TPYADI

MHCTUTYTA CUCTEMHOI'O
nNPOrPAMMMUPOBAHUA PAH

PROCEEDINGS OF THE INSTITUTE
FOR SYSTEM PROGRAMMING OF THE RAS

ISSN Print 2079-8156 WMHCTUTYT cucTemHoro
Tom 31 Buinyck 3 nporpaMmMUpoBaHMA
um. B.I. Meanuukosa PAH

ISSN Online 2220-6426

Volume 31 Issue 3 Mockea, 2019 Hcn

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)

Tpyabl UHCTUTYTa cuctemHoro nporpammupoBaHusa PAH
Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH - 510 u3ganmne ¢

JIBOMHON aHOHUMHOMN CUCTEMOM

peleH3UpOBaHUs, MyOIUKYIONIee HayYHbIe

CTaThH, OTHOCSIIIUECS KO BCEM 00IaCTAX

CHUCTEMHOTO IPOTPaMMHUPOBAHUS,

TEXHOJIOTHI MTPOrPaMMUPOBAHHUS U

BBIYMCIIUTEIbHON TeXHUKU. Llenbro

W3JIaHU SBIIIETCS (POPMUPOBAHIE HAYIHO-

WH(POPMAITMOHHOM CPEJIbI B ATUX 00JIACTSIX

MyTeM IyOJIMKAIUU BRICOKOKAYECTBEHHBIX

CTaTeil B OTKPHITOM JIOCTYTIE.

W3nanue npeaHasHaueHo s

HCCIe0BaTeNe, CTYACHTOB U

ACIMPAHTOB, a TaKXKe MPakTUKOB. OHO

OXBAaTHIBAET IIMPOKHI CIIEKTP TEM,

BKJIIOYAsi, B YACTHOCTH, CJIEYIOIIHE:

® OIeparroHHBIE CHCTEMBI,

® KOMMIWJIATOPHBIC TEXHOJOTHH;

e 0a3bl JaHHBIX U HH()OPMAITMOHHBIE
CUCTEMBI;

e TapaJuIeIbHBIE U pacIpeIeIICHHbIC
CUCTEMBI;

e aBTOMATHM3HWPOBaHHAas pa3zpaboTka
porpamm;

e BepuduKkanus, BaIUIALMS U
TECTUPOBAHMUE;

® CTaTWYECKUU M JUHAMHYECKUHN aHAIU3;

e 3ammTa U obecreyeHne 6e30MacHOCTH
I10;

® KOMIIbIOTEPHBIC aJITOPUTMBI;

® HCKYCCTBEHHBIN HHTEIIJICKT.

KypHnan nznaercst mo 0oaHOMY TOMY B IO/,

IIECTH BBIITYCKOB B KAKIIOM TOME.

[MomnepkuBaeTCs OTKPBITHIN TOCTYI K

COJICP)KaHUIO M3/IaHUs, O0eCTIeunBast

JIOCTYITHOCTH PE3yJIbTAaTOB UCCIIEIOBAHUI

JUTSL OOIIIECTBEHHOCTH U TIOJ|JICPIKUBAS

JI00ATBHBIA OOMEH 3HAHUSMHU.

Tpyasl UCII PAH pedepupyroTes u/umu

UHJECKCUPYIOTCS B!

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by publishing
high quality articles on open access.

The journal is intended for researchers,
students, and practitioners. It covers a wide
variety of topics including (but not limited
to):

Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design Tools.
Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

Gopgle Qo
s poprd
Russiansoience APNioHqcar

Citation Index

D BASE OpenDOAR

OVBERLENINKR e
¢LIBRARY.RU £S48
BN ERE

GESTRY OF 9N
ACULSS RUPOSITORIES

3 T EN W)

B &

AN

VIIK004.45

Peaxonnerus

I'naBHbIil pegakTop - Aperucsy ApyTioH
Wmixanosud, wieH-kopp. PAH, x.¢.-m.1., UCI1 PAH

(Mockaa, Poccuiickas ®enepanms)

3amecTHTeJb IIABHOTO pefakTopa - Kysnenos
Cepreit JImutpuesnd, a.T.H., npodpeccop, UCIT PAH
(Mockga, Poccuiickast ®eneparms)

YneHbl peaKoIIeruu

BoponkoB Anjipeii AnatojibeBu4, T0KTOp HUNKO-
MaTeMaTH4eCKUX HayK, mpodeccop, YHUBEPCUTET
Manuecrepa (Manuectep, Bennkobpuranus)
Bupouukaiite Upuna bonaBenTypoBHa,
npodeccop, TOKTOp HU3HKO-MaTEMAaTHIECKUX HAYK,
WueTuTyT crcTeM HHPOPMATHKH MM. aKaJeMHUKa
A.II. EpmoBa CO PAH (HoBocubupck, Poccust)
Konnos Urops BiaajuMupoBuy, KaHIUIAT
(U3UKO-MaTEeMaTHUECKUX HAayK, TeXHUIeCKUui
yauBepcuteT Bensl (Bena, ABctpus)
JlacToBenkuii AJsiexceii Jleonn10BuY, J0KTOp
(U3UKO-MaTeMaTHUECKHIX HayK, Ipodeccop,
VYuusepcuter dy6muna (Qyomun, Vpranmus)
Jlomaszopa MpuHa AjeKcaHAPOBHA, JOKTOP
(bHM3MKO-MaTeMaTHUECKUX HayK, Tpodeccop,
HanuonanbsHsli ucciie1oBaTeNbCKU YyHUBEPCUTET
«BrIcmias mkosia 3KOHOMHKH» (MocKkBa,
Poccuiickas deneparust)

HoBukos Bopuc AceHoBnd, TOKTOp (PH3UKO-
MaTeMaTH9YecKuX Hayk, mpodeccop, CaHKT-
IMetepOyprekuii rocyiapCTBEHHBIN YHUBEPCUTET
(Canxrt-IlerepOypr, Poccust)

Ilerpenko Anexcanap @e1opoBud, JOKTOP HayK,
Hccnenoparenbckuii HHCTUTYT MoHpeanst
(Mownpeans, Kanana)

Yepubix Anjpeii, TOKTOp GU3UKO-MaTEMaTHIECKHX
HayK, mpoteccop, Hayano-nccnemoBarenbckuit
nentp CICESE (Ducenana, baxa Kamudopaus,
Mekcuka)

Illycrep Accad, TokTOp HU3MKO-MAaTEMaTHIECKUX
Hayk, podeccop, Texunon — M3pannsckuit
TexHosnorndeckuit nHctuTyT Technion (Xaiida,
Wzpannb)

Anpec: 109004, r. Mockga, yi. A. COoDKeHHUIIBIHA,
oM 25.

Tenedon: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caiir: http://lwww.ispras.ru/proceedings/

Editorial Board

Editor-in-Chief - Arutyun I. Avetisyan,
Corresponding Member of RAS, Dr. Sci. (Phys.—
Math.), Ivannikov Institute for System Programming
of the RAS (Moscow, Russian Federation)

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr.
Sci. (Eng.), Professor, Ivannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Editorial Members

Igor Konnov, PhD (Phys.—Math.), Vienna
University of Technology (Vienna, Austria)
Alexey Lastovetsky, Dr. Sci. (Phys.—Math.),
Professor, UCD School of Computer Science and
Informatics (Dublin, Ireland)

Irina A. Lomazova, Dr. Sci. (Phys.—Math.),
Professor, National Research University Higher
School of Economics (Moscow, Russian Federation)
Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor,
St. Petersburg University (St. Petersburg, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research
Institute of Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel
Institute of Technology (Haifa, Israel)

Andrei Tchernykh, Dr. Sci., Professor, CICESE
Research Centre (Ensenada, Baja California,
Mexico).

Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The
A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the RAS (Novosibirsk, Russian
Federation)

Andrey Voronkov, Dr. Sci. (Phys.—Math.),
Professor, University of Manchester (Manchester,
United Kingdom)

Address: 25, Alexander Solzhenitsyn st., Moscow,
109004, Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings

© Unctutyt Cucremuoro [Iporpammupoaunus PAH, 2019

http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://usuario.cicese.mx/~chernykh/
http://assaf.net.technion.ac.il/
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://usuario.cicese.mx/~chernykh/
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/

Tpyast HacTtutyTa CucremHoro IIporpammMupoBanusd

ConepxaHue

TosepaHTHBIN CHHTAKCHYECKHIA aHATN3 C UCIIOJIB30BaHUEM MOAUGMUIIPOBAHHBIX
anroputMmoB LL(1) u LR(1) co BcTpoeHHO# 00paboTKOI cCUMBOJIA «Any»
TONOBCUIKUH A.B. ...ttt e e st ae e e e nnras 7

I'paduaeckuit DSL mis pa3zpaboTkun MOOMIEHBIX TTPHIIOKCHUI

PazpaboTka mporpaMMHON Cpeibl ISl YITPABICHUS HHTEILICKTYaTbHBIMU
YCTpPOHUCTBaMHU B pPEabHOM BPEMEHU
Haymosuu T., bansx JI., ZKusounosuy JI., QuUaunoguy @.ccccccvvvieeiniieiinneninennns 35

Hccnenoanue moaxo0B K peaqu3alii KOHBeepa HHCTPYKIMM B paMKax
MOTaKTOBO-TOYHOTO CUMYJISITOPA MUKPOTIPOIIECCOPOB «DIMBOPYCH

PazpaboTka yHHBEpCATEHBIX TECTOBBIX IMIPOTPaMM JIJIsi aBTOHOMHOM W CUCTEMHO
JIOTHYECKOH Bepr(PHUKALUHU TPOTPAMMHUPYEMBIX KOHTPOJUIEPOB
DPOTIOB TLB. ...t 59

TecTtoBoe okpyxeHue A Bepuukanuu 6J10Ka MOACUCTEMBI TAMSTH
MHOT'OIIPOLIECCOPHON CUCTEMBI
Jlebeoes J].A., TIempoueHKO8 M.B.cccooiiiiiiiiiiiiiiie ittt 67

ABtoHoMmHas Bepupukanus [OMMU c moanepKkoit BUPTyaTH3aliu
Hempuoikun A.A., Cmomnano U.A., Meuko8 A.H.ccccccevvoiiiiiiiiiiiiiniieiiie e 77

udpoBoe MoaeMpoBaHne TEXHOJIOTHH TPOM3BOCTBA METAIIII000padaTHIBAIOIINX
MEXaHHUYECKHX IIEXOB
Komunsapoe B.11., Macnaxos A.I1L, Toacmonec A.A...........ccccooovooiiiiiiiiiiniiiiiiiiiieieeneens 85

Penyrannonnsie cucTeMbl B 3JIEKTPOHHOM KoMMepunu: CpaBHUTEIBHBIN aHATIN3 U
MEPCIEKTUBBI MOACITUPOBAHMS IPUCYIIEH UM HEUETKOCTH
Hocoesckuit M.M., [1eemapes K. FO.ccccoooueiieeiii e 99

Hcnonp3oBaHrie THBAPHUAHTOB ()YHKIIUH BEICOKOTO YPOBHS JUISI JICTyKTUBHON
Bepu(UKaIHA MAITHHHOTO KOJIa
TIPIIPO TLA. ..ottt nre e 123

ITonck koH(IUKTOB MOCTyMA K JaHHBEIM B HDL-onmcanmsax
Kamrun A.C., JIe6e0e6 M.C., CMONOB C.A......eveeiiiiiiiiiiiiiiieeeeiieiiieisieeeseresiinseseassenns 135

OBpHCTUYECKHE METOABI KOHCTPYHUPOBAHUS MapILPyTa JJIsl pEIICHHs 3aJa4l
MapIIpYTH3alHUU C OTPaHUUYEHHEM TI0 TPY30MO0ABEMHOCTH
Agoouiuns C.M., BepeCHEBA E.H...........ccccouiiiiiiiiiiiiiiicic et 145

00630p A3BIKOB TSI 6€30ITACHOTO MPOTPAMMHUPOBAHUS CMAPT-KOHTPAKTOB
Twpun A.B., Tionanoun U.B., Manvyes B.C., Kupunenxo A.A.,
BEPEBYH JIA. ..o s 157

[Touck ys3BUMOCTE#H ITPH MOMOIIM CTATHUECKOr0 aHaIM3a IOMEUEHHBIX JTAHHBIX
HTumuur H.B., H2HAMBEE B.H..vuvvviiiiiiiiiiiiiiiiiiiieieisieieieiessrersrersrsrsrsssss . 177

C# mapcep AJ1s1 M3BJICUCHUSI CTPYKTYPBI KPUNITOTPAQUIECCKUX MPOTOKOTIOB M3 UCXOTHOTO
KozJa
Tucapes H.A., BAOCHKO JLK..........cccoouiiiiiiiiiiiii ittt ene e 191

Komnonent-pacmmpenne PCYB]] SQLite 11 nHASKCHPOBaHUS JaHHBIX
Moaudukanusmu B-nepeBnes
Pueun AM., IHepuiaro8 C.A...cccoueiiuiiiiiiieie s st sie st sae e enne e 203

«KM3Hb» B TeH30pax: peann3aliys KICTOYHBIX aBTOMATOB Ha BHACOKApTax

MopenrpoBaHue HETHHEHHOW CHCTEMBI CTAOMITN3aINK Ha KJIACTEPax ¢ COMPOIIECCOpaMH
Intel Xeon Phi
METBHUYYK JIB. ..ottt 229

Proceedings of the Institute for System Programming of the RAS

Table of Contents

Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any”

symbol

L€10] (oY=t 1 (T WA RS 7
Graphic DSL for Mobile Development

Gudiev A.V., GrazheVsKaya A.S.........cceciveiiie e se s se et sreena e b e e 29
Development of a software framework for real-time management of intelligent
devicesNaumovi¢ T., Baljak L., Zivojinovic’ L., FilipOVIC F oocoeovvvee et 35

An Exploration of Approaches to Instruction Pipeline Implementation for Cycle-
Accurate Simulators of «Elbrus»

Poroshin P.A., MESHKOV A.N. ..ottt srae e e st 47
Approach to test program development for multilevel verification

FrOIOV P.V. ettt bbb nne s 59
Test environment for verification of multi-processor memory subsystem unit

Lebedev D.A., PetroChENKOV IML.V. ...ttt et r e e et 67
Standalone verification of IOMMU with virtualization supporting

Petrykin A.A., Stotland LLA., MeShKOV AN.cuiiiiiei e 77
Digital Modelling of Production Engineering for Metalworking Machine Shops
Kotlyarov V.P., Maslakov A.P., TOISIOIES AA.......coooiiiieecc e 85

Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model
Uncertainty Inherent in Them
NOSOVSKiYy M.M., DegtiareV K.Y. ...ttt 99

Applying High-Level Function Loop Invariants for Machine Code Deductive
Verification

PULIO P A bbbttt et sb e bt sae e sre e e 123
Extracting Assertions for Conflicts in HDL Descriptions

Kamkin A.S., Lebedev M.S., SMOIOV S.A. ..ottt 135
Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study
Avdoshin S.M., BEreSNeVA E.N.ooveiiieiiiieee ettt r e e e e e s e e eneeessaans 145

00630p A3BIKOB ISl 6€30ITACHOTO MPOTPAMMHPOBAHHUS CMAPT-KOHTPAKTOB
Tyurin A.V., Tyuluandin 1.V., Maltsev V.S., Kirilenko I.A.,

BEIEZUN DA . s 157
Vulnerabilities Detection via Static Taint Analysis
Shimchik N.V., 1gNALYEY V.IN. ..o s 177

C# parser for extracting cryptographic protocols structure from source code
PisareVv LA., BABENKO L.K.... .ooooeiiiiiie ettt ettt e e e e sttt e e e s e s s e eeee s 191

SQL.ite RDBMS Extension for Data Indexing Using B-tree Modifications
Rigin A.M., Shershakov S.A.o 203

«Life» in Tensor: Implementing Cellular Automata on Graphics Adapters
Shalyapina N.A., GromMOV M.L.......oco i 217

Modeling Nonlinear Stabilization System on Clusters with Intel Xeon Phi Coprocessors
MEINICAUK D.V. .o sttt et e b e e e 229

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-1

Tolerant parsing using modified LR(1) and LL(1)
algorithms with embedded “Any” symbol

A.V. Goloveshkin, ORCID: 0000-0001-6947-0594 <alexeyvale@gmail.com>
Vorovich Institute for Mathematics, Mechanics and Computer Science,
Southern Federal University,
8a, Milchakova st., Rostov-on-Don, 344090, Russia

Abstract. Tolerant parsing is a form of syntax analysis aimed at capturing the structure of certain points of
interest presented in a source code. While these points should be well-described in a tolerant grammar of the
language, other parts of the program are allowed to be described coarse-grained, thereby parser remains
tolerant to the possible variations of the irrelevant area. Island grammars are one of the basic tolerant parsing
techniques. “Islands™ term is used as the relevant code alias, the irrelevant code is called “water”. Efforts
required to write water rules are supposed to be as small as possible. Previously, we extended island
grammars theory and introduced a novel formal concept of a simplified grammar based on the idea of
eliminating water description by replacing it with a special “Any” symbol. To work with this concept, a
standard LL(1) parsing algorithm was modified and LanD parser generator was developed. In the paper,
“Any”-based modification is described for LR(1) parsing algorithm. In comparison with LL(1) tolerant
grammars, LR(1) tolerant grammars are easier to develop and explore due to solid island rules.
Supplementary “Any” processing techniques are introduced to make this symbol easier to use while staying
in the boundaries of the given simplified grammar definition. Specific error recovery algorithms are presented
both for LL and LR tolerant parsing. They allow one to further minimize the number and complexity of water
rules and make tolerant grammars extendible. In the experiments section, results of a large-scale LL and LR
tolerant parsers testing on the basis of 9 open-source project repositories are presented.

Keywords: tolerant parsing; robust parsing; lightweight parsing; partial parsing; island grammars; simplified
grammar; LanD parser generator

For citation: Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded
“Any” symbol. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 7-28. DOI: 10.15514/ISPRAS-
2019-31(3)-1

TonepaHTHbIN CUHTAKCUYECKUWN aHanu3 ¢ UCNOJIb30BaHUEM
MmoaucuumpoBaHHbIx anroputmoB LL(1) u LR(1) co BcTpoeHHOM
obpaboTkon cumBona «Any»

A.B. I'onosewxun, ORCID: 0000-0001-6947-0594 <alexeyvale@gmail.com>
Huemumym mamemamuxu, MEXanuku u KOMnbiomepuvix nayk um. 1.U. Boposuua,
FOoicnvlil ghedepanvhblii ynusepcumem
344090, Poccus, e. Pocmos-na-Iony, yr. Munvuaxosa, 0. 8a

AnHoTanus. TolepaHTHBI CHHTaKCHUYECKUH aHAM3 HCIONB3yeTcss AT pa3bopa CTPYKTypsl obmactei
TIPOTPaMMBI, MPEACTABISIONINX HHTEPEC B KOHTEKCTE ONpeNeNnéHHON 3aqaun. B To Bpems kak 3T o0iacTH
JOJDKHBI OBITH TOJAPOOHO OMHCAHBI B TOJICPAHTHOW TIpaMMaTHKe S3bIKa, OINMCAHHE OCTaJbHBIX YacTed
TPOrpaMMBl MOXET OBITh MeHee MAETalIbHBIM, B pe3yibTaTe Iapcep TOJICPAHTEH II0 OTHONIEHHWIO K
BO3MOXHBIM BapualysaM HEPEICBAHTHBIX OGJ’[aCTeﬁ. OCTpOBHbIe rpaMMaTuKi — OJUH H3 OCHOBHBIX
Croco00B peann3anuy TOJEPAHTHOTO MapcuHra. TepMHUHOM «OCTPOB» 0003HAYAIOTCS PeJIeBAaHTHBIC 001acTH

7

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

KOJIa, HEPEJIEBAHTHBIH KO 0003HA4YaeTCs TEPMHHOM «BOJa». IIpenmnonaraercs, 4To Ha HaNMCaHHE BOJIHBIX
[PaBUJ TPAMMATHKH JOJDKHO TPAaTUThCS KaK MOXKHO MEHbIIE ycHinid. PaHee aBTopom Hactosiieid paGoThl
ObUta BBefeHAa (OpMaibHAsE KOHLENIMS YINPOUNIEHHOW I'PaMMAaTHKH, PACIIUPSIONas TEOPHIO OCTPOBHBIX
rpaMMatHK. JlaHHas KOHIENMIMS OCHOBaHA Ha WJee YCTpaHEHHs OIMCAaHWH BOABI B IpaMMaTHKE ITyTEM
3aMEHBl WX Ha CHENUANbHBIA cuUMBON «Any». s paboTel ¢ yHNpOHmIEHHBIMH T'paMMaTHKaMH OBLI
MoauduuupoBad craHnaptHelii LL(1) anropuTM CHHTaKCHYECKOro aHaiu3a W pa3paboTaH TIeHeparop
ToJlepaHTHBIX HapcepoB LanD. B Hacrosmeil cratbe Momudukanus, BCTpauBaromas o0paboTky «Anyy,
omuckiBaercst s LR(1) amroputMa cHHTakcHueckoro amanmsa. B cpaBHenun ¢ TonepantHbiMu LL(1)
rpamMarikamu, TonepantHele LR(1) rpammarvku sBisitorcs Goiiee MPOCTBIME IS PaspabOTKH |
UCCIICJOBAaHUS BBHIY TOTO, YTO B HHUX KaXIblH OCTPOB MOXXET OBITb OIMCAH OJHMM HENPEPHIBHBIM
npaBwiIoM. [IpeioxKeHs! JONOTHUTENbHBIE MEXaHW3MbI 00pa0OTKM CHMBOJNA «ANY», MPHUBOIAIINE PSZ
HHTYUTHBHO KOPPEKTHBIX CIIEHAPHEB €ro HCIOJIB30BAHMS B COOTBETCTBHE C (DOPMAIBHEIM OIpe/elIeHHeM
ynpoménHoit rpammatukd. Jmt LL m LR TomepaHTHOro CHHTaKCHYeCKOTo aHalM3a OIHCAHBI
crenuUUecKie MEXaHU3MBl BOCCTAHOBICHHUS OT OINMOOK, IO3BOJITIONIME emé OoJblle COKpaTUTh
KOJIMYECTBO BOJHBIX MPABUII, TOHU3UTh HX CIOXHOCTb M CAENIATh TOJICPAHTHYIO IPAMMATHKY PacIIUPSIEMOH.
B pasnene 3KCHEpUMEHTOB NPECTABICHBI PE3YJbTAaThl KPYITHOMACIITAOHOTO TECTHPOBAHUS TOJICPAHTHBIX
LL u LR mapcepoB Ha 9 peno3uTOpUAX KPYIMHBIX MPOESKTOB C OTKPBITHIM HCXOAHBIM KOJIOM.

KuoueBble cJ10Ba: TOJNEpPAHTHBIM MAPCUHI, YCTOWYMBBIN MApCHUHT; JIETKOBECHBIN MApCHUHI; YaCTUYHBIN
MIApCHHI; OCTPOBHAs I'paMMaTHKa; YINPOIUEHHAs IpaMMaTuKa, IeHepaTop CHHTAKCUYECKHX AaHaJIW3aTOpOB
LanD

Jasa wurupoBanusi: lonoBemkuH A.B. TonepaHTHBIM CHHTaKCHUECKMH aHaIU3 C HCIOJIb30BaHHEM
MoaudunupoBanHbix anroputmoB LL(1) u LR(1) co BcTpoeHHoit 06padoTkoii cumBona «Any». Tpyast MCIT
PAH, Tom 31, Bbim. 3, 2019 r., c1p. 7-28 (Ha anrmuiickoM si3eike). DOI: 10.15514/ISPRAS-2019-31(3)-1

1. Introduction

Tolerant parsing is a syntax analysis technique differing from the detailed whole-language (so-
called baseline) parsing. The latter is performed by a full-featured compiler of a certain
programming language to ensure the program satisfies the grammar and to prepare an internal
program representation for some further steps. Tolerant parsing performs deep structural analysis
only on certain parts of the program, passing other parts with minimal effort. It is achieved by
generating the corresponding parser from a tolerant grammar, where these parts of interest are
described in details and some minimal description of the irrelevant area is provided. From
developer's perspective, tolerant parsing allows her to focus on the structure of the points valuable
in the context of a current task, without worrying about irrelevant code variations. Among tolerant
parsing use cases, the following ones are the most frequently mentioned:

e Baseline grammar inaccessibility: Full version of the language grammar can be inaccessible
due to proprietary issues or manual baseline parser writing [1]. Besides, physical accessibility
does not assume accessibility in terms of grammar comprehension. Baseline grammar usage
requires intensive exploration to detect rules describing constructs of interest. Tolerant
grammar structure and mapping between its entities and language constructs are transparent
to the developer, as she writes it according to her own knowledge of the task and the
language.

e Language embedding: Some program artifacts assume the usage of multiple languages in
one source file. In this case, a parser for the relevant language must be tolerant to all the
snippets written in other languages [2].

e Domain-specific idioms: In a certain project, some local domain-specific patterns can be
applied [1, 3]. They represent a high-level abstraction layer which is not presented in the
language syntax and obviously is out of scope of the whole-language parser. Nevertheless,
tolerant parsers can be strictly focused on these patterns, ignoring the underlying structure.

According to the island grammars tolerant parsing paradigm [1, 3], parts of the program that are

well-described in the grammar are called islands, others are called water. Detailed grammar rules

8

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

describing islands are named patterns, water is presented with as few liberal productions as
possible. However, sometimes it is required to describe some water parts in a fine-grained island-
like style to avoid confusion with proper islands. Water parts mistaken for islands are called false
positives, well-structured water productions are called antipatterns. Island grammar development
is always a finite iterative process consisting of in-the-wild parser testing and subsequent patterns
and antipatterns refinement. Besides, some situations, when program entity can be treated as an
island and as a water at the same time, are typically solved with generalized parsing algorithms [4, 5].
The author of the current paper is interested in tolerant parsing because of the long-term goal to
develop a multi-language tool for concern-based markup of software projects. Talking about a
program as a set of functionalities, so-called concerns, we may notice that many of them are
implemented with pieces of code which are spread across solid program elements, such as classes
or methods [6, 7]. These concerns are called vertical layers [8] or crosscutting concerns [9]. To
work with this kind of concerns, it is vital to create and manipulate some meta-information about
their location, this information should be sustainable with respect to code changes, so it cannot rely
on text line and text column numbers. Abstract syntax tree is considered to be a more appropriate
structure for meta-information binding, so, there must be a set of parsers for different languages,
these parsers must build abstract syntax trees in one unified format. These trees should capture
only the structure of program entities we plan to bind to, therefore, tolerant parsing is an option. It
also should be easy to support new languages by developing additional grammars and generating
tolerant parsers. Previously, to meet the requirements for parsers and trees, we developed a tolerant
parser generator called LanD. It uses a modified LL(1) parsing algorithm which is theoretically
and experimentally proved to be correct [10].

The contributions of this paper are: 1) a modified LR(1) parsing algorithm with incorporated
notion of a special Any token allowing parser to match implicitly defined token sequences; 2)
supplementary any processing techniques for modified LL(1) and LR(1) parsing algorithms,
filling the gap between the simplified grammar formal definition and real tolerant parsing use
cases; 3) specific any-based LL and LR error recovery mechanisms aimed at elimination of water
rules and correct handling of possible ambiguities without parsing algorithm generalization;
complexity analysis is also carried out; 4) lightweight LL(1) and LR(1) grammars for a broad
range of languages, namely, for C#, Java, PascalABC.NET programming languages, Yacc and Lex
specification formats, XML and Markdown markup languages; 5) an experimental evidence of the
applicability of the generated tolerant parsers for large-scale software projects analysis.

The remainder of the paper is organized as follows. In Section 2, main goals of the current
research are listed. A brief overview of the previous author's research, along with closest
analogues analysis, is provided in Section 3. In Section 4, a modification of the standard LR(1)
parsing algorithm aimed at any symbol processing is introduced, any implementation
improvements and issues addressed are discussed, novel any-based error recovery algorithms are
described. Section 5 includes a sufficient volume of experimental data obtained by applying
generated tolerant parsers for C# and Java languages to a number of real-world software
repositories. In Section 6, a brief summary of the contribution of the paper is provided along with
future work outlining.

2. Problem statement

The first assumption of the current research is that the concept of any, previously successfully
embedded into a top-down parsing, can be embedded in a bottom-up parsing too, making tolerant
grammars more expressive and easy-to-write. The second assumption is that ambiguities
originated in islands and water similarity can be resolved not only by adding special antipatterns or
by generalized algorithms usage, but also by a special recovery mechanism embedded in a
deterministic parsing.

The key goals of the current research are:

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

1) to design an LR(1) parsing algorithm with built-in notion of a special any grammar symbol
that provides skipping the token sequences that are not explicitly described in the grammar;

2) to introduce into the LanD parser generator additional capabilities for correct any processing
in case any usage does not fully satisfy simplified grammar formalization;

3) to design specific error recovery mechanisms for LL(1) and LR(1) tolerant parsing, aimed at
handling ambiguities originating in water and island similarity;

4) to implement tolerant island grammars for a broad range of languages;

5) to evaluate parser’s applicability through the analysis of large-scale software projects written
in C# and Java languages.

3. Related work

3.1 «<Any» implementation

The concept of any symbol is implemented in several parser generators. Historically, the first tool
with embedded capability to match tokens from sets which are not directly specified in a grammar
is the Coco/R recursive-descent parsers generator. According to the documentation [11, p. 14],
developer can use a special symbol any, which denotes any token that is not an alternative to that
aNY symbol in the current production. A set of admissible tokens for the position of a particular
ANY is precomputed to make the situation when parser has to make a choice between any and
some explicitly specified token unambiguously solvable in favor of the explicit option. As shown
in [10], these precomputed sets are both incomplete due to the lack of nonterminal outer context
analysis and excessively restrictive due to a single restriction applied to all the elements of the
sequence corresponding to the iteration of any. As a result, there are grammars for which parsers
generated by Coco/R do not parse programs valid from the developer’s point of view. For
example, a parser generated by the grammar

A =abc | {ANY} d.

is not capable to recognize the input string bad$ ($ denotes the end of the input, {ANY} denotes
Zero or more ANY tokens).

Similar any implementation is built into a tool for lightweight LALR(1) parser development,
called LightParse [12]. LightParse grammar is not directly used to generate a parser. Instead, it is
transformed to the YACC-like format supported by the standard LALR(1) parser generator GPPG.
In the transformed grammar, every entry of any symbol is presented as a separate rule with single-
element alternatives, by an alternative for each of the admissible terminal symbols. To ensure
these rules are valid in terms of GPPG, LightParse imposes additional restrictions on any usage. It
only deepens drawbacks inherited from Coco/R.

The most recent any token implementation is introduced by the author of the current paper for
LanD parser generator [10] aimed at LL(1) tolerant parsers generation by island grammars. In
terms of the island grammars paradigm, any symbol allows one not to specify the particular
content of the water area, writing any instead. Unlike any symbol in Coco/R, our any corresponds
to a sequence of zero or more tokens, not a single token. In its implementation, all the known
shortcomings are eliminated. The decision about the current token’s admissibility at any position
is made dynamically at the parsing stage and restricts the set of admissible tokens no more than
necessary to avoid ambiguities. LanD’s any implementation does not assume the grammar
translation to the form suitable for the standard parsing algorithm. Instead, the standard LL(1)
algorithm is modified to integrate the notion of any and make it possible to define admissible
tokens by the content of a parsing stack.

In the current paper, LanD parser generator is extended with the capability to generate LR(1)
parsers with embedded any support.

10

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

3.2 Formal definition of a simplified grammar

In [10], through the any token, we formulate a formal concept of the simplified grammar. We
denote by lhs(p) and rhs(p), respectively, the left and the right part of the production p. Notation
x €Erhs(p) for x e NUT means that rhs(p) = a,xa,, where a; e (NUT)*,a, € (NUT)".

SYMBOLS(y) is used for the set of terminal symbols needed to compose all the w:y = w,y €
(NUT) 0w eT"
Definition 1. Let G = (N, T, P,S) be a context-free grammar, Any & T. The grammar simplified
with respect to G is a grammar G, = (N, Ty, P,, S) defined as follows:
1) S, =S5,
2) P, ={p€ f(P)|lhs(p) =S, VvIp' € P:lhs(p) € rhs(p")}, where f:P > {p=A4A- a|
A€ N,a € (NUT U {Any})*} is the mapping that satisfies the following criteria:
a) 3P P:P'={p€ePI|f(p)+#p} P +0,
b) vp € P\P', f(p) =p,
C) Vp € P, 3n € N: p isrepresentable in the form A — a v, 8122V282 - An¥n By and
f(p) is representable in the form A — a;AnyB,a,Anyp, ...a,AnyB,, where
Vi€ [1..n], a;y;B; € (NUT), and
Vi € [1..n], Va €
FOLLOW(4), SYMBOLS(y;) N FIRST(B;@;41Vi+1Bi+1 - @n¥YuPra) = ©;
3) Ny={A€eN|3peP:lhs(p) =A};
4) T, ={a €T |3p € P:acerhs(p)}U {Any}.
Intuitively, P, contains productions for the start symbol of G; and productions for all the
nonterminals which are reachable from the start symbol. The definition of the mapping f means
that some of the strings generated by G contain substrings which can be replaced with any, then
we obtain strings generated by G,. Symbol any can be written instead of the parts denoted by y; in
production’s right-hand side, in case these parts satisfy the criterion 2c of the definition 1.
Verification of this criterion is possible only when solving a direct problem: when the grammar G,
is created on the basis of some available G. In theory, G can correspond to the baseline language
grammar, as well as be a more tolerant version of the baseline grammar, containing all the anti-
patterns described explicitly. In practice, it is usually not available or does not exist, so direct
problem is rarely considered. Writing an island grammar for a certain programming language is
equivalent to solving an inverse problem. Developer writes an initial approximation in the form of
a simplified grammar in which any usage allows one to minimize the efforts to describe a possible
water content. Then she performs an iterative refinement in accordance with parsing results,
making the grammar more and more corresponding to the language generated by some baseline.
Compliance with the criterion 2c is crucial for correct any processing. At the same time, it is hard
to maintain while solving an inverse problem. In this paper, additional any processing
mechanisms are offered. They allow grammar developers to weaken the control over the
consistency with the formalization.

3.3 LL(1) parsing algorithm modification

In fig. 1, modified algorithms from [10] are rewritten in the form more suitable for further
discussion. The delta between the standard algorithms and the modified ones is highlighted with
grey. As shown in fig. 1a, when no action can be performed with a current token, parser tries to
interpret this token as the beginning of a sequence corresponding to any. FIRST’ set, a modified
version of a standard FIRsT, is computed for the parsing stack content to get all the tokens that are
explicitly allowed in the current place. This non-static approach is inspired in some sense by full-
LL(1) parsing [13, pp. 247-251]. Set construction routine is shown in fig. 1c. A modification is
needed to handle the consecutive Any problem defined in [10], this problem is explained in detail

11

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

in Section 4.2.1 along with a more general solution. M denotes a parsing table, stack denotes a
symbol stack which stores not just the symbols that are expected to be matched, but nodes of the
syntax tree being constructed.

There are grounds for an analogy between the LL(1) parsing modification given and well-known
error recovery algorithms: any symbol looks similar to the error token denoting place in the
grammar where recovered parsing can be resumed, FIRST’ set seems like the set of
synchronization tokens. Moreover, speaking in terms of the formal definition, a tolerant parser is
built by a simplified grammar G, and a program from L(G) is actually needed to be parsed. In
terms of G, this program is erroneous.

However, here also lies a fundamental difference between any processing and error recovery.
Recovery is performed for a program which is incorrect regarding to a baseline grammar G. While
success is not guaranteed, the main goal is to resume parsing at any cost, including the loss of
some significant results of the previous analysis and skipping a significant part of the input stream,
possibly containing some points of interest. The goal of any processing is to translate a
presumably valid L(G) program into the language L(G) by replacing some token sequences with
Any. The premise that the program under consideration is correct with respect to G, in conjunction
with the observance of the criterion 2c, makes input tokens skipping totally predictable. One can
be sure that the parts of the input stream replaced with any belongs to the water and can be
discarded without loss of the land. Furthermore, predictable and correct replacement with aAny is
possible for a program that is incorrect with respect to G, in case incorrectness is located in a water
area.

4. Algorithms and modifications

4.1 LR(1) parsing

Though the modified LL(1) parsing algorithm described in Section 3.3 is enough to create reliable
tolerant parsers, describing a real programming language with LL(1) grammar is a challenge even
when this grammar is supposed to be lightweight and tolerant. Constructs of interest, such as class
members, usually have a common beginning up to a certain point, so they cannot be presented as
solid alternatives for a single nonterminal symbol in LL(1). Instead, we have to write rule
sequences in the style of taking the common factor out of the brackets and making a separate rule
for a tail:

entity = attribute* keyword* (class_tail | member tail)

member tail = type name (method tail | property tail)

method tail = arguments Any (init? ’;’ | block)

As a result, the grammar structure is not transparent enough for a newcomer because the
connection between existing island rules written in such a distributed manner and particular
language constructs is non-obvious.

This LL(1) limitation can be overcome through switching to a more complex LR(1) parsing. A
modification of the standard LR(1) algorithm is shown in fig. 2a, modified areas are highlighted
with gray. Like in a standard case, two stacks exist to keep parser state. symbolsStack keepsthe
current viable prefix [14, p. 256]. In fact, similar to LL(1) stack, in our implementation, it keeps
not just symbols but nodes for a tree to be build. statesstack keeps the indices of the states
parser passed through to obtain the current viable prefix. An element acTIONS[s, t] of the
ACTIONS table keeps the knowledge of what action should be performed by the parser if token t is
met while s is the parser’s current state. There are two basic types of action in LR algorithm:
Sshift and Reduce, they are shown in fig. 2c. coTo[s, x] contains the index of a state to which
parser must go from s state after reducing some part of a viable prefix to x.

12

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

Stack := [];
Stack.Push (new Node ($)
Stack.Push (new Node (S)

)i
):

;

X =
t :=
while

if

Stack.Peek() .Symbol;
Lexer.NextToken () ;
(X #%) do
(t = ERROR_TOKEN)
return false;
end if;
if (X =t) then
if (t = Any) then
t := SkipAny (true);
else
Stack.Pop();
t := Lexer.NextToken();
end if;
elif (M[¥,t] # null)
if (t = Any) then
if (Any € FIRST' (Stack))
t := SkipAny(true);
else
t := Error(null);
end if;
else
Apply (M[X, t])
end if;
elif (t = Any) then
t := Error(null);
else
t :=
end if;
¥ 1= Stack.Peek().Symbol;
end while;

then

then

then

Any;

if (t =%) then
Accept ();
return true;
else

return false;

end if;

(a)

Apply (X = ¥1Y5..¥k) 2
parent := Stack.Pop();
for (i from k to 1) de
child := new Node(Y3);
Stack.Push (child);

end for;

parent.Children.AddFirst (child);

SkipAny (recoveryIsEnabled) :
t := Lexer.CurrentToken():
idx := Lexer.CurrentTokenIndex();
while (Stack.Peek().Symbol € Ng) do
Apply (M[Stack.Peek() .Symbol, t]):
end while;

Stack.Pop () ;

stopTokens := FIRST' (Stack);

while (t ¢ stopTokens and t # §)
t := Lexer.NextToken():

end while;

do

if (t ¢ stopTokens) then
if (recoverylsEnabled) then
Lexer.MoveTo (idx) ;
return Error (stopTokens) ;
else
return ERROR_TOKEN;
end if;
end if;

return Lexer.CurrentToken() ;

(b)

FIRST' (o = ¥1¥p..¥yx)

first := @;
for (i from 1 to k)
if (Y{ €Ts) then
first U= {Y4};
if (Y; # Any)
else
first U= MemorizedFirst'[Y;]l\{e};
if (& ¢ MemorizedFirst'[Y;]) then break;
end if;
end for;
if (Vi€ [1.k]:
first U= (eg};
end if;
return first;

do

then break; end if;

end if;

£ € MemorizedFirst'[¥j] or Y; = Any) then

()

BuildFirst'():
foreach (A €EN) do
MemorizedFirst'[A] := @
end foreach;
changed := true;
while (changed) do
changed := false;
foreach (A—- o €P) do
MemorizedFirst'[A] U= FIRST' (a);
if (MemorizedFirst'[A] is changed)
changed := true;
end if;
end foreach;
end while;

then

(d)

Fig. 1. Modified LL algorithms: (a) LL(1) parsing algorithm, (b) “Any” processing algorithm, (c) FIRST set
construction, (d) Auxiliary algorithms: alternative applying and FIRST set memoization

13

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

SymbolsStack := []} SkipAny (recoveryIsEnabled) :
StatesStack := []; s := StatesStack.Peek();
StatesStack.Push(0}; t := Lexer.CurrentToken();
idx := Lexer.CurrentTokenIndex ()
t := Lexer.NextToken(); while (ACTION[s, Any] is ReduceAction a) do
while (true) do s := Reduce(a.ReductionAlternative);
if (t = ERROR_TOKEN) then end while;
return false;
end if; s := Shift (Any, ACTION[s, Any].NextStateldx);
s := StatesStack.Peek();
if (ACTION[s, t] # null) then stopTokens := {t' €T | ACTION[s, t'] #null };
if (t = Any) then while (t € stopTokens and t # %) do
t := SkipAny(true); t := Lexer.NextToken();
elif (ACTION[s, t] is ShiftAction a) then end while;
Shift(t, a.NextStateldx);
t := Lexer.NextToken(); if (t ¢ stopTokens) then
elif (ACTION[s, t] is ReducelAction a) then if (recoveryIsEnabled) then
Reduce (a.ReductionAlternative); Lexer.MoveTo (idx) ;
elif (ACTION[s, t] is AcceptAction) then return Error (stopTokens);
Accept (); else
return true; return ERROR TOKEN;
end if; end if;
elif (t = Any) then end if;
t = Any;
else return Lexer.CurrentToken();
t := Error(null);
end if;
end while; (b)
(a) Reduce (alt = X — ¥1Yz.Yy) :
parent := new Node (X);
for (idx from k to 1) do
Shift (token, stateldx): StatesStack.Pop();
StatesStack.Push (stateldx); child := SymbolsStack.Pop();
SymbolsStack.Push (new Node (token)); parent.Children.AddFirst (child);
return StatesStack.Peek(); end for;
s 1= StatesStack.Peek();

StatesStack.Push (GOTO[s, X))
SymbolsStack.Push (parent);
return StatesStack.Peek|();

(c)

Fig. 2. Modified LR algorithms: (a) Modified LR(1) parsing algorithm, (b) “Any” processing algorithm, (c)
Shift and reduce algorithms.

The essence of the parsing algorithm modification is similar to LL(1) case: tolerant parser is
responsible not only for checking if the program can be derived from the start symbol, but also for
translating it from a baseline language into a simplified one. In case an action for some actual
combination of parser state and input token is undefined, parser tries to interpret the current token
as the beginning of the subsequence of the program from L(G) that corresponds to any in the
corresponding program from L(G,). In case there is an action available for any, parser calls
Skipany routine (fig. 2b), where firstly all the possible rReduce actions are performed and
secondly any token is shifted. Note that we consider acTIoNs table to be cleared from
Shift/Reduce conflicts in favor of shift action. Also, there is no additional checking if shift
action exists, because this existence follows from the standard acTrons and GoTo construction
algorithm. Having moved any to a viable prefix, parser looks for the first token which is explicitly
expected in L(G,) program and then continues parsing in the usual way.

In fig. 3, there is an LR(1) tolerant grammar for Java programming language written in the format
supported by LanD parser generator. As it can be seen, island entities, such as enumerables,
classes, methods, and fields, are clearly presented as solid rules. In comparison with a baseline

14

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

Java grammar, it is significantly shorter: the baseline grammar implementation for ANTLR parser
generator® consists of 211 lines of lexer specification and 615 lines of parser description.

COMMENT : '//' ~[\n\rl* | '/*' .*2 '*/"

STRING . T (l\\ll!ll\\\\!l-)*? T

CHAR = "\'' ("\\\''ITANANT)R

MODIFIER : 'transient'|'strictfp'|'native'|'public'| ' 'private'

| "protected' | 'static'|'final'|'synchronized'| "abstract'
| "volatile'| 'default’

ID : [Sa-zA-Z][$0-9%9a-zA-Z]*
CURVE BRACKETED : %left '{' %right '}'
ROUND BRACKETED : %left ' (' %right ')’
SQUARE BRACKETED : %left '[' %right ']'
file content = entity*
entity = enum | class_interface | method
| field declaration | water entity
enum = common beginning 'enum' name Any block ';'?
class_interface = common beginning ('class'|'interface')
name Any '{' entity* "}' ';'?
method = common beginning type name arguments Any (';' | block)
field declaration = common beginning type field (',' field)* ';'
field = name ('['']'")* init value?
water entity = AnyInclude('@interface’', 'import', 'package')
(block | ';")+
common beginning = (annotation|MODIFIER)*
init_value = '=' init_part+
init part = Any | type parameter
name = name_ type
type = name_type
name_ type atom = type parameter? ID type parameter?
name type = name type atom ((('."|['::') name type atom) | '['']")*
type parameter = '<' (AnyAvoid(';') | type parameter)* '>'
arguments = '(' Any ")’
annotation = '@' name arguments?
block = '{'" Any "}'

Fig. 3. Java LR(1) tolerant grammar
4.2 “Any” processing improvements

4.2.1 Consecutive “Any” problem

In fig. 1c, FIrST’ algorithm, which is the modified version of the standard FIrRST, is presented. It
is intended to solve the problem of consecutive any described in [10]. The problem manifests
itself when two or more any tokens directly follow each other at the beginning of the sentence

! https://github.com/antlr/grammars-v4/tree/master/java
15

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

which can be derived from the stack. In this case, the subsequent any hides some stop tokens from
the previous one. Consider the following grammar G:

A= (alb)+ B C; B=d | ; C= (e|lf)? c

It can be simplified to the following G.:

A =Any BC; B=d | ; C=Any c

The string abc$ € L(G) is supposed to be successfully matched by the parser built for L(G),
because the following derivation may be performed:

A= AnyB(C = Any(C = Any Anyc.

Having met the token a, the tolerant parsing algorithm starts the first any processing. If the
standard FIRST is used to find stop tokens, FIRST (Stack) Set equalsto {d, Any}, as a result,
Skipany skips all the input and returns an error. Taking into account that any is allowed to
match an empty sequence, FIrRsT’ modification looks beyond the second any and, in general,
beyond all the subsequent any symbols in searching some explicitly specified tokens which may
follow a sequence corresponding to these any tokens. Stop token set found with FIRST’ (Stack)
equals to {d, c}, thus the first any captures a and b tokens and stops on c, the second one
matches an empty sequence, and abc$ string is admitted to be correct.

This approach is proved to be enough to build working parsers for real programming languages,
such as C#, Java or PascalABC.NET. It can also be implemented for LR(1) through acT10N and
GOTO static analysis. However, on closer inspection it becomes clear that algorithms modified in
this way work correct only for a subclass of simplified grammars, satisfying an additional
constraint:

Definition 2. Let G, = (N,, Ts, P, Ss) be a grammar simplified with respect to a context-free
grammar G = (N,T,P,S). Enumerate as Any,, Any,, ..., Any, all the Any entries from the
right-hand sides of productions from P,, which appeared as a result of replacement of the
corresponding ¥4, ¥, ..., ¥x Subparts of the right-hand sides of productions from P in compliance

with Definition 1. Derivation S; = a,Any,Any; ... Any.bBs, where k, L, ..., t € [1..n], ag, Bs
€ (N; UT,)", b € T,\{Any}, is not acceptable in G, if b € SYMBOLS(yy; -.- V¢)-

Informally speaking, the token which is a stop token for the last any in a sequence is not allowed
to appear in the area corresponding to one of the preceding any, otherwise it will cause premature
completion of any processing. Let G has a different structure:

A = (alblcldlelf)+ BC; B=g | ; C = (hli)+ a

It can be simplified to

A =Any BC; B=g | ; C=Any a

Herein, both replacements with any are still satisfy the criterion 2c, but the restriction from
Definition 2 is not satisfied, as a may follow the second any, and at the same time it is a valid
element of the area corresponding to the first one. As a result, while parsing abba$, the first any is
matched with an empty token sequence because FIRST’ ([B, C]) equalsto {a, g}, the second
Any also cannot include a, so, valid input is not accepted.

In practice, the most common case of consecutive any appearance does not break the restriction
mentioned: in grammars we have developed, any is often used as one of the possible variants for
an element of a list, so, all the any tokens in the derivation of such a list originate from a single

Any entry in the grammar, therefore, derivation can be rewritten as S > aAny, Anyy ... Any, bf;,
and the corresponding condition b € SYMBOLS(y,,) is false in accordance with Definition 1. To
cover the general case, we introduce a mechanism for passing an additional information at any
processing stage. Any entry can be supplemented with two options: Except and Include. For
each of them, a list of literals or token names can be passed as parameters. The concept of
AnyExcept initially appeared in LightParse parser generator [15], but there it was intended to

16

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

compensate the lack of outer context analysis while constructing the set of admissible tokens. Our
intention is different: symbols specified for Except option are supposed to compensate the lack of
information in consecutive any problem: they are supposed to be explicitly specified tokens that
may follow the area corresponding to any in L(G). Include option allows one to approach this
problem from a different angle, specifying tokens that shouldn’t be interpreted as stop tokens
despite their appearance in FIRST’ (Stack). So, for the grammar above we can use one of the
following simplified analogues:
A = AnyExcept(g,h,i) B C; B=g | ; C = Any a
A = AnyInclude(a) B C; B =g | ; C = Any a
Having renamed stopTokens sets built in fig. 1b and 2b t0 stopTokensBasic, we transform
stop token set construction for both LL and LR algorithms to
stopTokens := anyExceptSet.Count > 0

? anyExceptSet

: stopTokensBasic.Except (anyIncludeSet) ;

where anyExceptSet and anyIncludeSet denote sets of tokens passed as option parameters for
any currently being matched. For error recovery purposes discussed in Section 4.3, any also
supports Avoid option. Its arguments are tokens the presence of which in the any-corresponding
area signals about program incorrectness or wrong alternative choice. To take Avoid into account,
while loop condition transforms to

t € stopTokens and t € anyAvoidSet and t # $.

In case token skipping is interrupted because current token equals to one of the avoid arguments,
this token passes to Error routine as a second argument.

Unlike in LL(1), there can be a situation in LR(1) when we do not know for sure what particular
Any entry is being processed at the moment. This information is needed to access the
corresponding options. To add support of any options in LR(1), we introduce an additional type of
LR(1) conflict called Any/Any conflict. It is reported when there is a state where multiple items
have a dot before any, and is needed to be resolved for successful parser generation.

4.2.2 Nesting level checking

While writing a tolerant grammar, developer usually has to make an additional effort to determine
what bracketed areas may appear in the particular water, and if they can influence any processing.
Intuitively, such areas are perceived as a whole, and when any is written instead of some better-
grained water description, it may be missed that bracketed areas exist in that water in a real
program. These areas may contain something that also appears right after that any and therefore
should be treated as a stop token. For example, being interested in fields of a C# class, we must
capture a, b, c, and d in the fragment
int a = 0, b = 1;
DateTime ¢ = new DateTime (2019, 5, 29),

d = new DateTime (2019, 5, 31);
At the same time, we are not interested in initializers, so, the first intention is to describe field
declaration with the rules
fields = type name init? (’,’ name init?)* 7’;’
init = =’ Any
Unfortunately, these rules work only for the first declaration. The set {*,’, ’;’} isa stop token
set for any, and in the second declaration, comma separates not only fields but also arguments
bordered with round brackets. Generally speaking, any does not satisfy the formalization in this
case. At the same time, simplicity is the crucial property of the tolerant grammar, and the way in
which water is described above is more preferable than the following one:

17

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

init = "=’ water

s water = [’ (Any | s _water)+ ']’

r water = ' (' (Any | r water)+ ")’

c water = '{’ (Any | c water)+ '}’

water = (Any | c water | r water | s water)+

To return the first version of init rule to the boundaries of the simplified grammar definition, we
add to the parsing algorithms a capability to take into account nested bracketed structures. A pair
of brackets is described like

ROUND BRACKETED : $%$left ' (’ $right ’)’

and nesting level is tracked by lexical analyzer. If several kinds of pairs are described, it is
believed that any pair can be nested in any pair. When any is processed, it is allowed to end only
at the same depth at which it begins. To control this situation, skipany methods are modified
uniformly both for LL and LR. Firstly, at the beginning of a skip process, an additional variable is
initialized:

depth := Lexer.CurrentDepth();

Secondly, in-loop Lexer.NextToken () call is replaced with Lexer.NextToken (depth).
Passing the initial nesting level to a lexer, we force it to read the input stream until the depth of the
next token equals the depth of the first token in the sequence corresponding to Any. Thus, Any-
corresponding area is allowed to include stop tokens in nested structures because these nested
structures are invisible to the parsing algorithm. Third modification is an additional checking to
prevent moving through the upper nesting level. In fig. 4, there are two cases allowed by the first
two modifications. Token a is the beginning of Any area, and b is a stop token. Obviously, the
way Any symbol is matched on the right breaks the semantic integrity of a bracketed area. We
consider such any usage to be a bad practice, so, if lexer returns a token denoting the end of some
pair and rise to the level above the initial, and this token is not a stop token, parser reports an error
which means that grammar should be refined.

a (b) {b} b (&) b {,Db}
Any Any

Fig. 4. Possible “Any” matching supported by nesting level tracking.
4.3 Error recovery

4.3.1 Algorithms

As noted in Section 1, in case water entities look similar to islands, developer has to refine patterns
and to add some antipatterns to avoid false positives. For a deterministic parsing, the problem of
water and island similarity may have unpleasant consequences not only when there is a full match
between island pattern and water entity, but even if a water entity and an island have a number of
common starting tokens. In this case, parser starts analyzing a water entity as an island, finds a
mismatch and fails to proceed analysis. It is important to note that this parsing failure indicates not
the incorrect L(G) program but misinterpretation of the program in terms of G,. Generalized
parsing algorithms are able to process such a situation exploring both ways an entity can be
interpreted in and rejecting the failed one. To get a similar benefit from our modified deterministic
parsing while preserving mostly linear complexity, we add special any-based error recovery
routines in both LL(1) and LR(1) algorithms. These routines are shown in fig. 5.

18

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

Error (stopTokens) : Error (stopTokens) :
if (Lexer.CurrentTokenIndex() € RecoveredIn) then if (Lexer.CurrentTokenIndex() € RecoveredIn) then
return ERROR_TOKEN; return ERROR_TOKEN;
end; end;
RecoveredIn U= { Lexer.CurrentTokenIndex () }; RecoveredIn U= { Lexer.CurrentTokenIndex() };
currentNode := Stack.Pop(); lastMatched := &;

do s ible derivation items
if (currentNode.Parent # null) then PDI = {};
maxChildIndex := basePDI := {};
currentNode, Parent.Children.Count - 1; do
index0fCurrent := currentNode.Parent if (SymbolsStack.Count > 0) then
.Children.IndexOf (currentNode) ; lastMatched := SymbolsStack.Pop():
for (i from indexOfCurrent + 1 end if;
to maxChildIndex) do StatesStack.Pop();
Stack.Pop(); if (StatesStack.Count > 0) then
end for; s := StatesStack.Peek();
end if; basePDI := {i=X-oa*YP | i€ STATE[s],
currentNode := currentNode.Parent; Y = lastMatched. Symbol,
while (currentNode # null and ((PDI = {} v3Ai" €PDI : i' =X - a¥*B) }:
currentNode. Symbol € RecoverySymbols or PDI := basePDI;
Any = GetDerivation({currentNode) [0] or do
IsUnsafelny (stopTokens) PDIU={i=X-o*YB | i € STATE(s],
)Y di' €EPDI : i' =Y +p' };
while (PDI changes);
if (currentWode # null) then end if;
return SkipaAny(false); while (StatesStack.Count > 0 and (
else | basePDI | = | PDI | or
return ERROR_TOKEN; #i € PDI \ basePDT : i =X ~a*YR, Y € RecoverySymbols or
end if; Any = GetDerivation(lastMatched) [0] or

IsUnsafelny (stopTokens)

(a))y

if (StatesStack.Count > 0) then
return Skipiny(false);

else
return ERRCR_TOKEN;

end if;

(b)

Fig. 5. “Any”-based error recovery algorithms: (a) LL(1) algorithm, (b) LR(1) algorithm.

In the modified parsing algorithms, two types of error can occur. The first one happens when
LL(1) parser cannot match the current token or apply some alternative and any is not acceptable at
the point, or when LR(1) parser has no shift or reduce action for the current token as well as for
Any. The second type occurs when any processing starts and no stop tokens are found till the end
of the input or a token specified as avoid argument is met. Recovery initiated for the first type
does not influence the algorithm linearity as parsing is resumed at the token where the error
occurred. Acting the same way for the second type is meaningless, especially when the end of the
input is reached, because significant part of islands might be uncontrollably skipped. Instead, a
limited backtracking is performed. In fig. 1b and 2b, Lexer.MoveTo (idx) call shifts a token
stream pointer to the token that triggered any processing, at this point recovery is tried to be
carried out. In Section 4.3.2, the influence of this backtracking on parsing algorithm time
complexity is analyzed. In both LL(1) and LR(1) error processing algorithms, RecoveredIn set
stores all the indices of tokens at which recovery was once performed, so, it is guaranteed that
from one recovery to another parsing process moves at least one token forward.

Like in standard recovery algorithms [16, pp. 283-285], a set of nonterminals at which recovery
can be performed is defined. These nonterminals are called recovery symbols. Possible recovery
symbols can be revealed through the static grammar analysis. Given the grammar Gy =
(N, Ty, P, S), we formally define RecoverySymbols set as follows:

{n EN;|n ;Any a,An’ € NS:(n =*>n’Any0(An’ =*>s)} ,a € (NgUT,)".

19

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

Recovery symbols are pre-computed at parser construction stage. Developer can disable recovery
at all or specify particular nonterminals from this set which should be used for recovery, otherwise,
all the elements of the set are taken into consideration when Error routine is called.

In the context of a deterministic tolerant parsing problem, recovery symbols have specific
semantics. They represent decision points at which parser may choose the wrong alternative, try to
match a water entity as an island, and provoke an error. Recovery itself means returning to a
decision point through the grammar ancestors of the currently unmatched token or unparsed
nonterminal and changing the interpretation of the part of the input that is already associated with
a recovery symbol’s subtree to water. More precisely, the part of the input from the first token
mistaken for an island part to the first token at which the difference between an island pattern and
an actual water entity manifests itself is supposed to be the beginning of the sequence
corresponding to any from which the water alternative starts. Backtracking to the token a wrong
decision was made at is not needed in this interpretation. The end of an any-corresponding
sequence is looked for with a usual skipany call, then parsing continues in an ordinary way. In
fig. 3, entity is one of the recovery symbols. It allows the parser to recognize classes,
enumerables, methods, and fields as islands, while annotation definitions, constructors,
initialization blocks, etc. are skipped as the water, sometimes with the involvement of recovery
mechanisms.

LL(1) error recovery algorithm is presented in fig. 5a. We take advantage of the fact that at any
stage of the top-down parsing a partially built syntax tree is available, and blank nodes for what is
expected are on the stack. Knowing the tree node corresponding to the unparsed symbol, we may
find a recovery symbol node by moving through its ancestors. The higher we go, the wider area
will be reinterpreted. Simultaneously with walking up the syntax tree, right siblings of the
currentNode should be removed from parsing stack as they are unparsed parts of the
interpretation being rejected. The appropriate recovery symbol is considered to be found if it
satisfies two additional conditions. Firstly, the water alternative should not be the alternative in
favor of which the decision was originally made, otherwise no reinterpreting takes place as error
actually occurred in the water. To check it, GetDerivation is called. It takes the built part of
recovery symbol’s subtree and returns a leaf sequence which is a partially revealed part of the
L(G,) program, derived from this symbol. This sequence must not start with any. Secondly, in
case error took place at Any skipping, IsUnsafeAny prevents parsing resumption on any from the
recovery symbol alternative if new skipping leads to the same erroneous situation. The decision is
made on the basis of old and new stop token sets comparison and Avoid options analysis.

For LR(1) algorithm, recovery is more complex and heuristic due to the nature of a bottom-up
parsing. Unlike in LL case, we do not know for sure what are the exact entities that are currently
being analyzed, so, we try to build a set of possible candidates basing on the information stored on
the stacks. In fig. 5b, there is an LR(1) error recovery routine. On each iteration of do-while
loop, one of the symbols already matched is popped along with the state parser went to after this
successful matching, then basePDT set is constructed. It consists of the current state items having
the dot before the last popped symbol. Productions of the items added to this set are possible
participants of the erroneous area derivation. Basing on basePDT, PDT Set is constructed in a way
that looks like inverted cLOSURE [16, pp. 243-245] algorithm. Additional ppT items capture the
higher-level grammar entities from which the area that is needed to be reinterpreted may be
derived.

Recovery algorithms presented simplify the process of grammar extension and reduction.
Recovery symbol alternatives become grammar building blocks: in case we are not interested in
some Java island, its alternative can be excluded from entity rule, then program areas previously
corresponding to that alternative are recognized as the water, possibly through recovery algorithm
application. Inversely, to add a support for class constructors in the grammar in fig. 3, we have to
write only one constructor rule and add this symbol in entry alternatives list, then

20

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

constructors stop being interpreted as the water, because the rule appears allowing the parser to
analyze them from beginning to the end with no error occurred.

4.3.2 Complexity analysis

As noted, errors happening on aAny processing require limited backtracking. The particular
increase in running time of the algorithm depends on number and length of backtracked sequences.
From the prohibition of multiple recovery at the same token, it follows that there can be only one
backtracking to a particular position, so, the worst case is when the following situation repeats
sequentially for each token except the first one: Any processing starts on the token, fails by
reaching the end of the input and backtracks to that token, then recovery starts, the token matches
successfully with the help of the water alternative, and the next token becomes the token under
consideration. In this scenario, a number of times the token is examined equals to its sequential
number counting from one. For the i, token, i — 1 examinations are occurred on any skipping
started at previous tokens and at the current one, and 1 examination is for some final match. As
backtracking itself consists of a simple index reassignment, it does not increase this counter. It can
be shown that this worst-case scenario takes place for inputs acs, aacs, aaac$, etc. and a parser
generated by the following LL(1) grammar:

S =a Any b | Any S |

CURVE_ BRACKETED : %left '{' %right '}'

ROUND BRACKETED : 3%left '(' %right ')'
SQUARE BRACKETED : %left ('['|GENERAL ATTRIBUTE_ START) %right ']'
namespace = 'namespace' name '{' namespace_ content '}’

entity = enum | class_struct_interface | method
| field decl | property | water entity

enum = common 'enum' name Any '"{' Any '}' ';'?
class_struct interface =
common ('class'|'struct'|'interface') name Any '{' entity* "}' ';'?
method = common type name arguments Any (init_expression? ';' | block)
field decl = common type field (',' field)* ';'
field = name ('[' Any ']')? init value?
property =
common type name (block (init value ';')? | init expression ';')
water entity =
AnyInclude ('delegate', 'operator', 'this') (block | ';")+
common = entity attribute* modifier*
modifier = MODIFIER | 'extern'
init expression = '=>' Any
init value = '=' init part+
init part = Any | type
arguments = '(' Any ")'
block = '{' Any '}'

Fig. 6. Fragment of the C# tolerant grammar.

The total number of token examinations equals to %nz +%n, it means that our algorithms are
0(n?) in the worst case. However, experiments show that the percentage of recoveries required

21

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

backtracking is insignificant in comparison with the total number of recoveries and tokens: for
example, in all the Java projects from subsection 5.2 taken together, there are 27393 files splitting
at 26255589 tokens, while total number of recoveries is 32683 for LL(1) and 31861 for LR(1), and
only 20 recoveries for each type of parsing are performed after on-any error.

5. Experiments

To test the algorithms described in Section 4, tolerant grammars for the following programming
languages, markup languages and specification formats are developed: C#, Java, Pascal ABC.NET,
XML, Markdown, YACC, and Lex. All the sources are available on GitHub? For a large-scale
testing, C# and Java are chosen as the languages complex enough and having a large number of
well-known open-source repositories. For both languages, LL(1) and LR(1) tolerant parsers are
generated with LanD parser generator on the basis of the corresponding tolerant grammars.

As tolerant parsers are created to capture particular islands, the purpose of the experiment is to
evaluate precision and recall of this capturing. Stages of the experiment are the same for both
languages. For each of the projects under consideration, tolerant parser is firstly applied to parse
all the project files written in the corresponding language. By traversing syntax trees built, types
and names of the islands are extracted in report files, per report for each island type. This
extraction does not require some severe postprocessing: island type is actually a node type, and
name is stored in one of this node’s children. Secondly, the same files are parsed by a baseline
parser. Roslyn is used as a baseline parser for C#, and Java parser is generated with ANTLR from
the full grammar of the language®. Then information about program entities that are specified as
islands for our tolerant parsers is extracted from trees built by these baseline parsers, so the second
group of reports is obtained. At the third stage, two reports for the same type are compared in an
automated way to eliminate the human factor. Matches are excluded, so only the information about
entities found by one parser and not found by another one remains. It is then explored manually.
For each of the languages, there is a table whose rows correspond to projects parsed and columns
correspond to island types. There is also an additional “Total files” column allowing to estimate
the scale of the project. In a table cell, there is a number of islands of the corresponding type found
by our tolerant parser for the corresponding project. We have obtained that these numbers are the
same for LL(1) and LR(1) parser, so we do not need two separate tables for a single language. In
case tolerant parser finds less island entities than the baseline one, the number of entities missed is
specified in parentheses with a minus sign. In addition to the tables, a detailed analysis of
mismatches is provided.

5.1 C#tolerant parsing
For C# programming language, five open-source projects from different domains are considered:

e Roslyn project includes C# and Visual Basic compiler sources and lots of test files capturing
different complex and uncommon variants of a C# program;

e PascalABC.NET consists of the corresponding language compiler and IDE sources, it has a
relatively long history reflected in the legacy code written by differently experienced
contributors;

e ASP.NET Core refers to the web development domain: it is a cross-platform .NET-based
web framework;

e Entity Framework Core is an object-relational mapper allowing one to work with a database
using .NET objects;

2 https://github.com/alexeyvale/SYRCoSE-2019
3 https://github.com/antlr/grammars-v4/tree/master/java

22

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

e Mono is an open source third-party implementation of Microsoft’s .NET Framework
including C# compiler, Common Language Runtime virtual machine, lots of core libraries
and, again, a great number of test files.

Parsing results are presented in Table 1, a fragment of the tolerant LR(1) C# grammar is presented
in fig. 6. Note that classes, structures, and interfaces correspond to a single grammar entity, so
their total number presented in a single “Classes” column of the table. In the discussion below,
footnotes contain paths to files relative to the root directory of the corresponding project.
For Roslyn sources, there are 5 methods found by Roslyn and missed by LanD. Four of them are
local* methods® (methods declared inside other methods), this feature recently appeared in C# 7.0.
In case this kind of methods is important for a particular task, it is trivial to add their support in the
grammar. One needs to modify the grammar above by adding method symbol as an alternative to
Any inside the block. It is worth noting, that Roslyn project is the only project where the usage of
this feature is revealed. The 5th lost method is from a test file where the text of the program is
saved in Japanese Shift-JIS encoding®. The class name written in Japanese provokes an error
which does not affect the detection of the class itself but stops parser from further class content
analysis. We consider the usage of national alphabets for entity naming to be a rare case, but, if
necessary, ID token can be adopted as needed.

Two properties from different files are not found by LanD, in both cases it is caused by missing

expression for expression-bodied property preceding the uncaptured one. The expression depends

on external conditional compilation symbols and is not substituted at all in case the isolated file is
analyzed. In the following code, Tswindows is not recognized by LanD, because it is interpreted
as a part of expression for configuration:

public static ExecutionConfiguration Configuration =>

#if DEBUG
ExecutionConfiguration.Debug;

#elif RELEASE
ExecutionConfiguration.Release;

felse
#error Unsupported Configuration
#endif
public static bool IsWindows =>
Path.DirectorySeparatorChar == "\\’;

This kind of inconsistency can be partially handled by using AnyAvoid (MODIFIER) instead of
Any in init expression grammar rule. For the example above, this handling leads to loss of the
information about Configuration property, as it will be treated as water, but protect the
following entities starting with the one that starts with the keyword.

For Pascal ABC.NET and ASP.NET Core, all the entities found by Roslyn are also found by LanD.
For Entity Framework Core, the difference in number of fields and methods is caused by the
situation’ similar to the one presented in the code above, and the difference in number of
properties is provoked by property types containing Greek letters®. The latter refers us again to the
national alphabets problem.

4 src/Compilers/CSharp/Test/Emit/Emit/EndToEndTests.cs

5 src/Compilers/CSharp/Portable/FlowAnalysis/NullableWalker.cs

6 src/Compilers/Test/Resources/Core/Encoding/sjis.cs

’ test/EFCore.SqlServer.Functional Tests/Query/SimpleQuerySqlServerTest. Where.cs
8 test/EFCore. Tests/ModelBuilding/ModelBuilder.Other.cs

23

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

Voluminous results are obtained for Mono sources. Most losses are concentrated in files that are
incorrect in terms of a full C# grammar: as an example, 26 files® contain unclosed conditional
compilation directives and mismatch in the number and type of opening and closing brackets, half
of the 122 missed classes belongs to a group of files™® containing LINQ to SQL code written in
accordance with Visual Basic syntax, there are also files with .cs extension written in a specific
format, such as a skeleton file'* for jay parser generator, where each line starts with a point.
However, there is also a group of missed entities that illustrates a real LanD drawback. These
entities are contained in test-async' and test-partial® groups of Mono test files.

Table 1. Number of entities found in C# projects.

Project Total files | Enums Classes | Fields Properties | Methods
Roslyn 8759 482 23705 20265 23127 116312
(-2) (-5)
PABC.NET | 2802 359 5522 16739 12023 37027
ASP.NET 7356 333 12604 10214 16301 44163
Core
EF Core 2997 101 7783 4687 16941 26421
(-1) (-2) (-135)
Mono 37224 4928 60187 166958 | 99167 309580
(-1) (-122) (-67) (-36) (-670)

At grammar design and refinement stage, we did not take into consideration, that there are some
keywords in C# that appeared recently and were implemented as contextual keywords to protect
legacy code. It means that they still can be names for classes, methods, etc. For example, the
following code is valid in C# (method bodies are omitted):
namespace async
{
partial class async
{ partial void partial(); }
partial class partial
{
// async method named ’async’
async Task<async> async () { ... }
// method named ’async’ returning an object of type ’'async’
async async(async async) { ... }

}

Proper interpretation of a contextual keyword depends on a heavy context analysis going far
beyond LL(1) or LR(1) parsing. In Roslyn sources, there is a special
ShouldAsyncBeTreatedAsModifier method checking lots of specific conditions, each of
which covers a particular async placement relative to non-contextual keywords, predefined types,
and partial keyword. Besides, up to 2 additional tokens are required to make a correct decision.

o mcs/errors
10 mcs/tools/sqlmetal/src/DbLing/Test
11)
mcs/jay/skeleton.cs
12 mcs/tests/test-async-*.cs
13 mcs/tests/test-partual-*.cs
24

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

Fortunately, to meet contextual keywords used as identifiers seems to be almost improbable. In our
experiments, such cases were revealed only in synthetically created testing files, not in a real
production code. Moreover, using async Of partial contextual keywords as public entity
identifiers one breaks general C# naming conventions™ which are usually used as a basis for
particular code style rules being applied inside a developers team.

5.2 Java tolerant parsing
For Java programming language, the following projects are considered:

e Java Development Kit is a toolbox consisting of Java compiler, core libraries, and Java
Runtime Environment;

e Elasticsearch is an engine for a full-text search;

e Spring Framework is a Java framework used to build applications for different subject
domains;
e RxJavais a library for composing asynchronous and event-based programs.
Parsing results are presented in Table 2, and a tolerant LR(1) Java grammar is presented in fig. 3.
As it can be noted, there is the only difference between baseline and tolerant parsing results.
FIND MASK, NEW MASK, and RELEASE MASK fields are missed by the tolerant parser in the
following code:
private final static int
CREATE MASK = 1<<CREATE,
FIND MASK = 1<<FIND,
NEW MASK = 1<<NEW,
RELEASE MASK = 1<<RELEASE,
ALL MASK = CREATE_MASKIFIND_MASKINEW_MASK\RELEASE_MASK;

Unlike all the other types of brackets considered in Section 4.2.2, angle brackets cannot be defined
as a pair in the LanD grammar because they may appear in the program in different meanings,
some of which assume they can be used separately from each other. However, in case they bracket
type parameters, it is important to match these parameters as a whole to prevent inner commas
from being interpreted as field separators. It is hard to resolve this problem correctly staying in the
tolerant parsing boundaries and, actually, in the boundaries of a context-free parsing and lexing too
[17]. To make a correct decision, an analysis of the context angle bracket appears at is needed.
Recovery algorithm combined with avoid-based error triggering helps to handle inputs like
private static final long ADD WORKER = 0x0001L << (TC SHIFT + 15);

by interpreting all the angle brackets as opening for a type parameter in fig. 3, triggering an
error on ’ ; ’ token which is forbidden in type parameters, and reinterpreting the outermost type

parameter as Any from init part water alternative. However, this processing cannot prevent the
loss of some middle fields from the group of fields defined simultaneously.

