFOAM software of heave and
pitch motions of the DTMB 5415 model in regular head waves with and without
ship speed show good agreement with the experimental data.

The experiment was organized with a series 60 model, which was equipped with
different moonpool shapes modules in regular head waves with a zero ship speed for
determining heave and pitch RAOs and vertical water motions in the moonpool. The
results do not show any influence of the moonpool for heave and pitch ship motions.
These data are necessary for numerical simulation verification.

The results of the numerical simulation of experimental research show good
agreement, which means the good efficiency of computational fluid dynamics in
heave and pitch motions and vertical water motions in moonpool calculation of a
ship with a moonpool. Numerical simulation should be advised for calculations
during the ship design process.

Numerical simulation of the motion of ship with moonpool can be recommended in
the different stages of ship design process for determining the characteristics of ship
motions and the vertical water motions in moonpool.

References

[1]. Guilhem Gaillarde and Anke Cotteleer, Water motion in moonpools empirical and
theoretical approach. Maritime Research Institute Netherlands MARIN, 2001.

[2]. Borisov R.V., Semenova V.Y. Ship motions. SPb.: Publ. SMTU, 2015. 93 p. (in
Russian).

[3]. https://openfoam.org/ (01.09.2018).

[4]. Henry Peter Piehl. Ship Roll Damping Analysis. Von der Fakultit fiir
Ingenieurswissenschaften, Abteilung Maschinenbau und Verfahrenstechnik, der
Universitit Duisburg-Essen zur Erlangung des akademischen Grades eines. Doktors der
Ingenieurswissenschaften Dr.-Ing. April 2016.

[5]. Menter, F. R. Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA Journal, vol. 32, No. 8, 1994, pp. 1598-1605.

[6]. Ovchinnikov K.D., Tryaskin N.V., Tkachenko I.V. Numerical simulation of semi-
submersible rig motions in regular waves. Marine intellectual technologies. Ne 2 (28)
V.1 2015 (in Russian).

246

OpunnHukoB K.JI. YnclieHHOE MOJICITHPOBAaHHE KAUKU Cy/HA C ITAXTHBIM YCTPOMCTBOM Ha BCTPEYHOM BOJHEHHH.
Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 235-248

[7]. ITTC — Recommended Procedures and Guidelines. Seakeeping Experiments. 7.5-02 07-
02.1. 2014.

[8]. Irvine, M., Longo, J. and Stern, F. Pitch and Heave Tests and Uncertainty Assessment
for a Surface Combatant in Regular Head Waves, Journal Ship Research, vol. 52, No. 2,
June 2008, pp. 146-163.

YucneHHoe mMoaennmpoBaHue Ka4dkm cyaHa C WaxXTHbIM
YCTpOVICTBOM Ha BCTPe4YHOM BOJIHEHUU

K. Osuunnuxoe <ovchinnikov_kd@mail.ru>
Cankm-Ilemepbypeckuil 20cy0apcmeeHHblil MOPCKOU MeXHUYeCKull yHugepcumen,
190121, Cankm-Ilemep6ype, ya. Jloymanckas, 3

AHHoOTanusi. B pabore mpuBOAATCS pe3ynbTaThl OLEHKH BO3MOXHOCTH HMPUMEHEHHS
COBPEMEHHBIX CPEJCTB BEIYHUCIUTENBHON THAPOMEXaHUKH AT ONpeIeNeH s XapaKTepUCTHK
Ka4yK{ Cy[Ha C IIAaXTHBIM YCTPOMCTBOM M KOJEOaHMI JKHIKOCTH B IAXT€ Ha BCTPETHOM
BOJIHEHHH TIPH OTCYTCTBUH CKOPOCTH Xoa. I1laxToi Ha3bIBaeTCSI «KOIOJEID», HCIIOIb3yeMBbIit
Ha pPa3IMYHBIX THIAX CYHOB, TAKUX KaK, KaOeJeyKJIaJOYHBIX, MOOBIYHBIX H OYpOBBIX,
criacaTelIbHBIX, HCCIIEJOBATEIbCKHX, CHAOKEHN U obecriedeHns. JTa axTa IpeHa3HaueHa
UL CHycKa ¥ IIOJbeMa pa3iIM4HOrO O0OOpYHOBaHHS, BOAOJA30B HIM CIAcaTENbHBIX
KOJIOKOJIOB, Kabeneil min paif3epoB, 3allMIICHHBIX OT BO3JCHCTBHS BHEIIHETO BOJIHEHHS.
PesynpTaTel 4MCIEHHOTO MOJENMPOBaHMS B mporpaMMHOM Komiuiekce OpenFOAM
npoponbHOH kKaukn Monenmu DTMB 5415 Ha BCTpedHOM pETYJSIpHOM BOJIHEHHH TIPH
HAJIMYUN ¥ OTCYTCTBUSI CKOPOCTH X0J1a MOKA3aJIH, YTO YHCICHHOE MOJEIHPOBAHIE TTO3BOJISET
C BBICOKOH 3((EKTHBHOCTBIO OIPEASNATh AMILUIUTYIHO-JaCTOTHBIE M (ha30BO-4ACTOTHEIE
XapaKTePUCTHKU BEPTUKAJIBHON M KHJIEBOW KaukH cyqHa. [IpoBeeHHOE IKCIIepUMEeHTaIbHOE
uccreioBaHre Mojaenu cepud 60 0e3 mIaXThl M C JBYMs IIAXTaMH KPYIJIOTO CEYSHUs
Pa3IM4HOrO JUaMeTpa Ha BCTPEUHOM BOJIHEHUH IPU OTCYTCTBUU CKOPOCTH X072 IIO3BOJIMIO
HOJYYUTh AMIUITUTYJAHO-YACTOTHBIE XapaKTEPUCTUKH BEPTHKAJILHOM M KWIEBOM KauykW, a
TaKoke BEPTUKAIBHBIX KONEOAHWH XMIAKOCTH B IIAXTe, KOTOpHIC MOKAa3aiM, 4TO BIHSHHE
HaJM4Ws MIaXTHl HA JUHAMHUKY CyZHA Ha BCTPEYHOM BOJHEHMH NPEHEOPEKMMO Maio. DTH
JaHHbIE Taloke HEOOXOIMMBI AT BBINOJHEHMS BEepHU(PUKAINK YUCICHHOTO MOJEINPOBAHHS
KoneGaHMH CyqHAa C IIaxXTOH Ha BCTPEYHOM BOJHEHHWH. UHCIEHHOE MOJEIHPOBAHHUE
SKCTIEpUMEHTAIbHOTO ~ MCCIENOBaHMA [OKa3alo, 4TO COBPEMEHHbIE CPEACTBa
BBIYHCITUTEIIBHOM THAPOMEXaHUKH MO3BOJISIFOT ¢ XOPOIIeH 3 PEKTUBHOCTBIO peliaTh 3a1auu
MO OINpECICHNUI0 XapaKTePUCTHK IPOJOJBbHON Kaukd CyAHA, CHA0XKEHHOTO [IaXTHBIM
yCTpOﬁCTBOM, 1 BEPTHUKAJIBbHBIX KOJIeOaHMit KUAKOCTHU B IIAXTEC HA BCTPEYHOM BOJIHCHUM IIPHU
OTCYTCTBHH CKOPOCTH XOfa. YHCIeHHOe MOAENMPOBaHWE KadyKd CyAHAa C IIaXTHBIM
YCTPOHCTBOM MOJKET OBITh PEKOMEHJOBAaHO Ha HAYaJbHBIX CTAAUSAX IPOSKTUPOBAHMS IS
OIIpEe/IeNICHNS TTapaMeTPOB KauKU M BEPTUKAIBHBIX KOJIEOAHHUH KUIKOCTH B IIAXTE.

KiroueBbie cjI0Ba: YHCICHHOE MOJCTHPOBAHME; JKCIIEPUMEHT; IIaXTa; BEPTHUKATbHAS
Kayka; KWjeBas Kauka; aMIUIMTYJHO-4acTOTHas Xxapakrtepuctuka, DTMB 5415; cepus 60;
OpenFOAM.

DOI: 10.15514/ISPRAS-2018-30(5)-14

247

Ovchinnikov K.D. Numerical simulation of motions of ship with moonpool in head waves. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 235-248

Jasi uurupoBanusi: OBunHHHMKOB K./I. UucneHHoe MojenupoBaHHe KadyKu CyJgHa C
LIaXTHBIM YCTPOMCTBOM Ha BcTpeuHoM BoaHeHuu. Tpyast UCII PAH, tom 30, Bbim. 5, 2018
r., cTp. 235-248 (na anrmumiickom s3bike). DOI: 10.15514/ISPRAS-2018-30(5)-14

Cnucok nutepaTtypbl

[1].
2.

[3].
[4].

[5].
[6].

[7].
[8].

248

Guilhem Gaillarde and Anke Cotteleer, Water motion in moonpools empirical and
theoretical approach, Maritime Research Institute Netherlands MARIN, 2001.

Bopucos P.B., Cemenosa B.IO. Kauka kopabmst: yue6.mocodue. Ilox pen. n-pa TexH.
Hayk, po¢. P.B. bopucosa. CII6.: U3x-Bo CIIGIMTY, 2015, 93 c.
https://openfoam.org/ (01.09.2018).

Henry Peter Piehl. Ship Roll Damping Analysis. Von der Fakultit fiir
Ingenieurswissenschaften, Abteilung Maschinenbau und Verfahrenstechnik, der
Universitdt Duisburg-Essen zur Erlangung des akademischen Grades eines. Doktors der
Ingenieurswissenschaften Dr.-Ing. April 2016.

Menter, F. R. Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA Journal, vol. 32, No. 8, 1994, pp. 1598-1605.

OpunHHEKOB K.JI., Tpsackun H.B., Tkagenko W.B. UucnenHoe MoaenupoBaHue KauyKH
HOJ‘IyHOpr)KHOﬁ HJTaT(bOpMBI Ha pEryJIsIpHOM BOJIHCHUU. MOpCKI/Ie WUHTCJIJICKTYaJIbHBIC
texHonoruu, Ne 2 (28) 1.1 2015.

ITTC — Recommended Procedures and Guidelines. Seakeeping Experiments. 7.5-02 07-
02.1. 2014.

Irvine, M., Longo, J. and Stern, F. Pitch and Heave Tests and Uncertainty Assessment
for a Surface Combatant in Regular Head Waves, Journal Ship Research, vol. 52, No. 2,
June 2008, pp. 146-163.

https://openfoam.org/

Ontological CFD-repository

V.A. Zenkin <vl.zenkin@gmail.com>
Bauman Moscow State Technical University
5/1, 2-nd Baumanskaya st, Moscow, 105005, Russia

Abstract. Based on the RDF-storage, a software tool was developed for creating a knowledge
base containing information about the CFD-calculations performed. The software is a set of
scripts written in bash and python, which are published under the GNU GPL3 license. The
tool is designed to support the user when making research studies that do not have a strict,
pre-defined design of experiment or problem solving algorithm. To formalize the description
of the calculation stored in the knowledge base, an ontology is created that serves as the
information model for the calculation. As an auxiliary mechanism for carrying out an
automated comparison of calculations with each other (a mechanism of "comparators" and
"features") was developed and also described in the article. In addition to the systematized
data storage, the complex provides the possibility of their automated and semi-automated
analysis, including the presentation of a set of calculations in the form of an undirected graph,
the construction of flat and spatial dependencies, the search for similar calculations, etc. The
article gives examples of data processing results for the project on design of channel in the
cylinder head of a piston engine.

Keywords: CAE methodology; ontology; knowledge management; computational gas
dynamics; semantic technologies

DOI: 10.15514/ISPRAS-2016-30(5)-15

For citation: Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 5, 2018. pp. 249-264. DOI: 10.15514/ISPRAS-2016-30(5)-15

1. Introduction

At the initial stage of numerical research during Computer-Aided Engineering
(CAE), the typical situation is intuitive search in a multidimensional factor
parameter space. The purpose of this search is to obtain primary knowledge about a
system. At this stage, it is almost impossible to produce a rigorous plan of
experiment, thus, it is often unsystematic and extremely difficult to process and
analyze its data. Usually, all results are presented in a tabular form (an example of
the table of CFD calculations from the experience of the author of this article is
shown in fig. 1), which is often very poorly systematized (because the system is just
the result of this work). The analysis of such tables becomes very difficult when the
number of calculations exceeds several dozen. It results in an increase in the
complexity of this research stage, frequent excess and repeated calculations, which
can be avoided with proper systematization of obtained results.

249

Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 249-264

A [8 [¢ |
L B Profiling the exhaust channel G, kg/s
Zbase — base channel for analysis, in 2 sections, with a lift of 7 mm. For him, the analysis of grid converge> 0,155 0,0%
| 3 |base_without_bob — it's without a lug 0,155 0,0%
| 4 |base_without_styk - it's without a groove at the junction of the channel and pipe
| 5 |base_without_ustup - it's without a step between the saddle and the channel 0,156 0,6%
6
Zopﬂ - the geometry formed for optimization on lift of 7 mm. Compared with the base cleaned ledge, lug, jo» 0,155 0,0%
| 8 |opt7_b - it's with an increased output section to R19 0,156 0,6%
9 |opt7_b_wps - it's with an increased output section to R19 but without an intermediate section 0,157 1,3%
|: opt7_g - it's with a narrowed intermediate section 0,147 -52%
| 11 |opt7_gb - it's with a narrowed intermediate and increased output 0,148 -4,5%
| 12 |opt7_rb - it's also with extended intermediate and extended output 0,157 1,3%
| 13 |opt7_eb - it's with an ellipse of 33 to 38 in the intermediate section (a little more than the standard) and an» 0,156 0,6%
| 14 |opt7_e36 - ellipse as above. Output section R18 (between standard and b) 0,156 0,6%
| 15 |opt7_b_wps_E - it's with an increased output section to R19 in the shape of an ellipse and without an inter 0,1575 1,6%
L Checking other pressure drop
I ------- Atadropoflltol
| 18 |opt7 0,0287 0,0%
| 19 |opt7_rb 0,0297 3,5%
| 20 |- Atadropof5to 1l
| 21 |opt4 0,132 0,0%
| 22 |opt4_rb 0,1325 0,4%

Fig. 1. Example of the table with the results of the initial search study of the engine exhaust
channels (the initial stage of channel profiling)

The problem of scientific and methodological support for an engineer and
researcher in the field of knowledge management (accumulation, structuring, reuse,
automatic and semi-automatic analysis) has recently been the subject of a large
number of works. This growth rate in publications and papers is associated with the
development of semantic technologies (methods and tools that provide and use
information coding, in which the value is stored separately from data) and with the
emergence of protocol standards and file standards, and the development of
supporting software.
If one considers publications only about Computer-Aided Engineering (CAE), the
most important works are on user support when carrying out numerical modeling
(due to the relatively high complexity of this procedure); in addition, these
technologies can be used for configuration problem solving [1,2].
In the work [3], the authors solve the problem of experiment planning. For this
purpose, they created an ontology — an explicit formal description of terms in a
domain and the relationships among them — and a data warehouse of the performed
optimization procedures together with the results of their work. An engineer uses
this set as a knowledge base when choosing parameters to plan a numerical
experiment. In the work [4], an ontology and semantic knowledge base are used for
the logical processing of constraints imposed on structural components of
construction, which should reduce the number of errors in solving a design problem.
In the work [5], the use of standardization technologies for strength calculations
promises a 75% reduction in the complexity of similar tasks. The author of [6, 7]
works on the application of these technologies in the aviation and space industry. In

250

3enkuH B.A. Onronornyeckuit penosurtopuii ust CFD-pacueros. Tpyost UCIT PAH, Tom 30, Bbim. 5, 2018 1., ctp. 249-
264

addition, there are many examples of the use of ontologies and other semantic
technologies in other areas included in the product lifecycle.

Currently, there are many software tools designed to systematize and accumulate
knowledge. They can be both general (PDM systems) and narrowly focused on the
creation of CAE knowledge bases [8, 9], but these products have a predominantly
corporate purpose and are intended, first of all, to reuse the results of calculations
(including by other calculation specialists) and to organize work in a large team.
This is expressed in the fact that final calculations are saved in such systems, and
intermediate (erroneous or incomplete) calculations are not recorded; however,
sometimes they contain no less important information for a specialist. The author of
this article was unable to find a single software product designed to support the
systematization of calculations for the individual work of a calculation specialist
that solves a task without any known algorithms in advance. (An example of a
similar product could be the popular git version control system, which provides
access to a program code at all stages of its development at once).

Thus, the purpose of this article is to create a tool that solves the following
problems:

e collecting and storing information about calculations;

e presenting this information in a structured (corresponding to a relational
model) or semi-structured (containing labels for separating semantic
elements and for ensuring a hierarchical structure of records) way, i.e. not
as raw data, but in the form of ordered knowledge;

e processing and presenting the collected knowledge to a user in a way that
simplifies analysis, or that helps to perform this analysis automatically.
The field of application of the developed tool is performing calculations in
Computational Fluid Dynamics (CFD); however, the proposed method can be easily
adapted to other areas of CAE.

2. Storage of Repository of Calculations in a Knowledge Base

This article proposes to use a semantic knowledge base in the RDF format [10],
which can be accessed via a SPARQL. This base is for storing information about the
performed calculations. The RDF format stores data in a triple format, i.e.
statements of the following type ‘“subject-predicate-object” (for example,
“calculation] obtained with_program simpleFoam”. In addition, each entity
appearing in the knowledge base may be mentioned an unlimited number of times
and in any of these positions. As a result, the entire knowledge base is a directed
graph of arbitrary structure. Existing SPARQL implementations make a graph
search more efficient using a query language similar to SQL for usual databases.
To consider a semantic database as a knowledge base, in addition to direct
information about specific calculations (ABox), it must also contain an information
model defining the structure of this information and its semantics (TBox).
An information model is a formal model of a limited set of facts, concepts or
instructions designed to meet a specific requirement [11]. In other words, such
251

Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 249-264

model sets a formal data structure by defining the relationship among data and,
thereby, by transforming this data into knowledge. As a rule, the construction of this
model is based on mathematical logic. To process and present data (especially
numerous and complexly structured), the formation of an information model is as
necessary as the formation of a mathematical model for performing calculations.
Moreover, as a mathematical model, an information model is verified by its
practical application and compliance with the requirements imposed on it. An
unsuccessful information model is hard for the perception of information by a man
and makes it difficult or even impossible for machine processing.