Table 2. Number of entities found in Java projects

Project Total files Enums Classes Fields Methods
JDK 7704 151 10590 46176 (-3) 88709
Elastic 10972 387 14914 36830 94722
Spring 7063 100 12060 18402 61515
RxJava 1654 36 2728 6258 19931

14 https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions

25

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

5.3 Summary

As experiments show, both C# and Java tolerant parsers using our modified LL(1) and LR(1)
algorithms are viable and allow one to find almost all the islands that can be found with a baseline
parser. Mismatches cannot be considered as a tolerant parsing disadvantage: the ones occurred in
erroneous C# programs are not unexpected since our algorithms are designed to work with correct
programs, while for the most part of the valid programs containing lost islands, possible grammar
fix can be easily suggested due to grammar simplicity and extensibility. However, there is also a
tiny group of valid programs for which it is impossible to catch the missing island without
performing an additional context analysis. This problem is actually not a tolerant parsing problem
but a context-free analysis problem in general.

6. Conclusion

In the present paper, several algorithms and algorithm modifications aimed at island-grammars-
based deterministic tolerant parsing are proposed. LR(1) parsing algorithm modification is
performed in accordance with the simplified grammar formal definition previously developed by
the author of the paper. A special any symbol is integrated into the algorithm to add a capability to
match token sequences which are not explicitly described in the grammar. LR(1) tolerant
grammars tend to be shorter and more comprehensible than their LL(1) analogues written for
previously modified LL(1) algorithm. Additional restriction defining simplified grammars subclass
for which LL(1) and LR(1) tolerant parsing algorithms are always able to correctly handle
consecutive any problem is revealed. any processing mechanisms are introduced to expand
correct consecutive Any processing to entire simplified grammars class. Nested bracketed
structures tracking is implemented to give the grammar developer a possibility not to take into
consideration the content of in-water bracketed areas while replacing water description with aAny.
Error recovery algorithms are proposed for LL(1) and LR(1) tolerant parsing. Unlike the standard
error recovery, they are designed not to resume parsing for an incorrect program, but to find the
area which was mistakenly interpreted as an island and reinterpret it as a water. Through the series
of experiments with C# and Java parsers generated by tolerant grammars developed for LanD
parser generator, modified LL(1) and LR(1) parsing algorithms are proved to be able to
successfully analyze the source codes of industrial software products.

Though the current tolerant parsing implementation is enough to work on solution of the
crosscutting concerns markup problem mentioned in Section 1, an improvement of parsing results
for syntactically incorrect programs may broaden the markup tool application opportunities. We
have an assumption that any-based recovery responsibility area may be explicitly specified for a
particular grammar, and outside of this area some other recovery algorithms aimed at parsing
resumption for an incorrect program can be used. Thus, our tolerant parsers will be capable to
capture constructs of interest in such a program, like baseline parser successfully does in Section
5.1, instead of totally failing or interpreting all of these constructs as a single water piece. Besides,
as performance was not the key goal until the present, we were satisfied with the generally linear
dependency between input length and running time of the algorithms. However, basing on the
knowledge of LanD implementation details, we are sure that performance can be improved (not in
terms of time complexity classes, but in terms of absolute values of the algorithm running time).
So, the algorithms and structures optimization is the second possible direction for further work on
tolerant parsing.

References / Cnncok nutepartypbl

[1]. Moonen L. Generating robust parsers using island grammars. In Proc. of the Eighth Working Conference
on Reverse Engineering (WCRE’01). IEEE Computer Society, 2001, pp. 13-22.

26

Tonosemkua A.B. TonepaHTHBIH CHHTAKCHYECKIIT aHAII3 C HCTIONB30BaHHeM MOAM(HIpoBaHHbIX aropiutmoB LL(1) n LR(1) co BctpoeHHO# 06paboTKoi
cumBona «Any». Tpyoet UCIT PAH, Tom 31, Bbin. 3, 2019 1., c1p. 7-28

[2].

[3].
[4].
[5].
[6].

[7].

[8l.

[9].
[10].

[11].

[12].

[13].
[14].

[15].

[16].

[17].

Afroozeh A., Bach J.-C., van den Brand M., Johnstone A., Manders M., Moreau P.-E., Scott E. Island
grammar-based parsing using GLL and Tom. Software Language Engineering: 5th International
Conference, Revised Selected Papers. Springer Berlin Heidelberg, 2013, pp. 224-243.

Moonen L. Lightweight impact analysis using island grammars. In Proc. of the 10th International
Workshop on Program Comprehension (IWPC). IEEE Computer Society, 2002, pp. 219-228.

Scott E., Johnstone A. GLL parsing. Electronic Notes in Theoretical Computer Science, 2010, vol. 253,
issue 7, pp. 177-189.

Tomita M. Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems. Norwell,
MA, USA: Kluwer Academic Publishers, 1985, 201 p.

Goloveshkin A.V., Mikhalkovich S.S. LanD: a framework for layer-by-layer program development, In
Proc. of the 25th conference “Modern information technologies: tendencies and perspectives of
evolution”, 2018, pp. 53-56 (in Russian) / TonoeemkuH A.B., Muxaikosuu C.C. LanD:
WHCTPYMEHTAIBHBIH KOMIUIEKC MOANEPKKH MOCIOHHOW paspabotku mporpamm. Tpymer XXV
BcepOCCHﬁCKOﬁ Hay‘{HOﬁ KOH(i)epeHHI/II/I «COBpeMeHHBIe I/IH(bOpMaHI/IOHHBIG TCXHOJIOTUH: TCHACHIIMU U
MepCreKTUBHI pa3BuTusy. MznatensctBo KOxkHoro denepanbaoro yuusepcutera, 2018, crp. 53-56
Goloveshkin A.V. Searching and analysing crosscutting concerns in marked up programming language
grammar. University News. North-Caucasian Region. Technical Sciences Series, 2017, issue 3, pp. 29—
34 (in Russian). DOI: 10.17213/0321-2653-2017-3-29-34 / Tonosemkun A.B. Tlowck u aHanus
CKBO3HBIX Q)yHKL[I/IOHaJ'ILHOCTeﬁ B pa3MequH0ﬁ I'paMMaTHKE sA3bIKa MNPOrpaMMHUpPOBaHUA. UsBecTus
By30B. CeBepo-KaBkasckuit perumoH. Texnuueckue Hayku, 2017, Bem. 3, ctp. 29-34. DOI:
10.17213/0321-2653-2017-3-29-34

Fuksman A. Technological Aspects of Program Design. Moscow: Statistika, 1979, 184 p. (in Russian) /
®dykeman A.JI. TexHonmormueckue acreKTbl CO3JaHUsl MPOrpaMMHBIX cucteM. MockBa: CraTHUCTHKA,
1979, 184 crp.

Conejero J., Hernandez J., Jurado E., van den Berg K. Crosscutting, what is and what is not?: A formal
definition based on a crosscutting pattern. Tech. Rep. 5/TR28/07, 2007, 30 p.

Goloveshkin A., Mikhalkovich S. Tolerant parsing with a special kind of “Any” symbol: the algorithm
and practical application. Trudy ISP RAN/Proc. ISP RAS, 2018, vol. 30, issue 4, pp. 7-28. DOI:
10.15514/ISPRAS-2018-30(4)-1.

Mossenbock H. (2014) The compiler generator Coco/R. Available at:
http://ssw.jku.at/Coco/Doc/UserManual.pdf, accessed 07.02.2019.

Malevannyy M. Lightweight parsing and its application in development environment. Informatization
and communication, 2015, issue 3, pp. 89-94 (in Russian) / Manésanupiit M.C. JIerkoBeCHbIN MapcuHr
W €ro MCIoNb30BaHue i QyHKIMA cpensl paspadborku. MHpopmaTuzanus u cBa3b, 2015, Beim. 3, cTp.
89-94.

Grune D., Jacobs C. J. Parsing Techniques: A Practical Guide (2nd Edition). New York, USA: Springer-
Verlag New York, 2008, 662 p.

Aho AV., Lam M.S,, Sethi R., Ullman J.D. Compilers: Principles, Techniques, and Tools (2nd Edition).
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006, 1000 p.

Malevannyy M., Mikhalkovich S. Aspect markup of a source code for quick navigating a project. In
Proc. of the 11th Central and Eastern European Software Engineering Conference in Russia, ser.
CEESECR ’15. New York, NY, USA: ACM, 2015, pp. 4:1-4:9.

Aho A., Ullman J. Translations on a context free grammar. Information and Control, 1971, vol. 19, issue
5, pp. 439-475.

Van Wyk E.R., Schwerdfeger A.C. Context-aware scanning for parsing extensible languages. In Proc. of
the 6th International Conference on Generative Programming and Component Engineering, New York,
NY, USA: ACM, 2007, pp. 63-72.

MHdopmaumna o6 aBTope / Information about author

Anexcert BameppeBnu ['OJIOBEIIKMH B 2015 romy momy4yms cTeNeHb MarucTpa IIo
HarpaBieHuo «DyHraMeHTanbHass MHPOPMATHKAa U WHPOPMAIIMOHHBIE TEXHOJIOTHW» B FOKHOM
¢enepansHOM yHuBepcutrere, Pocros-na-Jlony, Poccus. B Hacrosimiee Bpems TPOBOIUT
Uccie/IoBaHMsl Ha 0asze JaHHOTO YHUBEPCHUTETA, TOTOBHT IMCCEPTAIMIO HA COUCKaHHE YYEHOU
CTENIeHW KaHIuaara TexHWYecknx Hayk. K cdepe ero HaydHBIX MHTEPECOB OTHOCATCS
KOMIIHUIISITOPBI, I3BIKU IPOrPaMMHPOBAHUS, IPOrpaMMHasl HHKEHEPUSL.

27

http://ssw.jku.at/Coco/Doc/UserManual.pdf

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

Alexey Valerievitch GOLOVESHKIN obtained the master’s degree in fundamental informatics
and information technologies in 2015 at Southern Federal University, Rostov-on-Don, Russia.
Currently he does research at Southern Federal University working on the PhD thesis. His current
research interests include compilers, programming languages, and software engineering.

28

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-2

Graphic DSL for Mobile Development

A. Gudiev, ORCID: 0000-0002-0674-8621 <arturgudiev93@gmail.com>
A. Grazhevskaya, ORCID: 0000-0002-5069-443X <sagrapro7@gmail.com>
Saint Petersburg State University,

7/9 University Embankment, 199034, Russia.

Abstract. Due to the increase in the number of platforms, languages and methods which are used in mobile
development, the general technology elaboration problem is quite relevant nowadays. Graphic languages
simplify software development, allowing to present program structure in terms of visual diagrams. Besides,
graphic languages allow software engineers to avoid a lot of mistakes at the initial stages of design and
development. Graphic domain-specific languages (DSL) facilitate application development by use of concrete
domain abstractions. In this approach the mobile application structure will be presented in the form of various
controllers connected among themselves through ports and corresponding to some complete fragments of
logic. Controllers in turn consist of various states which allow to describe a data flow in the controller using
various element connections. In each state the Ul form which contains the graphic primitives and events
connected with primitives can be described. Besides, code generator for UbigMobile platform is implemented
which will allow to generate UbigMobile applications by the visual diagrams. At the end of the article
demonstration examples on which the implemented DSL language was tested are given. The application
allowing the user to get the trains schedule is provided in the first example. In the second application the user
can log in to receive a check-in code.

Keywords: dsl; mobile development

For citation: Gudiev A.V., Grazhevskaya A.S. Graphic DSL for mobile development. Trudy ISP RAN/Proc.
ISP RAS, vol. 31, issue 3, 2019. pp. 29-34. DOI: 10.15514/ISPRAS-2019-31(3)-2

Npadmyeckumn DSL ans pa3paboTku MOOUIBbHbLIX NPUNOXEHUN

A.B. I'voues, ORCID: 0000-0002-0674-8621 <arturgudiev93@gmail.com>
A.C. I'padxcesckas, ORCID: 0000-0002-5069-443X <sagrapro7@gmail.com>
Canxm-Ilemepoypeckuii I ocyoapcmeennulii Ynusepcumem,

199034, Poccus, . Cankm-Ilemepoype, Yuusepcumemckas nadepesicnas 7-9

AHHOTammsi. B cBs3u C yBeNMUYEeHHMEM KOJIHMYECTBa IUIAT(OPM, S3BIKOB M METOJOB, MCIOJIB3YIOUIUXCS B
pa3paboTKe MOOMIBHBIX IIPWIOXKEHHH, 3ajada BBIPAOOTKH OOImIeH TEXHOJOTHUH JOBOJBHO aKTyalbHA.
I'padmueckne s3bIKM ympomaroT —pa3pabOTKy, MO3BOJSISL MHPEACTaBUTh CTPYKTYPY HPOTPAMMHOTO
obecriedeHnsi B BHJAe rpaduduecknx amarpamM. Kpome Toro, rpadudeckie S3bIKH ITOMOTAIOT H30€XKaTh
MHO>KECTBa OIMIMOOK eIlle Ha HAadaIbHBIX 3TAIax IIPOSKTUPOBAHMS M pa3paboTku. I'padudeckne mpexmeTHo-
opuentupoBanHsle s3bIkH (DSL) obOmerdaror pa3paboTKy IporpaMMm IyTeM HpHMEHEHHs aOCTpaKIui
KOHKPETHOH HpenMeTHoW obmacTu. B naHHOW paboTe mpeacTaBieH apXUTEKTYPHBIH MIa0JIOH MOOMIBHOTO
NPHJIOKEHUSI W CO3JaHHBIM Ha ero ocHoBe rpaduueckuii DSL, mo3Bosisionuii OMUCHIBaTH OCHOBHYIO
CTPYKTYpY MOOWJIBHOTO MPHJIOXKEHHS B TEPMHHAX KOTHPOJUICPOB, COCTOSIHHM M MEPEXOI0B MEXIY HUMH.
[Ipy TakoM MOAXOAE CTPYKTypa MOOWJIBHOTO TPUIIOKEHHsS OyAeT MpeICTaBlieHa B BHIAC PAa3IMYHBIX
KOHTPOJUIEPOB, CBSI3aHHBIX MEXTY cOOOI IPH ITOMOIIH HOPTOB M COOTBETCTBYIOINX HEKOTOPHIM IIEITOCTHEIM
¢parmenTam noruku. CaMi KOHTPOJUIEPH B CBOIO OUYEpPENb COCTOST M3 PAa3IMYHBIX COCTOSHHI, KOTOpPBIE
TIO3BOJISIIOT ONHCATh MOTOK JAHHBIX B KOHTPOJUIEPE ITyTEM COCAWHEHHS IIPH IIOMOIIM 3JIEeMEHTa-CBs3H. B
KaXJOM COCTOSHHHM MOXET OBITh OIHCaHa OJKpaHHas ¢opma, B KOTOPOH coxepkarcsi rpadudeckue
NPUMUTUBBl U CBSI3aHHbIE C HUMHU COOBITHA, cpa0aTeIBalolue Mpu UX H3MeHeHuH. Kpome Toro, mis

29

Gudiev A.V., Grazhevskaya A.S. Graphic DSL for mobile development. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 29-34

paspaboranHoro DSL peanmm3oBana aBromarmueckylo reHeparms koxa it Imardopmsl UbigMobile. B
KOHIIE CTaTbH IPHBOJIATCS JEMOHCTPAIOHHBIE NPUMEpPHI, Ha KOTOPHIX Obul ampobupoBan DSL s3pik. B
KauecTBe IEepBOr0 MNpHMEpa IPUBOJUTCA IPWIOKECHHE, II03BOJAIOIIEE IOJIB30BATENI0 IOCMOTPETH
pacnucaHue NEKTpUYeK. Bo BTOPOM MPUIIOKEHHHU IIOJIb30BATENIb MOXKET BOHTH B CHCTEMY ULl TOTO, YTOOBI
nonyuuts check-in koz.

Ki1roueBble cj10Ba: IpeAMETHO-OPUCHTUPOBAHHBIC A3BIKH; MOOMIIbHAS pa3paboTka

Jnsi mutupoBanus: ['ynueB A.B., I'paxesckas A.C. I'papmueckmit DSL st pa3paGoTknm MOOHIBHBIX
npuioxkenuit. Tpynst UCIT PAH, tom 31, Beimn. 3, 2019 r., crp. 29-34 (na anrimmiickom ssbike). DOI:
10.15514/ISPRAS-2019-31(3)-2

1. Introduction

A large number of platforms, languages, and methods are used in mobile application development.
Existing mobile development tools significantly differ from each other, and the common
technology implementation problem is still relevant.

There are various ways of the high-level description of mobile application — architectural patterns
mvc, pac, microkernel, etc [1]. All these patterns were borrowed from other software areas, are
quite actively applied during mobile application development, but not quite correspond to their
nature. Mobile applications differ from desktop and web programs [2]. Mobile applications are
commonly used for short sessions, more focused on specific objectives performance.

Use of a suitable architectural pattern allows to increase considerably application development
efficiency, but a bigger result can be achieved by graphic languages usage. DSL is the
programming language in terms of the concrete subject domain which is applied to the solution of
concrete type tasks [3], [4], [5]. Graphic DSL languages help to represent applications using visual
diagrams. The result code will be generated according to these diagrams.

The purpose of this article is to develop an architectural template for mobile applications and to
create graphic DSL based on it. DSL should allow describing the main logical application structure
in terms of states, controllers and transition conditions between them.

2. Tools

The Modeling SDK technology is used for the graphic DSL implementation [6]. Modeling SDK is
the plugin for Visual Studio intended for visual domain-specific languages development. Visual DSL
development happens in the following order. At first, the metamodel (the set of all syntactically
correct diagrams) is developed and edited, the implemented classes are generated. Then a DSL
package compilation and debugging take place in an experimental instance of Visual Studio.

For metamodel programming, the graphic editor of Modeling SDK is used, but also it is possible
to redefine or add new methods to the generated partial classes of the C\# language. The T4
language is used for code generation [7]. The Dsl and DslPackage projects are automatically
created in the new solution of Visual Studio. In the Dsl project, various metamodel artifacts of the
created DSL are stored. DslPackage project contains the user interface settings.

3. Controllers and states model

An application state corresponds to some complete logic fragment. The result of state change is
data transfer which is logically finished and clear to other states.

It is convenient to group states and transition conditions into controllers by their logical
connectivity, data community, Ul forms, transition frequency and data transfer between states.
Grouping states into controllers gives an opportunity to define more strong transition logic,
allowing transitions between states in the controller and forbidding them between conditions of
unconnected controllers.

The main application cycle is run by the special mechanism starting and switching controllers of
states. Each controller has an entry point and an opportunity to set input parameters when an

30

T'ynues A.B., I'paxxeBckas A.C. I'paduueckuit DSL s paspabotku Mo6unbHbIX npunoxennit. Tpyost UCIT PAH, Tom 31, Beim. 3, 2019 1.,
ctp. 29-34

application switches to it. There can be several exits in a state. An application can return to the
caused controller, switch to the next controller, etc. Execution logic is implemented in terms of the
finite-state machine in the controller. Each controller has a set of the predefined states (in
particular, initial and final states), and it is possible to add new states.

Mobile application implementation by means of controllers and states model allows to centralize
its logical basis, the structure of the code becomes evident. When using controllers, the aim of the
mobile application developer comes down to describing the necessary logical controllers, state and
conditions of transition.

4. Graphic DSL Description

The model of controllers and states was tested on mobile applications of different classes and
proved the efficiency. But the best results can be achieved, having taken this model as a basis of
graphic DSL for mobile applications (see fig.1)

O controliershape Y
irlion
= Dorrain Properties

Decorators
B Name

Generalization

f] % —
: : = : . = Gemenalizafionlink
Subidasse R R =) e
i o1 DomamCiaz: ||
= Domain Properties
ControBerHasPorts ks
Fart P LT
ne at
ControllerHasStates O ststeshape N

Gaomatninape
LT R —— L

o 0.1

n Properties

—# InPortShape #e

= Domain Properties

= Decorators
= inage

Fig. 1. Language implementation in Modelling SDK

Basic elements of the language are controllers and its states. States are placed on the controller,
can connect among themselves and also to ports of the controller for the conditions description of
an entrance and an exit from it. Each state opens in the separate diagram on which conditions of an
entrance, an exit from a state and its internal logic are described. The logic of states includes a
display of Ul forms, processing of their events, services calls, conditions checking, etc. There is a
display of a Ul form for each state in the language. To connect the existing screen form with a
state the ShowForm element is used.

5. Code generation

The language of T4 templates is used for code generation. The main components of the T4
language are directives, blocks of the text and control units. For a generation of the unchangeable
code, text blocks are used, and dynamic parts are implemented by means of control units.

As a result of generation, the controllers' classes appear. Each controller has several states
presented in the transfer type form. Process of work is implemented in terms of the finite-state
machine. On links between states, the template of transitions are implemented. Controllers can
also have ports. Ports are used for transitions between controllers.

The resulting code is applied to UbigMobile platform [8]. UbigMobile platform is aimed to cross-
platform mobile development. The main features of the platform are that the business logic of all

31

Gudiev A.V., Grazhevskaya A.S. Graphic DSL for mobile development. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 29-34

applications is executed on the server. And mobile devices have only thick clients to represent the
result of application work.

6. Samples

The purpose of the first sample is to display the train schedule for the user. The application
consists of a single controller and two states. In start state, the user can choose departure and
destination stations (see fig.2). After clicking on the button, the application will switch the current
state from the first state to the second one (see fig.3).

o]

ManController

ChooseStationForm

ShowScheduleForm

BackButtonClicked

Fig. 2. Schedule application scheme

n 1]

Application0 Application0

Cankr-lNetepbypr : Yausepcuter

Otkyna Kyna 06:00 EXEHeBHO

06:20 No padoynm
0640 EXE[HEeBHO

07 00 no pabouum

07:30 EXEHOBHO

0 OXEJHEOBHO

0830 eXe\He8HO

YHMBEDCHTET Cipenba 09:13 EXELHEeBHO
09 45 axXeNHesHo

10.30 no paboumnm

13:10 EXEAHOBHO

13.40 EXEHEBHO

1440 EXE/IHEBHO

1540 EXONHEORHO

1600 no paboimm

16:30 EXENHEBHO

Fig. 3. Schedule application Ul forms
32

T'ynues A.B., I'paxxeBckas A.C. I'paduueckuit DSL s paspabotku Mo6unbHbIX npunoxennit. Tpyost UCIT PAH, Tom 31, Beim. 3, 2019 1.,
ctp. 29-34

The second sample allows the user to log in and receive the code which then can be used later (see
fig. 4) There are two controllers in the application: LoginController and MainController. There is
also a switching between controllers implemented by means of ports. In LoginController there is
only one state. At MainController there are two states: a state with option selection and a state
where a user can receive the necessary code. The UbigMobile Ul forms, corresponding to states of
the application are given below (see fig. 5).

o)
¥

(2}

3
[T}——
TT s
i

Fig. 4. Application with authorization scheme

Application0 Application0 Application0

Volunteer |d 23578 Generated key:

Password v 1 3303

Fig. 5. UbigMobile screens

7. Conclusion

Within this work, the following results were achieved. The graphic DSL for mobile application
development is implemented. The code generation for UbigMobile platform feature is added.
Demonstration samples are represented.

References / Cnucok nutepartypbl
[1]. Plakalovic D and Simic D. Applying MVC and PAC patterns in mobile applications. arXiv preprint
arXiv:1001.3489, 2010.

33

Gudiev A.V., Grazhevskaya A.S. Graphic DSL for mobile development. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 29-34

[2]. Flora Harleen K and Wang Xiaofeng and Chande Swati V. An investigation on the characteristics of
mobile applications: A survey study. International Journal of Information Technology and Computer
Science, vol. 6, issue 11, 2014, pp. 21-27.

[3]. Koznov D. Methodology and tools for domain-specific modeling. Thesis for the degree of Doctor of
Technical Sciences, St. Petersburg State University, 2016 (in Russian) / Kosuos I.B. Meromonorust u
HMHCTPYMEHTapU MTPEIMETHO-OPUEHTUPOBAHHOTO MOJENUPOBaHms. Jluccepranys Ha coMcKaHue y4€HON
CTENeHH JOKTopa TexHuuecknx Hayk, CII6I'Y, 2016.

[4]. Bryksin T.A. The platform for creation of specialized visual development environments of the software,
PhD Thesis, St. Petersburg State University, 2016 (in Russian) / Bpsikcun T.A. Ilnardopma st
Co31aHuA CIICUATU3UPOBAHHBIX BU3YaJIbHBIX cpen pa3pa60TKI/I IIporpaMMHOI0
obecrieuenus. Hucceprauus Ha couckaHue Y4YE€HOM CTENEHM KaHOuAaTa TEXHUYECKUX Hayk,
CIIor'Y, (2016).

[5]. Bryksin T.A. and Litvinov Yu.V. Environment of visual programming of QReal : Robots. In Proc. of the
international conference on Information technologies in science and education, 2011, pp. 332-334 (in
Russian) / bpeikcun T.A., F0.B. JlutunoB. Cpea BU3yanbHOrO MporpaMMupoBanus poboros QReal:
Robots. Marepuaist Mex1yHapoaHo# koHpepeHunn «HpopMaHOHHbIE TEXHOJIOTHH B 00pa30BaHHU U
Hayke», 2011, ctp. 332-334.

[6]. Modeling SDK for Visual Studio - Domain-Specific Languages. Available at:
https://docs.microsoft.com/ru-ru/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-
languages, accessed 14.07.2019.

[7]. Code Generation and T4 Text Templates. Available at: https://docs.microsoft.com/ru-
ru/visualstudio/modeling/code-generation-and-t4-text-templates?view=vs-2015, accessed 14.07.2019.

[8]. Onossovski V.V. and Terekhov A.N. Ubig Mobile — a new universal platform for mobile online
services. In Proc. of the 6th seminar of FRUCT Program, 2009, pp. 96-105.

Uughopmayusi 06 aemopax / Information about authors

Aptyp Brmamgummposma ['YAMEB — wmaructp, BHIIYCKHHK KadeOpel CHCTEMHOTO
MPOTPaMMHPOBAaHUS MaTeMaTHKO-MexaHmdeckoro (Qakyipreta CIIOIY. Cdepa nHaydHBIX
MHTEPECOB: MOOWIIBHAS pa3paboTKa, MPEeIMETHO-OPUEHTUPOBAHHOE MOJICTTHPOBAHNE.

Artur Vladimirovich GUDIEV is a graduate of software engineering department of Mathematics
and Mechanics faculty, St.Petersburg State University. Research interests: mobile development,
domain-specific modelling.

Anexcannpa CepreeBHa [PAJKEBCKASI — BbImyckHHIIA MaTeMaTHKO-MEXaHUYECKOTO
¢dakynprera CIIOI'Y. Ee Hay4HbIC HHTEPECHI BKIIIOYAIOT MPEIMETHO-OPUCHTUPOBAHHBIC SI3BIKH.

Alexandra Sergeevna Grazhevskaya is a graduate of the Mathematics and Mechanics faculty, St.
Petersburg State University. Her research interests include domain-specific languages.

34

https://leader-id.ru/314394/
https://leader-id.ru/314394/
https://leader-id.ru/314394/

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-3

Development of a software framework for real-time
management of intelligent devices

T. Naumovié¢, ORCID: 0000-0001-9849-7665 <tamara@elab.rs>
L. Baljak, ORCID: 0000-0003-3779-7335 <lukabaljak@elab.rs>
L. Zivojinovi¢, ORCID: 0000-0003-3536-3146 <lazar@elab.rs>
F. Filipovi¢, ORCID: 0000-0001-7113-3802 <filipfilipovic@elab.rs>
Faculty of organizational sciences, University of Belgrade,
Jove Ilica 154, 11000 Belgrade, Serbia

Abstract. The subject of this paper is development of software framework for real-time management of
intelligent devices. The framework enables intelligent management of 10T devices in cyber-physical systems
using models based on recurrence relations and differential equations. The platform was developed using
Python programming language, Django framework and wide corpus of modules and libraries that supports
continuous simulation. The software framework incorporates application programming interface as well, for
specification of system behaviour, transmission of input parameters and output results, sending control
actions via web services to the 10T system.

Keywords: software framework; 10T; continuous simulation; python

For citation: Naumovi¢ T., Baljak L., Zivojinovié L., Filipovi¢ F. Development of a software framework for
real-time management of intelligent devices. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 35-
46. DOI: 10.15514/ISPRAS-2019-31(3)-3

Acknowledgments. Authors would like to thank prof. dr. Bozidar Radenkovic, prof. dr. Marijana
Despotovic-Zrakic, prof. dr. Zorica Bogdanovic, prof. dr. Dusan Barac and prof. dr. Aleksandra Labus for
guidance and mentoring throughout this research and software development.

Pa3paboTka nporpammHoun cpeabl ANA ynpaBfieHUA
MHTeNNeKTyanbHbIMAU YCTPOMCTBaMN B pearibHOM BpeMeHMU

T. Haymosuu, ORCID: 0000-0001-9849-7665 <tamara@elab.rs>

JI. Banax, ORCID: 0000-0003-3779-7335 <lukabaljak@elab.rs>

JI. 2Kusounosuy, ORCID: 0000-0003-3536-3146 <lazar@elab.rs>
@. Qununosuy, ORCID: 0000-0001-7113-3802 <filipfilipovic@elab.rs>

Dakynemem opzanuzayuonnbix Hayk, benzpadckuil ynueepcumem,
11000, Cepbus, 2. Beaepao, Hose Hnuu 154

AunHotaums. IlpenMeroM IaHHOW CTaThu SIBIsETCS pa3paboTKa MPOrPaMMHOM CpeAbl Ul YIpPaBICHHS
HHTEJUICKTYaTbHBIMH ~ YCTPOHCTBAMH B DEXKHMME peanbHOro BpeMmeHH. Ilmardopma obecnednBaer
MHTEJUICKTYallbHOE YIpaBleHHe ycTpoiictBamu VHTepHera Bemied B KuOep-Qusuyecknx cucremMax c
HCIOJIB30BaHUEM MOJIeeil, OCHOBaHHBIX Ha PEKYPPEHTHBIX COOTHOLICHHMSAX W An(depeHInaIbHbIX
ypaBHeHusix. Ilmargopma Obiia paspaboTaHa ¢ HCIONBb30BaHUEM s3bIKa MporpammupoBanus Python,
nHpacTpykTypsl Django u mmpokoro Habopa Moayied M OMOIMOTEK, MOACPKUBAIOIINX HEMPEPHIBHOS
MozenupoBanue. [IporpaMMHas cpeia Takke BKIOYaeT HHTep(EHC MPUKIaAHOTO HPOrpaMMUPOBAHUS IS
crien(UKAIMU TIOBEICHUS CUCTEMBI, IIepeayll BXOIHBIX TapaMETPOB M BBIXOJHBIX PE3YJIbTATOB, OTIIPABKU
YIPaBJISAIONIMX ICHCTBHI Yepe3 Be6-CepBUCHI TS CHCTeMbl IHTepHeTa Beleil.

35

https://orcid.org/0000-0001-9849-7665
https://orcid.org/0000-0001-9849-7665

Naumovi¢ T., Baljak L., Zivojinovi¢ L., Filipovi¢ F. Development of a software framework for real-time management of intelligent devices.
Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 35-46

KiroueBble ciioBa: nporpamMmHast cpena; ViHTepHeT Beleil; HenpepslBHOE MozaenupoBanue; Python

s uutupoBanus: Haymosuu T., bansk JI.,)KuBounosuy JI., ®ununosuu @. Pazpaborka nporpamMmHON
cpelbl Ul YIpaBJICHUs MHTEIUIEKTyalbHBIMU ycTpolicTBamu B peanbHoM BpeMeHu. Tpyast UCIT PAH, Tom
31, B 3, 2019 1., ctp. 35-46 (ua anrmuiickoM si3eike). DOI: 10.15514/ISPRAS-2019-31(3)-3

BaaromapHocTu. ABTOpHI XOTenmd Obl moONMaromaputhk mpod., np. boxumapa Panmenkosuda, mpod., mp.
Mapusiny JleciotoBuu-3paknd, mpod., np. 3opuily bormanosu4, mpod., np. dymana bapaka u mpod., mp.
Anekcannpy Jlabyc 3a pyKOBOJACTBO W HACTABHHYECTBO Ha MPOTSHKEHUH BCETO MCCIICAOBAHUS U Pa3pabOTKH
MIPOTPAMMHOTO 00ECTICUEHHS.

1. Introduction

Cyber-physical systems (CPS for short) integrate devices, networks, interfaces, computer systems,
and others with physical world. The fact that those elements are heterogeneous, hybrid, distributed
and numerous, makes their analysis, design and implementation quite challenging and complex. In
addition, CPSs are real time by their nature. Wide corpus of services, applications and interactions
within CPS as well as huge growth of Internet of things further fuelled the need to change and
improve existing approaches to managing those systems [1][2]. One of the most significant issues
is to explore and model properties of CPS' elements, their connections and behaviour [3][4]. CPS
immerged from the integration of devices with embedded systems, smart objects, people and
physical environment typically connected via communication structure. Thus, it is no surprise that
smart environments and systems are among the fields of CPS application.

Smart systems are integral part of CPS. The key technology for developing cyber physical systems
is Internet of Things, 10T [5][6][7]. According to [8], cyber-physical systems, Internet of things
and big data are related concepts of cooperative solutions, where people, autonomous devices and
the environment interact with one another to achieve a certain goal. 10T technologies enable the
connection of a large number of users, devices, services and applications to the Internet
[9].Management of intelligent devices often needs to be done in real-time. Real-time Control
System (RCS) is a reference model of architecture that defines the types of functions needed for
intelligent real-time control [10]. RCS provides a comprehensive and basic methodology for
design, engineering, integration and testing of control systems [11].

In RCS systems, the state of many variables changes continuously over time, so the management
of these systems can be modelled using differential equations and recurrence relations. Hence,
simulation enables investigation of behaviour of such dynamic systems by developing appropriate
models and using these models in experiments designed to provide an insight into the future
behaviour of the system under specific conditions [12][13][14]. Simulation of CPS is becoming
extremely important for both academia and practice as results of simulations have huge potential
to be applied in research, business and engineering. [15].

The main idea of the research is to develop a comprehensive platform that would enable modelling
and simulation of different smart environments. To achieve this goal, it is vital to define a uniform
formal model applicable to any smart environment whose mathematical representation can be
mapped to its implementation as one-to-one correspondence. The software framework for real-
time management of intelligent devices represents a cyber-physical system incorporating loT
devices as the physical component of the system and software framework accompanied with
required network infrastructure as the cyber component. Having available information and input
data from intelligent devices in real-time allows the simulation engine, as an integrated part of the
solution, to calculate and create a plausible outcome. On the other hand, outcome created as the
result of the simulation can be a trigger dispatching control actions towards the loT system.

The formal model, implementation and example illustrating the applicability of the presented
mathematical model will be explained further in the paper.

36

Haymosuu T., Basak J1., YKusonxoBw4 J1., @usmmosnd @. Pa3paboTia MporpaMMHO# Cpeibl [T YIPABICHHS HHTEIUICKTYTbHBIMH YCTPOHCTBAMIL B PEATBHOM
Bpemenn. Tpyowt ICIT PAH, Tom 31, Beim. 3, 2019 1., c1p. 35-46

2. Formal Model

2.1 Continuous system simulation in IoT context

Continuous system simulation refers to experimenting with models whose states are changing
continuously in time [11]. These types of simulation systems are often described by differential
equitation. Time is independent variable in most cases. Continuous simulation can be used in
different contexts and covers numerous types of real-world problems [16]. Considering time as an
independent variable, digital computer has constraints solving differential equations, which is why
it was necessary to develop a specific language to resolve this issue.

Different specialized languages for continuous simulation were developed, such as: CSMP
(Continuous Simulation Modelling Programme) ESL (European Simulation Language) ACSL
(Advanced Continuous Simulation Language) CSSL4 (Continuous System Simulation Language,
Simulink, Matlab, Modelica and others that have been developed to simplify modelling, and to
minimize problems related to programming continuous systems [16]. However, a majority of
simulation tools have limitations related to low level of flexibility and adaptability, high costs,
platform dependence, maintenance difficulties, etc. [16]

CSMP/FON platform for continuous system simulation was developed following these principles
[17]:

e minimize required hardware resources and improve speed of execution;

e suitable and easy to use for educational purpose;

e simple and rich user interface;

e support for scientific research;

e saving costs.

The CSMP/FON is an open source solution and can be downloaded from the web site
https://elab.fon.bg.ac.rs/softver/csmp. It has been used for many years in research and teaching
within simulation related courses at University of Belgrade.

Software framework for real — time management of intelligent devices and 10T systems in general
is a time dependent system, which requires a tool that can overcome any time — related
performance issues. Ergo, using CSMP simulation logic in the software development process was
a way of introducing control mechanism in the system.

2.2 Formal model of a continuous simulation system
Formal model of a continuous simulation system can be given as a tuple [18]:
M= (U)Y,S,8,4,50) @8]
with the following meanings:
e U —setofinputs;
e Y —setof outputs;
e S —setof state variables;
e § —transfer function: 6:U x S = S;
e A -—output function: &: U xS - Y;
e 50— set of initial states.
Function of a variable ¢ is a mapping of a non-empty set X, of variables x, signed as domain, in
non-empty set Y, of variables y, signed as scope (or codomain, set of function values) [18]:
o:X -V,
a function of many variables is presented through mapping:
P: X XX XX X..XX Y,
a block is presented as ordered set of three elements
37

Naumovi¢ T., Baljak L., Zivojinovi¢ L., Filipovi¢ F. Development of a software framework for real-time management of intelligent devices.
Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 35-46

b = (¢,X,Y),
each x € X isinput, while y € Y is output from the block.
The process of continuous simulation is based on solving differential equations and recurrence
relations [17][18]. CSMP simulation language is block-oriented languages designed for solving
systems of differential equations. Each block is specified by a set of inputs and parameters and a
graphic symbol [12]. The graphic display of elements in the general form is presented in fig. 1

¢ —

) et f n €pn
€ —

Fig 1. Graphic display of an element [17]

2.3 Formal model of a hybrid 10T system for real-time simulation

The current simulation model describes a system that allows solving differential equation systems
in the given time with predefined variables and inputs [17][18]. The software framework for real-
time management of intelligent devices requires a broaden model that will be suitable for use in
real-time 10T systems [19].

Fig. 2 presents the concept of a hybrid 10T system for real-time simulation. This model enables
having values measured in the environment in real-time included as variables of the simulation
systems. In addition, the model enables managing the 10T system using variables obtained through
the simulation.

Inputs Outputs
Uior > loT > Y\oT
Siot Swm

v
Uwm » Simulation engine > Ym

Fig 2. Hybrid loT system for real-time simulation

For mathematical modelling of the hybrid 10T system for real-time simulation, the presented
formal model needs to be extended with a set of state variables, inputs and outputs from the 10T
system:

S =3Su U Sior (2)
U=UyVUUpr 3)
Y=Yy UYpr 4)

In order to have the set of state variables S in the simulation model, it is necessary to get the values
of state variables from the 10T system (S;,r). This is done by developing and providing API of the
0T system. This API needs to implement the following functions:

p: Sor(t) = S(¢) (5)
w:5(t) = Spor(t) (6)
Y: YIoT(t) - Y(t) (7)

38

Haymosuu T., Basak J1., YKusonxoBw4 J1., @usmmosnd @. Pa3paboTia MporpaMMHO# Cpeibl [T YIPABICHHS HHTEIUICKTYTbHBIMH YCTPOHCTBAMIL B PEATBHOM
Bpemenn. Tpyowt ICIT PAH, Tom 31, Beim. 3, 2019 1., c1p. 35-46

The operation p is the operation of reading the values of variables from 10T system. These values
then can be used in the simulation system for calculations. The operation w enables writing the
values of variables into the loT system. These values are calculated in the simulation engine and
then sent to the 10T system. These values can also be used for triggering specific actions of the loT
system. The operation y enables reading the outputs of the I0oT systems.

Having in mind that 10T systems are distributed, all these operations for interaction between the
simulation and IoT systems need to be realized via web, using web services. Depending on the
scenario, both PUSH and POP methods can be used.

After extending the formal model of continuous simulation system with the IoT elements, the
process of continuous system simulation can be described with the finite automata equations [18]:

S =1xA4A,-{U®),S®)} ®

Y(©) =4, - {U®),S)} C)]
where A; and A, are matrix representation of algebraic functions, and I is the matrix
representation of the integration operator (fig 3).

S I «
> Ay
U—+———71—>
» Ao —»Y

Fig 3. The structure of finite automata for simulation of continuous systems [18]

A more granular structure of continuous system simulation is presented in the fig. 4.

Fig. 4 depicts the decomposition of the operator A, to its elementary and primitive functions,
represented as algebraic blocks. As explained later in section D, input of every block is an element
that can come from either a set of inputs, a set of state variables or a set of the associated variables
that represent inputs of the preceding algebraic blocks.

2.4 Orderliness

The essential feature of any non-trivial mathematical model of the continuous simulation is the
feedback. The feedback occurs in the model as a result of a chain of cause-and-effect that
generates a loop [20]. Considering the case of continuous simulation the model develops the
feedback loop if it is impossible to mark all blocks from the set that satisfy a condition i < j,
where block’s b; output is connected to block’s b; input [17]. The feedback loop imposes a
compulsory requirement for computability of mathematical model called orderliness, defined as:

The set A of all countable algebraic blocks (blocks that correspond to algebraic functions) of M
models is called orderly if all distinct objects a; € A can be ordered (sorted) in such linear list
where inputs of every distinct object a; are elements of some of the following sets [18]:

1) U -setof inputs;

2) S —setof state variables;

3) SubsetC' c Cdefinedas: C' = {c € C|Vi < j,Va; = (¢,X;,Y;):c € X;}.

3. Mapping mathematical model to implementation

Mapping the mathematical method given in equations 1-9 is represented through series of UML
sequence diagrams, where each method has its corresponding diagram.

39

Naumovi¢ T., Baljak L., Zivojinovi¢ L., Filipovi¢ F. Development of a software framework for real-time management of intelligent devices.
Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 35-46

The implementation of the software framework described through this research will be based on
the concurrent computing and NoSQL concepts, such as threads and use of the MongoDB
document-oriented database program.

> > Block b,
> ¢.1(U,S)1) s4
T
SN - L S“"| > Block by
T q (piot(UsS’t) .
b
> > Block b, s
M Sn » (pn(UsS,t)

S1, Siat
Tul Um

Fig 4. Block diagram of granular structure of continuous systems

3.1 Simulation engine

Fig. 5 illustrates the core simulation process depicted in equations (8) and (9). The diagram
represents a typical continuous simulation process: begins with loading the simulation object from
the MongoDB database in the engine, sorting the blocks, setting the primary conditions and
starting the calculation process.

The calculation process itself is a looped process where series of computations are performed on
every block in the simulation model: block type analysis, output generation through block
function, output appending and call for next computation. The block type analysis determines if
the current block is an 10T block, if it is engine provides a call to the 10T service, which performs
specific operations based on the type of the call. Call types can be divided into two groups: a)
reading and b) writing.

The call is a software representation of functions described through equations (5), (6) and (7).
Depending on the call type, the simulation system will process data sent from the 10T system and

40

Haymosuu T., Bansk JI., JKuorrosra J1., @umanosiy @. PazpaGoTka mporpaMMHO§ Cpezib s yIpaBIeH s MHTEIUICKTYATbHBIMH YCTPOHCTBAMH B PEATbHOM
Bpemetn. Tpyowt UICIT PAH, Tom 31, Bbi. 3, 2019 1., c1p. 35-46

embed them as a part of the continuous simulation process, it will send a control action to the loT
system as a result of the continuous simulation process or it will read the output from the loT

system (fig 6).

X

1 Slmulatmnlnterrace

User
start new()
) 0 i new) s c:Controller
. startSimulation{)
: H

etSimulation(simiD! I:i
| getSi ion(simiD} i B

i loadSimulation(sim}
I:-I—‘ par= sim.getParam()
| par= sm.getParami) i
0 ct= sim.getCenfTab(}
: pom e

H ret = sortBlockal)

AT/ [ret £ Trug)

satPrimaryConditiorss(} |
startSimulation() D H
I——) H

[par.SimulationDuration> 0]

Loor/

startCaleutation()

LOOP

T [end of configuration table]

ar/ i error-false)

AT / [ctrow.type= iof] i

H H call sehI®, load]), data) :
|:| callloTsenviosica) H
¢ D H

........................... S SO

[sisE]

h out = biockFunctioniet.rom)
< Y

' res.4s.appendiout)

H rextBlock(}

. displayResults()

setResults(rasults)

Simulation eneded

- S . :

© |asimulstionEnded;

aIors

Simulation endad

fo-- A §

\ |updateSimuiatanisim) ¢

X X X

Fig 5. UML sequence diagram of the core simulation process

stratTransaction() N
. ret = updateData(sim) E i
[ret = true] confirm()
e + [ret = false] deny() .

41

Naumovié T., Baljak L., Zivojinovié L., Filipovié¢ F. Development of a software framework for real-time management of intelligent devices.
Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 35-46

[c:Controller ’ {\ ot: IoTServis}

D callloTservice(call)

AT/ Iret = trug]

ALT /' lpozikloadj

:El ret = pingServer(call.IP}

poz = call.callType()

res= getData()

ALT qres != Null]

LOOP/ [endOfSimulation != True]

data = readData()

results.append(data)

=

: H
_________ - USSR SRS
[else] ! H
H P RED Error
H 1 managing
i :
------------ : a
[poz=write] ! .
H H 1
: : :
: ALT / [responsel= error] '
H ' sendData(call.data) :D
. H .
! ' ' doControlAction()
i ;
' ’ response
: oo . 3
B 1T e s vttt
H 1 BEE Error '
! ' managing E
H H i
............ . A S
[poz = read] ! H |
H

res = readQutput() _D

i[res = Null] :

ALT :! :
LOOP/ ' data = readlineOutput()
: [displayData(data) T
H ————e '

........ e Sy gy

[else] | ' '
! H a7 Error V
1 H managing '
B il Y CTTTT
E E REE Error H
! H managing H
H ' '
B e P

i E REF, Error E
: ' managing '

X

Fig 6. UML sequence diagram of processing calls to 10T system
42

Haymosuu T., Basak J1., YKusonxoBw4 J1., @usmmosnd @. Pa3paboTia MporpaMMHO# Cpeibl [T YIPABICHHS HHTEIUICKTYTbHBIMH YCTPOHCTBAMIL B PEATBHOM
Bpemenn. Tpyowt ICIT PAH, Tom 31, Beim. 3, 2019 1., c1p. 35-46

3.2 Mapping the values of state variables and output from the loT system

The call for executing operation p (5) — reading the values of variables from loT system, is
illustrated in the fig. 5 as a part of the calculation process, where simulation engine should
consider 10T values as part of the calculation.

The control actions, ® (6) — writing the values of variables into 10T system, sent to the loT system
are, also, a type of call. By connecting to the loT system, the engine can access its API, create a
call to the function provided by the user, send data from the simulation engine and thus begin the
given process on the 10T platform. Such call is illustrated in the fig. 7.

<V\eb service> c:Controller
e:Engine I

call.set(IP, write(), results)

callloTservice(call)
>
REF,

" loT Service

si:SimulationInterface

D res = getResponse() El
ALT / [res = error] H)
v D sendResponsa(res)

gl
E displayResponse(res)

B

mp=====sssaaa=

I G

managing

[}
Error |
'
'
'

Fig 7. UML sequence diagram of the operation w — writing the values of variables into 10T system

Through the connection made to 10T system our engine can retrieve 10T system outputs and
display them though the platform interface, which is directly correlated with mathematical
operation y (7) — reading the outputs of the 10T systems (fig 8.).

3.3 Example: Smart watering system simulation

The example of smart watering system simulation is an illustration of the operation w (6), where
control actions and variables are being sent to 10T system.

For this example it is necessary to create control actions that will forward the data collected
through the simulation of the environment and air humidity by the simulation engine, and signal
the beginning of the IoT system actions.

Smart watering system is based on air humidity predictions, provided as input parameters given by
the simulation engine. If the humidity is under the marginal value set in the 10T system, the
watering process begins.

43

Naumovi¢ T., Baljak L., Zivojinovi¢ L., Filipovi¢ F. Development of a software framework for real-time management of intelligent devices.
Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 35-46

[<Vet‘3 e] c:Controller [si:Simu!ationInterfaceJ
e:Engine

call.set(IP, read())

callloTservice(call)

REF
loT Service

*
L getData()

displayData(data)

Fig 8. UML sequence diagram of the operation y — reading the outputs of the 10T systems

4. Conclusion

Modelling hybrid loT system for real — time simulation presents a focal point of this research.
Thus, successfully mapping the values of state variables from the loT system in the
implementation process is essential.

The autonomous performance of the simulation program should be implemented using the
concepts of concurrent computing — threads:

1) servicing requests for the simulation process control and error reporting,

2) servicing requests for configuration changes,

3) reading data and sending control actions to 10T system,

4) servicing requests for simulation results,

5) execution of the simulation process

Further research and work should be directed towards execution of the proposed implementation,
integration of the platform in the students’ educational process and evaluation and revision of the
software performance. Upgrading the existing model with new modules should be considered.

References

[1] E. A. Lee, S. A. Seshia. Introduction to Embedded Systems. A Cyber-Physical Systems Approach, 2017,
Second Edition.

[2] Y.Z. Lun, A. D'Innocenzo, F. Smarra, |. Malavolta, M. Benedetto, Maria. State of the Art of Cyber-
Physical Systems Security: an Automatic Control perspective. Journal of Systems and Software, vol.
149, 2018, pp. 174-216.

[3] N. Canadas, J. Machado, F. Soares, C. Barros, L. Varela. Simulation of cyber physical systems
behaviour using timed plant models. Mechatronics, vol. 54, 2018, pp.175-185.

[4] J. Liu, J. Lin. Design Optimization of Wireless HART Networks in Cyber-Physical Systems. Journal of
Systems Architecture, vol. 97, 2019, pp. 168-184.

[5] K. Carruthers. Internet of Things and Beyond: Cyber-Physical Systems. 2016. Available at:
https://iot.ieee.org/newsletter/may-2016/internet-of-things-and-beyond-cyber-physical-systems.html.

[6] L. Tan, N. Wang. Future Internet: The Internet of Things. In: Proceedings of 3rd International
Conference on Advanced Computer Theory and Engineering, vol. 5, 2010, pp. 376- 380.

[71 M. Wu, T.J. Lu, F. Y. Ling, J. Sun, H. Y. Du. Research on the architecture of Internet of Things. In:
Proceedings of 3rd International Conference on Advanced Computer Theory and Engineering, vol.5,
2010, pp. 484-487.

44

Haymosuu T., Basak J1., YKusonxoBw4 J1., @usmmosnd @. Pa3paboTia MporpaMMHO# Cpeibl [T YIPABICHHS HHTEIUICKTYTbHBIMH YCTPOHCTBAMIL B PEATBHOM
Bpemenn. Tpyowt ICIT PAH, Tom 31, Beim. 3, 2019 1., c1p. 35-46

[8] S. F.Ochoaa, G. Di Fatta. Cyber-physical systems, internet of things and big data. Future Generation
Computer Systems, vol. 75, 2017, pp. 82-84. 5

[9] B. Radenkovi¢, M. Despotovi¢-Zraki¢, Z. Bogdanovi¢, D. Baraé, A. Labus, Z. Bojovi¢. Internet
inteligentnih uredaja [Internet of intelligent devices]. Beograd: Fakultet organizacionih nauka, 2017 (in
Serbian).

[10] J. S. Albus. A Reference Model Architecture for Intelligent Systems Design. Springer, 1993. Available
at:
https://web.archive.org/web/20080916153507/http://www.isd.mel.nist.gov/documents/albus/Ref_Model
_Arch345.pdf

[11] F. E. Cellier, E. Kofman. Continuous System Simulation. Springer-Verlag, First Edition, 2006.

[12] J. Banks. Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice. John
Wiley & Sons, 1998.

[13] J. S. Keranen , T. D. Raty. Model-based testing of embedded systems in hardware in the loop
environment. IET Software, vol. 6, no. 4, 2012, pp. 364-376.

[14] N. L. Celanovic, I. L. Celanovic, Z. R. Ivanovic. Cyber Physical Systems: A New Approach to Power
Electronics Simulation, Control and Testing. Advances in Electrical and Computer Engineering, vol.12,
no.1, 2012, pp.33-38.

[15] P. Garraghan, D. McKee, X. Ouyang, D. Webster, J. Xu. SEED: A Scalable Approach for Cyber-
Physical System Simulation. IEEE Transactions on Services Computing, vol. 9, no. 2, 2016, pp. 199-
212.

[16] M. Despotovi¢-Zraki¢, D. Bara¢, Z. Bogdanovi¢, B. Jovani¢, B. Radenkovi¢. Software Environment for
Learning Continuous System Simulation. Acta Polytechnica Hungarica, vol. 11, no 2, 2014, pp. 187-
202.

[17] B. Radenkovi¢. Program za simulaciju kontinualnih i diskretnih Sistema CSMP/MICRO [Program
CSMP/MICRO for simulation of continuous and discrete systems]. Automatika, vol. 25, 1984, pp. 235-
238 (in Serbian).

[18] B. Radenkovi¢, M. Stanojevi¢, A. Markovi¢. Chapter 6. Simulacija kontinualnih sistema. Racunarska
Simulacija [Simulation of Continuous Systems. Computer Simulation], 2009, IV edition, pp. 89-110 (in
Serbian).

[19] T.Naumovi¢, B. Radenkovi¢, M. Despotovi¢-Zraki¢, D. Bara¢, A.Labus. A framework for real-time
management of intelligent devices: an educational perspective. International Conference on New
Horizons in Education, Proceedings Book, VVolume 1, 2018, pp. 33-34

[20] Ford. Modeling the Environment: An Introduction To System Dynamics Modeling Of Environmental
Systems, Second Edition, 2010.

MHdopmauma o6 aBTopax / Information about authors

Tamapa HAYMOBMUY nonyunna creneds Maructpa B 2018 roxy u B HacTosImiee BpeMsi TOTOBUT
JHCCepTallMi0 Ha Kadeape OJJIEKTPOHHOro Ou3Heca (hakynbTeTa OpraHM3alMOHHBIX HayK
benrpaackoro ynuBepcutera, Cepbus. Ee obmacte mHTEpecoB BKIO4YaeT MHTepHET Beliew,
(¢u3ryeckoe M HEMPEpbIBHOE MOJEIMPOBAHUE CHUCTEM, a TaKKe pa3paboTKy MpOrpaMMHOTO
obecrieueHHUSI.

Tamara NAUMOVIC received the M.S. degree in 2018 and is currently pursuing the Ph.D. degree
at the Department of e-business Faculty of Organizational Sciences, University of Belgrade,
Serbia. Her research and field of interest include Internet of Things, physics and continuous
system simulation, and software development.

Jlyxa BAJISIK — ctynenT dakynbpTeTa OpraHM3allOHHBIX HayK. Ero nccnenoBatenbckue HHTEPECH
BKITIIOYaeT MIHTepHeT BemieH, KpayACEHCHHT 1 MOOIMIBHYIO Pa3paboTKy.

Luka BALJAK is a graduate student at the Faculty of Organizational Sciences. His research
interest include Internet of Things, crowdsensing and mobile development.

Jlasap JKMBOMHOBHNY — acmupanT Kadeapsl 3IEKTPOHHOTO Om3Heca (axyipTeTa
OpPraHM3aIlMOHHBIX HayK benrpaackoro yamBepcutera, Cepbus. Ero wcciemoBaTenbckue
HMHTEPECHI BKIIIOYAIOT B ceOsl A3BIKK MOJACIUPOBAHUA U CUMYJIAIIUN, ar€HTHOC MOACIIMPOBAHUE U
3JIEKTPOHHOE 00y4YeHHe.

45

https://web.archive.org/web/20080916153507/http:/www.isd.mel.nist.gov/documents/albus/Ref_Model_Arch345.pdf
https://web.archive.org/web/20080916153507/http:/www.isd.mel.nist.gov/documents/albus/Ref_Model_Arch345.pdf

Naumovi¢ T., Baljak L., Zivojinovi¢ L., Filipovi¢ F. Development of a software framework for real-time management of intelligent devices.
Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 35-46

Lazar ZIVOJINOVIC is a Ph.D. student at the Department of e-business Faculty of Organizational
Sciences, University of Belgrade, Serbia. His research interests include simulation and simulation
languages, agent-based simulation and e-learning.

@Gunun GUIINTIOBUY — crynent dakynbreTa OpraHu3aldoOHHBIX HAayK. Ero uccnenoBarensckue
uHTepecH BKmodaet 3D-monenmupoBanne, IHTEpHET Bemie 1 HeHpOMapKeTHHT.

Filip FILIPOVIC is a graduate student at the Faculty of Organizational Sciences. His research
interest include 3D modelling, Internet of Things and neuromarketing.

46

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-4

An Exploration of Approaches to Instruction
Pipeline Implementation for Cycle-Accurate
Simulators of «Elbrus»

1 P.A. Poroshin, ORCID: 0000-0003-0319-5184 <poroshin_p@mcst.ru>
12 AN. Meshkov, ORCID: 0000-0002-8117-7398 <alex@mcst.ru>
LINEUM, 24, Vavilova st., Moscow, 119334, Russia
2MCST, 1, Nagatinskaya st., Moscow, 117105, Russia

Abstract. Software simulation is of a big importance during development of processors as they provide
access to hardware under development. Cycle-accurate simulators allow software engineers to design and
optimize high-performance algorithms and programs with considerations of features and characteristics of
processors being in development. This is especially important for architectures, whose performance is mainly
achieved by advanced compiler optimizations. One of the core aspects of a cycle-accurate simulator is the
way it simulates the pipeline of the target processor. A pipeline model has high impact on an overall structure
of a simulator and its potential performance and accuracy. The main goal of this paper is to develop and
analyze different approaches to pipeline simulation of “Elbrus” microprocessors, which let us reuse
functionality of existing instruction set simulator and achieve good balance of performance and accuracy. We
briefly describe features of “Elbrus” microprocessors and specifics of existing instruction set simulator,
relevant for cycle-accurate simulation. We make several simple, but general and useful observations about
various aspects of pipeline behavior in context of accurate and efficient cycle-accurate simulation of
microprocessors. These observations are then used as a basis for justification, development and analysis of
the several approaches to the pipeline simulation, described in this paper. We describe four different
approaches, starting from simple and obvious one, which is then successively transformed into more
advanced ones through several iterations. We analyze limitations of proposed approaches and outline further
work.

Keywords: Simulation; Pipeline; Cycle-Accurate Simulator; Microprocessor; Elbrus

For citation: Poroshin P.A., Meshkov A.N. An Exploration of Approaches to Instruction Pipeline
Implementation for Cycle-Accurate Simulators of «Elbrus» Microprocessors. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 47-58. DOI: 10.15514/ISPRAS-2019-31(3)-4

UccnepoBaHue noaxoaoB K peanv3auum KOHBenepa MHCTPYKUUA B
pamMKax NoTakTOBO-TOYHOrO CUMYNSITOpa MUKPONpPOLEeCCOpoB
«Anbopyc»

Y [1.4. Hopowun <poroshin_p@mcst.ru>
L2 4 H. Mewkos <alex@mcst.ru>
Y1140 « MHOYM um. U.C.Bpykay, 119334, Poccus, e. Mocksa, yn. Basunosa, 0. 24
240 «MLICT», 117105, Poccus, e. Mockesa, yn. Haeamunckas, 0. 1, cmp.23

AHnHoTanus. [IporpaMmMmHOe MOAETHPOBaHKE UIPAIOT BaXKHYIO POJIb B IMKJIE Pa3pabOTKU MPOLECCOPOB, TaK
KaK OHM IIPEeNOCTaBISAIOT AOCTYNl K e€lle He CcyllecTBymooueMy oOopynoBaHuio. IloTakToBo-TOUHBIE
CHMYJIATOPBI TO3BOJISIIOT pPa3paboT4MKaM MPOTrpaMMHOro OOeCledeHHsi CO31aBaTh M ONTHMH3HPOBATH
MPOTPaMMBl C y4eTOM OCOOCHHOCTEH M XapaKTepPHCTHK pa3padaThIBAEMBIX IMPOIECCOPOB, YTO OCOOEHHO

47

Poroshin P.A., Meshkov A.N. An Exploration of Approaches to Instruction Pipeline Implementation for Cycle-Accurate Simulators of
«Elbrus» Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 47-58

B&KHO VISl apXUTEKTYP, KOTOPbIE I IOCTHXKEHHS BBICOKOW MPOM3BOJUTEILHOCTH B OCHOBHOM OITHPAOTCS
Ha arpeccUBHbIC ONTHUMH3ALMH KoOMIWIATOpa. OJHUM U3 KIIOYEBBIX aCIEKTOB II0TAKTOBO-TOYHOTO
CHMYJIATOpA SIBISICTCSl CIIOCO0 MOJEIHMPOBAaHHS KOHBeHepa CHMYIHpyeMoro mpomeccopa. IIporpammuas
MOZEeNb KOHBeHepa OKa3plBaeT OONBIIOE BIMSHHE Ha OOIIyI0 CTPYKTypy CHMYJSITOpa M Ha €ro
MIPONU3BOJUTENBHOCTE M TOYHOCTh. OCHOBHOHM IENbI0 JAQHHOH CTaThHM SIBISIETCS pa3paboOTKa M aHaW3
pa3IMYHBIX IIOJXOJOB K MOJEIHMPOBAHHIO KOHBeliepa MHKpOIpOLIEccOpoB “DibpOpyc”, KOTOpbIe OFBI
MO3BOJISUTY [IEPEHCIIONb30BaTh (PYyHKIMOHAN CYLIECTBYIOLIEro (YHKIMOHAJIBHOTO CHMYISTOpa 0e3 ero
CYIIECTBEHHBIX U3MEHEHHUH, U KOTOPbIE ObI JOCTHI I XOPOLIEro OajgaHca MPOU3BOIUTEIFHOCTH U TOYHOCTH.
MBI KOPOTKO OIMCBIBAEM OCOOCHHOCTH MHKPOIPOIECCOPOB “DnpOpyc” H AeTand CYIIECTBYIOIIETO
(GYHKIMOHAIBHOTO CHMYJISTOPA, Ba)KHBIC AN MIOTAKTOBO-TOYHOTO MOJEIUPOBAaHUA. MBI JleflaeM HECKOJIBKO
MIPOCTHIX, HO JOCTaTOYHO OOIIMX ¥ IHOJIC3HBIX HAOJIIOEHNMIT O TTOBEJeHNN KOHBeiiepa ¢ MO3HIUH TOYHOTO H
3(Q}EeKTHBHOrO MOTaKTOBO-TOYHOTO MOJEIHMPOBAHHS MHKpoIporeccopoB. JlaHHble HaOIoxeHUS
HCTIONB3YIOTCSI B Ka4eCTBE OCHOBBI UISI OOOCHOBaHMS, pPa3pabOTKM M aHaJIHM3a HECKOJIBKHX IOAXOMOB K
MOJIETMPOBAHNIO KOHBEHepa, ONHMCAHHBIX B JaHHOW craThe. Bcero MBI ONMCHIBAEM HYeTHIpE Pa3IHIHBIX
MO/IX0/1a, HAYMHASL C IPOCTOTO M JIOCTATOYHO OYEBHJIHOTO, M 3aKaHYMBAsi OOJICE CIIOKHBIMH, MOTYYEHHBIMU
[OCIe€ HECKOJbKHX MTEpallid COBEPIICHCTBOBAHMN M YCIOKHCHMH Ha OCHOBE paHee CHEIaHHBIX
HaOmopeHui. JInsd KaXAOro MOAXOAa Mbl aHAIM3UPYeM €ro MPeUMMYLIECTBA, HEIOCTATKH U
(byHIaMeHTaIbHbIE OTPAaHUYCHHS.

KuaroueBble cj10Ba: IMPOrpaMMHOE MOJEIUPOBAHUE; KOHBEWEp; [IMOTAKTOBO-TOYHBIH CHMYIISITOD;
MHKpOIIpoIieccop; Dnbpopyc

Jass uurupoBanusi: Ilopomun [1.A., Memxkos A.H. VccnenoBanue mnoaxoqoB K peanu3alud KOHBeWepa
HHCTPYKIMH B paMKaX MOTAaKTOBO-TOYHOTO CHMYJISITOpa MUKpoIporieccopoB «msopyc». Tpyxer ICIT PAH,
tom 31, Beim. 3, 2019 r., ctp. 47-58 (Ha anrmuiickom si3eike). DOI: 10.15514/ISPRAS-2019-31(3)-4

1. Introduction

Software based simulation of hardware is a very important tool for development of computing
systems. This tool is especially important for software design, as simulators can be used in place of
actual still in development (or unavailable for other reasons) hardware. Also simulators can
provide wide range of debugging facilities and other information about inner workings of a system
being simulated.

One of the widely used classes of simulators is simulators of microprocessors. Different tasks have
different needs, so there are simulators with various characteristics. Ones may be oriented at
simulation performance; others are aimed at accuracy and precision.

Instruction set simulator (ISS) is a simulator of microprocessor that mostly models a program
visible architecture state without considerations of microarchitecture specifics and timings. And
while for many tasks this is enough, there is a need for simulators with much greater degree of
accuracy that can be used for performance evaluation.

Cycle-accurate simulators (CAS) are such simulators. They are important tools for code efficiency
estimation during development of performance critical software and optimizing compilers. Ability
to debug performance of code is especially crucial for microprocessor architectures, which achieve
high performance not by invisible to programmer microarchitectural features, but mainly by static
planning of instruction execution by smart compiler. The «Elbrus» family of microprocessor
architectures is such type of architectures.

Modern microprocessors achieve their high performance and clock frequency through use of
pipelining. Every cycle-accurate simulator must somehow simulate this pipelining logic to achieve
accuracy of its timings. The way a pipeline is represented in a simulator influences various aspects
of a simulator, how its components interact and its overall design and characteristics. There are
different ways to represent a pipeline and to model it.

In this paper we describe several approaches that were considered as a basis for implementation of
the pipeline model during development of the cycle-accurate simulator of microprocessors
belonging to the «Elbrus» family of instruction set architectures.

48

Topoums IT.A., Memkos A.H. HccnenoBanue moAXoI0B K peann3alii KOHBelepa HHCTPYKIUI B paMKaX MOTaKTOBO-TOYHOTO CUMYJIATOpA
MHKpOIporieccopoB «nbdpyc». Tpyost UCI PAH, tom 31, BbirL. 3, 2019 1., c1p. 47-58

The remainder of this paper has following structure. Section 2 gives brief overview of the
«Elbrus» instruction set architecture and describes an existing instruction set simulator used as
base for the cycle-accurate simulator implementation. Section 3 formulates desired properties and
requirements for the pipeline model being developed. Section 4 describes in detail several
considered approaches to pipeline model organization and explains its discovered advantages and
drawbacks. Section 5 gives brief evaluation of described pipeline models. Section 6 is dedicated to
other approaches to pipeline simulation that can be found in literature. Section 7 gives concluding
remarks and briefly describes plans for further work.

2. Prerequisites

In this section we give some details of the architecture being simulated and of the available
instruction set simulator that influence some design decisions around the pipeline model
implementation.

2.1 «Elbrus» Family of Instruction Set Architectures

The «Elbrus» family of instruction set architectures is VLIW (Very Long Instruction Word) type
of architectures [1]. Performance of this type of architectures is achieved by extracting ILP
(Instruction Level Parallelism) through packing in one instruction several sub-operations, which
are executed by hardware in parallel. «<Elbrus» microprocessors are in-order and have no support
of speculative execution (at least in the traditional sense).

In case of the «Elbrusy», the packing format is not fixed and there are many ways several sub-
operations can be packed in an instruction. Each of these sub-operations can belong to different
kinds of operations: arithmetic and logical operations, control flow operations, predicate
calculations, memory accesses and so on. And, while generally sub-operations observe only effects
of previous instructions, there are several possible interactions of sub-operations within one
instruction, for example, in case of a predicated execution.

Another important consideration is the way pipeline stalls work. Firstly, it is worth noting, that in
case one sub-operation stalls (for example, because its arguments is not ready yet), the whole
instruction stalls, which is a natural result for a VLIW architecture. Secondly, which is more
specific for the «Elbrus» architectures, there are a mechanism of prolonged stalls. In simple terms,
in some cases (determined by a stall cause and a current pipeline stage) an instruction is not
immediately stopped, but effectively after several cycles its results are discarded (as invalid) and it
is returned several stages back for its repeated execution in hopes that the original stall will not
occur again. This process affects not only the instruction that is not ready for execution, but also
several instructions immediately after it. There are two types of such stalls: a 2-cycle one and a 4-
cycle one. Moreover, it is possible for several such stalls to interleave, and for such situation there
is special pipeline control logic.

Later in this paper we will refer to the pipeline stages of the «Elbrus» microprocessors by
following names: F, D, B, R, EO, E1, E2 etc.

2.2 Instruction Set Simulator

Our cycle-accurate simulator was not developed completely from the ground up. An existing
instruction set simulator for the «Elbrusy architecture was used as a basis and a starting point for
the development of its cycle-accurate version.

This instruction set simulator supports wide range of the various «Elbrus» microprocessors of
different architecture iterations via compile time configuration. It also supports both a user mode
simulation (with emulation of system calls) and a full system simulation (with MMU logic,
peripheral devices etc.). All of this is implemented in a shared code base.

49

Poroshin P.A., Meshkov A.N. An Exploration of Approaches to Instruction Pipeline Implementation for Cycle-Accurate Simulators of
«Elbrus» Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 47-58

An important feature of the instruction set simulator to consider is how it executes individual
(wide) instructions. Execution is divided in two separate steps, conventionally called «read phase»
and «write phase». The «read phase» prepares some intermediate data and is mostly side-effect
free. Then the «write phase» uses this intermediate data to complete instruction execution. This
way of organization of instruction execution greatly simplifies support of precise exceptions and of
some interactions of sub-operations.

3. Requirements to CAS and Its Pipeline Model

There are multiple valid ways to implement a cycle-accurate simulator and its pipeline model, and
each design have its trade-offs. Therefore, it is important to define scope and requirements to the
cycle-accurate simulator being developed, including its pipeline model implementation. We define
following requirements.

e Support of a user mode simulation. At this stage of development it is planned that the cycle-
accurate simulator will be used mainly as a tool for debugging performance problems during
software and compiler development. For such purposes a user model simulation are used.

e Code reuse with the instruction set simulator. The existing instruction set simulator
implements major parts of the «Elbrus» microprocessors, and it would be wasteful to
reimplement this functionality separately.

e Configurability. It should be possible to configure the simulator to support the various
«Elbrus» microprocessors (like the instruction set simulator) and to enable or disable its
different components (for example, for the sake of performance).

o Flexibility. It should be reasonable easy to support new features of next iterations of the
«Elbrus» microprocessors. And also, when need arises, it should be possible to adapt the
pipeline model for a full system simulation mode.

o Reasonable performance. The cycle-accurate simulator should not be too slow compared to
the instruction set simulator. We aim at no more than tenfold slowdown.

e Reasonable accuracy. Of course, exact timing accuracy is not achievable. However, the
pipeline model design should not prevent possibility of further accuracy improvement and
support of various microarchitectural aspects.

Some of these requirements are conflicting, and we do not expect to simultaneously meet all of

them fully, but to achieve some balance between them.

4. Pipeline Simulation of «Elbrus» Microprocessors

In this section we explore several approaches to the pipeline simulation and describe theirs
advantages and disadvantages.

4.1 Naive «Direct Correspondence» Pipeline Model

The first approach that we tried to implement was based on the simple idea of direct and faithful
representation of the real pipeline stages in the simulator. These stages would be responsible both
for the timing related logic and for the purely algorithmic logic of the corresponding instruction.
We implemented this approach by transforming the «read» and «write» phases of the instruction
set simulator into functions representing pipeline stages. During this transformation the «read» and
«write» phases were split in parts and the missing pipeline related logic was added to them. To
meet the requirement of code reuse, we made code of the new cycle-accurate simulator as base,
and implemented the original instruction set simulator by «glueing» stages together into the «read»
and «write» phases and removing the pipeline related logic, all of this at compile time and through
configuration. Processing of such pipeline model is straightforward.

e lterate through each pipeline stage.

50

Topoums IT.A., Memkos A.H. HccnenoBanue moAXoI0B K peann3alii KOHBelepa HHCTPYKIUI B paMKaX MOTaKTOBO-TOYHOTO CUMYJIATOpA
MHKpoTporieccopoB «bopyc». Tpyoet UCIT PAH, Tom 31, Bbim. 3, 2019 1., c1p. 47-58

For each stage determine which instruction is at this stage and execute functions
corresponding to all of the sub-operations of this instruction.

If there are no stalls - advance instruction to the next stage. Otherwise not advance and
propagate stall as necessary. In case of the prolonged stalls simulate related pipeline control
logic.

time]

Instruction #1

. S
w Instruction #2

¢ Instructions . Functional actions I:l Timing actions ~ — Simulation order

Fig. 1. Simplified illustration of pipeline stage processing in case naive «direct correspondence» pipeline

model

This pipeline model representation should facilitate direct and straightforward support of the
various microarchitectural features, as this software model is close to the actual hardware.
However, although this idea is conceptually simple, during its implementation we discovered its
several major drawbacks.

Splitting of phases of the instruction set simulator into stages and glueing them back together
introduce a major disturbance to the original instruction set simulator functionality. There is
no clear way to avoid that. Attempts to fully restore original phases introduce much ad hoc
logic, which adds fragility to the whole system. This means there is no easy way to achieve
code reuse with this approach.

In the instruction set simulator there are many unobvious interactions between phases of
different sub-operations. These interactions are not easily preserved during splitting of
phases.

While for the most of the operations there is a clear correspondence of phases to pipeline
stages, there are exceptions, which add complexity to the glueing process.

Keeping track of all pipeline stages adds considerable performance overhead, although for
most operations only small subset of all pipeline stages are nontrivial (at least in the context
of timings).

Splitting phases into multiple pipeline stage related functions also inhibits compiler
optimizations, which impact overall simulator performance.

After this implementation attempt it became clear that for meeting our code reuse requirement
we should minimize changes to the instruction set simulator.

51

Poroshin P.A., Meshkov A.N. An Exploration of Approaches to Instruction Pipeline Implementation for Cycle-Accurate Simulators of
«Elbrus» Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 47-58

4.2 Smart «Direct Correspondence» Pipeline Model

Next considered approach is a modification of previous one. Its improvements are based on the
following key observations.

time

E 0 | E 1 Instruction #1

R | EQ | [Eq| e

v Instructions . Functional actions |:[Timing actions — Simulation order

Fig. 2. Simplified illustration of pipeline stage processing in case smart “direct correspondence” pipeline
model.

1) Algorithmic behavior of an operation (which is defined by an instruction set architecture and
is considered by an instruction set simulator) can influence only an algorithmic behavior of
operations of later (or in some cases current) instructions.

2) Algorithmic behavior of an operation determines its timing behavior.

3) Algorithmic behavior of one operation does not directly influence timing behavior of other
operation.

4) Timing behavior has no direct influence on an algorithmic behavior (except in some limited
number of special cases).

5) Timing behavior of one operation can influence timing behavior of other operation (but
usually only in specific ways).

6) Simulator has more information about the execution process than hardware it simulates.

7) Not all details and inner workings of hardware contribute to its timing characteristics.

First six of these observations let us justify the separation of algorithmic and timing logic and

moving of the algorithmic logic to the beginning of the instruction processing (right before its

pipeline related processing). But we should uphold following conditions

e Algorithmic simulation of the instruction must occur before the algorithmic simulation of the
next (in program order) instruction (based on the observation 1).

e Pipeline simulation of the instruction must occur after its algorithmic simulation (based on the
observation 2).

e Pipeline simulation of different instructions must occur in order determined by the pipeline
state (based on the observation 5).

All of these are satisfied by this approach.

Last observation let us simplify the timing logic by removing all microarchitectural details that are

not directly necessary for correctly calculating timing information, as we are interested not in inner

workings of hardware, but in timing details.

52

Topoums IT.A., Memkos A.H. HccnenoBanue moAXoI0B K peann3alii KOHBelepa HHCTPYKIUI B paMKaX MOTaKTOBO-TOYHOTO CUMYJIATOpA
MHKpOIporieccopoB «nbdpyc». Tpyost UCI PAH, tom 31, BbirL. 3, 2019 1., c1p. 47-58

These transformations should not reduce accuracy of our simulator (except in some rare special
cases, which are briefly considered later in this paper).

The algorithm to process such pipeline is very similar to the previous approach. The only
difference is that in the beginning of the processing of the first pipeline stage of the instruction we
do all algorithmic simulation of this instruction.

This approach let us use functionality of the instruction set simulator (for the algorithmic
simulation of instructions) with minimal modifications, which remedy many major drawbacks of
the previous approach. But we still have to address the performance concerns, as in this approach
the simulator still keeps track of all pipeline stages, even if they are trivial, and the timing logic is
still split into multiple independent functions.

4.3 «Fully Speculative» Pipeline Model

The next approach to the pipeline simulation is based on the assumption of stronger the

observation 5:

5*) Timing behavior of operation of one instruction can influence timing behavior only of
operations of the same or next instructions.

With this modified observation first five observations can be summarized as follows.

e Behavior (algorithmic and timing) of an operation of an instruction cannot depend on the
behavior (algorithmic or timing) of operations of next instructions.

This assumption let us simulate all of the instruction’s behavior in one go before even considering

next instructions. It is just necessary to remember all effects (algorithmic and timing) of the

instruction that can influence next instructions. And this is what we do in this approach.

The simulation of pipeline in this approach is as follows:

e Simulate algorithmic behavior of the instruction using the instruction set simulator
functionality.

e «Speculatively» simulate timing behavior of the instruction by processing each of its
nontrivial stages one by one from first to last, remembering in the process all information
about produced effects and their moments in time for use by next instructions (at the same
time using such information from previous instructions).

e Move to the next instruction.

__,IREAD

time

E 1 Instruction #1

k.

B R —EO

. R . EO > E‘I [Instruction #2

Instructions - Functional actions Timing actions —— Simulation order

Fig. 3. Simplified illustration of pipeline stage processing in case ‘‘fully speculative” pipeline model

Such pipeline organization is expected to be more performant, as it has less overhead related to
keeping track of the individual pipeline stages, better processes trivial stages, and in general has
more optimization opportunities.

53

Poroshin P.A., Meshkov A.N. An Exploration of Approaches to Instruction Pipeline Implementation for Cycle-Accurate Simulators of
«Elbrus» Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 47-58

At the same time, with this approach it is necessary to transform the pipeline representation in the
new form that supports «speculative» accumulating of effects. This was possible in our case, but
may be difficult to achieve in others.

Also, such pipeline model is more complicated and unintuitive. For example, it has no reasonable
notion of the current moment in (simulation) time. Time becomes in some sense distributed around
the whole pipeline model.

Pipeline is not sole contributor to timing behavior, and it must interact with other components of
microprocessor, such as L1 and L2 caches, IB (Instruction Buffer, the component responsible for
the fetch of instructions) and others. It may be unfeasible to simulate these components in such
«speculative» fashion, and the only reasonable way is the cycle-by-cycle type of simulation. And
without a clear «current moment» concept, it is not obvious, when such cycle-by-cycle simulation
must occur.

Let us consider L1 cache as a concrete example. Its cycle-by-cycle simulation must occur after all
its inputs are available but before its results can influence simulation of the other components
(including the pipeline). After careful study of possible interactions of the L1 cache model and the
pipeline model we identified that such cycle-by-cycle simulation should occur right after the
simulation of the stage R of the instruction. By similar reasoning the cycle-by-cycle simulation of
the IB should be placed right after the simulating of the stage F of the instruction. Additional
considerations must be made in case of stalls, but overall idea is the same.

Now let us consider interactions between the IB and the L1 cache. In principle, it is possible to the
IB request of the future instruction to interfere with the L1 cache state observed by the current
instruction. Therefore, it is possible to the timing behavior of the future instruction to influence the
timing behavior of the current instruction, which is a violation of our earlier assumption. It means
that in this approach we cannot accurately simulate some interactions between various
microprocessor components.

Another example of violation of our assumption is the complex interactions during the interleaving
of prolonged stalls, where stall of the next instruction can influence stall latency of the current
instruction.

Overall, while this approach promises performance improvement, it sacrifices accuracy and
flexibility and introduces additional complexity.

4.4 «Hybrid» Pipeline Model

The last approach to the pipeline simulation considered in this paper is a combination of second

and third approaches. This pipeline model tries to retain accuracy of the smart «direct

correspondence» model and to achieve some of the performance benefits of the «fully speculative»

model. It is based on the two additional observations:

8) Pipeline behavior of an instruction interacts with pipeline behaviors of other instructions and
other components at specific pipeline stages.

9) There are continuous sequences of stages that executed uninterrupted (without stalls and
influence from other instructions and components).

For example, after the stage E2 there is no possibility of any stall and all further timing behavior of

the instruction is predetermined. So it is possible to simulate such continuous uninterrupted

sequences of stages speculatively in a manner similar to the «fully speculative» approach, but

without the risk of decreasing timing accuracy. And after the instruction reached the pipeline stage

E3, we can stop keeping track of it, as its timing behavior is completely simulated (partly normally

and partly speculatively) at this point. This significantly decreases the pipeline simulation

performance overhead and the overhead of dealing with trivial stages.

Processing of such pipeline model is very similar to the smart «direct correspondence» approach:

e |terate through each pipeline stage.

54

Topoums IT.A., Memkos A.H. HccnenoBanue moAXoI0B K peann3alii KOHBelepa HHCTPYKIUI B paMKaX MOTaKTOBO-TOYHOTO CUMYJIATOpA
MHKpOIporieccopoB «nbdpyc». Tpyost UCI PAH, tom 31, BbirL. 3, 2019 1., c1p. 47-58

e For each stage determine which instruction is at this stage.
e Ifitisanew instruction, then simulate its algorithmic behavior.

e Ifitis the first stage of an uninterrupted sequence, then speculatively simulate all stages of
this sequence.

e |f there are no stalls, then advance the instruction to the next stage. Otherwise not advance
and propagate stall as necessary. In case of prolonged stalls simulate related pipeline control
logic.

L 1 A
e |REQ EtE2 BN

—)
Esl- R0 EaE2 -

Instructions . Functional actions

|
E N‘ Instruction #2

—

Simulation order

| Timing actions =00 ==————————- >
== "Real" order

Fig. 4. Simplified illustration of pipeline stage processing in case “hybrid” pipeline model

Overall, this approach let us partially get performance gain of the «fully speculative» approach
without its major drawbacks of sacrificing accuracy.

Unfortunately, all described approaches (except the naive one) do not cover the special case of the
timing behavior influencing the algorithmic behavior. Example of such situation is operations that
generate a predicate based on readiness of its arguments. Researching of ways to address this is
part of our future work, and we hope it will be possible to implement a solution within the
«hybrid» approach.

5. Evaluation

Although the cycle-accurate simulator is still in development and there is work to be done (for
example, memory subsystems are not fully implemented yet and are greatly simplified), it is worth
to do some preliminary evaluation of the pipeline model implementations described in this report.
Here we will consider only the «fully speculative» and the «hybrid» models, as the «direct
correspondence» models were abandoned much earlier in the development and it is hard to make a
fair comparison of them to the other models.

We compare the relative performance and the total number of the simulation cycles that were
needed for the test completion. The instruction set simulator is used as a baseline. Individual test
cases consist of the executing on the simulator part of one of the SPEC CPU95 benchmarks.
Results presented in Table 1.

At this stage of the development we do not have a reasonable cycle count reference that we can
use, because, for example, our simulators do not do proper simulation of various memory accesses.
Nevertheless, we hope to get rough estimate of contribution of the more detailed simulation of the
pipeline by the “hybrid” model to the total cycle count.

Results show that on average the «hybrid» model is slower than the «fully speculative» model by
~20%. At the same time, average difference in total cycle count is around 0.5% with one

55

Poroshin P.A., Meshkov A.N. An Exploration of Approaches to Instruction Pipeline Implementation for Cycle-Accurate Simulators of
«Elbrus» Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 47-58

significant outlier «146.wave5» with the cycle count difference of 6.1%. We expect that this is
because less accurate simulation of the prolonged stalls in the «fully speculative» pipeline model.
It is possible to optimize both models and the performance difference after optimizations can
change, but we expect that the «hybrid» model will always be slower. Despite this overall we
consider the «hybrid» model as a better approach as it is more fully meets our requirements of
accuracy and flexibility, and in a need of performance it should be possible to configure the
«hybrid» model accordingly.

Table 1. Performance and total cycle count relative to instruction set simulator.

«Hybrid» CAS «Fully speculative» CAS
Test Relative Relative cycle Relative Relative cycle

Performance count Performance count
099.go 0,192 1,747 0,218 1,747
101.tomcatv 0,271 1,415 0,323 1,424
102.swim 0,329 1,983 0,407 1,981
103.su2cor 0,277 1,415 0,322 1,420
110.applu 0,218 1,999 0,266 2,001
124.m88ksim 0,243 1,151 0,299 1,151
126.gcc 0,291 1,376 0,341 1,378

129.compre

ss 0,222 1,522 0,286 1,539
130.0i 0,195 2,102 0,224 2,104
132.ijpeg 0,218 1,738 0,261 1,749
134.perl 0,252 1,541 0,301 1,553
141.apsi 0,248 2,364 0,286 2,379
146.wave5 0,328 1,734 0,398 1,840
147.vortex 0,250 1,600 0,308 1,601

6. Related Work

Cycle-accurate simulation of modern microprocessors is a very active area of research. But only
small portion of this research is focused on simulating of general purpose VLIW microprocessors,
let alone on the «Elbrus» architecture. And many of the available approaches do not quite translate
to the «Elbrus» specifics.

Approaches of simulating a pipeline of VLIW microprocessors, similar to the «direct
correspondencey approaches, are described in [2-4]. However, they do not address the issue of
code reuse in the presence of an instruction set simulator.

All of the approaches described in this paper are execution-driven. Trace-driven simulation is one
of the alternatives [5-9]. The basic idea of the trace-driven approach is a separation of the whole
simulation process in two phases: generation of some data (trace), that represents an execution
path, and using that data as an input for a cycle-accurate simulation of some microprocessor
aspect. Trace can be generated by real hardware or other simulator (for example, an instruction set
simulator). This approach gives benefits, similar to ones we aim to achieve by separation of
algorithmic logic and timing logic introduced in our second approach, but makes extremely
difficult to account for a possible dependence of an algorithmic behavior on a timing behavior
(which we are planning to address in future work in our approach), as these interactions cannot be
captured in trace during its generation before cycle-accurate simulation.

56

Topoums IT.A., Memkos A.H. HccnenoBanue moAXoI0B K peann3alii KOHBelepa HHCTPYKIUI B paMKaX MOTaKTOBO-TOYHOTO CUMYJIATOpA
MHKpOIporieccopoB «nbdpyc». Tpyost UCI PAH, tom 31, BbirL. 3, 2019 1., c1p. 47-58

The pipeline representation, similar to our «fully speculative» approach, is used in [10]. Authors
describe in details various aspects of the pipeline simulation (occupancy of stages, operand
dependencies and control flow considerations), but do not discuss limits of this approach and
complexities of interaction of such pipeline model with other components of microprocessor.

7. Conclusions and Future Work

Software based simulation of microprocessors is a very important tool. There are many possible
ways to implement such simulators, each of them with its own set of advantages and
disadvantages.

In this paper we explored several approaches to the pipeline simulation in the context of the cycle-
accurate simulation of the «Elbrus» microprocessors. We made several simple, but general and
powerful observations, which were used as the foundation for the design of the various pipeline
models and for the analysis of their advantages and drawbacks. We described several of such
approaches that were considered and at least partially implemented during development of our
cycle-accurate simulator.

The cycle-accurate simulator described in this paper is still in active development. In the future
work we are planning to address the issue of dependence of the algorithmic behavior of the
instruction on the timing behavior and to explore additional ways to optimize performance of the
simulation.

References / Cnucok nutepartypsbl

[1]. Kim A.K., Perekatov V.l., Ermakov S.G. Microprocessors and computing complexes of the Elbrus
family. Piter, 2013, 272 p. (in Russian). / Kum A K., Ilepekaros B.H., Epmakos C.I". MuKpomporeccopsl
Y BBIYMCIUTEIBHBIC KOMILICKCHI ceMeiicTBa «npopycey. [Tutep, 2013, 272 cTp.

[2]. Cuppu Vinodh. Cycle accurate simulator for TMS320C62x, 8 way VLIW DSP processor. University of
Maryland, College Park (1999).

[3]. Barbieri I. et al. Flexibility, Speed and Accuracy in VLIW Architectures Simulation and Modeling. In
Proc. of the 2002 WSEAS International Conference on Electronics and Hardware Systems, 2002, pp.
1661-1665.

[4]. Barbieri 1., Bariani M., Raggio M. A VLIW architecture simulator innovative approach for HW-SW co-
design. In Proc. of the IEEE International Conference on Multimedia and Expo, 2000, vol. 3, pp. 1375-
1378.

[5]. Uhlig R. A, Mudge T. N. Trace-driven memory simulation: A survey. ACM Computing Surveys, vol.
29, Ne. 2, 1997, pp. 128-170.

[6]. Joshua J. Y. et al. The future of simulation: A field of dreams. Computer, vol. 39, Ne. 11, 2006, pp. 22-
29.

[7]. Agarwal A., Huffman M. Blocking: Exploiting spatial locality for trace compaction. ACM
SIGMETRICS Performance Evaluation Review, vol. 18, Ne. 1, 1990. pp. 48-57.

[8]. Cho S. et al. TPTS: A novel framework for very fast manycore processor architecture simulation. In
Proc. of the 2008 37th International Conference on Parallel Processing, 2008, pp. 446-453.

[9]. Lee H. et al. Two-phase trace-driven simulation (TPTS): a fast multicore processor architecture
simulation approach. Software: Practice and Experience, vol. 40, Ne. 3, pp. 239-258.

[10]. Bohm 1., Franke B., Topham N. Cycle-accurate performance modelling in an ultra-fast just-in-time
dynamic binary translation instruction set simulator. In Proc. of the 2010 International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation, 2010, pp. 1-10.

MHdopmauma o6 aBTopax / Information about authors

[MaBen Anexcanaposuu [TOPOIIMH nomyuwnn crenens maructpa B 2017 romy B MockoBckom
(u3MKO-TeXHNUECKOM MHCTHTYTe. B Hactosmee Bpems padoraer B MHOVYM nm. N.C. bpyka B
KauyecTBe MH)XKEHepa-IporpaMMHCcTa. B o0nacTb ero Hay4HBIX MHTEPECOB BXOAAT MPOTPaMMHOE
MOJICIUPOBAHUE BBIUUCIUTENIBHBIX ~ CHCTEM M IOTaKTOBO-TOYHOE MOJAEIMPOBaHUE
MHKPOIIPOIIECCOPOB.

57

Poroshin P.A., Meshkov A.N. An Exploration of Approaches to Instruction Pipeline Implementation for Cycle-Accurate Simulators of
«Elbrus» Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019, pp. 47-58

Pavel Alexandrovitch POROSHIN received his MS degree from Moscow Institute of Physics and
Technology in 2017. He is currently working as software engineer at INEUM. His research
interests include software simulation of computing systems and cycle-accurate simulation of
MIicroprocessors.

Anekceti Hukomaesna MEIIKOB noxyunn creneHs KaHauAaTa TeXHHUecKnx Hayk B UHOYM
nm. U.C. Bpyka B 2013 romy. B HacTosmee Bpems sBIseTcs HadadbHHKOM oTnena B AO
«MLCT». OO6mactp Hay4YHBIX HWHTEPECOB BKIIOYAaeT MPOTPaMMHOE MOJICIHUPOBAaHUE W
BepU(HUKALUIO KOMIBIOTEPHBIX CHCTEM.

Alexey Nikolaevitth MESHKOV received his PhD degree at INEUM in 2013. He is currently
working as a chief of department at MCST. His research interests include software modelling and
verification of computer systems.

58

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-5

Approach to test program development
for multilevel verification

P.V. Frolov, ORCID: 0000-0002-9810-2210 <Pavel.V.Frolov@mcst.ru>
INEUM, 24, Vavilova st., Moscow, 119334, Russia
MCST, 1, Nagatinskaya st., Moscow, 117105, Russia

Abstract. Development of system-on-chips or network-on-chips requires verification of standalone units
(peripherals and commutators) and a system as a whole. An approach to test development for verification of
programmable standalone units is presented. The tests are written in C++ using a specific API to program the
device-under-test (DUT) and the test environment. The APl functions are implemented in the standard
environment library; the specific implementation depends on the test environment structure: a standalone
device, a device as a part of controllers block or a device as a part of the whole SoC. For system-level
verification the test program is translated for execution on a general-purpose core of the verified SoC as well
as the standard environment library. The testbench for unit-level verification consists of the environment
library and the test linked to the testbench as a PLI-application, an adapter for the DUT-system bus interface
and, possibly, a specific imitator of an external device. Different devices with one programming interface can
be tested by the same test program even if they have different bus interfaces; different bus interfaces require
different adapters to be implemented. The presented approach gives an opportunity to use the same test
program both for standalone and for system-level verification (as an integration test). The implementation of
the presented approach and its application to verification of microprocessors of the Elbrus family are
described.

Keywords: hardware verification; simulation-based verification; test system; standalone verification; system-
level verification

For citation: Frolov P.V. Approach to test program development for multilevel verification. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 59-66. DOI: 10.15514/ISPRAS-2019-31(3)-5

PaspaboTka yHuBepcanbHbIX TECTOBbIX NPOrpamMm
ONA aBTOHOMHOM U CUCTEMHOMN NOrn4YecKomn Bepucmrkaumm
nporpamMMmpyemMbIX KOHTPOJIepoB

I1.B. ®ponos, ORCID: 0000-0002-9810-2210 <Pavel.V.Frolov@mcst.ru>
ITAO « MHOYM um. U.C.bpyxay, 119334, Poccus, e. Mockaa, yr. Basunosa, 0. 24
AO «MI]CT», 117105, Poccus, e. Mockea, yn. Haeamunckas, 0. 1, cmp.23

AnnoTtamms. [Tpu pa3paboTke CHCTEM-Ha-KpUCTAIIIe HEOOXOAMMO MPOBOANTE BEPHU(DUKAIMIO KaK OTICTBHBIX
MOMOTyJIel (KOHTPOJUIEpOB nepudepuitHbix HHTepHEHCOB B KOMMYTATOPOB), TAaK U CHCTEMBI B IeJoM. B
CTaThe MPEACTABJIEH MOJXOA K pa3paboTKe TecTOB Ul BepH()UKAIMU MPOTPAMMHPYEMBIX KOHTPOJUIEPOB.
Tectsl paspabaTbIBatOTCS Ha s3bIke mOporpammupoBaHus C++; NporpaMMHUpPOBaHHE TECTHPYEMOTO
YCTPOWCTBA M TECTOBOTO OKPY)KEHHS OCYIIECTBISIETCS C MOMOIIBI0 CHEHAIFHOTO MPOrPAMMHOTO
uHTepdeiica. DyHKIMU 3TOro MPOrpaMMHOro HHTepdeiica peanu3yroTcsi B CTAaHAAPTHOM OubOIHOTEKe
TECTOBOIO OKDPYXEHHs; peaju3alsi 3aBUCHT OT CTPYKTYphl TECTOBOTO OKPYXXCHHsS: B KadecTBe
MOJISTUPYEMOT0 YCTPOIMCTBA MOXET BBICTYNATh TOJBKO TECTHPYEMbI KOHTPOJUIEp, KOHTPOJUIEp B COCTaBe
0JI0Ka KOHTPOJUICPOB, MJIM KOHTPOJIEP B COCTaBE IMOJHOM CHCTeMbI-Ha-KpucTayie. s BepubHUKanuu
CHCTEMHOTO YPOBHSI OMONHMOTEKa M TECTOBas MPOTrpamMMa KOMIHMJIMPYIOTCS Ui MCIOJHEHUs Ha OJHOM W3

59

mailto:Pavel.V.Frolov@mcst.ru

Frolov P.V. Approach to test program development for multilevel verification. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 59-66

BBIYHCIIUTENILHEIX SIJIEp CHCTEMbI-Ha-Kpucrayuie. [Ipn aBTOHOMHON Bepu(HKaIHMU TECTOBask Iporpamma U
O6ubmoTeKa OKpyXeHHs (HOPMUPYIOT NMPOTPAMMHBIA MOMYIIb, B3aUMOJACHCTBYIONMI ¢ cuMyisitopom RTL-
ONMHUCaHMsl C TOMOLIbI0 cTaHaapTHoro uHTepdeiica PLI; O6ubnnoreunbie (QyHKIMH B3aMMOACHCTBYIOT ¢
MOJICTIMPYEMBIM YCTPOWCTBOM 4epe3 CIEeLMabHBIl aJanTep CHCTEMHOro HHTepdeiica; kpome TOro, B
TECTOBOE OKpPYXKEHHE MOXET OBITh BKIIOYEH HMMHTATOp BHEUIHEro ycTpoiictBa. IIpu Takom ycTpoiicTse
TECTOBOTO OKPYXEHHs OJHA M Ta JK€ TeCcToBas IPOrpaMma MOXKET IPOBEPSTh YCTPOWCTBA C OIHUM
IIPOrpaMMHBEIM HHTep(heHcoM, HO pa3sHbBIMH CHCTEMHBIMH HHTep(deiicaMi; HE0OX0IMMO TOJIBKO Peali30BaTh
COOTBETCTBYIOIIUME afanTepsl. IIpencTaBieHHbI MOAXOA IO3BOJIET 3allyCKaTh TECTOBYIK NPOrpaMMy Kak
aBTOHOMHBIM TECT, TaK U B KadeCTBE TECTa MHTErpallid Ha BEpUPHIMPYEeMOH cucTeMe-Ha-KpucTamie. B
CTaThe ONMHMCAHbl peann3anys IPEICTaBIEHHOTO IOJAXOAa M €ro IPHMEHEHHEe B MapIIpyTe BepH(uKanuu
MHKPOIIPOLIECCOPOB ceMeiicTBa DIbOpyc.

KiroueBble cioBa: joruyeckas BepHU(HUKAIMsA anmapaTypbl, BepH(HUKAIMA Ha OCHOBE MOJACIMPOBAHHS,;
TECTOBAs CHCTEMA; aBTOHOMHasi BepU(UKAIHS; CHCTEMHasi BepH(UKAIHL

Jas uutupoBanus: ®ponos I1.B. Pa3zpaboTka yHHUBEpCaJbHBIX TECTOBBIX MPOTPaMM AT aBTOHOMHOW H
CHCTeMHOI JIorn4eckoit BepuuKauu mporpaMmupyemMsix koutposuiepos. Tpyast UCIT PAH, tom 31, Bbim.
3,2019 r., ctp. 59-66 (na anrmuiickom s3bike). DOI: 10.15514/ISPRAS-2019-31(3)-5

1. Introduction

Typical test scenarios for programmable standalone units (peripherals and commutators) are based
on estimated work patterns of the designed chip operating. Such test scenarios are an indispensable
part of a standalone verification testplan. They also must be included in a device integration test
suite for system-level verification to check considered device interaction with other units.

This paper describes an approach to test development for verification of programmable standalone
units which allows using the same test both for standalone and system-level verification. The
presented approach also enables tests run in different execution environments (via an RTL
simulator, an FPGA-based prototype or a manufactured chip).

The rest of paper is organized as follows. Section 2 reviews the existing techniques considering the
same tests reuse for different execution environments. Section 3 introduces the structure of the
framework for test development, implementing presented approach. Section 4 describes API
provided by the framework for tests use. Sections 5 and 6 present test transformation for system-
level and standalone verification respectively. In Section 7, results are presented and in Section 8,
possible/planned future work is mentioned.

2. Related work

The main target of the presented approach is to reduce verification effort through the unit-level
tests reuse for system-level simulation.

Review works on SoC verification suppose high level of the verification components reuse [1][2],
but there is not much information about practical approaches for the test programs reuse. The
problem of the stimulus reuse for different execution targets and environments is targeted by The
Portable Test and Stimulus Standard (PSS) [3], but this standard provides only language for a test
intent description [4].

Typical approach to unit-level verification is transaction-based verification, implemented, for
example, in UVM (Universal Verification Methodoly) standard [5]. Such tests are written in
SystemVerilog and commonly use constraint-random stimuli generation, implemented via external
tools (RTL-simulator, for example). The reuse of such a test for system-level verification requires
its additional adaptation. For example, the work [6] describes an approach which allows to get a
system-level test based on the unit-level one for the separate IP-block (GPU) of the heterogeneous
SoC. A trace of DUT interactions with the testbench is logged during unit-level simulation and
then is compiled into assembly, ready for execution on the CPU at SoC level. The approach copes
with register polling through the test driver library instumentation but DUT interrupts handling
isn't described.

60

®ponos [1.B. Pa3paboTka yHHUBEpCATBHBIX TECTOBBIX IIPOTPaMM JJIsi aBTOHOMHO# M CHCTEMHOM JIOTHUeCKON BepH(UKALIMI
nporpamMmupyembix koutpoiuiepos. Tpyast UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 59-66

3. Test development framework

In the presented approach, a test is written in C++, so it can be translated to different host CPU
architectures:

e to a PLI-application [7] (PLI is for Program Language Interface) interacting with a simulator
modeling the RTL description of the standalone unit (or the block of controllers including this
unit);

o for system-level execution on one of the general-purpose cores of the verified SoC.
The system-level test runs without an operating system and this restricts usage of standard C++/C
library: no explicit usage of externally linked functions is allowed. Instead, the test development
framework provides a common standard API for different test execution environments. The API is
described in header files as a list of C++ function prototypes. For every supported test execution
environment the framework provides a corresponding environment library implementing these
functions.

Advantages of C++ as a test implementation language mainly address system-level test execution.

Firstly, C++ allows to transfer some calculations to the compilation stage via contexpr specifier

(since C++11 [8] version of language standard). Secondly, C++-templates allow wrap of specific

assembly instructions into inline functions to avoid function call overhead while preserving test

portability. Besides, parts of device drivers or BIOS, commonly written in C, can be relatively
simply ported for test use and vice-versa.

4. Environment library API

A typical programmable controller implements three kinds of interaction with a system: it provides
access to the internal registers and memory for configuration (P10, programmed input/output), can
initiate DMA-transactions (Direct Memory Access) to the system memory and send interrupt
messages. Thus the environment library APl must provide means to perform, control and observe
these interactions.

The API contains a description of typical operations:

e access to the registers and the internal memory of the device under test,

e system memory handling operations (allocation, pattern filling, data comparison),
e device interrupts handling,

e address translation for DMA-transactions programming,

e simulated time measuring and timeout setup,

e debug test output,

e other auxiliary procedures.

5. System-level verification

For system-level verification the test program is translated for execution on a general-purpose core
of the verified SoC as well as the standard environment library. The framework also provides a
bootstrap program for basic system initialization required for the test to run. The test and the
library are linked into a single executable image (the system-level test). To run the test the
execution environment places this image in the memory of the SoC (DRAM and/or NVRAM) and
transfers control to the entry point of the environment library, which in turn calls the test function.
After the test execution the environment library handles the exit code and provides diagnostic
information (fig. 1).

The framework allows executing the same unit test with different system settings, providing
comprehensive unit integration check. System settings programming is performed by the bootstrap
part of the environment library; their values are described in additional files and are transmitted to

61

Frolov P.V. Approach to test program development for multilevel verification. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 59-66

the system-level test either via compilation macro definitions or as object files with initialized C-
structures during linkage.

(Test start]

v

| System initialization |

v

| DUT fask setup |

v

| Registration of handlers for DUT-initiated interrupts |

v

| Timeout setup |

v

| DUT task start |

v

| Waiting for the DUT to finish |

Y

yes

Interrupted by timeout?

Check results (status registers and DMA-transferred data) |

no yes

[TestPassed 1™ Test Failed |-

Fig. 1. The framework for system-level verification

Examples of system settings to vary range from separate bits in different control registers of the
verified SoC to modes which require additional nontrivial setup. For example, DMA-transactions
from the tested device can work directly with system physical addresses or can be additionally
redirected via the IOMMU (Input/Output Memory Management Unit).

The environment library implements the API with functions executed in super-user mode.
Read/write access to the device registers is implemented with load/store instructions with specific
attributes (memory type specifiers). In microprocessors of the Elbrus family registers of external
programmable devices are placed within PCl-address spaces: memory, 1/0 and PCl-configuration
space. The test defines a target device address in a PCl-configuration space and allocates necessary
address ranges in PCI 1/O or memory spaces via appropriate APl functions.

The environment library provides a simple heap manager without deallocation implementation.
The test program allocates data arrays in the heap for use as RAM regions accessed from the tested
device by DMA-transactions.

Virtual addresses for DMA-transactions are written to the device registers and/or to descriptor
tables in RAM. In the simplest case the virtual address is equal to the physical address: so-called
transparent translation, but DMA-transactions from the tested device can be redirected via the
IOMMU, so the environment library provides functions for IOMMU configuration and in-test

62

®ponos [1.B. Pa3paboTka yHHUBEpCATBHBIX TECTOBBIX IIPOTPaMM JJIsi aBTOHOMHO# M CHCTEMHOM JIOTHUeCKON BepH(UKALIMI
nporpamMmupyembix koutpoiuiepos. Tpyast UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 59-66

address translation functions. The test uses that functions for getting virtual addresses from
physical ones, which are returned from the heap allocation-function.

The environment library implements functions for the system interrupt controller configuration
and test-defined interrupt handling. The test configures interrupts to be sent by the tested unit and
registers callback functions handling those interrupts. During the test execution the environment
library catches interrupts from the device and calls registered handlers.

Simulated time measuring is implemented via reading of the clock-counting register or
programming local timer to send interrupts in defined time intervals.

The system-level test can be compiled for different execution environments: a functional model, a
simulated RTL-description of the tested SoC, an FPGA-based emulator or a manufactured chip.
The target execution environment determines the bootstrap procedure and the debug print support
linked to the test.

The functional model allows fast execution with high observability (instruction execution trace,
units programming trace), so it is used for the test and the environment library debug.

6. Unit-level verification

The structure of the unit-level testbench is presented on fig. 2. The testbench consists of the
environment library and the test linked to the testbench as a PLI-application, an adapter for the
DUT-system bus interface and, possibly, a specific imitator of an external device.

Interrupt 1 -
I - >
I manages interrupts
} S handler
| calls
I library Tast
o | functions
o |
g | 2
@ | Memory | library functions
£ | manager = cals
g |
|
5 |
i DA register access (PIO)
|
|
|
|
|

e Bus interface adapter

@ system bus interface

but

@ external interface

Verification IP

Fig. 2. The structure of the unit-level testbench

63

Frolov P.V. Approach to test program development for multilevel verification. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 59-66

The interface of the device-under-test which connects it to the rest of the SoC requires an
appropriate adapter for interaction with the testbench. It provides an interface-specific
implementation for DUT registers access operations and redirects DUT -initiated transactions to the
environment library.

There are two separate address spaces in the test: "internal” for direct access from the test and
"external" for DMA-transactions. Memory manager returns to the test pointers with "internal"
addresses for memory allocation requests and all library functions for on-core memory processing
work with "internal" addresses. Addresses to be targeted by DMA-transactions are wrapped by
translation functions that convert internal pointers to external ones and record this translation.
DMA-requests are transferred by the adapter to the memory manager that checks DMA destination
addresses against previously recorded translations. If there is an appropriate record of translation,
the memory manager writes data from DMA-transactions or reads it for return to the adapter.
Otherwise an error is detected.

Interrupt messages issued by the device are registered within the environment library; when the
test calls library functions, pending interrupts are handled and a user-defined callback is executed.
Simulated time measuring is implemented by means of functions DPI-exported from the part of
the library written in SystemVerilog.

Different devices with one programming interface can be tested by the same test program even if
they have different bus interfaces; different bus interfaces require different adapters to be
implemented. The tested controller can be connected to the adapter not directly, but through the
root commutator of the block of controllers including the unit in consideration (fig. 3).

That variant of the DUT allows verification of interaction between system commutator and the
tested controller (intermediate-level verification). Test scenarios with simultaneous work of
several controllers can be implemented.

Y

peripheral controlier 1 €

Commutator —=(1O Link controller gq———

VIP p&—3= peripheral controller M &—

Fig. 2. Indirect connection through the root commutator

7. Results and use experience

The described approach to test development has been applied to verification of peripheral
interfaces controllers of standalone southbridge ASICs developed in MCST [9], such as
HD Audio, SATA, USB 2.0, PCI and PCl-e bridges, and multiple low-speed controllers. Now it is
used for verification of embedded IOHubs being developed for a new generation of the Elbrus
microprocessors. Standalone and embedded southbridges have different in-house interfaces to
transfer packets based on PCI Express transaction layer packets [10], therefore different adapters
have been implemented in order to reuse the same set of tests.

MCST designs computing systems based on CPU of Elbrus and SPARC instruction set
architectures, thus the environment library for system-level tests is implemented for both

64

®ponos [1.B. Pa3paboTka yHHUBEpCATBHBIX TECTOBBIX IIPOTPaMM JJIsi aBTOHOMHO# M CHCTEMHOM JIOTHUeCKON BepH(UKALIMI
nporpamMmupyembix koutpoiuiepos. Tpyast UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 59-66

architectures and for different microprocessor models (starting from Elbrus-4C [13] for
Elbrus-based microprocessors and R-1000 [14] for SPARC-based ones).

The typical test development and use flow consists of the following subsequent stages:
e system-level build for functional model execution and test logic debug;

e unit-level build for standalone unit verification;

e unit-level build for verification of the unit as a part of the southbridge;

e system-level build for test execution on full system-on-chip (RTL or FPGA-based
prototype [11]).

The system-level environment library supports simultaneous execution of several tests for different
controllers on multi-core systems. Tests are executed on different cores; shared resources are
distributed between tests based on static planning [12].

8. Future work

The described approach for unit-level verification was implemented mainly for southbridge
controllers of MCST projects. The future work is supposed to embrace adaptation of system-level
tests for north-bridge integrated graphics cores to unit-level verification. It requires further
development of internal system bus interface adapters for different target CPU models.

There is also an endeavor to use already developed system-level tests for verification of hardware
1/0 virtualization support in new microprocessors of Elbrus family. The test program is supposed
to run as a simple guest OS while the environment library functions are executed in hypervisor
mode. Different modes of virtual 1/0O support are to be implemented: emulation mode and direct
device assignment.

References / Cnucok nutepartypsbl

[1]. Anil Deshpande. Verification of IP-Core Based SoC’s. In Proc. of the 9th International Symposium on
Quality Electronic Design, 2008, pp.433-436.

[2]. G. Mosensoson. Practical approaches to SoC verification. In Proc. of the DATE User Forum, 2002.

[3]. The Portable Test and Stimulus Standard. Available at:
https://www.accellera.org/downloads/standards/portable-stimulus, accessed: 11-May-2019.

[4]. Bryon Moyer. Portable Stimulus Intent. Accellera’s New Standard Goes to Early Adopters. EEJournal,
July 31, 2017. Available at: https://www.eejournal.com/article/portable-stimulus-intent,
accessed: 11-May-2019.

[5]. Standard Universal Verification Methodology. Available at:
http://accellera.org/downloads/standards/uvm, accessed: 11-May-2019.

[6]. Narendra Kamat. IP Testing for Heterogeneous SOCs. In Proc. of the 14th International Workshop on
Microprocessor Test and Verification, 2013, pp. 58-61.

[7]. IEEE Standard for SystemVerilog. IEEE Std 1800-2009.

[8]. 1SO International Standard ISO/IEC 14882:2011(E) — Programming Language C++.

[9]. A.K. Kim, M.S. Mikhailov, V.M. Fel’dman. 10-subsystem for «MCST-4R» and «ELBRUS-S» SOCs
based on peripheral interfaces controller IC. Issues of Radio Elactronics, series EVT, no. 3, 2012 (in
Russian) / A.K.Kum, M.C.Muxaitnos, B.M.®@enpaman. IToacuctema BBOAa-BBIBOAA IJISI CHCTEM Ha
kpuctamuie «MLICT-4R» u «Dnp0pyc-S» Ha OCHOBE MHKPOCXEMBI KOHTpOJulepa mepudepuitHbIx
naTepdeiicoB. Bonpocsr Pannosnexkrponnku, cepus IBT, B, 3, 2012.

[10]. Petrochenkov M. V., Mushtakov R. E., Stotland I. A. Verification of 10 Gigabit Ethernet controllers.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 257-268. DOI: 10.15514/ISPRAS-2017-
29(4)-17.

[11]. F. Budylin, I.Polishyk, M. Slesarev, S. Yurlin. The experience of prototyping MCST CJSC’
microprocessors. Issues of Radio Elactronics, series EVT, 2012, no. 3 (in Russian) / ®.K. Byapuius,
WN.A. Tommmyx, M.B. Cnecapes, C.B. HOpmua. OmnslT NpOTOTHNHPOBAaHHS MHKPOIPOIECCOPOB
xommanuu 3A0 «MIICT». Bonpocs! paanosnexktpornku, cepust DBT, 2012, Beim. 3.

[12]. Frolov P.V. System-level test integration based on static resource allocation. Issues of Radio Elactronics,
series EVT, 2018, no. 2, pp. 76-80 (in Russian) / I1.B. ®posos. CucreMa WHTErpallid HMHKCHEPHBIX

65

Frolov P.V. Approach to test program development for multilevel verification. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 59-66

[13].

[14].

TECTOB Ha OCHOBE CTaTHYECKOTO paclpeseieHus pecypcoB. Bompocs! pagnosnexrponuky, 2018, Bom. 2,
ctp. 76-80.

Central processor unit «Elbrus-4C». [Online]. Available at: http://www.mcst.ru/elbrus-4c,
accessed: 11-May-2019 / LentpanbHsiii mporeccop «mbopyc-4C».

Central processor unit «R1000». [Online]. Available at: http://www.mcst.ru/r1000,
accessed: 11-May-2019 / LenrpansHsiii nporeccop «R1000».

MHdopmauusa 06 aBTope / Information about author

[MaBen Buxropouu ®POJIOB — oxonunn MockoBckuii (husuko-rexunueckuii nHcTuTyT B 2010
roxy. HavaipHUK cekTopa CHCTEMHON BepHUKAIMU OTIeNa MOJCIMPOBAaHHSA M BepUHKALUU

AO «MIICT». Cdepa HaydHBIX HHTEPECOB: JIOTHYECKAsI BepH(PHUKALNS anmapaTypbl, CHCTEMbI-Ha-
KPHCTAJUIS, aBTOMATH3aLsI BEpHDUKALIH.

Pavel Viktorovich FROLOV graduated from Moscow Institute of Physics and Technology in
2010. Currently he is a head of the sector of system-level verification in the Department of
Modeling and Verification in JSC MCST. Research interests: hardware verification, systems-on-
chip, verification automation.

66

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-6

Test environment for verification of multi-processor
memory subsystem unit

D.A. Lebedev, ORCID: 0000-0002-9244-4949 <lebedev_d@mcst.ru>
M.V. Petrochenkov, ORCID: 0000-0001-7384-9732 <petroch_m@mcst.ru>
MCST, 1, Nagatinskaya st., Moscow, 117105, Russia

Abstract. State of the art microprocessor systems usually include complex hierarchy of a cache memory.
Coherence protocols are used to maintain memory consistency. An implementation of memory subsystem in
HDL (hardware description language) is complex and error-prone task. Ensuring the correct functioning of
the memory subsystem is one of the cornerstones of a modern microprocessor systems development.
Functional verification is used for this purpose. In this paper, we present some approaches for verification of
memory subsystem units of multi-core microprocessors. We describe characteristics of memory subsystems
that need to be taken into account in the process of verification. General structure of test environment for
stand-alone verification of memory subsystem units is presented. Classification of checking model types and
their advantages and disadvantages are described. The approach of construction of a standalone verification
environment using Universal Verification Methodology (UVM) is presented in the paper. Restrictions that
should be taken into account when verifying memory subsystem unit are listed. The generation stimulus
algorithm stages are presented. Method of using “hints” from design under verification to eliminate
nondeterminism is used in the implementation of checking module. We review several other techniques for
checking the correctness of memory subsystem units, which can be useful at different stages of project
development. A case study of applying the suggested approaches for verification of Home Memory Unit of
microprocessors with Elbrus architecture is presented. Classification of detected and corrected errors in
different submodules of verified device is provided. Further plan of the test system enhancement is presented.

Keywords: multicore microprocessors; cache memory; coherence protocols; test system; model-based
verification; stand-alone verification.

For citation: Lebedev D.A., Petrochenkov M.V. Test environment for verification of multi-processor
memory subsystem unit. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 67-76. DOI:
10.15514/ISPRAS-2019-31(3)-6

TecToBOE OKpyXeHue Ana Bepudmkauum 6noka nogcucTemMbl NamaTn
MHOronpoLeccCopHOn CUCTEMBI

ILA. Jlebeoes <lebedev_d@mcst.ru>
M.B. I[lempouenxos <petroch_m@mcst.ru>
AO «ML[CT», 117105, Poccus, . Mockea, yn. Haeamunckas, 0. 1, cmp.23

AnHoTanmsi. COBpeMEHHbIE MUKPOIIPOIIECCOPHBIE CHCTEMbI OOBIYHO BKIIOYAIOT CIIOXHYIO HEPAPXMIO KIII-
naMATH. IIpOTOKONBI KOTEPEHTHOCTH HCHOJB3YIOTCS Ui TOANCP)KAaHHUS COIJIACOBAHHOCTH IaMSATH.
Peanmm3anus moacuCTeMBI ITAMATH Ha SI3BIKE ONMCAHMS alapaTyphl SBISETCS CIOXKHOW M TOABEP)KEHHOMN
ommoOkam 3amadeil. ObGecnedeHne KOPPEKTHOTO (HYHKIIMOHUPOBAHUS MOJCUCTEMBI IAMSTH, SIBISETCS OJHOI
W3 BaXHEHIIMX 3agad B TIpoliecce pa3pabOTKH COBPEMEHHBIX MHKPOIPOIIECCOPHBIX CHCTeM. s 3Toro
HcTIonb3yercs (QyHKIMOHANbHAS BepH(HUKalusi. B manHON padoTe MpeACTaBICHB HEKOTOPHIE IOAXOIBI K
Bepu(UKALMK OJIOKOB MOJCHUCTEM IaMITH MHOTOSIEPHBIX MHKpOIMpolieccopoB. OmucaHbl XapaKTepUCTHKN
MOJICHCTEM MaMsTH, KOTOpbIe HEOOXOIMMO YUYHMTBIBaTh B mpolecce Bepudukaunu. [IpencraBnena obuias
CTPYKTypa TECTOBOM CHUCTEMbI JUIi aBTOHOMHOW BepHuKaluu OJ0KOB MoacucTeMbl maMsaTu. IIpuBenena

67

Lebedev D.A., Petrochenkov M.V. Test environment for verification of multi-processor memory subsystem unit. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 67-76

K1accH(UKAIKA TUIIOB MPOBEPSAIONIMX MOJENeH, X NPEeMMyIecTBa U HEIOCTaTKH. B craThe mpencrasieH
MO/XOJ, K MOCTPOSHUIO aBTOHOMHOTO OKPYXEHHUsS Ui BepHU(HUKALMHM C HMCIOJIb30BAHUEM YHUBEPCAJIbHON
merononorun Bepudukamuu (UVM). IlepedncieHsl orpaHudeHUs, KOTOpHIE CIEIyeT YYUTHIBAThb IIPU
IIpoBepKe OJIOKOB IMOJCHUCTEMBI MamsATH. [IpencTaBiieH aaropuTM TeHepalmiH BXOAHBIX CTHMYNOB. Jlis
YCTpaHEHHs] HEONPEeIeHHOCTH TEKYIIEro COCTOSHHS BepU(PHIMPYEMOrO YCTPOMCTBA B IPOBEPSIONIEM
MOZyJie WCHOJNB3YeTCS METOJ] aHalu3a <«IOACKa30K». PaccMOTpeH psii IpyrMX METOJOB IIPOBEPKH
KOPPEKTHOCTH OJIOKOB TIOJCHUCTEMbI IMaMATH, KOTOPBIE MOTYT OBITh IIOJ€3HBI Ha pPAa3IMYHBIX 3Tarax
pa3paboTku mpoekra. IIpencrapieH npumep MPUMEHEHHs MPEUI0KEHHBIX MOIXO0A0B K BepuHKauu 0joKa
HMU wMukponpoueccopoB ¢ apxurekTypoil Onpbpyc. IlpuBenena kimaccuguxanus OOHApyKEHHBIX U
UCHPABICHHBIX OMMOOK B pa3NM4YHBIX HOAMOAYNIAX BepuHLMpyeMoro ycrpoicrBa. IIpencraBnexn
JaNbHEHINI TU1aH COBEPIICHCTBOBAHMS TECTOBOH CHCTEMEL.

KiroueBble ¢j10Ba: MHOTOAEpHBIE MUKPOIIPOLIECCOPBI; KAIII MaMATh; IPOTOKOJIbI KOTEPEHTHOCTH; TECTOBAs
cucTeMa; BepuuKanus Ha OCHOBE MOJIENICH; aBTOHOMHas BepuduKaius

Jas uurupoBanus: Jlebenes JI.A., IlerpoucHkoB M.B. TectoBoe OKpykeHHE Ui BepuUHUKAIHU OJOKa
MOJICUCTeMBI aMATH MHOTOMpoieccopHoit cuctemsl. Tpynst UCIT PAH, Tom 31, Bem. 3, 2019 r., ctp. 67-76
(na anrmmiickom si3bike). DOI: 10.15514/ISPRAS-2019-31(3)-6

1. Introduction

With the development of microprocessor technology and growth of the number of computational
cores and CPUs in systems processor performance increases rapidly. Unfortunately, the speed of
memory access is not growing as fast as the speed of the processor [1]. Thus, one of the biggest
bottleneck elements become the memory subsystem. To level the difference in speed, designers of
microprocessor systems implement a complex memory subsystem that includes cache hierarchy.
State of the art microprocessor systems usually include 3-4 levels of cache memory. This approach
is able to reduce the number of accesses to main memory, and, therefore, reduce memory access
instructions average execution time.

In the multicore systems if multiple cores are simultaneously allowed to contain copies of a single
memory location, the problem of maintaining memory consistency arises. A mechanism must exist
to ensure that all copies remain consistent when the contents of that memory location are modified.
Coherence protocols support such mechanism. Usually we have higher-level caches shared
between cores and lower-level caches served by a single core. Complex systems that combine
several multi-core processors may also have cache memory to speed up other processors' access to
their memory.

A large number of processors and processor cores and complexity of system data exchange
organization makes coherence protocol very complicated. An implementation of cache coherence
protocol is a complex and error-prone task. Errors of this kind are critical and difficult to detect on
system-level verification. Thus, a memory subsystem and implementation of coherence protocols
in HDL (Hardware Description Languages) models must be thoroughly verified [2].

There are two main methods for verification of memory subsystem: a simulation-based
verification and formal verification [3]. Formal verification is used to mathematically prove the
correctness of a DUV (Device Under Verification) model with respect to its specification. It is
widely known that main advantage of formal methods is their exhaustiveness. Many works are
devoted to this method [4-6]. Disadvantages of these methods are complexity of development and
high specification requirements. Simulation-based methods are not exhaustive, but they can be
applied at earlier stages of development and they are much simpler.

Verification of a memory subsystem, as a part of whole microprocessor, can be provided by means
of system verification [7]. However, it is essential to mention that some of the components of a
memory subsystem are invisible from the point of view of a testing program and it is hard to
recreate necessary conditions for verification with proper quality. To overcome these drawbacks, a
stand-alone verification of the memory subsystem is usually used.

68

JleGenes /1.A., TletpouerkoB M.B. TectoBoe okpy»keHHe 1 BeprHKari O7I0Ka MOICHCTEMBI NAMSTH MHOTOMPOLIECCOPHOIT cicteMbl. Tpydet UCIT PAH,
Tom 31, Beim. 3, 2019 1., c1p. 67-76

There are a number of methods to implement a standalone functional verification of a memory
subsystem. One of them is C++TESK Testing ToolKit created in ISP RAS [8]. It is an open-source
C++ based toolkit intended for automated functional testing of RTL (HDL) models of digital
hardware (in Verilog and VHDL). The tool included a library of C++ classes and macros that
define facilities for all parts of a verification environment. Some of disadvantages of this tool are
high complexity of the application and needs documentation and checking reference model high
accuracy.

Another tool name is Alone-env created in the MCST. The Alone-env provides a wrapper-class
over Verilog description of the verified module. The Alone-env too has some disadvantages: the
lack of collecting coverage means, high requirements for the checking reference model and the
inability to reuse the test system.

Nowadays the most widespread verification methodology is Universal Verification Methodology
(UVM). This is a standard verification methodology from the Accellera Systems [9]. UVM
designed to enable creation of robust and reusable testbenches and their components. UVM is a
class library helps to bring much automation to the SystemVerilog language. Disadvantages of
UVM is learning curve is very high for new users and it takes a lot of code to create basic UVM
testbench classes. Nevertheless, our team already have a number of test systems, basic classes and
libraries written and debugged. Therefore, we choose UVM for developing the stand-alone
verification environment of memory subsystem modules.

The rest of the paper is organized as follows. Section 2 reviews the existing techniques for
standalone verification of the memory subsystem. Section 3 describes a case study suggests an
approach to the problem of developing test system. Section 4 describes additional used
approaches. Section 5 reveals results and Section 6 concludes the paper.

2. Standalone verification methods of memory subsystem

In a stand-alone verification we implement test system that allows to select a single part of the
whole system and examine its behavior in the test environment that behaves in a way similar to the
“real” system. Correct mechanisms of interaction with DUV are defined in its specification. One
of the main advantages is that it is easier to explore edge and corner cases in the verified module.

When verifying a part of the memory subsystem with included cache, we need to take into account
some features while developing the test system:

e it consists of cache lines that are fixed size blocks used to transfer data between two nodes of
the system;

e logic to locate and transfer requested data;
e cache line also hold service information;
e may be several requesters which work with different cache lines

e if two or more requesters want to refer to the same cache line such request have to be
serialized and completed in the same order as they received;

e controller support some of implementations of a coherence protocol;

e due to the limited amount of a memory, one of the data eviction algorithms is implemented.
Test environment (or testbench) for verifying the memory subsystem usually includes:

e generator of input stimulus;

e checker of collected reactions correctness;

e module collecting coverage information.

Generator of input stimuli is responsible not only for primary requests that perform operations
with memory, it also collects reactions from verified device and generate answers from test
environment - secondary requests. Generalized scheme of test environment shown on Fig. 1.
Generation of stimuli can be simplified by using TLM [10] (Transaction Level Modeling) to

69

Lebedev D.A., Petrochenkov M.V. Test environment for verification of multi-processor memory subsystem unit. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 67-76

communicate with DUV. TLM allows focusing more on the functionality of the data transmission
and less on its actual implementation.

| = 7 Testsystem |
Coverage
collector

ﬁ stirmuli

Stimuli

|

|

|

| D
| _

| Generator r:eactmns U
| |

| |V
| |

| |

| |

v
Checking
module

Fig 1. Generalized scheme of test environment

If the verified device has a complex structure and many states, the easiest way to check correctness
of reactions is building the separate checking module. Checking module is based on the external to
the test environment reference model usually written in high-level language (C, C++ or some
specific languages for verification of hardware, such as SystemVerilog, SystemC or «e»). All
requests and reactions from the verified device sent to the checking module where then made a
conclusion about the correctness of the behavior.

The reference models could be divided into three types: cycle-accurate, discrete-event with time
accounting and event models [11]. First two of them require a very accurate specification. It is
hard to support design changes that happen very often on the first steps of the development.
Furthermore, the similarity of the implementations of the model and the DUV can lead to
duplication of errors. To check correctness of memory subsystem, it is reasonable to use event
models because they require less time to develop and more flexible for changes of the design. Data
interchange of the test system with reference model occurs instantly by calling appropriate
functions. For some devices, there are several correct scenarios of the operation for the same input
stimuli. We call those devices non-deterministic. There are two methods allowing using behavioral
event models for verification of these devices [12].

The first method is dynamic refinement of transaction level model. A general approach is as
follows. When a reference model gets a request and there are several possible ways to react to the
request, the model creates additional instances and executes the requests in each of them. Then the
models are waiting for the reactions from the device under verification. The reaction contents
service information (such as a response type, a direction of sending, etc) which helps to exclude
impossible states. Absence of suitable state for reaction signals about an error. The sign of a
successful completion is comparison all the reactions of the DUV and removal of all unnecessary
states. The complexity of this approach is that the number of possible states potentially grows
exponentially with a number of stimuli. However, this method can be implemented efficiently for
memory subsystem units because all requests to a single cache line are serialized and requests to
different cache lines are independent.

Second method is identification of a single correct state using hints from the verified device or a
"gray box™ method. This method replaces usual “black box” method. When we cannot predict the

70

JleGenes /1.A., TletpouerkoB M.B. TectoBoe okpy»keHHe 1 BeprHKari O7I0Ka MOICHCTEMBI NAMSTH MHOTOMPOLIECCOPHOIT cicteMbl. Tpydet UCIT PAH,
Tom 31, Beim. 3, 2019 1., c1p. 67-76

“real” sequence of interactions, we access inner interfaces of the verified device. Information from
these interfaces have to be transferred to the test environment and helps to determine a single
possible execution scenario and eliminate nondeterminism. This method imposes additional
requirements to the device specification, but, as a result, it is quite simple to implement.

Coverage collection module extract information of functional code coverage. This information is
used to identify unimplemented test cases and helps to improve stimuli generation by adding new
test scenarios.

3. Using gray box approach for verification of home memory unit

Home Memory Unit (HMU) is a part of memory subsystem of 16-core “Elbrus” microprocessor
responsible for the coherent and non-coherent access to the RAM from different requesters. HMU
contains a global directory (MOSI protocol of coherence), which monitors the requests of other
processors to its memory and a DMA directory which is a full copy of the DMA caches of all
processors (supports the extended coherence protocol MOI). Total volume of the directory in
HMU is 2.5 MB, size of entry of a cache line is 80 B, number of banks — 128, bank associativity —
16. Main functions of HMU include:

e serialization of all requests to RAM,;

e reduction of coherence traffic and access time to RAM,;

e support of interprocessor coherence.

Test system for stand-alone verification of the coherence protocol implementation and other
functionality of HMU based on UVM. UVM helps to generate pseudo-random constrained input
requests to cover possible states of the verified device.

We have to note some restrictions for generation primary, secondary stimuli and answers. The first
of them is limited amount of space in input buffers. Due to process of verification, it is important
not to lose some data. When generating random system settings, it is necessary to take into account
that some setup combinations may be incorrect and lead to errors. There are several types of
requesters in the test system. Each of them has special identifier and a set of possible operation
codes. The specific implementation of the coherence protocol also imposes restrictions on the used
operation codes. Sending an inappropriate operation code may result in undefined results. Address
generation is also a non-trivial task. The address have to fit the interleaving conditions. In addition,
each requester have to wait for the completion of previous request when working with same cache
line.

Stimuli generation is divided into several stages:

1. randomization of device configuration registers. This allows to switch different ways for
handling requests and determine request routing;

creating list of addresses for current configuration of device with respect to routing setup;
choosing random requester and cache line address;

checking cache line availability and presence of resources needed for request transfer;
choosing random operation code constrained by the current state of cache line;

sending primary request, collecting reactions from the device under verification, sending
secondary requests;

7. collecting all of necessary reactions and completion of current request;

8. transferring transaction information to checking module.

To simplify handling of requests and reactions we create models of each used cache line. Model of
cache line is an object that stores information about primary request, collected reactions, data and
some auxiliary functions. For generation of correct requests we created an associative memory
storing current states for each cache line. The choice of the next request type is made according to
the limitations imposed by the coherence protocol and the current state of the cache line. For

ok wN

71

Lebedev D.A., Petrochenkov M.V. Test environment for verification of multi-processor memory subsystem unit. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 67-76

example, one of these rules is there cannot be two requesters in a modified (M) state for a single
cache line. Another feature, which was necessary to pay attention, is that one address tag
corresponds to two-neighbor cache lines information. This mechanism allows increasing the ratio
of the directory coverage (the ratio of the cache memory covered by the directory to the cache
memory of the directory).

As noted before, there are two ways of building checking module. The choice of «gray box»
method is determined by following sources of a nondeterminism inherent to HMU:

e HMU contains two input queues of primary requests what means exponential growth of
possible device states size (2n+m, where n, m — number of requests inside input queues);

e cache eviction algorithm in the global directory.

HMU has two cache memories responsible for different functions of a memory subsystem: the
global and DMA directories. The global directory has information only about data belonging to the
own processor and used by other processors. Along with that there is no information about
presence of this cache line in cache of own processor. Such information located in the L3 cache.
DMA writes are also coherent requests. For a fast and correct handling of DMA writes sent by
DMA controllers the special DMA cache directory is present inside HMU. This cache directory
supports extended coherence protocol MOI with substates. Its main function is processor
notification about cache lines captured by DMA controllers and storing their states.

| stimuli !
R N — I—
! DUV ! | .TESt
Input Input environment
queuel queus

! :

Input serialization

Global
Directory

| Inner

|—i-- interfaces
adapter

Send hint ©
checking
medule:

DMA L, 1 []
Directory ST

_____ il S S

reactions —> i

Fig 2. Simplified version of the test environment using the “gray box” method.

72

JleGenes /1.A., TletpouerkoB M.B. TectoBoe okpy»keHHe 1 BeprHKari O7I0Ka MOICHCTEMBI NAMSTH MHOTOMPOLIECCOPHOIT cicteMbl. Tpydet UCIT PAH,
Tom 31, Beim. 3, 2019 1., c1p. 67-76

The device under verification connected with other parts of the system by means of network-on-
chip and has two input channels for primary requests. All generated primary requests are sent to
the DUV and the checking module simultaneously. The checking module (implemented in C++)
receives requests and reactions from the verified device by means of DPI (Directed Programming
Interface). Using of the DPI is necessary to match the types and classes of the test environment
written in SystemVerilog hardware description language with the reference model interface
functions. Inside checking module, all requests are received into two queues. Requests to the same
cache line can get into the different queues. It is impossible to predict which of these requests will
be handled first. Getting a sequence hint from the device under test eliminates the nondeterminism
of the current state. Stable and well-described inner interfaces to the point where all request are
serialized, made it possible to build simple checking module in the short time. In a similar way, an
access to the eviction mechanism interface was obtained. In addition, the checking module and its
behavior model may be modified if it will be needed in the future projects. Structure of the test
environment with proposed “gray box” method shown in fig. 2.

4. Additional verification methodsManagement of transaction flow

To check if the verified device operates correctly, it is necessary to achieve multiple edge and
corner cases. This involves filling all input and output primary and secondary requests queues,
delaying some necessary types of answers and blocking of transactions from some modules [13].
HMU supports the credit-exchange mechanism, which indicates the devices ability to accept
certain type of requests. We added the special configuration module that randomizes time delays
of sending requests and credits. Management of delays setup allows to create different test
scenarios with overflowing requests and responses buffers. This mechanism helps to detect
livelocks and deadlocks. These types of system behavior are hard to implement during system
testing.

4.2 Applying assertions

SystemVerilog Assertions (SVA) is an important subset of SystemVerilog [14]. The assertions are
used to specify the behavior of the system. The assertions work as follows: we add some piece of
verification code to the test system that monitors a design implementation for compliance with the
specifications. In addition, the assertions can be used to flag that input stimuli do not conform to
assumed requirements. In the beginning of the project, it may help to find more bugs and locate
them faster.

In HMU verification process the assertions are used for checking for uncertain and unconnected
states of signals. Usage of coherence protocols in the DUV involves certain restrictions on the
stimuli generation and the state of the cache lines for different requesters. Thus, additional
function of the assertions, which was used in the test system, is detection of the discrepancy
between coherence protocol specification and generated requests types in the certain cache lines
states. The disadvantage of this approach is the limitation of the properties of the verified device
that can be checked by assertions.

4.3 On-the-fly ECC errors insertion

ECC bits are stored together with the state of the cache line. Special submodules of HMU encode
the data written to the RAM and decode data read from RAM. Using ECC bits allows to detect
single, double, parity errors and to correct single errors. This mechanism is a source of potential
errors in the device. The special module with flexible configuration was developed to insert single
and double errors. This module is managed by the test system. Frequency and type of error
insertion can be regulated. Detecting and correcting ECC errors additionally loaded computing
logic of verified device.

73

Lebedev D.A., Petrochenkov M.V. Test environment for verification of multi-processor memory subsystem unit. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 67-76

5. Results

The approaches described in this paper were applied for standalone verification of Home Memory
Unit of 16-core and 2-core with 6 integrated graphic boosters microprocessors with “Elbrus”
architecture.

There are some difference in operating with memory subsystem in the microprocessors. The 16-
core microprocessor’s HMU has a global directory and DMA directory, sends coherent requests
with accordance to the state in the global directory, and collects short coherent answers and
coherent answers with data for write operations. For read operations, requester (DMA or L3 cache)
collects all the answers.

The 2-core microprocessor does not have a global directory in HMU but includes DMA directory.
HMU provides inter-core coherence. Coherence requests are sent broadcast to the cores and DMA.
HMU also collects all the answers for write operations and for read operations only when requester
is not DMA. Integrated graphic boosters are not snooped.

Due to the specificity of the test system construction, some part of MC controller (the MC adaptor)
was also added to the verified system. Generator of responses from MC controller with
randomized setups was also developed.

In the process of the standalone verification of the Home Memory Unit we found 28 errors that
have not been found by other means of verification. All errors were corrected. The distribution of
the number of bugs in different subsystems of the HMU are presented in Table 1. Code and
functional coverage was carried out and 94% coverage was extracted. Total result indicates about
effectiveness of the proposed methods of standalone verification.

Table 1. Types of found bugs and its quantity

Type of bugs E‘Ségber of
Coherence protocol implementation 21
Configuration registers 2

Parity checker 1
Performance improvement 2

MC adaptor 3

Total: 28

6. Conclusion and directions for future work

Memory subsystem is one of the most important parts of microprocessors. Its parts that support
coherence protocols are especially complicated and error-prone. Verification of these types of
devices is time-consuming and labor-intensive work. The stand-alone verification designed to
simplify this task. The approaches mentioned in this paper can be applied for stand-alone
verification memory subsystem parts regardless of their implementation.

The proposed approaches have been applied in the verification of the Home Memory Unit as a part
of multi-core microprocessor memory subsystem with “Elbrus” architecture developed by
"MCST". Test environment and test scenarios made it possible to detect and correct a number of
logical errors that were not detected by other verification methods.

In the future, it is planned to adapt the test environment for the forthcoming projects and possible
changes in coherence protocols.

74

JleGenes /1.A., TletpouerkoB M.B. TectoBoe okpy»keHHe 1 BeprHKari O7I0Ka MOICHCTEMBI NAMSTH MHOTOMPOLIECCOPHOIT cicteMbl. Tpydet UCIT PAH,
Tom 31, Beim. 3, 2019 1., c1p. 67-76

References / Cnucok nutepartypsbl

[1]. Hennessy J.L., Patterson D.A. Computer Architecture: A Quantitative Approach. Fifth Edition. Morgan
Kaufmann, 2012. 857 p.

[2]. A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory
Subsystems of Multicore Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp.
149-160. DOI: 10.15514/ISPRAS-2015-27(3)-11.

[3]. W.K. Lam. Hardware Design Verification: Simulation and Formal Method-Based Approaches. Prentice
Hall, 2005, 624 p.

[4]. Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 231-246. DOI: 10.15514/ISPRAS-2017-29(4)-15.

[5]. Ivanov Lubomir and Nunna R. Modeling and verification of cache coherence protocols. In Proc of the
2001 IEEE International Symposium on Circuits and Systems, vol. 5, 2001, pp. 129-132. DOI:
10.1109/ISCAS.2001.922002.

[6]. P.A. Abdulla, M.F. Atig, Z. Ganjeiy, A. Reziney, and Y. Zhu, Verification of cache coherence protocols
wrt. trace filters. In Proc. of the 15th Conference on Formal Methods in Computer-Aided Design, pp. 9-
16.

[7]. I.LA. Stotland, V.N. Kutsevol, A.N. Meshkov. Problems of functional verification of Elbrus
microprocessor L2-cache. Issues of radio electronics, ser. EVT, no. 1, 2015, pp. 76-84 (in Russian) /
Crotnanxg W.A., Kymeson B.H., Memkos A.H. IIpoGiembl (GyHKIMOHATBHON BepUPHUKALUH KAII-
HaMsATH BTOPOTO YPOBHS MHKpOIIPOIIECCOPOB C apXUTeKTypod «OmsOpyc». Bompocs!
pamuoanexTponuky, cep. BT, 2015, no. 1, ctp. 76-84.

[8]. C++TESK Testing ToolKit review. Available at: https://forge.ispras.ru/projects/cpptesk-toolkit, accessed
12.06.2019.

[9]. Standard Universal Verification Methodology. Available at:
http://accellera.org/downloads/standards/uvm, accessed 12.06.2019.

[10]. Kamkin A., Chupilko M. A TLM-based approach to functional verification of hardware components at
different abstraction levels. In Proc. of the 12th Latin-American Test Workshop (LATW), 2011, pp. 1-6.

[11]. Averill M. Law, W. David Kelton. Simulation Modelling and Analysis. McGraw-Hill Education, 3rd
edition, 2000, 784 p.

[12]. Petrochenkov M., Stotland I., Mushtakov R. Approaches to Stand-alone Verification of Multicore
Multiprocessor Cores. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 161-172. DOI:
10.15514/ISPRAS-2016-28(3)-10.

[13]. Lebedev D.A,, Stotland I.A. Construction of validation modules based on reference functional models in
a standalone verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3,
2018, pp. 183-194. DOI: 10.15514/1ISPRAS-2018-30(3)-13.

[14]. 1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and
Verification Language. Available at: https://standards.ieee.org/standard/1800-2017.html, accessed
22.06.2019.

MUHdopmaumsa o6 aBTopax / Information about authors

HOmurpuit Anekceesud JIEBEJIEB patotaer B8 AO MIICT, Mocksa, Poccust. OH 3aIuTHIT AUTIIOM
crenuaiucTa B obOmact onekrponukn B 2014 1. B HUAY MUODU. ObGnacts ero
UCCIICIOBATEIbCKIX MHTEPECOB BKIIOYACT HCCIICOBAHUE METOAOB BepHU(UKAIIMHA KOHTPOJUICPOB
CBSI3M, CHUCTEM IIPEpBHIBaHUM, YCTPOMCTB MOACHCTEMBI MNaMITH C MOAJEPKKOH MPOTOKOJIOB
KOT€pEHTHOCTH.

Dmitry Alexeevitch LEBEDEV works in AO MCST, Moscow, Russia. He earned a specialist in
electronics diploma in 2014 at MEPhI. His area of research interests includes the verification
methods study of communication system controllers, interrupts systems and memory subsystems
devices with support of protocols of coherence.

Muxaun Brnaguvuposua ITETPOUYEHKOB pa6oraer B8 AO MIICT, Mocksa, Poccus. On
nomyums crerneHp Maructpa B 2012 . MOTU. O6nacth ero HaydHBIX MHTEPECOB BKIIOYAET
HCCIIeIOBaHNE METO/I0B BEpU(PHKALUH YCTPOUCTB MOJACUCTEMBI IIaMSITH M KOHTPOJUIEPOB CBSI3H.

75

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Averill+M.+Law&text=Averill+M.+Law&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=W.+David+Kelton&text=W.+David+Kelton&sort=relevancerank&search-alias=books

Lebedev D.A., Petrochenkov M.V. Test environment for verification of multi-processor memory subsystem unit. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 67-76

Mikhail Vladimirovich PETROCHENKOV works in AO MCST, Moscow, Russia. He received
his master's degree in 2012 from MIPT. Area of his scientific interests includes the verification
methods study of memory subsystemsdevices and communication controllers.

76

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-7

Standalone verification of IOMMU with virtualization
supporting

A.A4. Petrykin, ORCID: 0000-0001-5779-1980 <petrykin_a@mcst.ru>
4. Stotland, ORCID: 0000-0002-4359-3059 <stotl_i@mcst.ru>
L2A N. Meshkov, ORCID: 0000-0002-8117-7398 <alex@mcst.ru>

LINEUM, 24, Vavilova st., Moscow, 119334, Russia
2MCST, 1, Nagatinskaya st., Moscow, 117105, Russia

Abstract. This article presents an approach to standalone verification of /O Memory Management Unit with
virtualization supporting. We presented the base architecture of the test system. The main problems
encountered during the verification of IOMMU with virtualization support are considered. One of the key
problems was the formation of translation table pages. The number of translation tables depends on the mode
of IOMMU operation and the type of translation. As a solution of this problem the approach to the dynamic
generation of translation tables is proposed. The algorithm for formation of translation table pages in the
generator is presented. The problem of validating the translation of a virtual address into a physical one using
two-level translation tables is solved. The features of the reference model implementation are considered.
Reference model and test system which have been used for IOMMU verification of microprocessor with the
6th generation «Elbrus» architecture are described. The main components of the test system and the methods
of communication between test system and IOMMU model are presented. The results of IOMMU verification
are considered.

Keywords: I/0 Memory Management Unit; test system; reference model; Elbrus

For citation: Petrykin A.A., Stotland I.A., Meshkov A.N. Standalone verification of IOMMU with
virtualization supporting. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 77-84. DOI:
10.15514/ISPRAS-2019-31(3)-7

ABTOHOMHas Bepudukauma IOMMU c nopgaepxkon BUpTyanmsauum

Y A.A. Hempuikun, ORCID: 0000-0001-5779-1980 <petrykin_a@mcst.ru>
Y 1. A. Cmomaano, ORCID: 0000-0002-4359-3059 <stotl_i@mcst.ru>
' 4.H. Mewxos, ORCID: 0000-0002-8117-7398 <alex@mcst.ru>
Y140 « MHOYM um. U.C.Bpykay, 119334, Poccus, 2. Mockea, yi. Basunosa, 0. 24
2 A0 «MICT», 117105, Poccus, 2. Mockea, yn. Hacamunckas, 0. 1, cmp.23

AHHoTanus. B naHHOH cTaThe MpencTaBiIeH MOAXOA K aBTOHOMHOHM Bepudukanuu OJ0Ka yIpaBIeHHS
MaMATHI0 BBOJA / BEIBOJA C MOAJEPKKON BUPTyaldM3amMU. MBI TIpencTaBiseM O0a30BYIO apXHUTEKTypy
TECTOBOH CHCTEMBI. PaccMaTpuBaloTCsl OCHOBHEIC Mpo0IeMbl, Bo3HUKaromue npu Bepupukamuu IOMMU ¢
noaAepxkKoil BupTyanusauuu. OIHOM U3 KITIOYEBBIX MpoOieM cTano (OPMHUPOBAHWE CTPAHUIL TAOIMIIBI
Tpaucaun. KomnuecTBo TabiuI] TpaHCISINUU 3aBUCHT OT peskuma pabotel IOMMU u tuna tpaucsiiuu. B
KayeCTBE PEIICHHUS 3TOi MpoOIeMbl MPEUIOKEH IOIX0] K TUHAMHUYECKOI reHepaluy TaOJHIl TPAHCISIUH.
[IpencrapieH anroputM (OpPMHPOBAaHUs CTPAHHUI] TaOJIMI| TPAHCISIKMU B reHepartope. Permaercst mpobiema
TIPOBEPKH TPAHCISIINK BHUPTYaAJIBHOTO ajpeca B (pU3MUECKUH C HCHONB30BAaHHEM IBYXYPOBHEBBIX TaOMIHI]
TpaHcIAuid. PaccMOTpeHbl 0cOOEHHOCTH peann3anui 3TaJoHHOW Mozenu. ONHCaHbl ATAIOHHAS MOZAENb U
TECTOBas CHCTEMa, KOTOPBIE WCIIONB30BAINCh JUIS BepupHUKanuu Mukpompoueccopa IOMMU ¢
apXUTEKTYpoH 6-ro mokomeHust «Oms0pycy». IIpencraBaeHsl METOABI CBS3M MEXIY TECTOBOWH CHCTEMOH
mozensio IOMMU. PacematpuBatores pesynbrarst iposepka IOMMU.