Currently, the most common way to represent information models is ontologies.
They help to select classes of objects and define their interdependence, i.e. at the
same time they determine the syntax of a knowledge base by fixing the key names
of concepts and relationships and making their logical connections among
themselves, thus, they make the work of an inference machine possible.

In this article, the information model of CFD calculations in the form of ontology
was proposed. The description of this ontology is presented in the next section.

3. Ontology of CFD Calculations

The structure diagram of the key elements of the developed ontology is shown in
fig. 2. The ontology file is a part of the repository and is loaded into its database
when a server is started, but it can also be used by itself. Currently, all names of
classes and relationships are recorded in Russian for the convenience of a Russian-
speaking user, but the author is working on an English version with the translation
of all relationships between languages.

Thing CALC GRID GEOMETRY

+ buit_from_geometry
+ calculaned_for_grid

- 1:
1 +has_leature
FEATURE

RESULT

. nstabily :
e —— :
affiiated_to L |+ welocity : float RESULT

user definied class
of geomatric
+located_in elements

. SUBSTANCE
for_substance

+located_in
.| FEATURE . x| mimine

* +has_featwe’ | + value - float

+assacialed_comparaior RN e = —
+wilh_turbulence_madel
wilh_turbulence_mod DEL e

COMPARATOR . X1 | menter_madel

_— CFD_SOLVER =

Fig. 2. Ontology of CFD calculations

The central part of this ontology is the mutual relationship between the
“Calculation”, “Grid” and “Geometry” classes, which correspond to the standard
methodology of CFD calculations. Geometry can include the hierarchy of
252

3enkuH B.A. Onronornyeckuit penosurtopuii ust CFD-pacueros. Tpyost UCIT PAH, Tom 30, Bbim. 5, 2018 1., ctp. 249-
264

components — “Geometric Elements”. Each object can contain a number of
parameters as defined by the ontology (turbulence model, solver, etc.) or by a user.
In this case, no adjustments of the ontology for the repository are not required. For
example, to set the “diameter” parameter, use the following line:

:geometry a :diameter "0.1" .

where geometry a — a corresponding instance of the geometry class. Despite
the undoubted importance of the flexibility of data entry, which provides the ability
to create the arbitrary hierarchy of components of calculation elements, in addition
to this flexibility, the efficiency of recording is of great practical importance,
because it directly affects the time, which a user spends when working with the
repository. From this point of view, the proposed ontology may seem to be over
complicated and the alternative option should be considered, where instead of the
“hierarchical” data specification, meaningful prefixes are used. Table 1 shows an
example of one object set in these two ways.

Table 1. Comparison of hierarchical and prefix setting of object parameters

Representation Example of setting a group of objects in a turtle format
Hierarchical :channel_a :contains: input_section_of_channel_a.
representation ;input_section_of_channel_a
a :Input_section ;

:shape :circle ;

:area “0.1” .
Hierarchical :channel_a: contains [a :Input_section;
representation with an :shape :circle ;
anonymous node :area “0.17] .
Prefix representation channel_a :input_section_shape :circle ;

:input_section_area “0.1”.

Where :Input_section — user’s geometric class.

The first two representations are formally more stringent and better fit into the
concept of a semantic database; in addition, they help to perform accurate
addressing to the geometry of other important calculation parameters, for example,
boundary conditions. Therefore, the developed ontology is based on the first
representation. However, one should point out that they require a longer recording,
more difficult in the formulation and perception, thus, in some tasks they may be
redundant for a user. Therefore, the structure of concepts was constructed in the way
that a user can use the last prefix representation if there is a need. The use of both
representations within the same repository is undesirable, but possible.

The other ontology elements generally duplicate the standard structure of a CFD
calculation and do not require special comments with the exception of a comparator
mechanism, which will be discussed in the following sections. The idea of a
function object was presented in order to enable the classification of calculations
according to their application area from the point of view of a specific research

253

Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 249-264

object or an ongoing project if a user is going to store several projects in one
repository.

4. Ontology Repository Architecture

To demonstrate the capabilities of semantic storage of data on numerical simulation
results, the author has created a software package consisting of a set of scripts
providing input and processing of data stored in the repository.

In the use-case diagram in fig. 3, typical tasks of a calculation engineer are shown.
Elements of the work of an engineer are green (1), which, when using the proposed
methodology, are becoming simpler due to a structured knowledge base. Red color
(1) — additional tasks that occur when working with the system. Yellow (I11) — tasks
that are modified when working with the repository. The system, despite the fact
that it requires some effort for its customization and development, provides
substantial support in the most complex issues of analysis of the calculation bank.

| pocumentation| Scripts

Install and configure Add calculation to
Read Readuser repositorium the KB
installation manual A
- = | <cincludes>
instructions -
m— . -1
Manage content of KB . Edit calculation in the
R Ny
7 KB
<elnciud

“gsnclu
i 3 Delete calculation
Engineer from the KB
Receive data from KB

i affinity graphs

5 <<Ext
Initialize KB oy Run server
ain —
3

Cludes> Perform custom queries

¢ Compare calculations

Analyze the contents of _—
the KB
S T sEdtend Find calculations that

Generate a report T i differ by a given
Ra property

Design Make eerteny

I

Calculation

\\

Write user-scripts Find calculations
closest to a given

U

I

Fig. 3. Use-case diagram for CFD repository

The maintenance of the database of the performed calculations accompanies the
work in any case, but the proposed repository provides an alternative tool for this.
Unlike many trivial ones (text and table files), it provides the capabilities of
automatic and semi-automatic data analysis. In this case, the procedure for tracking
data is complicated. For this reason, the use of the repository is expedient in case of
a relatively small number of calculations (dozens) combines with their hard-
formalized relationships with each other. For example, this includes identification
problems, various search studies without a known algorithm, etc. When solving

254

3enkuH B.A. Onronornyeckuit penosurtopuii ust CFD-pacueros. Tpyost UCIT PAH, Tom 30, Bbim. 5, 2018 1., ctp. 249-
264

typical problems or performing a large number of automated calculations that
implement factor experiments, the expediency of using the repository is
questionable.

Currently, the repository has several tools that solve typical problems:

e comparison of two calculations with each other and selection of similar and
different properties;

e construction of two-dimensional and three-dimensional graphs;

o search for two most similar calculations that are different in a given
parameter;

o search for calculations that are as close as possible to each other in their
parameters;

e construction of an undirected graph containing a complete bank of
calculations (or its fragment), whose branches connect calculations that are
similar to each other.

The semantic representation of information helps to expand this list indefinitely
based on the tasks of a particular user by adding scripts that access the knowledge
base. The use of the SPARQL query language, which allows receiving answers to
very complex questions from the knowledge base, opens up the widest capabilities
for a user. The amount of time required to understand this language (at a basic level)
does not exceed several days.

In future, the availability of the knowledge base can be used to solve more complex
problems, for example, providing functions to expert systems and decision support
systems using an inference machine to the existing ontology and information.
However, the mechanisms necessary for this still require their development.

5. Features and Comparators

As can be seen in fig. 3 and the described list of implemented scripts, the key issue
in repository work is the problem of comparing two calculations with each other.

To compare, the ontology applies the concept of features and comparators. A
feature is a special entity automatically generated in a knowledge base. Each object
has a set of such features, and it is assumed that the more differences these lists
contain, the greater the number of parameters that objects differ in from each other,
and, consequently, the more they are separated from each other. Features are
inherited by Geometry -> Grid -> Calculation; in other words, any feature of
geometry is a feature of all calculations performed according to this geometry.

A user does not set these features directly, because they are not included in the
repository, but they are the result of its processing. Instead, a user assigns
corresponding comparators to the parameters of his interest. This approach provides
the ability to enter into the knowledge base all available data, because it will be
possible not to specify comparators for parameters that are not relevant for a given
task, and they will be excluded from automatic analysis procedures.

255

Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 249-264

A comparator is a special label object, which means that an inference machine must
automatically generate a feature for all related triplets by a given rule. Currently,
five comparators with different feature generation algorithms are implemented. In
this case, complex comparators take into account the scale value that a user can set
for objects when generating features. The scale is inherited by Functional object ->
Calculation -> Grid -> Geometry, which simplifies to set it for a group of similar
calculations.

The simple comparator written in the form of a predicate logic formula is given
below. Fig. 4 shows an example explaining the second part of the formula that is
designed to work with an unnamed first-level node.

Ys.p.0 associated _comparator(p, simple_comp) A p(s,0) A uri(s)
. = has _feature(s,feature generated comp(p, o))

\%
Vpar.s associated _comparator(p, simple _comp)
P t’ ' (Ap(s,0) A type(s) A has(par,s) A blankNode(s))
p.oyPe\ o has_feature(par,feature generated comp(p, o, type))

has_feature
I par: geometry A | | Flow_section_diameter_0.1 par: geometry A
lhas ¥

a
(type: Flow_section _)Q—' s I
associated_comparator . é
simple_comparator p: diameter

4

0:0.1

Fig. 4. A diagram illustrating the principle of operation of a comparator with a blank node

The use of the scale mechanism and comparator mechanism potentially make it
possible to carry out the comparative analysis of calculations relating to different
objects by reducing comparison criteria to dimensionless complexes.

6. Technical Implementation of the Repository

In the current version, the repository is a set of scripts written in bash and python,
which interact (using a number of system and third-party programs) with a user and
data contained in the repository. Data is stored as text files in the turtle format. To
process them, these files are uploaded to the local Apache Fuseki server [12], which
provides access to them via a SPARQL. The repository is managed via the
command line. To visualize data, a browser (to display html files), the graphviz
graph builder with its xdot, gnuplot shell and direct data output to the console are
used.

The ontology described in the previous sections is also loaded into Fuseki; however,
universal inference machines are not used, because they are not currently required to
provide the repository functionality. Instead, a simplified inference machine based

256

3enkuH B.A. Onronornyeckuit penosurtopuii ust CFD-pacueros. Tpyost UCIT PAH, Tom 30, Bbim. 5, 2018 1., ctp. 249-
264

on user rules is used. The comparator mechanism is implemented as separate python
scripts.
Simplified work of a user with the repository can be represented as follows.
First, it is necessary to initiate the repository, i.e. start the Fuseki server and enter
data into it. The line:

> rep start
The next step is work with the repository.
To add new data:

> rep add sample.ttl

> rep add
To display repository content:

> rep diplay all calculations

> rep display calculation original
To compare and analyze various data:

> rep diagram

> rep compare calculation original calculation a
If new data has been entered before the analysis, it is necessary to re-initiate the
system of comparators:

> rep comparators
After work is finished, a server can be stopped by the command

> rep stop
To ensure reliability in terms of the safety of user data at the current stage of
development of a software product, no data changes that occur in Fuseki affect the
actual file storage of data. Thus, possible script errors or erroneous user requests to
the server do not spoil user data.

7. Usage Example

In the last section of this article, the author provides a practical example of using the
repository to solve the applied problem of profiling channels in the cylinder head of
a piston engine.

On the one hand, this task is characterized by a large number of independent
parameters that describe the complex spatial shape of a cast channel, on the other
hand, by very small boundaries of parameter changes according to the design
considerations, customer requirements, and common sense. (Sometimes there is no
reason to change the existing design — when the design documentation has been
already prepared, and the production process has already been adjusted — if the
potential positive effect is not too great). In such conditions, the formal plans of
experiment are of little use, and the profiling process is intuitive and unsystematic at
least at the initial stage.

In the described case, the steady state flow of exhaust gases through the exhaust port
of a head with two valves of a piston engine with a fixed valve position is shown in
fig. 5. The supersonic pressure differential was used as boundary conditions,

257

Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 249-264

because most exhaust gases leave a cylinder in such flow conditions for this engine.
The purpose of the work was to increase the flow through the channel. The rigid
dimensional requirements and inadmissibility of redesigning the gas air duct
determined the boundary narrowness of the permissible change in geometry, which
can be provided in various ways. The shape and area of the outlet section from the
head, the shape and area of the intermediate section in the middle of the channel, as
well as a number of structural elements, were used as main parameters to variate.
Also, several additional valve lifts were considered and grid convergence was
evaluated. To simulate the flow, the NSF-3 software package was used, which is
based on the modification of the method of large particles.

Fig. 5. 3D-model of the computational domain (cutting)

Fig. 1 shows the table of the calculations that records this initial stage of profiling. It
is not difficult to notice that, despite its small size, the analysis of this table is very
difficult. To test the work of the repository, the data presented in it were converted
to the turtle format and uploaded to the repository. An example of the calculation
description is as follows:
:cl opt7 b
:mass_flow "0.156";
:obtained with program :NSF 2017;
:ted to :single exhaust port;
:for environment: air politropic;
:with boundary conditions
[:located in :0Qutput section;
:pressure 100000];
:with boundary conditions
[:located in :Cylinder cut;
:total pressure 300000;
:total temperature 1300];
:calculated for grid: gr opt7 b

:gr_opt7 b
:built from geometry:g opt7 b

258

3enkuH B.A. Onronornyeckuit penosurtopuii ust CFD-pacueros. Tpyost UCIT PAH, Tom 30, Bbim. 5, 2018 1., ctp. 249-
264

:g _opt7 b

:valve 1lift "0.007";

:contains[a :Output section;
:nominal diameter 38;
:shape :circle];

:conrains [a :Intermediate section;
:nominal diameter 35;
:shape :circle];

Figs. 6, 7, and 8 show the results of processing these data using scripts with minimal
prepress of screenshots.

his_lug N

cl_base | as_joint ¢l buse wilhout siyk
- Calculation
_— Name
_——— Mass flow, kg/s

c1_opr7_b wps B3
(L1575 |

Oullel Thaps elpseme__ A unique feature of the
calculation cl_opt7_b_wps_E

N c1_base_without_ustup
n cl_opt7_g 0.156 {
el_opld 0147 ~— Two connected calculations
0.132 - differ by no more than
el _opl7_yb |
0.145

Outletjshape_circle — fie features

¢1_opi7_b_wps
5

0.157

Intermedidie_section_shape _free

A unigue feature of the
calculation cl_opt7?_b_wps

“(l]-fi‘;ﬁ OulleL_ditmeter_35

Tntermediate_seetion_shupe_circle

Outlet dimmcter 38| €L oplT. b
0156

h
¢l_opt7_b
——— 0.157
lntermediafe SECTON Tomdiameter 35 .
BC_Cylinder_tatpressure_300000

valve Lift 0.007
C_Cylinder_totpressure_1 10000
N.0287
2_opr7_ih
0.0297

wvalve_Tift_0.004

cl_optd_rh |
0.1325

cl_opt7_e36 |
0156

Ontlet_diameter_38
Outlet_diameter_36

el_optT_eh |
0,156

Fig. 6. An example of a proximity graph of calculations automatically generated from the
knowledge base

Fig. 6 shows the proximity graph contracted by the program, where the connecting
lines are drawn according to the criteria of “no more than two different points in the
list of features”. The program displays these different points at the corresponding
end of the connecting line. At the graph nodes, in addition to the calculation name,
the value of the flow through the channel is displayed. Analysis of the graph by a
user makes it easy to select ways to increase consumption, which is the main
purpose of profiling, and to identify parameters that do not affect this value.

If it is necessary to detail the differences between the calculations for two objects

not connected by the graph edges, this can be done using the command to compare
two calculations. The screenshot is shown in fig. 7.

259

Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 249-264

Name of calculation = Unique features

* has lug
« has joint
cl_base « has_step
.
.
cl_opt7 *

Intermediate section shape free
Intermediate section nomdiameter 34.8

Intermediate section shape circle
Intermediate_section_nomdiameter 35

General features

valve lift 0.007

Outlet shape circle

Outlet nomdiameter 35

BC_Cylinder totpressure 300000

with turbulence model mu const 0.01
with_soft NSF 2017

for_substance air politrop

BC Outlet pressure 100000

s s 8 0 s 0

Fig. 7. An example of a table comparing two calculations on lists of automatically generated

features

Another typical question that a calculation specialist has when analyzing the results
is the degree of influence of a parameter on the simulation results. The simplest way
to answer this question is to conduct a separate experiment, despite the fact that the
required information may already be implicitly contained in previous calculations
(and sometimes even explicitly). Using a typical method of logging an experiment,
it may be more difficult to reveal this information than to recalculate. Using the
repository allows performing the appropriate analysis automatically. The
corresponding script splits the bank of calculations into pairs, one of which contains
the desired feature, and the other does not. The script sorts them in the order of
proximity of two members in a couple to each other. An example of such analysis
for this project is shown in fig. 8.

Feature analysis :Outlet_nomdiameter_35
Similarity Calc with a feature Calc without a feature
Similarity 2 : cl_opt7 cl_opt7_b
Similarity 2 : cl_opt7_g cl_opt7_gb
Similarity 3 : cl_opt4 cl_opté4_rb
Similarity 3 : cl_opt7 cl_opt7_rb
Similarity 3 : cl_opt7_g cl_opt7_rb
Similarity 3 : c2_opt7 c2_opt7_rb
Similarity 4 : cl_opt4 cl_opt7_b
Similarity 4 : cl_opt7 cl_opt7_gb
Similarity 4 : cl_opt7_g cl_opt7_b
Similarity 4 : c2_opt7 cl_opt7_b
Shown 10 nearest pairs of 72

Fig. 8. The result of the script that analyzes the presence of a particular feature in the

knowledge base.

As one can see, the representation of the bank of calculations in the knowledge base
format provides ample opportunities for analyzing and visualizing calculations,
which are impossible (or extremely time-consuming) when using simpler methods

of modeling logging.

260

3enkuH B.A. Onronornyeckuit penosurtopuii ust CFD-pacueros. Tpyost UCIT PAH, Tom 30, Bbim. 5, 2018 1., ctp. 249-

264

8. Conclusion

As the result, a software package has been created that implements the functioning
of the repository for CFD calculations based on a semantic knowledge base. To
ensure its correct operation, an ontology has been also created, which formulates the
information model of calculation. A number of scripts have been written to support
a user during the process of analyzing data in a database.

Currently, there is the developed prototype of this project and the first version (0.1)
is released. All scripts are published under the GNU GPL Version 3 open source
license on the bitbucket platform [13]. The author plans to work on the project to
develop the user interface and provide more repository capabilities.

References

[1].

2.

3.
[41.

[5].

[6].

[7].

(8]
[9].
[10].

[11].

Junker U., Mailharro D. The Logic of ILOG (J) Configurator: Combining Constraint
Programming with a Description Logic. In Proc. of the 18th International Joint
Conference on Atrtifical Intelligence (IJCAI-03), Configuration Workshop, 2003, pp. 13-
20.

A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner. Consistency-based diagnosis of
configuration knowledge bases. Artificial Intelligence. Vol. 152. Issue 2. 2004. pp. 213-
234. DOI: 10.1016/S0004-3702(03)00117-6.

Blondet G., Le Duigou J., Boudaoud N. ODE: An Ontology for Numerical Design of
Experiments. Procedia CIRP, vol. 50. 2016, pp. 496-501. 10.1016/j.procir.2016.04.199.
Ajit S., Sleeman D., Fowler D., Knott, D. Constraint capture and maintenance in
engineering design. Artificial intelligence for engineering design analysis and
manufacturing, vol. 22, 2008, pp 325-343. DOI:10.1017/S089006040800022X.

M. Ito, D. Ishihara, M. Tsuchiya, M. Otsuka, K. Tsuchimoto, Y. Miyazaki. Development
of CAE Standardization System for Motorcycle Parts with Navigating Function for
Designers. Honda R&D Technical Review, vol. 23, Ne 2. 2011. pp 90-96.

SHustova D.V., Borgest N.M. Development of the semantic bases of information
systems in the design and manufacture of engineering products. Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual'nykh sistem [Open semantic technologies for the
design of intelligent systems], Ne7, 2017, pp. 293-296. (in Russian)

Nazarov D.M., Borgest N.M. Managing a CFD model using a linked external database.
X1l Korolyovskie chteniya. Mezhdunarodnaya molodyozhnaya nauchnaya
konferentsiya, shornik trudov [XIIlI Korolev readings. International Youth Scientific
Conference, proceedings], 2015, p. 114. (in Russian)

CML-Bench™ — computer activity management system. Available at:
http://fea.ru/article/cml-bench, accessed 27.08.2018. (in Russian)

ANSYS EKM: Simulation Data and Process Management Available at:
https://www.ansys.com/products/platform/ansys-ekm, accessed 27.08.2018

Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract
Syntax. W3C Recommendation, 25 February 2014. Available at:
http://www.w3.0rg/TR/2014/REC-rdfl11-concepts-20140225, accessed 27.08.2018

ISO 10303-1:1994 Industrial automation systems and integration - Product data
representation and exchange - Part 1: Overview and fundamental principles.

261

Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 249-264

[12]. Apache Jena - Apache Jena Fuseki. Available at:
https://jena.apache.org/documentation/fuseki2/index.html, accessed 27.08.2018

[13]. Zenkin / repCAE — Bitbucket. Available at: https://bitbucket.org/zenkin/repcae, accessed
29.10.2018

262

3enkuH B.A. Onronornyeckuit penosurtopuii ust CFD-pacueros. Tpyost UCIT PAH, Tom 30, Bbim. 5, 2018 1., ctp. 249-
264

OHTONOrn4YecKumn peno3nTopun ans
CFD-pacueToB

B.A. 3enxun <vl.zenkin@gmail.com>
Dedepanvroe cocyoapcmeaentoe bio0xcemuoe obpaszosamenbHoe yupexcoeHue
svicuie2o oopasosanus « Mockosckuil 2ocy0apcmeentbiil MmexHUYecKul
yrusepcumem umenu H.J. baymana (HayuoHanvHulil uccie0o8amenbCKuii
YHUGepcumen)y
105005, Poccus, e. Mockea, yn. 2-1 Baymanckas, 0.5. cmp. 1

AnHotammsa. Ha ocnHoBe RDF-xpanwiuma co3gaH NOporpaMMHBIA KOMIUIEKC — UIs
¢opmupoBanus ~ 0a3pl 3HaHWH, coiepkameld MHPOpPMAIMIO O MPOBEOCHHBIX
THApOra3oJMHaMHUecKuX pacderax. Kommiaekc mnpenctaBiaseT co0oil HaboOp CKPHITOB,
HaITMCaHHBIX Ha s3bIke bash m python, KoTOpble OIMyOIMKOBAHEI MO OTKPHITOW JIMIEH3HEH
GNU GPL 3. MHcTpyMeHT npenHa3HadeH IS HOIJEPKKH pacueTylka NP NPOBEACHUU
MOHMCKOBBIX ~MCCJIENOBaHMH, HE MMEIIIUX CTPOTOro, Hamepel 3aJaHHOrO IUIaHA
JKCIIepUMEHTa WM aJropuTMa pemeHus 3amaud. st Gopmanu3anuy OmMMcaHMs pacdera,
XpaHsmerocss B 0a3e 3HAHMH, CO3JaHAa OHTOJOTHSA, CIyXamas ero HHPOPMAIUOHHOH
MOJIeNbI0. B KauecTBe BCIIOMOraTeIbHOTO CPEJICTBA AN NMPOBEICHHS aBTOMAaTH3HPOBAHHOTO
CpaBHEHHSI pacyeToB JpPyr ¢ JPyroM pa3paboTaH MEXaHW3M «KOMIApaTopoB» U
«O0COOEHHOCTEH», TaKXKe ONUCAHHBIA B CTaThe. [IOMHMO CHCTEMAaTH3MPOBAHHOTO XPaHEHHUS
JaHHBIX KOMIUIEKC o0ecreyMBaeT BO3MOXKHOCTH ~ WX ABTOMATHYeCKOro M
HOJIyaBTOMaTHYECKOT0 aHain3a, B TOM 4YHCIE MpeJCTaBlIeHHe OaHKa pacueToB B (opme
HEOPHEHTHPOBAaHHOTO rpada, MOCTPOCHUE IUIOCKUX M IPOCTPAHCTBEHHBIX 3aBUCHMOCTEH,
MOMCK CXO/HBIX PacyeToB M T.II. B cTaThe mpuBOSATCS MpUMEphl 00padOTKM TaHHBIX MPOEKTa
10 TPOGHUIMPOBAHHIO KAHAJIOB B TOJIOBKE IIIMHAPOB MOPITHEBOTO ABUTATEIS.

KuawueBbie caoBa: wmeromonoruss CAE; oHTONOTHS, yHpaBleHHE 3HAHHSAMH,
BBIYUCIIMTENbHAS ra30JHHAMHUKA; CEMAHTHYCCKHUE TEXHOIOTHUN

DOI: 10.15514/ISPRAS-2016-30(5)-15

Jost IUTHPOBAHUSA: 3eHKUH B.A. OHTOJIOTHYECKU T peno3uropuit s
CFD-pacueros. Tpyast UCII PAH, tom 30, Bbim. 5, 2018 r., ctp. 249-264 (na aHrnumiickom
s3pike). DOI: 10.15514/ISPRAS-2016-30(5)-15

Cnucok nutepaTtypbl

[1]. Junker U., Mailharro D. The Logic of ILOG (J) Configurator: Combining Constraint
Programming with a Description Logic. In Proc. of the 18th International Joint
Conference on Atrtifical Intelligence (IJCAI-03), Configuration Workshop, 2003, pp. 13-
20.

[2]. A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner. Consistency-based diagnosis of
configuration knowledge bases. Artificial Intelligence. VVol. 152. Issue 2. 2004. pp. 213-
234. DOI: 10.1016/S0004-3702(03)00117-6.

[3]. Blondet G., Le Duigou J., Boudaoud N. ODE: An Ontology for Numerical Design of
Experiments. Procedia CIRP, vol. 50. 2016, pp. 496-501. 10.1016/j.procir.2016.04.199.

263

Zenkin V.A. Ontological CFD-repository. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 249-264

[4].

[5].

[6].

[7].

[8].

[9].

[10].

[11].

[12].

[13].

264

Ajit S., Sleeman D., Fowler D., Knott, D. Constraint capture and maintenance in
engineering design. Artificial intelligence for engineering design analysis and
manufacturing, vol. 22, 2008, pp 325-343. DOI:10.1017/S089006040800022X.

M. Ito, D. Ishihara, M. Tsuchiya, M. Otsuka, K. Tsuchimoto, Y. Miyazaki. Development
of CAE Standardization System for Motorcycle Parts with Navigating Function for
Designers. Honda R&D Technical Review, vol. 23, Ne 2. 2011. pp 90-96.

yctoBa [I.B., boprect H.M. Pa3paboTka ceMaHTH4eCKUX OCHOB HWH(OPMAIIOHHBIX
CUCTEM IIpU IPOEKTUPOBAHUM M IPOU3BOACTBE MAIIMHOCTPOUTENbHBIX W3AEIUH.
OTKpLITbIC CEMAHTUYECKUE TEXHOJIOTUU NMPOCKTUPOBAHUA UHTEIUICKTYaJbHBIX CUCTEM,
Ne7,2017, ctp. 293-296.

Haszapos JI.M., Boprect H.M. Vmpasneane CFD-Moaesnpio npu MOMOIIM CBSI3aHHOM
BHemHer 0a3bl nmaHHBIX. Xl Koponéeckue ureHms. MexnayHapogHas MOJOAEKHAS
Hay4Hasi KoH(epeHIus, COOpHUK TpyHoB, 2015, cTp. 114.

CML-Bench™ — cucrema ympaBieHHsI [ICSTEIBHOCTBIO B OOJACTH KOMITBIOTEPHOTO
umxuaupunra URL: http://fea.ru/article/cml-bench. (lara o6pammenus 27.08.2018)
ANSYS EKM: Simulation Data and Process Management URL:
https://www.ansys.com/products/platform/ansys-ekm. (lara o6paruenust 27.08.2018)
Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract
Syntax. wW3C Recommendation, 25 February 2014. URL:
http://www.w3.0rg/TR/2014/REC-rdf11-concepts-20140225. (Hara oOpareHus
27.08.2018)

Tocynapcreennslii cranmapt Poccuiickoit ®@enepamyu, 'OCT P MCO 13030-1-99,
"CucremMbl aBTOMAaTH3alluX MPOU3BOACTBA U UX UHTEIpALUA. HpeI[CTaBJ'leHI/Ie JAHHBIX 00
m3genud W oOMeH »OTuMH gaHHBIMH. Yacte 1. OOmue mnpencraBieHUS U
ocHoBonomaratomue npuHuns”. UK M3narenscTBo cranmaptos, 1999.

Apache Jena - Apache Jena Fuseki URL:
https://jena.apache.org/documentation/fuseki2/index.html. (ata o6pamierus
27.08.2018)

Zenkin / repCAE - Bitbucket URL: https://bitbucket.org/zenkin/repcae. ([ara
o6parenus 29.10.2018)

lNpoBepka hyHKLUMOHANbHbIX CBOUCTB
CMapT-KOHTPAKTOB METOAOM CUMBOJSILHOM
Bepudmkaumm mogenu

E.C. Hluwkun <evgeniy.shishkin@gmail.com>
HupoTeKC, Hayunviii omoen
127287, Poccusa, Mockea, Cmaputii [lempoecko-Pazymogckuil npoeso,
1/23, ecmp.1, smaorc 2

AHHoOTammsi. B craTbe paccmaTpuBaeTcsi MOIXOJ K MPOBepKe (DYHKIMOHAIBHBIX CBOWCTB
CMapT-KOHTPakToB IiaTGopmbl Ethereum MeTonoM CHMBOJIBHOH BepU(pHKAIIMH MOJEIH.
OmnucaHHBIN OIX0J MO3BOJSIET BEpUGHUIUPOBATh BHINOJHEHHE 3X BUIOB CBOMCTB Ha Tpac-
cax OTpaHWYECHHOH IIMHBI, a TAKKE OCYIIECTBISITH IMPOBEPKY BBIMOIHIMOCTH MHBAapHAHTA.
OmucaHa MaTeMaTHYecKasi MOJETb CPEIbl UCIIONHEHUS] CMapT-KOHTPAKTOB, poBeeHa (op-
MaJIM3aIys BBIIEIECHHBIX BUIOB CBOICTB B paMKax 3TOI MOJENH, OTMCaHa MpoLeypa TpaHe-
JSIIUM BCETO IEPEeYUCICHHOro B si3bIK orpanmdeHnid SMT-pemarens. XKusnecrocoGHOCTD
HpeIaraeMoro Iojxoja WUTIOCTPUPYETCsl Ha HpHMepe BepH(HUKAllMM MaKeTHOTO CMapT-
koHTpakta MiniDAO, ynpoménnoit Bepcun usBectHoro TheDAQ. 3a HECKONBKO CEKYH]
MaKeT HaXOJHUT KOHTP NPHMEp OZHOMY HETPUBHAILHOMY (DYHKIMOHAIBHOMY TPeOOBaHHIO,
yKa3blBasi Ha OMMOKY B OM3HEC-IOTMKE CMapT-KOHTpakTa. Hackombko Ham HM3BECTHO, 3Ta
paboTa - omHAa W3 MEPBHIX ITIONBITOK OMHCATh MHCTPYMEHT, ITOMOTAIOMINHA OCYIIECTBISTH
(hopManbHYI0 MPOBEPKY (DYHKIIMOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB B aBTOMATHYECKOM
pexume.

KioueBble cjI0Ba: CHMBOJIbHAs BEPHU(PHKAIMS MOMICIH; CMapT-KOHTPAKTHI; OJIOKYCHH;
(dhopmanbHas crieruduKarys

DOI: 10.15514/ISPRAS-2018-30(5)-16

Jas uutupoanusa: Ilumkua E.C. IlpoBepka (QyHKIIMOHAIBHEIX CBOMCTB CMapT-
KOHTPAaKTOB METOJIOM CHUMBOJIbHOI Bepudukauu moaenu. Tpynst UCIT PAH, Tom 30, BbIIL.
5,2018 r., ctp. 265-288. DOI: 10.15514/ISPRAS-2018-30(5)-16

265

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

1. BeedeHue

B xomme 2008 r. Caromm Hakamoro' omy6mukoBam paGoTy, B KOTOPOi ommcan
MPUHLMIIMAIBHOE YCTPOMCTBO IEPBOM IMOJHOCTBIO JIE€LEHTPAIU30BaHHOU
IaTéXHOM cucTeMbl o HazBaHueM BitCoin [10].

IIpencraBnsass cobolf pacmpeneNeHHBI peecTp OMepamuii co CUeTaMHu
MIOJTb30BATEINICH, CHCTEMa O0JaJacT YHHKAJIbHBIM COYETAHHWEM IOJE3HBIX CBOWCTB
OTKa30yCTOMYMBOCTH, HETIOJAMEHSIEMOCTH BBOAMMOW WH(POPMALNH, MPAKTHICCKON
HEBO3MOXXKHOCTBIO ~IIEH3YPHPOBAaHMS [OCTYNA, MPO3PavyHOCTBIO IPOBOAMMBIX
omepannii. Jlo mnybmukamum HakamoTro, B MHpe W paHbBIIE HCIOIH30BATH
pacmpeneneHHbIe 6a3bl JAHHBIX c MOBBIIICHHBIMH TapaHTHSIMHU
OTKa30yCTOMYMBOCTH U ayTEHTUYHOCTH omepaiuil yepe3 ucrnons3oBanue LI, HO
BCE OHM ONMPAIOTCSA Ha HAJIMYME HEKOTOPOH €IUHOI TOUKM JOBEpUS — HAIPUMEp
aJMHUHHUCTpaTOpa, KOTOPBIH Oe3pa3fenbHo o0lagaeT KOHTPOJIEM Hajl CHCTEMOH U
coxpaHsieMbIMHU JaHHBIMU. B cucreme BitCoin, HanmpoTHB, OTCYTCTBYET JOBEPEHHAS
CTOPOHA - TI0JIB30BaTEH JOBEPSAIOT UCKIIFOUUTENIEHO ONMCAaHHOMY IIPOTOKOIY.
CeMelCTBO MPOTOKOJIOB, MOJOOHBIX HpoTrokosy BitCoin, mojy4mino COBOKYIHOE
Ha3zBaHUC TIPOTOKOJIOB THIIA 6J'IOK‘ICI\/’IH H3-3a HUX HCIOJb30BaAHHA TCXHOJOINH
3aleryieHus] OJIOKOB HMH(GOpPMAalMK 4epe3 BCTaBKY XdIla MpEeAbIIyIIero OJIOK B
cneayromuid. Bckope €Tamo MOHATHO, YTO TEXHOJOTHUs OJIOKYEHH MOXKET OBITh
UCIIONIb30BAaH HE TOJBKO Kak CPeACcTBO OOMEHa IIEHHOCTBIO Yepe3 MepeBoj
KPUITOBAIIOTBI, HO M KakK paclpeleleHHas BBIYMCIUTENbHAs IulaThopMa o
CO3JJaHUIO Ha/I&KHBIX OTKA30yCTOWYNBBIX HEIIEH3yPHPYEMBIX CEPBUCOB.

B 2015 r. cocrosuics TepBBI penU3 BBEIYHUCIATENHFHOW TwaTGopMbl Ha 0ase
omoxueitH nox Ha3BanueM Ethereum [18]. IlmaTdopma mo3BonseT MOIB30BaTEIIM
3arpyXaThb B PAaCHpENeNICHHYI0 CHUCTEMY HEKYI0 IIPOTrpaMMy, OIHCHIBAIOIIYIO
xKenmaeMblii OmsHec-mponiecc. Ilocnme myOnukamum mporpamMmsl B OJlOKYelHe
Ethereum, 3amHTEepecoBaHHBIE JHIIa MOTYT COBEPIIATh BBHI30OBHI B 3Ty INPOTpPamMMmy,
MeHsS ¢€ BHYTPCHHEC COCTOAHHE, COBEPIIATH KPHUITOBAJIIOTHBIC MNEPEBOABI H,
TaKUM 06pa30M, B3aHMOHeﬁCTBOBaTI; C OCTaJIbHBIMU Y4YaCTHUKAMU IIpoHecca u
nporpaMMoii. IIporpamMmma B JaHHOM KOHTEKCTE HA3bIBAETCSl CMApT-KOHTPAKTOM, a
IMOJIB30BATECIbCKHUEC BBI3OBBI — TPaH3aKIUAMU.