77

Petrykin A.A., Stotland I.A., Meshkov A.N. Standalone verification of IOMMU with virtualization supporting. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 77-84

KiroueBble ciioBa: OJOK yIpaBleHHs NaMATBIO BBOJAA/BBIBOJA; TECTOBAs CHCTEMA; ITAJOHHAs MOJEIb;
«Qn0pyc»

Jas nutupoBanus: [lerpeikun A.A., Ctomiann U.A., Memkos A.H. ABronomuas Bepudukanus IOMMU c
noanepkkoit Bupryanmsamun. Tpynst MCIT PAH, Tom 31, Bem. 3, 2019 r., ctp. 77-84 (na anrmiickoMm
s3pike). DOI: 10.15514/ISPRAS-2019-31(3)-7

1. Introduction

An 1/0 Memory Management Unit (IOMMU) is a hardware device that translates virtual address
received from the 1/0 subsystem requests to proper machine physical address. IOMMUs have long
been used for prohibiting devices from DMA’ing into the wrong memory and for performance
optimization. With the hardware support of operating system virtualization IOMMU s also used
for extending the protection and isolation properties of VMs (Virtual Machines) for 1/0 operations,
supporting isolation of interrupts from devices and external interrupt controllers and recording of
DMA and interrupt errors to system software that may corrupt memory or impact VMs isolation
[1][2]. Therefore, modern IOMMUSs are quite complex devices that have many modes of operation
and their verification is an important step in the development of the microprocessor system.

In the paper, we present a case study for functional verification of IOMMU with virtualization
supporting of microprocessor with the 6th generation «Elbrusy» architecture developed by MCST.
The paper addresses the problem and methods of standalone verification of IOMMU with
virtualization supporting.

The rest of the paper is organized as follows. Section 2 considers the problems arising from the
verification of IOMMU. Section 3 suggests an approach to the problem of developing page table
lines generator. Section 4 presents a common approach to the design a test system and describes its
components. Section 5 reveals results. Section 6 concludes the paper.

2. IOMMU verification challenges

For hardware support of operating system virtualization, the translation of a virtual address into a
physical one occurs according to a scheme that includes a two-level page structure. At the first
level, the virtual guest OS address (GVA) is translated into the physical guest OS address (GPA)
using its translation tables. At the second level, the resulting address is translated to the physical
address (PA) of the hypervisor using the hypervisor translation tables. Information about the
broadcast address for each device is stored in the device table. The table consists of Device Table
Entry (DTE) elements. Each DTE contains information about the Domain ID (DID), host page
table root pointer (HPTP) and guest page table root pointer(GPTP). In the IOMMU of
microprocessor with the 6th generation «Elbrus» architecture, DID field has an extension and is
called EDID. In addition to the domain number, it contains information about whether the device
belongs to the guest or the hypervisor.

The pages number of translation tables depends on the mode of device operation and the size of
the page themselves. Processors with the 6th generation «Elbrus» architecture support three page
sizes: 4KB, 2MB and 1GB. For guest virtual address translation through 4KB pages, the number
of memory hits can reach 25. Each memory hit takes a long time to process. Therefore, as part of
IOMMU can be used a lot of different caches [1].

It follows from the above that the main goal of IOMMU verification is to check the correctness of
all translation modes and check the following:

e translation on pages with various size;

e error handling;

e caches correctness;

e translations for the greatest possible number of addresses;
e absence of suspensions;

78

Terpeikun A.A., Ctotnang M.A., Memkos A.H. ABtronomuas Bepudukamus IOMMU ¢ noanepikoit Buptyanusamuu. 7pyost UCIT PAH,
tom 31, Beim. 3, 2019 1., crp. 77-84

e absence of unknown logic value (X-state) on output signals.

There are several main problems encountered during the IOMMU verification of processors with
the 6th generation «Elbrusy architecture:

e the large number of translation tables and different page size;

e large size of the entire address space;

o different virtual addresses can be translated into one physical.

To solve these problems, it was necessary to create the translation page tables. But their formation
for the entire address space would require a large amount of computing resources. The paper [3]
presents the approach based on constraint-random generation page table entries (PTESs), which we
used for IOMMU verification as a part of northbridge of our previous microprocessor. However,
the availability of hypervisor and guest translation caches as well as a large number of translation
pages required for guest virtual address translation does not allow to use the approach described in
[3]. The traditional approach is to generate a static table for a limited set of addresses which is
used for verification Translation Lookaside Buffer (TLB) of MMU[4]-[6]. But using this
approach, it is difficult to verify error handling and virtual address translation over various size
pages. Therefore, for functional verification of the IOMMU of microprocessor with the 6th
generation «Elbrus» architecture, it was decided to develop a dynamic generator of translation
table pages, which generates rows of translation tables for any virtual address.

3. Generator of translation table pages

The formation of pages in the generator depends on the translation mode, which is specified
directly in the tests and translation request. The algorithm of the generator work could be
represented in the form of several consecutive steps:

1) receiving request for translation;

2) request translation and mode analysis;

3) DTE formation;

4) translation pages entry.

Translation modes are divided into single-level or native translations and two-level translations. In
turn, native translations can take place in the same domain or split into different domains. Native
translations in the same domain doesn’t require DTE. For the rest of translation modes DTE
formation is necessary. Since a unique translation identifier in Elbrus-12c processors is an EDID,
each DTE element is stored in an associative array indexed by it. The formation of a DTE begins
with the selection of a random EDID for a given device, after which the presence of a DTE for a
given EDID in the array is checked and if it is missing, the remaining fields are formed.
Translation tables have a 4-level structure and consist of 512 elements. Each line of the table
contains information about the access rights to it and whether it is the last in the translation
structure. In addition, there is a field named PPN (Physical Page Number), that indicates the line
from the next translation level, in case the line is on the last translation level, it contains the
physical address. Hereinafter the pages of hypervisor and guest translations will be called HP
(Host Page) and GP (Guest Page), respectively.

For native translation, the address of the first line is formed from the host page table index (hptp)
contained in the DTE, and a part of the translated virtual address. Physical page number for each
page level is calculated as follows:

ppn(n) = hptp + 512+ (5 — n) + VA(n), ¢))
where n — host page level, VA(n) — the part of translated virtual address on level n , hptp — table
root pointer.
The full list of pages for native translation is presented in Table 1.

79

Petrykin A.A., Stotland I.A., Meshkov A.N. Standalone verification of IOMMU with virtualization supporting. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 77-84

Table. 1. List of pages for native translation

Page level Page address Physical Page Number
HP_L4 hptp, VA(4) hptp + 512 + VA(4)
HP_L3 ppn_L4, VA(3) hptp + 512 * 2 + VA(3)
HP_L2 ppn_L3, VA(2) hptp + 512 * 3 + VA(2)
HP_L1 ppn_L2, VA(1) hptp + 512 * 4 + VA(1)

When generating rows of a two-level table for guest virtual address translation, the generator first
calculates the guest physical address (GPA) for first guest page (GP_L4) according to the formula:
GPA(4) = GPTP + VA(4) (2)

After that, the pages necessary for the translation of this GPA to HPA are written in the same way
as the recording of the pages of translation VA to PA in the native mode. The list of pages for that

translation may be seen at Table 2.

Table. 2. List of pages for guest physical addres translation into host physycal address

Page level Page address Physical Page Number
HP_L4 hptp, GPA(4) hptp + 512 + GPA(4)
HP_L3 ppn_L4, GPA(3) hptp + 512 * 2 + GPA(3)
HP_L2 ppn_L3, GPA(2) hptp + 512 * 3 + GPA(2)
HP_L1 ppn_L2, GPA(1) hptp + 512 * 4 + GPA(1)

Then the GP_L4 page itself is written and after that the guest physical address of the next page
level (GPA _3) is calculated as the sum of HP_L1 page ppn and part of virtual address:
GPA; = ppn + VA(3) 3)

And so on to get the GPA of the original GVA. For the obtained GPA, the pages of the last
hypervisor translation are formed, which give the desired HPA. In order to avoid writing identical
lines at different translation levels, guest pages addresses and ppns are configured as followed:

addr(x) = {ppn, GPAx(O)}, 4

ppn(x) = hptp + 512 * (9 —x) + GPA,), (5
where x — guest page level, GPA_x(0) — the part of the guest physical address that is not translated
by hypervisor structures.
The list of guest pages for two-level translation is presented in the Table 3.

Table. 3. List of guest pages in two-level translation

Page level Page address Physical Page Number

GP_L4 ppn, GPA_4(0) hptp + 512 *5 + GPA_4(1)
GP_L3 ppn_L4, GPA_3(0) hptp + 512 * 6 + GPA_3(1)
GP_L2 ppn_L3, GPA_2(0) hptp + 512 * 7 + GPA_2(2)
GP_L1 ppn_L2, GPA_1(0) hptp + 512 * 8 + GPA_1(1)

To verify the error handling on each level of table can be prescribed a row of the page table that
causing an error. That table level can be set via test parameters or randomly. In the same way,
translation page sizes can be set through the PS field in a line of translation table. To verify the
error handling on each level of table can be prescribed a row of the page table that causing an
error. That table level can be set via test parameters or randomly. In the same way, can be setted
the translation page sizes through the PS field in a line of translation table.

80

Terpeikun A.A., Ctotnang M.A., Memkos A.H. ABtronomuas Bepudukamus IOMMU ¢ noanepikoit Buptyanusamuu. 7pyost UCIT PAH,
tom 31, Beim. 3, 2019 1., crp. 77-84

4. Test System Structure

Test system was implemented with using of SystemVerilog language [7] and Universal
Verification Methodology [8]. Use of this language allows for an easy interface with Verilog and
SystemVerilog devices, and UVM describes a general test system structure and provides a library
of basic verification components.

The test system includes a set of basic components, which are presented below.

4.1 Apb (Advanced Peripheral Bus) agent

Apb agent is used to entrance the set of configuration registers in IOMMU whose access interface
is implemented according to the APB protocol.

4.2 Register model

A register model is an entity that encompasses and describes the hierarchical structure of class
object for each register and its individual fields. Every register in the model corresponds to and
actual hardware register in the design.

4.3 Translation agent

This is the agent, in which the translations are generated and then sent on the DUT (Design Under
Test) query interface and generator of table pages. Translation generation is based on constrained
randomization. To specify some test scenario, one must define specific constraints for transactions
that will be issued. SystemVerilog offers a native support for constrained randomization
constructs. Translation agent is also receives the results of the translation from the response
interface.

‘ Anb aaent ‘

‘ Reqlste‘rmodel ‘ ‘ Translation request ‘

DUT ‘ Translation agent }7

Generator of
translation table
pages

‘ PTE agent ‘ { Svstem Memorv ‘

Scoreboard ‘

J L

‘ Madel ‘

Fig. 1. Structure of a test system

81

Petrykin A.A., Stotland I.A., Meshkov A.N. Standalone verification of IOMMU with virtualization supporting. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 77-84

4.4 Generator of translation table pages and system memory.

Each request received from the translation agent is processed by the generator as described in
Section 3. All lines of translation pages are stored in system memory.

4.5 Page table entries (PTE) agent

PTE agent collects information about requested and received by the device PTEs from system
memory. If for any reason the requested PTE is missing, the system memory will randomly
generate it.

4.6 Model

The IOMMU reactions were tested using its reference event model. For reconciling the types and
classes of the test system written in SystemVerilog with the C++ language in which the reference
model is developed the DPI (Directed Programming Interface) was used. The reference model
accepts input stimuli and generates output responses, which are then sent to scoreboard.

4.7 Scoreboard

Scoreboard receives transactions from translation and page table entries interfaces. After that, they
are compared with the corresponding transactions received from the model. If a mismatch is
detected, the module reports an error in the test system. Test system structure is presented in Fig.1.

5. Results

The approaches described above were applied to standalone verification of the IOMMU of
microprocessor with the 6th generation «Elbrusy architecture. Due to standalone verification of the
device, 58 errors in the RTL description that have not been found by other means of verification
were found and corrected. Total result indicates about effectiveness of standalone verification of
I/0 memory management unit.

6. Conclusion

I/0 memory management units are among the important parts of modern microprocessor systems
have to be thoroughly tested. In this article, we presented a method of translation table pages
forming. The main advantages of the described approach are:

e no need to create tables for the entire address space;

o the ability to dynamically set the page size;

e convenience of exception checking due to dynamic generation of page table row fields;

e ease of obtaining maximum coverage, due to the possibility of calls to any address.

The principles described in the paper do not depend mainly on the IOMMUs implementation and
allow their full standalone verification.

The proposed approaches have been applied in the verification of IOMMU as a part of
microprocessor with the 6th generation «Elbrus» architecture, developed by "MCST". The
developed test system and tests made it possible to detect and correct a number of logical errors
that were not detected by other test methods.

References

[1] Intel Virtualization Technology for Directed 1/O Architecture Specification. Intel, 2018.

[2] AMD 1/0 Virtualization Technology (IOMMU) Specification. AMD, 2016.

[3] Lebedev D.A., Stotland I.A. Construction of validation modules based on reference functional models in a
standalone verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018,
pp. 183-194. DOI: 10.15514/ISPRAS-2016-28(3)-10.

82

Terpeikun A.A., Ctotnang M.A., Memkos A.H. ABtronomuas Bepudukamus IOMMU ¢ noanepikoit Buptyanusamuu. 7pyost UCIT PAH,
tom 31, Beim. 3, 2019 1., crp. 77-84

[4] Alkassar E., Cohen E., Kovalev M., Paul W.J. (2012) Verification of TLB Virtualization Implemented in
C. Lecture Notes in Computer Science, vol 7152, pp 209-224.

[5] Alkassar, E., Cohen, E., Hillebrand, M., Kovalev, M., Paul, W. Verifying shadow page table algorithms.
In Formal Methods in Computer Aided Design (FMCAD), 2010. pp. 267-270.

[6] Kamkin A., Kotsynyak A. Specification-Based Test Program Generation for MIPS64 Memory
Management Units. Trudy ISP RAN/Proc, ISP RAS vol. 28, issue 4, 2016. pp. 99-114. DOI:
10.15514/ISPRAS-2016-28(4)-6.

[7] |EEE Standard for SystemVerilog — Unified Hardware Design, Specification, and Verification
Language. IEEE Std 1800-2012.

[8] 1800.2-2017 - IEEE Standard for Universal Verification Methodology Language Reference Manual.

MHdopmauma 06 aBTopax / Information about authors

Anton AnekceeBnu IIETPBIKMH nony4yun crenens wmaructpa B 2019 r. B Poccuiickom
YHHBEpCHTETE APYXKObI HaponoB. B Hacrosmee Bpems paboTaeT WHXEHEPOM-TIPOTPAMMICTOM B
AO «MICT». Hayurele wuHTEpecHl BKIIOYAIOT BEPUPUKAIMIO KOMIBIOTEPHBIX CHCTEM W
MIOJICHICTEM MHKPOIIPOIIECCOPOB.

Anton Alekseevich PETRYKIN received a M.Sc. degree in 2019 in the Peoples’ Friendship
University of Russia. He is currently working as a software engineer at AO «MCST». Research
interests include verification of computer systems and microprocessor subsystems.

Upuna ApkanseBna CTOTJIAHJI B Hactosiiee BpeMsi padoTaeT HadyaJbHUKOM CEKTOpa
AaBTOHOMHOW Bepudukanuu MukponpoueccopoB B AO «MIICT». Ona mnonyumna cCTeneHb
KaHauaata TexHudeckuX Hayk B 2012 romy. OOGmacTh ee Hay4YHBIX HHTEPECOB BKIIOYAET
ABTOHOMHYIO BepH(pHKAIIUIO OJCHCTEM MUKPOIPOIIECCOPOB M CHCTEM Ha KPHCTAILIC.

Irina Arkadievna STOTLAND is currently working as microprocessor verification team lead at
MCST. She received a PhD degree in 2012. Her research interests include standalone verification
of microprocessor and SoC subsystems.

Anekceit Hukxonaesny MEIIIKOB nony4ywn crenenp kanauaata TexHuueckux Hayk B UHOYM
uM. 1.C. Bpyka B 2013 roga. B Hacrosiuee Bpems siBisiercs HadaibHUKOM otaena B AO « MLICT».
OO0nacTh HAayYHBIX HMHTEPECOB BKIIOYAET IPOTPAMMHOE MOJACIHPOBAHHE W BEPUPUKAIHIO
KOMITBIOTEPHBIX CHCTEM.

Alexey Nikolaevitch MESHKOV recieved a PhD degree at INEUM in 2013. He is currently
working as a chief of department at MCST. His research interests include software modeling and
verification of computer systems.

83

Petrykin A.A., Stotland I.A., Meshkov A.N. Standalone verification of IOMMU with virtualization supporting. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 77-84

84

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-8

Digital Modelling of Production Engineering for
Metalworking Machine Shops

V.P. Kotlyarov, ORCID: 0000-0003-3973-5218 <vpk@spbstu.ru>
A.P. Maslakov, ORCID: 0000-0001-7383-3917 <alex.maslakov.ftk@gmail.com>
A.A. Tolstoles, ORCID: 0000-0003-2327-906X <gmlaletol@gmail.com>
Peter the Great St. Petersburg Polytechnic University,
29, Politekhnicheskaya st., Saint Petersburg, 195251, Russia

Abstract. This article presents a modular approach that reduces the labor costs for the technological preparation
of small-scale metalworking production. Its idea is to formalize the technological processes, allowing generating
them and their documentation from pre-prepared parameterized templates stored in the special database. Details
to be processed are represented as the structures of their basic geometric components. For the template of
machining operations for each component, symbolic parameters are fixed, defining the workpiece used, cutting
tools options, machining modes, etc. The result of formalization is an automatically generated technological
route in the form of an MSC diagram encoding it as a sequence of macro-operations for the machinery. This
symbolic model is adapted to a specific instance of the detail being manufactured by replacing the symbolic
variables with specific values set by the technologist. The MSC diagram is supplemented with the results of time
and cost calculations of technological routes, which allows selection of the most efficient one. The correctness of
the technological routes is ensured in the process of symbolic verification by checking the permissible ranges of
parameters of the MSC diagram, as well as checking the correctness of order and compatibility of operations in
the sequence. The results of the whole process obtained from the MSC diagram are the set of technological
documentation of preproduction, which, in particular, includes a set of operating cards, and the fine-tuned
schedule of production after its digital modeling with the real resources of the workshop taken into account.
According to technologists, by applying the described automation, the time to prepare documentation for details
of medium complexity is reduced from several weeks to 1-2 days.

Keywords: adaptive manufacturing; production engineering; small-scale metalworking manufacturing
preparation; automation of the preparation of technological documentation.

For citation: Kotlyarov V.P., Maslakov A.P., Tolstoles A.A. Digital Modelling of Production Engineering
for Metalworking Machine Shops. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 85-98. DOI:
10.15514/ISPRAS-2019-31(3)-8

Acknowledgements. The work was financially supported by the Ministry of Education and Science of the
Russian Federation in the framework of the Federal Targeted Program for Research and Development in
Priority Areas of Advancement of the Russian Scientific and Technological Complex for 2014-2020
(14.584.21.0022, ID RFMEF158417X0022).

85

Kotlyarov V.P., Maslakov A.P., Tolstoles A.A. Digital Modelling of Production Engineering for Metalworking Machine Shops. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 85-98

UndpoBoe MmogenmpoBaHme TeXHONOrMu NpPou3BoACTBa
MeTannoobpabaTbiBalOWMX MEXAaHNYECKUX LIeXOB

B.I1. Komnspos, ORCID: 0000-0003-3973-5218 <vpk@spbstu.ru>
A.I1. Macnaxos, ORCID: 0000-0001-7383-3917 <alex.maslakov.ftk@gmail.com>
A.A. Torcmonec, ORCID: 0000-0003-2327-906X <gmlaletol@gmail.com>
Canxm-Ilemepoypackuii norumexuuyeckuti ynusepcumem Ilempa Benukoeo,
195251, Poccus, . Cankm-Ilemepoype, ya. Ilonumexnuueckas, 0. 29

AHHOTanus. B naHHOM cTaThe MpeACTaBICH MOIYJIBHBIA MOAXO0/, TO3BOJIIIOMINI CHU3UTD TPYZ03aTpaThl Ha
TEXHOJIOTHYIECKYI0 TOATOTOBKY MENKOCEPHHHOro MeTamaoo0pabaThIBaloIEro Npou3BoACTBa. Ero wuies
COCTOHT B TOM, 4TOOBI (hOPMaH30BaTh TEXHOJOTHUECKUE MPOIECCHI, TO3BONSAA I'€HEPHPOBATh UX H HUX
JIOKyMEHTALMIO U3 MpPEeABApUTENILHO MOATOTOBICHHBIX MapaMETPH30BAHHBIX IMIAOTOHOB, XPaHAIMIUXCS B
cnenuanbHOH 0aze maHHBIX. OOpabaTbiBaeMble NETalM IMPEACTABICHBI B BUAE CTPYKTYP HMX OCHOBHBIX
reOMETPUYECKUX KOMIOHEHTOB. Jlnsg 1mabioHa omepanuii OOpaOOTKH UIS KaXXZOTO0 KOMIIOHEHTa
(UKCUPYIOTCS CHMBOJHMYECKHE IapaMeTphbl, XapaKTepH3yIOIINEe HCIOIb3YeMYI0 3aroTOBKY, IHapaMeTphl
PEKYIIMX HHCTPYMEHTOB, PEXKUMBI 00pabOTKH U T. 1. PesynpTaToM hopManm3anuy sBIseTCss aBTOMaTHIECKN
TeHepUPYEeMBIil TEeXHOJOTMYecKnii Mapmpyr B Buae aumarpammel MSC, komupyromeld ero kak
MOCJIEZI0BATENIBHOCT MAKpOOIIEpalii Ul CTaHKOB. OTa CHUMBOJMYECKAas MOJENb aJalTHpyeTcs K
KOHKPETHOM H3rOTaBIMBAEMON JETaly ITyTeM 3aMEHBl CHMBOJIMYECKHX IE€PEMEHHBIX OIpeeIsieMbIMU
TEXHOJIOTOM 3HaueHHsAMHU. Juarpamma MSC nomonHseTcst pe3yibTaTaMu pacdéTOB BPEMEHHM U CTOUMOCTHU
WCIIOJIHEHUSI TEXHOJIOTHYECKHUX MAapIIPYTOB, YTO IIO3BOJSIET BHIOpaTh M3 HHUX HambOosee 3()()EKTHBHBIN.
KoppeKTHOCTh TEXHONOTHYECKHMX MapIIpyTOB OOecCIedrBaeTCs B IPOLEcCe CHMBOJBHOH BepHHUKALNN
ITyTeM MPOBEPKH JOITyCTUMBIX JIHaNa30HOB napaMeTpoB auarpamMMel MSC, a Takxke IpoBepKH NPaBHIEHOCTH
HOPs/IKa ¥ COBMECTUMOCTH OIEpalii B MOCIEJOBATENbHOCTH. Pe3ynbraToM Bcero mpouecca, Moxy4eHHOTO
n3 muarpamMmmel MSC, siBisieTcst HabOp TEXHOJIOTMYECKOH JOKYMEHTAllMM Ha ITOJArOTOBKY IPOM3BOJACTBA,
KOTOPBIi, B YacCTHOCTH, BKJIIOYaeT B ceOs HAaOOp ONEepalMoOHHBIX KapT, a Takke OTIAKeHHBIH rpaduk
MPOM3BOJCTBA TOCNIE €ro MHU(POBOTO MOJIESTUPOBAHUS C YYETOM pPEalTbHBIX pecypcoB MacTepckoi. Ilo
OIIEHKaM TEXHOJIOTOB, MOCJIC IPUMEHEHUSI OIIMCAHHOM aBTOMATH3aI[MN BPpeMsI Ha OATOTOBKY JOKYMEHTAIINI
JUTSL IeTaliei CpeTHei CII0)KHOCTH COKpAIaeTcs ¢ HECKOJIBKIX HEeAeb 0 1-2 THei.

KiaroueBble cj10Ba: aganTUBHOE TMIPOU3BOJICTBO, TEXHOJIOTUA MPOU3BOJACTBA, IMOATOTOBKA MeHKOcepHﬁHOFO
MeTannooGpa6aTmBaromero IPpOU3BOACTBA, aBTOMATU3alUA ITOATOTOBKH TEXHOJIOTHUECKON JOKYMCHTallUH.

Jas umtupoBanus: Kotmspos B.I1., MacnakoB A.Il.,, Toncronec A.A. IludpoBoe MmoaenupoBaHue
TEXHOJIOTHU TPOU3BOJICTBa METAII0O0OpabaThiBaronMx MexaHumdeckux 1exos. Tpyasl UCIT PAH, tom 31,
BbIML. 3, 2019 1., ctp. 85-98 (Ha anrnmiickom s3bike). DOI: 10.15514/ISPRAS-2019-31(3)-8

Baaronapuoctu. PaGoTs! Obutn mpoduHAHCHPOBAaHEI MHHHUCTEPCTBOM 00pa3oBaHMs W HAayKu Poccuiickoit
®Denepannu B pamkax PenepanbHoi 1eneBoit mporpammel «VccnenoBanus 1 pa3padOTKH 110 TPHOPUTETHBIM
HaNpaBlICHUSAM DPa3BUTHS HAayYHO-TEXHOJNOTHMYECKOTO Komruiekca Poccum Ha 2014-2020 romsi»
(Ne14.584.21.0022, ID RFMEFI58417X0022).

1. Introduction

Comprehensive automation of technological processes based on information technologies provides:

e reduction of the time of pre-production;

e optimization of labor costs and funds for the manufacturing of products;

e operational implementation of changes in the process under the external conditions
(replacement of technological equipment, material, cutting tools, etc.) with automatic
recalculation of the process characteristics.

Technological preparation of production (TPP) includes the following activities:

e setting of technological problems;

e selection of the workpiece based on its parameters;

86

Kotmspos B.I1., Macnakos A.I1., Toncronec A.A. L{udpoBoe MoAenHpoOBaHNE TEXHOIOTHH ITPOU3BOICTBA METAIIO00pabaTHIBAIOIINX
MeXaHHYeCKHX 1exoB. Tpyowst UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 85-98

e development of technological processing routes;

e selection of technological equipment;

o formation of technological operations;

e development of a set of technological documentation.

Fields of automation of technological preparation of production include:

e development of technological documentation;

e development of control programs;

e development of technological processes.

The tasks of operational planning and automated production management are carried out by the

manufacturing execution systems (MES) [1]. They occupy an intermediate place in the hierarchy

of enterprise management systems between the level of information collection from equipment in
workshops done by supervisory control and data acquisition (SCADA) systems [2] and the level of
operations over a large amount of administrative, financial and accounting information done by

enterprise resource planning (ERP) [1] systems. The key processes for MES are as follows [3].

1) Based on the external demand for production (which, in turn, is based on customer orders,
sales plans, etc.), as well as previous production programs, taking into account all sorts of
nuances and specifics of production at a particular enterprise, a detailed optimized production
schedule of works and operations for machine tools, equipment, personnel is produced. In
addition, automatic generation of all the documentation necessary for the work: production
programs, outfits, limit maps, tables and equipment loading diagrams, etc. is also done.

2) In the course of the direct implementation of production programs, full dispatching of all
operations and their results (both positive and negative - rejects, delays, etc.) is carried out.

3) If deviations from the planned programs are identified due to the external reasons, or when
new demand (orders, etc.) appears, real-time re-planning is performed with all components
corrected accordingly.

It should be noted that there exists an imbalance between production time and preparation time in
single or small-scale productions in case of re-scheduling of the work of a production site, because
it should be performed for the small batch of the details and not for the whole series of them.
Nowadays on the Russian market there are three most popular largest solutions, the products of
many years of work of three scientific centers for developing systems of this class: PHOBOS
system, YSB.Enterprise.Mes system and PolyPlan system. PHOBOS is traditionally used in large
and medium-sized machine-building enterprises. YSB.Enterprise.Mes originated from the
woodworking industry and focuses on the sector of medium and small enterprises. The PolyPlan
system has a smaller set of MES functions, but is positioned as an operational scheduling system
for automated and flexible manufacturing in engineering [3].
However, with all the attractiveness of such systems, due to the extensive set of functions provided
and deep integration into the production processes in the enterprise at all stages, their practical
implementation is a whole complex and expensive project in itself that not all enterprises,
especially small-scale and individual productions, can afford. In addition to this, in order to work
effectively with MES, high qualification of its operator is required. The automated workplace of
the technologist given in this article is designed to solve a narrower class of problems - to simplify
the TPP for small-scale machine-building production, it does not require interactions with other
systems, and the results in the form of the required schedule of work distribution and a set of
operating cards can be obtained in a couple of days of work of a technologist.

2. Formalization of the technological process
Let's look through the features of formalization based on an illustration of a specific example of
work with the developed system of an automated workplace for a technologist.

87

Kotlyarov V.P., Maslakov A.P., Tolstoles A.A. Digital Modelling of Production Engineering for Metalworking Machine Shops. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 85-98

The main input information for the technologist is the detail drawing. It can be done in any
graphical design program, for example, in KOMPAS-3D [4]. The example of the drawing is
demonstrated in the fig. 1.

B

65" 5 758

A =

&r
g
o
@77

a7
43

gogna "

= P
27 x
I
& oY
% T rEmdsT
= n
Ly 7
N 77
B

Fig. 1. Input detail drawing

To manufacture a part technologist chooses a workpiece for it. Several such workpieces may be
selected; to determine the best fitting of them, all calculations of time and cost of production must
be made for each selected one and compared to each other.

The next action of the technologist is the splitting of a given drawing into a set of sketches of
elementary surfaces (ES), the parts of the detail. This step sets the way for the modular approach to
the production technology [5]. Each of the surfaces is characterized by geometrical parameters and
the number of stages required to process it. The processing stage is the smallest atomic operation,
for example, turning, drilling or milling. The parameters of the processing stage are the types of
machines on which it can be performed, the cutting tools to do so and the selected workpiece in the
very beginning.

The form for setting information about the processing stages manually is shown in the fig.2.

The description of fields and tables of the form is as follows, from left to right and from up to
down:

e the type of the elementary surface encoded by two digits;

e the unique number of the elementary surface used to distinguish between the surfaces of the
same type;

e the geometrical parameters of the elementary surface, here the diameter and length are listed;
e the amount of the processing stages to be performed;

88

Kotmspos B.I1., Macnakos A.I1., Toncronec A.A. L{udpoBoe MoAenHpoOBaHNE TEXHOIOTHH ITPOU3BOICTBA METAIIO00pabaTHIBAIOIINX
MeXaHHYeCKHX 1exoB. Tpyowst UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 85-98

the processing stages, divided into the following columns: the number of the stage, the name
of it (here: turning), the codes of the applicable machinery for it, the codes of the applicable
cutting tools for it (which are described in the table under this one), the amount of the
allowance (here: determined by the chosen workpiece) and the name of the selected

workpiece (here: the first one);

the cutting modes, divided into the following columns: the code of the cutting tool, the type
of it (here: cutter), the three technical characteristics of each cutting tool with maximum and

minimum values and the minimum and maximum durability of the cutting tool.

Turn 317 Horep /7

fipaemgn; T Aaemrecmlin A7
Oue | 17 G | 1 ‘
Lo | 3
FTAT GO
Tow) LAt L= I 7]
A srone | Mamad oS fENHOE SRS rexyn FE/mrsm i wa TR IMEH RO OO
Fmang | Memed onpaoaTky Jﬁ:ﬂ;ﬁ:ﬂ? e LHETERLAMERT? =
7 Tasertie 707 T2 T3 IR 2 s o -
e JUE Fn=7
oMM GOFTIR
Bexgiio) FPEXUMG DEFIHUT Cimaiaeie PH
o Tews A n
VIR MET Vosin L Sini L Y i i moy
[ey 7 A7 . 75 7 2 7 77
FFLR peeLy 237 FU a7 745 5 L5 A7 5
i = pesEy 250 F0 g% 45 g7 35 z5 a7
Fig. 2. Processing stage information form
Me I 0
v i n Tw
PaAMOTE n K "
D snx L snx D mox D anx Qan
Y8 ‘
~) anie 06pd
. ! Ne Meroa Texmonornueckoe Pecyuiwi Beawumnna
o g < Nprmennemocrs
Irana P ¥ Py puny
——t
N
1 r
Pexrmm pesannn Cro#xocrs PU
Pocyull | e W4
HHCTPYM... Vmin Vmax Smin Smax Tmin T max min max
I

Fig. 3. The window for setting the information about an elementary surface

89

Kotlyarov V.P., Maslakov A.P., Tolstoles A.A. Digital Modelling of Production Engineering for Metalworking Machine Shops. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 85-98

To translate it into a digital form, a developed solution is used, the set of user interface screens of
which forms an automated workplace for the technologist (fig.3). The fields and tables on the right
are essentially the same; the left side shows the sorted list of the already loaded surfaces by types:
inner surfaces of revolution, outer surfaces of revolution, mounting holes and flat contour. There is
also a place for the sketch of the surface in the middle.

Each cutting tool added by the technologist is characterized by its cutting modes. The parameters
of cutting modes affect the running time and its cost. Usually, data for the cutting tool is taken
from reference catalogs in *.pdf format [6]. The user interface allows the technologist to simplify
entering data from catalogs through the use of hotkeys: after selecting data in the document and
pressing the CTRL + SHIFT + C key combination, the data is copied directly into the table. This
approach reduces the labor intensity of the manual data transfer and helps to avoid the human
factor such as errors or typos.

To determine the order of processing of elementary surfaces, further formation of blocks of
elementary surfaces from them takes place. Each block is characterized by its own positioning data
on the machine. The window for creating blocks of surfaces is shown in fig.4. The left side of it
shows the list of the blocks with the button "Create new block” at the very bottom of it, the rows
on the right side consist of the surfaces corresponding to each block.

The next step of the formalization of technological process is the formation of groups of
elementary surfaces inside blocks of elementary surfaces. Such group is a part of the block that can
be processed in one operation without reinstalling the workpiece into the machine. Thus, the
nesting hierarchy is created (fig.5).

The operation on a group of surfaces made up from initial operations on each surface is called a
machining step, each one of them has its own physical meaning, for example, turning the outer
surface of revolution, drilling through hole or boring the hole. All cutting tools for all elementary
surfaces within a group must be the same. The window for creating groups is shown in the fig.6.
The three tabs on the left are created for each block; they hold lists of groups of surfaces within the
block. The right side shows the elementary surfaces of each selected group with their parameters.
In addition to the windows for filling in the information, the user interface has a menu containing
“Help” section. There is a reference catalogs searching tool which works in conjunction with a
system application for viewing files in *.pdf format and is capable of two types of searches:

e The window for keyword search in catalogs is shown in Fig.7. After entering keywords in the
top field and selecting catalogs for search in the list, by pressing the leftmost button a search is
performed on the selected documents. For each catalog, the following sequence of actions is
carried out.

1) One page of document is read from disk.
2) Search for keywords is performed on this page.

3) If at least one of the keywords is detected, the page is copied into the resulting PDF
document.

4) If the keywords are not found, proceed to the next page.

As soon as all pages of all catalogs are processed, a resulting document with search results is
written to disk and opened in the standard PDF document viewer in the system. The right
button cancels the search, the bottom one allows technologist to add a catalog to the list.

e Search by image, in contrast to search by keywords, is possible only for catalogs formatted in
advance. Its interface is shown in Fig.8. After selecting a PDF catalog from the drop-down
list, if the necessary markup information exists for it, images, for example, of surfaces to be
processed, are shown. By clicking on them a document containing information related only to
the selected images is formed and, alike to the search by keywords, is opened in a standard
PDF documents viewer. The button on the right allows technologist to add a catalog to the list.

90

Kotmspos B.I1., Macnakos A.I1., Toncronec A.A. L{udpoBoe MoAenHpoOBaHNE TEXHOIOTHH ITPOU3BOICTBA METAIIO00pabaTHIBAIOIINX
MeXaHHYeCKHX 11exoB. Tpyost UCII PAH, Tom 31, Bbim. 3, 2019 1., cTp. 85-98

The usage of these searching tools, especially in conjunction with copying data into tables with

hotkeys, achieves a significant reduction in the complexity of data entry for elementary surfaces.

Menio Momowus
brox 1 .
brok 2 —
baok —
Cozaare noswa
Baox
Hasaa

N N2

N3

N2

M2 m

4

s

3 W

NG ny

Nanee

Block of elementary surfaces

Fig. 4. The window for creating blocks of elementary surfaces

<>—-Relatior—>

1.n 1.n

baok 1| brox 2 | Baok 3

Fynrs 1

Fpynna 2

Hazan

Group of elementary surfaces

<>—Relatior—>|

1..n 1..n

Elementary surface

Fig. 5. The nesting hierarchy of elementary surfaces

2

L anu D anx Denx
Lo D anx D ans
10 11 [
Loonu D ank

| Banee

Fig.6. The window for creating groups of elementary surfaces

91

Kotlyarov V.P., Maslakov A.P., Tolstoles A.A. Digital Modelling of Production Engineering for Metalworking Machine Shops. Trudy ISP

RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 85-98

W nowuck no CNPaBoYHUKaM

YTO Bbl XOTUTE HANTU:

O X

I'lvm4

lMNonck

OrmeHa

CnpaBouHukm
Cnpasounnkl.pdf
v/ Cnpasounnx2.pdf
v ' Cnpasounnk3.pdf
Cnpasounnkd.pdf

AobasnTb CNpaBoYHMK

Fig. 7. Keywords search user interface

¥ [lownck No cnpasouH1Kam

Tokaprbie urcTpymertol 2015 v

[obasuTe cNpasouHmK

Fig. 8. Image search user interface

A special database based on PostgreSQL database management system [7] is used to store
information entered by the technologist in the user interface [8].

The fig. 9 shows a fragment of its tables, where:

e «public.tb_methods» table stores information for calculating the time and cost of processing

methods for elementary surfaces;

e «public.tb_app_machines» is dedicated to applicable machines for processing methods;

92

Kotmspos B.I1., Macnakos A.I1., Toncronec A.A. L{udpoBoe MoAenHpoOBaHNE TEXHOIOTHH ITPOU3BOICTBA METAIIO00pabaTHIBAIOIINX
MeXaHHYeCKHX 1exoB. Tpyowst UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 85-98

e «public.tb_processing_steps» stores the parameters of the processing methods;
e «public.tb_app_tools» holds information about the applicable cutting tools and cutting modes;
o the four lowest tables are used for linkage between other tables.

= public.th_methods

&2 id: serial

B neme: verchar{50)
& formulas: json

& th_matheds_phkay
7 tb_metheds_name_uindex

| N, =l public.tb_app_tools

E= public.th_processing_steps a !

£ id: serial
4 method: integer

nzame: varchar(50)
&= allowance: varchar(50)

5 applicability: boolean

= dimensional_accurzcy: real

& cls s_surfzce: rezl

&2 physical_and_mathematical_prop...

ame: varchar{50)

7 th_app_machines_pkey
7 th_apo_machines_name_uvind=x

3 =_max: real

min: rzal

1 t_max: real

& cureb_min: reel

&9 durab_masu raeal

/ \ £ th_processing_steps_gk 2 \ N |5 parameters: json
/. ;\ / \ Ny 2 th_app_tools_pkey

; B # th_app_tools_name_tind=x
/‘ // x \ o
f ! /\\\ ;
/ 4 7 4 \\\ v 4
/ \ S y A X P
3. - ped S -

= public.tb_app_machines_methods EE public.tb_app_machines_processin...| = public.tb_app_tools_processing_st... £ public.tb_processing_steps_surfac..
&, id_app_machine: integsr & id_app_machine: integzr & id_app_tool: int=ger & id_processing_step: integsr
& id_meched: integer & id_processing_step: integer % Id_processing_step: integar & id_surface: integer

Fig. 9. Database fragment

To formulate the resulting technological route for the processing of the whole detail technologist
must determine all the groups of elementary surfaces that can be processed together. There can be
several routes constructed this way, the choice of the one is made based on which machinery and
which tools are available and should be used. In the approach presented here we use the MSC
language [9] for the encoding of the route. MSC is a standardized language for describing
behaviors using message exchange diagrams between parallel-functioning objects (machines,
robots). The main unit of the diagram is a line starting with a name of a processing stage of
elementary surface followed by its parameters. To construct such line, only the index parameters
of the stage are used, insofar as all other necessary data can be obtained from the database based
on them. Such index parameters include:

e the number of the processing stage;

e the code of the type of the elementary surface, in two digits;

e the number of the elementary surface within the same type;

e the codes of the applicable machinery for the processing stage;

e the codes of the applicable tools for the processing stage;

e the code of the workpiece used;

e the number of the block of elementary surfaces which this elementary surface corresponds to;
e the index number of the elementary surface within the block;

e the number of the group of elementary surfaces within the block;
e the index number of the elementary surface within the group;

The resulting parameterized line takes the following form, for example:

93

Kotlyarov V.P., Maslakov A.P., Tolstoles A.A. Digital Modelling of Production Engineering for Metalworking Machine Shops. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 85-98

Turning(stageNumber, surfaceTypel, surfaceType2, surfaceNumber, [machinel, machine2,
machine3, machine4, machine5], [cuttingTool 1 1, cuttingTool 1 2, cuttingTool 1 3],
workpieceParams.code, blockParams.number, numberinBlock, groupNumber, numberInGroup);
The diagram comprises a set of these lines in order set by technologist earlier. The correctness of
the technological routes is ensured in the process of symbolic verification, which checks the
acceptable ranges of parameters of the diagram, as well as the correctness of order of the whole
sequence [10]. The actual data is taken from the database and substituted instead of parameters.

3. The usage of the formalized technological process

The MSC diagram of the route is supplemented with the results of calculating the time and cost of
each processing stage. The calculations use formulas stored in the database, they are partially
shown in Table 1 and Table 2. The individual results for each processing stage of the route are
summarized, which gives an estimate of the total time and cost of the technological route.

Table 1. Formulas for turning time calculations

Formulas Paramelers description

T = L g T, - machining time
L - estimated length of processing in mm
n - workpiece rounds per minute
& - cutter feed per round in mm
i - the number of passes of the cutter
L=1l+1+12 [- the length of the workpiece
in the feed direction. mm
{1 - cutting-in length of the tool
2 - the length of the tool exit. mm
v - the speed of the cutting. mm per minute
d - the diameter of the processed workpiece, mm
== h - the amount of overmeasure in mm
t - cutting depth in mm

_ 1000w
T 27

Table 2. Formulas for drilling time calculations

Formulas Parameters description
T = ﬂ"—q T, - machining time
L - estimated length of processing in mm
1 - workpiece rounds per minute
& - cutter feed per round in mm
L=10+1;+12 { - the length of the hole. mm
[1 - cutting-in length of the tool
[2 - the length of the tool exit, mm
I = i"—JL -ctg(od) drilling in the solid material
) ¢ - the main angle in the plan, grad
d; - the diameter of the tool
n= 2ot v - the speed of the drilling. mm per minute

medy

d¢ - the diameter of the tool, mm

By changing the route parameters and recalculating the measurements, technologist can choose the
most effective one.

The selected technological route thus meets the criteria for the time and cost but yet does not take
into account the conditions and resources of the workshop in which it will be implemented. For
this, it is necessary to use simulation modeling of its performance on the equipment in the
workshop. To use the developed simulation algorithm, technologist inputs three files describing
following specifications.

94

Kornsapos B.II., Macnaxos A.I1., Toncronec A.A. LludgpoBoe MoaenHpoBaHUE TEXHOIOTUH MIPOU3BOICTBA METAIIO00PaOATHIBAIOIINX

MEXaHHYeCKHX 1exoB. Tpyost UCII PAH, Tom 31, BbIIL.

3,2019 ., ctp. 85-98

e The composition of workshop resources (CNC machines, robots, maintenance personnel,
etc.). The types of operations for each machine that it can perform are defined.
e The planned technological routes. The number of manufactured parts and the sequence of
operations with the amounts of time of their execution are determined for each route.
e The priorities of the routes and resources used, as well as the initial state of the workshop
equipment.
machine2_3 wﬂ 2 f{:_:ig;dz__l ¥ th;_CEfZ 2 i
machinel_1 _m—m—m_w 2.2 mLL_ |
mmmo_.._... 5 g 9 O o S e
- | | I | | i |
EII 5 10 15 20 25
Time
Fig. 10. Timing diagram fragment
(O 310685 Qoomg 3
Juydn
ﬁz JHN Y| | |
o - l (773 1 1 T e | o |
rgpg NenTeiied
L Sl X iy
oafensn | Xoyemaneto HE- KTMA00000001
5 e [lempa Beaukoza
Y soum it s [I
| Hesplinar onepou Fmepu Ieoghome | (B | /07 Lo 1 po3e 7T KT |
TokapHo-gpesepras ¢ Y79 |bp0@7-02 FOCT 5017-2006| 60+#8 at Umarmobia HE0KS as
Eﬁ@@m@ womogionia Y C03HTEHLUE TA0Z00MME 7]] [of 1 [um 0%
g grzep sholmudbon sy ¢ WY (U1 A T I
7 |] 7 e e S)) [T
a1 I [| I I I [[
002 |1 yomauboums v gxperums aazomobiy : : ! : ! !
T 03 |Tampos 3- rynoswobe corsuesmpupyeuuics 0P-206 | j | L | X
i | | [| | | |
oo EWM mqmuf#mxm | | | | | | |
T 05 |7 T i B moese M0V GE 6 Bt q | | 1 |
07 |01 tnovzenaspgne am-:?mos' ! ! ! R !
P08 : L 25 s i q, 3 g7 | 2% | 57
% J ll ' l JI | |
QW3 Towm & & 9#0&% | | | | | | |
7 11 P S 2 e DY G R 1 o weus ST | | [I | |
2 | tﬁ;wzewmyrb :IL’J—??S-&’SE | | ' o | -
i ! T T 2 Tl 95 law !

Fig. 11. Operating card

95

Kotlyarov V.P., Maslakov A.P., Tolstoles A.A. Digital Modelling of Production Engineering for Metalworking Machine Shops. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 85-98

The result of the simulation is a timing diagram of the distribution of operations by each machine
in the form of a Gantt chart, a fragment of it is shown in the fig.10.

Modeling allows technologist to take into account equipment downtime, the additional cost of
transporting parts and machine changeover. As a result, the estimation of the time and cost of the
technological route becomes more realistic. By changing the priorities of the technological routes
technologist obtain several options for implementing the technological process of the workshop.
By applying a hierarchy of criteria measuring the success of the work such as time, cost,
equipment loading, material savings, etc. various problems of multicriteria optimization can be
solved [11].

For each selected optimized version of the technological route, technological documentation of
production preparation is automatically generated in the form of the operating card [12], its
example is shown in fig.11 [13].

4. Conclusion

The paper considers the problem of technological preparation of single and small-scale production,
which area is characterized by imbalance of work between preparation and implementation of
production. The approach to its automation based on modular technology is proposed.

The important properties of automation system are demonstrated:

o the ability to adapt to specific production conditions such as different equipment, resources,
orders and support staff;

e significant reduction of the complexity of creating a technological route for an order using a
special automated workplace for the technologist;

e operational planning and scheduling of the technological process of the workshop;

o selection of the optimal characteristics of production processes during hierarchical multi-
criteria optimization.

According to existing estimates the platform provides a multiple increase in productivity and a

reduction in labor intensity and in amount of time of the preparation of technological

documentation for engineering production.

References / Cnncok nutepartypbl

[1]. Frolov E.B. Zagidullin R.R-b. MES as they are or the evolution of the production planning systems. Part
I1. 2007. Available at:
http://www.fobos-mes.ru/stati/mes-sistemyi-kak-oni-est-ili-evolyutsiya-sistem-planirovaniya-
proizvodstva.-chast-ii.html, accessed 14.07.2019 (in Russian) / ®ponos E.b., 3aruayammu P.P-6. MES-
CHUCTEMBI, KaK OHU €CTh WJIH DBOJIIOLIUS CUCTEM IJIaHUpOBaHus npoussoacTea. Yacts I1. 2007 .

[2]. Davidyuk Y. SCADA systems at the top level of the advanced process control systems. Intelligent
Enterprise, vol. 30, no. 13, 2001. Available at:
https://www.iemag.ru/platforms/detail.php?ID=16479, accessed 14.07.2019 (in Russian) / dasumrox FO.
SCADA-cucremsl Ha BepxHeM ypoBae ACYTIL. Intelligent Enterprise, Tom 30, Bem. 13, 2001 r.

[3]. Garaeva Y., Zagidullin R.R-b., Tsin S.K. Russian MES, or how to bring back optimism to production.
CAD and graphics, vol. 11, 2005. Available at: https://sapr.ru/article/14614, accessed 14.07.2019 (in
Russian) / I'apaesa 1O., 3arunynmun P.P-6., Hun C.K. Poccuiickue MES-cucremsl, win Kak BepHYyTH
npoussozacty ontuMi3M. CAITP u rpaduka, Tom 11, 2005 r.

[4]. Statsenko D. Applications and work without stress. Tendency, vol. 1, no. 18, 2017. Available at:
https://kompas.ru/source/articles/3.pdf, accessed 14.07.2019 (in Russian) / Crauenko [, [lpunoxenus u
pabota 6e3 Hanpspkerust. Ctpemienue, ToM 1, Bem. 18, 2017 .

[5]. Bazrov B.M. Modular technology in mechanical engineering. Moscow, Mechanical engineering, 2001,
366 pp. (in Russian) / Baspos B.M. MoaynpHas TexXHOIOTHS B MANIMHOCTPOCHHH. M.,
Mammsaoctpoenue, 2001, 336 c.

[6]. SANDVIK COROMANT. Tools and equipment for turning on machines. 2015, 1253 pp. Available at:
http://www.lab2u.ru/katalog-sandvik-coromant-2015-metallorezhushchii-tokarnyi-instrument-i-

96

Kotmspos B.I1., Macnakos A.I1., Toncronec A.A. L{udpoBoe MoAenHpoOBaHNE TEXHOIOTHH ITPOU3BOICTBA METAIIO00pabaTHIBAIOIINX
MeXaHHYeCKHX 1exoB. Tpyowst UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 85-98

instrumentalnaia-osnastka-dlia-tocheniia-obrabotki-kanavok-otrezki-rezbonarezaniia-reztcy-so-
smennymi-rezhushchimi-plastinami-iz-tverdogo-splava-kompanii-sandvik-koromant-lab2u.html,
accessed 14.07.2019 (in Russian) / SANDVIK COROMANT. MHCTpyMEHT U OCHACTKa JUIsl TOYCHHS Ha
crankax. 2015, 1253 c.

[7]. The PostgreSQL Global Development Group. Postgres Pro Standard 11.4.1 Documentation, 2019.
Auvailable at: https://postgrespro.ru/docs/postgrespro/11/index, accessed 14.07.2019.

[8]. Cherepovskii D.K., Eizenakh D.S., Kotlyarov V.P. The database architecture for the creation of the
technological routes for the small-scale production. In Proc. of the Modern technologies in the theory
and practice of programming conference, St. Petersburg, 2019, 3 p. (in Russian) / Yepenosckuii 1.K.,
Oizenax [1.C., Kotmspos B.I1. Apxurektypa 6a3bl JaHHBIX IS CO3JaHUS TEXHOJIOTHUECKUX MapIIPyTOB
MeJ‘IKOCCpHﬁHOFO IIpOU3BOACTBA. MaTepI/IaJ'[I)I KOH(i)epeHHI/II/I «COBpeMeHHBIe TEXHOJIOTUU B TCOpHUU U
HpakTuke nporpammupoBanus», Cankr-IlerepOypr, 2019 1., 3 c.

[9]. Recommendation ITU_T Z.120. Message Sequence Chart (MSC), 2011, 146 pp. Available at:
https://www.itu.int/rec/T-REC-Z.120-201102-1, accessed 14.07.2019.

[10]. Baranov S., Kotlyarov V., Letichevsky A., Drobintsev P. The Technology of Automation Verification
and Testing in Industrial Projects. In Proc. of the St. Petersburg IEEE Chapter International Conference,
St. Petersburg, Russia, May 18-21, 2005. pp. 81-86.

[11]. Voinov N., Chernorutsky I., Drobintsev P., Kotlyarov V. An approach to net-centric control automation
of technological processes within industrial 10T systems. Advances in Manufacturing, vol. 5, no. 4, 2017,
pp. 388-393.

[12]. Eizenakh D.S., Cherepovskii D.K., Kotlyarov V.P. The system for generation of the operating card of
the technological process for a small-scaled mechanical engineering enterprise. In Proc. of the Modern
technologies in the theory and practice of programming conference, St. Petersburg, 2019, 46 p. (in
Russian) / Dizenax I.C., Yepenosckuii [[.K., Komispos B.II. Cucrema reHepamiu ONEpPaliiOHHON
KapTbhl TEXHOJIOTMYECKOI'o IIpomecca g MSJIKOCCpHI:IHOFO MalIMHOCTPOUTEIBHOTO MPOU3BOACTBA.
Marepuansl koHpepeHuun «COBpeMEHHbIE TEXHOJOTHH B TCOPUH M IMPAKTHKE MPOrPaMMHUPOBAHUSY,
Cankr-IlerepOypr, 2019 r., 46 c.

[13]. GOST 3.1404-86 Unified system for technological documentation (USTD). Forms and rules for
paperwork on technological processes and machining operations. 1987. Awvailable at:
http://docs.cntd.ru/document/1200012135, accessed 14.07.2019 (in Russian) / TOCT 3.1404-86 Enuuast
cuctema texHonorndeckoi poxymentarmu (ECT). ©opmbl u npaBuina opopMiIeHHs] JOKYMEHTOB Ha
TEXHOJIOTHYECKHUE MPOIIECCHI U oTepaiu 00paboTku pe3anueM. 1987 r.

MHdopmauma o6 aBTopax / Information about authors

Bcesosnon [Tanosuy KOTJIAAPOB nosxyuui ctenenb kKaHauaaTa TEXHUUECKUX HayK B 1973 rony B
JleHWHTpaICKOM TOJIUTEXHUYECKOM HHCTHTYTE (HbIHe CaHKT-IleTepOyprckuii moInTeXHIYECKUH
yauBepcuteT Ilerpa Bemmkoro). OOmacTp HaydHBIX HHTEPECOB BKIFOYACT aBTOMATH3AIHIO
MPOMBIIIJICHHBIX ~ TEXHOJOTUH Pa3pabOTKM OONBIIMX TMPOTPAMMHBIX CHCTEM U CEeTeH,
MpPOrPaMMHYIO WHXXEHEpPUI0 TpeOoBaHWUU W cHenu(UuKanui, TEXHOJOTUU HWHTETpaIl
BepUPUKAIIUN U TECTUPOBAHUS.

Vsevolod Pavlovich KOTLYAROV received a Ph.D. degree at Leningrad Polytechnic Institute
(now Peter the Great St. Petersburg Polytechnic University) in 1973. His research interests
comprise automation of industrial technologies for the development of large software systems and
networks, software engineering in area of requirements and specifications, technologies for
integrations of verification and testing.

Anexceii [laBnosny MACJIAKOB momyunn crenenb Marucrpa B 001acTH MH()OPMAIMOHHBIX
texHonoruii B 2015 rogy B Cankr-IlerepOyprckom mosmTeXHH4YecKOM yHuBepcurete Ilerpa
Benukoro, Cankr-IletepOypr, Poccusi. MccnenoBatenbckne MHTEpPECH BKIIIOYAIOT BEpU(PHUKAIIIO
MPOTPAMMHOTO O0€CIIeUeHHsI, TeHEPaInio HCIIOTHIUMOTO Kosia, MHTepHeT Bemei, nndpoBu3samio
MPOU3BOJICTBA.

Alexey Pavlovich MASLAKOQV received the M.S. degree in information technology in 2015 at
Peter the Great St. Petersburg Polytechnic University in St. Petersburg, Russia. His research

97

Kotlyarov V.P., Maslakov A.P., Tolstoles A.A. Digital Modelling of Production Engineering for Metalworking Machine Shops. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 85-98

interests include software verification, generation of executable code, Internet of Things,
digitalization of production.

Anexceit Augpeesny TOJICTOJIEC nomyuun creneHb MarucTpa B 001acTH MHGOPMAIMOHHBIX
texHonoruit B Cankt-IlerepOyprckom nonutexunueckoM yHusepcurete I[lerpa Benukoro B 2017
roxy. B HacTosimee BpeMsi TOTOBUT JHCCEPTALINIO HA COMCKaHNE CTETIEHHN KaHANAATa TEXHUIECKUX
HayK B TOM K€ YHUBEpcUTeTe B BpIciiel mkoie nporpaMMHON MHKeHepuu. MccnenoBarenbckue
MHTEPECH! BKIIOYAIOT aBTOMATH3ALHIO TEXHOJIOTHYECKHUX MPOIECCOB, IPOMBIIIICHHBIH NHTEpHET
Bereii u back-end paspa6oTky.

Alexey Andreevich TOLSTOLES received the M.S. degree in information technology at Peter the
Great St. Petersburg Polytechnic University in 2017. He is currently pursuing the Ph.D. degree in
the Higher school of software engineering of the same university. His research interests include
automation of technological processes, industrial Internet of Things and back-end development.

98

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-9

Reputation Systems in E-commerce: Comparative
Analysis and Perspectives to Model Uncertainty
Inherent in Them

M. M. Nosovskiy, ORCID: 0000-0003-4475-3787 <mmnosovskiy@edu.hse.ru>
K.Y. Degtiarev, ORCID: 0000-0001-5519-1033 <kdegtiarev@hse.ru>
National Research University Higher School of Economics (HSE),
Faculty of Computer Science, School of Software Engineering,

3, Kochnovsky Proezd, Moscow, 125319, Russian Federation

Abstract. E-commerce is a runaway activity growing at an unprecedented rate all over the world and drawing
millions of people from different spots on the globe. At the same time, e-commerce affords ground for
malicious behavior that becomes a subject of principal concern. One way to minimize this threat is to use
reputation systems for trust management across users of the network. Most of existing reputation systems are
feedback-based, and they work with feedback expressed in the form of numbers (i.e. from 0 to 5 as per
integer scale). In general, notions of trust and reputation exemplify uncertain (imprecise) pieces of
information (data) that are typical for the field of e-commerce. We suggest using fuzzy logic approach to take
into account the inherent vagueness of user’s feedback expressing the degree of satisfaction after completion
of a regular transaction. Brief comparative analysis of well-known reputation systems, such as EigenTrust,
HonestPeer, Absolute Trust, PowerTrust and PeerTrust systems is presented. Based on marked out criteria
like convergence speed, robustness, the presence of hyper parameters, the most robust and scalable algorithm
is chosen on the basis of carried out sets of computer experiments. The examples of chosen algorithm’s
(PeerTrust) fuzzy versions (both Type-1 and Interval Type-2 cases) are implemented and analysed.

Keywords: e-commerce; reputation system; peer-to-peer computing; trust management; uncertainty; fuzzy
logic; linguistic variable; type-1 fuzzy set; type-2 fuzzy set

For citation: Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis
and Perspectives to Model Uncertainty Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3,
2019. pp. 99-122. DOI: 10.15514/ISPRAS-2019-31(3)-9

PenyTaumMoHHble CUCTEMBI B 3JIEKTPOHHOW KOMMepPLIK:
CpaBHUTeNbHbIA aHaNM3 U NepcnekTuBbI MOAENTIMPOBaHUSA
npucyLwen M HeYeTKOCTH

M .M. Hocoscxuit, ORCID: 0000-0003-4475-3787 <mmnosovskiy@edu.hse.ru>
K.IO. Jleemspes, ORCID: 0000-0001-5519-1033 <kdegtiarev@hse.ru>
Hayuonanvuvwiii ucciedosamenvckuil ynugepcumem “Bvicuias wikoana 5KOHOMuKu ™,
Gakynvmem KOMILIOMEPHBIX HAYK, OeNAPMAMERN NPOSPAMMHOU UHIICEHEPUL,
125319, Poccus, . Mockea, Kounosckuii np-0, 0. 3

AnHoTanus. B Hamm nHM snexTponnas xomMeprms (OK) mokaspiBaer OecripelieIeHTHBIE TEMITBI pOCTa BO
BCEM MHpE, BOBJIEKasl B 3Ty JASSATEILHOCTh MHIJUIMOHBI JIOJEH Ha BceX KOHTHHEHTaX. B To ke Bpems, DK
CO37[aeT MOYBY IS 3JIOHAMEPEHHBIX AeHcTBHH, 4TO TpeGyeT 0coOoro BHMMaHHSA M KOHTpoist. OIHUM U3
CIOCO00B MUHUMM3ALUHU TAKUX YIPO3 SIBISETCS UCIOIb30BaHHE PEMYTAL[MOHHBIX CUCTEM Ul OTCIIEKHBAHUS
CTENCHU JOBEpUs B cpele IMoJsib3oBareneil ceTH. BONBIIMHCTBO CyIIECTBYIOIMX PEMyTAalMOHHBIX CHCTEM

99

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

OCHOBaHBI Ha cOOpE OT3BIBOB OTHOCUTENHHO MPOBEICHHBIX TPAH3aKIMH, U OHH, KaK MPaBUIIO, paboTaloT ¢
[PEACTABICHHBIMA B BHAE YHCENl OTKIMKAMH KIHCHTOB (B YaCTHOCTH, MOXKET HCIIOJB30BATHCS IIPUBBIYHAS
nenouncineHHas mkama 0.5). B memom, TOHATHA OBepHs W peIyTalMy SIBIIIOTCA pUMEpaMu
HEOTIpeIeIeHHBIX (HETOYHBIX) HH(GOPMAIMOHHBIX JAHHBIX, XapaKTepHBIX U1 CQepbl SIEeKTPOHHOU
KOMMepInuH. MBI IpejuraraeM HCIIOIb30BaTh alllapaT HEeUeTKOHW JIOTHUKH IS (GOPMAaNbHOTO IPEeICTaBICHHUS
MI0JIb30BAaTEIbCKUX OT3BIBOB, BBIPAXKAIOIIUX CTENEHb YAOBIETBOPEHHOCTH pPE3yJIbTaTOM COBEPLICHHBIX
TpaH3akuuil. B paboTte mpencrasieH KpaTKUi CpaBHUTEIBHBIA aHATN3 HanOoJee U3BECTHBIX PEIyTallMOHHBIX
cucreM, Takux kak EigenTrust, HonestPeer, Absolute Trust, PowerTrust u PeerTrust. C yueTtom BbIeIEeHHBIX
B pe3yabTaTe aHaiu3a KpUTepueB (CKOPOCTh CXOAMMOCTH, YCTOMYHBOCTH (POOACTHOCTB), HAIHYHC
THIEpIapaMeTpoB), TPOBEICHHAs CepHs KOMIBIOTEPHBIX OKCIIEPHMEHTOB IIO3BONMIIA 3SMIIHPUYECKU
BBIIEINTH PeerTrust kak HamOosee yCTOWYMBEIA M MacIITaOMPYeMBIH alTOPUTM M3 YHCJIa PACCMOTPEHHBIX.
Ipy HaJIMYUK OTPaHUYCHHUI B OTHOLICHWH MMEIOIIMXCS JAaHHBIX, MOAroTOBNIeHs! peaym3anuu (Python 3.7) u
MIPOAHATU3UPOBAHEl PE3YNBTATH], CBS3aHHBIE C OCOOCHHOCTSIMM TOBEICHHUS HEYETKHX BEpCHil alropurMa
PeerTrust Ha ocHoBe HeueTkux MHOxecTB THma-1 (T1FS) U HHTEpBaJbHBIX HEYETKUX MHOXECTB BTOPOTO
tuna (IT2FS).

KiaroueBble cjI0Ba: JJIEKTPOHHAS KOMMEpLUS, pEMyTalHOHHAs CHCTEMa; MHUPHHTOBBIC BBIYHCICHHS;
yIpaBieHHe [OBEPUEM; HEUETKOCTh; HeueTKasl JIOTUKA; JINHIBUCTUYIECKas: IePEMEHHas; HeYeTKOE MHOXKECTBO
1-ro Tuma; HEYSTKOE MHOXKECTBO 2-T0 THIIA

Jasa uutupoBanus: HocoBckuit M.M., Jlerrsape K.IO. PenyranuoHHble CHCTEMBI B 3ICKTPOHHOH
komMepuun: CpaBHUTEIBHBIA aHAIU3 U NEPCIEKTUBBI MOJCIUPOBAHUS MPUCYINEH UM HEeYeTKOCTU. Tpynbl
HUCIIT PAH, Tom 31, Boim. 3, 2019 r., ctp. 99-122 (wa anrnumiickom s3eike). DOI: 10.15514/ISPRAS-2019-
31(3)-9

1. Introduction

E-commerce is a buying-selling runaway activity widening at an unprecedented rate all over the
world and inveigling into fascination of various e-stores people of all ages. Ever-growing number
of various websites and apps focusing on e-commerce domain makes it simple and alluring to find
and to buy immediately almost anything whatever client’s heart desires [1].

There is no doubt that e-commerce sales opportunities are rapidly progressing day by day. Owing to
Internet, businesses bring their products and services to customers literally in eyewink. The e-
commerce share of total retail sales in the United States amounted to 10% in 2018, in expectation of
attainment of 12.4% by 2020 with further strengthening its ground [2]. With such perspectives in
mind it is easy to realize why e-commerce entrepreneur position becomes so attractive. With an
estimated 95% of purchases that will be made online by 2040 and expected growth of year to year
sales standing at the level of 15%, the opportunity to find a niche for selling products online has
massive indisputable potential [3]. During the last 5 years the amount of retail sales raised from $1.3
billion to $2.8 billion. The latter is expected to nearly double (up to $4.8 billion) by the end of 2021 [4].
One of the most growing types of e-commerce is online marketplace that can be defined as a
website or app that facilitates shopping from many different sources [5]. Among well-known and
successful examples of online marketplaces eBay, Amazon, Rakuten (worldwide) and Avito, Ozon
(in Russia) can be mentioned. Online marketplace acts as a platform integrating buyers and sellers.
Being a peer-to-peer (P2P) network, it allows buyers to purchase any goods or services offered by
sellers through this online platform. Usually, peers (people or businesses) communicating through
online marketplace remain in the status ‘strangers’ with respect to each other. They don’t have at
their disposal reliable information about alter peer, whether it is a buyer or a seller. Therefore,
peers must manage the risk associated with transactions on condition that no prior experience and
knowledge concerning mutual reputation of sides exists [6]. This problem can be addressed by
means of developing a system on top of the network that should help peers to evaluate their past
experience with other peers and to manage trust between them as well as reputation of each peer
involved. This kind of systems is called reputation systems.

Various implementations of reputation systems exist starting with very simple to more complex
ones designed mostly for P2P file-sharing networks [7-10]. Such systems have a positive impact
100

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

on peer’s experience as they help to distinguish trustworthy peers from ill-intentioned and
unreliable opponents. For example, in reputation system used by eBay, one of e-commerce leaders,
buyers and sellers have a chance to rate each other with numeric scores +1, 0 or -1 after each
carried out transaction. The overall reputation of a participant is calculated as a sum of scores
earned over last six months [8]. At that all such systems rest upon notions of trust and reputation.
Trust (or, local trust) represents personal experience (attitude) of a user regarding another user,
while reputation constitutes an aggregate of these individual trust values on the scale of the whole
community. Calculation of local trust and corresponding aggregates underlies implementations of
all known reputation systems.

Despite the practical effectiveness of these systems, there is a substantial drawback inherent in them,
viz. none of them can handle uncertainty “hidden” in online marketplace’s data. The latter means data
that relate to all transactions accomplished on the marketplace along with data collected from users after
each transaction and metadata concerned with every user in the marketplace.

The primary concern of the paper is to provide the overview of best known reputation systems and
to undertake their general comparative analysis on the basis of several key factors (criteria) — they
are speed of convergence, complexity of calculations, use of hyper parameters expressing user’s
preferences, robustness and general system’s suitability to handle imprecision and uncertainty of
data. In the first place these factors are chosen to convey the requirements of key stakeholders who
are owners and developers of a marketplace as well as its users. For the first group of stakeholders
general system’s effectiveness becomes important, and it is attributed above all to the efficiency of
its functioning, computational resources needed to perform the work and ability for customization.
Users are mostly interested in reliability of system’s output and how well it suits each given user.
The last factor mentioned above reflects how naturally specific implementation of the system can
be extended to handle data uncertainty and imprecision, since the latter being an inherent part of
virtually any system reveals itself in different forms. The recognition of such manifestation forms
of uncertainty becomes a task of prime importance to represent appropriately (model) its
distinctiveness. Consequently, fuzzy logic is getting one of pivotal theories that captures naturally
the phenomenon of imprecision and uncertainty [11].

The rest of the paper is organized as follows: in section 2 notions of trust and reputation,
difference between them, are considered. Uncertainty in the marketplace and verbal assessments
that are inherent in reputation systems form the contents of section 3. Some basic terms and
definitions relating to the field of fuzzy sets and logic are covered in the section 4. Section 5 is
devoted to the brief comparison of five well-known reputation systems (EigenTrust, Absolute
Trust, PeerTrust, et al.) and stressing their key differences as well as intrinsic similarities. Setup of
computer-based experimental part of the work (parameters and their values used) constitutes the
material of section 6, whereas the results of carried out experiments are discussed in the section 7.
Thereafter, the transition from crisp to type-1 and interval type-2 fuzzy PeerTrust algorithm
(analysis of such transition’s outcome) is presented in finishing sections 8 and 9. Concluding
remarks and observations are drawn in section 10.

2. Trust and reputation. What is the difference between these terms?

Trust and reputation are the main concepts underlying vast majority of reputation systems. In order
to clearly recognize the purpose of reputation systems, we need to define what do trust and
reputation in terms of online marketplace stand for. Diverse sources give different definitions of
the term ‘trust’. The basic definition presented in Oxford English Dictionary reads as follows:
«Trust is a firm belief in the reliability, truth, or ability of someone or something» [12]. However,
such definition cannot lay claim to completeness, since notions of trust and reputation as applied to
peculiarities of Internet-based activities must be defined in a more context-specific way. Among
other things, Alam & Paul define trust as «a belief, the trusting agent has in the trusted agent’s
willingness and capability to deliver the services that they are mutually agreed on in a given

101

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

context and in a given time slot» [13]. In addition, Wang & Vassileva associate term ‘trust’ with
«a peer’s belief in another peer’s capabilities, honesty and reliability based on its own direct
experiences» [14]. Starting from individual judgments and predictions, Gambetta state that «...
trust is a subjective probability that relies on context and reputation, it describes how secure a
situation is even though risk is associated with it» [15]. It can be noticed that trust is mainly linked
to belief that peers (agents) mentally possess in malicious P2P environment. Thus, trust can be
viewed as a soft system’s factor that is difficult to express precisely and in complete form. It is tied
to distinction of numerous generally inhomogeneous interactions between peers, organization of
the network, in which humans play a pivotal role.

For reputation term situation seems resembling, i.e. there is also no conventional definition that
most of sources agree on. According to [14], reputation is defined as «peer’s belief in another
peer’s capabilities, honesty and reliability based on recommendations received from other peers». On
the other hand, already cited above Alam & Paul propose to consider reputation as «aggregation of
all recommendations provided by the third-party recommendation agents about the quality of the
trusted agent» [13]. Abdul-Rahman & Hailes define reputation as «an expectation about an agent's
behavior based on information about its past behavior» [16]. Kreps & Wilson link reputation to
characteristic or attribute «ascribed to one person by another person (or community)» [17]. A
complete (at least, voluminous) overview of definitions relating to trust and reputation can be found
in [18]. In the present work, we use definitions for terms ‘trust’ and ‘reputation’ from [14] since both
definitions agree with basic concepts of reputation system and interaction within P2P community.
Even though trust and reputation are very closely related concepts, and many sources simply use
them virtually as synonyms, still there is a major difference to emphasize. While trust is subjective
in nature, and it expresses local attitude of a peer regarding another agent on basis of his/her own
past experience, reputation serves as a global and public perception of a given peer in the midst of
other peers. With this point in mind, we may list those important characteristics of trust and
reputation that must be taken into consideration when considering reputation systems.

e Context awareness (sensitivity) — trust or reputation of a peer is dependent on what the
context of communication is. For instance, a peer can be really trustworthy in delivering
books or office supplies, but unreliable in selling electronic accessories,

e Multi-faceted nature (diversity) — even in the same context, peer can evaluate the quality of
communication with another peer on the strength of several aspects. In the case of online
marketplaces delivery time, quality and price of goods (services) can be mentioned. While the
context-sensitivity of trust underlines the fact that the trust in the same agent may vary with
reference to different situations, the multi-faceted nature characteristic stands for
manifoldness of trust. It definitely plays a substantive role in deciding whether an agent is
trustworthy to interact with or not [14],

e Dynamism — apparently, levels of both trust and reputation increase or decrease in view of
gaining experience (direct interaction). Such changes may alternate in due course depending
on arising situation in the system, with a clear-cut declining tendency observed with time
[14],

e Imprecision and uncertainty — it is not very habitual for humans to operate with estimates of
trust and reputation in the form of numbers. Definitely, it is not difficult to perform relatively
simple calculations even in passing, but explanations and interpretations are usually based on
verbal forms (words, phrases and short sentences in natural language). The peer can be
classified as «very trustworthyy, «not too trustworthy» or in some likewise manner. Thus, we
express gradations (imprecise estimates) of the extent, to which the peer is reputed as
trustworthy or not. The bounds of gradations (verbal granules) are inexact, but nevertheless
linguistic forms are easily perceived and processed by specialists and ordinary people in talks,
reasoning and decision-making process. We may conclude that trust is a highly subjective

102

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

category, and being apparently fuzzy it can be associated with verbal assessment values
(granules). The vagueness of the trust is linked outright to uncertainty of reputation as well.