HeusmensieMocTh cMapT-KOHTpakTa IMocjie IMyOnuKaruu B OJOKYEHHE MO3BOJSAET
YYacTHHKaM OHM3HEC-TIPOIecCa «BEPHUTH» B €0 «UECTHOCTH» - BCE BO3MOXKHEIC
ﬂeﬁCTBHH, a TAaKXKE€ YXKC COBCPUICHHBIC TPAaH3AKIMHU MPOrpaMMbl BUIHBI J'l}O6OMy
KETaloIeMy, TO3TOMYy He ocTaTcs MecTa Pa3IUYHOTO poja MAHUIYJLIIHAM C
JIAHHBIMUA MU OM3HeC-ITOTUKOU. K coxalleHnto, 3TO jKe Ka4eCTBO MPEICTaBISIET U
yrpo3y: eclii B JIOTHKY CMapT-KOHTpaKTa HpoKpajach OIIMOKa (CilydalHas HIIH
CIEIaJIbHO TNPUBHECEHHAS Ha JTame pa3pabOTKH), IOCIe 3allicH KOHTPakTa B
OJI0K4eliH €€ HEBO3MOXHO MCIPABHUTh, @ 3JI0YMBIIUICHHUK MOXKET BOCIIOJIb30BATHCS
YSI3BUMOCTBIO B JII000 MOMEHT JUIsl U3BJICUCHHS BHITOJIBI.

1
Oto nceBnoHNM. Hacrosiee nums aBTopa 10 cux HOp HEM3BECTHO.

266

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

Tak, B 2016 r. u3 cmapT-koHTpakTa TheDAO BbIBenM 00BEM KPHUITOBAIIOTHI,
OLICHWBAEMBIH 0 OMP)KeBOMY KypCy Ha MOMEHT MHIHMIEHTa B 60 MIH. JOIIapoB
[11]. VYs3Bumocts OpIma cCBsi3aHa CO CHEIU(HUKON TIOBEICHUS OJHOW W3
NPOTPAaMMHBIX ~ KOHCTPYKLHUH SI3bIKa INPOTPAMMHPOBAHHS CMapT-KOHTPAKTOB
Solidity, Ha xotopom Obu1 3anucan TheDAO. C Toro MomMeHTa MMENO MECTO eIlé
HECKOJIbKO T'POMKHX MHIMIEHTOB [12] [13].

HeobxoaumocTs cTporoif MpPOBEPKH CMapT-KOHTPAKTOB Ha KOPPEKTHOCTh Ha
paHHUX cTagusx pa3pabOTKW cTaja OYEBHAHA Ul pa3paOOTYMKOB M 3aKa3YHKOB.
Co BpeMeHeM CTalM MOSBIATECS ayIUTOPCKHE KOMIIAHMHU, IPEAOCTABISAIOIINE
YCIYTy Py4YHOrO HCCIEIOBAHUS CMapT-KOHTpaKTa Ha COOTBETCTBUE 3asBICHHBIM
TpeOoBaHUAM. 3a4acTyl0 ayJJUT MPOBOAUTCS HE(OPMAIBHO, «Tjla3aMn», 6e3 cTporo
000CHOBaHHS CHAENaHHBIX 3akmoueHHHd. CocraBngercss OTYET O IPOBEAEHHOM
HCCIIEJIOBAaHNY, T/A€ BBIJAIOTCS PEKOMEHJAIMM M0 HCIPABICHUIO HaWICHHBIX
OIIMOOK, MO0 BBIHOCHUTCS 3aKIIFOUCHUE O HaI&KHOCTH CMapT-KOHTPAKTa.

B 3T0ii CBSI3M CTOMT BCIOMHUTB, 4TO cMapT-KOHTpakT TheDAO Takxke noaBepraics
ayAWTy CO CTOPOHBI 3KCIIEPTOB, BKJIIOYAs CaMuX cosjareneil si3pika Solidity u
cnenuanucTa mo ¢popmansHoi Bepudukanmu u3 Ethereum Foundation, omHako 310
HE TIOMOTJIO TPEJOTBPATHTh MevaidbHBIX mocienctuii! [14] Jlannbrni gakt MoxeT
CIy’KHTh apI'yMEHTOM K TE€3UCY O TOM, YTO, KaKOB ObI HU OBLT yPOBEHb MOATOTOBKH
MPOBEPSIOLIETO 3KCIIEPTa, B €ro paboTe >KenaTelnbHO MPUCYTCTBHE WHCTPYMEHTA
@opmanvHoli TIPOBEPKH IPOrpaMMHOro apredakrta. JIfonm CKIOHHBI COBEpIIATH
OIIHOKH.

Wunyctpun, Ha Ham B3TIsI, TpeOyeTcs HWHCTPYMEHT, KOTOPBIH Obl ToMorain
MPOBOANTH MIPOBEPKY COOTBETCTBHSA CMapT-KOHTPaKTa 3as1BJICHHOMN
(hyHKIIMOHATBHOH clieru(UKanuy B aBBTOMATHIECKOM PEKUME.

B nannoii paboTre paccMaTpuBaeTcs BO3MOKHOCTH IIOCTPOCHHSI HWHCTPYMEHTA
(opmanpHON BepuHKaUK HEKOTOPHIX BHJOB (PYHKIMOHAIBHBIX CBOWHCTB CMapT-
KOHTpPakTOB. B KayecTBe JSTaJIOHHOW OsokueiiH mmatdopMbl ObLia BBIOpaHa
wiatrpopma Ethereum, ¢ s3bIkOM nporpamMmupoBaHusi KOHTpakToB Solidity.
Hannawe stanonHON muatdopMbl MO3BOJSET yXKe ceiiuac 3KCIIEpHMEHTHPOBATh C
peambHBIMH CMApT-KOHTPAKTaMH, TPH 3TOM OCTaBIIAsI BO3MOXHOCTH IEPEHECTH
pe3yabpTaThl PadOTHI Ha APYTYIO IATGOopMy, OJIM3KYIO IO apXUTEKTYpeE.
CMapT-KOHTPAKTHI B HAIIEM CITy4dae 3aIMCHIBAIOTCS Ha S3bIKE NMPOTPAMMHPOBAHUS
Sol - mogmHOkecTBe s3bika Solidity, crenManbsHO BBIAEIEHHOM JUIS YIIPOIIEHUS
MPOIEIYpPsl IPOBEPKH CMapT-KOHTPAaKTa, HO JOCTaTOYHOM Ui peaH3auu
HETPUBUAILHON OM3HEC-JOTUKH, B TO BpeMs Kak (YHKIMOHAIbHAs creluduKays
3amaércs aMO0 B BHJE INPEJUKATOB HAJl COCTOSIHUEM KOHTpPAakTa, JIMOO B BHIE
JOIYCTUMBIX HENOoYeK COOBITHH, HCIYCKaeMBbIX KOHTPAKTOM U B3aWMOCBS3SX
MEXAy OTHMH coObITusMH. [IpoBepka OCYyLIECTBISETCS METOJOM CHMBOJBLHOM
Bepudukanuu wmoxaenu (symbolic model-checking). Mopens wu3Biekaercs u3
MpOrpaMMBI Ha si3bIKe Sol aBTOMaTHYECKH.

Bxuaaa pa6orsl:

267

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

* CdopmMynupoBaHO HECKOJBKO KITAcCOB (YHKIMOHATHHBIX CBOWCTB, KOTOPBIC
MIOMOTAOT OTHCHIBATH JKEJIAEMOE MTOBEACHUE CMapT-KOHTPAKTA.

* OmmucaH sBBIK MIPOrPaMMHPOBAHUS CMapT-KOHTPAKTOB Sol; SI3BIK BBIACICH IUIS
eneit GopMaIbHOTO aHAIH3A.

e Onwcana mporenypa KOAMPOBaHUS Mporpammsl Sol u cnenudukaniu B BUA,
npuroAssiit it nposepku SMT-pemrarenem.

* CpenaH MakeT, pealu3yIOIIUN ONUCAaHHBII METO Ha MPUMEpP CMapT-KOHTpaKTa
MiniDAO - «wmammero Opara» cmapt-koHTpakta TheDAO. IIpoBoautcs
(¢opmarnpHas TpPOBEpKa BBINOJHUMOCTH HECKOJBKHX (DYHKIIMOHAIBHBIX
TpeboBaHuii. 32 HECKOJIBKO CEKYH/I MaKeT HaXOJUT KOHTPIPUMED, yKa3bIBasi HA
omuoOKy B moruke MiniDAO.

HecMmoTtpst Ha TO, 4TO METOJ] CUMBOJIBHOW BepU(pHUKALUK MOJEIIeH IpOrpaMM — 3TO

XOpOIIO HU3BECTHBIM C€IOCOO MPOBEPKH TEMIOPAIBHBIX CBOICTB peardpyromux

CHCTeM, 1aHHas paboTa, HACKOJIBKO HAM H3BECTHO, NPEJCTABIISCT MEPBYIO MOIBITKY

INPUMEHUTh 3TOT METOA K BepH(UKauuu (YHKIMOHAIBHBIX CBOWCTB CMapT-

KOHTpakToB. Kpome »3TOoro, B JmTepaType HaM HE IONAAanoch padoT,

IpeIaralomuX CrocoOsl Crienn(UINPOBAHUS JKEIaeMOTO MOBEICHHS CMapT-

KOHTpakTa Ha (opMaJbHOM s3bIke. Hama paboTa 0T4acT BOCHOJHSET yKa3aHHBIC

npobenbl. PesynpraTel MakeTHpoBaHHSA yOEXKIAlOT Hac B TOM, YTO OIHMCAaHHBIN

NOJAXOJ SIBJIETCA IEPCHEKTUBHBIM U 3aCily’)KMBAcT JaJIbHEHIIEH JeTalbHOU

MPOPabOTKH.

2. CmMmapm-KoHmpakmsl Ha nnamgopme Ethereum

O6BexToM Bepu(UKaliy B Haleil paboTe SBISIOTCS CMapT-KOHTPAKTHI MIaTHOPMEI
Ethereum, 3anucanHble Ha moaMHOXecTBe s3bika Solidity. [lnsi kpaTkocTh, Mbl
OIyCKaeM OMHCaHHEe PabOThHl TIAT(GOPMBI M SA3bIKa HMPOTPAMMUPOBAHHSA, O3HAKO-
MUTBCSI C OCHOBAaMH MO>KHO 110 MaTepuaiam [18].

S3bik Sol. UToObl crienaTh npouLenypy CHMBOJBHOW BepH(HUKAILMU IIPOrPaMMbl
CMapT-KOHTPAKTa OCYIIECTBUMOW Ha TPAKTHKE, MBI BBIIEITHIN U3 si3bika Solidity
HEKOTOPOE MOJIMHOXECTBO, IOCTATOYHO BBIPA3UTENBHOE JUISI OCYIIIECTBICHUS HHTE-
pecHBIX OM3HEC-CIIeHapHeB, HO HE TMPHUBOJAMIEE K aCTPOHOMHUYECKOMY POCTY IIO-
POXKIIa€MBIX COCTOSIHHM.

s bopMHEpOBaHUS TIPENCTABICHUSI O TOM, KaKWe IPOTPaMMHBIE KOHCTPYKIHU
MOJIB3YIOTCS «CIIPOCOM», B mroiie 2018 roma G110 MpoBeIeHO HEOOIBIIOE UCCIe10-
BaHMe 0a3bl JaHHBIX CMapT-KOHTPakTOB Iutardopmbel Ethereum, cHaOXEHHBIX TEK-
CTaMU IIPOrpaMM Ha SA3bIKE Solidityz. W3 27341 nocTynHbIX NPOrpaMMHBIX TEKCTOB
CMapT-KOHTPAKTOB, TOJBKO 23% HCHONB3YIOT XOTSI OBl OJHY W3 (OpM IHKIOB, H
26% uCHONIB3yI0T AUHAMUYECKHE MACCUBBL. MexXay TeM, 9TH NPOTrpaMMHbIE KOH-
CTPYKIMU CIOXHEE BCEro MOJBEpraroTcs aHalu3y, IOITOMY Ha JaHHOM 3Tame
Haniel paboThl OBIIO PEIICHO UCKIIIOYHUTH UX U3 PACCMOTPEHHSI.

’TTo Gase https://etherscan.io/contractsVerified
268

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

B Solidity mpucyTtcTByeT THII mapping KOTOPBIHA ITO3BOJISIET HAXOIUTH IEMEHT 0e3
HEOOXOMMOCTH UTEPUPOBAHHUS 10 KOJUICKIUU. DTOT TUI YaCTUYHO CHUMAET 3aBH-
CHMOCTB OT LIUKIJIOB KaK CpPEJICTBAa OpraHu3aliu BeraucieHus. Cieayer BCIIOMHUM
TaK)Ke, YTO OJUH M3 CaMbIX H3BECTHBIX KOHTPAakTOB Oiokueiina Ethereum -
TheDAO - He COAEPKUT HUKIOB U PEKYPCUH.

Otauuns a3pika Sol ot Solidity. 1) orcyrcTBytoT mukinst for, do/while, pexypens,
B3aUMHBIC BBI30BbI (D)YHKIIHIA; 2) OTCYTCTBYIOT MEXaHU3MbI JUHAMHYECKOTO CO3/a-
HUA U yaaieHus: o0beKToB uepe3 new U delete; 3) mojaaepikka TOJIBKO CTaTHYECKUX
MaccuB; 4) KIIIOUEBOE CJIOBO var 3alpelieHO, BCe THIbI YKa3bIBAalOTCS SIBHO; 5) B
nporpamMMe MOXKET OBITh €AMHCTBEHHBIH OOBEKT contract; 6) COOBITHSI HE JOJIKHBI
cojiepkath Ooiiee 4x aprymeHToB; 7) tTun address 3a1aéTcsi KOHEUHBIM MHOYKECTBOM
YHUKQJIBHBIX HICHTH(UKATOPOB. B Tekcre mporpammbl 3ampelaeTcsl HampsMyro
yKa3bIBaTh 3HAUCHUE ajpeca; 8) Helb3sl BBI3bIBATH METOMABI IPYTrHX KOHTPAKTOB, a
TAK)Ke JUHAMUYECKH CO3/IaBaTh IK3EMIUIAPHI KOHTPAKTOB; 9) BpPEMEHHO HE IMOJI-
JICPIKUBAIOTCS OTIEPAIMH CO CTPOKAMH U OUTOBBIC OMEPAIMH C IESIBIMH YACIAMH.

3. Modenb cucmemsl

B mamreit pa60Te Mbl OIrpaHUYIHUMCA CHUCTCMaMH, B KOTOPBIX CYHICCTBYCT CIAUH-
CTBCHHBIN CMapT-KOHTPAKT, U B HCIO IMPOU3BOAATCA IOJIb30BATCIbBCKUC BbI3OBBI.
Taxas alnmnpoKCuManus nmoAXOAUT I OOJILIIMHCTBA MPAKTUYCCKUX CLICHAPHCB.

Beeném Takue oGosHaueHms: Nycg & {0...22%¢ — 1}, Addr & {a,...a,}, B =
{true, false}. Ycnosumcs, uto Kaioi INepeMeHHOH COCTOSHHS KOHTPAKTa MpH-
CBOEH YHHKAJIbHBIH MOCTOSAHHBIH HOMep. OG03HAYUM MHOKECTBO BCEBO3MOMKHBIX
NPMHUMAEMbIX 3HAUEHHIl TIepeMEHHbIX KOHTpakTa Kak Val .

[ycTh @ 03HaYaeT MHOXKECTBO MyOIMUHBIX QYHKIMI CMapT-KOHTpakTa, E MHOXe-
CTBO COOBITHIT CMapT-KOHTpPAKTA.

def

CocTostHre BCel CHCTEMBI 3a1aauM TPoikoit: o ¥ (o, b,t) THe 0, - 3TO COCTOSI-
HUE CMapT-KoHTpakTa, b: Addr — N,s¢ - OamaHCH ampecoB cucTeMbl, t:N,gg -
BpeMsi MOCJEAHero OJI0Ka, OTHOCSIIErocs K CMapT-KOHTpakTy. Mbl 0003HauaeM
MHOXECTBO BCEBO3MOXKHBIX COCTOSIHUH CHCTEMBI (HE 00S3aTebHO JTOCTHKHMBIX)
yepes X, T.e. 0 € X.

CocrosiHMEe CMapT-KOHTpaKTa OIpeleliuM Kak o, ¥ (o, alive, eventlog), tie
0.s:N = Val 3agaér Texyiiee COCTOSHHE MEPEMEHHBIX KOHTpakTa (OTOOpaKeHHUE
YHHKQJILHOTO HOMeEpa IepeMEeHHOl B 3HaueHue), alive : B - uHauKaTop, ykasbiBa-
OLIMI SIBJISCTCS I KOHTPAKT aKTHBHBIM, WM OH ObLT ynanéH, eventlog: {@} U E-
co0bITHE, CreHEepUPOBAHHOE CMApT-KOHTPAKTOM B ITPOIIECCHI BHIIIOJIHEHUS TPaH3aK-
UM, TM00 ero oTcyTcTBUE. 3aMeThM, 4To B Solidity BO3MOKHO reHepHpoBaTh cpasy
MHO)KECTBO COOBITHI B IIPOIECCE BBHIIOJIHEHUS (DYHKIMH, ¥ BCE OHU MONAIyT B JIOT
COOBITHI NaHHOW TPaH3aKIUU, HO Mbl HAMEPEHHO OTPAaHWYMBACMCS TOIBKO TAKUMHU
KOHTPaKTaMH, B KOTOPBIX (DYHKIWS TEeHEPUPYET He Ooyiee 0THOTO COOBITHS. DTO, C
OJHOM CTOPOHBI, YHPOIIAET MOJENb M HPOLELYPY MPOBEPKH, C APYTOH CTOPOHBI
Kascoy1o KOHEUHYI0 YEenouKy UCXOOHBIX COObIMULL MOJCHO NPU JHCENAHUU 3aKOOUDO-

269

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

8amb 0OHUM COObIMUEM. HO3TOMy Hajlara€Mo€ OrpaHNMYCHUC HE ABIACTCA NPUHITU-
IMUaJIbHBIM.

IMosicaum mpupoxy nepemennoit {. Tpanszakuuu B Ethereum BeINONHAIOTCA y3aaMK
He no npuHimny FIFO, a myrém rpynnupoBku ux B HaOOpHI, ¥ HOCHenyouen 00-
paboTku cpa3y Bcero Habopa TpaH3akuWil (ITOCIENOBATEIbHOCTh BBIIOIHEHUS
TpaH3aKkIMi n3 Habopa He omnpezeseHa). JTH HabOpbl Ha3bIBaroTCs Oyokamu. Kax-
JoMmy OJIOKY B MOMEHT CO3JaHus prucBanBaetcs 3HaueHue blocktime - Bpemst 610xa
— MOMEHT BpPEMEHH, B KOTOPBIH OJIOK OBbUT co3/1aH. DTO 3HaYEHUE CTPOrO MOHOTOH-
HO BO3pacTaer OT Oyioka K OJOKY M 3a4acTyIO HCIIONB3YeTCs B OM3HEC-JIOTHKE Kak
HCTOYHHMK OTHOCHTEILHOTO BpPeMEHH. I3 mporpaMmbl cMapT-KOHTPaKTa 3TO 3Haue-
HHE MOXKHO TIPOYHTAThH BHI30BOM (DYHKIIH NOW.

[Mosicaum ycTpotictBo MHOXecTBa P. B mporpamme cMapT-KOHTpaKTa ONpeeIcHUE
(YHKIIMM COCTOUT M3 Ha3zBaHWA (QyHKIUH, Habopa (opMalbHBIX apryMEHTOB, MO-
J(HUKaTOPOB, THIIA BO3BPAINAEMOT0 3HAUYEHHS, U Tela (GyHKIUH. MoaudukaTops
MOTYT 3aJaBaTh BHIUMOCTH (public, private), a Takke HaKIaIbIBaTh OTPAHUICHUE
Ha BO3MOYKHOCTB OTHPABJISITh KPUITOBAIIOTY B CMAPT-KOHTPAKT BMECTE C BHI30BOM
¢ynkuuu (payable). [IpuHrMas BCE 3T0 BO BHUMaHKE, MBI ISl KQKA0H MyOInaHON
(GyHKIMM CMapT-KOHTPaKTa

functionf (arg, arg,,.,arg,)public[payable][returns(T)]

craBuM B cootBercTBue GyHkumo f'(0;,v,S,t,p), rae g; € L 3T0 COCTOAHUE BCEH
CHCTEMBI Ha MOMEHT BBINOJHEHUS! QYHKINH, V € N,56- KOTMIECTBO KPUITOBAIIO-
TBI, TOCBIJIAEMOE BMECTE C BBI30BOM, S € Addr - anpec oTIpaBUTeNs TPaH3aKLUH,
t € Ny5¢ - Bpems 0J10Ka, B KOTOPOM BBITIOJIHSIETCS TPAH3aKIIHSA,
p = (argy,argy,...,arg,) €Il - xoprex, cocrosiuii u3 Habopa (GHOPMAaNbHBIX
napameTpoB pyHkiuua. MuOkecTBO @ 3a1aH0 HAOOPOM TAKHUX (DYHKITHIA.
Teno ¢yukuun f' noaydyaercss u3 tena (QyHKUWH f cepueil IOJCTAHOBOK: BBI30OB
(byHKIHE NOW 3aMeHseTCs Ha 3Ha4YeHue t, MSg.sender 3amensiercs Ha s, msg.value
3aMeHseTcs Ha V U T. [I.
Oyukius ' BO3BpaIaeT U3MEHEHHOE COCTOSIHHE CHCTEMBI, KOTOPBIE MbI 0003HA-
9KM 34 0;,4; CAMO BO3BpaliaeMoe 3HaueHue GyHknun f Ha JaHHBI MOMEHT UTHO-
pHUpYETCsl - OHO PEJKO HCIOJIB3YEeTCsl BHEITHUMH I0Jb30BATEISIMHU ISl TPOBEPKH
pe3ysbTaTta BBITOTHEHUS QYHKIUH, T.K. €r0 HEYyI0OHO OTCIeXHUBaTh. BMECTO 3TOTO
Yare HoJIb3YTCSl MEXaHU3MOM COOBITHH.
BBeném HECKONBKO NOHATUH, IOMOTAMOLIMX MOJEJIUPOBATh CHUCTEMY CMapT-
KOHTpPAaKTa BO BPEMEHH.
Omnpenenenne. (MHOXKECTBO HAYAJBHBIX COCTOSIHMIT). MHOXECTBO HAaYaJIbHBIX
COCTOSIHUH CUCTEMBI OTIPEIEISIeTCsl KakK

1% {02, byto} | bo: Addr — Nose to € Nyse}, 0 = {0, true, @},
3nech by - QyHKuMs, 3anaromas OalaHCHl IOJIB30BAaTENEH CHCTEMBI M CMapT-
KOHTpaKTa, t, BpeMs OJIOKa, B KOTOPOM CMapT-KOHTPAaKT ObLI 3aIMCaH, 0% COCTO-

270

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

STHUE TIEPEMEHHBIX CMapT-KOHTPAKTa CPasy nocie YCHeuHo2o 6613084 (PYHKYUU KOH-
cmpykmopa.
B s3pike Sol MBI 3ampemiaeM B KOHCTPYKTOPE HCIONB30BaTh JIOOBIE BBIPAKEHHS,
CHOCOOHBIC IPUBECTH K BOSHUKHOBCHHIO MCKIIOYCHUS, a TAKoKe 3allpemiaeTcs BEI-
spiBaTh QyHkuum transfer u selfdestruct. Iostomy MBI cumMTaem, 4TO KOHCTPYKTOP
BCET/a BBITIOJIHACTCS YCIEITHO M BECh €ro MoO0YHBIN 3(h(eKT 3aKimroyaeTcs B MpH-
CBOCHUH 3HAYCHHUI TIEPEMEHHBIM KOHTPAKTA.
Onmnpenenenune. (Tpacca). Jlro6as koHedHas MMOCIEAOBATEILHOCTh COCTOSHHH CH-
CTEMBI 0 = 00y ...O_1,0; € L Ha3bIBACTCS MPaAcCcol, €CIU CIPaBEIIHBO

trace(o) ¥ vi € N,0 <i < len(0).6(0;,0;41), THE 6(@, aj) HA3bIBAETCI OT-
HOIIICHUEM Ir1ara (ompenesieHo Huxe), oy € I, u len(o) 3amaér miuMHy mocieaoBa-
TEJNBHOCTH.
MHOKecTBO BCeX BO3MOXKHBIX HOCIIENOBATENLHOCTEH COCTOSHMI (He 00s13aTeNbHO
Tpacc) 0603HauNM Kak 2%,
B oOrmiem ciydae, 13 CBOETo TEKYIIEro COCTOSIHUSI CMAapT-KOHTPAKT MOXKET IePexo-
JIUTh B Pa3JIMYHBIE COCTOSIHUS, T.K. 3apaHee HEU3BECTHO KaKylo (QYHKIHIO U C KaKH-
MH NapaMeTpaMy MOKeJlaeT BbI3BAaTh TOT WIM UHOM MOJIb30BaTe b. JTO 3aKiabIBa-
eT HeJIeTePMUHHU3M B (DOPMHPOBAHMH JIIOOOT0 MOCIEAYIOIIEr0 COCTOSHHS TPACCHI.
ITosTomy, kxorma MBI paccykmaeM HpO KOHTPAKT, BMECTO OIHOW TpacChl MBI pac-
CMaTpUBaeM Cpa3y MHOXKECTBO BCEX BO3MOXKHBIX Tpacc. TONBKO Tak MBI MOXKEM
TapaHTHPOBATh, YTO HE YITyCTUM OMIMOOYHBIX COCTOSHUHN N3 BHUMAHUS.
Onpenenenne. (Iosenenne). Iycts 2 * & {o | 0 € 2% Atrace(o)} - MHOKeECTBO
BCE€X BOBMOXHBIX TPpaCC CUCTECMBI. HazoBéM 3T0 MHOXKECTBO IIOBECACHUEM CUCTEMBI.
UToOBI COCTOSIHUE 0;,; «HMEJO IPABOY» CJIECIOBATH 32 COCTOSHHEM O;B TIOCIIEI0Ba-
TENBHOCTH Tpacchl, napa (0, 0;,1) JODKHA HAXOIUTCS B ONPENEIEHHOM OTHOILIE-
HHMH, KOTOPOE MBI Ha3bIBaEM OMHOUleHUeM wiazd. J{jis onucanus 3TOro OTHOIIEHUS,
He00X0IuMO pa3o0paThCs B MPUPOJIE TPaH3AKIINY.
YacruuHo 3aganubie Pynkuun. Oynkuun [’ € @ cnocoGHbI OPOKAATE UCKITIO-
YCHUA, T.C. IPEPHLIBATH BBIIIOJTHECHUE q)yHKHI/II/I C OTKaTOM BCEX pPaHEC BHECEHHBIX
CHUCTCMHBIX HSMGHGHHﬁ, BKJIIO4Yas NMEPEBOJAbI KPUIITOBAIIOTHI, UIBMCHCHHE 3HAYECHUI
NepEeMEHHBIX COCTOSIHUSI KOHTpaKTa M T.1. [Ipo Takne QpyHKIMM MBI TOBOPHM, YTO
OHH 33J]aHbl YACMUYHO, T.€. ONPE/ICICHBI HE HA BCEX 3HAYCHUSIX BXOIHBIX apryMEH-
TOB. DTOT ()EHOMEH, BEPOSITHO, MOXKHO OBIJIO OBl IPOMOIEINPOBATH, CAEIaB OTHO-
nIeHue mara 6 (Ui,aj) pednexcuBHbM. Ho B 3TOM ciydae, y Hac Obl TOSIBHIOCH
00JIBIIIOE KOJIMYECTBO «MYCOPHBIX)» MEPEXOJIOB, T.€. TAKUX MEPEXOI0B, KOTOPBIE HE
BE/lyT B HOBBIE COCTOSIHHS, W 3HAYUT HE IPEJCTABISAIOT MHTEpEca B CMBICIE MPO-
BEPKU KOPPEKTHOCTHU IMOBEACHHS CMapT-KOHTpakTa. YToObl OTOPOCHTH Takue mepe-
XOJIbl, MBI BBOJMM TOHATHE MPEAYCIOBUs i QyHKIMA u3 D.
Onpenenenne. (IIpenycnoBue (yHknmum cMapr-koHTpakTa). HazoséMm mpen-
ycnosuem dynkuun f'(0y, v, s, t, p)npenukar fy,.(o,v,s,t,p) Tako, 4To eciu OH
BBITTOJTHACTCS JJIS 33/TaHHBIX apTyMEHTOB

271

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

0 EZ VENyse s €Addr, t € Nysg p €II, To Gynkuus ' € ¢ onpenenena Ha
3THX IapaMeTpax. 3agaauM MHOkecTBO PP & {(f’, £)}, T.e. Kaxayio QyHKIMIO
f' € ® cHabnuM € NpenyCIOBUEM fpre.
Onpenenenne. (OTHOmenne mara). M3 cocTosiHUSL 0;BO3MOXKHO cleJaTh LIar B
COCTOSIHUE 0,1 €CJIH CYIIECTBYET HA0Op v, S, t, p TAKOH, YTO XOTs ObI O7HA (YHKIIHS
f' € @ onpenenena Ha 3HAYEHUSAX O, V, S, t, D.
MHOXeCTBO BCEX TaKUX I1ap COCTOSHUI MBI Ha3bIBA€M OTHOILIICHUEM IlIara:
A ((0,0):3(F, fyre) € D77, 0,5,6,p.0) = f(03,0,5,6,D) A fyre(01,v,5,6,D)}
[IpuHaIeKHOCTD K ’TOMY MHOXKECTBY OIIPEIEIISECTCS IPEANKATOM

8(0i,05) = ((9;,0) € 4)

4. 3adaya eepuchukauyuu
Panee Obuta omnucana MOZEIb CHCTEMBI B3aMMOCHUCTBHS MOJIb30BATENEH CO CMapT-
koHTpakTOM. CdopMymupyem pemiaeMyr0 3agady OpOBEPKH (PYHKIIMOHATBHBIX
CBOMCTB CMapT-KOHTPAKTa, 3aJJaHHbIX Ha SI3bIKE CIICIM(UKALINY.
Onpenenenue. (3anaya Bepupukanun). ITycts P - npeaukar Haa Tpaccoil. Hyx-
HO YCTAaHOBHTH, uTo Vo € L*.0 E P, T.e. UTO NOBEJEHHE CMApT-KOHTPAKTa YJIO-
BieTBopseT P. [Ipeaukar P B 3TOM KOHTEKCTE HasbiBaeM ((popMaibHOIl) crierudu-
Kalueil Ha CMapT-KOHTPAKT.
B 3aBucmMocTH OT BuAa CBOICTBA (CBOWCTBO KOHKPETHBIX COCTOSIHMH MM COOBI-
TUITHOE CBOMCTBO), mpeaukatr P mpuHuMaeT aubo oxHO coctosHue P:Y¥ — B mubo
nenouKy AuHb He 6onee k P: 2 — B.
3nech U nanee Z,ff ={o € T len(o) <k}, rne len(o) 3amaér mmHy mocieno-
BaTEJIBHOCTH.
ChopmynupyeM BUIBI PYHKITHOHAIBHBIX CBOUCTB, KOTOPHIE MBI XOTHM YMETb TIpO-
BEpSITh, B TEPMUHAX U3JI0KEHHON paHee MOJICITH.
Onpepnenenune. (MuBapuanr). [Ipenukar P: ¥ — B HazpIBaeTCsl MHBAPUAHTOM CHU-
CTEMBI, €CJIU
Vo, € I.P oy AVo;,0; € Z.((‘)‘(ai,aj) AP o‘i) - Po;

Omnpenenenne. (CBoiicTBO Ha Tpaccax AJIUHBI K).
Ipeaukar P: ¥ — B Ha3bIBaeTCs CBOMCTBOM Tpacchl AIKMHEI K, eciu

Vo* ez, ieN.i<len(c*) - P(o")
Onpenenenne. (IlatTepH Bo3HUKHOBeHUs1 coObITHI). CBOHCTBA 3TOro Kjacca
3a/1al0TCs MpeArKaTaMy HaJl TpaccaMu JUTHHBI He Oonee k , T.e. P: Z,f — B . Pac-
CMOTPHUM OJHO M3 HUX, OCTaJbHBIE ONpPEAENAIOTCA N0 aHanoruu. Eciu npounsonino

cobsrtue E; (pg, ..., Ppn), MOCITE KOTOPOTO B KAKOW-TO MOMEHT MPOUCXOIUT COOBITHE
E,(m,,...,my), TO M&XIY HUMU HE JOJKHO BO3HUKHYTH coObiTHE E3(Ng,...,N0p),
T.C.

272

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

P(c*) = 3i,j € N.o;"[eventlog] = E; A o;*[eventlog] = E, Ai < j < len(o;) -
vk € N,i < k < j.o/[eventlog] # E;

Ecoi ecTh JIONIONHUTENbHBIE 3aBUCHMOCTH MEXKAY TIapaMeTpaMH COGBITHIA

Dos++» Py Moy -+ oy Mg, My, +., Ny, TO OHH JTOOABIAIOTCA K YKA3AHHOMY IPEIMKATY.

Onpenenenne. (Bo3MOKHOCTL BBINOJIHeHHs Tpam3akmum). CBOWCTBA ITOro

KJIacca 3a/al0TCA MPEIMKATOM HaJ TpaccaMu IHHBI He Gonee K, T.e. P: %) — B.
PaccmoTpuM 01HO U3 HUX, OCTaJIBHBIE ONPEAEIA0TCA 1Mo aHanorud. Ecnu npouso-

nuio cooeitue E (pg,...,Pn), TOCIEC KOTOPOrO B KAKOH-TO MOMEHT IMPOHCXOJIHT

cobbItne E,(My, ..., My), TO MEKITY HUIMHU BCETIa BO3MOYKHO YCHENIHO BBITIOIHHTH
!

f'(o,v,s,t,p).

P(c*) =Vi,j € N. 6;*[eventlog] = E;(po, ., pn) A
o* [eventlog] = E;(my, ..., mq) A
i<j<len(o*) = Vk€N,i<k<jfoe(od vs1tD)

Ecnmu ecTp JONMONMHUTENbHBIE 3aBHCHMOCTH MEXOY IapaMeTpaMH COOBITHIH
Dos+-+» P, Mg, -+ ., MgH TAPAMETPAMH BBI3BIBAEMOH (QyHKIMH 0, V,S,t,p , TO OHH
J00aBIISIOTCS K yKa3aHHOMY TIPEIHKATY.

5. KoHcmpyupoeaHue Modesiu cMapm-KoHmMpakma

[MocTpouTh MOJETh CMAapT-KOHTPAKTa M CHEUU(HUKANMKM O3HAYaeT 3aJaTh TaKOH
Habop o6wekToB: (PP, E, Addr,1,k, 2,7, P), rae K 03HauaeT MakCHMAIbHYIO JUIH-
HY aHanu3upyemoi tpacchl. OOCYaMM MPOUEIypy MOCTPOCHUSI KaXIOr0 M3 ITHUX
00BEKTOB JIJIsl KAKOTO-TO 33JJAHHOTO CMapT-KOHTPAKTA.

MuoxecrBo Addr. B cucreme Ethereum muoxectBo Addr cosmamaer ¢ MHOXe-
ctBom {0...2%6% — 13}, Ho 151 Heneit cCUMBONBLHOMN BepU(UKAIMKE TAKOE MHOXKECTBO
OKa3bIBAETCS CIMIIKOM OOJNbIIUM. JIeI0 B TOM, YTO €ro pa3mep BIHUSIET Ha KOJIHYe-
CTBO JIOCTHXKUMBIX COCTOSIHUIA: mapametp s B Gyukuuu f'(0;, v, s,t,p) BbIOUpaeTcs
u3 MHOXxecTBa Addr, a 3HAYUT YeM OHO KpyIHee, TeM OO0JIbIlle BO3MOKHOCTEH BbI-
6opa. [ToaTomy, B BepubHIUPYEMBIX MOJIEIIX MHOXKECTBO aJpecoB {dg...d,} MbI
cTapaeMcs BBIOMPATh KaK MOYKHO MEHBILIETO pa3Mepa, HO TAKOTr0, YTOObI ObLIO BO3-
MOXKHO HpOﬁTH 0 BCEM MNPUHIOUIIHAAIBHBIM CHECHAPUAM BBITIOJTHCHUA. OHTI/IM&J’[B-
HBIN pasMEp 3TOro MHOKECTBA MOXHO ONPCACITIUTD TOJBKO HMCXOJA M3 TOHMMAaHUA
6I/I3HeC JIOTUKH KOHKPETHOI'O KOHTpaKTa 1 Ha HaHHBIﬁ MOMECHT HUKAaK HEC aBTOMAaTHu-
3UPOBAHO. ITo YMOJITYaHHIO, nosaraem
Addr = {noAddr, addr,, addr,, addr,, contractAddr}.

Onement NOAdAr coOTBETCTBYET OTCYTCTBHIO aapeca - TO, YTO B KOJE 0OBIYHO 000-
3Havaercst kak address(0). Dmement contractAddr 3amaér aapec aHaIU3UPyEMOro
KOHTPAKTA.