3. Uncertainty in marketplace data. Verbal assessments are very natural in
reputation systems

The paper is focused on reputation systems as applied to e-commerce field (and specifically online
marketplaces). Because of that it is essential to consider what kind of data concerning peers and
their transactions are available, and what sort of data peer’s feedback about fulfilled transaction
contains. In online marketplaces there are two types of peers — they are sellers and buyers; every
transaction implies participation of one seller and one buyer. It is important to distinguish these
types of ‘players’, because they gain trust and reputation that differ by their gist. In the present
work we consider three types of marketplace data:

e peer data, i.e. a set of general data pieces that relates to peer itself (personal data, registration
date, etc.);

e transaction data — general data about transaction held between seller and buyer (delivery time,
payment time, total sum and date of transaction, etc.);

o feedback data refer to data collected from both seller and buyer after completion of each
transaction (goods quality, communication quality, shipping service reliability, etc.).

Most of the existing reputation systems work only with peer’s feedback [7-10,19]. In general,
feedback provides some subjective assessment of experience that a peer has with another peer in
the course of transaction’s realization. But in certain cases, such experience cannot be thoroughly
expressed in terms of integers -1, 0 and +1 as it occurs in eBay system. Why do we think so?
Firstly, regarding feedback as a number means neglecting diverse aspects of experience such as
those mentioned above. Secondly, and this fact was also underlined earlier, it is more natural for
humans to think of evaluating experience in terms of some ordinal scale stretching from «very
bad» label to «very good» instead of using «goody, «neutral» or «bad» plain marks as linguistic
equivalents of -1, 0 and +1. In case of extended scale’ use, its grades may overlap with each other,
since each label or grade stands not for a single value, but for a range of values instead. For instance,
there is no clear-cut border line between values (labels) «very bad» and «bady, but almost all people
may differentiate these values mentally while impacting information chunks to others.

Similar situation comes to pass with reference to transaction data. For example, let us consider
delivery time of basic electronic accessories from Moscow to Saint-Petersburg. We know that they
are normally delivered within N days. Is it «quickly», «slowly» or «neither slowly, nor quickly»
for a client? Maybe it is a little bit slowly, but not too much? What can be said about N+2, 2N
days or even 5N days? At some point it becomes obvious that delivery time can be associated with
label «slowly» or even «very slowly». But what do we mean by that some point? For different
people it occurs at different moments, which are not fixed (crisp), and this is when imprecision and
uncertainty (fuzziness) of these data reveal themselves.

4. Fuzzy logic theory. Some basic terms and definitions used in the study

Taking into account uncertainty inherent to notions of trust and marketplace data, we need to
consider its formal representation for a possible use in trust management and reputation systems
(models). The concept of uncertainty is many-sided and rich; furthermore, uncertainty
‘accompanies’ any interactions of humans with real world [11]. In this connection, reputation
systems exemplify active communication of peers based on the exchange of information that is
often a matter of human perceptions and interpretations to a various extent. Much depends here on
cognition and verbal assessments expressed in the natural language. Such perceived units can be seen
as granules with ‘soft” bounds rather than exact quantities having unified meaning and interpretation
by all parties involved into the process. The theory of fuzzy logic (FL) extends the ontology of

103

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

mathematical research in the context of formation of a composite methodology that leverages quality
and quantity [20]. It provides ample means to model the “perceived meaning of words/phrases
conveying the expert opinions (estimates) in a graded fashion” [21]. The following is a quick glance
at main concepts and definitions concerned with fuzzy logic as used in the present study.

Definition 1. Linguistic variables (LV) — variables whose values are words, phrases or sentences
(linguistic terms) expressed in natural or artificial language [22]. In short, we can state that LV
constitute a form of information granulation serving as a base for further transition of those
granules to computable counterparts [23]. For example, if we consider the case of delivery time
from point A to point B, the label (term) “quickly” is one of possible linguistic values assigned to
the variable Delivery Time. Its whole term-set can be represented as T pelivery Time) = «quickly» +
«very quickly» + «slowly» + «more or less quickly» + ... , where sign ‘+” denotes the aggregate of
linguistic granules rather than arithmetic sum operation.

Linguistic variable Delivery Time is defined on the universal set U (realistic range of numeric
values representing the delivery time in particular situation), i.e. each element x € U stands for the
time (minutes, hours, etc.) that can be associated as a result of human’s perception (judgment) with
corresponding terms to various degrees.

Definition 2. Let U be a set of elements (objects) that are denoted generically as x (U={x}); fuzzy
set AcU is a set of ordered pairs {(X,p,(x))}, where mapping p, :x —[0,1] is a (type-1)
membership function of a fuzzy set A. Value p, (x) is a degree (grade) of membership of x in the

set A, and U is a problem’s domain (universal set). Membership function (fuzzy set) represents
possibility distribution of x-values over domain U, and it can be expressed as aggregation

'[“A—(X) or union ZM—(X) of pairs {(x,u(x))} , W(x) €[0,1], in continuous and discrete cases,

v X xeU X

correspondingly.
Definition 3. Let A be a fuzzy set on U, then a-cut of A is a crisp (non-fuzzy) set A, composed
of all xe U, whose grades of membership in A are greater or equal to o [22]. Formally, A, can

be expressed as {x|p, (x) >a} . A fuzzy set A may be decomposed into and restored from a-cut

1
sets through the resolution identity [24, 25],i.e. A= J'aAa ,or A= ZGAa , ae[0,1].
0 o

An integral part of any formal modeling approach is closely related to the use of functions. Along
with pervasive processing of non-vague objects, fuzzy quantities in last three decades became
widespread in algorithms covering enormous circle of application domains. The need to extend the
possibility for functions to operate with arguments having the form of fuzzy sets has led to
formulation of extension principle [22, 26, 27]. As its name speaks for itself, it is directed to
spreading nonfuzzy mathematical concepts to fuzzy ones [28]. It is specifically what is required to
handle aspects of uncertainty (fuzziness) with reference to existing reputation systems.

Definition 4. Assume f is a mapping from universal set U to set V, and A is a fuzzy set defined
on U (for the sake of simplicity we may consider finite representation of such set, i.e.
A=p, (x)/x) 1, (%5)/%, +o+ 1, (x,)/x,,). Relying on the extension principle, the image
f (A) of A under mapping f is obtained as follows:
f(A)=f (HA(Xl)/Xl F (xp)/xg e 1, (x,)/x,) =
= (x)/ T)+, () / TG+ (x,)/ F(x,)
In other words, the image of A under f can be deduced from the knowledge of the images
f(x), F(x),. T(x,).

104

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

Definition 5. The process of representing initial data (e.g. linguistic values) as membership
functions is called fuzzification; most of applications require to perform at final stages the opposite
translation from fuzzy functional forms to crisp values — this is achieved through defuzzification
procedures [11, 21, 26, 29].

5. Brief comparison of existing reputation systems - their differences and
intrinsic similarities

The number of publications devoted to trust management and reputation systems is pretty
imposing, and it is growing from year to year [6, 8, 9, 10, 14, 19, 30]. In the paper, we wittingly
touch upon (just brief overview augmented with performance considerations) the most significant
systems that proved themselves as effective, robust and applicable to online marketplace
reputation management. It is worth mentioning that only those systems that do not use basically
fuzzy logic concepts are reviewed in the paper. For instance, systems that utilize fuzzy inference
schemes or other fuzzy-logic related notions [20, 31, 32] constitute an interesting research topic,
but on level with other relevant cases it is outside of the scope of the present paper.

Results of the conducted analysis of existing sources provided a basis for selection of those criteria
that can be classified as crucial from the viewpoint of systems’ comparison. They can be described
concisely as follows:

e Speed of convergence — iterative algorithms form a core of nearly all reputation systems.
Thus, one of important aspects of such algorithms is how fast they converge and produce a
result. This feature is covered as a principal one in most of papers related to reputation
systems [6,8,9,10],

e Robustness — it is the criterion concerned outright with the main purpose of every reputation
system, namely, the prevention of malicious attacks. Therefore, it becomes essential to
measure how well a given system is able to held out against malicious peers’ activities. Such
experiments are covered by S.D. Kamvar, M.T. Schlosser, H. Kurdi, N. Chiluka, N. Andrade, Y.
Wang, L. Xiong, et al. in [6,8,9,10,14,19]; however, it is important to mention that papers
referenced here cover different types of malicious behavior,

e Hyperparameters — their presence is an important point to consider in the process of system’s
deployment, since they show the extent, to which the system is customizable. But at the same
time, factor of their presence is a ‘double-edged sword’, inasmuch as, on the one hand, tuning
of hyperparameters may lead to better performance of a specific system. On the other hand, it
enhances significantly the complexity of deploying the system,

e Handling data imprecision and uncertainty — most of hypothetical or artificial systems do their
work in the presence of uncertainty. The latter is often linked to human factor being an
integral part of a system in the context of verbally defined and/or interpreted data. The latter
are elicited from active discussions with stakeholders and estimations commonly used as
inputs in calculations provided for algorithms underlying system’s work specifics. Those
pieces of information are often ‘soft’ (imprecise) in their nature, and it opens manifest way
for the use of fuzzy logic theory in models of reputation systems. Hence, the comparison of
algorithms can be performed in the view of how well system (algorithm) adapts fuzzy logic
extension.

5.1 EigenTrust Algorithm

EigenTrust system is originally proposed for a P2P file-sharing network by S.D. Kamvar, M.
Schlosser and H. Garcia-Molina in the paper that became one of the most cited papers on reputation
systems [8]. EigenTrust calculates a global trust value for each peer based on his/her past behavior
by incorporating opinions of all peers in the system [19]. Opinions concerning a particular peer are
represented as a local trust value. After each communication peer assesses his/her experience by

105

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

the value from restricted set comprised by integers -1, 0 or 1. The local trust value is an
aggregation of all communication experience assessments. It was shown how to normalize local
trust values in a way that leads to elegant probabilistic interpretation similar to the Random Surfer
model and efficient algorithm to aggregate these values [8,33]. Pre-trusted peers that can be seen
here as a hyperparameter (it must be chosen in advance for the whole system to operate) are used
to guarantee convergence and breaking up malicious collectives. The choice of pre-trusted peers is
important, and it can compromise the quality of system to a marked degree [8]. As also shown in
[8], for a network with 1,000 peers the algorithm converges after completion of less than 10
iterations. Theoretical base for fast convergence of EigenTrust algorithm is discussed by T.H.
Haveliwala and S.D. Kamvar in [34]. Robustness of the system is evaluated under several threat
models, and the system shows good overall performance in all cases [8]. For both Individual
malicious peers and Malicious collectives threat models, EigenTrust system outperforms non-trust-
based systems showing five to eight times better results with fraction of inauthentic downloads
(FID) less than 0.2 for every setting. For Malicious collectives with camouflage case (model 3),
system shows less impressive results, but still Malicious Spies threat model (fourth model) tends
to be the best strategy for malicious peers to attack trust-based network [8].

As already mentioned earlier, EigenTrust system uses aggregated local trust values that must be
normalized beforehand to avoid system’s ‘demolition’ due to assignment of very high and very
low local trust values [8]. Normalized local trust value c;can be calculated as

¢;; = max(s;;,0)/X;max(s;;,0), where s; is a local trust value. The shown way of

normalization isn’t free of drawbacks. For one thing, normalized values don’t draw a distinction
between a peer with whom a given peer i did not interact and a peer with respect to whom peer i
has had a poor (negative) experience. Secondly, c; values are relative, and they cannot be

interpreted easily in the absolute sense [8]. Thus, an attempt can be made to extend EigenTrust
algorithm with fuzzy logic notions to obtain transparent and interpretable modification of the
original computational scheme. Particularly, calculation of local trust value may be altered to
accumulate different types of marketplace data, but further study that concerns the impact of
fuzzification on probabilistic interpretation of EigenTrust algorithm is required.

5.2 HonestPeer Algorithm

HonestPeer as an enhanced version of EigenTrust algorithm is discussed by H. Kurdi [9]. The
algorithm endeavors to address one of the major problems with EigenTrust system, viz. pre-trusted
peers. HonestPeer minimizes the dependency on that pre-trusted set of peers by choosing one
honest peer dynamically for every computation step of global trust value (GTV). This honest peer,
i.e. the peer having the highest global trust value, plays a crucial role in further computations of
GTV. The speed of HonestPeer’s convergence is almost the same as for EigenTrust algorithm,
despite the need to perform additional calculations. Following [9], two benchmarks are considered
— they are EigenTrust algorithm and no algorithm. Performance of HonestPeer algorithm is
estimated under different experimental settings embracing variable number of users and files as
well as number of pre-trusted peers and with the examination of percentage of inauthentic file
downloads by good peers and success rate of good peers (success rate of good peers equals the
ratio of #valid files received by good peers to #transactions attempted by good peers).

HonestPeer algorithm surpasses EigenTrust in effectiveness and capability to ‘help’ good peers to
download valid safe files. This fact can be attributed to the ability of HonestPeer to choose honest
peers dynamically after each round, while in case of EigenTrust pre-trusted peers are chosen
statically irrelative of their performance [9]. Since HonestPeer is basically an enhancement of
EigenTrust algorithm, the use of fuzzy logic may be appropriate and explicable as a practical
matter to address those forms of uncertainty that are typical for system under consideration.

106

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

5.3 PowerTrust Algorithm

The reputation system PowerTrust, which is based on power-law distribution of peer feedbacks
discovered after examination of 10,000+ eBay users’ transaction traces, is covered by R. Zhou and
K. Hwang [10, 35]. In PowerTrust system a few power nodes are selected dynamically according
to their reputation. These nodes can be dynamically replaced, if they become less active or
demonstrate unacceptable behavior. Good reputation of power nodes is accumulated from the
operation history of the system — functional modules of PowerTrust system as well as flow scheme
that relates to collection of local trust scores and global reputation aggregation are visually
demonstrated in [10]. Without going into particulars, it should be mentioned that raw data input for
PowerTrust is treated as local trust scores, which are then aggregated to obtain global reputation
score of each peer. The Regular Random Walk module supports the initial reputation aggregation,
while Look-ahead Random Walk (LRW) module is used to update the reputation score
periodically. LRW also works with Distributed Ranking Module to identify power nodes. The
system leverages power nodes to update Global Reputation Scores (vector V) [10].

The experimental performance of PowerTrust in terms of reputation convergence overhead to
measure aggregation speed, ranking discrepancy to measure the accuracy, and root-mean-square
(RMS) aggregation error to quantify system’s robustness to malicious peers shows that PowerTrust
algorithm outperforms EigenTrust by more than factor 1.5 in case of convergence speed [10]. Under
all settings PowerTrust exhibits its robustness against collusive peer groups of various sizes.

In much the same way as for both EigenTrust and HonestPeer, the point of fuzzy logic’s application
to PowerTrust algorithm is a local trust value. Several linguistic terms may be defined on [0,1]
interval to be used consequently for computation of global reputation. It is of definite interest to
research whether the use of fuzzy logic may affect properties of PowerTrust algorithm or not.

5.4 Absolute Trust Algorithm

The algorithm for aggregation of trust among peers in P2P networks (Absolute Trust algorithm)
was presented by S.K. Awasthi and Y.N. Singh [30]. Most of reputation systems are built upon
scenario when all peers evaluate other peers by way of assigning foregoing local trust values that
are a subject for further aggregation aimed at obtaining peers global reputation scores. In general,
three different types of evaluation scenarios (one-to-many, i.e. one person is evaluating many
persons, many-to-one scheme, under which many persons are evaluating one person, and one-to-
one case, which implies that one person is evaluating another person) can be identified. In an effort
to strengthen feedback’s reliability in many-to-one evaluation scheme, any evaluation provided
must allow for the competence of evaluator (evaluating party in the system) in computations via
proportional weight’s factor. Global trust of j-th peer can be used by way of weight in aggregation
of local trust scores in calculation of any given i-th peer’s global trust. Thus, a set of peers
communicating (providing services) to the i-th peer can be reduced to just one virtual
representative. It results in obtaining one-to-one evaluation scheme, and the trust of a set will be
dominated by peers having higher global trust [30].

The existence and uniqueness of global trust vector as an outcome of aggregation approach is
proven in [30]. The closed-form peer’s global trust expression lays a basis for direct comparison of
global trust values calculated for any two peers in the system (network with N nodes). There is no
theoretical explanation of fast algorithm’s convergence, but experiments show that it converges
fast (about 7 iterations for 100 peers in the network) [30].

Robustness of the algorithm is evaluated regarding behavior of EigenTrust and PowerTrust
systems. Several network configurations are considered in [30] such as the ones under the presence
of pure malicious peers, peers with unpredictable behavior as well as malicious collectives (groups
of peers whose familiarity positively affects their own reputation values diminishing
corresponding values of persons outside such groups). It was shown that for first two
configurations the performance of Absolute Trust improves significantly as compared to

107

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

counterparts (by appr. 2% to 4% of authentic transactions that relate to exchanging files between
peers, respectively). As concerns malicious collectives, performances of algorithms are almost
identical, with marginal superiority of Absolute Trust over its aforesaid rivals.

The local trust metric in this algorithm can be defined in many ways, and it forms prospects to
develop a fuzzy local trust metric. It is worth mentioning that aggregation procedure used in the
algorithm can be practically retained. The customizable local trust metric allows to use fuzzy logic
approach to extend the algorithm in relatively easy and natural way.

5.5 PeerTrust Algorithm

PeerTrust is another example of P2P reputation system designed specifically for e-commerce
communities that are characterized by distinctive problems and risks [6]. L. Xiong and L. Liu
identify five important factors that relate to evaluation of peer’s trustworthiness as regards
supplying other peers with corresponding services. These factors are feedback obtained by a peer,
feedback scope (e.g. total number of transactions occurred between peers), credibility of feedback
source, transaction context aimed at drawing distinction between extremely crucial and less
important or uncritical transactions, and community context to address community-wide
characteristics and vulnerabilities. Based on formalization of these parameters, the authors
proposed a peer’s j trust value (metric) T(j) consisting of two parts [6]. The first one is a

weighted multiplicative combination of amount of satisfaction peer obtained after realization of
each transaction, adaptive transaction context for i-th transaction of a peer and credibility of the
feedback received from peers. Community context factor constituting the second part of T(j)’s

expression increases or decreases the impart of the first part to trust value owing to allowance of
distinctive community’s features. The proposed metric T(-) should be considered as a general

form, in which corresponding parts can be ‘tuned’ in terms of parameters and factors used [6].
Every part of the metric can be implemented differently — alternatives of possible credibility
measure metrics (trust value/TVM, personalized similarity/PSM) are presented by L. Xiong and
L. Liu in their paper.

Speed of convergence and complexity of PeerTrust algorithm appreciably depend on metrics
definitions and specific implementation strategies. In general, the performance of system under
PSM metric is a bit worse than in case of TVM, but on the other hand, the former provides better
results as the number of peers in the network is increasing. System’s robustness is assessed on the
grounds of effectiveness against malicious behavior of peers comparing to conventional algorithm,
in which the average of the ratings is used to measure the trustworthiness of a peer without taking
into account the credibility factor. The trust computation error as a root-mean-square error (RMSE)
of the computed trust value of all peers and the actual likelihood of peers performing a satisfactory
transaction are computed to evaluate the algorithm’s performance. PeerTrust with PSM metric
ensures striking results as calculated RMSE does not exceed the value of 0.05, and transaction
success rate attains virtually unity.

It must be admitted that PeerTrust system is very flexible over the existing possibility to choose
local trust metric. Therefore, it seems that the practical application of fuzzy logic approach to
handle naturally nascent uncertainty (vagueness) of certain parameters and characteristics in the
algorithm looks justified enough. The system also possesses a great potential to incorporate all
types of marketplace data, especially through transaction and community context parts of the
general metric T (-) that afford means of broad coverage of manifold system’s peculiarities.

6. Experimental part — setup stage. General comments

For the experimental part of the study, we implemented a simulator (in Python 3.7), and the
section describes the general simulation setup, including the community setting, peer behavior
pattern, and trust computation.

108

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

We assume that hypothetical (simulated) community consists of N peers, for which two peer types
are defined, namely, they are honest and strategic, or malicious, peers [36]. The first one embraces
those commitment long-run players focused on cooperation, since the latter maximizes player’s
lifetime payoffs, if the player consistently sticks to action in long-range outlook. In contrast,
opportunistic player who cheats whenever the occasion is beneficial for him is bound to a strategic
type [6]. The percentage of malicious peers in the community we denote by K. It is reasonable that
behavior pattern of good peers is to always cooperate and provide honest feedback after each
transaction. However, a correct modeling of malicious peers behavior is a bit challenging task that
may require certain simplifications. In particular, we may consider that malicious peers always
cheat during transactions and give dishonest ratings to other peers, i.e. they rate negatively a peer
who cooperates and provides good rating to a peer who cheats. In case of EigenTrust and
HonestPeer algorithms there are also pre-trusted peers that play an important role from the
standpoint of algorithm’s consistency. Respective PRE_TRUSTED parameter stands for the
percentage of pre-trusted peers that relate to good peers only. In general, behavior pattern of peers s a
topic on a slippery ground, i.e. it can be placed among those aspects of models of reputation systems
that require close scrutiny. Why? Potentially, the above cited pattern is definitely not unique, so in
order to make models viable other feasible options must be addressed hereafter with great care.

We may also assume that community has CAT categories of services that are provided by peers.
From amongst these categories each peer is interested only in a specific subset having the
cardinality not less than S. Each category is associated with at least P percents of peers in the
community. When a peer queries a service of a specific category, only peers associated with this
category can respond to such query. At that, two transaction settings are simulated — they are
random and trusted. Random (or, simple) setting means that a peer, which responds to the query, is
selected randomly (uniform distribution is used) from a set of all peers that can provide queried
category of service. In trusted setting the responder is also selected randomly from all peers that
can respond to the query, but it is done with respect to their reputation, i.e. a peer with higher
reputation has better chances to be chosen. If there are peers with zero reputation, then there is a
10% chance that the responding peer will be chosen uniformly from those peers. It efforts the
opportunity for new peers to start building up their reputation.

Binary feedback system is used to evaluate peer after each completed transaction. It means that
values 0 and 1 are practiced for PeerTrust and Absolute Trust algorithms, -1 and 1 are used in
cases of both EigenTrust and HonestPeer approaches. Local trust and reputation computation steps
as such depend on the algorithm in use. Some algorithms have their own hyperparameters that
must be specified. Default values of parameters are listed in Table 1. Simulation session (cycle)
consists of SIM_NUM transactions. Global reputation is updated after every UPDATE_NUM
transactions. Experimental results are averaged by 5 cycles of simulation. Although we simulate
online marketplace community — usually it is big enough, dozens to hundreds of thousands of
peers — experiments are performed under the presence of modest number of peers. It may be
considered as a perceptible limitation, however, the main aim of simulation is to obtain those prior
results that lay down the ground for further analysis of weak/strong points of models considered
here in terms of deeper understanding of their potential to incorporate formal representation of
uncertainty (imprecision) factors into these models. In real-life environment it seems highly
unlikely that the major part of marketplace peers is malicious as it was defined earlier. Therefore,
we don’t consider in simulation a malicious peers share exceeding 35%.

7. Experimental part — results and their comparison

We introduce a metric that shows the effectiveness of the reputation system as a rate of
unsuccessful transactions (RUT). The unsuccess of transactions is bound up with the outcome of
those transactions, in which responding peer happens to be malicious. It is obvious that the less
value of the metric is the better. Besides, for the time being we do not consider PowerTrust
algorithm in the empirical study, since it requires more close inspection and implementation cycle.

109

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

7.1 Effectiveness against malicious behavior

The objective of conducted experiments is to evaluate the robustness of the reputation systems against
peers with malicious behavior. In the first experiment we alter the percentage of malicious peers in
hypothetical community from 10% to 35% with other parameters keeping their default values (Table 1).
Table 1. Parameters and their values used in experiments

Affiliation - Default
. Parameter Description
with... value
N number of peers 1000
K percentage of malicious peers 15
c . CAT number of categories 10
ommunity
setting s minimal number of categories for 3
each peer
p minimal percentage of peers 5
associated with each category
. . SIM_NUM number of queries in a simulation 10000
Simulation mber of transactions in
settin nu nsactions i
g UPDATE_NUM reputation update cycle 100
EigenTrust &
HonestPeer PRE_TRUSTED percentage of pre-trusted peers 5
weight of good transactions in
GOOD_W local trust 10
Absolute Trust oht of bad —
BAD W weight of bad transactions in 1

local trust

Eobustness of reputation systems

"__.-' = -
g Abszolute
Trust
PeerTrust
EigenTrust

rateof unsuccessful transactions

T

percentage of malicious peers

Fig. 1. The growth of rate of unsuccessful transactions depending on the increase of malicious peers’
percentage (from 10% to 35%) for different algorithms

As is easy to see in fig. 1, the rate of unsuccessful transactions grows almost linearly with the
increase of values (axis x) for simple setting; trusted settings show better results though.
EigenTrust, HonestPeer and PeerTrust algorithms show extremely moderate growth of RUT with
the increase of malicious peers’ percentage. Absolute Trust algorithm demonstrates quite
disappointing results characterized by negligible gain (within appr. 2.1% on average) as compared
to simple (random) system’s case.

110

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

7.2 Speed of convergence and scalability

In this set of experiments, we take aim at evaluating the general speed of algorithms convergence
and their scalability with regard to the increase of number of peers (fig. 2). As will readily be
observed, algorithms PeerTrust and Absolute Trust generally need not more than 2 iterations to
converge, while EigenTrust and HonestPeer need to go through 4+ iterations. More than twofold
difference on very small values practically equalizes rivals under the conditions of experiment.
Thus, all algorithms seem to be quite scalable concerning the number of iterations needed to
converge, since the latter does not grow substantially with the increase (from 1,000 to 3,500) of
number of peers in the community.

, Speed of convergence

- HonestPeer
EigenTrust

Absolute PeerTrust

numberof terations

Trust

aumber of peers

Fig. 2. The speed of convergence (number of iterations needed) of algorithms depending on the number of
peers (in the range from 1,000 to 3,500)

Eobustness of reputation systems

- - -

Abzolute
Trust

HoneztPeer

PeerTrust :
EigenTrust

¥ -

rate of unsuccessfizl transactions

number of peers

Fig. 3. The speed of convergence (number of iterations) of algorithms depending on the number of peers (in
the range from 1,000 to 3,500)

We also evaluate how consistent corresponding systems are against the background of increasing
number of peers under «freezing» of other parameters (fig. 3). It can be seen that situation remains
almost indistinguishable be it small or bigger community — the rate of unsuccessful transactions
mostly remains unchanged in the context of the same malicious peers’ percentage.

111

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

7.3 Choice of the «best» (most feasible) system

According to the results of experiments summarized above as well as constraints and assumptions
put forward, PeerTrust model appears the most robust and effective reputation system among
alternatives. It is quite stable regarding the growth of percentage of malicious peers in the
community and scalable enough to handle evenly larger number of peers. What is more, local trust
metric in PeerTrust system is highly customizable, and this fact simplifies the possibility to extend
it with fuzzy factors inhere in reputation systems. In a wide sense we can talk about marketplace
data uncertainty that requires much attention in further development of the topic and elaboration of
formal aspects of models. Thus, in this instance we opt for PeerTrust system with the object of its
modification on the basis of Zadeh’s extension principle.

8. Transition from crisp PeerTrust system to Fuzzy PeerTrust system. Is it
worthy of notice?

In order to implement fuzzy reputation system, we need to understand above all what data will be
represented by fuzzy sets (numbers). In non-fuzzy version of PeerTrust algorithm binary feedback
system is used. We suggest utilizing a broader scale to express degrees of satisfaction concerning
transaction. It naturally arises from peculiarities of human’s perception of information (comments,
judgments) — it is not a very convenient and alluring way for humans to think in terms of zeros and
ones (or, any other numbers). For the human mind such terms as «bad», «normal» and other
resembling options look more understandable and well-suited for interpretation and processing.
Being guided by this observation, the new algorithm’s feedback can be represented by five verbal
degrees of satisfaction, namely, they are «very bad», «bad», «normal», «good» and «very good».
More fine granulation does not look preferable here, because it may lead to certain confusion in
view of human perception of satisfaction’s shades — the ‘magic’ number 7+2 and the seminal paper
(1956) by American psychologist George A. Miller on limits on our capacity for processing
information straight away cross our mind.

Transaction quality

" i Very
o bad -
= good
= Very

= bad good

b=

§

oniverse of discourse U=[0.1]

Fig. 4. Linguistic values (trapezoidal membership functions) of the variable ‘Transaction quality’ (universe of
discourse U=[0,1])

Such verbal terms are treated as linguistic values of the variable «degree of satisfaction» or
«transaction quality»; each value can be formally represented by trapezoidal membership function
on universe of discourse U=[0, 1] as shown in fig. 4. The type (e.g. Gaussian, bell-shaped, etc.)
and the location of fuzzy sets on U may vary noticeably depending on estimates provided by

112

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

expert group with reference to characteristic features and implicit shades of model under
consideration [22]. The rest of the algorithm remains unchanged, and all specified operations are
carried out with fuzzy numbers (intervals) instead of crisp values till the attainment of the
defuzzification stage. Defuzzified reputation values are used to choose the responding peer exactly
in the same way as described above. In the paper centroid method (COA) is used to obtain those
values, but effectiveness and performance of the algorithm may depend distinctly on the chosen
defuzzification approach [21, 26].

Here, special attention should be paid to the following: in the paper we consciously consider only
one type of data falling under fuzzification, viz. the feedback regarding a buyer. Primarily it is
connected with the amount of required modifications and scope of computational experiments to
be covered by the text of the limited size. But we are aware that other foregoing types must be
addressed thoroughly in the course of the ongoing empirical study.

In conditions of maintenance of community and simulation settings (see the details of conducted
experiments described above), but under the imprecision (vagueness) taken into account in the
feedback system, we compare the experimental components of Fuzzy PeerTrust with original
PeerTrust and EigenTrust algorithms.

Fobustness of reputation systems

Fuzzy

simple PeerTrust

setting

PearTrust —

rate of unsuccessful transactions

percentage of malicious peers

Fig. 5. The growth of rate of unsuccessful transactions depending on the increase of malicious peers’
percentage (from 10% to 35%) for EigenTrust, PeerTrust and Fuzzy PeerTrust algorithms

8.1 Effectiveness against malicious behavior (Type-1 fuzzy case)

In the first place, we want to evaluate the robustness of fuzzy modification of PeerTrust system.
Experiment settings are retained, the percentage of malicious peers is changing within the range
from 10% to 35%. The results as shown in fig. 5 lead to the conclusion that Fuzzy PeerTrust
algorithm is definitely more robust in comparison with Simple system. Under small percentage
values (appr. interval [10%,18%]) of malicious peers, the performance’s characteristic of Fuzzy
PeerTrust is close enough to original PeerTrust and EigenTrust. However, it demonstrates worse
results than crisp algorithms over the whole range of x-axis values concerned.

8.2 Speed of convergence and scalability

Another set of experiments was aimed at estimation of the speed of convergence of Fuzzy
PeerTrust and its scalability in view of the community’s growth. As expected, the speed of
convergence remains the same as for original PeerTrust with two iterations on average to
converge, and it differs essentially from corresponding characteristic (appr. 4.61 on average) of
EigenTrust algorithm (fig. 6). In terms of robustness Fuzzy PeerTrust can also be pronounced

113

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

scalable, since it does not show significant decrease in quality with the growth of the number of
peers in the community (fig. 7). We observe smooth fluctuations of RUT at the level of 0.064. It is
worth mentioning that all properties of crisp algorithm remain intact in comparison with its fuzzy
counterpart.

Speed of convergence
EigenTrust
Fuzzy
PeerTrust

numberof terations

number of peers

Fig. 6. The speed of convergence (number of iterations needed) of EigenTrust and Fuzzy PeerTrust
algorithms depending on the number of peers (in the range from 1,000 to 3,500)

Eobustness of reputation systems

oy

=

(=]

=

o

m

g

g .

= Fuzzy
B PeerTrust
=

o

o

@

()

=]

&

g .. PeerTrust EigenTrust
Gy

o

2 E = = - - g
2

number of peers

Fig. 7. The growth of rate of unsuccessful transactions depending on the number of peers (in the range from
1,000 to 3,500) for EigenTrust, PeerTrust and Fuzzy PeerTrust algorithms

11 1Y

—,—,..,— | (default case),

N N N

where N is the number of peers in the community, t° is a default trust value of a peer v, v =1,N

: - . 0_ (4040 0\"
Computations are initiated with trust vector t =(t1 t ,...,tN) =(

[6]. Reputation of a peer v in the form of fuzzy set (number) is denoted as fuzzy(tv”l);

fuzzy(S(v, j)) stands for a feedback (fuzzy number) of peer v concerning j-th transaction;

defuzz(+) signifies the reduction of a fuzzy argument to crisp value (deffuzzification step). To

114

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

1(v)

1t as well as the

calculate the product of fuzzy number fuzzy(S(v, j)) and crisp number t;/z

sum (1) of thus obtained fuzzy numbers, Zadeh’s extension principle is used [28,29,37]. As a
result, steps to be performed (Algorithm 1/case F1) can be expressed as follows:

Result : t—vector of global trust values

.
t° :(%%) L i=0

repeat
forv«1toN do

fuzzy (t,*) = Z:(:Vl) fuzzy (S(v, j))~ﬁ @
k=1 kK
= defuzz(fuzzy(ti”)) (2)
end
o=[-
i=i+1
until ¢ <g¢;

As already mentioned, it is important to put emphasis on the choice of defuzzification method to
use in (2). In general, the step of defuzzification relates to the conversion of a fuzzy quantity
expressed in the form of membership function to a crisp number. In this case, we can talk about a
diverse group of “fuzzy-to-crisp” data transformation methods, including, in particular, Center of
Gravity (COG or centroid), Bisector of Area (BOA), Mean of Maximum (MOM), Smallest of
Maximum (SOM) and Largest of Maximum (LOM) standard computational schemes as some of
the most commonly used approaches. A rigorous and detailed discussion of defuzzification
strategies can be found in [38, 39].

The results of the conducted experiments with Fuzzy PeerTrust under default values of parameters
(Table 1) for different defuzzification methods shows that SOM scheme performs significantly
better in the presence of smaller standard deviation as compared to other strategies. Intuitively
SOM provides better results for the case in hand, because reputation system is punishing malicious
peers more ‘harshly’, and it leads to better isolation of such peers from good peers. At the same
time, changing defuzzification method in experimental settings does not affect scalability of the
algorithm itself, since as the number of peers increases, the rate of unsuccessful transactions
remains unchanged at insignificant fluctuations observed. Overall, we consciously avoid
generalizations here, since the competitive advantage of SOM in the given algorithm should be
confirmed empirically in the future.

At the same time, an important point of the algorithm shown above is that certain aforesaid
attributes of trust and reputation like context-awareness (sensitivity), decrease (of the level) with
time, their multifaceted nature (diversity) are not taken into account. We may regard this version
of the algorithm as basic one (or, F-basic if we consider factor of fuzziness in its core); it paves a
‘wide’ way for algorithm’s further revision, amendment and improvement.

115

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

9. Switching from using Type-1 fuzzy sets to Interval Type-2 fuzzy sets in
reputation systems — the way to deal with uncertainty of expert’s
assessments

It can be noticed that the shift towards application of type-1 fuzzy sets in algorithms leaves us
anyway within the scope of crisp real values of membership functions, which are associated with
elements from a problem’s domain (or, universal set) U. Despite active use of type-1 fuzzy sets in
research works and industrial projects for almost forty years, existing publications specifically note
that such sets exhibit very limited capabilities for modeling uncertainty, because of p,(x)
crispness (vx e U) mentioned above [40, 41]. In case of type-2 fuzzy sets, their membership
functions are getting fuzzy, i.e. each specific p, (x) becomes associated with more than one value
unlike their type-1 counterparts.

The latter allows for representation of vagueness inherent in natural language constructs (words,
phrases) that express the assessments made by experts. Following explanations done by German
philosopher F.G. Frege, the notion of vagueness relates to so-called «boundary linex; it can be
expanded to the case of absence of clear truth conditions that is observed in most practical cases
involving human judgments [42].

We represent linguistic values of the variable «degree of satisfaction» or «transaction quality» by
interval type-2 trapezoidal membership functions defined on the universe of discourse U=[0, 1] as
shown in Fig. 8. Types of membership functions as well as their location on the universal set U
may vary noticeably depending on estimates provided by members of expert group [22]. It is
important to note that type-2 fuzzy sets may appear due to natural slight differences in expert
assessments and aggregation methods applied to them. As we can see, each of five functions
shown in fig. 8 is bounded by two type-1 functions called upper (UMF) and lower (LMF)
membership functions. Each function’s ‘thickened’ boundary (footprint of uncertainty, FOU) is
formed by primary interval-shaped memberships p, (x) =[0,1] (¥XeU) that can be seen as a

collection of vertical slices of original type-2 function.

Very

Good

Fig. 8. Linguistic values of the variable ‘transaction quality’ (universe of discourse U=[0,1]) represented in
the form of interval type-2 trapezoidal membership functions
Corresponding secondary function is connected to each interval p, (x), i.e. secondary membership
functions are defined on the whole set of p, (x) for each type-2 function under consideration. The

usual two-dimensional portrayal of type-2 MFs implies their 3D-view, which is determined by the
presence of secondary grades. In the present study, the focus is restricted to interval type-2 fuzzy
sets (IT2FS), for which all secondary grades are equal to one. Being a convenient uncertainty

116

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

modeling tool to capture representation of heterogeneous verbal responses formed within the
group of domain experts, such functions are actively used when solving various practical problems
due to their well-developed theoretical foundations and sound computational efficiency. If
preceded by shown trapezoidal membership functions, the thicknesses of areas bounded by their
pieces (LMF and UMF) convey degrees of uncertainty as a result of aggregation of converted to
numeric form expert opinions concerning perception of values of the linguistic variable
«transaction quality».

Switch to using these functions in models leads to modification of the aforesaid F-basic algorithm,
in which all operations are performed on interval type-2 fuzzy sets until defuzzification stage is
reached. Steps to be performed can be expressed now (Algorithm 2/ case F2) as follows:

Result : t—vector of global trust values

;
t° :[%%) L i=0

repeat
forv«1toN do

fuzzy (tf,*l) = Z:(Zvl) fuzzy(S (v, j)) : ;[—(Jv)t' @
k=1 K

fuzzy (tj*l) = reduce(fuzzy (tj*l)) (§)
t'*! = defuzz (fuzzy (t&”)) (2)

end

" =‘ti+1_tiH

i=i+1

until o < g;

It is proposed to implement modifications by means of «type-2 to type-1» type reduction (1') to
obtain the averaged trapezoidal membership function (resultant type-reduced set); afterwards, the
latter is defuzzified. It is noteworthy that type reduction algorithms are the topical area of research,
so extra experiments related to realization of defuzzification are an essential component of further
extension of the work.

Results of comparing fuzzy Type-2 PeerTrust with other algorithms are shown in fig. 9 and 10.
Just as expected, they’re comparable to the performance of Fuzzy PeerTrust algorithm. Better
results as compared to Simple case are quite predictable; there is a close enough resemblance to
the original PeerTrust and EigenTrust systems, especially for percentage of malicious peers in the
range from 10% to 20%. In average, fuzzy Type-2 PeerTrust shows slightly worse rates than crisp
systems, although it is possible to find an intuitive explanation for that.

Consecutive application of type reduction and defuzzification procedures may lead to certain
“displacement” of calculated values in comparison to original crisp models. It should not be
considered as a shortcoming of the system; it is a fact that must be taken into consideration when
using IT2FS. Potentially, it makes sense to use several type reduction and defuzzification
procedures in every case in question. Calculations will obviously become more time-consuming

117

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

but will allow to take account of existing uncertainty factor in a more complete manner, leading to
obtaining interval results rather than exact points. As shown in Fig. 10, the adoption of IT2FS in
models does not affect the scalability of system in the context of experimental conditions.

Robustness of reputation systems

Lan
» 0.35 Fuzzy Type-2 o
£ o
= PeerTrust
% 030
£ 025
@ 020 -~
o |
2 015 -
5 .-____.-'"'-
e 0107 « PeerTrust :
: —
=

=
o
(T
'

o 14 15 20 5 30 35

% of malicious peers

Fig. 9. The rate of unsuccessful transactions depending on the increase of malicious peers percentage (from
10% to 35%) for EigenTrust, PeerTrust and Fuzzy Type-2 PeerTrust algorithms

i16 Robustness of reputation systems

=
-
i

=
B
Pl

Fuzzy Type-2 Fuzzy
PeerTrust PeerTrust

=
2
=

PeerTrust

EigenTrust

=
=
o

o
=
f i)

Rare of unsuccesshul transactions
=]
o
[a=]

&
=
e
4
-

=1

1000 1500 2000 2500 3000 3500
& of péers

Fig. 10. The rate of unsuccessful transactions depending on the number of peers (in the range from 1,000 to
3,500) for EigenTrust, PeerTrust, Fuzzy PeerTrust and Fuzzy Type-2 PeerTrust algorithms

The results attained enable to speak decidedly about existing perspectives of fuzzy logic
approach’s application in reputation systems (corresponding algorithms), whether type-1 or
interval type-2 fuzzy set is considered. Even despite somewhat higher computational costs
compared to original crisp algorithms, greater transparency, better perceptibility by humans,
interpretability and flexibility from a viewpoint of verbal expression and formalization of the

118

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

scores provide a basis for further studying of the topic. The present paper can be considered as a
mere first step in this direction.

10. Conclusion

E-commerce is a fast-growing market that implies continual and utterly active communication
between users being ‘strangers’ to each other on numerous occasions. Because of that it is
essential to establish reputation systems to better handle available online information with the
object to more accurately discern trustworthy and non-trustworthy players in systems creating
grounds for peers to be more careful about their reputation. By the far-famed example of eBay
reputation system, even relatively simple ones show themselves as very helpful from the viewpoint
of malicious behavior’s limitation and trustability increase. Online marketplaces that became
immensely popular in the last 10-15 years as sites offering wide enough range of reasonably priced
goods from various sources can be also considered as P2P networks. There is a vast range of
reputation systems developed for P2P networks (mostly aimed at file-sharing) that can be adapted
to e-commerce.

The main problem that is covered in the paper relates to the fact that none of these systems work
with uncertainty (blurriness) of marketplace data and vagueness typical for notions of trust and
reputation. Uncertainty in different forms of its manifestation is definitely inherent in reputation
systems, and some of those forms can be addressed by fuzzy logic. This very inhesion, but not
disconfirmed artificial desire, has served as an impellent factor to start this study.

Most likely, it can be argued that it is difficult to identify on the basis of several singled out key
criteria unconditional leader among analyzed systems (algorithms EigenTrust, Absolute Trust,
HonestPeer, PowerTrust and PeerTrust), since each of them has positive aspects as well as
drawbacks. All algorithms, except PowerTrust, were implemented (Python 3.7) under the same
conditions discussed in detail in the paper with the purpose of comparing fairly their relative
performance. For reasons partially covered in the paper, Absolute Trust and PeerTrust systems
were prudently regarded from the standpoint of their robustness and scalability as front-runners,
i.e. candidates for reasoned fuzzification. Besides undertaking comparative analysis of those five
significant and most popular reputation systems, the paper makes a mark for transition from crisp
system (by the example of PeerTrust algorithm) to its fuzzy counterparts. The latter provided for
an approach based on the use of type-1 (T1FS) and interval type-2 fuzzy sets (IT2FS).
Corresponding fuzzy models (we call them provisionally F-basic and modified F-basic algorithms
— cases F1 and F2, correspondingly, as they are denoted above) consider now only one
characteristic of trust and reputation, namely, it is transaction quality or degree of peer’s
satisfaction. Other important attributes like context-awareness (sensitivity) or decrease of trust’s
level with time were not scrutinized yet. Nevertheless, initial experimental results attained in line
with the fact of constant presence and active use of verbal assessments in reputation systems
confirm the need to continue research in this field. Verbal forms are both habitual and convenient
for human’s perception despite of intrinsic vagueness and uncertainty. That is why, fuzzy logic
approach, to the opinion of authors, has good prospects for both close examination and use in
reputation systems.

At the same time, it should be mentioned that there are immediate tasks related to fuzzy models
that require primary attention. The choice of shapes of membership functions and their fine tuning
(location on the universe of discourse) on the basis of either existing data or expert assessments, a
more detailed study of the potential of models using IT2FS as well as the use of different type
reduction and defuzzification strategies are amongst the most topical ones.

119

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

References

[1].

2.

[3].
[4].
[5].
[6].
]
[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17].

[18].

[19].

[20].
[21].
[22].
[23].
[24].

[25].

120

The Next Scoop, 2018. E-Commerce is Growing at an Unprecedented Rate All over the Globe - The
Next Scoop, web-resource: https://thenextscoop.com/e-commerce-is-growing-at-an-unprecedented-rate-
all-over-the-globe/ (access date 17.02.19).

Statista, 2018. E-commerce Share of Total Retail Sales in United States from 2013 to 2021, web-
resource: https://www.statista.com/statistics/379112/e-commerce-share-of-retail-sales-in-us/ (access date
26.02.19).

The Next Scoop, 2018. 2019 E-commerce Trends, Statistics and Metrics, web-resource:
https://thenextscoop.com/ecommerce-trends-statistics-and-metrics-2019/ (access date 14.02.19).

Statista, 2018. Global Retail E-commerce Market Size 2014-2021, web-resource:
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/ (access date 08.02.19).
Forbes.com, 2017. What Are Online Marketplaces and What Is Their Future? web-resource:
https://www.forbes.com/sites/richardkestenbaum/2017/04/26/what-are-online-marketplaces-and-what-is-
their-future/#704431c13284 (access date 06.02.19).

Xiong L., Liu L. PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic
Communities. IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 7, 2004, pp. 843-
857.

eBay, 2019. web-resource: www.ebay.com (access date 15.03.2019).

Kamvar S., Schlosser M., Garcia-Molina H. The EigenTrust Algorithm for Reputation Management in
P2P Networks. In Proc. of the 12th International Conference on World Wide Web, 2003, 640-651.

Kurdi H. HonestPeer: An Enhanced EigenTrust Algorithm for Reputation Management in P2P Systems.
Journal of King Saud University - Computer and Information Sciences, vol. 27, no. 3, 2015, 315-322.
Zhou R., Hwang K. PowerTrust: A Robust and Scalable Reputation System for Trusted Peer-to-Peer
Computing. Proc. IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 4, 2007, 460-473.
Celikyilmaz A., Tirksen L.B. Modeling Uncertainty with Fuzzy Logic. With Recent Theory and
Applications. Studies in Fuzziness and Soft Computing, vol. 240, 2009, 311 p.

English Oxford Living Dictionaries, web-resource: https://en.oxforddictionaries.com/ (access date
04.03.19).

Alam F., Paul A. A Computational Model for Trust and Reputation Relationship in Social Network. In
Proc. of the 5th International Conference on Recent Trends in Information Technology, 2016, pp. 1-6.
Wang Y., Vassileva J. Bayesian Network Trust Model in Peer-to-Peer. Lecture Notes in Computer
Science, vol. 2872, 2003, pp. 23-34.

Gambetta D. Can We Trust Trust? Chapter - Trust: Making and Breaking Co-operative Relations, Dept.
of Sociology, University of Oxford, 1980, pp. 213-237.

Alfarez A.-R., Hailes S. Supporting Trust in Virtual Communities. In Proc. of the 33rd Annual Hawaii
International Conference on System Sciences, 2000, pp. 1-9.

Kreps D.M., Wilson R., 1982. Reputation and Imperfect Information. Journal of Economic Theory, vol.
27, 253-279.

Hussain J.K., Hussain O.K., Chang E. An Overview of the Interpretations of Trust and Reputation. In
Proc. of the IEEE Conference on Emerging Technologies and Factory Automation (EFTA-2007), 2007,
pp. 826-830.

Chiluka N., Andrade N., Gkorou D., Pouwelse J., 2012. Personalizing EigenTrust in the Face of
Communities and Centrality Attack. Proc. IEEE 26th Int. Conference on Advanced Information
Networking and Applications, 503-510.

Zhang J. Trust Management Based on Fuzzy Sets Theory for P2P Networks. In Proc. of the WRI World
Congress on Software Engineering, 2009, pp. 461-465.

Semenkovich S., Kolekonova O., Degtiarev K. A Modified Scrum Story Points Estimation Method
Based on Fuzzy Logic Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue. 5, 2017, pp. 19-38.
Zadeh L. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning — I.
Information Sciences, vol. 8, no. 3, 1975, pp. 199-249.

Zadeh L. A. Fuzzy Logic, Neural Networks and Soft Computing. Communications of the ACM, vol. 37,
no. 3, 1994, pp. 77-84.

Zadeh L.A. Fuzzy Languages and Their Relation to Human and Machine Intelligence. In Proc. of the
International Conference on Man and Computer, 1972, pp.130-165.

Zadeh L.A. Similarity Relations and Fuzzy Orderings. Information Sciences, vol. 3, no. 2, 1971, pp.
177-200.

Hocosckuit M.M., [lertapes K.1O. PenmyrannoHHsie CHCTEMBI B 97IEKTPOHHON KoMMepiui: CpaBHUTEIbHBIH aHATHU3 U IIEPCIICKTUBbI
MOJICITMPOBAHKS IIPHCYIel UM HedeTkocTH. Tpyowt UCIT PAH, Tom 31, Bbin. 3, 2019 r., ctp. 99-122

[26]. Zimmermann H.-J. Fuzzy Set Theory — and Its Applications, 4th ed., Springer Science+Business Media,
LLC, 2001.

[27]. Zadeh L.A. Fuzzy Sets. Information and Control, vol. 8, no. 3, 1965, pp. 338-353.

[28]. de Barros L.C., Bassanezi R.C., Lodwick W.A. The Extension Principle of Zadeh and Fuzzy Numbers.
In A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics, Studies in Fuzziness
and Soft Computing, vol. 347, 2017, pp 23-41.

[29]. Ross T.J. Fuzzy Logic with Engineering Applications, 3rd ed., John Wiley & Sons, 2010, 595 p.

[30]. Awasthi S.K., Singh Y.N. Absolute Trust: Algorithm for Aggregation of Trust in Peer-to-peer Networks,
2016, web-resource: http://arxiv.org/abs/1601.01419 (access date 17.03.2019).

[31]. Rao S., Wang Y., Tao X. The Comprehensive Trust Model in P2P Based on Improved EigenTrust
Algorithm. In Proc. of the International Conference on Measuring Technology and Mechatronics
Automation, 2010, pp. 822-825.

[32]. Song S., Hwang K., Zhou R., Kwok Y.-K. Trusted P2P Transactions with Fuzzy Reputation
Aggregation. IEEE Internet Computing, vol. 9, no. 6, 2005, pp. 24-34.

[33]. Page L., Brin S., Motwani R., Winograd T. The PageRank Citation Ranking: Bringing Order to the Web,
Technical Report, Stanford Digital Library Technologies Project, 1998.

[34]. Haveliwala T.H., Kamvar S.D. The Second Eigenvalue of the Google Matrix, Technical Report,
Stanford University, 2003.

[35]. Faloutsos M., Faloutsos P., Faloutsos C. On Power-Law Relationship of the Internet Technology. In
Proc. of the ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM-1999), 1999, pp. 251-262.

[36]. Dellarocas C. The Digitization of Word-of-Mouth: Promise and Challenges of Online Reputation
Mechanism. Management Science (Special Issue on E-Business and Management Science), vol. 49, no.
10, 2003, pp. 1407-1424.

[37]. Klir G., Yuan B. Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice-Hall/Upper Saddle
River, 1995, 592 p.

[38]. Toth-Laufer E., Takacs M. The Effect of Aggregation and Defuzzification Method Selection on the Risk
Level Calculation. In Proc. of the EEE 10th Jubilee International Symposium on Applied Machine
Intelligence and Informatics (SAMI), 2012, pp. 131-136.

[39]. Roychowdhury S., Pedrycz W. A Survey of Defuzzification Strategies. International Journal of
Intelligent Systems, vol. 16, no. 6, 2001, pp. 679-695.

[40]. Mendel J.M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, 1st ed.
Prentice Hall, 2001, 674 p.

[41]. Mendel J.M., John R.I. Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems, vol. 10,
no. 2, 2002, pp, 117-127.

[42]. Dubois D. Fuzziness, Uncertainty and Vagueness: Toward a Less Blurry Picture (Is a Fuzzy Set
Vague?), 2008, web-resource: https://www.logic.at/lomorevi/LoMoReVI/transvague.pdf (access date
14.06.2019).

MUHdopmauma o6 aBTopax / Information about authors

Mikhail Mikchailovitch NOSOVSKIY is a student of the Bachelor's degree program «Software
Engineering» at the National Research University Higher School of Economics (HSE), Moscow,
Russia. His research interests include fuzzy modeling, data analysis and identification of fraud
activity.

Muxann Muxaitnosus HOCOBCKUM sBasieTcss CTYIEHTOM 00pa30BATENbHOM IPOTPAMMBI
GakanaBpuara «[IporpaMMHas WHXeHepHs» B HalmoHaIEHOM HCCIIe0BaTEIECKOM YHUBEPCUTETE
«Beicmas mkoia sxoHomukm»y (HUY BIID), Mocksa, Poccus. Ero uccienoBateabckiue HHTEPECH
BKJIIOYAIOT B Ce0sl HEYeTKoe MOJENMPOBAaHWE, AaHAM3 JaHHBIX M BBIABICHHE (POJOBOH
(MOIIIEHHIYECKO) aKTHBHOCTH.

Konstantin Yurievitch DEGTIAREV earned his M.S. degree in applied mathematics (‘engineer-
mathematician' qualification) from Moscow Institute of Electronic Engineering, Russia, and his
Ph.D. degree in engineering sciences from Moscow Academy of Instrument Engineering and
Informatics, Russia. He is currently an Associate Professor at the Software Engineering

121

Nosovskiy M.M., Degtiarev K.Y. Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty
Inherent in Them. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 99-122

Department of the Faculty of Computer Science at the National Research University Higher
School of Economics (HSE) in Moscow. His research interests include fuzzy logic/soft computing
in system analysis, verbal computing, perceptions and representations in system analysis, use of
fuzzy time series in forecasting. He is a Member of the IEEE (Systems, Man and Cybernetics
Society).

Koncrantnr OpreBuu [ET'TAPEB momyunmn crenmeHb MarucTpa (CHCHHUANNATET) IMPHUKIATHOMN
MaTeMaTUKd B MOCKOBCKOM HMHCTHTYTE DJIEKTPOHHOTO MAIIMHOCTPOECHHS M CTENEHb KaHIUAATa
TEXHUYECKHX HayK B MOCKOBCKOW akazgemuu mnpubopoctpoeHus U uHpopmartuku, Poccusa. B
HACTOAIIEE BpEeMsl OH SIBIACTCA JOLEHTOM KadeIpsl NPOrpaMMHON HHKCHEpHH (haKyIbTeTa
KOMIMBIOTEPHBIX Hayk HaIMOHaJIBHOrO HCCIENOBaTEIbCKOIO yHHUBEpcHTETa «BpIcmiasg mikona
sxoHomuki» (HAY BIID) B Mockee. Ero uccienoBaTenbckie HHTEPECH BKIHOYAIOT HEUYETKYIO
JIOTHKY/MSITKHE BBIYUCIICHUS B CHCTEMHOM aHalW3e, BepOaJbHbIC BBIYMCICHUS, BOCIPHATHE H
IpeJCTaBIeHHEe B CUCTEMHOM aHalM3e, IPUMEHEHHE HEUeTKUX BPEMEHHBIX pSJ0B B
nporunozupoBanuu. OH sBisetcs uienoM IEEE (o6mectBo 'Systems, Man and Cybernetics’).

122

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-10

Applying High-Level Function Loop Invariants for
Machine Code Deductive Verification

P.A. Putro, ORCID: 0000-0001-9540-8321 <pavel.putro@ispras.ru>
Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
National Research University Higher School of Economics,

20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. The existing tools of deductive verification allow us to successfully prove the correctness of
functions written in high-level languages such as C or Java. However, this may not be enough for critical
software because even fully verified code cannot guarantee the correct generation of machine code by the
compiler. At the moment, developers of such systems have to accept the compiler correctness assumption,
which, however, is extremely undesirable, but inevitable due to the lack of full-fledged systems of formal
verification of machine code. It is also worth noting that the verification of machine code by a person directly
is an extremely time-consuming task due to the high complexity and large amounts of machine code. One of
the approaches to simplify the verification of machine code is automatic deductive verification reusing the
formal specification of the high-level language function. The formal specification of the function consists of
the specification of the pre- and postcondition, as well as loop invariants, which specify conditions that are
satified at each iteration of the loop. When compiling a program into machine code, pre- and postconditions
are preserved, which, however, cannot be said about loop invariants. This fact is one of the main problems of
automatic verification of machine code with loops. Another important problem is that high-level function
variables often have ‘projections' to both registers and memory at the machine code level, and the verification
procedure requires that invariants be described for each variable, and therefore the missing invariants must be
generated. This paper presents an approach to solving these problems, based on the analysis of the control
flow graph, and intelligent search of the locations of variables.

Keywords: deductive verification; formal methods; machine code

For citation: Putro P.A. Applying High-Level Function Loop Invariants for Machine Code Deductive
Verification. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 123-134. DOI: 10.15514/ISPRAS-
2019-31(3)-10

Mcnonb3oBaHMe MHBapUaHTOB (PYHKLIMU BbICOKOIrO YPOBHSA AN
AeAyKTUBHOW BepudUKaLumMm MallMHHOIO Koaa

I1.A. ITympo, ORCID: 0000-0001-9540-8321 <pavel.putro@ispras.ru>
Hnemumym cucmemnozo npoecpammuposanus PAH,
109004, Poccus, e. Mockea, yn. A. Conxncenuysvina, 0. 25
Hayuonanenuuii uccnedosamenvcxuil yrugepcumem ““‘Bvicuias wikona SKOHOMuKu’
101000, Poccus, e. Mockea, yn. Macnuykas, 0. 20

’

AnHoTtanus. CyIecTBYIONIYE Ha CETOJHANIHN IeHb HHCTPYMEHTHI Ie{yKTHBHON BePU(DUKALINY IT03BOJIIOT
YCIIEIIHO JI0Ka3bIBaTh KOPPEKTHOCTh (DYHKLHMH, HAIMCAaHHBIX HAa BBHICOKOYPOBHEBBIX fA3BIKaX, TakuxX kak C
wim Java. OxHako 1t kputiueckoro 11O 3Toro MoxeT ObITh HEAOCTATOYHO, TOCKOIBKY JIa’Ke MOTHOCTBIO
BepU(UIUPOBAHHBI KOJA HE MOXET TapaHTHPOBaTh KOPPEKTHOM TeHepalud MALIMHHOTO KoJa
kommuisTopoM. Ha fmaHHBIE MOMEHT pa3paboTd4umKaM TaKMX CHCTEM IPUXOJMTCS IMPHHHMATh

123

Putro P.A. Applying High-Level Function Loop Invariants for Machine Code Deductive Verification. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 2, 2019, pp. 123-134

MPENONOKEHHE O KOPPEKTHOCTH KOMIMIATOPA, YTO, OJHAKO, SIBISAETCS KpaiHe HeXKeNaTelbHbIM, HO
HEU30EeKHBIM MOCTYIIKOM B CHJIY OTCYTCTBHS HOJIHOLEHHBIX CUCTEM (OPMANbHON BEpU(UKALIMY MAILIMHHOTO
kona. CTOUT Takke OTMETHTbh, YTO BepH(HKAIMS MATMHHOTO KO/Ia YEIOBEKOM HaIPSMYIO SIBISIETCS KpaiHe
TpynOo&MKOH 3amadell W3-3a BBICOKOH CIOKHOCTH M OONBIINX OOBEMOB MamMHHOTO Koxa. OmHUM H3
MIOJXO/O0B, ITO3BOJISIIONIMX YIPOCTUTH BEPU(HKAIMIO MAINIMHHOTO KOAA, SBISIETCS aBTOMAaTHYECKas
JIeTyKTHBHas BepH(UKanus ¢ Mepencroiab3oBaHieM GopMansHOi crerudukaniuy GyHKINH S3bIKa BEICOKOTO
ypoBHs. PopMainbHas crenudukans GyHKINH COCTOMT U3 CHEUU(UKALMU MPE- U HOCTYCIOBHUS, a TAKKE
WHBapUAHTOB LUKJIOB, TO3BOJISIOMINX ONPEIEIUTh KaKHe YCIOBHUSI COXPAHSIOTCS Ha KaXKI0H UTEepaIiy LUKIIA.
ITpy KOMOMIALMK POTPaMMBl B MAIIMHHBINA KOJ{ MIPEA- U MOCTYCIOBHS COXPAHAIOTCA, YTO, OJHAKO, HENb3s
CKa3aTh 00 MHBapHaHTaX LUKIOB. JTOT (GakKT SBISLETCS OJHOH M3 OCHOBHBIX IPOOJEM aBTOMAaTHYECKOH
BepU(UKAINK MAIIMHHOTO KOJa ¢ IUKIaMH. JIpyroil HeManoBaKHOH NpPOOIEMOH SBISETCS TO, YTO
JIOKaJIbHBIE TIepEeMEHHbIe (D)YHKIMH BBHICOKOTO YPOBHS MOTYT MMETh ‘TIO3WIMH KaK Ha PErHCTpHI, TaKk ¥ Ha
maMsATh Ha ypPOBHE MamIMHHOrO Kkoxa. Ecmm aOcTparmpoBaThcsi OT KOHKPETHOTO KOMITHIIITOpA, TO HeE
CYHIECTBYET CTPOTHMX IpaBHJ COIOCTaBJICHMS JIOKAJIbHBIX IIEPEMEHHBIX MX IO3ULMAM, a IpoLeaypa
BepU(pUKAIUN MHBAPHAHTOB LIUKJIOB, TEM HE MEHee TPeOyeT TOro, 4YToObl JOKAaIbHBIM IEPEMEHHBIM ObLIH
COMOCTaBIICHbl KOHKPETHBIE MO3UIMHU. B naHHO# paboTe MpUBOAUTCS MOAXOA K PELICHHIO 3THX MpoOieM, a
TAKOKe PACCMATPHUBAIOTCS ATBTEPHATUBHBIC ITyTH PEIICHUSI, TIPEJIOKEHHBIC B AHAIOTHYHBIX HCCIIEJOBAaHUIX.

KioueBble cjioBa: IeyKTUBHAS BepuPHUKaLus, popMaIbHbIe METOABI; MAIIUHHBINA KOJI.

Jas uwmtupoBanusi: I[lytpo I1.A. Hcnosnp3oBaHWe WHBapHAHTOB (PYHKIMH BBICOKOTO YPOBHS IS
JIeMyKTUBHOU Bepudukanuu MamuuaHoro kona. Tpyast UCIT PAH, tom 31, Beim. 3, 2019 r., ctp. 123-134 (Ha
anrmiickom si3bike). DOI: 10.15514/ISPRAS-2019-31(3)-10

1. Introduction

In the 1960s, Floyd [1] and Hoare [2] put forward their theories that the full correctness of the
program code can be proved mathematically. The proposed methods are called deductive
verification, but could not immediately gain popularity due to the lack of automation, as well as
low performance and the high cost of hardware computing resources. However, in recent decades,
these methods are experiencing a rebirth due to the rapid development of methods for solving the
SMT [3] problem, and growing performance of hardware devices. Technological leap in this area
allowed to verify the application and system software by means of personal computers. In this
paper, the author adheres to the use of methods of deductive verification, because unlike other
methods of formal verification, such as for example model checking, deductive verification allows
proving full correctness, but not only the absence of a certain class of errors.

Increasing the availability of formal verification methods has led to the fact that now formal
verification is becoming a standard in the creation of systems designed to work with safety- and
security-critical infrastructure. These systems are verified and tested carefully, but industrial
verification tools work only at source code level when testing can't guarantee that are no errors in
the program. Here we can notice a security hole when compilation of the correct code introduces
errors that can't be detected by the testing system. Without anyways for solving this problem —
developers have to make «The assumption of the correctness of the compiler». According to a
study [4] conducted in 2016, the total number of bugs found in GCC+LLVM are more than 50000.
This is one of the main reasons why this assumption may not be sufficient for critical systems.
There are only two ways that can allow developers to abandon this assumption: the first is to create
a fully formally verified compiler, and the second is to formally verify machine code. There are
some tries in recent 15 years that aimed to verify machine code or to create fully formally verified
compiler but there is still no generally accepted industrial solution in machine code verification.

In this paper we consider an approach of deductive verification of machine code obtained by
compiling the source code, the correctness of which has been proved by methods of deductive
verification. The approach proposes to use a number of techniques designed to reuse the function
specification in a high-level language to prove the correctness of the compiled machine code.

124

TTyrpo I'LA. Vicnions30BaHie MHBAPHAHTOB (DYHKIMM BBHICOKOTO YPOBHSI U151 IETyKTUBHO#H BEPU(HKALN MAIMHHOTO Koza. Tpyowt UCIT PAH, Tom 31, Bbim. 3,
20191, crp. 123-134

The process of deductive verification of machine code has several serious differences from
deductive verification of code in high-level languages. The first difference is that in machine-
independent high-level programming languages, the set of basic operations amounts to several
tens, and the size of instruction sets of modern processors amounts to hundreds and may even
exceed a thousand different instructions. In addition, many of these instructions can have side
effects, such as setting processor flags or storing the result in a predefined register. This variety of
instructions does not allow to effectively generate state-change formulas during parsing of
machine code and requires a definition of the processor model and its instruction set. The second
difference is that machine code is always a sequence of instructions with operands and does not
have the complex syntax that is present in modern programming languages. This feature allows
you to automate the parsing of the machine code of different processors using only one tool. The
third difference is that in machine code there is no explicit design to indicate the loops, such as
operators «for» or «while» in languages C/C++. Instead, loops are organized by using a set of
conditional and unconditional branches. However, the presence of such instructions does not mean
that there are loops in the program because they are also used to organize any branching. This
difference requires the construction and analysis of the control flow graph of the program. In this
case, the control flow graph extractor should be able to distinguish branches from other processor
instructions, be able to determine the target of the transition and the condition under which it will
be done. If there is a control flow graph, the problem of finding loops in the program can be
reduced to the problem of finding the components of strong connectivity in the oriented graph. The
last significant difference is the absence of a direct connection between the names and positions of
local variables in a high-level language program and their location in memory or in the registers of
the program in machine code. It is necessary when we try to reuse specifications of the high-level
function. A similar dependence exists when mapping function parameters to registers and stack
and is determined by the target processor ABI. Using information about ABI allows you to
automatically map the parameters and the result of the function to the appropriate positions in the
machine code. However, the process of proving loop invariants involves the use of local variables.
As a result, when trying to prove the invariants of a high-level function at the machine code level,
there is a problem associated with the absence of the ability to directly associate high-level local
variables with machine code. There are also other differences related to program function calls,
system calls, and exception handling, but these are beyond the scope of this paper. As you can see
the first two considered differences are common and observed in the processing of any machine
code, while the second two appear only in the case of processing functions with loops. In this
paper, the most attention is paid to the solution of the problems caused by the second two
differences while the previous author's paper is devoted to the first two [5].

2. Related work

In [6], the HOL4 proof assistant [7] is used to verify machine programs in subsets of ARM,
PowerPC, and x86 (1A-32). These ISAs were specified independently: the ARM and x86 models
[8], [9] were written in HOL4 while the PowerPC model [10] was written in Cog [11] and then
manually translated to HOL4. There are four levels of abstraction. Machine code (level 1) is
automatically decompiled into the low-level function model in HOL4 (level 2). A user describes
the high-level function model (level 3) as well as the functional specification (level 4). By proving
the equivalence between the levels, the user ensures that the machine code complies with the functional
specification. In our opinion, automation can be increased by using specialized ISA description
languages and SMT solvers. For proving the correctness of the programs with loops, it uses loops to
recursive functions translation technique. This technique is available only for interactive provers due to
efficiency problems of automatic solvers while processing programs with loops.

An interesting approach aimed at verifying machine code against ACSL [12] specifications is
presented in [13]. The general scheme is as follows: first, the ACSL annotations are rewritten as an
inline assembly; second, the modified sources are compiled into assembly language; third, the

125

Putro P.A. Applying High-Level Function Loop Invariants for Machine Code Deductive Verification. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 2, 2019, pp. 123-134

assembly code is translated into a Why program; finally, the Why environment generates
verification conditions and proves them with external solvers. The approach looks similar to the
proposed one; however, there some distinctions. E.g., there are separate primitives for
storing/loading variables of a different type (32- and 64-bit integers, single and double floating-
point numbers, etc.), which leads to certain limitations in dealing with pointers. It is also worth
noting that verification at the assembly level does not allow us to abandon the compiler correctness
assumption, as the assembly code is an intermediate form and needs additional translation. This
approach relies on the compiler while processing programs with loops, as compiler places
rewritten as inline assembly loop invariants into the beginning of the loop and automatically bind
local variables to the registers or memory.

In [14], there have been demonstrated the possibility of reusing correctness proofs of high-level
programs for the related machine code verification. The approach is illustrated on the example of a
Java-like source language and a bytecode target language. The paper describes a scenario of using
such a technology in the context of proof-carrying code (PCC) and shows (in a particular setting)
that compilation preserves proof obligations, i.e. source code proofs (built either automatically or
interactively) can be transformed to the machine code proofs. The problem we are solving is
different (though some ideas may be useful); moreover, we would like to make our solution
architecture and compiler independent. In the case of the processing of the programs with loops, if
loop invariants are preserved by compilation, their proving will be a trivial process.

3. Using the control flow graph for VC generation

In deductive verification of programs in high-level languages, various syntactic constructions
allow determining the presence of loops in the program, their contents, as well as the conditions of
exit from the loop. However, when processing the machine code such structures do not exist, and
to search for loops and other branch operations need to build a control flow graph (CFG). As part
of the study for the processing of machine code used MicroTESK toolkit [15] (full justification for
the use of MicroTESK for deductive verification of machine code is given in paper [5]). The use
of this tool, in particular, allows to describe the processor model in the language of nML [16], and
on the basis of this model to automatically analyze the binary code and build its behavior model in
the logical language SMT-LIB [17]. In addition, CFG extractor has been added to this tool over
the past year.

3.1 The format of the CFG

MicroTESK toolkit is able to determine whether the instruction described in nML is a branch
instruction, determine the branch condition and the target address. In addition, MicroTESK has an
advanced algorithm for calculating the target address of the transition, which allows it to calculate
indirect targets, such as in a situation where the target address is preloaded into the register and the
branch is carried out already on the register. Such capabilities in combination with the use of nML
processor models allow you to automatically generate CFG for any processor modeled using nML.
The generated CFG is saved in JSON format [18], and has the following format.

1) All basic blocks are placed in the list with the name «blocks».

2) Each basic block has an index in the «blocks» list and has the following format:

a. The «range» list that includes the sequence number of the first and last instruction of the
base block in the context of the entire function being analyzed. Used for extraction of the
SMT-LIB representation of the block from the SMT-LIB representation of machine code.

b. The «asmy list that contains instructions of a basic block in the assembler language of the
target processor.

c. The «vars_start» list, which contains the SMT-LIB versions of the main variables of the
nML model of the processor such as registers and memory, but not temporary and
auxiliary variables. Versions are specified for the entry point of the basic block.

126

TTyrpo I'LA. Vicnions30BaHie MHBAPHAHTOB (DYHKIMM BBHICOKOTO YPOBHSI U151 IETyKTUBHO#H BEPU(HKALN MAIMHHOTO Koza. Tpyowt UCIT PAH, Tom 31, Bbim. 3,
20191, crp. 123-134

d.

The «vars_end» list contains values similar to the list of «vars_start», however, the
version specified for the exit point of the basic block.

The field «condition» contains the branch condition. The MicroTESK nML internal
representation syntax is used to write the condition «true» for unconditional branches and
in the case when there is no branch in the block.

The field «condition_smt» same as «condition», however, is recorded using SMT-LIB.
The field «target taken» containing the index of the basic block in the «blocks» list,
which will be passed to the control in the case when «condition» is met, and «nully» for
blocks, in which is the function exit point.

Optional field «target_ntaken» containing the index of the basic block in the "blocks" list,
which will be passed to the control in the case when «condition» is not met. Defined only
for blocks with a conditional branch.

This structure of the graph contains all the necessary information for generating verification
conditions. Below is an example of the extracted CFG for the function of calculating the sum of
numbers from 0 to N (Table 1).

{

"blocks": [

{
"range": [0, 8],
"vars start": ["MEM!1","XREG!1"],
"vars _end": ["MEM!37","XREG!15"],
vvasm": [

"addi sp, sp, -48",
"sd s0, 40(sp)",
"addi s0, sp, 48",
"addi a5, a0, 0",
"sw ab, -36(s0)",
"sw zero, -20(s0)",
"addi a5, zero, 1",
"sw ab, -24(s0)",
"jal zero, 0x10"
1,
"condition": "true",
"target taken": 1
by
{

"range": [l6, 20],

"vars start": ["MEM!53","XREG!27"],
"vars end": ["MEM!53","XREG!36"],
"asm": [

"lw a4, -24(s0)",
"lw a5, -36(s0)",
"addiw a4, a4, QO",
"addiw a5, a5, 0",
"bge a5, a4, -22"
1,
"condition": "il sge 164 a5, a4",
"condition smt":
"op 20 instruction.operation.action.block 0!1",
"target taken": 2,
"target ntaken": 3
by
{

"range": [9, 157,

"vars_start": ["MEM!37","XREG!15"],
"vars end": ["MEM!53","XREG!27"],
"asm": [

127

Putro P.A. Applying High-Level Function Loop Invariants for Machine Code Deductive Verification. Trudy ISP RAN/Proc. ISP RAS, vol.

31, issue 2, 2019, pp. 123-134

}
]
}

"lw a4, -20(s0)",
"lw a5, -24(s0)",
"addw a5, a4, ab",
"sw a5, -20(s0)",
"lw a5, -24(s0)",
"addiw a5, a5, 1",
"sw a5, -24(s0)"

1,

"condition": "true",

"target taken": 1

"range": [21, 25],
"vars start": ["MEM!53","XREG!36"],
"vars end": ["MEM!53","XREG!'!45"],
"asm"? [
"lw a5, -20(s0)",
"addi a0, a5, 0",
"1ld s0, 40(sp)"
"addi sp, sp, 48",
"jalr zero, ra, 0"
1,
"condition": "true",
"target taken": null

Table 1. Example: ACSL-annotated C code, RISC-V assembler code and machine code of sum function

Machine code

ACSL-annotated C code Assembly code
/*Q@ axiomatic Sum { addi sp, sp, -48
*@ logic integer sum(integer n); sd s0, 40 (sp)
addi s0, sp, 48
*@ axiom sum init: addi a5, a0, 0
*@ \forall integer n; sw ab, -36(s0)
*@ n <= 0 ==> sum(n) == 0; sw zero, -20(s0)
addi a5, =zero, 1
*@ axiom sum step dec: sw ab, -24(s0)
*@ \forall integer n; jal zero, 0x10
*@ n > 0 ==> sum(n) == sum(n-1) + n; 1w a4, -20(s0)
*@ } 1w a5, -24(s0)
*/ addw a5, a4, a5
sw a5, -20(s0)
/*Q@ requires 0 <= n <= 65535; 1w a5, -24(s0)
*@ ensures \result == sum(n); addiw a5, a5, 1
*/ sw ab, -24(s0)
int sum(int n) { 1w a4, -24(s0)
int s = 0; 1w a5, -36(s0)
/*@ loop invariant 1 <= i <= n+1; addiw a4, a4, 0
*@ loop invariant s == sum(i-1); addiw a5, a5, 0
*@ loop variant n-i; bge a5, a4, -22
*/ 1w a5, -20(s0)
for(int 1 = 1; i <= n; i++) { addi a0, a5, 0
s += 1; 1d s0, 40(sp)
} addi sp, sp, 48
return s; jalr zero, ra, O
}

£d01 0113
0281 3423
0301 0413
0005 0793
fcfd 2e23
fe04 2623
0010 0793
fefd 2423
0200 006f
fecd4d 2703
fe84 2783
00f7 07bb
fefd 2623
fe84 2783
0017 879%9b
fefd 2423
feg84 2703
fdcd4 2783
0007 071b
0007 879
fce7 dae3
fecd 2783
0007 8513
0281 3403
0301 0113
0000 8067

128

TTyrpo I'LA. Vicnions30BaHie MHBAPHAHTOB (DYHKIMM BBHICOKOTO YPOBHSI U151 IETyKTUBHO#H BEPU(HKALN MAIMHHOTO Koza. Tpyowt UCIT PAH, Tom 31, Bbim. 3,
20191, crp. 123-134

3.2 Joining basic blocks for verification conditions generation

The basic blocks themselves are not suitable targets for generating verification conditions (VC), as
they may not contain specific targets, but only state change formulas. There are several types of
verification conditions in deductive verification. The first and foremost is the postcondition. Also
as VC can be used various custom asserts or conditions for checking the security of the program
execution, such as for example the absence of indexing out of range of the array. Also, as VC uses
invariants of loops. In this case, each invariant can be further divided into checking the
initialization of this invariant — that is, checking the condition of the invariant before the execution
of the loop code, as well as checking the preservation of the invariant - the preservation of the
compliance of the invariant for the next iteration of the loop, provided that all the invariants are
compliances on the current one. Therefore, the basic blocks must be joined and marked so that one
or more of these conditions can be matched to each of them. Accordingly, the algorithm for
combining the base blocks can be defined as follows. In the first step, using the fields
"target_taken" and "target_ntaken", the array of edges of the CFG is selected from the set of basic
blocks. In the second step, to search for loops in the program, the graph uses an algorithm to
search for strongly related components in a directed graph. The author's implementation uses
Tarjan's algorithm [19] implemented by the ocaml-containers library [20]. To find nested loops,
this step must be repeated recursively for all found base block sets, and the relationship between
the first and last base block in the loop must be broken. In the third step, you need to depth-first
search the graph for marking and joining blocks. The traversal must start from the zero base block
— the program entry point. At the input, there is a set of basic blocks, as well as a set of chains of
strongly related component - loops. The output is a set of joined and marked basic blocks suitable
for VC generation.

1) Ifthe block has two targets, they must be processed separately, and the results combined.

2) If the current block and its target is not in the loop— it is necessary to "join" these blocks and
proceed to the processing of the joined block.

3) If the current block is not included in the loop, and its target is included in the loop, it must be
marked as the loop entry point. Next, proceed to the processing of its target.

4) If the block and its target are in the same loop and do not make a loop, they must be joined
and proceed to the processing of the joined block.

5) If the block and its targets are in the same loop and thus make a loop, they must be combined
and the result is returned.

6) If the unit is part of the loop, and its target is included in a nested loop it is necessary to mark
as a loop entry point and proceed to the processing its target.

7) If the block is included in the nested loop, and its target in the outer loop, then the block must
be marked as the loop exit point and joined with the target and proceed to the processing of
the joined block.

8) If the block in the loop but its target is no, then the block must be marked as the exit point of
the loop and joined with the target and proceed to process the joined block.

9) If the block target is null, the result must be returned.

The procedure of joining blocks is the base for the graph traversal and is carried out according to
the following rules.

1) The procedure allows you to create a new block based on two existing ones.

2) Joining is possible if the target («target taken» or «target ntaken») of the first block is the
second block. In all other cases, the result of the join is not determined.

3) The targets of the joined block will be the targets of the second block.
4) Condition («condition_smty) of the joined block will be the condition of the second block.

129

Putro P.A. Applying High-Level Function Loop Invariants for Machine Code Deductive Verification. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 2, 2019, pp. 123-134

5) If the second block is a loop exit point, the initial state «vars_start» of the combined block will
be the initial state of the second block, otherwise the initial state of the first block.

6) If at least one of the joining blocks is marked as the loop exit point, the joined block must also
be marked as the loop exit point.

7) If the second block is marked as the loop entry point, the result should be marked as the loop
entry point.

8) If the second block «closes» the loop, i.e. its target is the first block, its SMT-LIB
representation should be changed so that all elements of the final state «vars_end» of the
second block should get new unique names. Any other conflicts between any variables in
SMT-LIB representations of the joining blocks must be resolved in the same way.

9) SMT-LIB the representation of the joined block must be obtained by concatenating the SMT-
LIB representations of the merged blocks. In this case, if the condition «conditiony of the first
block is not empty («truey), it must be added as SMT-LIB assert to the representation code of
the joined block. Also, if the join follows the «target_ntaken» branch, the condition must be
inverted. Also, if the blocks do not follow each other in the program, the final state of the first
block also needs to be associated with the initial state of the second block at the level of the
SMT-LIB representation.

As a result of following this algorithm, in most cases, you can create a set of code blocks on which
you can directly prove various verification conditions. The algorithm allows processing machine
code with loops, nested loops, sequential loops, as well as code generated by the presence of the
brake and continue statements in the program, but is not able to cope with tasks when, for
example, several entries to one loop and other non-trivial situations caused by the use of transition
instructions are detected in the control flow graph. However, such situations cause difficulties
already at the stage of verification of the source code, and the construction of an algorithm that
allows you to automatically deductively verify any machine code is an unsolvable task.

If we apply the algorithm to the CFG function of the sum of the numbers presented above, we will
be able to allocate three blocks to prove VC. The first block will have index 0, have loop entry
status and be used to prove the correctness of the initialization of the loop invariants. The second
block will be a join of blocks 1 and 2 and will be used to prove the preservation of loop invariants.
The third block will be a join of blocks 1 and 3 and will be used to prove the postcondition
provided the invariants are correct.

4. Automatic binding of high- and low-level local variables

In general, to describe loop invariants, high-level functions use local variable names that are not
available when working with machine code. In general, information about binding local variables
to specific positions on the stack or registers is not available. Of course, you can require the user to
manually provide this data and even give examples where such requirements will have a positive
impact on system performance. However, in most cases, manual mapping of local variables to
their positions will be a bottleneck in the performance of the verification system, as well as reduce
the degree of automation. From the above, we can conclude that the system should automatically
determine the location of local variables, and the possibility of their manual input should be
optional. To determine the positions of local variables, the author has developed an algorithm for
efficient search of positions in the VC generation, which includes the following steps.

1) All potential positions of local variables are calculated. This can be done both by means of
machine code analysis (similar to those used by modern disassemblers and debuggers) and
with the help of an existing logical model of machine code and SMT-solver. The author
proposes to use the second option because it is a more universal approach. In this approach,
for each memory write instruction it is required to prove by solver that there are no positions
on the stack that could change as a result of the operation. If solver managed to generate a

130

TTyrpo I'LA. Vicnions30BaHie MHBAPHAHTOB (DYHKIMM BBHICOKOTO YPOBHSI U151 IETyKTUBHO#H BEPU(HKALN MAIMHHOTO Koza. Tpyowt UCIT PAH, Tom 31, Bbim. 3,
20191, crp. 123-134

counterexample, the position found is a potential position for the local variable. This
algorithm allows you to find positions for local variables, but it can be difficult if there is an
array on the stack. In this case, if solver fails to determine which position of the array was
recorded, the result may not be determined and the user will have to specify the position
himself. Similarly, you can calculate the registers to which the local variable can be mapped.

2) Each local variable is assigned a potential positions set, which may depend on its size in bytes.

3) For each invariant from the list of invariants for the proof, the «cost» of proving its correct
initialization should be calculated. Here, the cost is the number of all possible combinations of
potential positions of local variables involved in the description of this invariant. Here it is
necessary to take into account that each variable has its own unique memory location,
therefore, combinations of potential positions should consist only of unique values. It is also
worth noting that this step should be carried out only when proving the initialization of the
invariants, since the initialization of the invariant is proved independently of the other loop
invariants, and the proof of preserving the loop invariant must be proved given that all other
invariants must be satisfied. Thus, when proving the correct initialization of the invariant, it is
possible to reduce the number of local variables necessary for binding, and, as a consequence,
the «cost» of the proof may differ for different invariants. If it is necessary to prove the loop
invariant preservation the cost of all invariants should be considered equal to.

4) For the least cost invariant, it is necessary to try to prove correctness for each possible
combinations of potential positions of local variables on which the invariant depends. The
results («unsat»/«unknowny/«sat» verdicts) should be saved in a separate list.

5) If there was no one verdict is «unsaty», it is necessary to mark the invariant unproven. If at
least one verdict «unsat» has been obtained, then the invariant should be considered proved
and the potential positions of local variables on which the proved invariant depends should be
filtered, leaving only those positions that consist in combinations of potential positions for
which the invariant has been proved (the «unsaty verdict).

6) Remove the proved invariant from the list of invariants for the proof and (if there are still
invariants in the list) proceed to step 3.

Using this algorithm, it is possible in some cases to significantly reduce the number of generated
targets relative to a complete search. As an example, let's take a function with 3 different local
variables with values s = —1,i = 0,n = 90 at the loop entry point and three potential positions on
the stack: sp — 0x10, sp — 0x18, sp — 0x24, respectively. For simplicity, the size of variables and
positions will be considered equal to 4 bytes. Initially, the correspondence between the positions of
local variables is not known. Based on these data, we try to prove the initialization of the following
invariants: 0 <= i < 100,s == 2 * i — 1 and s < n + i. According to the algorithm, we
calculate the cost of proving the invariants, which will be equal to 3, 6 and 6, respectively. Next,
try to prove the correctness of the first invariant with the cost of 3 and will find two potential
positions (sp — 0x18 and sp — 0x24) for the variable i (we will also be able to prove the invariant
for variable n). Second, we perform filtering to remove the position of the sp — 0x10 for the
variable i. Recalculate the costs of the remaining invariants: the result of 4 and 4 (the cause of
reducing the cost is reducing the number of potential positions for the variable i, on which the
invariants depend). When proving the correctness of the initialization of the second invariant, only
one set of potential positions for the variables s and i is sp — 0x10 and sp — 0x18, respectively,
will be selected. We filter and proceed to the proof of the last invariant. It is possible to select only
one target for it — the position for n will be selected by the elimination method. We prove the
invariant, perform filtering and get the same correspondence between variables and their positions
on the stack, which was set by the compiler.

131

Putro P.A. Applying High-Level Function Loop Invariants for Machine Code Deductive Verification. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 2, 2019, pp. 123-134

5. Evaluation

At the time of writing, the approach proposed by the author was partially implemented in the
system of deductive verification of machine code [5]. Using this approach, the machine code of the
function of the sum of numbers from 0 to N (Table 1), as well as some other functions with loops,
was successfully verified. For each generated VC, a verdict was obtained confirming its
correctness. In addition, the positions of local variables on the function stack were strictly
determined by the computer during the verification process. More complex testing is planned after
the full implementation of the approach.

6. Conclusion

Verification of functions with loops is one of the main stumbling blocks in the verification of
machine code. Various research groups have proposed various solutions that however impose
serious limitations, such as the need to use interactive proof assistants or the introduction of
dependency on the target compiler. However, due to the high complexity of the machine code
structure, the use of interactive proof assistants can significantly slow down the verification
process and require very experienced staff. Dependency on the target compiler also reduces the
universality of the approach and requires its integration into the source code compilation process,
which can cause some difficulties. In contrast to these works, the author proposes to use a
compiler-independent approach based on the use of automatic SMT-solvers. To implement the
approach, we propose to use two main algorithms, as well as a tool for CFG extraction. The first
algorithm allows the basic blocks of the function CFG to be joined in such a way that they become
suitable for VC proving. The second algorithm allows restoring the lost links between the local
variables of the high-level function and their positions in memory or on the processor registers at
the machine code level. Using this approach allows in most cases to generate such VC, which will
be sufficient for deductive verification of the machine code of the function with loops.

The work is in progress. At the moment, the approach has been partially implemented in the
system of deductive verification of machine code. Its full implementation and testing is the nearest
direction for further work. Also among the possible areas for further research can be identified the
study of problems arising in the proof of the correctness of functions containing calls to other
functions or system calls. There is a separate issue with the security check of the machine code
execution, i.e. the absence of exceptions at the processor level, incorrect memory readings or stack
overflows. Also of great importance is the study of the applicability of the machine code deductive
verification system for solving real industrial problems.

References

[1]. R.W. Floyd. Assigning Meanings to Programs. Mathematical Aspects of Computer Science, vol. 19,
1967. P. 19-32.

[2]. C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM, vol. 12,
no. 10, 1969, pp. 576-585.

[3]. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, 2009, pp. 825-885.

[4]. C. Sun, V. Le, Q. Zhang, Z. Su. Toward understanding compiler bugs in gcc and llvm. In Proc. of the
25th International Symposium on Software Testing and Analysis, 2016, pp. 294-305.

[5]. Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018. pp. 95-106. DOI: 10.15514/ISPRAS-2018-30(4)-6

[6]. M.O. Myreen. Formal Verification of Machine-Code Programs. Ph.D. Thesis. University of Cambridge,
2009, 131 p.

[7]. K. Slind, M. Norrish. A Brief Overview of HOL4. Lecture Notes in Computer Science (LNCS), vol.
5170, 2008, pp. 28-32.

[8]. A. Fox. Formal Specification and Verification of ARM6. Lecture Notes in Computer Science (LNCS),
vol. 2758, 2003, pp. 25-40

132

Tlytpo I'LA. Vcionb3oBaHye HHBAPHAHTOB (DyHKIIHH BBICOKOTO YPOBHS JTs1 ISAYKTUBHOM BEPU(HKALN MAIIMHHOTO Kofta. Tpyoet UCIT PAH, Tom 31, BBIIL 3,

20191, crp. 123-134

[9]. K. Crary, S. Sarkar. Foundational Certified Code in a Metalogical Framework. Technical Report CMU-
CS-03-108. Carnegie Mellon University, 2003. 19 p.

[10]. X. Leroy. Formal Certification of a Compiler Back-End or: Programming a Compiler with a Proof
Assistant. In Proc. of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 42-54.

[11]. Y. Bertot. A Short Presentation of Cog. Lecture Notes in Computer Science, vol. 5170, 2008, pp. 12-16.

[12]. P. Baudin, P. Cuoq, J.-C. Filliatre, C. Marché, B. Monate, Y. Moy, V. Prevosto. ACSL: ANSI/ISO C
Specification Language. Version 1.13, 2018, 114 p.

[13]. T.M.T. Nguyen, C. Marché. Hardware-Dependent Proofs of Numerical Programs. Lecture Notes in
Computer Science, vol. 7086, 2011, pp. 314-329.

[14]. G. Barthe, T. Rezk, A. Saabas. Proof Obligations Preserving Compilation. Lecture Notes in Computer
Science, vol. 3866, 2005, pp. 112-126.

[15]. MicroTESK Framework — http://www.microtesk.org

[16]. M. Freericks. The nML Machine Description Formalism. Technical Report TR SM-IMP/DIST/08, TU
Berlin CS Department, 1993, 47 p.

[17]. C. Barrett, P. Fontaine, C. Tinelli. The SMT-LIB Standard Version 2.6. Release 2017-07-18, 104 p.

[18]. JavaScript Object Notation — https://www.json.org/

[19]. R. E. Tarjan, Dep-first search and linear graph algorithms. SIAM Journal on Computing, vol. 1, no. 2,
1972, pp. 146-160.

[20]. ocaml-containers library — https://github.com/c-cube/ocaml-containers.

MUHdopmauma o6 aBTopax / Information about authors

[aBen IIYTPO momyumn cremeHs OakamaBpa B O0NAaCTH TPOTPaMMHON WH)XCHEPHHA B
HanuonaneHOM HCCIIENOBAaTENCKOM YHHBEpPCUTETE «BbIcIIas ImIKona SKOHOMHKHY», MoOCKBa,
Poccus. B Hactosimee BpemMst OH POAoIDKaeT 00ydeHHe B 3TOM YHHBEPCHTETE 0 MaruCTEpCKOH
nporpamme «CHCTEeMHOE TporpaMMHUpoBaHHe». Paboraer B MHCTUTYTE CHCTEMHOTO
nporpamMupoBanus uMm. B.II. VBannukoBa PAH. VccrnemoBaTenbCkue HMHTEPECH BKIIOYAOT
JEIYyKTUBHYIO BEpU(HKAIMIO, JIOTMYECKOe IPOrpaMMHUPOBAHME M CTATHYECKUil aHanu3
MAaIIMHHOTO KOJa.

Pavel PUTRO received a bachelor's degree in software engineering from the National Research
University Higher School of Economics, Moscow, Russia. Currently, he is continuing his studies
at this University on the master's program «System programming”. He works at the Ivannikov
Institute for System Programming of the RAS. His research interests include deductive
verification, logic programming, and machine code static analysis.

133

Putro P.A. Applying High-Level Function Loop Invariants for Machine Code Deductive Verification. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 2, 2019, pp. 123-134

134

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-11

Extracting Assertions for Conflicts in HDL
Descriptions

1234 S, Kamkin, ORCID: 0000-0001-6374-8575 <kamkin@ispras.ru>
'M.S. Lebedev, ORCID: 0000-0002-0207-7672 <lebedev@ispras.ru>
1S.A. Smolov, ORCID: 0000-0003-0173-3081 <smolov@ispras.ru>
Yvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
*Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia
*Moscow Institute for Physics and Technology,

9, Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
*National Research University Higher School of Economics,

20, Myasnitskaya st., Moscow, 101000, Russia

Abstract. Data access conflicts may arise in hardware designs. One of the ways of detecting such conflicts is
static analysis of hardware descriptions in HDL. We propose a static analysis-based approach to data conflicts
extraction from HDL descriptions. This approach has been implemented in the Retrascope tool. The
following types of conflicts are considered: simultaneous reads and writes, simultaneous writes, reading of
uninitialized data, no reads between two writes. Conflict assertions are formulated as conditions on variables.
HDL descriptions are automatically translated into formal models suitable for the nuXmv model checker. The
translation process consists of the following steps: 1) preliminary processing; 2) Control Flow Graph (CFG)
building; 3) CFG transformation into a Guarded Actions Decision Diagram (GADD); 4) GADD translation
into a nuXmv format. Conflict assertions are automatically built using static analysis of the GADD model and
passed to the nuXmv model checker. Bounded model checking is used to check whether these assertions are
satisfiable. If true, counterexamples are generated and then translated to HDL testbenches by the Retrascope
tool. The proposed approach was applied to several open source HDL benchmarks like Texas-97,
Verilog2SMV, VCEGAR and mips16 modules. Potential conflicts have been detected for all of these
benchmarks. Future work includes propagation of conflict assertions to the interface level (thus getting
assertions on modules’ communication protocols) and generation of built-in HDL checkers.

Keywords: hardware design; hardware description language; functional verification; static analysis; test
generation; data access conflict; control flow graph; guarded action; guarded actions decision diagram; model
checking.

For citation: Kamkin A.S., Lebedev M.S., Smolov S.A. Extracting Assertions for Conflicts in HDL
Descriptions. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 135-144. DOI: 10.15514/ISPRAS-
2019-31(3)-11

135

Kamkin A.S., Lebedev M.S., Smolov S.A. Extracting Assertions for Conflicts in HDL Descriptions. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 3, 2019, pp. 135-144

Mouck KoHNMKTOB AocTyna K AaHHbIM B HDL-onucaHusx

1234 4.C. Kamxun, ORCID: 0000-0001-6374-8575 <kamkin@ispras.ru>
Y M.C. Jle6eoes, ORCID: 0000-0002-0207-7672 <lebedev@ispras.ru>
1 C.4. Cmonos, ORCID: 0000-0003-0173-3081 <smolov@ispras.ru>
1H)L:cmumym cucmemno2o npozpammuposanus um. B.I11. Heaunuxoea PAH,
109004, Poccus, . Mockea, yn. A. Comicenuyvina, 0. 25
% Mockosckuii eocyoapcemeennwlil ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, e. Mockea, Jlenunckue eopul, 0. 1
$Mocxrosckuii (usuxo-mexnuueckuii uncmumym,
141701, Poccus, Mockoeckas 06a., 2. [loneonpyounsiii, HUncmumymckuii nep., 0.9
*Hayuonanvuwiii uccnedosamensexuti yuusepcumem «Bulcuias wkoia s5KoHOMUKIY,
101000, Poccus, 2. Mockea, yn. Macnuykas, 0. 20

AnnoTtamus. [Ipu npoexTupoBanny MoayJiel I poBOH anmmapaTypsl MOTYT BO3HUKATh KOH(IMKTHI JOCTYIIA
K naHHbIM. OJJTHUM M3 CIOCOOOB HX BBISBICHUS Ha PaHHUX CTAAUSIX MPOSKTHPOBAHMS SIBISIETCS CTATUUECKUI
aHanmM3 omucaHui nudpoBoi ammapartypsl (wnmn HDL-onwmcanwii). B maHHOHM cTaTbe ONMMCHIBAETCS METO.
nmorcka KOH(IMKTOB AocTyna K AaHHbIM B HDL-onmcanusx. MeTtos peann3oBaH B HHCTpyMeHTe Retrascope
U OPHUEHTHPOBAH Ha KOH(UIKTHI CIEAYIOIINX THIIOB. OZHOBPEMEHHBIE YTCHHE M 3allUCh; OXHOBPEMEHHAsS
3aMKCh; 0OpalleHne K HeMHHINAIN3UPOBAHHBIM JaHHBIM; OTCYTCTBHE UTCHHUSI MEXKAY JBYMS aKTaMH 3aIliCH.
KoH¢mukThl 3amatoTcsi B BUAE yCJIOBUi (assertion) Ha BHyTpeHHHe nepeMeHHble. Bxoqnoe HDL-ommcanne
aBTOMATHYECKH TPAHCIUPYETCs B GOPMaIBHYIO MOJIENb Ha SI3BIKE, SBILTIOMIEMCS BXOIHBIM IJIsI HHCTPYMEHTa
poBepku Mozenel nuXmv. TpaHCImus BKIIOYaeT ClIeIyIolue dTanbl: 1) npeasapuTenbHas o0paboTka; 2)
nocTpoeHue rpada noroka ympaeieHus; 3) TpaHchopmanus rpada HOTOKa YHPaBICHUS B PEIIAIOLIYO
quarpamMmy oxpaHseMmbix gaeictBuii (GADD-monens); 4) tpancisuus GADD-momenu B (opmar
HHCTpyMEeHTa nuXmv. YCIOBHS BO3HUKHOBEHHS KOH(IMKTOB CTPOATCS AaBTOMAaTHYECKH HAa OCHOBE
cratudeckoro ananuza GADD-Monenu u nepenaroTcss HHCTPYMEHTY MpoBepku Mozenei nuXmv. Haiinennsie
KOHTPHPHUMEpH! (TIOCIEN0BATENbHOCTH 3HAYEHHH BXOJHBIX CHTHAIOB, MPUBOASAINNE K JOCTIDKCHHUIO
KOH()JIMKTa) aBTOMAaTHYECKH TPAHCIUPYIOTCS HHCTPYMEHTOM Retrascope B TeCTbl, KOTOpPBIE MOTYT OBITh
HCTIOJHEHBI Ha cuMyJsitope. [IpenoskeHHbIH MeTo MOUCKa KOHMIMKTOB OBbUT MPUMEHEH K PSTy OTKPBITHIX
TECTOBBIX HabopoB u Mmomyinedl — Texas-97, Verilog2SMV, VCEGAR, mipsl6. Beumd BBISBICHBI
MOTEHIMANIbHEIE KOHQUIMKTHI Ui BCEX YKa3aHHBIX KaTeropuid. B kauecTBe HampaBieHMi JanbHEHIINX
HCCIIEIOBAaHUN PACCMATPUBAIOTCS BBIHOC YCIOBHH KOH(IMKTOB Ha YPOBEHb BXOJHBIX CHTHATOB (U
MOTydeHHe, TaKUM 00pa3oM, CBEICHHH O MPOTOKOJAX B3aMMOAEHCTBHS MEXIYy MOIYISIMH), a TaKkKe
reHeparys BCTpOEHHBIX MpoBepok B kojae HDL-onucanuii.

KnroueBble cjioBa: pa3paboTKa anmapaTypsl; S3bIK ONMCAHMS alnaparypsl; GyHKIMOHAIbHAS BepUBHUKAIHS;
CTaTHMYECKUH aHanW3, TeHepalus TeCTOB; KOH(IMKT JOCTyma K MAaHHBIM; Tpad IOTOKa YIpaBICHUS;
oXpaHsieMoe JeHCTBHE, pellarolas JuarpaMMa OXpaHsaeMbIX AeHCTBUI; IPOBepKa MOAEIH.

Jas murupoanmsi: Kamkun A.C., Jlebene M.C., Cmonos C.A. Tlouck KOH(IUKTOB AOCTYyMA K JaHHBIM B
HDL-onucanusx. Tpynst ICIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 135-144 (na anrmmiickoM si3eike). DOI:
10.15514/ISPRAS-2019-31(3)-11

1. Introduction

Modern hardware designs contain multiple modules and processes operating on the common set of
internal variables. In this case conflicts, i.e. illegal accesses from different processes to the same
data, may appear. Requirements on how to operate with modules and avoid conflicts in a
communication protocol can be described both in formal (machine-readable) and informal
(human-readable) ways.

In this paper, a formal verification based approach to conflict extraction is proposed. The idea is to
analyze an HDL description aimed at finding data access conflicts [1]. Both the conflicts and the
target description are then automatically translated into the input format of a model checking tool.
The tool generates counterexamples for the feasible conflicts.

136

Kamkun A.C., JIe6eneB M.C., Cmonos C.A. ITouck xondukroB goctyna k JaHusiM B HDL-onucanusx. Tpyos: UCIT PAH, Tom 31, BbimL. 3,
2019 r., ctp. 135-144

2. Related work

In [1] several categories of data conflicts are described: read after write (RAW), write after read
(WAR) and write after write (WAW). The HOL verification system [2] was used to check a RISC
processor’s pipeline. The formal specification of pipeline was implemented manually that is hard
to be done for modern processors because of their complexity.

In [3], a GoldMine methodology is presented for automatic generation of hardware assertions. The
method uses a combination of data mining and static analysis techniques. First, the HDL design is
simulated to generate data about the design's dynamic behavior. Then, the generated data are
mined for “candidate assertions” that are likely to be invariants. The data mining technique used is
a decision-tree-based supervised learning algorithm. The candidate assertions are then passed
through the Cadence Incisive Formal Verifier [4] tool to filter out the spurious candidates. The
disadvantages of GoldMine are: 1) usage of commercial tool; 2) invariants’ incompleteness
because of random simulation usage at an early stage.

3. Assertion extraction method

We propose a new approach to data access conflicts extraction in HDL descriptions. Our goal is to
detect conflicts and provide proofs that they may happen. The method is aimed at conflicts of the
following types:

o read-write (RW): on the same clock tick one process writes the variable and the other process
reads it;

o write-write (WW): on the same clock tick at least two processes write the same variable;
e write-read-write (WRW): we assume that a variable should be read between two writes;
e undefined (UNDEF): variable is read before it was written.

if (state_bank3[inst_addr] > 1) // C*
prediction[3] <=1; //B*

else
prediction[3] =0; // B?

if (state_bank2[inst_addr] > 1) // C?
prediction[2] <= 1; //B®

else
prediction[2] <=0; //B*

if (state_bank1[inst_addr] > 1) // C°
prediction[1] <=1; //B®

else
prediction[1] <=0; // B®

Fig. 1. Control Flow Graph Example

The method consists of the following steps: 1) Control Flow Graph (CFG) extraction; 2)
transformation to Guarded Actions Decision Diagram (GADD); 3) process invariants and conflict
assertions extraction; 4) invariants and assertions translation into an input format of a model
checking tool; 5) counterexample generation. All method steps are made automatically. The CFG
representation is built for every process of the HDL model using an abstract syntax tree traversal
compiler-like approach [5]. From the structural view, CFG is a directed graph. Nodes of the graph
contain HDL operators; edges of the graph mean control flows. On the left side of fig. 1 the
fragment of Verilog code is shown; the related CFG is shown on the right side. Branch operators
are shown as diamond nodes and called as C*. Basic block operators are shown as rectangles and
called as B'. Graph edges contain the values that the branch conditions should be equal to for

137

Kamkin A.S., Lebedev M.S., Smolov S.A. Extracting Assertions for Conflicts in HDL Descriptions. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 3, 2019, pp. 135-144

edges to be passed. CFG is supposed to be acyclic: HDL loops with constant numbers of iteration
are unrolled into sequences of operators.

The next step is the transformation of the CFG to a GADD that is a labeled DAG of guarded
actions. A pair {y, 8}, where y is a guard and & is an action, is called a guarded action (GA) [6].
The main idea of the CFG-GADD transformation method is in extraction of branch-free sub-paths
from the CFG. Every such sub-path (GA) contains a condition (guard) and a sequence of
assignment operators (action). For action to be executed the guard should be satisfied. Actions are
represented in the static single assignment (SSA) form [7]. To connect subsequent GAs into a
complete CFG path an auxiliary phase variable is used.

To illustrate this step of the approach, let us take the previous example (see Fig. 1). The CFG
model contains the following execution path: C* - B* — €2 -» B* —» €3 — B>. Path nodes are
grey-colored in the fig. 1; path edges are highlighted too. The following GAs can be extracted
from the path: {C*, B}, {C?, B*}, {C3, B5}. Every GA corresponds to a unique value of the phase
variable. The phase variable changes its value upon moving from one GA to another. On Fig. 1
related values of the phase variable are shown in brackets (the initial phase value is 0). Fig. 2
shows the example of GADD model from the previous example:

The main advantage of GADD model is path number reduction in comparison to CFG. In worst
case (when CFG is a sequence of branch operators) the GADD has 0(n) paths, where n is the
number of branches, but the CFG has 0(2™").

Fig. 2. GADD example

Then the GADD is transformed into the invariants of the processes, which represent the cycle-
accurate behavior of the processes. The invariant is a logical formula and is a kind of a SSA
representation of the whole process. Every GA of the GADD contains a unique phase variable value
assignment. These unique values can be used as SSA version values of the variables. The phase
variable is removed from the resulting formula because it does not affect the process behavior.

Each variable that is defined in a GA is labeled by the corresponding phase value. Each variable
that is used in the GA is labeled by the set of phase values of the preceding GAs. For guards
intermediate variables are introduced. To determine the values of the used variables, a backward
search of the GADD is used: it is obvious that the variable value was defined in one of the
preceding GAs or did not change from the previous cycle. After that, the process invariant formula
is built as a conjunction of equality expressions representing each GA’s guards and actions.

Let us see how a process invariant is built using a small example. Fig. 3 shows a part of the GADD
and represents three guarded actions.

The guard conditions are: z == a, b and c respectively, and the actions contain definitions of
variables x, yand unique definitions of phase. A set of the preceding phase values is {i, j}; z is a

138

Kawmxun A.C., Jle6enes M.C., Cmonos C.A. ITouck koH(IMKTOB focTyna K fanHbM B HDL-onucanusx. Tpyost UCII PAH, Tom 31, BeIm 3,
2019 r., ctp. 135-144

variable; a, b and care constants; f, g and h are functions defining the values of x and y; Vis a set
of process variables.

x :=f(V) y:=g(V) x :=h(V)
phase =k phase :=m phase :=n

Fig. 3. Original part of the GADD

On the first step we label the variables by the corresponding phase values. The result of that is
shown on fig. 4.

NORPON NOFRRDN

Fig. 4. GADD part with labeled variables

The used variables are now labeled by the preceding phase values {i, j} and the defined variables
are labeled by the corresponding phase values k, m, n. Phase definitions are removed.
Then we introduce and define a variable for each guard. The guard variable definition consists of a
guard expression and a link to the preceding guards. This helps us restore the path from the
beginning of the process to the corresponding guarded action. For example:

guard®: = (z) == q) & (guard® | guard?)
When all the variables in all the GAs are labeled by phases, the remaining unknown used
variables’ values can be determined. Let us determine the value of z(*/). So we traverse the GADD
backward using the preceding phase values, starting from i and j (fig. 5). When a definition is
found on some path (denoted def on fig. 5), the traversal of this path completes and the definition
value is collected. If the beginning of the process is reached, the variable preserves its value from
the previous cycle.
In the example on fig. 5 the variable z is defined on phases s and t or may not change its value. So
the value of z(*/) can be determined as follows:

zOD: = guard® ? z: guard® ? z®: z

139

Kamkin A.S., Lebedev M.S., Smolov S.A. Extracting Assertions for Conflicts in HDL Descriptions. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 3, 2019, pp. 135-144

On the final step the invariant formula is built. As it was mentioned, it is a conjunction of equality
expressions for every labeled variable of the process including the guard variables:

0 == FYEDY gy == g(V@DY g™ —= p(y i)
&guard® == ((z) == a) & (guard® | guard))
& guard™ == ((z) == b) & (guard® | guard?))
&guard™ == ((z%) == ¢) & (quard® | guard?))
&zW) == (guard™® ? z: guard® ? zV:z) & ...

start

Fig. 5. Version value search (CFG view)

After the process invariant is built, the definition and usage conditions can be collected. They are
collected only for internal and output variables of the HDL model, because input variables can be
only used.
If a variable is defined (used) in the action of a GA, its definition (usage) condition equals the
guard variable that corresponds to this GA. If a variable is used in the guard condition of a GA, its
usage condition equals the disjunction of the corresponding guard variables of the preceding GAs.
The variable definition (usage) condition of the whole process is the disjunction of the variable
definition (usage) conditions of the GAs.
In our example, the definition conditions for variables xand y are:

def (x) = guard® | guard™

def (y) = guard™

The usage condition for variable z is:

use(z) = guard® | guard?)
Then the conditions are transformed into the assertions of conflict types described above. The
assertions are represented as the Linear-time Temporal Logic (LTL) [8] formulas and state that the
abovementioned conflicts never happen.

If, for example, a variable v is defined and used both in processes p1 and p2, the corresponding
RW conditions are:

140

Kamkun A.C., JIe6eneB M.C., Cmonos C.A. ITouck xondukroB goctyna k JaHusiM B HDL-onucanusx. Tpyos: UCIT PAH, Tom 31, BbimL. 3,
2019 r., ctp. 135-144

' F (defpl(v) &usepz(v))
' F (defpz(v) &usepl(v))
The corresponding WW condition:
L F (defy1(v) &defy,, (V)
The corresponding WRW condition:
F ((defp1(v) | defyz(v))
& (F (usep,(v) | usep1(v)) U (defy1 (V) | defp2(v))))
The corresponding UNDEF condition:
G (! (usepy(v) | usep (v)) U (defy1(v) | defp2(v)))
Invariants and assertions are then translated into the SMV model. Their translation is rather
straightforward. It is only important to define the variable value in the next state of the model
using the keyword next. This value equals the last version of the variable before the end of the
process. For example, if the final phase values of a process are k, [, m, then the next state value of
a variable v is defined as:
next(v) := p®tm
The SMV model is checked by the nuXmv[9] tool using bounded model checking. Ifan assertion is

violated, a counterexample is generated and a potential conflict is found. The counterexamples
may be later translated into test scenarios for the original HDL description.

4. Case study

The method was implemented in the Retrascope [10] tool. It was applied to arange of Verilog
designs from the Texas-97 [11], VCEGAR [12] and Verilog2SMV VIS [13] benchmarks and the
16-bit MIPS processor [14].Table 1 contains the results of the method’s application: benchmark
descriptions and generated assertions amount. Here N means total amounts of top-level
modules.Most of the assertions denote only suspicious situations, so the results should be analyzed
by a verification engineer to filter out the real data conflicts.

Table 1. Benchmark descriptions and potential conflicts.

Assertions
Bench N LOC
RW WW [WRW |[UNDEF
Texas’97 17/58 | 69539 408 26 211 | 211
VCEGAR 20/34 | 15144 315 25 167 | 167
\Verilog2SMV | 12/20 | 4494 78 0 62 62
mips16 5/12 1007 10 0 9 9

Example of a RW situation, which is not a conflict (mips16/ID_stage.v):
module ID stage

wire [2:0] ir dest with bubble;
wire [2:0]write back dest;

assign ir dest with bubble = (instruction decode en)
?
ir dest : 0;
assign write back dest = ir dest with bubble;

141

Kamkin A.S., Lebedev M.S., Smolov S.A. Extracting Assertions for Conflicts in HDL Descriptions. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 3, 2019, pp. 135-144

Signal ir_dest_with_bubble is defined in one process and is used in the other process at the same
time.

Example of a WW situation, which seems to be a real conflict (Texas97/MPEG/prefixcode.v):

module start code prefix(start, done..);
reg monitor;

always Q (posedge read signal) begin
monitor=start;

end
always if(start==0) begin

monitor=0;
end

Variable monitor is defined simultaneously, if read_signal rises and at the same time start equals
0.

Example of an UNDEF situation, which is also not a conflict (mips16/I1D_stage.v):
module ID stage

reg [15:0] instruction reg;

always@ (posedge clk or posedge rst) begin
if (rst) begin
instruction reg<= 0;
end
else begin
if (instruction decode en) begin
instruction reg <= instruction;
end h
end
end
assign ir op code = instruction reg[15:12];

Register instruction_reg is undefined from the start of simulation until the clk or rst rising edge.

5. Conclusion and future work

In this paper, the approach to data access conflicts extraction from HDL descriptions has been
proposed. We extract assertions from the source code and automatically translate them into the
input format of the model checker. The tool generates counterexamples that are proofs of conflicts’
reachability. We have implemented the approach in the Retrascope toolkit and applied it to several
open source HDL benchmarks.

One direction for future research is to propagate assertions from internal variables’ to interface
variables. Such assertions can be used to improve protocols of unknown third-party modules or
even to reconstruct protocols. Another direction is the generation of checkers, i.e. HDL wrappers
for target modules that check their behavior through simulation.

References

[1]. S.Tahar, R. Kumar. Formal Verification of Pipeline Conflicts in RISC Processors. In Proc. of the
European Design Automation Conference (EURO-DAC), 1994, pp. 285-289.

[2]. M. Gordon, T. Melham. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic,
Cambridge University Press, 1993, 492 p.

142

Kamkun A.C., JIe6eneB M.C., Cmonos C.A. ITouck xondukroB goctyna k JaHusiM B HDL-onucanusx. Tpyos: UCIT PAH, Tom 31, BbimL. 3,
2019 r., ctp. 135-144

[3]. S. Hertz, D. Sheridan, S. Vasudevan. Mining Hardware Assertions with Guidance From Static Analysis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 32, No. 6, 2013,
pp. 952-965.

[4]. Cadence Incisive Formal Verifier.
https://community.cadence.com//CSSharedFiles/forums/storage/22/10078/IncisiveFV_ds.pdf

[5]. A.V. Aho, R. Sethi, J.D. Ullman. Compilers: principles, techniques, and tools. Addison-Wesley, 1986,
796 p.

[6]. J. Brandt, M. Gemunde, K. Schneider, S. Shukla, J.-P. Talpin. Integrating system descriptions by
clocked guarded actions. In Proc. of Forum on Specification and Design Languages (FDL), 2011, pp. 1-
8.

[7]. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, F.K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph. ACM Transactions on Programming Languages and
Systems, vol. 13, issue 4, 1991, pp. 451-490.

[8]. A. Pnueli. The temporal logic of programs. In Proc. of the 18th Annual Symposium on Foundations of
Computer Science, 1977, pp. 46-57.

[9]. nuXmv model checker. https://nuxmv.fbk.eu

[10]. Retrascope toolkit. https://forge.ispras.ru/projects/retrascope

[11]. Texas-97 Verification Benchmarks. https://ptolemy.berkeley.edu/projects/fembedded/research/vis/texas-
97

[12]. VCEGAR benchmark collection. https://www.cprover.org/hardware

[13]. Verilog2SMV tool. https://es-static.fok.eu/tools/verilog2smv

[14]. Educational 16-bit MIPS Processor. https://opencores.org/projects/mips_16

Information about authors / UHcpopmaums o6 aBTOpax

Anexcanap Cepreesuy KAMKWH — Begymmii HaydyHBIM COTPYIHUK OTHENa TEXHOJIOTHM
IporpaMMHUpOBaHust MHCTUTyTa cHcTeMHOro nporpamMupoBanuss uMm. B.II. VIBaHHHMKOBa
Poccumiickoit axamemmn Hayk (MCII PAH). Taxxke oH unrtaer Jeknud B MOCKOBCKOM
rocymapcTBeHHOM yHuBepcutere uM. M.B. JlomonocoBa (MI'Y), MockoBckoM (hHU3HKO-
texHnaeckoM wuHcTUTyTe (M®TU) m Bricmedt mkome skoHomukun (HUY BIID). Kammgmpar
¢usnko-MaTematndeckux Hayk (2009). OOmactp Hay4YHBIX HHTEPECOB: apXHTEKTypa
MHKPOIIPOLIECCOPOB, TPOSKTHPOBaHHE LU(POBOI ammaparypsl, BepupuUKanus U TECTHPOBAHHE
UQPOBOI anmaparypsl, TEHEpaIUs TECTOBBIX IPOTrpaMM JIi MHKPOIPOLIECCOPOB, BepUpHUKAIH
MOJICHCTEM YINPaBJICHUS MaMITbI0O MHKPOIPOLECCOPOB, CTATUYECKMHA M JAMHAMHYECKUI aHAIU3
HDL-onwucanwuii.

Alexander Sergeevich KAMKIN is a leading researcher at the Software Engineering Department
of Ivannikov Institute for System programming of the Russian Academy of Sciences (ISP RAS).
He is also a lecturer at Moscow State University (MSU), Moscow Institute of Physics and
Technology (MIPT) and Higher School of Economics (HSE). His research interests include
hardware design, functional verification, test program generation, and formal methods. He has a
MS in computer science (MSU, 2003) and a PhD in computer science (ISP RAS, 2009). He is an
expert of RAS and one of the organizers of Spring/Summer Young Researchers’ Colloquium on
Software Engineering (SYRCOoSE).

Muxann Cepreesuu JIEBEJJEB — wumxeHep 2ii Kareropum OTAeNa TEXHOJOTWH
nporpammupoBanus MCIT PAH. O6nacts Hay9HBIX HHTEPECOB: apXUTEKTypa MUKPOIIPOIIECCOPOB,
MPOEKTHPOBaHUe IM(POBOIT ammapaTypsl, Bepu(UKaIus 1 TECTUPOBaHNE ITU(PPOBOH amlmapaTypsl,
CcTaTHYeCKUM 1 quHaMmuueckuii ananu3 HDL-onucanuii.

Mikhail Sergeevich LEBEDEYV is an engineer at the Software Engineering Department of ISP
RAS. He has a MS in hardware engineering (MEPhI, 2011). His research interests include
hardware design, functional verification, formal methods and static analysis.

143

https://nuxmv.fbk.eu/
https://forge.ispras.ru/projects/retrascope
https://ptolemy.berkeley.edu/projects/embedded/research/vis/texas-97
https://ptolemy.berkeley.edu/projects/embedded/research/vis/texas-97
https://www.cprover.org/hardware
https://es-static.fbk.eu/tools/verilog2smv
https://opencores.org/projects/mips_16

Kamkin A.S., Lebedev M.S., Smolov S.A. Extracting Assertions for Conflicts in HDL Descriptions. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 3, 2019, pp. 135-144

Sergey Aleksandrovich SMOLOV is a junior researcher at the Software Engineering Department
of ISP RAS. He has a MS in computer science (MIPT, 2010). His research interests include
functional verification, formal methods and static analysis.

Cepreit Anexcanaposud CMOJIOB — wmimaamuii HaydHBIH COTPYOHHMK OTAeNla TEXHOJOTHIM
nporpammupoBanust UCIT PAH. O6macTs HaydHBIX WHTEPECOB: (DYHKIIMOHATBHAS BepH(HUKAIIL,
(opManbHbIE METO/IBI, CTATUYECKHH aHAIN3.

144

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-12

Constructive heuristics for Capacitated Vehicle
Routing Problem: a comparative study

S.M. Avdoshin, ORCID: 0000-0001-8473-8077 <savdoshin@hse.ru>
E.N. Beresneva, ORCID: 0000-0001-6710-2843 <eberesneva@hse.ru>
Department of Software Engineering,

National Research University Higher School of Economics,

20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. Vehicle Routing Problem (VRP) is concerned with the optimal design of routes to be used by a
fleet of vehicles to serve a set of customers. In this study we analyze constructive heuristics for a subcase of
VRP, where the vehicles have a limited capacity — Capacitated Vehicle Routing Problem (CVRP). The
problem is NP-hard, therefore heuristic algorithms which provide near-optimal polynomial-time solutions are
still actual. The aim of this work is to make a comparison of constructive heuristics as there were not found
any such classification. Finally, the leader by a criterion of quality is admitted being a Clarke and Wright
Savings heuristic; however, this algorithm cannot find the solution for all used instances. This fact and other
ones are discussed in the paper. Our future goal is to make an experimental comparison of the most common
and state-of-the-art metaheuristics using well suited constructive heuristic to build a suboptimal solution.

Keywords: capacitated vehicle routing problem; classical heuristics; constructive heuristics

For citation: Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing
Problem: a comparative study. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156. DOI:
10.15514/ISPRAS-2019-31(3)-12

JBpUCTMUYECKME MeTOAbI KOHCTPYUPOBaHUA MapLpyTa ANA pelueHus
3aa4uvM MapLIpyTM3aLUumM ¢ orpaHMyYeHUeM No rpy3onogbLEeMHOCTH

C.M. Aéoowun, ORCID: 0000-0001-8473-8077 <savdoshin@hse.ru>
E.H. Bepecnesa, ORCID: 0000-0001-6710-2843 <eberesneva@hse.ru>
Jlenapmamenm npoepammHoOU UHICEHEPUL,
Hayuonanwsnouii uccnedosamensvckuil ynusepcumem “‘Boicuas wikona sxkonomuxu”, 101000,
Poccus, e. Mocksa, yn. Macuuykas, 0. 20

AHHOTauMs. 3aa4a MapuIPyTH3aMH — OJJHA U3 IIMPOKO M3BECTHBIX 33/1a4 KOMOMHATOPHOI ONTHMH3ALUH.
OHa COCTOHT B OTHICKAHWH ONTHMAJIbHOTO MHOKECTBA MapIIPYTOB JJIS TPAHCIOPTHBIX CPEACTB C LEJBIO
OJIHOKPATHOTO OOCITY’KMBaHHUs OIPEIEICHHOr0 MHOXECTBa KIHEHTOB. B maHHOW pabore wuccnexyercs
MOJBH/ 33JaYll MapIIPyTH3alMK — 3aja4a MapIIPYTHU3alHd C OTPaHHYEHHEM 10 TIPY30IOJbEMHOCTH, B
KOTOpPOH KakJj0€ TPAaHCHOPTHOE CPEACTBO MMEET CBOIO I'Py30HOABEMHOCTh. 3anauda sinsgercs NP-TpynHoH,
MO3TOMY BMECTO TOYHBIX aJTOPHUTMOB pEIICHHS HCCICAYIOTCS TOJNBKO 3BPUCTHYECCKHE aJITOPHTMBI,
MO3BOJISIOLINE TTOTYYUTh NPHOIMIKEHHBIE PEIICHHs 3a MOJMHOMUAIBHOE BpeMs. 3aaadya paboTbl — IPOBECTH
SKCTIEPUMEHTAIBHOE MCCIeOBAaHNE TOYHOCTH PEIIEHUs Pa3IHYHBIX KOHCTPYKTHBHBIX 3BPHCTHK, TaK KaKk B
IPYTUX HCTOYHMKAX He ObLIO HaiieHo MOJOOHBIX CpaBHEHHMil. B GONBIIMHCTBE CITydaes, JIMAEPOM MOXKHO
npusHath 9BpucTuKy «Clarke and Wright Savings», omnako cymiecTByrOT OTHeNnbHBIE HAOOPHI JAHHBIX,
OIMCAaHHBIC B TEKCTE, HA KOTOPBIX JIy4lle paboTarOT APYrue anropuT™bl. Takke B CTaThe PACCMOTPEHBI U
JIpyrue HHTepecHble (akThl. B menom pabora mpojenaHa ¢ LEJIbI0 JATbHEHIIEr0 HCIOIb30BaAHHUS
MOJYYCHHBIX 3HAHHH B OKCHEPUMEHTAJIFHOM HCCIICIOBAHHH HanOoJiee H3BECTHBIX M COBPEMCHHBIX

145

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

METa’3BPUCTUUECKUX AJITOPUTMOB PEILEHUS 337241 MapIIPyTH3ALHH C OTPAaHUYEHUEM T10 TPY30MOABEMHOCTH,
JUISt KOTOPBIX OyIyT MOTy4YeHBI IPEBAPUTEIbHBIE PEIICHUS HA OCHOBE BBIABICHHBIX JTyUIINX 3BPUCTHUECKUX
METO/I0B KOHCTPYHPOBaHHsI MapUIpyTa.

KiroueBble cjoBa: 3ajaya MapHIpyTH3allUUd C OrPAaHMYEHUEM IO TPY30MONBEMHOCTH; IBPUCTUYECKHUE
METO/IbI KOHCTPYHPOBAHNUS MapIpyTa

Jasa uurupoBanmus: AspjnomuH C.M., bepecueBa E.H. DOBpucrtudeckue MeTonbl KOHCTPYHPOBaHHS
MapIpyTa Uil pelleHus 3aJadd MapUIpyTH3allud ¢ OTpaHHMuYeHHeM 1o rpysonogbemHocTd. Tpyast MCIT
PAH, Tom 31, Bbim. 3, 2019 r., ctp. 145-156 (Ha anrmmiickom s3eike). DOI: 10.15514/ISPRAS-2019-31(3)-12

1. Introduction

The Vehicle Routing Problem (VRP) is one of the most widely known questions in a class of
combinatorial optimization problems. VRP is directly related to Logistics transportation problem
and it is meant to be a generalization of the Travelling Salesman Problem (TSP). In contrast to
TSP, VRP produces solutions containing some (usually, more than one) looped cycles, which are
started and finished at the same point called «depot». The objective is to minimize the cost (time
or distance) for all tours. For the identical type of input data, VRP has higher solving complexity
than TSP. Both problems belong to the class of NP-hard tasks.

This work is aimed at analysis of VRP subcase, which is called Capacitated Vehicle Routing
Problem (Capacitated VRP, CVRP), where the vehicles have a limited capacity. It means that there
is a physical restriction on transportation more than determined amount of weight for each
machine. Capacitated vehicle routing problems form the core of logistics planning and are hence
of great practical and theoretical interest.

There are three types of algorithms that are used to solve any subcase of CVRP.

e Exact algorithms. These algorithms find an optimal solution but take a great time for solving
large instances. Such methods include Branch-and-Bound, Branch-and-Cut, cutting plane,
column generation, cut and solve, Branch-and-Cut-and-Price, Branch-and-Price, and dynamic
programming techniques. It was shown in (Toth & Vigo, Branch-and-Bound algorithms for
the capacitated VRP, 2002) that Branch-and-Bound algorithm was able to solve random
CVRP instances with up to 300 customers and four vehicles within 1000 CPU seconds in
2002. However, according to the same source some real-world CVRP instances with up to 47
vertices only were successfully solved within 1000 CPU seconds. Current situation does not
differ a lot. State-of-the-art exact methods can provide optimal solution for some SCVRP
instances with up to 100 nodes, but it takes 30-40 minutes at average (Braekers, Ramaekers, &
Nieuwenhuyse, 2016). Due to these restrictions, researchers all over the world concentrate on
heuristic methods.

e Classical heuristics. These algorithms build an approximate solution iteratively, but they do
not include further improvement stage. Different scientific works reveal that, in comparison to
exact methods, classical heuristics work much faster. For example, an instance of 100-150
nodes can be solved up to a few (1-2) seconds (Braekers, Ramaekers, & Nieuwenhuyse,
2016). Heuristics are divided into two groups that include constructive heuristics and
improvement heuristics.

e Metaheuristics. Such type of algorithms is also called a framework for building heuristics.
According to (Golden, Raghavan, & Wasil, The vehicle routing problem: latest advances and
new challenges, 2008), metaheuristics either explore the solution space by moving at each
iteration from a solution to another solution in its neighbourhood (metaheuristics based on
local search) or evolve a population of solutions which may be combined together in the hope
of generating better ones (metaheuristics based on population, natural inspired).

Actuality of research and development of heuristics algorithms for solving VRP is on its top,

because such approximate algorithms can produce near-optimal solutions in a polynomial time. It

146

Aspomna C.M., bepecnesa E.H. DBpuctudeckre MeToibl KOHCTPYHPOBAHUS MapUIpyTa ISl PEIICHHS 339l MapUIPyTH3ALMH C
OrpaHHYCHHEM 0 Tpy3onoabeMuocTu. Tpyost UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 145-156

is especially important in real-world tasks when there are more than one hundred clients in a
delivery net. Among the best-known algorithms for CVRP there are metaheuristic proposed by
Pisinger and Ropke (Pisinger & Ropke, 2007), Nagata and Braysy (Nagata & Braysy, 2009), and
Vidal et al (Vidal, Crainic, Gendreau, Lahrichi, & Rei, 2012).

There are a lot of articles related to CVRP heuristics, but no works were found which compare
solution quality, or gap, of classical heuristics using the same data bases. Solution quality is
calculated as the percentage of difference in the obtained value of the solution with the optimal (or
best-known) solution for the problem.

It is important to analyze classical heuristics since constructive heuristics are usually used in order
to provide an initial (suboptimal) solution to improvement methods and to metaheuristics that
allow to iteratively get near optimal solutions. So, we will discuss only algorithms from the first
group.

The paper is structured as follows. In the second part a mathematical formulation of CVRP is
given. In the third section, some notes on a classification of most popular constructive heuristics
are provided, including description of chosen algorithms. The fourth part consists of design of
experiments and their results. And, finally, in the fifth part conclusions and future goals are given.

2. Classical CVRP mathematical model

In the paper we will use CVRP abbreviation having in mind the mathematical formulation that was
described in a previous work of authors (Beresneva & Avdoshin, 2018).

Let a complete weighted oriented graph G =<V, VXV > is given. Let
I1={0,1,..,N}, where N+1=|V|. Graph vertices are indexed as ind=V -],
(Vv eV)(Vw e V) v #w = ind(v) # ind(w). Thus, V = {vy, v4, ..., vy} is the set of vertices,
here i = ind(v;),i € I. Let v, be the depot, where vehicles are located, and v; be the destination
points of a delivery, i # 0.

The distance between two vertices v; and v; is calculated using a distance function ¢(v;, v;). Here
a real-valued function c(-,-) on V X V satisfies Vi, j, g € I (Reed & Simon, 1972):

o c(vi, v]-) > 0 (non-negativity axiom);

o c(v,v;) = 0ifand only if v; = v; (identity axiom);

o (v, ;) = c(v;,v;) (symmetry axiom);

o c(vyvy) < c(vi,v;) + c(v;,v,) (triangle inequality axiom).

Each destination point v;, Vi € I, is associated with a known nonnegative demand, d;, to be
delivered, and the depot has a fictitious demand d, = 0. The total demand of the set V' € V is
calculated as d(V') = Z'i‘lel dr.

Let K be a number of available vehicles at the depot v,. Each vehicle has the same capacity — C.
Let us assume that every vehicle may perform at most one route and K > K,,,;,, where K,,,;, is a
minimal number of vehicles needed to serve all the customers due to restriction on C. Clearly, next

condition must be fulfilled — (Vv; € V) d; < C, Vi € I, which prohibits goods transportation that
exceed maximum vehicle capacity.

Let introduce V°={v,},where wv,€V. Let us divide V in K+1 sets
S ={vOo V?,.. VK}, each subset, except for VO, represent a set of customers to be served for one
vehicle. S = {S} is a set of all possible partitions of V. Let] = {0, 1, ..., K} be a set that keeps
indexes. Then (Vj € J) [V/| = 1. There should be no duplicates in any of subsets from S: (Vg €
N eNg #j=VInV/ =). Also, all subsets from S must form set V. Thus, V = U*_, V7.
In this notation, V% = V% u V¥, vk € J\{0}. It is obvious that d(V°%) < C.

147

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

Let introduce M* = {1,N'..,Nk}, N* = |v¥|, YK_ Nk = N. Then let M% = {0} u Mk, Let
¥ =UK_{i|i=ind(w),vv € V¥} be a set of vertex indices from Vk. Then I°% ={0}u
1, vk € J\{0}.

Let H* = {p*: M — [%%| p*(0) = 0 & (Vx € M%) (Vy € M¥) x + y = p*(x) # p*(y)} bea
set of codes of all possible permutations h* = (vpk(o),vpk(l), ...,Upk(Nk)) of V. These

permutations represent all possible Hamiltonian cycles of graph G < V(00 0k x 0k >
vk € J\{0}.
Weight of k¥ € H* can be found according to the formula 1:
Nk—1
f(h) =c (vpk(o)'vpk(zvk)) + Z ¢(Vpk(qy Pparn) M
q=0
Let S’ be a set of {VV°1,V02,...,V°%}, In this notation the weight of S’ is calculated as F(S') =
Y=t f(h*), Yk € J\{0}.
Overall, the formulation of CVRP is to find:
S%:F(8% = min F(S) (2)
se sall

3. Constructive heuristics
In this section the most popular constructive heuristics are described.

3.1 Sequential Insertion algorithm (SI)
Sequential Insertion algorithm (Laporte & Demet, Classical heuristics for the Capacitated VRP,
2002) constructs routes subsequently, one after another.

In the first step, a new tour toury, k < K, is initialized with a random unrouted node v;,i # 0, and
the depot v,. Thus, a tour (vy, v;, vy) i obtained.

In the second step, another unrouted vertex v;, j # 0, is chosen, such that its incorporation in the
current tour gives the least increase in a tour length and demand of a potential node v; does not
exceed vehicle capacity. So, the next two formulae must be hold:

o argmin vyetoury, (Vo vj) + (V) Var1) — c(Wa, Vay1);

Vg41 € toury,
vj & tourg

* Diour, +d; < C, where Dy, is atotal demand of current toury,.

If all conditions hold then this unrouted vertex v;, j # 0 is inserted in a tour tour; between v, and
Va+1-

The second step is repeated until no more unrouted vertex v;,j # 0, can be feasibly inserted. In
this case a new tour toury, k < K, is initialized, and the procedure starts from the first step.

3.2 Improved Parallel Insertion algorithm

Parallel Insertion Improved algorithm (Laporte, Nobert, & Desrochers, Optimal routing under
capacity and distance restrictions, 1985) builds routes simultaneously. This method is a
modification of Sequential Insertion algorithm.

In the first step, the minimum number K., of feasible routes is defined as Ky, = X di /C.
All these routes tour, € Tours are initialized with K,,;,, different closest to v, unrouted nodes
v;, 1 # 0. Thus, K,,,;, tours (vy, v;, Vo) are obtained.

In the second step, a random unrouted node v;,j # 0, is inserted in some route tour at its best
insertion position. The next two conditions must be hold — incorporation of v; in this tour gives the

148

Aspomna C.M., bepecnesa E.H. DBpuctudeckre MeToibl KOHCTPYHPOBAHUS MapUIpyTa ISl PEIICHHS 339l MapUIPyTH3ALMH C
OrpaHHYCHHEM 0 Tpy3onoabeMuocTu. Tpyost UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 145-156

least increase in a tour length among all other tours and demand of a potential node v; does not
exceed vehicle capacity. So:

e argmin wv,etoury, c(va, vj) + c(vj, va+1) — (Vg Vgs1);
Vg+1€EtoOUTry,
vjgtoury

® Dioyr, +d; < C, Where D,y is atotal demand of current tour.

If all conditions hold then this unrouted vertex v;, j # 0 is inserted in a tour tour;, between v, and
Vat1-

The second step is repeated until no more unrouted vertex v;,j # 0, can be feasibly inserted in
some route toury. In this case a new tour toury, k < K, is initialized as (v,, v;, vy) and adds to set
of all tours Tours, and the procedure continues.

3.3 Nearest Neighbor heuristic (NN)

Nearest Neighbor heuristic constructs routes subsequently, one after another, in a greedy way.

In the first step, an unrouted node v;, i # 0, which is closest to the depot v,, is chosen. A new open
tour toury, k < K, is initialized with v; and v,. Thus, a tour (v, v;) is obtained.

In the second step, another unrouted vertex v;,j # 0, is chosen, which is the nearest to the last
added vertex and a demand of a potential node v; does not exceed vehicle capacity. So, the next
two formulae must be hold:

hd argminvi € toury, vj €& toury C(vi' vj);
® Dioyr, +dj < C, Where Dy, is a total demand of current tour.

If all conditions hold then this unrouted vertex v; is added in the end of tour, after v;, and since
that time it turns to be the last added vertex.

The second step is repeated until no more unrouted vertex v;,j # 0, can be feasibly inserted. In
this case a new tour toury, k < K, is initialized, and the procedure starts from the first step.

3.4 Clarke and Wright Savings heuristic (CWS)

In the first step, all vertices v; € V,i # 0, must form |V — 1| routes. Thus, |V — 1| tours
(vo, v;, 1) are obtained.

In the second step, Vv; €V,Vv; €V,i#0,j#0,i+j, saving s(v;,v;) is calculated as
s(vi,vj) = c(vy, v) + c(vo,v;) — c(v;, v;). All savings are put in a list of S, S must be sorted in
a non-increasing order.

In the third step, the first unused saving in a list is taken. Then, existence of two routes tour, and
toury, x # y, having the next conditions, is checked:

e there is an edge (v;, v,) in route x and edge (v, v;) in tour tour;

® Dtourx + Dtoury <C.

If there are such routes then tour, and tour, are combined by removing edges (v;,v,), (vo, v))
and introducing edge (v;, v;). After that, despite of ability or absence these routes, the current
saving is skipped and the next one in the list is checked.

The last step works until K tours are left.

3.5 Variant of Clarke and Wright Savings heuristic (CWS_2)

Classical variant of Clarke and Wright Savings algorithm forms good tours in the first part of its
work mostly. However, it was noticed that it tends to produce less competitive tours towards the

149

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

end because of periphery nodes addition. Thus, Yellow (Yellow, 1970) and Gaskell (Gaskell,
1967) suggested improved form of savings calculation. It is s(v;, v;) = c(v;, v,) + c(vo,v;) —
Ac(v;,v;). Here A is a parameter which responds for measuring the distance between the vertices
to be joint. In one report (Golden, Magnanti, & Nguyen, Implementing vehicle routing algorithms,
1977) it was mentioned that the best value of 1 is0.4.

3.6 Subgroup of Cluster-First-Route-Second heuristics

Subgroup of Cluster-First-Route-Second heuristics belongs to two-phase methods, which are based
on the decomposition of the CVRP solution process into two separate stages — clustering and
routing. In the clustering stage, a partition of the customers into routes is made, and in the routing
stage, the sequence of the customers on each subset is obtained.

In Cluster-First-Route-Second methods, nodes are first partitioned into different subsets called
clusters and then routes are determined by sequencing the customers within each subset.

3.6.1 Sweep

This Cluster-First-Route-Second method can be applied only for planar instances (Laporte &
Demet, Classical heuristics for the Capacitated VRP, 2002).

Clustering stage

Let us define v; € V as v; = (x;; y;), where x; and y; are the Cartesian coordinates of point v;.

In the first step, new normalized vertices v; = (x;; v;") = (x; — x0; Vi — ¥,) are introduced, where
the depot v," has new Cartesian coordinates (0; 0), Vi € |V].

Let v’ = (6;,1;) be a vertex with polar coordinate of v;", where 7, =x/2+y/? and 6; is
calculated using formula 3:

arctg (%)xl >0,y;,=20
i

arctg <&) +2m,x; >0,y, <0

4

6; = arctg (&) +m,x <0 3)
- L
E,xi = 0, Vi >0
3n

7,)(1' = O,yi <0

In the second step, a list V of all V_l' =(0,,1;),Vi€|V|,i #0, is calculated and is sorted in
increasing order by parameter 6;.

In the next step, a new cluster is initialized with {v,} and maximum number of first L vertices
from V7, such that ¥'-1 d; < C. Parameter L is not a constant, it can be other for different clusters
depending on weights of demands and total capacity. Then these used vertices are removed from
7, and the procedure is repeated until 7 = @.

Routing stage

At this stage for each cluster TSP Cheapest Insertion heuristic is applied which forms a cycle.

3.6.2 Fisher and Jaikumar algorithm

In contrast to Sweep algorithm, this Cluster-First-Route-Second method can be applied not only
for planar instances. Instead of using a geometric method to form the clusters, it solves a
Generalized Assignment Problem (GAP).

Clustering stage

150

Aspomna C.M., bepecnesa E.H. DBpuctudeckre MeToibl KOHCTPYHPOBAHUS MapUIpyTa ISl PEIICHHS 339l MapUIPyTH3ALMH C
OrpaHHYCHHEM 0 Tpy3onoabeMuocTu. Tpyost UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 145-156

In the first step Vk = 1..K a vertex Vseea(k) € V\{Vo} is chosen. These K vertices form K clusters.
In the second step the cost cost,’fi of allocating each node v; € V,i # 0, to each cluster Kk is
calculated as costf, = c(v,, 1) + c(Vi, Vseeat)) — €(Vseea oy Vo)-

In the third step the algorithm solves GAP with cost,’ji, d; and C, which determines a minimum

cost assignment of items to a given set of bins of capacity C. The GAP can be solved using either
exact or heuristic techniques.

Routing stage
The final routes are determined by solving a TSP on each defined cluster.
According to this work (Sultana, Akhand, & Rahman, 2017), this algorithm gives way to the

algorithms described above and provides solutions with more solution quality. That is why it will
not be considered in later comparison study as it was already done.

3.7 Subgroup of Route-First-Cluster-Second heuristics

Subgroup of Route-First-Cluster-Second heuristics also belongs to two-phase methods. However,
in contrast to Cluster-First-Route-Second methods, these constructive heuristics at first solve TSP
for all nodes and only then break built cycle to K routes. Unfortunately, many studies showed than
these heuristics are applicable only if there is no constraint on the number of vehicles. In addition,
they are not competitive with other constructive heuristics in general (Laporte & Demet, Classical
heuristics for the Capacitated VRP, 2002).

4. Experiments and results

All algorithms are implemented as sequential algorithms in C++. The computational testing of the
solution methods for CVRP has been carried out by considering eight sets of test instances from
the next well-known database (Xavier). Total number of instances in sets A, B, E, F, G, M, P, X is
211. All instances inside one set have its own characteristics and a way of generation: cluster-
based / uniform / geometric distribution of clients, real-world / imitative cases etc. The integer
Euclidean metric is used for all instances. The naming scheme and data format for each instance is
described here (Heidelberg University). Shortly, the first letter in names shows the name of used
set, the figure after letter ‘n” shows the number of nodes and the figure which stands after letter ‘k’
presents the number of vehicles.
Experiment starts with the choice of a constructive heuristic H from the set {SI, FI, NN, CWS,
CWS_2, Sweep}. After that one dataset D is selected from the list of all benchmark datasets. Then
an instance file F from the chosen dataset D is taken as input for the algorithm H and the heuristic
is executed (only 1 time because all these algorithms do not use random generations, so all
obtained solutions are the same). After that we report solution quality £(H,F) found for the
algorithm H on the test F. Solution quality & (or percent above best-known, or gap) is calculated
using formula 4 (Toth & Vigo, An overview of vehicle routing problems, 2002):

F(SO) - Fopt(s)

Fope(S)

where F(S°) is a length of obtained solution and F,,.(S) is a length of optimal solution or best-
known one. And finally, among all &(H,F) from one dataset sample mean X.(H,D) =
ﬁzlﬂl €(H, F) is calculated which shows average gap for the algorithm H on the dataset D, where
|D| is a number of input files in dataset D.
The plan of experiments on constructive heuristics described in Fig. 1.

Input: constructive heuristics, datasets
1: foreach constructive heuristic H
2: foreach dataset D from datasets

-100%, “

151

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

3: foreach instance file F from D

4: solution = run H on F

5: calculate e(H,F)

6: calculate X,(H,D) // average gap on dataset

Fig.1. Plan of experiment on constructive heuristics

It should be mentioned that each algorithm is subsequently launched on all 211 instances from 8
datasets, so no input file is missed.

A criterion of running time was not considered because all instances were solved in a time which
does not exceed 1 second. It is thought to be insignificant in comparison with time-consuming
metaheuristic work.

Fig. 2, 3 and 4 represent the results of experiments conducted over algorithms using sets B, P and
G of widely different types. The horizontal axis represents the name of instance data. The vertical
axis shows the solution quality.

Solution quality of constructive heuristics (set B), %

140%
120%
100%
80%
60%
40%
20%
B e S
c%”gj@“}ioa"iﬁ’*;"’ﬁ @@@D @@@5&@@@@%\’@&@%@;@@ ,\é‘@ *\Qb"‘@@b@f\‘\i@ﬁ%’*\’g
A A AR AR AR AR AR AR S A AR R QJQ)Q;‘\QJQJ(\
—Sequential Insertion——Parallel insertion =—=Nearest Neighbour
—CWS_2 CWs —Sweep

Fig. 2. Solution quality of constructive heuristics, set B

152

Asgoumn C.M., bepecnea E.H. OBpuctudeckie MeToabl KOHCTPYHPOBAHUS MapIIPyTa ISl PELICHHs 3a1a9i MapIIPyTH3ALHHU C
OrpaHHYCHHEM 0 Tpy3onoabeMuocTu. Tpyost UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 145-156

Solution quality of constructive heuristics (set P), %

120%
100%
80%
60%
40%
20%
0%

SNSRI N N BTN A A BUA A SR A BN NI R

S L S S SN g = L e g S SR
D ST I N G L S IR L I - L T LI S S g L L S
Q7 7 QT QT QT QT Q7T QT QT o8 Q7 QT B T8 QT QT G QT T 0

——Seqguential Insertion—Parallel insertion = ——Nearest Neighbour
—CWS_2 Ccws —Sweep
Fig. 3. Solution quality of constructive heuristics, set P
Solution quality of constructive heuristics (set G), %
200%
150%
100%
50%
0%

B N G e S A G ¥V \ SV, L, UV I e | TV - BV, SN CIY: L NV RV, o
1 0 Vo %0 0 o X N o 1\“ VAR T g T i
9’16(\31 60&6 b & ob (\'l P (\DP' 6“86031(3 3‘-)6 5.%6 15 16(\3‘36 &‘b& A 6(\3@6{9})601

—Sequential Insertion —Parallel insertion —Nearest Neighbour —CWS_2 CWS —Sweep

Fig. 4. Solution quality of constructive heuristics, set G.