MuozkecTBo ®P7¢. CTpouTcs aBTOMATUYECKH: I KXKI0H nybauunot Gpyuxuun [
CMapT-KOHTpakTa (KpOME KOHCTPYKTOPA) CTPOMTCS NPEIMKAT f,r. Hal HabOpOM

273

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

MEPEMEHHBIX O, V, S, t,p. DTO NlenaeTcss METOAOM CHMBOJIBHOTO WCIIONHEHHS Koja
¢yakonn. B Mecrax xona, T MPOMCXOIUT BBI3OB Ipyroil (yHKIHH, MBI TIPOHU3BO-
MM BCTPaWBaHUE Tella BRI3BIBACMO (DyHKITHH.

IMoTeHHATbHO ONACHBIE KOHCTPYKIMU. KOHCTPYKITNH, CIIOCOOHBIE MPHBECTH K
BO3HHKHOBEHHIO MCKIIIOUCHUS, HAa JTaHHBI MOMEHT: ONepanus JCJICHUS IeIbIX TH-
CeJI, B3ITHE OcTaTKa OT neneHus; Gpyakmmu mulmod, addmod; ormpaBka xpunToBa-
mroTel 4epes transfer; GpyHkunu assert, require, revert; oneparop throw; BeI30B He-
payable ¢ynkiuu ¢ mapamerpom V > 0; coBmajneHue ajapeca S ¢ aJpecoM cMapT-
KoHTpakTa contractAddr; momsiTka BbI30Ba QYHKIIMH CMapT-KOHTpPAKTa, KOTOPBIN
Ob11 ynanéu, T.e. o g[alive] = false

DTOT CIUCOK OYAET PacHIMPsThCS BIOCICACTBUH. Tak Kak B s3bIKe SOl HET UKIIOB
U pexypcuu (MHCTPYMEHT BepU(HKAIMK IPOBOAUT CHHTAKCHYECKYIO IPOBEPKY
NpOrpaMMbI TIepeji MOCTPOSHUEM MOJENH), TO CHUMBOJILHOE HCIOJHEHHE KOZa
(GyHKIMM rapaHTHPOBAHO 3aBEPUIAETCA, M HAOOP MPEAUKATOB frre OYIET MONMydeH
3a KOHEYHOE BpeMsl.

MHo:xecTBo E. CTpouTcs aBTOMAaTHUYSCKH W3 CIMCKA OMpPENENEHHBIX B CMapT-
KOHTpakTe coObITHi. COOBITHS, KOTOPBIE HE MCHOIB3YIOTCSA HU B OOHOM W3 (YyHK-
U, OTOPaCHIBAIOTCSL.

MHuoxecTBO I. MHOXKXECTBO HAa4aJIbHBIX COCTOSIHUNA CMapT-KOHTPAKTA.

3navyeHne k. MakcumanbHas JJIMHA aHAIM3UPYEMOH Tpacchl. 3amaércs B SIBHOM
BUJIe TIOJIB30BaTeNeM. Eciu mpoBepsieTcsl HHBapHaHT, STOT IMapaMeTp UTHOPUPYET-
csl.

MHoxkecTBO Z,f . MHOXecTBO 3aJja€Tcsl HESABHO, Yepe3 MOCTPOEHUE CUCTEMBI Orpa-
HUYeHHH Ha HabOpe COCTOsAHMH Ofy x—q)M Habope nmapametpos (v,s,t,p), rae i-i
HabOp COOTBETCTBYET MapaMeTpaMm, MePeaaBaeMbiM B i-i 10 CUETY BHI3OB OJHOM M3
(yHKIMH CMapT-KOHTPAKTAa.
OnpenenyiM OTHOLIEHHE MEPEX01a:

Lo _ pre —_ !
transition(oy, 0441) = 0<\j/<n(T (0u v syt) Ao = fi (04,05, 81 6, D)),
rae n = |®PTE|

Omnpenenum myTh MeKIy cocTosHusamu: path(op k) = A transition(oy, 0y41)
0<i<k

IIyTh OTIIMYEH OT TpPacchl TEM, YTO MEPBOE COCTOSIHME B IOCIEJOBATEILHOCTU HE
00s13aH0 OBITH Ha4aNbHBIM. [1yTh ATUHBI 0 CONEPKUT €AMHCTBEHHOE COCTOSHHE, B
HEM HE COBEpIIAETCS] HA eINHOTO Mepexo/a.

BBeném pononHMUTENHHO TpeOOBaHME HAa MOHOTOHHOCTB Bpemenu T = U {t; <
i=0.k—1

t;4+1}, TpeOoBaHMe Ha HadanbHble cocTosiHus: [(0y), TpeOoBaHHE HEBO3MOKHOCTH

BBI30BA byHKIUH CMapT-KOHTpakTa C ampeca caMoro cMapT-

koHTtpakTa: NoSelfCall = { U }{si # contractAddr}, TpeboBaHHE HEBO3MOXK-
i€{0.k—-1

HOCTH BbI30Ba (DYHKIHMI cMapT-KOHTpakTa ¢ agpeca NOAddr:

274

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

NoAddrCall = U }{si # noAddr}

i€{0.k—1
B 3TOM ciydae,
kat [(0y) AT A NoSelfCall A NoAddrCall A path(ojg.k-1})

OIIMCHIBACT OTPAaHWYCHHMS, BBIIIOJIHEHHE KOTOPBIX B KOHTeKcTe SMT-pemarens 3a-
Ma€T MPUCBaUBAHUS TEPEMEHHBIM O[g k—1] U (V,S,t,p), HEABHO «IEHEPHPYS»
MHOKECTBO X

Mpenuxatr P. Ilpenukar dopmupyercs myTéM TPaHCIANWH (QYHKIHOHAIEHOTO
CBOMCTBA B IIPEANKAT MEPBOTO ITOPSAKA, KAK 3TO OBUIO ONMCAHO B pa3zele.

Takum 00pa3oM, U3 POTPaMMEI Ha s3BIKE SOl BO3MOXKHO aBTOMATHYECKH M3BJICUB
MOJIETb, IPUTOAHYI0 Ut epenadn B SMT-pemarens. EnuncTBeHHOE, 9TO TpeOy-
eTcsl OT MOJIB30BATelNs, 3TO yKa3aTh (PYHKIMOHAIbHYIO crenudukanuio P, mmmHy
Tpaccsl K, KOITMYEeCTBO 3IIEMEHTOB B MHOXecTBe AddT.

6. Annzopumm nposepku cneyugukayul

B atomM pasmene MBI ONKCHIBAEM YCTPOMCTBO AITOPUTMOB TIPOBEPKH
¢ynkuroHanpHeIX cBoWcTB. Ilycth P(0) 3amaér mpoBepseMoe CBOWMCTBO.
Beipaxxenue SAT (e, Vars) o3Hauaer, uto yTBepKaeHue € nposepsiercs SAT/SMT
peliaTeneM Ha BBITOJHUMOCTh, T.C. HIIETCS TakOW HAGOp MPHCBAMBAHUNA LIS
NepeMEHHBIX U3 Vars Takoi, 9To BCs Iornueckas popMmysia € CTAHOBHUTCS HCTHHOIA.
Ecnu Takoe mpucBamBaHHE ymHaéTcs HaiTH, To (QyHKIHsA Bo3Bpamaer true. Muaue
BosBpammaer false. PesymsraT unknown He paccMatpuBaeTcs, T.K. MBI HAXOIMMCS B
paMKax TIOJHOCTBIO Pa3pelIUMBIX TEOPHM I KOTOPBIX TOT Pe3yJbTaT O3HauaeT
HEXBATKY BBIZIEJIEHHOTO BpEMEHH Ha TIOHCK pelreHws.
[pemukar path(a[o__n]) ompenensieTcs, Kak OBUIO yKa3aHO paHee. Kakmsiii w3
AJITOPUTMOB BO3BpaInaer true, ecmu coiictBo P(o) BeImomHseTcs, nnaue false. B
HCTIONIB3yEMOM TICEBIOKOMe BhIpakenue Vars = {p;:t;} o3Havaer, 4YTO I
KaQKIO0TO P B Ha0Op MPOMO3UIMOHHBIX MEPEMEHHBIX pelraTens mT00aBiIseTCs
nepeMenHas tumna t, 160 Habop OJIHOTHITHBIX IEPEMEHHBIX B CIIy4ae MacCHBa.
HekoTopble W3 3THX QJTOPUTMOB yXe MyOIHKOBaIHCh paHee. Tak, aaropuTM
TPOBEPKH BBIMOJIHUMOCTH CBOWCTBA HA TYTH UTMHBI K TOAPOGHO paccMOTpeH B
pa3nu4HbBIX Bapuaimsax B [20], a ajdropuTM NPOBEPKH HMHBAPHAHTA XOPOIIO
u3BecTeH. TeM He MeHee, YTOObI CIeNaTh TEKCT CaMOJOCTATOYHBIM, MBI TIPUBOAUM
NICEBIOKOJT BCEX HCIIONb3YEMBIX HAMU BepH(UUHUPYIOIIUX AITOPUTMOB B OJHOM
MecTe.

275

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

Aaroputm 1. IlpoBepka BbINOJHMMOCTH HHBAPHAHTA

Vars = {0q,17:3, Vio,17:N2se, Spo,17:Addr, tio,17:N2se, Pro,17:1}
if (SAT (I(ocg) A =P (op), Vars)) {

print sg

return false

if (SAT (P(og) A d(0g,01) A =P(0y), Vars)) {
print fgo., Oy, O1
return false

}

1

2

3

4

5: }
6

7

8

9:
10:return true

O6ocuoBanue aaropurma 1. B crpoke 2 MBI poBepsieM BBITOIHAMOCTH P (o) BO
BCEX HAYAJBbHBIX COCTOSHHAX. Eciu mpoBepka B CTpOKE 2 MpOIUIA YCHENIHO, MBI
MepexoAuM K IIpoBepKke WHAYKTHBHOIO IIara: npeamnoiaras, uro P(o)
BBINOJIHACTCA B KaKOM-JIMOO 0j (He 00S3aTeNbHO HA4YalbHOM) U M3 HETr0 MOXHO
MEepelTH B IPYroe COCTOsIHUE 07, TO P (o) Oy/eT BHITOJIHATHCS U B 07 .

AJ'IFODHTM 2. IIpoBepKka BLINOJHUMMOCTH CBOMCTBA HA MMYTH JUIMHBI K

1: Vars = {00, x-11:8, Vio..x-11:Noses Spo..x-17:AdAdr, tio. x-17:Nose,
Pro..k-11: 1}

2: 1 =0

3: while (i < k) do {

4 if (SAT (I(ocy) A path(o..i;) A =P(0o;), Vars)) {

5: print oo, .4

6: return false

7: }

8 i=1+1

9: }

10:return true

Oo0ocHoBanmne aaropurma 2. Mbl XOTUM YOeAUTHCS, YTO AJsl JIFOOOW Tpaccel
Onunvl He 6oaee k cBOHCTBO P(0) OyHeT BBIMOIHATHCS BO BCEX COCTOSIHHSX ITOU
Tpacchl. {18 IpOBEpKH 3TOW THIIOTE3bl, MBI IIOCIIEN0BaTENIbHO, HaunHas ¢ [= 0 (B
3TOM CiIydae MBI IIPOBEPSEM OT/ENbHbIE TOYKH — HadyaJIbHBIE COCTOSHHMS), IPOCUM
pemiaresib HaWTH XOTsI OB OJIH NPUMEp, B KOTOPOM OBl I'MIIOTE3a Hapyllajachk, U
JieTlaeM Tak BIUIOTH 0 [= k — 1, ociie 4ero ajnropuTM 3aBepuiaeTcs.

276

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

AHFODHTM 3. HDOBeDKa NmaTrepHa BOSGHUKHOBECHU S COOBITHII
1: Vars = {O[g..x-11:2, Vio..x-11:Nose, Sio..x-1;:Addr,
tro..x-11:N2ses Pro..x-17:H, m,n, q:Nyse}

2: i =3

3: while (i < k) do {

4: if (SAT (I(oy) A path(op..i;) A o, leventlog] = E; A
o, [eventlog] = E, A (m < n) (g >m) A (g <n) A
o“®;[eventlog] = E;, Vars) {

5: print oo, .1

6: return false

7z }

8: i=1+1

9:}

10:return true

O6ocHoBanne aaropurma 3. MBI XOTUM YOCIOUTHCS, UTO JII00As Tpacca OnuHbl He
bonee k yHmoBIETBOpSET YCIOBHIO: €CIIM B Tpacce BO3ZHHUKIO coObITHE E;, mocie
KOTOPOTO BO3HHUKIIO E,, TO MEXIy 3TUMH COOBITHIMH HE BO3HHKAeT Ej3 (rumoresa).
Oro ycnoBue 3amaéT TATTePH BO3HUKHOBEHHS COOBITHH B Tpaccax cMaprt-
KOHTpaKTa, M MOTJIO OBl OBITH 3aIMICAHO HAa S3BIKC PETYISAPHBIX BBIPAKCHUI:
 Ey (1E3) * E5.%, IPU OTpaHUYEHUH JUTHHBI BXOJHBIX CTPOK MapaMeTpoM K.
IIpoBepka 3TOro CBOMCTBA AeNaeTcs MyTEM IMOCIEI0BATENbHOr0, HAUMHAA C | = 3,
MOKCKa MpHUMeEpa, OIpoBepraromiero runoresy. Ilouck mpexpammaercs mocie Toro,
Kak BCE TPacChl JUIUHBI 10 K Obuin poBepeHbl (YCIOBHE B CTPOKE 3).

Auroputm 4. IIpoBepka BO3MOKHOCTH OCYIIECTBJIEHUS BbI30Ba QyHKIIUH

1: Vars = {00, .k-11:3, Vio..x-11:Nasesr Spo..x-17:AAdr, tio. x-1):Nose,
Pro..x-11:1, m,n,q:Nys6}

2: i =3

3: while (i < k) do {

4: if (SAT (I(oy) A path(op..i;) A o, [eventlog] = E; A
o°°,[eventlog] = E, A (m < n) A (g >m) A
(q < n) A _‘fpre(oql Vgr Sqr tql pq)r Vars)) {

5 print O[O”i]l Vql Sql tql pq

6: return false

7 }

8: i=1+1

9: }

10:return true

OobocHoBanue agropurma 4. Mbl XOTUM yOEIHUTHCS, UTO JI00ast Tpacca OnuHbl He
bonee K ynoBIETBOPSET YCIOBHMIO: €CIIM B Tpacce BO3HHMKIIO coObiThe Ej, mocie
KOTOPOTrO BO3HHKIIO E;, TO CTpOro Mexay 3TUMU COOBITHSIMH BO BCEX COCTOSHHSX
BO3MOXXHO YCIICIIHO BBIIOJHUTE (QYHKIMIO cMapT-KoHTpakTa f(o,v,s,t,p).
VYcnemwHocTh BbI30Ba (YHKUMHM C 3aJaHHBIMH [apaMeTpaMH OIHUCHIBACTCS
BBITIOJIHEHUEM TIPEIUKATA fpre (0, V, 5, L, p) (THTIOTE3R).

277

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

IIpoBepka 3TOro CBOMCTBA AeNacTCs MyTEM TMOCIeA0BaTENbHOTO, HAUYMHAS ¢ [= 3,
MOMCKA TIPHMEpa, OMPOBEPrarolIero THIOTE3y, TO €CTh IPUMEpa TAaKOW TpPacchl,
9yTo0BI cTporo Mexny E; w E, B KakoM-To ®W3 cocTosHMIt
npeuKar fy.(0,v,s,t,p) He BHIMONHANCA. B3aumMHOe pacronoxeHue COOBITHIA
JpYyT OTHOCUTEJIBHO Jpyra 3a7aéTcsi C MOMOIIbI0 OTHOIIEHHH HOMEPOB COCTOSIHUI
TPacchl, B KOTOPBIX COOTBETCTBYIOIINE COOBITHS BO3HUKIU. [loWCK mpekpamiaercs
TOCJIe TOTO, KaK BCE TPACCHI JUIMHBI 10 K GBUTH mpoBepeHs! (yCIoBue B CTpOke 3).
Tpacchl AMMHBI MEHBIIE 4X 3JIEMEHTOB CIUIIKOM KOPOTKHE, YTOOBI X IPOBEPSTE.

7. OnucaHue makemHo20 o6pa3sya

B menax anpoOupoBaHUsl ONMHCAaHHOM METOAMKH, MBI 3alPOTPaMMHPOBAIH CMapT-
koHTpakT MiniDAO - ympoménHsIii BapuaHT cMapT-KoHTpakta TheDAO, u mo-
poOOBAJIN OTHICKATh KOHTP MPUMEp, AEMOHCTPUPYIONINHA HApyIICHHE OMHCAHHOTO
B CIeIU(UKAIIH TPEOOBAHISL.

IIporpamma cmapt-koHTpakTa MiniDAO 3amucana Ha si3pIke Sol, a mpoBepseMbie
CBOMCTBAa 3aKOJMPOBAHbI B BHJE COOTBETCTBYIOIIMX NPEIUKATOB. MBI OTTpaHCIIH-
poBasi Bpy4HYI0 00a apTedakTa B s3bIK orpanuueHnii SMT-pemarens n npoBenu
MIOMCK KOHTP NMPHUMEPOB, GUKCHPYS [UINTEIHHOCTH IIPOBEPKU PA3HOTO THIIA CBONCTB
C Pa3IMYHBIMH 3HAYCHUSAMH NTapaMeTPOB MOJECIH.

Msr kpatko omumieM JIOTHKY pabotel MiniDAO u copMmynupyeM HECKOIBKO
YTBEPXKICHHUH, KOTOpPBIE OYAYT CIY>KHTh YaCTUYHOHM crenu@uKanueid Ha 3TOT KOH-
TPaKT.