Average gaps X.(H, D) of each algorithm on different data sets are presented in Table 1 and fig. 5.
These general figures can show an approximate overall effectiveness of algorithms. On the basis of
Table 1, all fig. 2, 3, 4, 5 and other results which cannot be shown here because of their large
volume, it can be easily seen that CWS algorithm (its column is made bold in the table) is a leader
for all input files, except some instances from dataset G. Its average gap varies from 3,4% till
11,0%. The closest competitor is its variant CWS_2, which has average solution quality in a range
[9,8%; 20,6%)]. CWS_2 algorithm is able to construct the best solutions only for some instances in set
B. In all other cases this algorithm nearly always takes second place and goes behind classical CWS.

Table 1. Average gaps of all heuristics for every set, %.

153

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP

RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

Average gap X,(H,D) Constructive heuristic
in the dataset Sl Pl NN CWS CWS_2 Sweep
A (26) 68,7% 33,2% 39,7% 5,0% 12,7% 40,2%
B (23) 82,3% 34,0% 41,2% 4,3% 9,8% 31,7%
T E (11) 70,4% 30,0% 41,5% 6,4% 17,5% 36,4%
@ F(3) 42,5% 48,5% 74,6% 4,4% 20,6% 71,9%
= G (20) 24,8% 15,6% 16,3% 11,0% 18,4% 142,4%
g M (4) 83,0% 35,5% 44,6% 3,4% 12,0% 89,2%
P (24) 66,0% 25,6% 32,2% 6,9% 11,3% 31,4%
X (100) 99,7% 23,3% 27,4% 5,9% 11,9% 82,9%
Table 2. Percentage of unsolved instances for every set, %.
Percentage of unsolved Constructive heuristic
instances in the set Si Pl NN CWS CWS_2 Sweep
A (26) 0% 0% 0% 0% 0% 69,0%
B (23) 0% 0% 0% 0% 0% 50,0%
T E (11) 0% 0% 0% 0% 0% 43,5%
z F(3) 0% 0% 0% 0% 0% 63,6%
= G (20) 0% 0% 0% 0% 0% 66,7%
8 M (4) 0% 0% 0% 0% 0% 90,0%
P (24) 0% 0% 0% 0% 0% 50,0%
X (100) 0% 0% 0% 0% 0% 58,3%

There is only one algorithm that have a problem with finding an answer to the given problems — it
is Sweep. This heuristic is not able to construct a set of routes without exceeding the number of
vehicles for some input files. All the others coped with the task — they are NN, SI, PI, CWS and
CWS_2. Table 2 shows the percentage and the number of unsolved instances for all sets. In
average, Sweep algorithm cannot solve the instance without over limit in more than 50% cases. It
can be explained by the fact that the next vertex to be added is chosen by criteria of distance (polar

angle, for real) but not the capacity.

Average gap of constructive heuristics in the datasets, %

160%

140%

120%

100%

80%

60%

40%

20%

0%

setA(26) setB(23) setE(11) set F (3) set G (20) setM (4) set P (24)

—Sequential Insertion—Parallel insertion = ——Nearest Neighbour

~CWS_2 CWS —Sweep

Fig. 5. Average gap of constructive heuristics in the datasets

154

set X (100)

Aspomna C.M., bepecnesa E.H. DBpuctudeckre MeToibl KOHCTPYHPOBAHUS MapUIpyTa ISl PEIICHHS 339l MapUIPyTH3ALMH C
OrpaHHYCHHEM 0 Tpy3onoabeMuocTu. Tpyost UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 145-156

Golden_5 (n=200, Q=900)

—e— Route 1
250 —e— Route 2
Route 3
—e— Route 4
—e— Route 5
D —
-250

=300 -150 0 150 300

Fig. 6. Solution for instance G-n200-k5

It was mentioned earlier that CWS is not a leader for some instances from dataset G. There are 8
instances when NN finds the best solutions but not CWS (fig. 4). This interesting change of the
leader is connected with the type of customers’ distribution — these instances have a form of rays
going from the center. If we look at fig. 6, where a solution for the instance is presented, we can
see that the idea of nearest neighbor works here the best way.

5. Conclusions

Overall, the next recommendation should be given to the problem which has described variant of
mathematical model of CVRP. In general, for all types of clients’ distribution the best algorithm to
be applied is Clarke and Wright Savings, however, in case of having input data in form of
concentric rays (like in fig. 6) it is better to use Nearest Neighbor algorithm. Also, a few instances
were solved best of all by Clarke and Wright Savings 2 algorithm, so it is important to have this
algorithm in mind, however the difference between it and CWS is not very significant (no more
than 1%). One more conclusion is that it is unreasonable to use Sweep heuristic as it is not able to
construct a set of routes without exceeding the number of vehicles for more than 50% of input
files. Finally, for our research it means that for all instances, except those 8 from set G, CWS
heuristic will be used as initial algorithm for metaheuristic, otherwise — we will apply NN.

References

[1] P. Toth and D. Vigo, "Branch-and-Bound algorithms for the capacitated VRP," in The Vehicle Routing
Problem, Philadelphia, SIAM, 2002, pp. 29-51.

[2] K. Braekers, K. Ramaekers, and I. Nieuwenhuyse. The vehicle routing problem: State of the art
classification and review. Computers & Industrial Engineering, vol. 99, 2016, pp. 300-313.

[3] B. Golden, S. Raghavan and E. Wasil. The vehicle routing problem: latest advances and new challenges.
New York: Springer, 2008.

[4] P. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Operations
Research, vol. 34, no. 8, 2007, pp. 2403-2435.

155

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

[5] Y. Nagata and O. Braysy. Edge assembly-based memetic algorithm for the capacitated vehicle routing
problem. Networks, vol. 54, no. 4, 2009, pp. 205-215.

[6] T.Vidal, T. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic algorithm for multi-depot
and periodic vehicle routing problems. Operations Research, vol. 60, no. 3, 2012, pp. 611-624.

[7] E. Beresneva and S. Avdoshin. Analysis of mathematical formulations of Capacitated Vehicle Routing
Problem and methods for their solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, no. 3, 2018, pp. 233-
250. DOI: 10.15514/ISPRAS-2018-30(3)-17.

[8] M. Reed and B. Simon. Methods of modern mathematical physics. London: Academic Press, 1972.

[9] G. Laporte and F. Demet. Classical heuristics for the Capacitated VRP. In The Vehicle Routing Problem,
SIAM, 2002, pp. 109-128.

[10] G. Laporte, Y. Nobert, and M. Desrochers. Optimal routing under capacity and distance restrictions.
Operations Research, vol. 33, no. 5, 1985, pp. 1050-1073.

[11] P. Yellow. A computational modification to the savings method of vehicle scheduling, Operational
Research Quarterly, no. 21, 1970, pp. 281-283.

[12] T. Gaskell. Bases for vehicle fleet scheduling. Operational Research Quarterly, no. 18, 1967, pp. 281-
295.

[13] B. Golden, T. Magnanti, and H. Nguyen. Implementing vehicle routing algorithms. Networks, no. 7,
1977, pp. 113-148.

[14] M. L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle routing. Networks, vol. 11,
no. 3, 1981, pp. 109-124.

[15] T. Sultana, M. Akhand and M. Rahman. A variant Fisher and Jaikuamr algorithm to solve capacitated
vehicle routing problem. In Proc. of the 8th International Conference on Information Technology (ICIT),
2017, pp. 710-716.

[16] I. Xavier. CVRPLIB. [Online]. Available: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/. [Accessed 09
07 2019].

[17] Heidelberg University. TSPLIB. [Online]. Auvailable: https://www.iwr.uni-
heidelberg.de/groups/comopt/software/ TSPLIB95/. [Accessed 09 07 2019].

[18] P. Toth and D. Vigo. An overview of vehicle routing problems. In The Vehicle Routing Problem, SIAM,
2002.

MHcopmauma o6 aBTopax / Information about authors

Exarepuna Hukomaesna BEPECHEBA - ¢ 2017 roma mnpenoaaBaTenb JenapTaMeHTa
nporpaMMHoii mmxenepun HUWUY BIHID, ¢ 2019 roma — acnupanr HUY BIID.
[IpodeccronanbHbIle HHTEPECH — AUCKPETHAS MaTeMaTHKa, 3a/1a4a MapIIpyTH3AIMH TPAHCIIOPTA,
3a1aua KOMMHUBOSDKEPA.

Ekaterina BERESNEVA — lecturer at School of Software Engineering, Faculty of Computer
Science, National Research University Higher School of Economics since 2017. Her research
interests include discrete mathematics, the vehicle routing problem and the travelling salesman
problem.

Cepreii Muxaiinosuuy ABJIOILIMH — mpodeccop, pykoBoanTe b JenapTaMeHTa MpOrpaMMHOiL
HHKeHepuu (QaxyipTeTa KoMibioTepHeIXx Hayk HWY BIID ¢ 2005 roma. Cdepa HaydHBIX
MHTEPECOB: pa3pabOTKa M aHAIM3 KOMIBIOTEPHBIX aJITOPUTMOB, UMUTALMS M MOJEINPOBAaHUE,
napaJuleNIbHBIE U pacipeie]IeHHbIE MPOLECChl, TEHEBOM HHTEPHET, TEXHOJIOTHsl OJIOKYEHH.

Sergey AVDOSHIN - Professor, Head of School of Software Engineering in National Research
University Higher School of Economics since 2005. Research interests are design and analysis of
computer algorithms, simulation and modeling, parallel and distributed processing, deep Web,
blockchain technology.

156

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-13

Overview of the Languages
for Safe Smart Contract Programming

LA.V. Tyurin, ORCID: 0000-0003-4820-3678 <a.tyurin@2016.spbu.ru>
!1.v. Tyulyandin, ORCID: 0000-0002-8429-8726 <i.tyulyandin@2015.spbu.ru>
1v.S. Maltsev, ORCID: 0000-0002-4948-3248 <v.maltsev@2016.spbu.ru>
1.A. Kirilenko, ORCID: 0000-0003-4957-1974 <y.kirilenko@spbu.ru>
2D.A. Berezun, ORCID: 0000-0001-6306-275X <danya.berezun@gmail.com>
! Saint Petersburg State University, Mathematics and Mechanics Faculty
7, University Embankment, Saint Petersburg, 199034, Russia
2 Higher School of Economics National Research University, Department of Computer Science
16 Soyuza Pechatnikov Street, Saint Petersburg, 190121, Russia

Abstract. Blockchain technologies are gradually being found an application in many areas, especially in
FinTech. As a result, a lot of blockchain platforms have emerged with the support of smart contracts that are
intended to automate party interactions. However, it has been shown that they are prone to attacks and errors
which lead to money loss. To date, there has been a wide range of approaches for making smart contracts
safer that included analysis tools, reasoning models, and safer and more rigorous programming languages. In
this paper, we provide an overview of smart contract programming languages design principles, related
vulnerabilities, and future research areas. The provided overview is meant to outline the to date state of
languages and to become a possible basis for future proceedings, and show approaches, used by the
community, to reach safe and usable language for smart contracts. We have split all found vulnerabilities by
source of their arising. Various languages’ characteristics such as abstraction level, paradigm, Turing
completeness and main features are summarized in the table. Additional information about languages is
provided, e.g. model of execution and tools for static analysis.

Keywords: blockchain; smart contracts safety; programming languages

For citation: Tyurin A.V., Tyuluandin L.V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the
Languages for Safe Smart Contract Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp.
157-176. DOI: 10.15514/ISPRAS-2019-31(3)-13

157

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

0O06G30p A3bLIKOB AnNA
6e3onacHOro NporpaMMmMpoOBaHUA CMapPT-KOHTPAKTOB

' A.B. Tiopun, ORCID: 0000-0003-4820-3678 <a.tyurin@2016.spbu.ru>
Y Y.B. Tionsmoun, ORCID: 0000-0002-8429-8726 <i.tyulyandin@2015.spbu.ru>
! B.C. Manvyes, ORCID: 0000-0002-4948-3248 <v.maltsev@2016.spbu.ru,>
"A1.4. Kupunenxo, ORCID: 0000-0003-4957-1974 <y.kirilenko@spbu.ru,>
2 JI.A. Bepesyn, ORCID: 0000-0001-6306-275X <danya.berezun@gmail.com>
! Canxm-Ilemepbypeckuii 2ocyoapcmeenHblii YHusepcumem,
MAMeMamuKo-mexanudeckuii paxkyivmem
199034, Poccus, . Cankm-Ilemepbype, Yuusepcumemckasa Habepeocnas, 0. 7
? Hayuonanshbiti ucciedosamensckuii yuugepcumem « Bblcuias wKkona sKoHOMUKUY,
Henapmamenm ungopmamuru
190121, Poccus, e. Cankm-Ilemep6ype, yn. Coioza Ilevamnuxos, 0.16

AnHoTanusi. TexHONOTHA paclpeleleHHOTO peecTpa OJOKYEHH CTaHOBUTCS Bce Oojee MOMyJspHOW U
HaXOAUT IPUMEHEHHE B Pa3JIMYHBIX 00NacTAX, B TOM 4YHCIC M B (PUHAHCOBBIX TeXHONOTHWAX. MHorue
ONIOKYEHH-TIIIaTGOPMBI TTOJIEPIKUBAIOT (YHKIHMOHAIEHOCTE CMapT-KOHTPAKTOB, KOTOpHIE IpeTHa3HaYeHBI
JUIS aBTOMATH3alUK 3aKITIOYEHHs] OTOBOPOB. VI3BECTHHI MPUMEpEI, Te OMIMOKH WM HEOPEKHOCTH B KOAe
CMapT-KOHTPAKTa IPHBOJAT K IIOTEPE aKTHBOB, HAIIPHMEP, N3-3a aTaKH 3JI0yMBIIUICHHUKA WM HETTOHUMAaHHUS
pa3paboTurkoM ocobOeHHOcTell OnokyelH-TuarpopMel. Ha ceromHsIIHMI JeHb CYIIECTBYET MHO)KECTBO
pa3sIMYHBIX MOAXOMAOB, KOTOPBIE IO3BOJSIOT CHENaTh CMAapT-KOHTPakTel Oe3omacHee. Cpeanm Hux
WHCTPYMEHTHI aHalIW3a KOJA, MOJENN BBIYMCICHHH M CEMaHTHKH $3BIKOB IPOrPAMMHpPOBAHHS CMapT-
KOHTPAakToB. B aToif paboTe MBI IpUBOAUM 0030p S3BIKOB INPOTPAMMHPOBAHUS CMapT-KOHTPAKTOB,
MIPUHIUIOB UX MOCTPOCHUS, a TakKe MOTEHIHAIbHBIE OIHOKM B MpOrpaMMme cMapT-KoHTpakTa. OcHOBHas
1eb 3TOro 0030pa — paccCMOTPETh TEKyIllee Ha MOMEHT HAIMCaHUsS CTaTbH COCTOSHUE SI3BIKOB CMapT-
KOHTPaKTOB W BO3MOXKHBIC HAalpaBJICHUS UII OYyAyIIMX HCCIEAOBAaHHWM, a TakKe II0Ka3aTb IOAXOJH,
UCHOJIb3YEeMbIe COOOIIECTBOM Il CO37aHus 6€30MacHOro U yI00HOTo (C TOUKH 3peHHs aOCTPaKLUM) A3bIKa.
XapaKkTepUCTHKH MHOXKECTBA SI3BIKOB, TaKHe KaK: YpOBEeHb aOCTpakiuu, mapaaurma, ThIOpHHI-NOJNHOTA,
MIPOEKT, TJIe SA3BIK HCIIONB3YETCs, MHCTPYMEHTHI Ul aHaiW3a KOJa, CHCTEMa OTPaHMYCHUS W TIIaBHBIC
0COOEHHOCTH — OBUIM PacCMOTpPEHBI U CBEIEHBI B Tabnuiy. [IpenocTapneHa qONOIHATENbHAS HHPOPMALUSL
0 sI3BIKaX, HAIPUMEp, O MOJIEIH BHIOHEHHA. Taroke MBI KPaTKO ONHCAITN U pa3/IeliiIa BCe HallICHHbIE HAMHI
YSI3BEMOCTH 11O UICTOYHUKAM HX BO3HHUKHOBEHHSI.

KuroueBbie ci10Ba: 610K4€iH; 6€30MaCHOCTH CMAPT-KOHTPAKTOB; S3bIKH IIPOTPaMMHUPOBAHHUS

Jas muruposanusi: Tropun A.B., Tronsuaun U.B., Mansiies B.C., Kupunenko S.A., bepesyn JI.A. O630p
SI3BIKOB JUIs G€30I1aCHOTO MporpaMMHUpoBaHus cMapT-koHTpakToB. Tpyast ICIT PAH, Tom 31, Bem. 3, 2019
r., crp. 157-176 (na anrsmiickom si3bike). DOI: 10.15514/ISPRAS-2019-31(3)-13

1. Introduction

Initially, blockchains were designed for cryptocurrency management based on transactions. Further
such systems involved smart contracts usage to enhance transactions, making them more
sophisticated. This enabled to move part of an application logic into the blockchain, thus allowing to
provide customizable redeeming conditions [1], develop crowdfunding systems [2], and other
applications based on blockchain technology [3]. Fundamentally smart contracts are programmable
objects beyond blockchain, intended to represent automatable® and enforceable? agreements [4].

Since smart contracts are essentially programs that are executed within the blockchain and written
in some programming language, bugs and errors are possible. Erroneous transaction behavior can
lead to financial damage. For example, a not-reentrancy of a function has caused $40 million loss
[5]. Moreover, due to the immutable nature of the blockchain, it is often impossible to fix a

! «Automatable rather than «automated» since parts of an agreement may require some human input.
2 Enforceable either by law or by tamper-proof computer code.
158

mailto:i.tyulyandin@2015.spbu.ru

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

contract with a bad® behavior that is already on the chain, i.e. contracts are irrevocably committed.
One possible approach to detect such unwanted behaviors and minimize the number of
vulnerabilities is to provide a way to formalize smart contracts properties and vulnerabilities. It
will help to specify vulnerabilities sources and facilitate reasoning about smart contracts.

In [6] provided by IOHK research®, an ontology that provides a set of basic conceptual primitives
is specified. It can be used to construct desired propositions about smart contracts. It is not
intended to be the only true ontology, rather the useful one. According to the ontology, blockchain
based smart contracts can be considered as computations over blockchain state, that include the
changing over time state itself as well as a transition function. And we will further refer to
modality properties as to relationships between states, possibility or necessity properties that
should be maintained throughout transitions.

These concepts allow thinking about smart contract behavior abstractedly over details. For
example, consider a Deadline-dependent Transfer, a smart contract controlling property transfer
between recipients®. Only Recipient 1 may transfer the Item during some time interval prior to the
deadline, while only Recipient 2 may transfer the Item once the deadline has been passed. A
modality property can be formulated in the following way. There always should be a blockchain
state where at least one system participant who controls the Item, being transferred, exists, i.e. the
absence of dead states in the blockchain.

Unfulfillment of those properties in blockchain based smart contracts may lead to money loss and
malicious attacks. For example, a vulnerable sequence of smart contract library calls in PARITY
wallet led to $150 million freezes on wallets [7].

State inconsistency and weaknesses may be caused by a number of different reasons such as
blockchain-specific behavior, execution environment bugs, a model of underlying programming
language that is not amenable to proof constructions, non-intuitive representation of programs in
languages with good models, unintuitive semantics of underlying programming language for
people who lack programming experience etc [8]. Also, some modality properties may never be
proved because of possible non-termination of a program, which basically depends on a certain
programming language.

Thereby, to make smart contracts secure it is desirable to be able to specify the intended behavior
and properties that they should fulfill. These properties fulfillment can be provided with machine-
checkable proofs and facilitated with more intuitive programming languages accompanied by tools
for static analysis and formal verification to reduce the number of errors.

To date, various approaches, languages, and tools have been proposed: extensive type systems and
various programming paradigms [9], programming languages that have easily checked termination
conditions [10, 11], high-level languages that encourages safer programming via abstractions [12,
13], and intermediate and low-level languages that ease formal verification and compilers
development [14-16].

Smart contract programming languages design is influenced by domain ontology, encountered
vulnerabilities and ease of reasoning about modality properties. So, in this paper, we concentrate
on the incorporation of known approaches used in design and development of smart contracts
programming languages, proceed through vulnerabilities and domain-specific concepts that have
been considered during design process, provide a classification of current efforts, and emphasize
topics for future research.

The paper is organized as follows. Section 2 provides a short evaluation of similar works. Section
3 gives a brief summary of blockchain architecture principles relevant to languages and tools

® Here, by a «bad» contract behavior, we mean any behavior that is unexpected or undesirable by the contract
owner, caused by any reason.
* JOHK company is one of the main customers of research in peer-to-peer networks. See https://iohk.io/about/
for details.
5 Between users or other smart contracts.

159

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

design. Section 4 describes known vulnerabilities of smart contracts, classifying them for future
analysis. Section 5 provides a survey of smart contract programming languages and their design
ideas and principles, according to known vulnerabilities and blockchain architectures. In section 6
we discuss possible research gaps and future work. Section 7 concludes the paper.

2. Related works

Surely this paper is not the only one surveying smart contract programming languages, and we are
aware of a couple of similar works. So, [17] provides an overview of smart contracts programming
languages, security properties, and verification methods along with some classification of them.
However, despite a good coverage, the proposed survey is rather superficial in a sense that it
describes languages through the specification of their features, not going deep into design
foundations that have provided the features. Another work [18] gives an overview of some
distributed ledger systems, smart contracts languages, and technologies that might facilitate safety
and performance, or make new applications possible. The paper is not aimed entirely at languages,
hence it leaves the description without design foundations and any classification according to
whether desirable properties or design principles. [15] also contains some overview of existing
languages and their features, but the survey is performed from the perspective of comparison
between them and the language proposed in the paper.

In contrast, this work is intended to enhance language coverage, provide foundations and intuition
for reasoning, classification of languages, properties, and design fundamentals along with
vulnerabilities that have influenced them.

3. Background

Since smart contracts are computations on a blockchain, underlying blockchain protocol basically
sets the path for language and tools design. In this section, we review a few protocol details that
influence further development of languages. Substantially there are two widespread blockchain
architectures on top of which smart contracts are built to date — UTxO-based and account-based
blockchains that allow stateless and stateful smart contracts respectively.

3.1 UTxO

Unspent transaction output, UTxO, model was introduced with the emergence of BITCOIN
blockchain. A typical BITCOIN transaction contains a list of inputs that specify the funds that the
transaction issuer can transfer and a list of outputs, that represent the way these funds are intended
to be transferred. Each output can be used as an input for another transaction. For example, an
issuer can set the amount of currency for each output or specify conditions, under which a possible
receiver of funds can spend them, also they can specify themselves as the receivers to get so-called
change. A set of UTxO consists of all transactions outputs that have not been yet used as inputs.
Redeeming conditions for transaction outputs in BITCOIN are defined with programs written in
BITCOIN SCRIPT [10]. These programs describe properties that must be satisfied for the
redeemer to be able to use these transaction outputs as their transaction inputs in order to spend the
credits. The spender should provide input values to each locking script of referenced outputs of the
previous transaction such that all scripts evaluate to value true, e.g. they may provide their wallet
address and transaction signature to verify the authority.

Such scripts are stored within transactions and are being maintained only during a transaction, thus
they have no state. Further scripts have limited access to blockchain data and essentially they are
pure stateless functions of transaction data, i.e. of input parameters. Despite limitations, scripts
along with transaction signatures can express complex redeeming conditions such as multi-
signature payments, deposit providing, escrow, and dispute mediation, access to external data
using oracles, time-locks, payment channels, cross-chain atomic trades etc [19]. Throughout the
paper, we regard these scripts as stateless smart contracts.

160

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

3.2 Account-based blockchains

Account-based blockchains maintain an explicit state throughout transactions. A state is a mapping
between account addresses and balances. Within these blockchain systems, each transaction is a
mapping between the states. Basically, these systems are transaction-based state machines.
ETHEREUM is an example of such a system [20]. In ETHEREUM smart contracts are similar to
users’ accounts in a sense that they have their own address and a balance. Smart contracts are
stored inside the blockchain and essentially these contracts are lists of functions that can be
invoked through users’ transactions or other contracts messaging. These functions are defined with
bytecode of the corresponding execution environment called Ethereum Virtual Machine, EVM.
Since any smart contract has a balance, it is a stateful function of a data transaction (or a message)
and blockchain state, in which the transaction takes place, so they can write to blockchain state or
read from it. Contracts state typically involves a stored amount of currency. However, in general, it
can have arbitrary persistent storage that is maintained throughout the transitions of the
blockchain.

3.3 Preventing the Denial-of-service attacks (DOS)

Despite the underlying blockchain model, smart contracts are computations that are replicated over
blockchain via consensus protocol. To prevent DOS-attacks the number of computations for every
program representing a smart contract should be restricted beforehand. Restriction mechanism
depends on the underlying programming languages properties. One of the main properties in the
context of smart contracts is halting, i.e. whether every program that has been written in it terminates
or not. BITCOIN SCRIPT program always terminates since language is not Turing-complete and it
does not have loops, or recursion, or any other mechanism that provides infinite computations.
However, the size of a program also affects the performance of the system behind it. Thus BITCOIN
SCRIPT programs are limited by the stack size and number of computationally heavy instructions,
i.e. transactions that contain a script that does not satisfy restrictions are rejected.

For programs written in languages that do not guarantee program termination, e.g. EVM bytecode,
program execution is limited via a gas system. Gas is basically an amount of cryptocurrency
specified for contract execution. Fixed units of gas are charged to a miner for every instruction
being executed. If the specified amount of gas is expired, execution of the contract stops.
Furthermore, EVM contracts also have a limited stack size.

4. Smart contract weaknesses

In this section, programming language-level vulnerabilities that may cause unfulfillment of modality
properties and possible mistakes are classified. It is worth to notice, that the most common property
arising in distributed systems is that results of computations should be deterministic. While many
smart contract programming languages have been designed with determinism in mind, sometimes
general purpose programming languages are used for development [21]. A detailed overview of
potential risks of non-determinism and causes can be found in [22].

We consider SOLIDITY language for stateful contracts since it is the most popular smart contract
programming languages and generally it was one of the first languages that revealed such
weaknesses, unfortunately on its own instance. Despite originally being known as unsafe, the
language is evolving and to date its compiler is able to warn about code that might misbehave.
However, Solidity has provided the foundation for the design of other languages. The most famous
errors that have caused contracts failure are DAO [5] and PARITY [23].

SOLIDITY vulnerabilities are classified in the following subsections based on what level they
occur on and the reasons that cause them. Code examples of the weaknesses could be found in [20,
24-28]. Possible attacks are discussed in [29]. Also, it is worth to mention, that SOLIDITY is a

161

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

Turing complete language, meaning that in general fulfillment of particular modality properties
cannot be proved, even despite guaranteed termination due to gas limit.

4.1 Block content manipulation

Block of transactions in blockchains is formed by one of the participants who have the ability to
influence block content. Thus, careless blocks handling may cause a number of errors.
Front-Running (Transaction-ordering dependence): It is important to be careful of transactions
order. For example, Alice has deployed contract with possibility to sell a product and set a price
for it. Bob wants to buy the product, and Alice wants to set a higher price. Let’s assume, they want
to do it at the same time. If Bob’s request is the first, Alice loses money. In another case, Bob’s
transaction can be rejected, or Bob will spend more money than he expected.

Weak sources of randomness: Random values should be deterministic for all nodes in the network
due to consensus considerations. One way to get randomness is to use pseudorandom values.
Variables of contract, even the private ones, meta-variables of a block, or a hash of a previous and
next block cannot be used as a source of entropy. In some blockchains (including ETHEREUM) it is
possible to have influence over these variables during the validation process. A pseudo-random value
in smart contract code can be predicted by a malefactor. Precalculation can be done via code analysis.

4.2 Contract interaction

A smart contract should be able to interact with other contracts. The following vulnerabilities
appear due to the fact that smart contracts cannot rely on each other’s behavior.

Unchecked return values for low-level calls: There are three functions to send ether [30] from
account to account in ETHEREUM: send() and call() that return false if an error occurs but the
transaction execution continues, and transfer() that rolls back the transaction in case of error.
Low-level functions callcode() and delegatecall() behave in the same way as functions send() and
call() . Thus handling of false value of corresponding functions is needed to avoid undesirable
behavior of contract. According to Luu et al. [31], 27.9% of smart contracts in ETHEREUM
blockchain do not check returned values.

Reentrancy: An external contract can call back functions of a caller contract before the first invocation
has finished. It can lead to undesirable recursive function interactions and allow the callee contract to
take over the control flow. The example of this vulnerability is a famous DAO smart contract [5].
Callstack bound: A failure may occur when an external call is made, but the program stack has
reached its limit. Stack overflow is possible in smart contract languages. In EVM call stack is
limited to 1024 stack frames. If the exception is not properly handled by a contract, the malefactor
can use it to attack.

4.3 Resource limits

If the smart contract language is Turing-complete, there is a need in metering® mechanism to
prevent infinite execution. ETHEREUM charges a fee, named gas. Amount of gas is proportional
to the number of executed commands by EVM. Every transaction is bounded with the maximum
amount of gas as well as blocks.

Infinite loops: Mistakes and misprints in operators usage may keep contracts syntactically correct
but strongly affect their logic. For example, writing =+ instead of += in a loop terminating
condition may lead to unexpected program behavior and even to an infinite loop. Moreover, in this
case, excessive gas consumption may occur. It also includes situations when the number of
memory addresses being used is significantly increased, e.g. when the number of elements in a
map grows, it becomes too expensive to iterate over it.

® Metering is a way to limit and charge the execution of a smart contract.
162

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

4.4 Arithmetics

In SOLIDITY arithmetics is available on unsigned integers only and the language does not provide
any arithmetic operations check for correctness. This class of mistakes mostly refers to common
programmer errors. In the case of smart contracts, they may lead to a huge loss of assets. Thus, it is
common to consider them as vulnerabilities in order to attract programmers attention.

Overflow and underflow: These vulnerabilities arise because numbers can have a fixed size. In

case of ETHEREUM, maximum value for uint(uint256) is 22°¢-1 and minimum — 0. A
programmer has to manually checks overflow and underflow.

Floating points and precision: SOLIDITY does not have fixed and floating point types. Instead, a
programmer has to emulate them via integers. All integer divisions are rounded down. Careless
handling of such operations may cause unexpected program behavior.

4.5 Storage access

The following vulnerabilities are caused by negligent memory usage and access.

Uninitialized storage pointer: Local structures, arrays, and maps link to storage zero address by
default. Using these objects without initialization will lead to overwriting whatever is in zero address.
Write to an arbitrary storage location: A smart contract can store some data and wrong variable
assignment can break it. SOLIDITY has reference types. Mistake with references can lead to
internal state corruption. If an array index is out of range, the exception will be thrown, and the
smart contract will be reverted.

4.6 Internal control flow

This class of vulnerabilities is caused by a complex control flow graph structure and an ability to
manipulate it.

Using inherited functions and variables: It is possible to use inheritance in smart-contracts
languages with the object-oriented paradigm. SOLIDITY allows multiple inheritance. If several
super-classes have a method or variable with the same name, their behavior in sub-class depends
on the inheritance order. It could shadow previously defined values or functions and lead to
undesirable results.

Using built-in functions: Programmers should be aware of using built-in functions and their
behavior. E.g., someone would like to use assertions to check program invariant. SOLIDITY
assert () function is intended for this purpose. In case of failure, this method throws an
exception and does not return the remaining gas. Thus, to check for changing values, such as input
data, it is recommended to use require () statement which in the same case does transaction
rollback and returns remaining gas.

Using deprecated functions: It is not clear what new compiler versions do with deprecated
functions. Therefore, it is not recommended to use these objects.

Locked assets: Contracts should provide a way to manage assets. Suppose in the example the
contract has a method to take assets but does not have code to give them back. Due to smart
contract code immutability in blockchain history, it is impossible to upgrade or fix this contract. It
will cause property loss.

4.7 Authorization

Authorization is a major part of a person identification mechanism, designed to verify the
permission for actions. Incorrect or insufficient authorization can lead to the following
vulnerabilities.

Incorrect initialization: When the smart contract was deployed to a blockchain, it should be
initialized. Often initialization contains sensitive operations such as a setting contract’s owner. An

163

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

error in this action may violate the logic of the smart contract. In SOLIDITY, the constructor is a
special function, which is called once to set the contract’s state. In new SOLIDITY versions,
constructors are denoted by a special keyword that made the definitions more obvious. But in
earlier versions (less than 0.4.22) constructor is just a function with the same name as the class
has. Thus, a typo in constructors’ name makes it a usual function, which can be called by anybody
since default modifier for a function is public.

Function default visibility: Incorrect access modifiers usage or a lack of them can lead to undesirable
behavior. For example, calling the function that changes the contract owner with public access
modifier allows everyone to become its owner. Default modifier for SOLIDITY is public. Thus, it is
strongly recommended to explicitly define visibility for all functions and variables.

5. Smart contract languages

In this section, smart contract languages are considered with respect to their main features,
paradigms, and common properties such as Turing-completeness, metering mechanism, reasoning,
type system, code analyzers, etc. To reduce the number of subsections we have classified
languages with respect to their level of usage.

Low-level: These languages are designed for direct execution by the underlying execution
environment. Most concepts and principles of formal semantics, computational model, metering,
logic for reasoning about programs, and typing are often introduced on that level. Furthermore, to
date, smart contracts are mostly stored on the blockchain in low-level bytecode, which imposes
suitability considerations. Examples of such languages are BITCOIN-SCRIPT [10], EVM [32],
MICHELSON [33].

High-level: Languages with the idea of making the writing of contracts easier for developers via
readability and safer high-level syntactic constructs enhanced by a type system that provides
machine services abstractions. Safety aspect appears here and refers to the languages ability to
guarantee the integrity of these abstractions and abstractions introduced by the programmer using
definitional facilities of the language. In a safe language, such abstractions can be used abstractly
while in an unsafe language they cannot: in order to completely understand how a program may
(mis-) behave, it is necessary to keep in mind all sorts of low-level details such as the layout of
data structures in memory and the order in which they will be allocated by the compiler [34]. The
semantics of both levels should be considered here’. Examples of such languages are SOLIDITY
[35], FLINT [12], and LIQUIDITY [36].

Intermediate-level: Languages that present a compromise between a high-level source and low-level
target languages. As a general rule, they are designed in order to simplify program verification or
static analysis, relying on the computation model, type system, reasoning, semantics, etc.
Furthermore, they allow making unification of compilation, i.e. providing a language that can be
compiled for different platforms. SCILLA [15] is an example of such a language.

It is also useful to emphasize some desirable language properties that affect language design.

e Reasoning — language behavior model should allow to specify modality properties and facilitate
proving of their (un-) fulfillment. Underlying calculus model and type system are aimed at this.

e Safety — language abstractions should hold integrity property. Rigorous semantics promotes this.
e Expressivity — basically language should be expressive to fit a possible various range of use cases.

e Readability — language representation of a contract behavior should be intuitive, i.e. be easy
to inspect and write with.

! Fundamentally safeness spreads to other levels since low-level language is an abstraction of its
implementation, e.g. a virtual machine.
164

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

Table 1. Smart Contract Languages

Language Level f:::::rll Project ﬂP:l:;l;:m fin- | Analyzers Metering :cl:upj::lil-sﬂs Muin featuires
Bambaoo high-level alpha i Ethereum Tunctional E\"r‘l h!ym'mle Wgh_::m yes program behaves as @ state
{experi- analyzers automat
mental)
Bitcoin Tow-level under de- | Bitcoin stack-based, nert script size nek Forth-like syntux, any pro-
Seript velopment reverse-polish grum always lenminutes
Chaincede high-level stable Hyperledger] general no’ timeout yes Go, NODEJS and Java
Fabric purpose extensions for smart con-
g racts
FOSIO high-level stable EDS.10 object- ot hound yes Cw+11 libeary
oriented, .\y)k‘m"
statically
typed
N low-level | stbl Ethe stack-based EVM bytecode gis 1l rescarched
h!"fc“h W -1V i< TCUm > MJIYEH’ \)'\Iel'ﬂ yes well rescarc
Flint high-level alpha Ethereum contract- EVM h!g,rlzrude “E::m yes Swift-like syntax, safety
oricnted, type | snalyzers =
safe
IELE low-level OBOLY | Ethercum register-based tools neraied 5 (=1 srufed from formal
prototype 5 g Wil) gene
by K [37] i specification, LLVM
IR-like syniax, safety
Ivy high-level protoiype Bitcoin imperative no? \'!;::m no can be compiled o Bit-
Lexperi- ¥ coin Scripd
mentul)
Liguidity high-level uider de- | Tewas fully-typed. under F: s::m yes OClaml-like syntax, com-
velopment Tunctional development ¥ piled 1o Michelson -
cording to formal seman-
tics, safety
LLL intermediate| under de- | Ethereum stack-based EVM bytecode # E‘::m yes Lisp-like syntax, a wrap-
level velopment analyaers' i ping over EVM byiecode
. i expe-
Logiken high-level nmf:m Ethereum ::gr:;:lml ::n\::r;& :‘ynecodt \.ﬁf:m yes ranslated to Yul
Michelson | low-level under de- | Tezos stack-based, Typecheck . I:E:m yes programs can be verified
velopment strongly wyped | system 5 with Cog
Flurus ; 2 gas i i :
(PlutusCore) :‘IRIT»:IH u::?‘l;:; de- | Canduno functional e sysierh yes :::ﬁ:i.:;::m‘“. for-
Rhilung infermediate-| under de- | RChain Tunctional o’ rule reduc- yes concurrent, Scala-like
level velopment tion system® symax, based on rho-
caleulus
Seilla intermediate-| under de- | Zilliga functional Scilla-checker gas system o’ embedded in Coq, formal
level velopment specification
Simphcaty Tow-Jevel under de- | Bitcomn functional, Bae Machine B Machine o formal denotational and
velopment combinator- eell usage operational semantics
based, typed
Solidity high-level stable Ethercum statically EVM b ode sy!::m yes TavaScript-like syntax,
typed. object- | analyzers! ' populurity
oriented SmartCheck [38].
ZEUS [39).
Solidity® [40]
SolidityX high-level beta Ethereum secure- EVIM bytecode sﬁ:m yes compiled o Solidity
o analyzers
Vyper high-level beta Ethereum imperative EVM biyl.m:mle sy!:c‘m i Python-like syntax, safety
analyzers :
Yul ntermediate-| under de- | Ethereum object- EVM b ‘E:‘:m yes intermediate languoge for
level velopment oriented analyzers 5 future Solidity
T Programs can be translated o EVM bytecode, and then OVENTE [31], SECURIFY [41]. EVM® [0, KEVM [42), MYTHRIL [43]. VANDAL [44], RATTLE [45],
MANTICORE [46] can be appled.
* To our knowledge there is no analyzer, which works with that smart contract language.
* Based on the amount of EOS tokens, more tokens — more computation power.
* Applying one reduction rule of tho-caleulus [47] costs some value, paid by user.,
Any in-contract computation within a transition terminates, however non well-founded recursion in SCILLA can be implemented with contracts calling
themselves or via explicit i jons, i€ blockchain level interaction. Loops constructs ane planned o be implemented via well-founded recursive
FEnC oS,

Every smart contract language has domain specific instructions or/and types, e.g. cryptographic
primitives, assets types, messaging instructions. So we will not emphasize this aspect much.

165

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

Notable features and models of several languages with respect to desirable properties are discussed
below while a summary of a more expanded set of languages is presented in the table on the Table 1.

5.1 Low-level languages

1) BITCOIN SCRIPT is an untyped® stack-based low-level language for stateless smart contracts
development in BITCOIN and handles transaction verification process. It is intentionally non-
Turing-complete with the restricted instruction set where some opcodes are removed e.g.
multiplication, division, strings operations, bitwise logic, due to possible overflow vulnerabilities
and implementation bugs. Everything is allocated on the stack of limited size words while a
program has access to some transaction fields e.g. a hash of transaction data, time field. Thus
every program is a pure function of transaction data, i.e. transactions are self-contained.

To our knowledge, BITCOIN SCRIPT has no formal semantics, which makes metering ad-hoc and
does not enforce formal verification. Furthermore, its stack-based nature and bytecode make smart
contracts less auditable since only bytecode is stored inside transactions. Metering is performed
via expensive operators counting and script size evaluation. However script’s input is arbitrary,
hence BITCOIN SCRIPT allows the specification of redemption properties like signature
checking, pay-to-public-key-hash, pay-to-script-hash, multisignature checking, and arbitrary data
storage inside transactions [1, 10, 48].

2) SIMPLICITY: is designed for extending BITCOIN SCRIPT capabilities. It is intended to
enhance expressiveness, while enabling static analysis that allows to efficiently bound the number
of computations, maintaining BITCOIN SCRIPT design of self-contained transactions, and
providing formal semantic to facilitate reasoning about programs. It is anticipated to be used as a
compilation target for high-level languages and deployed to sidechains [49]. SIMPLICITY is a
typed non-Turing-complete combinator-based language with terms based on Gentzen’s sequent
calculus. Every SIMPLICITY type is finite: it contains finitely many values. Hence SIMPLICITY
does not support recursive types and can express only finitary functions.

The core of SIMPLICITY consists of nine combinators for term construction with the
corresponding denotational semantics. The language is formalized in COQ as well as the
correctness of some functions built up from combinators, e.g. half-adder or SHA-256 function.
Generally, the completeness, i.e. the notion that any function between SIMPLICITY types can be
expressed with combinators, is verified in COQ.

Further, the operational semantics of SIMPLICITY is defined within the abstract machine called
BIT MACHINE, intended to ease bounding of the number of computations, i.e. metering. It is
designed to crash at anything that resembles undefined behavior. BIT MACHINE is an abstract
imperative machine which state consists of two non-empty stacks of data frames formed by an
array of cells. The machine has a set of instructions that manipulate the two stacks and their data
frames, and corresponding operational semantics is defined by translating a SIMPLICITY
expression into a sequence of BIT MACHINE instructions. It allows computational resources
measuring with respect to cells and frames, e.g. the number of executed instructions, copied cells,
maximum cells in both stacks at the given point, the number of frames in both stacks. Operational
semantics correctness and its correspondence to the denotational semantics are verified in COQ.
Furthermore, the set of core combinators can be extended for implementing a signature checking
that requires transaction data, thus SIMPLICITY programs can be built to implement the pay-to-
script hash scheme [50].

Summarizing, SIMPLICITY stateless nature and rather simple functional semantics without
recursion and unbounded loops facilitate equational reasoning, avoiding complex logic. It provides
means for formal verification of programs as well as static analysis more capable to effectively

& More precisely stack operates with byte vectors, which can be interpreted depending on the opcode.
166

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

bound the number of computational resources. To date SIMPLICITY has a HASKELL
implementation under development [51].

3) EVM: is a bytecode language for Ethereum Virtual Machine. It is designed to support and
execute arbitrary computations over ETHEREUM account-based blockchain, i.e. programs with
loops and recursion. EVM is a stack-based, Turing-complete machine of 256-bit words with the
memory model of word addressed byte array. The machine also has a persisted storage which is
maintained between transactions and is a part of the blockchain state. It is a word-addressable
word array. Program code is separated from data. Access to and modification of data in different
types of memory is charged differently from storage — the most expensive to stack and memory
being equally charged. The formal execution model and the environment is specified in
ETHEREUM Yellow paper [32].

There are efforts on specifying formal semantics for EVM in OYENTE [31], F* [52], KEVM [42],
and LEM [53] that focus on formal verification tools and detecting and avoiding insecure features
of EVM, e.g. delegatecall, overflows, undefined call/return. Also, the poor human-readability of
bytecode is a flaw. ETHEREUM includes many implementations of EVM, e.g. in JAVA SCRIPT,
C++, PYTHON, and a promising WEBASSEMBLY implementation [54].

4) IELE: is a language defined within K-framework® [14]. It was designed to overcome EVM
drawbacks with an idea of correctness by construction and formal verification in mind. It is
intended to be secure and human-readable and to serve as a compilation target for high-level
languages, thus unifying compilers construction. IELE is a register-based untyped'® language:
instructions operate on and store their output in an infinite number of virtual registers and have
access to a persistent storage — the unbounded sparse array of arbitrary-precision signed integers.
The language implementation is generated from its formal specification defined in K-framework,
which provides generation of verification tools, debugger, interpreter, model checker, etc. IELE
has functions and defines a call/return convention where a called function expects a specific
number of parameters and returns a specific number of values or corresponding error status*’.
Furthermore, IELE avoids some insecure EVM features, e.g. by introducing delegatecall
functionality and maintains arbitrary-precision arithmetic. Its operational semantics specifies
contracts internal state, blockchain state, and transition rules, i.e. contract’s code, intra-contract
call stack, remaining gas, and the state of the local memory and virtual registers, storage content,
balances, etc. Thus IELE makes formal verification less tedious, enhances human-readability,
eliminates undefined, and implementation-defined behaviors, i.e. it is considered to be safe’?.

Gas costs for computation time are based on instructions asymptotic and the gas cost for memory
is based on peak memory consumption. Gas model is designed to allow arbitrarily large valued
instructions and to avoid artificial limits on the size of data or call stacks while preserving the
existing goals of the EVM gas model. However, while arithmetics may cause overflows in EVM,
in IELE it may cause out-of-gas exception, starting from some input size. Gas formulas are also
specified in K.

5) MICHELSON [33, 55]: is a typed stack-based language designed to be on-chain code for
stateful smart contracts in TEZOS. It is intended to be a more readable compilation target and
more amenable for formal verification.

A MICHELSON program supports high-level types (e.g. map, list, set, etc.) and receives an input
stack with parameters and storage being pushed on. It evaluates to a result stack with an output
value and new storage or can fail. The language does not support closures in the sense that every

® Framework used to produce implementation derived from formal specifications, based on logic rules.
10 Arbitrary-precision signed integer is the main datatype.
™ For reference, in EVM caller sends an arbitrary byte stream containing the call arguments values since
functions are represented as a set of JUMP labels.
12 |ELE is stated to be the first real-world language that is designed and implemented using formal semantics,
with a zero gap between the formal specification and the implementation.

167

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

function has an empty environment. Messaging with other contracts is performed through passing
a storage and not maintains the stack between calls. The types are predefined™® and monomorphic,
further types of input, output, and storage of a contract are fixed and it is statically ensured that
resulting storage type is preserved. MICHELSON has a built-in type for cryptocurrency and
operations defined for this type are mandatory checked for underflow/overflow. Typing is done via
types propagation. Due to its computation model, MICHELSON has a straightforward semantics,
based on rewriting rules defined on stack and syntax. Also, it defines what is considered as well-
typed stacks and the resulting outputs. MICHELSON is currently implemented in OCAML via
GADT with an interpreter defined corresponding to the semantics while leaving the type checking
to OCAML. It is anticipated to replace current implementation with a one verified with either
COQ or F* [56].

6) PLUTUS CORE: is a typed language designed for use as a transaction validation language in
UTxO-based blockchain systems. Fundamentally it is eagerly-reduced higher-order polymorphic
A-calculus extended with iso-recursive types, higher kinds, and a library of basic types and
functions, hence it has a straightforward operational semantics. The language is meant to be a
compilation target since it is difficult to write and read but it is intended to be formally verifiable
in proof assistants.

PLUTUS CORE program is a closed term, and its execution is performed by (possibly non-
terminating) reduction of welltyped terms. All types can be normalized and normalization process
always terminates. Further, operations on types allow to deal with sized types, i.e. sized integers or
bytestrings that allows them to be tracked in the type system to facilitate charging for the
appropriate amount of gas and detecting overflows at the type level. The language has a specified
abstract machine intended to be amenable for a verification reference implementation. Moreover,
PLUTUS CORE has its formal specification defined in K [57, 58].

Transaction validation is performed similarly to BITCOIN SCRIPT. Validation is successful if the
PLUTUS CORE program reduces to a non-error value within an allotted number of steps. But it is
more extended in a sense that a program has a read-only access to world state passed through a
monad [59, 60].

PLUTUS CORE is an on-chain language for CARDANO blockchain and is embedded into
HASKELL. Furthermore, the blockchain system itself is implemented in HASKELL as well as
off-chain computations, e.g. wallets, it allows type checking on the level of the interaction between
off-chain applications and on-chain code.

5.2 High-level languages

1) SOLIDITY: is a very rich and expressive high-level object-oriented Turing-complete language
[35] for writing smart contracts for EVM with a syntax similar to JAVASCRIPT and C++. It has
static types, inheritance, libraries, complex user-defined types supporting, and other features. As a
consequence, that causes its prevalence as well as a large number of potential vulnerabilities (see
section V).

2) SOLIDITYX: is a high-level language [61] which compiles to SOLIDITY. SOLIDITYX is a
secure-oriented language, which means that it has a defense from some vulnerabilities by default,
for example, all access modifiers are private by default. However, SOLIDITYX is in beta
development now and it is not recommended to be used in production.

3) VYPER (aka VIPER): is a high-level language for implementing smart contracts for the EVM
[13]. It is PYTHONS derived programming language. VYPER is an alternative to SOLIDITY that
is aimed at code security, clarity, and unambiguity, for example, it excludes constructions that can
lead to misleading code. To achieve this VYPER does not support modifiers, class inheritance,
inline assembly, function overloading, operator overloading, recursive calling, infinite-length

13 A programmer cannot define their own types.
168

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

loops, binary fixed point. The language also leverages overflow checking, array bounding, and
limited state modification.

4) FLINT: is a high-level statically-typed contract-oriented language aimed to write robust smart
contracts on EVM [12]. FLINT provides a mechanism to specify actors that can interact with a
contract, immutability by default, assets types, and safer semantics with overflows causing revert
of a transaction and explicit states.

5) BAMBOO: is a high-level language compiling to the EVM [62]. Its compiler is implemented in
OCAML thus BAMBOO is well amenable to formal verification. BAMBOO creates clarify state
transitions and avoids reentrancy problems by default. However, it does not support loops and
assignments into storage variables, except array elements, which improves the ability of contracts
to be verified but complicates their development.

6) LOGIKON: is a high-level logical-functional language compiled to YUL [63]. LOGIKON
program represents a set of logical constraints statically and formally verified.

7) IVY: is a language [64], designed to simplify programming of stateless smart contracts for
BITCOIN. Compare to BITCOIN SCRIPT, in IVY program it is possible to use named variables,
named clauses, domain-specific types, syntax sugar for function calls.

8) LIQUIDITY: is a functional, statically and strongly typed language, compiled down to
MICHELSON. It has OCAML syntax and keeps safety guaranteed by MICHELSON, while
providing high-level constraints. LIQUIDITY has a formal specification of the compilation
semantics [65] and supports decompilation back from MICHELSON, based on the graph produced
by symbolic execution that is eventually transformed into LIQUIDITY AST. This feature greatly
enhances readability, since stack-based MICHELSON code is rather hard to inspect manually.

9) CHAINCODE: is a smart contract program, written for HYPERLEDGER FABRIC [21]
blockchain. CHAINCODE can be developed with GO, NODE.JS or JAVA. The code should
implement a special interface to interact with the blockchain network. Unlike ETHEREUM smart
contracts, CHAINCODE does not have account address or associated assets, but the smart contract
can have a mapping of the real assets to the internal state. CHAINCODE has the similar
conception to database stored procedures. When a transaction is created, CHAINCODE is called to
perform operations according to the transaction data. Possible operations are: read, update or
delete data, stored in the ledger. Also, it is possible to invoke or read the state of another
CHAINCODE, if the caller has enough permissions.

5.3 Intermediate-level languages

1) YUL (JULIA or IULIA): is an intermediate language [66]. It can be compiled to a number of
backends: EVM 1.0, EVM 1.5 and eWASM. It is planning to use YUL as an intermediate
language in the future versions of the SOLIDITY compiler. YUL can be used for "inline
assembly" inside SOLIDITY.

2) RHOLANG: is a functional, concurrent, based on rho-calculus [47] language [67], used in
project RCHAIN. A smart contract in terms of RCHAIN is a process, which has persistent state, its
own code, and associated address. Execution of code is done by applying the reduction rule of rho-
calculus. RHOLANG has behavioral types [68], reflection, reactive API, asynchronicity.
Synchronization primitives for parallel execution of transactions are messages and channels.
Messages are the way to communicate smart contracts with each other, sending values through
channels. A user has to pay a cost in special tokens, named Phlogiston, to the node in the system
for computational resources. These tokens will be used for executing smart contract’s code. Rate-
limiting mechanism looks like the gas system in ETHEREUM. Unlike EVM, where gas metering
is done on the VM level, manipulations on Phlogistons are injected in smart contract’s source code
by RHOLANG compiler.

3) SCILLA: is intended to be an intermediate level language as a translation target for high-level
languages to facilitate program analysis and verification before compiling to executable bytecode.

169

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

SCILLA is a typed language built on stateful smart contracts, i.e. contracts that have a state
represented with a storage and that can communicate either with other contracts via messages or
with the off-chain world by raising events or with blockchain explicitly reading blockchain data.
The language design is aimed to facilitate formal reasoning providing clear and principled
semantics.

Specifically, its semantics is based on communicating automata that separate contract specific
computations called transitions and blockchain-wide interactions, i.e. messaging with other
contracts, thus making transitions atomic. Atomicity is achieved through allowing only tail-calling
communications which eliminate reentrancy problems. However non-tail calls are needed for some
computations e.g. passing and saving some value back from the callee, it is implemented with
explicit continuations mechanism. Nevertheless, possible nonterminating execution can be caused
by non-well-founded recursion, which is going to be handled with gas usage. Further, SCILLA
specifies pure, i.e. that change the state and impure transitions and those reading blockchain data,
e.g. block number with OCAML based syntax.

SCILLA has been shallow-embedded in COQ, specifying such properties as contract terminology,
contract state, and transitions along with blockchain states, which allows properties verification in
isolation. So its design implies leveraging of formal reasoning to prove different modality
properties, e.g. safety™, liveness' or termination for well-founded recursive functions. It is
anticipated to enhance support for automating the proofs of safety/temporal properties.

4) LLL: is a Lisp-like language [69] for EVM. Main purpose of LLL is to provide a little bit
higher level of abstraction upon EVM bytecode, i.e. programmer has more high-level
constructions to work with the stack. Also language has more functionality over the base set of
EVM opcodes, such as multiary operators (they can be applied to one or more arguments, the
result of following code (+ 1 2 3 4 5) is 15), including files, control structures, and macro
definitions. LLL has an analog of variables, it makes automatic memory management for saving
values.

6. Discussion

We briefly described notable approaches for specification of smart contracts intended behavior and
analysis of behavioral properties. However, this survey is nevertheless incomplete. The area of
blockchain and smart contracts is under active research. The community tries to apply different
approaches and ways in the area of smart contract languages and their execution environments
development. Some of them are Turing-completeness, paradigm (e.g. imperative, object-oriented,
functional), level of abstraction, a way to limit code execution (metering systems such as
ETHEREUM gas, time bounds, number of instructions) and a formal theory on which a language
is based.

In the rest of the section, we discuss contributions that have not been classified in previous
sections, propose aspects that may worth future researching and related work, and summarize
possible pros and cons of provided aspects.

Recall that most smart contracts in blockchains are irreversible, i.e. they are hard to fix once they
are deployed. One approach to mitigate this is a design pattern provided in [70, 71] that leverages
using delegatecalls. It suggests deploying contracts with another dispatcher contract. The
increased number of messages makes analysis and reasoning more complicated since dispatcher
contracts should be robust and safe then. Another approach is platforms that allow upgradable
contracts [72].

Arguable concept is the representation in which contracts are deployed to a blockchain. Most of
the systems included in our survey store on-chain code in some low-level form. Such form hardens

4 These are invariants that hold through the lifetime of a contract, exposing that nothing should go wrong.
15 Basically, it states that something should eventually happen.
170

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

auditability, while also may serve as a uniform compilation target. That facilitates the development
with different languages. There are platforms where contracts are stored as programs written in
high-level safe languages [72]. Another possible approach for this is decompilation from low-level
byte code to more high level code like in MICHELSON and LIQUIDITY case. However, to our
knowledge, only this couple of languages have formalized semantics of compilation, while none of
the known works provides the correctness of interpretation and interpretation after compilation at
all, i.e. the correctness of the compiler or the commutativity of the implied diagram.

One more problem is a metering system for smart contracts, such as ETHEREUM gas and its
analogs. Gas estimation is in general undecidable. It could be useful to find mechanisms to predict
gas consumption. Improper estimation may lead to vulnerabilities (e.g. DoS-attacks), or to fails
during code execution (e.g. ETHEREUM out-of-gas exception). Gas consumption depends on
many factors such as memory usage and blockchain state. Various adaptive methods like type
system are already surveyed PLUTUS [58], rigorous semantics with asymptotic analysis as in
IELE [14], or dynamic adjustment as adaptive gas cost mechanism in [73] may be promising, as
well as methods based on symbolic paths exploration and resource analysis [74, 75]. For example,
PLUTUS design of unbounded integers allows metering statically due to its type system, while
unbounded integers in IELE allows only dynamic gas evaluation. One may apply techniques like
RAML [76]. Gas reducing optimization are also worth considering®.

Since smart contracts use cases are yet to be researched, it is undesirable to restrict either
statefulness of contracts or Turing-completeness of languages they are written in. The compromise
between an ability to run arbitrary computations on the blockchain and amenability to reasoning
defines future research topics. For instance, in [9] dependent types of IDRIS language are
leveraged for writing provable smart contracts, that are compiled down to run on ETHEREUM.
Languages based on models, which better describe an interaction between contracts based on
message passing may become future research objectives, e.g. languages based on process calculus
[77]. Extensive type systems in such systems also worth researching, e.g. behavioral type systems
or linear epistemic ones [78]. Type annotating while writing a contract with such languages is
often non-trivial as well as robust and safe contracts development in general. There are researches
aimed at domains formalizing, e.g. finances and at the design of simpler languages that are
embedded in some safe language for only domain purposes [79]. Such domain specific languages
tend to be visual to ease the development process for non-experts in programming. Approaches
aimed at actor’s behavior are as well interesting. There is a DSCP contracting protocol for trading
proposed in [80]. The protocol was verified using game theory and statistical models, such as
Markov decision processes.

There is still another point about properties to consider. It is modality properties formulating, an
i.e. specification of such a property a smart contract should satisfy. If the property of unfulfillment
can be proved, it would prevent some exploit, e.g. already mentioned DAO. Some such properties
can be seen in [81]. It proposes BITML — Bitcoin Modelling Language that leverages process
calculus to describe interactions between participants and generate BITCOIN transactions
according to symbolic semantics. In [82] EVM is formalized in LEM for modeling smart contracts
behavior with some properties defined.

To outline the discussion, it is worth to notice that many researches avoid the infrastructure around
the language, i.e. development environments, testing and deployment tools, extensive API
libraries. However, these are essential components of successful development and a field for a
plenty of practical studies, since to date only ETHEREUM has a rather complete infrastructure.

18 Due to safety considerations, such optimization should be proven to be semantically equivalent. However,
we are not aware of any related results.
171

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

7. Conclusion

As smart contracts platforms are intended to reasonably automate the economy, smart contracts
should be safe and robust. In this paper, we have presented an overview the state of art of smart
contract programming languages. We have classified weaknesses and vulnerabilities smart
contracts are prone to. Languages calculus models, semantics, and type systems have been
surveyed as well as other properties according to reasoning, safety, expressiveness, and
readability. In the end, we have summarized related work and possible future research topics.

References

[1] Bitcoin contract. URL.: https://en.bitcoin.it/wiki/Contract (Date: 2019-01-30).

[2] Solidity-example-crowdfunding. URL.: https://github.com/zupzup/solidity-example-crowdfunding (Date:
2019-01-30).

[3] D. Macrinici, C. Cartofeanu, and S. Gao. Smart contract applications within blockchain technology: A
systematic mapping study. Telematics and Informatics, vol. 35, no. 8, 2018, pp. 2337-2354.

[4] C.D. Clack, V. A. Bakshi, and L. Braine. Smart contract templates: foundations, design landscape and
research directions. CoRR, vol. abs/1608.00771, 2016.

[5] A 50 million hack just showed that the dao was all too human. URL:
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/ (Date: 2019-01-30).

[6] D. McAdams. An ontology for smart contracts. URL: https://cryptochainuni.com/wp-
content/uploads/Darryl-McAdams-An-Ontology-for-Smart-Contracts.pdf (Date: 2019-02-07).

[7] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum smart contracts sok. In Proc. of
the 6th International Conference on Principles of Security and Trust, 2017, pp. 164-186.

[8] G. Destefanis, A. Bracciali, R. Hierons, M. Marchesi, M. Ortu, and R. Tonelli. Smart contracts
vulnerabilities: A call for blockchain software engineering. ResearchGate, 2018.

[9] Safer smart contracts through type-driven development. URL:
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf (Date: 2019-01-30).

[10] Bitcoin script. URL: https://en.bitcoin.it/wiki/Script (Date: 2019-01-30)

[11] R. O’Connor. Simplicity: A new language for blockchains. CoRR, vol. abs/1711.03028, 2017.

[12] Flint. URL: https://github.com/flintlang/flint (Date: 2019-01-30).

[13] Vyper. URL: https://github.com/ethereum/vyper (Date: 2019-01-29).

[14] T. Kasampalis, D. Guth, B. Moore, T. Serbanuta, V. Serbanuta, D. Filaretti, G. Rosu, and R. Johnson.
lele: An intermediate-level blockchain language designed and implemented using formal semantics.
University of Illinois, Tech. Rep., http://hdl.handle.net/2142/100320, July 2018.

[15] I. Sergey, A. Kumar, and A. Hobor. Scilla: a smart contract intermediate-level language. CoRR, vol.
abs/1801.00687, 2018.

[16] Plutus core specification. URL: https://github.com/input-output-hk/plutus/tree/master/plutus-core-spec
(Date: 2019-01-30).

[17] D. Harz and W. J. Knottenbelt. Towards safer smart contracts: A survey of languages and verification
methods. CoRR, vol. abs/1809.09805, 2018.

[18] P. L. Seijas, S. Thompson, and D. McAdams. Scripting smart contracts for distributed ledger technology.
Cryptology ePrint Archive, Report 2016/1156, 2016, https://eprint.iacr.org/2016/1156.

[19] Contract. URL: https://en.bitcoin.it/wiki/Contract (Date: 2019-01-30).

[20] Ethereum contract security techniques and tips. URL: https://github.com/ethereum/wiki/wiki/Safety
(Date: 2019-01-29).

[21] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G.
Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A.
Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and J. Yellick. Hyperledger fabric: A distributed
operating system for permissioned blockchains. In Proc. of the Thirteenth EuroSys Conference, 2018,
pp. 30:1-30:15.

[22] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun. Potential risks of hyperledger fabric smart
contracts. In Proc. of the 2019 IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), 2019, pp. 1-10.

[23] 300m in cryptocurrency accidentally lost forever due to bug. URL:
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
(Date: 2019-01-30).

172

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

[24] Smart contract weakness classification and test cases. URL.: https://smartcontractsecurity.github.io/SWC-
registry/ (Date: 2019-01-29).

[25] Decentralized application security project. URL: https://dasp.co (Date: 2019-01-29).

[26] Security considerations. URL: https://solidity.readthedocs.io/en/latest/security-considerations.html
(Date: 2019-01-29).

[27] Vulnerabilities description. URL: https://github.com/trailofbits/slither/wiki/\Vulnerabilities-Description
(Date: 2019-01-30).

[28] Smart contract weakness classification and test cases. URL.: https://smartcontractsecurity.github.io/SWC-
registry/ (Date: 2019-01-22).

[29] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum smart contracts sok. In Proc. of
the 6th International Conference on Principles of Security and Trust, 2017, pp. 164-186.

[30] Ether — the crypto-fuel for the ethereum network. URL: https://www.ethereum.org/ether (Date:
2019-01-30).

[31] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts smarter. In Proc. of the
2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, pp. 254-269.

[32] D. G. Wood. Ethereum: A secure decentralised generalised transaction ledger. URL:
https://ethereum.github.io/yellowpaper/paper.pdf (Date: 2019-01-31).

[33] Michelson language. URL: https://www.michelson-lang.com/ (Date: 2019-01-31).

[34] B. C. Pierce. Types and Programming Languages, 1st ed. The MIT Press, 2002.

[35] Solidity. URL: https://github.com/ethereum/solidity (Date: 2019-01-29).

[36] Liquidity. URL.: https://github.com/OCamlPro/liquidity (Date: 2019-01-29).

[37] Grigore Rosu and T. F. Serbanuta. An overview of the k semantic framework. The Journal of Logic and
Algebraic Programming, vol. 79, no. 6, 2010, pp. 397-434.

[38] S. Tikhomirov, E. Voskresenskaya, I. lvanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov.
Smartcheck: Static analysis of ethereum smart contracts. In Proc. of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain, 2018, pp. 9-16.

[39] S. Kalra, S. Goel, M. Dhawan, and S. Sharma. Zeus: Analyzing safety of smart contracts. In Proc. of the
Network and Distributed Systems Security (NDSS) Symposium, 2018.

[40] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi, N. Kulatova, A.
Rastogi, T. Sibut-Pinote, N. Swamy, and S. Zanella-Béguelin. Formal verification of smart contracts:
Short paper. In Proc. of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, 2016, pp. 91-96.

[41] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli, and M. Vechev. Securify: Practical
security analysis of smart contracts. In Proc. of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67-82.

[42] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth, B. Moore, Y. Zhang, D. Park, A.
Stefanescu, and G. Rosu. Kevm: A complete semantics of the ethereum virtual machine. In Proc. of the
2018 IEEE 31st Computer Security Foundations Symposium, 2018, pp. 204-217.

[43] Mythril. URL.: https://github.com/ConsenSys/mythril-classic (Date: 2019-01-29).

[44] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, and B. Scholz. Vandal: A
scalable security analysis framework for smart contracts. CoRR, vol. abs/1809.03981, 2018.

[45] Rattle. URL.: https://github.com/trailofbits/rattle (Date: 2019-01-30).

[46] Manticore. URL: https://github.com/trailofbits/manticore (Date: 2019-01-30).

[47] L. G. Meredith and M. Radestock. A reflective higher-order calculus. Electronic Notes in Theoretical
Computer Science, vol. 141, 2005, pp. 49-67.

[48] Bitcoin weaknesses. URL: https://en.bitcoin.it/wiki/Weaknesses (Date: 2019-01-30).

[49] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timon, and P.
Wauille, Enabling blockchain innovations with pegged sidechains. 2014.
https://blockstream.com/sidechains.pdf (Date: 2019-01-30).

[50] Mediawiki. URL: https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki (Date: 2019-02-5).

[51] Simplicity. URL: https://github.com/ElementsProject/simplicity (Date: 2019-02-5).

[52] Grishchenko 1., Maffei M., Schneidewind C. A semantic framework for the security analysis of ethereum
smart contracts — technical report (2018). URL.: https://secpriv.tuwien.ac.at/tools/ethsemantics. (Date:
2019-01-30).

[53] Formalization of ethereum virtual machine in lem. URL: https://github.com/pirapira/eth-isabelle (Date:
2019-01-30).

[54] Ewasm: design overview and specification. URL: https://github.com/ewasm/design (Date: 2019-01-30).

173

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

[55] Michelson: the language of smart contracts in tezos. URL: http://www.liquidity-
lang.org/doc/reference/michelson.html (Date: 2019-01-30).

[56] Why michelson? URL: https://www.michelson-lang.com/why-michelson.html (Date: 2019-02-5).

[57] Plutus core semantics. URL: https://github.com/kframework/plutus-core-semantics (Date: 2019-01-30).

[58] Plutus implementation and tools. URL: https://github.com/input-output-hk/plutus (Date: 2019-01-30).

[59] The extended utxo model. URL: https://github.com/input-output-hk/plutus/tree/master/docs/extended-
utxo (Date: 2019-02-5).

[60] Is it smart to use smart contracts? URL.: https://plutusfest.io/presentations/Philip-Wadler/Wadler30.pdf
(Date: 2019-02-5).

[61] Solidityx. URL.: https://solidityx.org/ (Date: 2019-01-30).

[62] Bamboo. URL: https://github.com/pirapira/bamboo (Date: 2019-01-30).

[63] Logikon. URL: https://github.com/logikon-lang/logikon (Date: 2019-01-31).

[64] Ivy: Bitcoin smart contracts. URL: https://github.com/ivy-lang/ivy-bitcoin (Date: 2019-01-30).

[65] Cagdas Bozman, M. Iguernlala, M. Laporte, F. L. Fessant, and A. Mebsout. Liquidity: Ocaml pour la
blockchain. Journées Francophones des Langages Applicatifs 2018, 2018.

[66] Yul. URL.: https://solidity.readthedocs.io/en/latest/yul.html (Date: 2019-01-30).

[67] Rchain and rholang. URL: https://www.rchain.coop/platform (Date: 2019-01-30).

[68] D. Ancona, V. Bono, and M. Bravetti. Behavioral Types in Programming Languages. Hanover, MA,
USA: Now Publishers Inc., 2016.

[69] G. Wood. LLL. URL: https://lll-docs.readthedocs.io/en/latest/index.html (Date: 2019-01-30).

[70] Upgradable contract with solidity. URL:
https://gist.github.com/Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f (Date: 2019-01-30).

[71] Proxy libraries in solidity. URL: https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd
(Date: 2019-01-30).

[72] The pact smart-contract language. URL: http://kadena.io/docs/Kadena-PactWhitepaper.pdf (Date: 2019-
01-30).

[73]1 T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and X. Zhang. An adaptive gas cost
mechanism for ethereum to defend against under-priced dos attacks. CoRR, vol. abs/1712.06438, 2017.

[74] E. Albert, P. Gordillo, A. Rubio, and I. Sergey. GASTAP: A gas analyzer for smart contracts. CoRR,
vol. abs/1811.10403, 2018.

[75] M. Marescotti, M. Blicha, A. E. J. Hyvérinen, S. Asadi, and N. Sharygina. Computing exact worst-case
gas consumption for smart contracts. In Proc. of the International Symposium on Leveraging
Applications of Formal Methods, 2018.

[76] J. Hoffmann, A. Das, and S. Weng. Towards automatic resource bound analysis for ocaml. CoRR, vol.
abs/1611.00692, 2016.

[77]J. Baeten. A brief history of process algebra. Theoretical Computer Science, vol. 335, no. 2, 2005, pp.
131-146.

[78] H. Deyoung and F. Pfenning. Reasoning about the consequences of authorization policies in a linear
epistemic logic. In Proc. of the Workshop on Foundations of Computer Security, 2009.

[79] S. Thompson and P. L. Seijas. Marlowe: Financial contracts on blockchain. Lecture Notes in Computer
Science, vol. 11247, 2018, pp. 356-375.

[80] G. Bigi, A. Bracciali, G. Meacci, and E. Tuosto. Validation of decentralized smart contracts through
game theory and formal methods. Lecture Notes in Computer Science, vol. 9465, 2015, pp. 142-161.
[81] M. Bartoletti and R. Zunino. Bitml: A calculus for bitcoin smart contracts. In Proc. of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, 2018, pp. 83—-100.

[82] Y. Hirai. Defining the ethereum virtual machine for interactive theorem provers. Lecture Notes in

Computer Science, vol. 10323, 2017, pp. 520-535.

MHdopmauusa 06 aBTopax / Information about authors
Anekceri Banepremu TIOPUH yumrcs Ha dYerBépToM Kypce Ha Kadeape CHCTEMHOTO

nporpammupoBanust CIIOI'Y. B ero HayuHble MHTEpechl BXOJIUT HCCIIEIOBAaHHE M CO31aHHE
WHCTPYMEHTOB ISl pa3pab0TKKA CMapT-KOHTPAKTOB U TEOPHS (POPMAIBHBIX SI3BIKOB.

Alexey Valerievitch TYURIN is a fourth-year student at the Department of Software Engineering
at St. Petersburg State University. His scientific interests include research and creation of tools for
the development of smart contracts and the theory of formal languages.

174

Tropur A.B., Tromsaus U.B., Mansies B.C., Kuprnenko SLA., Bepesyr J1.A. O630p s36IKOB 15t 6€30MaCHOTO MPOrpaMMHPOBAHKS CMAPT-KOHTPAKTOB. 7yl
HCII PAH, Tom 31, BbIL. 3, 2019 1., c1p. 157-176

Wean Bnagumuposnu TIOJIAHAMH OakanaBp kadeapsl CHCTEMHOTO NpOrpaMMHUPOBAHUS
CIIoI'Y 2019 roma Bbimycka. OOsacTsIMM HayYHBIX MHTEPECOB SIBISIOTCS OJIOKYEHHBI, a TaKKe
S3BIKU CMapT-KOHTPAKTOB U UX CBOICTBa.

Ivan Vladimirovitch TYULYANDIN is a Bachelor of the Department of Software Engineering at
St. Petersburg State University (2019). Areas of scientific interest are blockchains, as well as
languages of smart contracts and their properties.

Brmagmmup MAJIBIIEB mepemenr Ha 4eTBEPTHIE Kypc Ha Kadeape CHCTEMHOTO
nporpammupoBanmns CIIOIY. HccnemoBatennpckue WHTEpechl Braammupa: aHadw3 COCTOSHHA
OnoK4YeHH-ceTH 1 pa3paboTKa MPUIIOKEHHUH MOBEpX OJIOKUYEiHA.

Vladimir MALTSEV moved to the fourth course at the Department of Software Engineering at St.
Petershurg State University. Vladimir's research interests: analyzing the state of the blockchain
network and developing applications on top of the blockchain.