7.1 CmapT-KoHTpakT MiniDAO

MiniDAO - 3To cMapT-KOHTPAKT, PeaTU3yIOIINi BO3MOXKHOCTb IPUBJICYCHUS KPHII-
TOBAIIIOTHBIX MHBECTULMI B HOBBIM MPOEKT. B cMapT-KOHTpakTe MpesyCMOTPEHO
JIBa BHJa YYAaCTHUKOB: MHBECTOP M MOAPSAYNK. VIHBECTOp - 3TO TOT, KTO BHOCHUT
cpencTBa B (OHJ CMapT-KOHTpaKTa, M Jlaliee TOJOCYET «3a» JIMOO «IIPOTUBY MOJ-
JEPXKKHU TIPEIJIOKEHHOT0 KeM-TO TpoekTa. Iloapsadumk - 3TO CTOpOHA, KOTOpas
MpeyIaraeT HOBBIM MPOEKT M 3aHUMAETCS €ro pean3anueil, BO3Bpamas CyMMy HH-
BECTHLIMH W JUBHJICHIBI WHBECTOpaM dYepe3 cMapT-KOHTpakT. MHTepdeiic cmapT-

interface ERC20Interface { /* CraumapTHbl uHTepdeiic ERC20 */ }
interface MiniDAOInterface {
function deposit () public payable;
function vote (uint proposalld, bool supportsProposal)
public;
function refund() public;
function propose (address recepient, uint amount,
string text) public;
function execute proposal() public;
event Voted(address voter, uint proposallD,
bool supportsProposal);
event Refunded(address investor, uint tokens);
event Deposited(address investor, uint tokens);
278 event ProposalAdded (uint amount, uint proposallD);
event ProposalExecuted (uint proposallD);
event ProposalRejected (uint proposallD);

}
contract MiniDAO is MiniDAOInterface, ERC20Interface { ... }

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

KOHTpakTa TpuBen€H Ha puc.l. TloyHBIA TEKCT CMapT-KOHTpPaKTa IOCTYIEH IO
cepike’,
.Puc. 1. Hnmepdpeiic cmapm-xonmpaxma MiniDAO
Fig. 1. MiniDAO smart-contract interface

YT00BI JaTh UHBECTOPY BO3MOKHOCTH BBIBECTH CBOM CPE/ICTBA U3 CMAPT-KOHTPAKTa
MiniDAO, peanmuzoBan merox refund(). Bo3Bpar ocymiecTBUTCS TOJIBKO B TOM CIIy-
yae, CIIi MHBECTOP HE TOJIOCOBAI 3a 3asiBKy. CMapT-KOHTPAKT OTHpAaBIsIET Ha al-
pec MHBECTOpa KOJHMYECTBO 3(Hpa MPONOPIHOHATIHHO KOJWYECTBY TOKEHOB Ha
BHYTpPEHHEM OajlaHCe MHBECTOPA, T.€. POBHO CTOJIBKO, CKOJIBKO MHBECTOP BIIOKHI B
torx MiniDAO.

WHBeCcTOpEl MOTYT MEPEeBONUTh Ha CUETa JPYTHX WHBECTOPOB CBOHM TOKEHBI

miniDAO. 3Tt0 peamu3yercs depe3 MOIACPIKKY CTAaHOAPTHOTO WHTepdeiica Toke-
HoB ERC20.

[pennonoxum, MBI 3aHHTEPECOBAHbBI MPUBJICYh KaK MOKHO OOJIbIIE HHBECTOPOB B
Hamr Gorx miniDAO. YToObl MHHHMH3HPOBATh CTpax WHBECTOPA IOTEPSTH CBOU
JCHBI'H, MBI 3asBJsIEM, YTO HAIl CMapT-KOHTPAKT oblazaeT TakuM (yHKLIHOHAIIb-
HBIM CBOWMCTBOM: «EcCnu 6bl He npo2onocosanu Hu 3a 00HO UHBECMUYUOHHOE Npeo-
JIOJHCEHUe, O 8bl 8ce20a cmodiceme 3a6pams ceou cpedcmea obpamuo». B xade-
CTBE apryMeHTa Mbl yKa3blBaeM Ha MpOrpaMMHbIA koa ¢QyHkiwmu refund, xoropas
OTBEYaeT 3a BO3BPAT CPEACTB HHBECTODY.

function refund() public {
address sender = msg.sender;
uint tokens = balance[sender];
require (isVoted[O0] [sender] ==

false);
require (tokens > 0);
require (DAO_ tokens emitted >=
tokens) ;
DAO tokens emitted -= tokens;
balance[sender] = 0;

sender.transfer (tokens *
DAO token price);
emit Refunded (sender, tokens);

}

@OyHKIUS BBINIAIUT MPOCTO M yoenuresnsHo. OHAKO CBOMCTBO, TEM HE MEHee, He
BBINOJIHAETCS.

Araka 00JBIIMHCTBA. PaccMOTpUM clieHapHuil BO3MOXHOH aTaku. [/[Ba MHBeCTOpa
BJIOKWIM B MHBecT GoHx MiniDAO xpunroBamoTel cymMmMoil Ha X U Y TOKEHOB
COOTBETCTBEHHO. [IpennonoxkuM, 4TO MOSABISAETCA TPETUH HMHBECTOP, KOTOPBIH
BKJIaJIbIBAET KPHUIITOBAIIOTE 00bEMOM Ha 2* (X+Y) TOKEHOB. Y 3TOr0 MHBECTOpa
nosy4yaercsi OOJBIIMHCTBO T0JI0COB (2/3~66%) NnpH NPUHATHUH PELICHUS O 3asiBKE.

3https://bitbucket.org/unboxed_type/miniolao/src:/master/contracts/M iniDAOQ.sol
279

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

Tak kak MHBECTOPY HE 3alpeleHo ObITh MOIPSIYUKOM, TO STOT UHBECTOP pEru-
CTPHPYET COOCTBEHHYIO 3asIBKY C YKa3aHHEM CBOETO ajipeca U HEOOXOAMMYIO CyM-
My B pa3mepe 3* (X+Y) TokeHoB. Jlanee, n3-3a TOTO, YTO €TO TOJIOC - PEUIAFOIIHH,
OH TroJocyeT 3a COOCTBEHHYIO JK€ 3asBKy U IIOCIIE JTOTO BBI3BIBACT
execute_proposal. Bee cpeacta u3 houna MiniDAO nepeliayt Ha CYET 3TOrO HH-
BECTOpa-3J10yMBIIIJICHHUKA, BKIIOYAs TE€ CPEACTBA, KOTOPBIC BHECIM IIEPBBIEC JBa
uHBectopa. [losydaercs oueBMIHOE HapylieHHe (PYHKIMOHAIBHOTO TPEeOOBAHMS:
NEepBBIIl M BTOPOW MHBECTOP HE I'OJIOCOBAJM, HO CBOM JICHBI'M OHHM YK€ TOYHO HE
BEPHYT.

ATaka OoJIbIIMHCTBA (B HECKOJIBKO JIPYroii (hopMe) omrcaHa B OpUTHHATIBHON pado-
te TheDAO [14]. IIpeononooicum, umo mvl He 3HAeM npo amaxy OOIbUUHCMEA U
XOmum nonpoCcumsb GepUPUUUPYIOWUL UHCIPYMEHM NPOBEPUMb, GbINOLHAEMCS U
3a56/1eHHOE PYHKYUOHATLHOE CE8OCMEO.

7.2 ®dyHKuMoHanbHble cBoncTea MiniDAO

B kauectBe mpumepa copMysHupyeM TpH CBOMCTBA, KOTOPBIE MBI XOTEIH OBbI MPO-
BEPUTH C IOMOLIBI0 HHCTPYMEHTA BepUpUKALINH.

CpoiictBo DepositedNotVotedRefund. Ecnu uHBecTOp ¢ ampecom inv BHOCHI
JICTIO3MT, HO MPU 3TOM HH pa3y He TOJIOCOBaN 3a KakKylo-nubo 3asBKy, OH BCerja
CMOXXET BEPHYTh CBOU CpEJNICTBA IMyTEéM BbI30Ba QpyHKIMH refund.

DepositNotVotedRefund (o) & 3i,inv,s,1 <i < k.
ols[logs] = Deposited(inv,s) A 3j,inv,s,id, 1<) <k.
acjs[logs] = ProposalAdded(inv,,s;,id) AVn,id;,1 < n < k.
ol[logs] # Voted(inv, id, True) A at[logs] # Voted(inv,id, False) A
ol[logs] # Refund(inv) A olk[logs] # Transfer(inv) —
vm,i <m < k.3v,t,p.refundy,,..(on, v, inv, t,p)
B 1aHHOM cilyuae MBI HCIOJIB3YEM A3bIK JIOTUKH IIEPBOTO IOPSIKA, TAK KaK €ro
JIerye BCero OTTPAaHCIUPOBATh B SI3bIK orpanndyeHuit SMT-pemaresns.

CsoiictBo InvDaoBalanceEquTokens. B 11000M JOCTHXHMOM COCTOSTHHM CHCTe-
MBI, CyMMa OCTaTKOB TOKeHOB miniDAO Ha OanaHcax IoJb30BaTenell Bceraa
JIOJDKHA OBITh paBHa KOJIMYECTBY 3MUTHPOBAHHOW KPUITOBAIIOTHI, T.€. AJSI BCEX
JOCTHXKUMBIX COCTOSIHUN CHCTEMBI,

InvDaoBalanceEquTokens(oy,)

of Z ok[daoBalance[i]] = daoTokensEmitted

ieAddr
CaoiicTBo RejectedNotExecuted. THBecTHIIMOHHOE TIPE/JIOKEHHE, KOTOPBIE OBLIIO
OTKJIOHEHO, HE MOJXKET IIOJIyYUTh T[EePEUHCICHHE KPUIITOBATIOTHI M3 CMapT-

280

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

KOHTPAKTA.
RejectedNotExecuted (o) & vn.3i,j € N.

ol[logs] = ProposalAdded(n, amount) A ol;[logs] = ProposalRejected (n) A
i<j- Vki<k<jok[logs] # ProposalExecuted(n)

7.3 Nowuck ownb0okK B KOHTpakTe MiniDAO

Mpbl TIpoBepsieM CMapT-KOHTPAKT METOJOM CHMBOJIBHOW BepH(UKAIMU MOJIEINH.
CornacHO BBEIEHHOMY paHEe OMPEICICHHIO, 3alaTh MOJCIb O3HAa4YaeT 3a1aTh
Habop (P, E, Addr, 1, k, Z,f , P), mocie 4ero Mbl MOXEM BBITIOJHHUTH OJIUH U3 aJl-
TOPUTMOB MPOBEPKH (DYHKIIMOHATBHOTO CBOMCTBA.

Pa3pabaTriBaeMblii HHCTPYMEHT OYAET CTPOUTH YKa3aHHBIE OOBEKTHI aBTOMATHYE-
CKH, 110 UCXOJHOMY KOJy KOHTPAKTa, 32 UCKIIOUECHHUEM 3aJaHUsI KOJHUYECTBA YUACT-
HrkoB Addr, nuuHbI Tpaccesl K 1 ipoBepsiemoro cBoiictsa P.

Tak KaK UHCTPYMEHT MPOBEPKH HAXOAUTCS B CTAJUH Pa3pabOTKH, MbI POBEJH I10-
CTPOCHHE YKa3aHHBIX OOBEKTOB BPYYHYIO, MMOJYYHMB HA BBIXOJE MOJEIb CHCTEMBI
UCIIOJTHEHHsI CMapT-KOHTPAKTa M MPOBEPIEeMOro (hyHKIHOHAJIBHOTO CBOMCTBa, 3a-
KOAMPOBaHHYIO Ha si3bike SMT-pemarens. B atoit padote mbl ucnonb3oBanu SMT-

0. NoEvent

1. Deposited, sender = addr4, tokens = 2976

2. Deposited, sender = addr2, tokens = 1672

3. ProposalAdded, sender = addr4, amount = 4648,
proposallD =1

4. Voted, sender = addr4, proposallD = 1, supports=1
5. ProposalExecuted, proposallD = 1

step = 5, investor = addr2
pematens Z3 komnanuu Microsoft [16].

Puc. 2. Tpacca, onpogepearowas ¢ynkyuonansroe ceéoticmso DepositedNotVotedRefund.
Fig. 2. The counter-example for DepositedNotVotedRefund property.

ITocne TpaHCISIIMK MCXOTHOTO KoJa cMapT-KoHTpakTa MiniDAO B npeacraBieHnne
SMT-pemaresns 1 MpoBeieHNs] HECKOJIbKUX ONTUMH3ALNiA, ObliIa MOJTy4YeHa MOJIENb,
MpoOBEepKa KOTOPOHW 3a HECKOJIBKO CeKyHJ (CM. TaOIUWIly) CHHTE3WpoBajia KOHTP
NPUMEpBHI, yKa3blBas Ha OMIMOKY B OM3HEC-JIOTHKE KOHTPaKTa.

Tak, nposepka coiictea DepositedNotVotedRefund BeisiBuIa KOHTp ITpUMEp, MpeI-
ctapneHHbIN Ha Puc.2. IlepBoe cobbitne NoEvent o3HagaeT HadalnbHOE COCTOSHUE
CMapT-KOHTpaKTa. YKa3aH HabOp COOBITHH, KOTOPBIH BEAET K OLIMOOYHOMY COCTO-
suuto. lHBectopy addrd ne ynaércs BzBath refund mocie coObitust 5.

IIposepka cpoiictea InvDaoBalanceEquTokens Takke BoisiBiiIa omuOKy. B nepso-
HavyallbHOM Jornke cMapr-koHTpakta MiniDAO, meron vote 0OHYJISUT KOJHMYECTBO
TOKEHOB Ha CUETY MHBECTOPA, BHINOJH npucBanBanue: daoBalance[msg.sender] =
0. Ommoka OblIa ycTpaHeHa, OCJIE Yero CBOMCTBO MPOIUIO MIPOBEPKY.

281

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

IIposepka cBoiictBa RejectedNotExeceted npormuia ycremHo: He GbUI0 OOHAPYKEHO
HH OJTHOM TPaccCHl, OIPOBepraromuiei chopMyITHpOBaHHOE CBOHCTBO.

Ontumu3zanusi Moaean. IM3sectHo, uto SAT/SMT-pemarenn BecbMa UyBCTBH-
TENbHBI K M3MEHEHHUIO MapaMeTpoB MposepsieMoii cructemsl. Ilocie mepBoHadanb-
HOW TPAHCIAIMH HCXOJHOTO KOoAa cMapT-KoHTpakra MiniDAO B mpencraBieHne
SMT-pemarens, 6e3 onTHMHU3AIN, HAM HE yJAJIOCh JOOHWTHCS OT peIIaTeNs pe-
3yJIpTaTa 3a MPUEMIIEMOE BPEMS, ITOITOMY OBIJIO PEIICHO NMPOBECTH ONTHMHU3AIHIO
MO/IETIH.

OnruMuzaniell Mbl Ha3bIBAEM YMEHBIICHHE MOIIMHOCTH MHOKECTBA BO3MOXKHBIX
3HA4YEHHUH pa3JIMuHbIX ITapaMeTpoB cuctemsl (03, v, s, t,p). Tak, HanpuMep, BMECTO
MHOKeCTBa N,z A5 V U t OBUIO MON0XKEHO MHOXKeCTBO N, 4. EmE omHuM ontumu-
3UPYIOIUM TPUEMOM MOXKHO CYHMTATh BHIOOP HaYaJbHOM AJTMHBI TPACCHI, C KOTOPOI
HaunHaeTcsl aHanu3. OYeBUAHO, YTO MPHU HEYJAYHOM BHIOOpE pa3MepoB MHOXKECTB
U HadaJbHOM JJIMHBI TPACChI, €CTh BEPOATHOCTDb MPONYCTUTh CICHAPpUH, BEAYIINUE K
omuoKe.

8. Pesynbmamsbi pabombi Makema

W3mMeHsst pazMepbl MHOXKECTB, W3 KOTOPBIX BBIOMPAIOTCS 3HAYCHHS COCTOSHHAN MO-
JIeTIH, a TaKoKe JUIMHY IyTH, OblIa COCTaBJIEeHa TabJKLa C pe3yJbTaTaMU H3MEpEHU
BpeMEeHH paboThI pemaTesis Ha COOTBETCTBYIOLIEH MoJienu, cM. Tadu. 1.

Crnemyer UMETh BBUAY, YTO 3TH PE3YJIbTAaThl MOTYT JaBATh JIHIIb APUOIUIUMETbHOE
npedcmaeienue 0 TOM, B KaKHX IIpeJesiax JEeXUT BpeMs MOHUCKa KOHTpP IIpUMepa B
3aBHCHMOCTH OT TIIapaMeTpPOB MOJENH: alrOpUTM, Ha KOTOPBI OmHpaercs
SAT/SMT-pemareib 4yBCTBUTENEH K JFOOBIM H3MEHEHHUSM B MOJENH, @ B HEKOTO-
PBIX CIIEHApHUAX MOXKET Ha OJHON M TOIl e MOJENH C OAWHAKOBBIMH MapaMeTpaMu
BBIJIaBaTh Pa3HbIC Pe3yIbTAThI, IO CKOPOCTH U KOHTP MpUMEPY (HEIeTEPMUHHU3M).
DKcrnepuMeHTHI poBoawinch Ha Mamuue Intel Core 17-4770, 4 snpa 3.4 GHz , 32
GB RAM non ynpasinennem OC Linux Fedora 28 x64, 3anyiieHHas B BUPTyaJIbHOU
MmamuHe VirtualBox 5.1.24, nmox ympasnennem OC Windows 7. HMcmons3oBaiics
SMT-pemarens Z3 Bepcuu 4.7.1, 64 bit, Mozmenp 3anucaHa ¢ UCIOJIb30BaHUEM pac-
mmpenus Z3Py s Python.

9. 0630p cxoxux pabom

HccnenoBanuio pa3iandHBIX METOAOB IOWCKA W TPENOTBPAIIEHHS YS3BUMOCTEH B
CMapT-KOHTPAKTaX MOCBSAIIEHO MHOXECTBO padoT, cpenu mpounx [1] [2] [3] [4] [5]
(61 [7][8]-

B pabore [2] aBTOpHI NIPUBOASAT UCUEPIIBIBAIOIINI CIIUCOK N3BECTHBIX YSI3BUMOCTEH
s3pika Solidity m BupTyanpHOi MammHbl EVM, neTalbHO ONMMCHIBACTCS MEXaHU3M
n3BeCTHOH aTaku Ha KOHTpakT TheDAQ. Pabota He cTpeMuTCS MPEATTIOKUATH KaKue-
00 pemeHns IS Bepu(UKaIMi CMapT-KOHTPAKTOB, HO OTIIMYHO OCBEIIACT BCE
M3BECTHBIC HA MOMEHT HAIMCAHUS YSI3BUMOCTH S3bIKa H TIaT(HOPMBL.

282

Immkun E.C. TIpoBepka (yHKIIHOHATBHBIX CBOHCTB CMapT-KOHTPAKTOB METOJIOM CHMBOJIbHOI BepU(HKaINA MOIECIN.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

Tabn. 1. Jlesas mabruya - orumenvnocme npogepku ceoticmeéa DepositedNotVotedRefund.
Pesynomam >N oznauaem, umo Mol npepéaiu pabomy pewiamens no ucmeyernuu N cexyno.
Cpednsis mabnuya - OMUMEILHOCMb NPOGEPKU CEOUCMBA RejectedNotExeceted.
Ipasas mabnuya - orumensrocms nposepku ceoticmea InvDaoBalanceEquTokens.

Table 1. Left section: a duration of checking DepositedNotVotedRefund property. Abbr. «>
N» denotes the fact that we have stopped the SMT solver after N seconds. Middle section: a
duration of checking RejectedNotExecuted property. Right section: a duration of checking
InvDaoBalanceEquTokens property.

Haua- | upuna | Bpems Hauanp- | [llupuna | Bpems upuna Bpemss mpo-
NbHAas | EJOro | HPOBEpKH, ||| Hast LeJIOTO | IPOBep- LIEJIOr0 YHCIIa, | BEPKH, CEK
JUIMHA | 9MClia, B | CeK JUTHHA 9KCia, B | KM, CEK B OUTax
Tpacchl | burax Tpacchl | OuTax
16 243
6 16 34 6 16 12.9
24 997
8 16 7 8 16 9.4
12 16 474 6 32 46
6 32 9 8 32 30
8 32 115
12 32 > 660

PabGota [3] mpeanaraer crmoco® CTaTHYECKOTO aHalM3a CMapT-KOHTPAKTOB, 3aIlH-
caHHBIX Ha si3bIke Solidity* (ympoménnas Bepcust Solidity 63 IHKIOB), ¢ TOMOIIHIO
TpaHcsinuy B 5136k F* BMecTe co crienmanbHO BBeAEHHBIMH THIIaMu (MoHana Eth),
MOMOTAIOIINMH OTCIIEKHBATh OTCYTCTBUE JOJDKHONH 00pabOTKH OMIMOOK IMOCIHE BbI-
30Ba (yHKIHUH, a Takke 00paboTke pesynabTara ¢yHknuu send. [IpenoxkeHHbIN B
CTaThe IOJXOJ HalleJieH Ha YCTpaHEHHe THUIOBBIX OLUIMOOK B pealn3aliud cMapT-
KOHTPakTOB Ha s3bike Solidity, mpu 3TOM BBICOKOYPOBHEBBIE (DYHKIMOHAJIbHbIC
CBOMCTBA HUKAK HE MPOBEPSIOTCS.

B [1] uccnemyercst BO3MOXKXHOCTh IPOTPaMMHUPOBAHUS CMapT-KOHTPAKTOB HA (DyHK-
[IMOHAJILHOM si3bIKe 1dris; MCIONB3ys BEIPA3UTENIbHYIO CHIIY CHCTEMbI THIIOB JIAHHO-
IO s13bIKa, aBTOPBI BBOJSAT HECKOJIBKO alNreOpanueckux TUIOB, HOMOTAIOIINX yCTpa-
HHUTb ONpeeNEHHBIN KJIacC ONepalMoOHHbIX OIIMOOK Ha dTane KoMIwisinuu. bosee
Toro, mpencrasieH backend mms xommmstopa Idris, TpaHcTMpyromuii Ko KOH-
TpakToB B ucnonHsieMblii EVM GaiiTko. AHaOrM4HO, B paboTe HUKAaK HE aJpeco-
BaH BOINPOC IIPOBEPKH BHICOKOYPOBHEBHIX (DYHKIMOHAIBHBIX CBOMCTB CMapT-
KOHTPAKTa.

Paboter [4], [7] ONKCHIBAIOT HMHCTPYMEHTHl CTATHYCCKOTO aHajIW3a CMapT-
KOHTPAKTOB, OCHOBaHHBIX Ha CHMBOJBHOM HCIIOJHEHHH IPOTPaMMbl CMapT-
KOHTpPAaKTa C MOWUCKOM YCJIOBHMH, BBIIIOJIHEHHE KOTOPBIX BIIEUET Iepexo]] ynpasiie-
HMS Ha TOTEHIMAJbHO OINACHBIE YYACTKM KOJia, a TaKKe IMOMCKY B MCXOJHOM KOje
CMapT-KOHTPaKTa MaTTEPHOB HEKOTOPBIX TUIIOBBIX YSI3BUMOCTEH.

283

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

B pabore [6] onuckIBaeTcss HHCTPYMEHT CTATHYECKOTO aHAIN3a CMapT-KOHTPAKTOB
ZEUS, criocoOHBIM NCKaTh HapyLICHUE 3aJaHHBIX MOJb30BaTeNeM HoMuTHK. [lomn-
THKH OTIMCHIBAIOTCS KaK YTBEPKICHUS O COCTOSIHUH IIEPEMEHHBIX KOHTPAKTA C MOJI-
JEpKKON aprupMeTHKH (TIPOTO3UIIHOHHBIE BEICKa3bIBaHUS ¢ apudmernkoif). Kpome
storo, ZEUS winer THUNWYHBIE YSA3BUMOCTH B Iporpammax Ha s3bike Solidity. B
ommune or Hamed pabortsl, ZEUS He cnocobeH aHamu3MpoBaTh JIOTUKY pabOThI
KOHTpaKTa, PacTSIHYTYI0 BO BPEMEHH, a HalleJIeH UCKIIIOYNTEIbHO Ha CBOHCTBA Oe3-
OIIACHOCTH JIOCTH)KUMBIX COCTOSIHUH (safety).

[Moxanyit, mepBoil MOMBITKON HCIIOIB30BaTh MHTEPAKTHBHYIO CpPEly IOCTPOCHHS
JIOKa3aTeNbCTB JUISl MPOBEPKH KOPPEKTHOCTH CMAapT-KOHTpakKTa siBisieTcss pabora
[5]. ABtop 3akomupoBan cemaHTuKy MHCTpykuuit EVM chauana B cpene Coq, a
3areM u B Isabelle, yTo mo3BoJsieT BepUPHUIMPOBATH CBOMCTBA CMApT-KOHTPAKTOB
Ha ypoBHe OaiiT-koma EVM. IlpenocraBnsisi HaWBBHICIINE TapaHTHH Ha KOPPEKT-
HOCTbH TIPOBEPEHHOTO apTedakTa, Moaxo] o0JafaeT HEeJOCTaTKaMuU: IOJIb30BaTelb
JOJDKCH UMETh CHENUATbHYIO KBAJTH(UKAIIMN M caM MPOIECC MOCTPOSHHS I0Ka3a-
TENBCTB MOXKET 3aHSATh JAJTUTEIHLHOE BPEMSI.

B paborte [8], aBTOp PopmanmsyeT gacTh s3p1ka Solidity, OmUCHIBas ONEparuOHHYIO
CEMaHTHKY HEKOTOPBIX KOHCTPYKIMH. Dopmanu3anust BeAETCs B Cpezie MOCTPOCHHS
nokazatenseTB Coq.

10. 3aknro4vyeHue

B crarbe onucaH NoAX0A K MPOBEPKE HEKOTOPHIX BHJIOB ()YHKIIHOHAJIBHBIX CBOWCTB
NnoAMHOXecTBa si3bika Solidity MeTo1oM CUMBOJIBHO# Bepudukanuu Mozenu. Onu-
caHa MOJIENIb MCIIOJHEHHs CMapT-KOHTPAKTa, MO3BOJISIONIAs MPOBEPATh (HYHKIHO-
HaJIbHbIE CBOWCTBA, 3aJlaHHbIe 4-Ms1 BO3MOXKHBIMHU criocobamu. BriepBbie npescras-
JIeH crioco0 ONMCaHus MOBEJCHUSI CMapT-KOHTPAKTa, 33aHHbIA [IETIOYKON reHepH-
PYEMBIX COOBITHH.

Ha npumepe cmapr-koHTpakta MiniDAO moka3aHa npakTHYecKas MPUMEHHUMOCTD
OIMCHIBAEMOT0 0X0/1a K BepuduKan. B kauecTBe nanpHeWmumx paboT Mo JaH-
HOHM TeMe MBI XOTeJH Obl 0COOCHHO BBIZIETIUTH TAaKUE HAIPABICHUS:

1. Omnucanne GopmMambHOrO SA3bIKa CHEIU(PHUKALNK MOBEACHHS CMapT-KOHTPAKTa,
OCHOBAHHBIH Ha COOBITHSX, TEHEPUPYEMBIX cMapT-KoHTpakToM. Ceifyac Takue
CBOMCTBA 3aIUCHIBAIOTCS HA SI3BIKE JIOTHKHU TIEPBOTO MOPSIIKA - 3TO HEYAOOHO, U
TpebyeT BHUMaHUSI.

2. Onrumuzamus npeacraBieHnil Mojenu Ha s3bike SMT pemarens. Ot onrtu-
MaJIbHOCTH HPE/CTABICHUS] CHCTEMBI 3aBUCUT OBICTPOTA ITOMCKA KOHTP MpHUMe-

pa.

284

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

Cnucok nutepatypbl

[1]. Pettersson J., Edstrom R. Safer smart contracts through type-driven development. Mas-
ter’s thesis, Chalmers University of Technology, Department of Computer Science and
Engineering, Sweden, 2016.

[2]. Atzei N., Bartoletti M., Cimoli T. A survey of attacks on ethereum smart contracts (sok).
Lecture Notes in Computer Science, vol. 10204, 2017, pp. 164-186.

[3]. Bhargavan K. et al. Formal verification of smart contracts. In Proc. of the 2016 ACM
Workshop on Programming Languages and Analysis for Security, 2016, pp. 91-96.

[4]. Luu L. et al. Making smart contracts smarter. In Proc. of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, 2016, pp. 254-269.

[5]. Hirai Y. Defining the ethereum virtual machine for interactive theorem provers. Lecture
Notes in Computer Science, vol. 10323, 2017, pp. 520-535.

[6]. Kalra S. et al. Zeus: Analyzing safety of smart contracts. In Proc. of the Network and
Distributed System Security Symposium, 2018.

[7]. Mueller B. Smashing Ethereum Smart Contracts for Fun and Real Profit. In Proc. of the
9th Annual HITB Security Conference, 2018.

[8]. Zakrzewski J. Towards verification of Ethereum smart contracts: a formalization of core
of Solidity, Lecture Notes in Computer Science, vol. 11294, 2018, pp. 229-247.

[9]. Solidity github. ToctymHo o ccbiike:
https://github.com/ethereum/solidity/blob/develop/docs/grammar.txt, nara oGparenus
20.11.2018.

[10].Nakamoto S. Bitcoin. A peer-to-peer electronic cash system. 2008. JocTymHo 1Mo cchii-
ke: https://bitcoin.org/bitcoin.pdf, nmara o6pamenus 20.11.2018, mata oGpamieHus
20.11.2018..

[11].Gideon Greenspan. Smart contracts and the dao implosion. 2016. ToctymHo 1Mo cChLIKE:
https://www.multichain.com/blog/2016/06/smart-contracts-the-dao-implosion/, nara 06-
pamenns 20.11.2018.

[12].S. Palladino. The Parity Wallet Hack Explained, https://blog.zeppelin.solutions/on-the-
parity-wallet-multisig-hack-405a8¢12e8f7, nara o6pamenus 20.11.2018.

[13].J.D. Alois. Ethereum Parity Hack May Impact ETH 500,000 or $146 Million. 2017.
Hocrynao 1o cewuike: https://www.crowdfundinsider.com/2017/11/124200-ethereum-
parity-hack-may-impact-eth-500000-146-million/, nara o6pamenus 20.11.2018.

[14].Jentzsch C. Decentralized autonomous organization to automate governance. 2016. JTo-
crynHo 1o cceuike: https://download.slock.it/public/DAO/WhitePaper.pdf, mara o6pa-
menus 20.11.2018.

[15].E. HInukuH. O MOCTPOSHUH CPebl Tl KOHCTPYHPOBAHMUS TapaHTHPOBAHHO HAIEXHBIX
cMapT-KOHTpakToB. Marepuainsl koHpepeniun PycKpunro’2018, 2018. JoctynHo mo
ceouike: https://www.ruscrypto.ru/resource/archive/rc2018/files/03_Shishkin.pdf, mara
obpamtenus 20.11.2018.

[16].De Moura L., Bjerner N. Z3: An efficient SMT solver. Lecture Notes in Computer Sci-
ence, vol. 4963, 2008, pp. 337-340.

[17].Manna Z., Pnueli A. The temporal logic of reactive and concurrent systems: Specifica-
tion. Springer-Verlag, 1992, 427 p/

[18].Ethereum project. ToctynHo o ccbuike: https://www.ethereum.org/, nara obpamieHust
20.11.2018.

[19].Szabo N. Smart contracts. 1994. JIoCTYIHO 10 CChUIKE:
http://www.fon.hum.uva.nl/rob/Courses/InformationinSpeech/CDROM/L.iterature/LOT

285

https://github.com/ethereum/solidity/blob/develop/docs/grammar.txt
https://www.multichain.com/blog/2016/06/smart-contracts-the-dao-implosion/
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.ethereum.org/
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

winterschool2006/szabo.best.vwh.net/smart.contracts.html, nara o6pamenus
20.11.2018.

[20].Sheeran M., Singh S., Stdlmarck G. Checking safety properties using induction and a
SAT-solver. Lecture Notes in Computer Science, vol. 1954, 2000, pp. 127-144.

Verifying functional properties of smart contracts using
symbolic model-checking

E.S. Shishkin <evgeniy.shishkin@gmail.com>
Infotecs, Scientific Research Department
1/23, Petrovsko-Razumovskiy Proezd, Moscow, 127287, Russia

Abstract. We describe our efforts towards building a tool that automatically verify high-level
functional properties of Ethereum smart contracts against its formal specification that can be
given using four different methods: an invariant over contract state or three different types of
trace properties. A model of runtime system, the source code of smart contract together with
its specification is translated into SMT-solver formula and checked for counter example. We
tested the method on simplified version of notorious TheDAO smart-contract, called Mini-
DAO. Our proof-of-concept tool was able to find a functional property violation of MiniDAO
in just several seconds. We believe that the proposed method is indeed useful and deserves
deeper investigation.

Keywords: symbolic model-checking; smart contracts; blockchain; formal specification;

DOI: 10.15514/ISPRAS-2018-30(5)-16

For citation: Shishkin E.S. Verifying functional properties of smart contracts using symbolic
model checking. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 265-288 (in
Russian). DOI: 10.15514/ISPRAS-2018-30(5)-16

References

[1]. Pettersson J., Edstrom R. Safer smart contracts through type-driven development.
Master’s thesis, Chalmers University of Technology, Department of Computer Sci-
ence and Engineering, Sweden, 2016.

[2]. Atzei N., Bartoletti M., Cimoli T. A survey of attacks on ethereum smart contracts
(sok). Lecture Notes in Computer Science, vol. 10204, 2017, pp. 164-186.

[3]. Bhargavan K. et al. Formal verification of smart contracts. In Proc. of the 2016
ACM Workshop on Programming Languages and Analysis for Security, 2016, pp.
91-96.

[4]. Luu L. et al. Making smart contracts smarter. In Proc. of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 254-269.

[5]. Hirai Y. Defining the ethereum virtual machine for interactive theorem provers.
Lecture Notes in Computer Science, vol. 10323, 2017, pp. 520-535.

286

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

Mumkun E.C. TIpoBepka (yHKI[MOHAIBHBIX CBOMCTB CMapT-KOHTPAKTOB METOZOM CHMBOJIBHO BEpH(BUKALIMH MOJICIH.
Tpyowt UCIT PAH, Tom 30, Boim. 5, 2018 r., ctp. 265-288

[6]. Kalra S. et al. Zeus: Analyzing safety of smart contracts. In Proc. of the Network
and Distributed System Security Symposium, 2018.

[7]. Mueller B. Smashing Ethereum Smart Contracts for Fun and Real Profit. In Proc.
of the 9th Annual HITB Security Conference, 2018.

[8]. Zakrzewski J. Towards verification of Ethereum smart contracts: a formalization of
core of Solidity, Lecture Notes in Computer Science, vol. 11294, 2018, pp. 229-
247.

[9]. Solidity github. Available at:
https://github.com/ethereum/solidity/blob/develop/docs/grammar.txt, accessed
20.11.2018.

[10].Nakamoto S. Bitcoin. A peer-to-peer electronic cash system. 2008. Available at:
https://bitcoin.org/bitcoin.pdf, accessed 20.11.2018, accessed 20.11.2018..

[11].Gideon Greenspan. Smart contracts and the dao implosion. 2016. Available at:
https://www.multichain.com/blog/2016/06/smart-contracts-the-dao-implosion/, ac-
cessed 20.11.2018.

[12].S. Palladino. The Parity Wallet Hack Explained, https://blog.zeppelin.solutions/on-
the-parity-wallet-multisig-hack-405a8c¢12e8f7, accessed 20.11.2018.

[13].J.D. Alois. Ethereum Parity Hack May Impact ETH 500,000 or $146 Million. 2017.
Available at: https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-
hack-may-impact-eth-500000-146-million/, accessed 20.11.2018.

[14].Jentzsch C. Decentralized autonomous organization to automate governance. 2016.
Available at: https://download.slock.it/public/DAO/WhitePaper.pdf, accessed
20.11.2018.

[15].Shishkin E. Towards building an environment for reliable smart contracts construc-
tion. RusCrypto, 2018.

[16].De Moura L., Bjerner N. Z3: An efficient SMT solver. Lecture Notes in Computer
Science, vol. 4963, 2008, pp. 337-340.

[17].Manna Z., Pnueli A. The temporal logic of reactive and concurrent systems: Speci-
fication. Springer-Verlag, 1992, 427 p/

[18].Ethereum project. Available at: https://www.ethereum.org/, accessed 20.11.2018.

[19].Szabo N. Smart contracts. 1994. Available at:
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/L.iterature/
LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html, accessed
20.11.2018.

[20].Sheeran M., Singh S., Stdlmarck G. Checking safety properties using induction and
a SAT-solver. Lecture Notes in Computer Science, vol. 1954, 2000, pp. 127-144.

287

https://github.com/ethereum/solidity/blob/develop/docs/grammar.txt
https://www.multichain.com/blog/2016/06/smart-contracts-the-dao-implosion/
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.ethereum.org/
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

Shishkin E.S. Verifying functional properties of smart contracts using symbolic model checking. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 265-288

288