SxoB Aunexcanapouu KHWPUJIEHKO 3akoHumn kadenpy CHUCTEMHOTO HpPOrpaMMHUPOBAaHUS
CIIoI'Y, mpenomaer Ha kadeape ¢ 2006 roaa, coBmelnas ¢ HCCICIOBaHUSAMH M pabOTON B
KOMMEpPYECKMX IIPOEKTax @0 TeMaM Hay4YHbIX HMHTEPECOB: CTaTHYECKUH aHalu3 KoJa,
PEHH)XUHUPHHT NPOTPAMMHBIX KOMILIEKCOB, TEXHOJIOTHS MPOTrPaMMHUPOBAHUS KHOep(HU3MIECKUX
CHCTEM.

Jacob Alexandrovitch KIRILENKO graduated from the Department of Software Engineering at St.
Petersburg State University. He has been teaching at the Department since 2006, combining
research and work in commercial projects on scientific interests: code static analysis, software
reengineering, cyber-physical programming technology.

Hanuun Aunpeesny BEPE3YH sBnsiercst kanampatom ¢Qusuko-maremaruueckux Hayk. OH
3alUTHI KaHIUIATCKYI0 AMccepTanuio Ha TeMy «Tpaccupyromas Hopmanusanus» B Mapte 2018
roga. B Hacrosmee Bpems JlaHumi sABISETCd PYKOBOAMTENIEM HCCIEAOBATEIBCKONW TPYIIIBI
METaBBIUMCIEHUN W pachpefel€HHBIX TEXHOJIOTHH B cOocTaBe JIaOOPaTOPHM S3BIKOBBIX
nHCTpyMeHTOB JetBrains Research, a Takke gorieHTOM B BhIcHieid mkoine S5KOHOMHKH.

Daniil Andreevitch BEREZUN is a PhD in computer science. He defended his PhD thesis on
traversal-based normalization in March 2018. Daniil graduated from the St. Petersburg State
University, Mathematics and Mechanics Faculty, Department of Computer Science in 2014.
Nowadays, he is the head of Metacomputations and Distributed Technologies research group of
Programming Languages and Tools Lab in JetBrains Research. He also works as a lecturer at the
Department of Computer Science at the Higher School of Economics.

175

Tyurin A.V., Tyuluandin V., Maltsev V.S., Kirilenko I.A., Berezun D.A. Overview of the Languages for Safe Smart Contract
Programming. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 157-176

176

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-14

Vulnerabilities Detection via Static Taint Analysis

YN.V. Shimchik, ORCID: 0000-0001-9887-8863 <shimnik@ispras.ru>
L2\/.N. Ignatyev, ORCID: 0000-0003-3192-1390 <valery.ignatyev@ispras.ru>
! lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
% Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. Due to huge amounts of code in modern software products, there is always a variety of subtle
errors or flaws in programs, which are hard to discover during everyday use or through conventional testing.
A lot of such errors could be used as a potential attack vector if they could be exploited by a remote user via
manipulation of program input. This paper presents the approach for automatic detection of security
vulnerabilities using interprocedural static taint analysis. The goal of this study is to develop the infrastructure
for taint analysis applicable for detection of vulnerabilities in C and C++ programs and extensible with
separate detectors. This tool is based on the Interprocedural Finite Distributive Subset (IFDS) algorithm and
is able to perform interprocedural, context-sensitive, path-insensitive analysis of programs represented in
LLVM form. According to our research it is not possible to achieve good results using pure taint analysis, so
together with several enhancements of existing techniques we propose to supplement it with additional static
symbolic execution based analysis stage, which has path-sensitivity and considers memory region sizes for
filtering results found by the first stage. The evaluation of results was made on Juliet Test Suite and open-
source projects with publicly known vulnerabilities from CVE database.

Keywords: static code analysis; taint analysis; vulnerabilities

For citation: Shimchik N.V., Ignatyev V.N. Vulnerabilities Detection via Static Taint Analysis. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 177-190. DOI: 10.15514/ISPRAS-2019-31(3)-14

Mouck ysisBMMOCTEN Npyu NOMOLLM CTaTUYECKOro aHanusa
NOMeYeHHbIX AaHHbIX

Y H.B. IlIumuux, ORCID: 0000-0001-9887-8863 <shimnik@ispras.ru>
Y2 B H. Henamwes, ORCID: 0000-0003-3192-1390 <valery.ignatyev@ispras.ru>
1
Hnemumym cucmemnozo npoepammupoganus umenu B.11. Heannuxosa PAH,
109004, Poccus, 2. Mocksa, yn. A. Conocenuywina, 0. 25
2 Mockosckuii eocyoapcmeennwlll ynugepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwl, 0. 1

AHHOTammsi. B cBa3u ¢ Oonbmumu 0O0bEMaMH KOJAa B COBPEMEHHBIX NPOTPAMMHBIX MPOAYKTaX, B
MporpaMMax BCerJla CyHIECTBYET LENbId Ha0Op Majlo3aMETHBIX OIMHOOK WM Ne(EKTOB, KOTOPHIE CIIOKHO
00HApYXUTh TPHU TIOBCETHEBHOM WCIIONB30BaHNH HIIM B XOJ€ OOBIYHOTO TECTUPOBaHWS. MHOTHE Takwe
OmMOKKA MOTYT OBITh HCIOJBH30BAaHBI B Ka4eCTBE MOTEHIMAIFHOTO BEKTOpA aTaKH, €CIM OHH MOTYT OBITh
OKCIUTYaTHPOBAHBl yIANEHHBIM IOJIb30BATENIEM ITOCPEICTBOM MAaHWUIYJIIUN Hal BXOAHBIMH JaHHBIMHU
nporpammel. B nanHo# paboTe mpeacTaBieH MOAXOA K aBTOMATHUECKOMY OOHApyXEHHIO YsS3BUMOCTEH
0e30MacHOCTH C MCIOJIB30BAaHUEM MEXKIPOLIETYPHOT'O CTATUYECKOTO aHalIM3a MOMEYEHHbIX AaHHBIX. Llenb
JTAHHOTO MCCJIEJ0BaHUs — pa3paboTka MHOPACTPYKTYphl aHaNM3a MOMEYEHHBIX JaHHBIX, TPUMEHUMOM IS
obHapyxeHHsl ys3BUMOCTel B mporpammax Ha s3bikax C m C++ u pacimpsieMoil Ipu MOMOIIH OTACNIBHBIX
JIETEKTOPOB. JTOT HMHCTPYMEHT OCHOBBIBACTCS Ha aJrOpPUTME pelIeHus 3afauyd MexnpouenypHbIX,

177

Shimchik N.V., Ignatyev V.N. Vulnerabilities Detection via Static Taint Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp.
177-190

Koneunbix, Juctpubyrushbix [Togamuoxects (IFDS) npu nmomomun e€ cBefeHUs K CHEUHAIBHON 3a1aue o
JOCTHXKUMOCTH Ha Tpade M cHocoOEH BBINOJHATH MEXKIPOLEAYPHBIH, YYBCTBUTENbHBIH K KOHTEKCTY,
HEYYBCTBUTEJBHBIH K IyTSM aHaIN3 MporpaMM, IpeAcTaBieHHBIX B Buue LLVM-Outkoma. Amnammsa
MIOMEYCHHBIX MJaHHBIX HEJNOCTaTOYHO M IIOJy4eHHS XOPOUIMX pe3yldbTaToB, ITOITOMY YIIy4IICHUS
CYIIECTBYIOIINX METOJIOB, MBI NIpEAJIaraeM JOMOJIHUTE €r0 eI OJHUM 3TAaloM aHaln3a, KOTOPEIH OCHOBAH
Ha CTaTHYECKOM CHMBOJIBHOM BBITIOJNIHEHHHU. [1s1 QMIBTpAlMy pe3yNbTaTOB IIEPBOTO JTarla BEITOIHIETCS
QHAJIU3, YyBCTBUTEIBHBIN K MyTSAM M YYMTHIBAIOLINHA pa3Mepbl perioHOB naMATh. OLeHKa pe3yabTaToB Obuia
nposeneHa Ha Juliet Test Suite m mpoekTax ¢ OTKPHITHIM HCXOIHBIM KOJOM, HMEIOLINX IOIXOMSIINS
MyOIMYHO U3BECTHBIE YA3BUMOCTH u3 0a3bl qanHbix CVE.

Ki1roueBble cj10Ba: CTaTHUECKUN aHAIN3 KOJIA; aHAJIU3 TIOMEYCHHBIX JJAHHBIX; YSI3BUMOCTH

Jas uurupoBanusi: [umunk H.B., UruateeB B.H. Ilouck ys3BUMOCTEH Npu MOMOIIM CTaTHYECKOTO
aHanmm3a noMedeHHbIX naHHbx. Tpymer UCIT PAH, tom 31, Bem. 3, 2019 r., ctp. 177-190 (Ha aHTimiicKOM
si3bike). DOI: 10.15514/ISPRAS-2019-31(3)-14

1. Introduction

In the paper, we consider a specific subset of all possible software vulnerabilities — ones which are
caused by utilizing unchecked user-provided data in critical functions or code instructions. This
class includes but is not limited to vulnerabilities allowing such important attacks as SQL
Injection, Buffer Overflow and XSS attacks.

One group of methods used to represent and discover such vulnerabilities is called taint analysis.
In general, taint analysis starts from so-called taint sources — pre-defined functions, which provide
special «tainted» data. For example, we may say that the result of a read() call will contain
untrusted data and thus call it a taint source. Besides that, any value dependent on tainted data is
declared to be tainted itself.

There are also so-called taint sinks — special functions or instructions which should never accept
tainted data as arguments. Continuing our example, it is not safe to use values, obtained from
read() call, as a buffer index, since this may lead to a memory corruption and a variety of other
problems, thus we may call any pointer dereference instruction a taint sink.

Taint analysis is expected to report such potentially dangerous data flows for a manual or
automated verification.

Taint analysis may be performed both as a part of dynamic and static analysis and each approach
has its own advantages and drawbacks.

Dynamic analysis is performed during program execution and thus has low false positive rate, but
it requires a lot of test runs and it could be close to impossible to explore all possible execution
paths in a non-trivial program due to path explosion problem — this is important since some
vulnerabilities could actually be hidden on complex execution paths, which are hard to discover
using dynamic analysis or testing.

Static analysis on the contrary doesn’t execute the analyzed program but processes model instead.
Depending on a specific algorithm, this could enable an analyzer to explore almost all possible
execution paths, which is a significant advantage in terms of security, but is also likely to increase
number of false positives due to inconsistencies between program and its model.

In this work the term “taint analysis” will be used to refer to “static taint analysis” and we define
taint sources as all functions providing untrusted data and taint sinks as all instruction parameters
or function call arguments which may cause undesired program behavior if one allow an attacker
to pick an arbitrary value for it.

We propose some extensions to the interprocedural context-sensitive taint analysis algorithm
originally defined in [1]. Implementation of the algorithm is based on the LLVM compiler
infrastructure and uses LLVM bitcode as an intermediate representation.

The paper is organized as follows. In Section 2 we briefly discuss the general idea of IFDS
algorithm and its application to the taint analysis problem. Section 3 describes several approaches

178

nvark H.B., Virnatses B.H. TTonck ys3BUMOCTE! IPH MOMOLITH CTATHYECKOTO aHANM3a IOMEUYCHHBIX JAHHBIX. Tpyobt ICIT PAH, Tom 31, Bbi. 3, 2019, c1p.
177-190

developed to make memory model used by taint analysis more precise and our improvements of
indirect calls resolution. Section 4 summarizes our attempts to decrease false positive ratio by
performing additional verification step for all reported wvulnerabilities. Section 5 reports
experimental results. In the last section, we summarize the results of the work and present
directions of future research.

2. Related Work
This section describes the characteristics of the styles used in this document.

2.1 IFDS Framework

Reps et al. [2] introduced an efficient, context-sensitive and flow-sensitive dataflow analysis
framework which is able to solve a large class of interprocedural dataflow problems.

This class of problems is called IFDS (Interprocedural, Finite, Distributive, Subset) problems and
consists of all datafiow problems in which the set of dataflow facts is a finite set and dataflow
functions distribute over the meet operator (either U or n). The algorithm solves an IFDS problem
in a polynomial time by transforming it into a problem of reachability along interprocedurally
realizable paths. The complexity of the algorithm is shown to be O(ED?) in general case and
O(ED) for locally separable problems, where E is the number of edges in the interprocedural
control flow graph and D is the number of dataflow facts. According to the algorithm, the program
should be represented as a directed super graph G = (N, E), which contains a union of all
functions’ control flow graphs (CFG) with some special hodes and edges described below.

There is a single entry and exit node for every function in a program.

Every call statement is represented with two adjacent nodes: a call-site node and a return-site node.
For every such statement there is an intraprocedural edge from call-site to the corresponding
return-site node, an interprocedural edge from the call-site to the corresponding called function’s
entry node and an interprocedural edge to the return-site coming from the corresponding called
function’s exit node.

The general idea of the algorithm is to construct a directed exploded super graph G, = (N,, E,)
with N, = N X D set as nodes (where N is the set of super graph nodes and D is the set of dataflow
facts), in which any node (s, d) is reachable from a special start node iff the dataflow fact d holds
at node s.

Later several extensions to the IFDS algorithm were proposed by Naeem et al. [3], such as
constructing nodes of a super graph on demand (which is important when dealing with large D
sets) and exploiting existing subsumption relationships between elements of D set to perform more
efficient analysis. It has been reported that these extensions are often necessary when applying the
IFDS algorithm to non-separable problems, such as alias set analysis.

2.2 IFDS based taint analysis

Flowdroid [4] is one of the most well-known implementations of the IFDS framework for data
leaks detection in Android applications. It demonstrates a possibility to perform taint analysis in
terms of IFDS framework and also explains how to combine on-demand backward alias analysis
with a regular forward taint analysis. In Flowdroid, dataflow set D is defined as the set of access
paths, plus a special «true» fact [4]. An access path consists of a base value (such as a local
variable or parameter) with potentially empty ordered list of fields and could be written e.g. like
x.f.g, where x is the name of the base object, f is the name of the dereferenced field of x object
and g is the name of the dereferenced field of x. f object.

Dataflow fact x holds at node s iff an object, which is accessible through this access path at s, may
contain tainted data here. x being tainted implies the fact that all object, accessible through this
object (such as already mentioned x. f. g), are also considered tainted.

179

Shimchik N.V., Ignatyev V.N. Vulnerabilities Detection via Static Taint Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp.
177-190

3. Taint Analysis Stage

Our experience with the development of vulnerabilities detection tool based on taint analysis
shows that resulting warnings contain a lot of false positives. Particular results evaluation makes it
possible to discover 2 main roots of the problem: path-insensitivity and inaccurate sizes of tainted
objects. It’s unclear how to resolve both issues without complex memory model, which would
allow to build path and object size conditions. We deal with it by using external symbolic
execution engine, forcing it to execute the exploded graph subset corresponding to any specific
warning.

Initial warning set is generated by the tool based on [1] and is greatly inspired by Flowdroid
design. It uses LLVM as intermediate representation. Due to a low-level nature of LLVM bitcode,
we use another definition of access path: an access path consists of a base value (which is an actual
LLVM value) and an ordered list of dereference offsets. This definition is suitable for referencing
both structure fields (since in LLVM bitcode it is possible to calculate a fixed offset for any
structure field) and memory locations, accessible with a help of simple pointer arithmetics. In this
paper we will use [pointer, offset] to denote value, accessible through dereference of pointer value
plus offset bytes, [integer] to denote value of the integer, and [4] to denote a special «true» fact. It
is possible to specify a list of offsets to define a sequence of consecutive dereferences.

Let’s consider an example on fig.1, written in C language.

1 extern void *a;

2 extern void *b;

3 void source (int *pointer) {
4 scanf ("$d", pointer);
5 }

9 void sink (int size) {

7 memcpy (a, b, size);

8 }

9 void foo (int *t) {

10 source (t) ;

11 sink (*t);

12}

Fig. 1. Example of a program with interprocedural taint flow

Omitting insignificant details, it is possible to say that

o scanf function call on line 4 is a taint source, since it changes the value pointed to by the
pointer parameter to an arbitrary value chosen by the user;

e memcpy function call on line 7 copies size bytes from the object pointed to by b variable to
the object pointed to by a variable. We may call it a taint sink, since it is dangerous to specify
size values greater than actual size of objects pointed to by a or b;

e source function’s entry-to-exit subgraph can be summarized with the path edge (source-
Entry,[4]) — (source-Exit,[pointer,0]), i.e. value of [pointer,0] becomes unconditionally
tainted;

e sink function’s subgraph can be summarized with the path edge (sink-Entry,[size]) —
(Sink,[size]), i.e. tainted data would reach a taint sink if the value of [size] is known to be
tainted at the entry of the sink function;

e foo function’s subgraph can be summarized as (foo-Entry,[Z]) — (source-callsite,[2]) —
(source-retsite,[t,0]) — (sink-callsite,[t,0]) — (Sink,[size]), i.e. tainted data unconditionally
reaches a taint sink.

Unlike in known implementations and Flowdroid we don’t store the whole exploded super graph,

because it requires too much memory for regular industrial project with millions of lines of code

180

nvark H.B., Virnatses B.H. TTonck ys3BUMOCTE! IPH MOMOLITH CTATHYECKOTO aHANM3a IOMEUYCHHBIX JAHHBIX. Tpyobt ICIT PAH, Tom 31, Bbi. 3, 2019, c1p.
177-190

even if this graph is constructed on-demand. To solve this issue another analysis mode was
developed, which doesn’t require exploded super graph edges to be constructed. The existing IFDS
analysis engine was supplemented with function summaries (similar to [3]) and explicit taint
traces, which makes it possible to show user where the tainted data originate from and how did it
get to the taint sink without the need to store the graph itself.

As we noticed during analysis of selected open source projects, taint sources are usually located
far from each other in a program and thus their taint flow subgraphs are rarely intersecting. To
decrease memory consumption, we have added an ability to run a separate analysis for every taint
source. Therefore, exploded graph nodes and summaries can be cleared, but the total analysis time
could increase since parts of the program graph can be potentially analyzed more than once.

The second significant difference with other implementations is that each request for a set of
aliases for any specific tainted value is handled in a separate local environment with its own IFDS
solver and exploded super graph. The graph is cleared after the call and only the resulting aliases
set is preserved so that it could be reused both in main taint analysis and when calculating other
aliases sets.

Remaining improvements are discussed in following subsections 3.1 and 3.2 with more details.

3.1 Unresolved function calls

When examining a call site, we assume that it is trivially easy to determine the called function by
the generated bitcode. Unfortunately, C and C++ programs contain calls, whose targets couldn’t be
determined until runtime. There are three main sources of such unresolved calls, described below:
1) virtual functions;

2) external function;

3) indirect calls.

C++ virtual function is a member function declared within a base class and overridden by the

method in the derived class. When performing a virtual call, the called function is determined by

the actual type of the object and may vary in runtime. Such calls were already handled in the
previous implementation of the algorithm [1] by adding interprocedural edges to all possible
overrides.

Another case of a call with unknown called function is an external call. There are two main kinds

of external calls: library functions and system calls. In both cases the analyzed program doesn’t

contain called functions’ definitions and thus we cannot add any “call-site to entry” and “exit to
return-site” edges to the call and has to rely on “call-site to return-site” intraprocedural edge only.

By default, we assume that an external function can change values of all its arguments, unless it

contradicts with language semantics, so the corresponding facts are not propagated further. We

also assume that external function doesn’t change value of any global variable and leave it tainted.

Usually such assumptions lead to an undertainting and thus we’ve developed several ways to deal

with this issue.

1) Since there is a limited number of system functions and most of them are well-documented, it
is possible to create summaries (models) for most frequently used ones manually. Our tool
also provides the list of external functions encountered during analysis, which makes it
possible for user to prepare summaries for them. It’s also possible to specify custom sources,
sinks and propagators using similar files in JSON format — those summaries are applied at
“call-site to return-site” edges.

2) For an open-source library it is possible to compile it into LLVM bitcode and then link it
together with the analyzed program’s representation using llvm-link program, which is a part
of LLVM infrastructure.

3) If some specific parameter of an external function has type with const qualifier, which
specifies that its value should remain unchanged after invocation, we derive a rule for

181

Shimchik N.V., Ignatyev V.N. Vulnerabilities Detection via Static Taint Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp.
177-190

propagating taint through the corresponding argument in every call of this function.
Unfortunately, a lot of type-related information, including constancy, may be lost during
compilation, so we had to add several modifications to the Clang compiler in order to store
this information in the LLVVM metadata.

Lastly, there is another type of calls where the memory address of the called function is calculated

at runtime — such calls are named indirect calls. It is possible to say that a virtual call is just a

special case of such indirect call. C developers sometimes use indirect calls to simulate virtual

calls functionality available in C++ and thus it could be important to support such calls. For
example, such technique is used in security-critical OpenSSL library.

We’ve evaluated several ways to handle indirect calls, described below. Firstly, we make the

following assumptions for an indirect call:

a) the indirect call is never used for invocation of any external function, thus the analyzed
program contains definitions for all possible candidate functions;

b) the set of all possible candidates is completely determined by the program itself, which means
that for all possible target function there is a path in the program where the address of the
given target is taken and transferred to the indirect call instruction.

If (A) is considered to be false, such indirect call is actually an external call and should be handled

as appropriate, otherwise we can examine following approaches.

1) The naive approach is to take every function definition with compatible parameter types and
consider as a candidate. The problem of this approach is that all functions with 0 parameters
are indistinguishable and most functions with 1-2 parameters are divided into several large
clusters. If we also assume (B) to be true, this approach could be slightly improved by
excluding functions, whose address was never explicitly taken in the program.

2) Another approach relies on the assumption that both functions and variables in a program are
usually named according to their semantics. In this case it should be possible to compare
similarity between call instruction and different call candidates to choose the most likely
called function. Unfortunately, the function and variable names are virtually never plain equal
and while it should be possible to write an automated heuristic, its results would be unreliable
due to lack of formal specifications regarding naming. Such a heuristic would need to put
«encrypt string», «EncryptString», «EncryptUTF», «encstr» names into the same similarity
cluster, but differentiate between «encrypt» and «decrypt» function names. Common
abbreviations, such as «Context — ctx» and «Source — src» may also pose a problem. Right
now, we are using a semi-automated solution, where the naive approach is used to generate a
.txt file with «expression name» — «{called function names}» mapping, which can be filtered
by a user for further analysis runs.

3) Assuming both (A) and (B) are true, it should be possible to implement an interprocedural
backward-dataflow analysis to find possible candidates for an arbitrary indirect call. We
suppose that one of the problems of such analysis is that its results are used to add missing
interprocedural edges to the super graph, but at the same time they are dependent on the super
graph structure, thus it should be performed as an iterative process. We don’t have a working
implementation of this approach by now.

3.2 Memory model

As it was already mentioned in Section 3, we use an access path-based memory model with an
access path defined as a combination of base value and an ordered list of dereference offsets.

In the current implementation, offsets are represented with either constant integers or a special A-
offset, which is used to denote an unknown offset. This A-offset has a special behavior: given any
pointer ptr and a constant offset a, access path /ptr,A] is considered to be subsuming [ptr,a], i.e.

182

nvark H.B., Virnatses B.H. TTonck ys3BUMOCTE! IPH MOMOLITH CTATHYECKOTO aHANM3a IOMEUYCHHBIX JAHHBIX. Tpyobt ICIT PAH, Tom 31, Bbi. 3, 2019, c1p.
177-190

the statement b = ptr[a] would propagate taint from either one of these access paths to [b],
but the statement ptr[a] = 0 would remove taint from the second one only.
Usage of arbitrary integer offsets instead of object fields in access paths, what is required to
achieve complete support of all C++ features, leads to an extremely large D set, which has a great
impact on worst-case complexity of the algorithm. Thus, it is necessary either to make sure that
transfer functions would work with a limited subset of D for any given program, or to limit path
length in the exploded super graph.
While this special offset enables us to give a simple and efficient representation for complex
expressions like s->packet+len+left, where s->packet is a pointer and len and left
are non-constant offsets, it inevitably leads to an overtaint problem, because A-offset doesn’t
restrict the set of possible values and any two A-offsets are considered to be equal. While it is
possible to extend this model to achieve more precise analysis, it’s required to keep reasonable
size of the D set. We’ve evaluated following approaches.

1) A relatively simple extension of the model is to introduce “unknown non-negative” offset A+,
which is included into “unknown” A-offset. Let us assume that an instruction writes tainted
data into a single element with unknown index of an array field of an object. As a result the
whole object becomes tainted, because resulting access path will be equal to
[this,offsetof(field) + A] = [this,A]. If the used index is nonnegative, because it corresponds to
an unsigned variable, it’s possible to achieve better precision, tainting only consequent part of
the object with the help of A+. This approach has allowed us to slightly decrease number of
false positives on LibTIFF library, but it hasn’t proved to make any difference in other cases,
since buffers are usually accessed via pointers and this situation seems to be rather an
exception.

2) The access path is the core of used memory model. It’s possible to use interval domain to get
better granularity and precision. The model requires to define several predicates, such as that
one access path corresponds to the memory region included into region of another access
path. Since access path construction and predicate calculation for interval domain is
significantly slower and the total number of created access paths (the size of the D set) grows
significantly too, the total analysis time becomes unacceptable.

3) We also tried to implement another extension of memory model which uses symbolic
expressions instead of integer offsets in access path. But this approach requires to gather
constraints for these offsets using LLVM-instructions which are usually ignored by the IFDS
engine, because values of these variables are not tainted. Therefore, it’s better to build a
dedicated symbolic execution engine and integrate it with existing IFDS engine or to build
taint analysis immediately on symbolic execution [5]. Because of this we decided to use an
existing symbolic execution tool as a second analysis stage.

4) We also considered using a region-based memory model, similar to the one proposed in [6],
since that would allow us to merge all aliases in a single data fact, instead of propagating
them independently. We don’t have a working implementation of this approach.

4. Analysis Results Refinement Stage

One of the likely reasons of false positives is the lack of path-sensitivity in the IFDS algorithm.

Let’s consider an example based on a typical buffer overflow test from the Juliet Test Suite for

C/C++ on fig.2.

There is a single taint source fscanf(data) and a single taint sink buffer[data]. Due to path-

insensitivity of the algorithm, it reports a dangerous data flow between those instructions, but in

reality there is no realizable path from source to sink, because that would require variable

globalFive to be equal to 5 and not to be equal to 5 at the same time.

There are different ways to solve this issue. We propose performing a two-stage analysis: the first

step is done by a relatively fast and simple analyzer, which is able to detect most errors in the
183

Shimchik N.V., Ignatyev V.N. Vulnerabilities Detection via Static Taint Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp.
177-190

program but also produces a high amount of false positives and a second one is performed by a
slower but more precise path-sensitive analyzer, whose task is to confirm or reject reports from the
first stage.

Similar two-staged approach, consisting of static and guided dynamic analysis was proposed for
example in [7] [8]. Preliminary static analysis helps to avoid path explosion problem in dynamic
analysis, since it is necessary to check only those execution paths, which were already discovered
by the first stage.

1 extern int globalFive;

2 int data = -1;

3 if (globalFive == 5) {

4 fscanf (stdin, "%d", &data);
5 }

6 if (globalFive != 5) {

7 int buffer[10] = { 0 };
8 if (data >= 0) {

9 buffer[datal] = 1;
10 }

11)

Fig. 2. Example for path insensitivity problem

We propose an analogical combination of two static analyses: IFDS-based analysis and symbolic
execution. Unlike building taint analysis using static symbolic execution without IFDS framework,
as we have already done for C# in [5], or as it is done for C and C++ in Svace [9], two-staged
approach allows to deal with following issues. Every general-purpose static analyzer is required to
balance between analysis precision and performance. We can enable very detailed and precise
analysis because it’s necessary to handle only minimal amount of possible dangerous paths, found
by the previous stage. Hence states explosion problem together with conditions simplification for
analyzer with states merging are solved.

We decided to use an existing symbolic execution engine for a second stage and the main
requirement was that it should work with program representation in LLVM bitcode format to ease
exchanging data between stages.

As an experiment, we consider a simpler form of report confirmation — a path confirmation. In this
case the only task of the second analyzer is to confirm that the source-sink path is realizable, and it
doesn’t need to know anything about the vulnerability itself. Hereafter we plan to build more
precise condition for each type of detected error. For example, considering usage of tainted data as
an array index, we can ensure proper sanitizing by building condition to check if the index is out of
bounds.

4.1 KLEE

KLEE [10] is a well-known open-source symbolic execution engine which is actively developed
since 2008 and has more than one hundred related publications [11].

It analyses programs in LLVVM format and is able to mix both concrete and symbolic execution. To
enable symbolic execution, the program should be explicitly annotated with special functions,
which are used to mark symbolic values to be created, conditions to be checked etc. This should be
done either manually, or by linking the program with a special implementation of system libraries,
such as uClibc [12].

We have tested a simple way to transfer information about taint sources and sinks in program to
KLEE by instrumenting bitcode file with necessary special functions calls.

The path confirmation problem was modeled as follows.

184

nvark H.B., Virnatses B.H. TTonck ys3BUMOCTE! IPH MOMOLITH CTATHYECKOTO aHANM3a IOMEUYCHHBIX JAHHBIX. Tpyobt ICIT PAH, Tom 31, Bbi. 3, 2019, c1p.
177-190

Every warning trace contains an ordered list of instructions (tracepoints) in a program along the
path from source to sink, which are important to demonstrate to user the taint flow. For every
tracepoint except the last one corresponding to the sink, a special global variable tracepoint_i_j is
created, where i is the index number of the current report trace and j is an index number of the
tracepoint.

At the first tracepoint of every trace i we insert an LLVM instruction, corresponding to the

assignment

tracepoint i 1 = 1;

At every other tracepoint j of the trace i we insert LLVM instructions, corresponding to the code

if (tracepoint i (j-1))

tracepoint i j = 1;
At the sink we insert an equivalent of the code
if (tracepoint i (j-1))

klee report error(...);

In these terms, the error would be reported iff KLEE has found a realizable path which visits all

tracepoints of the trace in a proper order.

Unfortunately, while the concept seemed to be working for simple test cases (and even there were

some difficulties with external functions), the general idea has proved to be not so easy to properly

implement.

In particular, we encountered following issues.

e KLEE doesn’t support memory regions with symbolic size. It means that it’s necessary to
explicitly specify size for every input string and memory buffer, which is inappropriate for us.
This problem is addressed in [13].

e KLEE as is can’t start analysis from an arbitrary point of the program. It is acceptable for
tests generation, but it is not very suitable for our purpose, since we are interested in
simulating of a relatively small subpath from source to sink. In addition, many libraries don’t
have an entry point at all. The problem is addressed in [14].

e By design KLEE uses program traversing strategy which is aimed to increase code coverage.
However, we were not satisfied with the existing “covering-new” heuristic and would need to
implement another one for directed symbolic execution similar to [15].

e By default, KLEE works on self-contained isolated programs that don’t use any external code
(e.g. C library functions), but in practice most programs use external functions calls. To solve
this issue, it is possible to link the program with the library or model representation or to
automatically generate stub definitions for unknown functions.

After successful experiments on artificial tests, we’ve tried KLEE to automatically confirm our

reports on the relatively small library LibTIFF, but we haven’t managed to find a way to reach

even the taint source.

As a conclusion, we’ve decided that it would be too hard to adapt this tool to our problem and it is

better to use a static analysis approach for now.

4.2 Svace

Svace [16] is a static analysis tool for bug detection developed at the Institute for Systems
Programming, Russian Academy of Sciences. It supports analyzing program written in various
programming languages, including C, C++, C# and Java.

Unlike the previous tool, it performs purely static analysis, which means that it doesn’t necessarily
require a full model of the analyzed program and is suitable to analyze libraries without executable
files.

185

Shimchik N.V., Ignatyev V.N. Vulnerabilities Detection via Static Taint Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp.
177-190

We started with creating a symbolic execution based checker for Svace, which analyses the
modified LLVM bitcode file to confirm the existence of a realizable source-sink path for traces of
warnings reported by the first stage.

For the proof of concept, report traces are represented in a following manner.

1) Temporarily we don’t use any tracepoints, other than the first corresponding to the source and
the last one corresponding to the sink.

2) All unique sources appearing in any reported source-sink pair are sorted and enumerated. If
tainted data from the source haven’t reached any sink, such source is ignored.

3) For every source, a global variable source i tainted is created, where i is the source’s index
number.

4) A special function call taint variable(source i tainted) is inserted after every source
statement in the program to tell the analyzer that the variable is tainted.

5) A special function call check tainted(source i _tainted) is inserted before every sink
statement appearing in a source-sink pair, where i is the corresponding source’s index
number.

For every function containing either taint_variable or check tainted call, a summary is created.
Summary contains intraprocedural reachability condition of the corresponding source or sink.
Similar summaries are created for every caller function and contain conjunction of call reachability
condition and condition from the callee translated into the caller context. Error condition is equal
to the conjunction of the current path condition, the source reachability condition and the sink
reachability condition. The resulting condition is passed to a solver for every function call,
containing sink. If the resulting condition is UNSAT checker classifies corresponding report as
false positive.

Hereafter we plan to check the reachability condition of the whole path or set of paths, instead of

source to sink subpath. For example, the entry point can be considered as the entry of nearest

function containing source to sink path. We also want to filter out sanitized taints by checking
corresponding security conditions.

5. Testing Results

First of all, we performed empirical evaluation of some of the memory usage enhancements
mentioned in Section 3. We have launched analysis 4 times on libssl library from OpenSSL
version 1.0.1f with following configurations:

1) baseline configuration, with most enhancements disabled,;

2) current default configuration;

3) default configuration without separate sources analysis;

4) default configuration with full exploded graph instead of currently used taint traces.

This library contains 3 taint sources and was chosen for the demonstration because it contains the
well-known «Heartbleed» (CVE-2014-0160) vulnerability, which was successfully found by the
analyzer. Also, we have to mention the fact that baseline configuration exceeds 20 Gb RAM usage
limit on a full openssl executable — it contains 162 taint sources and has a huge taint flow graph
mostly because of extensive use of cryptographic library libcrypto. Thus, mentioned enhancements
seem to be necessary for the analysis of programs with vast taint flow graphs (Table 1).

Table 1. Evaluation of memory consumption

Run # Reports # Iterations Time Memory
1 75 3614 thous. 45s 938 MB
2 75 3619 thous. 55s 318 MB
3 75 3 614 thous. 53s 367 MB

186

nvark H.B., Virnatses B.H. TTonck ys3BUMOCTE! IPH MOMOLITH CTATHYECKOTO aHANM3a IOMEUYCHHBIX JAHHBIX. Tpyobt ICIT PAH, Tom 31, Bbi. 3, 2019, c1p.
177-190

4 75 3619 thous. 45s 580 MB

Another launch without «const» qualifier handling in external function calls mentioned in
Subsection 3.1 showed decrease in amount of reported warnings from 75 to 67, amount of covered
functions from 141 to 136 and decrease in amount of algorithm iterations performed from 3.61
millions to 3.02 millions.

Regarding two-stage analysis concept, we performed an evaluation on the set of artificial tests,
which was created during development of the first stage analyzer. While these tests were not
designed to test path confirmation, that allowed us to find some obvious implementation flaws and
compare analysis time of both stages.

The first stage analyzer has been launched for every test from the set with up to 4 tests being
analyzed simultaneously.

On the next run it was supplemented by the second stage analyzer, which has been launched for
176 tests from the set in which first stage analyzer produced at least a single report to be confirmed
(Table 2).

Table. 2. Evaluation of analysis time on artificial tests.

Stage # Tests # Passed Time
First 272 269 1m 32s
Both 176 168 18m 36s

Out of 8 tests, incorrectly filtered out by the second stage analysis:

e were caused by the lack of indirect and virtual calls support in the second stage analyzer

e were caused by incorrect interpretation of traces produced by a backward analysis checker

e 2 has failed because of merged or duplicated reports, which seems to be an implementation
issue

The substantial slowdown of the second stage analyzer is most likely caused by the fact that Svace

is a general-purpose tool and performs a lot of actions which are not necessary for the path

confirmation checker. Also, it requires more time to bootstrap and initialize analysis, which makes

difference because every test file was analyzed in a separate instance.

We’ve also checked two-stage approach on Juliet 1.3 test suite for C/C++ [17] with and without

work-in-progress Svace checker. The first stage was launched on a program which consists of all

unix tests from directories, corresponding to CWE121, CWE122, CWE124, CWE126 and

CWE127. There were 2688 taint sources in the analyzed program. Many tests from the set are

ignored by the analyzer because they don’t contain any taint sources and use a hardcoded invalid

index instead.

Then we tried to confirm the results from the first stage with two versions of second stage

analyzer: with path confirmation described in subsection 4.2 and another one, which also tries to

filter out sanitized taint paths (marked with *, see Table 3).

It should be noted that the first stage analyzer is not yet able to utilize more than a single thread,

while the second stage analyzer was allowed to use up to 4 threads during analysis, hence the

difference in analysis time and memory consumption.

Table. 3. Evaluation of two-stage analysis on the Juliet Test Suite 1.3 for C/C++.

Stage # Reports True positive rate Time Peak Memory
First 2424 41% 16m 13s 19GB
Second 2424 41% 13m 10s 8.9GB
Second” 984 100% 14m 9s 9.8GB

187

Shimchik N.V., Ignatyev V.N. Vulnerabilities Detection via Static Taint Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp.
177-190

We don’t have a working solution for security conditions checking right now, but for the purpose
of proof of concept, we’ve implemented a simple addition to the current path confirmation
checker, which should check that all LLVVM values corresponding to the access paths from the
reported trace are able to have arbitrary high or negative values within the current data type —
otherwise such a taint path is filtered out. This is not a proper implementation of security
conditions checking, but is enough to demonstrate filtering out most false positives on this
particular test suite.

As it can be seen from the evaluation data, path confirmation checker alone is not enough to
improve analysis results on the selected test suite, because it doesn’t contain tests with unrealizable
paths between source and sink. However, if supported with a security conditions checker, this
approach should be able to significantly decrease number of false positives among reported
warnings.

It is also interesting, that while Svace has its own set of buffer overflow and tainted data checkers
which cover much greater set of test cases in the test suite, 152 out of our 984 reports seem not to
be reported by Svace’s own checkers.

We’ve also tested two-stage analysis on the libssl library, which contains “Heartbleed”
vulnerability.

First stage analyzer was able to find the taint path from the BIO_read call in function ssI3_read_n
to the memcpy call in dtlsl_process_heartbeat, but also produced more than 70 other reports,
which are most likely false positives.

After increasing default limits on procedure analysis time and max annotation size, the second
stage analyzer was able to reduce total number of reports to 62 (48), while keeping the true
positive report (Table 4).

Table. 4. Evaluation of two-stage analysis on the libssl library from OpenSSL 1.0.1f .

Stage # Reports “Heartbleed” found? Time Peak Memory
First 73 + 1Im51s | 0.4GB
Second (default | 1 - 2m27s | 3.3GB

limits)

Second 62 + 5m29s | 6.6 GB
Second” 48 + 5m42s | 6.9 GB

In case of LibTIFF library and CVE-2018-15209 vulnerability, we could not confirm the true
positive taint path with the second stage analyzer, because that would require handling of indirect
calls which is not yet supported by the checker.

Therefore, our testing shows that the concept seems to be promising, but still requires further
refinement.

6. Conclusion

Performing taint analysis for vulnerability detection via pure IFDS approach has several
limitations in comparison to existing buffer overflow checkers, such as [9]: it doesn’t make any
assumptions about buffer size and is unable to detect several cases even from Juliet Test Suite,
because there are no taint sources. For example, if a constant array index is used to access memory
outside of array bounds. Moreover, considering error detection problem, pure static taint analysis
generates too many alarms to be able to find few vulnerabilities uncaught in an industrial project.
The majority of false alarms are introduced by path-insensitivity and overtainting due to
inconsistencies between a program and its memory model. Our experience shows that addons to
simple and efficient memory model used by IFDS lead to unreasonable analysis slowdown and
offer just a minimal results improvement. Therefore, a postprocessing of results is required.

188

nvark H.B., Virnatses B.H. TTonck ys3BUMOCTE! IPH MOMOLITH CTATHYECKOTO aHANM3a IOMEUYCHHBIX JAHHBIX. Tpyobt ICIT PAH, Tom 31, Bbi. 3, 2019, c1p.
177-190

Proposed approach with two-staged analysis looks promising but requires a lot of enhancements to
achieve industrial level quality and there are no guaranties that it is even possible.

We are going to continue our research by developing other types of report confirmation in Svace
infrastructure, since despite all listed limitations, the tool has a potential to discover serious
vulnerabilities, such as «Heartbleed» in OpenSSL and CVE-2018-15209 in LibTIFF.

References

[1] Koshelev V.K., lIzbyshev A.O., Dudina I.A. Interprocedural taint analysis for LLVM-bitcode.
Programming and Computer Software, 2015, wvol. 41, issue 4, pp. 237-245. DOI:
10.1134/S0361768815040027.

[2] Reps T., Horwitz S., Sagiv M. Precise interprocedural dataflow analysis via graph reachability. In Proc.
of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 1995, pp.
49-61.

[3] Naeem N.A., Lhotak O., Rodriguez J. Practical extensions to the IFDS algorithm. In Proc. of the
international conference on Compiler Construction, 2010, pp. 124-144.

[4] Arzt S., Rasthofer S., Fritz C., Bartel A., Klein J., Traon Y.L., Octeau D., McDaniel P. FlowDroid:
precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In Proc.
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, 2014,
pp. 259-269.

[5] Belyaev M.V., Shimchik N.V., Ignatyev V.N., Belevantsev A.A. Comparative analysis of two
approaches to static taint analysis. Programming and Computer Software, 2018, vol.44, issue 6, pp. 459-
466. DOI: 10.1134/S036176881806004X.

[6] Xu Z., Kremenek T., Zhang J. A memory model for static analysis of C programs. In Proc. of the
International Symposium On Leveraging Applications of Formal Methods, Verification, and Validation.
2010, pp. 535-548.

[7] Gerasimov A.Yu. Kruglov L.V., Ermakov M.K. Vartanov S.P. An approach of reachability
determination for static analysis defects with help of dynamic symbolic execution. Programming and
Computer Software, 2018, vol. 44, issue 6, pp 267-275. DOI: 10.1134/S0361768818060051.

[8] Gerasimov A.Yu. Directed dynamic symbolic execution for static analysis warnings confirmation.
Programming and Computer Software, 2018, vol. 44, issue 5, pp. 316-323. DOI:
10.1134/S036176881805002X.

[9] Dudina I.A., Belevantsev A.A. Using static symbolic execution to detect buffer overflows. Programming
and Computer Software, 2017, vol. 43, issue 5, pp. 277-288. DOI: 10.1134/S0361768817050024.

[10] Cadar C., Dunbar D., Engler D. KLEE: Unassisted and automatic generation of high-coverage tests for
complex systems programs. In Proc. of the Proceedings of the 8th USENIX conference on Operating
systems design and implementation, 2008, pp. 209-224.

[11] Publications*KLEE. [Online]. Available at: http://klee.github.io/publications/, accessed 20.03.2019.

[12] GitHub - klee/uclibc: KLEE’s version of uClibc. [Online]. Available at: https://github.com/klee/klee-
uclibc, accessed 02.04.2019.

[13] Simacek M. Symbolic-size memory allocation support for Klee. Master’s thesis, Masaryk University,
Faculty of Informatics, Brno, 2018. [Online]. Available at: https://is.muni.cz/th/mdedh/, accessed
21.03.2019.

[14] Ramos D.A., Engler D. Under-constrained symbolic execution: Correctness checking for real code. In
Proc. of the Proceedings of USENIX Security Symposium, 2015, pp. 49-64.

[15] Marinescu P.D., Cadar C. KATCH: High-coverage testing of software patches. In Proc. of the 2013 9th
Joint Meeting on Foundations of Software Engineering, 2013, pp. 235-245.

[16] Ivannikov V.P., Belevantsev A.A., Borodin A.E., Ignatiev V.N., Zhurikhin D.M., Avetisyan A.l. Static
analyzer Svace for finding defects in a source program code. Programming and Computer Software,
2014, vol. 40, issue 5, pp. 265-275. DOI: 10.1134/S0361768814050041.

[17] Software assurance reference dataset. [Online]. Available at: https://samate.nist.gov/SARD/testsuite.php,
accessed: 20.03.2019

189

Shimchik N.V., Ignatyev V.N. Vulnerabilities Detection via Static Taint Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp.
177-190

MHdopmaumnsa 06 aBTopax / Information about authors

Huxura Bnagumuposuu IIIMMYUK — acniupant MHCTUTYTa CUCTEMHOTO IPOTPAaMMUPOBAHUS HM.
B.II. ViBanuukoBa PAH. Ero HayuHble HHTEpECHl BKIIOUAIOT CTATUYECKUIN aHAIU3 MPOTrPaMMHOIO
obecneueHusl.

Nikita Vladimirovich SHIMCHIK is a postgraduate student of lvannikov Institute for system
programming RAS. His research interests include static analysis of programs.

Banepuit Hukomaesmu WIHATBEB, xammumat Qu3NKO-MaTeMaTHUECKMX HAyK, CTapIIUi
HayuyHbli coTpynHuK WHcTuTyTa cucrtemHoro mporpammupoBanus um. B.I1. UBannukoBa PAH,
CTapmIMi TIpemojaBaresib Kadeapsl CHCTEMHOTO HpPOrpaMMHpPOBaHUS (haKyIbTeTa
BEIYUCITUTENFHON MaTeMaTuku U kuOepHeTnkn MI'Y mm. M.B. JlomoHocoBa. HayuHpie nHTEpECH
BKIFOYAIOT METOJBI MTOUCKA OMHOOK B McxomaHOM Kozie I1O Ha 0CHOBE CTaTHYECKOTO aHaIu3a.

Valery Nikolayevich IGNATYEV, PhD in computer sciences, senior researcher at Ivannikov
Institute for system programming RAS and senior lecturer at system programming division of
CMC faculty of Lomonosov Moscow State University. He is interested in techniques of errors and
vulnerabilities detection in program source code using static analysis.

190

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-15

C# parser for extracting cryptographic protocols
structure from source code

I.A. Pisarev, ORCID: 0000-0002-2055-1841 <ilua.pisar@gmail.com>
L.K. Babenko, ORCID: 0000-0003-2353-7911 <lkbabenko@sfedu.ru>
Southern Federal University, Department of Information Security,
Taganrog, Rostov region, 347928, Russia

Abstract. Cryptographic protocols are the core of any secure system. With the help of them, data is
transmitted securely and protected from third parties' negative impact. As a rule, a cryptographic protocol is
developed, analyzed using the means of formal verification and, if it is safe, gets its implementation in the
programming language on which the system is developed. However, in the practical implementation of a
cryptographic protocol, errors may occur due to the human factor, the assumptions that are necessary for the
possibility of implementing the protocol, which entail undermining its security. Thus, it turns out that the
protocol itself was initially considered to be safe, but its implementation is in fact not safe. In addition, formal
verification uses rather abstract concepts and does not allow to fully analyze the protocol. This paper presents
an algorithm for analyzing the source code of the C# programming language to extract the structure of
cryptographic protocols. The features of the implementation of protocols in practice are described. The
algorithm is based on the searching of important code sections that contain cryptographic protocol-specific
constructions and finding of a variable chain transformations from the state of sending or receiving messages
to their initial initialization, taking into account possible cryptographic transformations, to compose a tree,
from which a simplified structure of a cryptographic protocol will be extracted. The algorithm is implemented
in the C# programming language using the Roslyn parser. As an example, a cryptographic protocol is
presented that contains the basic operations and functions, namely, asymmetric and symmetric encryption,
hashing, signature, random number generation, data concatenation. The analyzer work is shown using this
protocol as an example. The future work is described.

Keywords: cryptographic protocols; C#; parser; verification; tree; analysis; source code

For citation: Pisarev |.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from
source code. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 191-202. DOI: 10.15514/ISPRAS-
2019-31(3)-15

Acknowledgment. The work was supported by the Ministry of Education and Science of the Russian
Federation grant Ne 2.6264.2017/8.9.

C# napcep Ans U3Bne4YeHUs CTPYKTypbl Kpuntorpadgpuieckmnx
NPOTOKONIOB U3 UCXOAHOrO Kopaa

U A. INucapes, ORCID: 0000-0002-2055-1841 <ilua.pisar@gmail.com>
JLK. babenrxo, ORCID: 0000-0003-2353-7911 <lkbabenko@sfedu.ru>
FOoucnvlil hedepanvruiii ynusepcumem, Kageopa ungopmayuonnoii besonacnocmu,
Taeanpoe, Pocmosckas obnacme, 347928, Poccus

AnHotammsi. Kpunrorpaduueckue NpOTOKONBI SIBISIOTCSA SIAPOM 000 3amumenHoit cucremel. C ux
TIOMOIIBIO TIEPENAIOTCS JJaHHBIE, KOTOpble HYKHAIOTCS B 3aluTe OT TpeTbux Jmm. Kak mpasuio,
KpHITOTpadMUECKUH IPOTOKOJI pa3padaThIBaeTCs, aHATN3UPYETCs ¢ UCTIOIb30BAHIEM CPEICTB (OpMATBLHON
BepuduKanmuu M, ecim OH Oe3omaceH, pealn3yeTcss Ha S3bIKE IPOrPaMMHpPOBAHMS, HAa KOTOPOM

191

Pisarev I.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from source code. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 191-202

paspabatbiBaercst cucremMa. OHAKO NPH NPAKTUYECKON peaM3aluy KpUNTorpaguueckoro npoTokoia MoryT
BO3HHMKAaTh OIIMOKM M3-32 YENOBEYECKOro (hakTopa, HPEAINONOKEHUH, KOTOpble HEOOXOAMMBI IS
BO3MOJKHOCTH pealn3alliyl MPOTOKOJIA, YTO BIEYET 3a COOOH MoAphIB ero GezomacHocTH. TakuM oOpasom,
OKa3bIBAaCTCsI, YTO CaM NPOTOKOJI W3HAYAIBGHO CYMTANICS 0E30MacHBIM, HO €ro pealu3alys Ha caMOM Jielie
Hebe3omacHa. Kpome Toro, ¢opmanbHas Bepu(HKaIHs UCIOIb3YeT JOBOJBGHO aOCTpaKTHHIE MOHATHS U HE
MI03BOJISIET TIOJTHOCTBIO NPOAHAIM3UPOBATh NIPOTOKOJ. B maHHOI craThe MpeACTaBIEH alrOPUTM aHAIN3a
UCXOJHOTO KOJa s3blka mporpammupoBanust C# Ui H3BJICYECHHMS CTPYKTYPHl KpPHITOrpaduyecKux
npoToKoyIoB. OmucaHbl OCOOCHHOCTH PpEANU3alMH NPOTOKOJIOB Ha IPAaKTUKE. AJTOPUTM OCHOBaH Ha
OINpEeNIeICHUH KIIFOYEBBIX 00JacTeil Koma, coiepxkammx croenuduyeckue i KpUOTorpadu4eckux
MPOTOKOJIOB KOHCTPYKIIMH, U ONPEACICHUH LIEOYKU IPe0Opa30oBaHui MEPEMEHHBIX U3 COCTOSIHUS OTIPABKU
WM TIOJTy4YeHHs COOOIIEHHH 0 NX HAaYaJbHOM MHULIHAIM3AIMU C YY€TOM BO3MOKHBIX KPHITOTPAQHISCKIX
npeoOpa3oBaHUi U COCTaBJIEHHs JepeBa, M3 KOTOpOro OyIeT H3BJIeYeHa YIPOIIEHHas CTPYKTypa
KpUNTOTpaduIecKoro IPOTOKONA. ANTOPHTM peannu3oBaH Ha s3bIKe mHporpammupoBaHus C# ¢
HCTIONb30BaHMEM CHHTaKCHYecKoro aHaimm3aropa Roslyn. B kauectBe nmpumepa mpencraBieH
KpUNTOrpauueckuii IPOTOKOJ, KOTOPBI COAEPKUT OCHOBHBIC ONEpalud W (QYHKIHH, a HMEHHO:
ACUMMETPHYHOE M CHMMETPHUYHOE INM(POBAHUE, XCUIMPOBAHHE, IOIIUCH, FEHEpalus CIy4aiHbIX YHCel,
KOHKaTeHaIUsl JaHHBIX. PaboTa aHanu3aTopa NOKa3aHa C HCIOJb30BAHMEM 3TOTO IPOTOKOJA B KauecTBE
npumepa. Onmcana Oyaynias padora.

KawueBble cioBa: kpuntorpaduyeckue mnpotokonsl; C#; mapcep; BepU(HKAIUS, ICPCBO; aHAIM3;
HUCXOIHBINA KOJI.

Jas uwutupoBanus: I[lucapes UW.A., bBabenko JLK. C# mapcep /s W3BICUCHUS CTPYKTYPHI
KpHunTorpapuIecKix MpoToKoIoB 13 ucxomanoro kona. Tpynst UCIT PAH, tom 31, Bemm. 3, 2019 1., ctp. 191-
202 (na anrmmiickoM s3bike). DOI: 10.15514/ISPRAS-2019-31(3)-15

Buaaronapaoctb. PaboTa BeImoNHEHa Npu moanep)kke MuHHCTepcTBa 00pa3oBaHUS W Hayku Poccuiickoit
Depepanuu, rpanT Ne 2.6264.2017/8.9.

1. Introduction

The problem of verifying the security of cryptographic protocols is relevant nowadays despite the
existence of a large number of already verified protocols. The need to use self-written protocols
that use lightweight cryptography for 10T, mobile robots, as well as the imperfection of formal
verification of protocols is a new challenge for verification methods, in particular, the possibility
of verifying the security of cryptographic protocols implementation. Nearly all protocols are
changed and supplemented during implementation, and for their initial analysis, for example, by
means of formal verification this is not taken into account. Also there can be programming
mistakes and logic flaws on source code. So we need verify cryptographic protocols on their last
developing iteration - on implementation level for more attack finding which can help make any
system more secure. Due to this fact this work is actual nowadays. The primary task in this matter
is to extract the structure of the protocol from the source code. At the moment there are works in
which the problem of extracting an abstract model from the source code of programming
languages C [1-3], Java [4-6], F# [7-12] is being considered. Most of them require a special
programming style for the possibility of use these algorithms or the use of additional annotations
in the source code. The paper proposes to analyze the source code of the C# programming
language. There are no other works, in which code analysis would be carried out, not involving the
use of annotations or a special programming style.

2. Cryptographic protocols

Cryptographic protocols are a set of cryptographic algorithms and functions, with a correct
combination of which is obtained a secure process of transferring messages between the parties.
Protocol security is defined as complying with security requirements, the main of which are
mutual authentication of the parties, protection against time attacks such as replay attacks, privacy
and integrity of the transmitted data. Below is an example of a test protocol that does not have a

192

Tncapes V.A., Baberko JLK. C# mapcep st n3BnedeHns CTpyKTypbl KPHITTOrpaduecKrX IPOTOKOJIOB M3 HCXOAHOTO KofI. Tpydet UCIT PAH, Tom 31, BB 3,
2019, crp. 191-202

special meaning, but contains all the basic cryptographic algorithms and functions: asymmetric
and symmetric encryption, hashing, signature, random number generation.

A - B: Eyp(A,Na)

B - A: Epys(Na,Nb, B)

A - B: Epp(Nb, k)

B - A: Ex(M1, Epy 4 (M2)), Hash(M1)

A - B: E,(M1,M2,M3), Signg.,(M1, M2, M3)

6. B — A: E,(M3)

At the beginning of this protocol, messages 1-3 use the Needham-Schroeder public key protocol
(NSPK) [13] for mutual authentication of the parties. In message 3, in addition to the random
number Nb, the key k is also transmitted for further communication between the parties using a
symmetric cipher. In message 4, M2 data is transmitted, asymmetrically encrypted on partys' A
public key, and some M1 data. All this is encrypted symmetrically using the key k, after which the
data hash M1 is applied. In message 5, side A applies its M3 data to the previously sent data M1
and M2, encrypts all this symmetrically on key k, applies a signature and sends this message to
side B. In message 6, B sends A M3 data encrypted symmetrically on key k.

akrwbdPE

3. Features of the cryptographic protocols implementation

There are a number of problems with the implementation of cryptographic protocols. One of the
problems is the dynamic size of messages. In the programming language, the transfer of messages
between the parties is implemented using sockets. In this case, the party that receives the message
must know in advance the size of the buffer to receive. For example, in the protocol described in
the previous paragraph, in the first three messages random numbers and identifiers of the parties
with a fixed length are used. In this case, everything is simple and at the reception of the message
by the party, it will expect a previously calculated static message length. However, messages 4-6
use data M1, M2, M3, which may have different lengths. For example, in message 4, M1 data can
be a video file, the length of which can vary from 1 MB to several GB. And the question is how to
tell the receiving party the size of the receiving buffer. There are various options for how this can
be done, for example, to add information about its length to the beginning of a message, to put a
mark at the end of the message. Let us consider in more detail the option with the addition of
information about the length of the message. This option involves the use of additional data before
the main message, which will contain the size of the future message. An example of a message
with additional size information is shown in fig. 1.

Buffer size Message

Fig. 1. Additional information about the size of the message

The receiving party in this case receives a fixed array of bytes, which contains the size of the
message, after which the second portion takes the rest of the message knowing in advance its
length.

A send: Buffer size, Message

B receive (4 bytes): Buffer size

B receive (Buffer size): Message

Since Message is usually encrypted and, in the context of a protocol, its transmission is protected,
the question arises of how to protect information in Buffer size. All security requirements are
important for us, except secrecy. To ensure them, you can, for example, use the signature of this
area with timestamps. Thus, the transmission, for example, message 4, will have the following
form when implementing the protocol:

B - A: Buffer size, T, Signgg (Buffer size,T), Ex(M1, Epsa(M2)), Hash(M1)
193

Pisarev I.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from source code. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 191-202

Another way is to get data into a fixed-length buffer until the buffer becomes empty. In this case,
problems can also arise as shown in fig. 2.

Receive in buffer 1 | Message part 1

Receive in buffer 2 | Message part 2 Intruder’s part

Fig. 2. Intruders' attack on the addition of real data

The result is that the message will be received longer than necessary and in some implementations,
in which further processing of the message by the receiving party is tied to the use of the message
length, some data may be imperceptibly corrupted when decrypting and dividing the data into the
message elements (random numbers, keys, etc.). In order to avoid this, various methods of
controlling the length of a message are also used.

4. Source code analysis algorithm

As an example for describing the operation of the algorithm, the previously considered protocol
was taken and implemented in the C# programming language in the form of a client server
application.

A > B: Epxp(A,Na)

B - A:E,;,(Na,Nb,B)

A > B: Eprpg(Nb, k)

B > A: E; (M1, Epy4(M2)), Hash(M1)

A - B:E,(M1,M2,M3), Signg,,(M1, M2, M3)

. B - A:E,(M3)

The analysis algorithm uses the C# Roslyn source code parser [14]. With it you can get the tree
structure of the source code, and you can use filters. We need these filters:

1) InvocationExpressionSyntax — call expressions;

2) VariableDeclarationSyntax — declaration of variables;

3) AssignmentExpressionSyntax — an assignment expression;

4) IfStatementSyntax — statement with a condition statement.

Using filters, you can get the desired expression, after which you can view the tree structure of this
expression. For example, using «AssignmentExpressionSyntax» we can find the expression
«Mlencl = RSA.Encrypt (M1, true)». The derived linear tree structure of the expression is
shown in fig. 3.

SU A wN e

L b @ 0] AssignmentExpressionSyntax SimpleAssignmentExpression Mlencl = RSAEncrypt(M1, true)
y b @ [1] IdentifierNameSyntax IdentifierName Mlencl
L @ [2] InvocationExpressionSyntax InvocationExpression RSA.Encrypt(M1, true)
b @ [3] MemberAccessExpressionSyntax SimpleMemberAccessExpression RSA.Encrypt
: W [4] IdentifierNameSyntax IdentifierName RSA
b @ [3] IdentifierNameSyntax IdentifierName Encrypt
p @ [6] ArgumentListSyntax ArgumentList (M1, true)
(b @ 7] ArgumentSyntax Argument M1
(@ [8] IdentifierNameSyntax IdentifierName M1
p @ [9] ArgumentSyntax Argument true
b & [10] LiteralExpressionSyntax TrueliteralExpression true

194

Tncapes V.A., Baberko JLK. C# mapcep st n3BnedeHns CTpyKTypbl KPHITTOrpaduecKrX IPOTOKOJIOB M3 HCXOAHOTO KofI. Tpydet UCIT PAH, Tom 31, BB 3,
2019, crp. 191-202

Fig. 3. Tree structure of expression in a linear form

The main purpose of using this parser is to find the transition from one variable to another. In this
case, we are interested in the transition Mlencl — M1. This is achieved by searching for data
such as «ldentifierName» together with the use of a black list of expressions. For example, it uses
the call of the «Encrypt» method, as well as the previously declared object of the asymmetric
encryption class «RSA», which are present in the black list, and M1enc1 and M1 that we need can
be obtained from here, where the first element will be the variable to which the value will be
assigned, and the rest of those that are lower and not included in the black list will be the new
value assigned.

The algorithm is based on the definition of important code sections containing constructs specific
to cryptographic protocols. Ultimately, the task is to find a chains of variables transformation from
the state of sending or receiving messages (socket send/receive) to their initial initialization (static
initialization, load from file, etc.), while taking into account possible cryptographic
transformations (hash, encryption, etc.). In the course of building a chain, a tree is constructed, the
nodes of which are variables with additional information about them, including data type
definitions for the final leaves of the tree and cryptographic algorithms in the tree nodes. The tree
structure allows you to describe all the chains of data transformations, since the data in the
message is combined in various ways, the chains can be strongly branched and joined. Below is a
fragment of the source code for the implementation of a part of the cryptographic protocol
(messages 1-3) from participant A.

1 ce

2 Socket socA =

3 new Socket (ipAddress.AddressFamily,
4 SocketType.Stream, ProtocolType.Tcp);
5

6 socA.Connect (remoteEP) ;

7

8 RNGCryptoServiceProvider rng = new
9 RNGCryptoServiceProvider () ;

10

11 byte[] A = new byte[] { 132, 114 };
12 byte[] B = new byte[] { 15, 245 };
13

14 byte[] Na = new byte[64];

15 rng.GetBytes (Na) ;

16

17 byte[] M1l = new byte[2 + 64];

18

19 Array.Copy (A, 0, M1, 0, A.Length);
20 Array.Copy(Na, 0, M1, 2, Na.Length);
21

22 //1

23 byte[] Mlenc;

24 using (RSACryptoServiceProvider RSA =
25 new RSACryptoServiceProvider())

26 {

27 RSA.ImportParameters (

28 rsaPB.ExportParameters (false));

29 Mlenc = RSA.Encrypt (M1, true);
30 }

31

32 socA.Send (Mlenc) ;

33

34 //2

195

Pisarev I.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from source code. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 191-202

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

byte[] MGet2Encr = new byte[256];
socA.Receive (MGet2Encr) ;

byte[] MGet2;
using (RSACryptoServiceProvider RSA = new
RSACryptoServiceProvider())
{

RSA.ImportParameters (
rsaSA.ExportParameters (true));

MGet2 = RSA.Decrypt (MGet2Encr, true);
}

byte[] BFromServer = new byte[2];

byte[] NaGet = new byte[64];

Array.Copy (MGet2, 0, BFromServer, 0, 2);
Array.Copy (MGet2, 0, NaGet, 0, 64);

if (!NaGet.SequenceEqual (Na) &&
!B.SequenceEqual (BFromServer))
{
socA.Shutdown (SocketShutdown.Both) ;
socA.Close();
return;

}

byte[] Nb = new byte[64];
Array.Copy (MGet2, 64, Nb, 0, 64);

byte[] k = new byte[32 + 16];
rng.GetBytes (k) ;

byte[] M3 = new byte[0];
M3 = Nb.Concat (k) .ToArray () ;

//3

byte[] M3enc;

using (RSACryptoServiceProvider RSA = new

RSACryptoServiceProvider())

{
RSA.ImportParameters (rsaPB.ExportParameters (false));
M3enc = RSA.Encrypt (M3, true);

}

socA.Send (M3enc) ;

First you need to define the declaration and initialization:

objects of class Socket.

class objects of the standard library cryptographic algorithms, such as the
RSACryptoServiceProvider asymmetric encryption algorithm, the
RNGCryptoServiceProvider random number generator, etc.

The variables of the class object Socket: [socA], classes of cryptographic algorithms are defined:
[rng, RSA].

To find variable of the Socket class object, the sending and receiving messages is searched. In this
case, there are 3 such constructions. At this stage, you can construct an interaction scheme of the
following form:

196

Tncapes V.A., Baberko JLK. C# mapcep st n3BnedeHns CTpyKTypbl KPHITTOrpaduecKrX IPOTOKOJIOB M3 HCXOAHOTO KofI. Tpydet UCIT PAH, Tom 31, BB 3,
2019, crp. 191-202

1.
2.
3.

A—- B:M1
B - A:M2
A - B:M3

To determine the structure of the message, it is necessary to build a tree, the nodes of which
contain variables with additional information. Consider an example for determining the content of
the first message. The order of the algorithm is as follows,

1.

The expression of the first message socA.Send (Mlenc) is taken as the root of the tree. It is
necessary to understand the contents of the variable Mlenc.

First you need to find the declaration of the variable Mlenc using the filter
VariableDeclarationSyntax. However, in our case, the variable is declared, but not initialized
(line 23). In this case, the filter AssignmentExpressionSyntax is used and you can find in line
29 the assignment of the value to our variable. Mlenc is added as a child node with the «var»
tag, which means it is just a variable.

The simplest case of assignment is when the value of one variable is assigned to another. In
this case, the situation is more difficult. The variable M1enc is assigned the value of the result
of the work of the Encrypt method for an object of the asymmetric encryption class
RSACryptoServiceProvider, which takes two parameters as input: what to encrypt and flag
whether to use optimal asymmetric encryption with addition (OAEP padding). At the current
stage, we remember that the content of the variable M1 was asymmetrically encrypted and
assigned to the variable for sending message 1. In the tree structure, this is displayed as
adding a child node M1 with the note «<AsymENC», which means that the value of the variable
M1 is encrypted using an asymmetric cipher.

Similar to paragraph 2, we are looking for the initialization of the variable M1. Using the first
filter, you can find out that the variable is a one-dimensional array (line 17). Using the second
filter, you must find the assignment of values to our array. These are lines 19 and 20. Two
children Na and A with the mark «var» are added to node M1.

For variable A, the final value can be found using the first VariableDeclarationSyntax filter
(line 11). This is where static initialization occurs in the source code. It is enough for a person
to simply understand that this is the initial value, but for the automated determination of this
fact it is necessary to understand that this is not a variable. One way to solve this problem is
to re-search the right side of the expression, and since more in the design code of the
assignment is not detected, this value is final. In the tree structure for node A, the initialization
leaf is added «new byte [] {132, 114};» marked «DATA», which means the presence of some
semantic data in the variable A.

For the Na variable, the search is carried out further. Using filters, we look for the declaration
of the array and its initialization. The declaration occurs in line 14, and initialization occurs in
line 15 by calling some method of the rng variable, which in turn is an object of the
RNGCryptoServiceProvider class of random numbers, thus, the value of this variable is
defined as a random number. The last leaf «rng.GetBytes (NaPrev);» is added to the tree
structure marked «<RANDOM», which means generating a random number.

Further search initialization for current leaves gives nothing, therefore the structure of the tree
is considered final. The output tree view is shown in fig. 4 in the «Full tree» area and it
corresponds to the following chain: Send (Mlenc) -> Mlenc = E (M1) -> M1 = {A, Na} -> A
= new byte [] {132, 114}, Na = rand (). You can also see short tree structure and result
message from it.

5. Return data problem

At the moment there is a problem in determining the returned data. For example, in message 1, a
random number Na is sent, and then in the second message it is sent back. By default, there are

197

Pisarev I.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from source code. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 191-202

currently two data concepts: DATA and RANDOM. All that is not a random number — is considered
semantic data, for example: keys, identifiers, transferred files, etc. And at this stage, all values are
considered different. For example, for the following protocol:

= — 5y
8 ' DA UsersyllyahDesktophSource Protocols Verifier\Analysis\ Analysis\bin\Debuginetd& 1 Analysis.exe =R |_ih| |

Full tree:
+= gsoch.Send(MHienc)
+= Mlenc:

+- bute[] A = new byte[] { 132, 114 }.

Short tree:
+= goch.Send(Mlenc)
+- M1: AsymENC

+- byte[] A = byte[] { 132, 114 }: DATA
+- rng.GetByt al: RANDOM

tm :
ASYNENC{DATA , RANDON)

Fig. 4. Output for composing the structure of a single message

1. A- B:Ek(Na,A)

2. B - A:Ek(Nb,B)

The result of the work will be as follows:

1. A - B:SymENC(RANDOM,DATA)

2. B — A:SymENC(RANDOM, DATA)

And in our context, the default DATA in the first message is different from the one in the second
message. If the protocol takes the following form:

1. A- B:Ek(Na,A)

2. B - A:Ek(Nb,Na)

There is a problem. Na just comes back, and on the receiving side we need to understand that this
is the same data. For example, when processing message 2 (lines 34-58), we can trace the
separated parts. In line 50, the value of the random number Na is obtained, after which it is
checked for coincidence with what was sent in line 52. Most often in the context of cryptographic
protocols, returned values are used for mutual authentication. There can be 2 types: the return of
the same number or the return of a function from this number. In both cases, the return value is
checked for a match with the one sent earlier. In our case, this is line 53. However, another value is
checked here — identifier B. In this case, one of the solutions to this problem would be to find the
situation when the variable was sent, and then a value is checked for a match with this variable. In
this case, you can assume that this is the case of the return value. However, there may be a number
of problems, in particular, just the occurrence of an error in writing code, or simply the absence of
such a check of the return value. At the moment, the abstract notion of the type of the RETURN
variable is used. This means that a variable of this type was returned in the current message.

6. Protocol output structure

Using the algorithm presented in the preceding paragraphs, the complete output structure of the
protocol is constructed according to the messages. It is obtained both in short form for formal
verification, and in full form for dynamic verification. The full view contains the last variable,
before serving in the cryptographic function, the names of the last variables and their initial

198

Tncapes V.A., Baberko JLK. C# mapcep st n3BnedeHns CTpyKTypbl KPHITTOrpaduecKrX IPOTOKOJIOB M3 HCXOAHOTO KofI. Tpydet UCIT PAH, Tom 31, BB 3,
2019, crp. 191-202

initialization, for example, static in the code or loading data from a file. Dynamic analysis will be
considered in further work and therefore the contents of the full protocol can be changed.
Short view:

1. A - B: AsymENC(DATA,RANDOM)

2. B - A: AsymENC(RETURN,RANDOM, DATA)

3. A - B: AsymENC(RETURN, RANDOM)

4. B - A: SymENC(DATA, AsymENC (DATAY)), HASH (DATA)

5 A - B:SymENC(RETURN, RETURN, DATA), Sign(RETURN, RETURN, DATA)
6. B — A: SymENC(RETURN)

Full view:

1) A - B: AsymENC(DATA,RANDOM)

M1 | byte[] A = new byte[] { 132, 114 } | rng.GetBytes (Na)
2) B— A: AsymENC(RETURN,RANDOM,DATA)

M2 | socB.Receive (MGetl) | rng.GetBytes (Nb) |

byte[] B = new byte[] { 15, 245 }

3) A - B: AsymENC(RETURN,RANDOM)

M3 | socA.Receive (MGet2Encr) | rng.GetBytes (k)

4) B - A: SymENC(DATA, AsymENC (DATA)), HASH (DATA)

ForEncM4 | byte[] MlforSend = File.ReadAllBytes ("Messl.txt") | M2forSend
| bytel] M2forSend = File.ReadAllBytes ("Mess2.txt") | MlforSend |

byte[] MlforSend = File.ReadAllBytes ("Messl.txt")
5) A— B:SymENC(RETURN,RETURN,DATA), Sign(RETURN,RETURN,DATA)

ConcatMess5 | socA.Receive (MGet4d) | socA.Receive (MGetd) |
byte[] M3forSend = File.ReadAllBytes ("Mess3.txt") | ConcatMess5 |
socA.Receive (MGet4d4) | socA.Receive (MGet4d) |

byte[] M3forSend = File.ReadAllBytes ("Mess3.txt")
6) B — A:SymENC(RETURN)
M3From5 | socB.Receive (MGeth)

7. Experiments

For testing parser on real project we take our previous project - e-voting system based on blinded
intermediaries [15], which implemented on C# language. It consists 3 main components: Voter
application, Authentication server, Voting server. The protocol in main voting stage is:

AS = V:Eyqs(Ngs)

Vs - W Evvs(Nb' st)

VS - AS Easvs(Nasvs)

V — AS: E,qs (N, userData, E,,s(N,s, N, filledBallot))

AS - VS: Egsps (Nysps, Evys (Nys, Ny, filledBallot)))

VS = AS: Eggps (Np, Nogps, “good”)

VS = V:E,,s(N, Ny, checkID)

Before the protocol session keys vas, vvs, asvs were generated with ECDHE (the Diffie-Hellman
protocol on elliptical curves using ephemeral keys and signing the secret parts) protocol. So at the
beginning of the main voting protocol session keys are created. It is necessary to say that Nb is a
number of blinding, a non-random random number, which is regenerated each time. It is
introduced in order to add some data before the semantic random number for making full search
more complicated (in particular, it is necessary to select two encryption keys for message 7 in
order to find userData). Randomly generated random numbers are sent to authenticate the parties
as shown in (1)-(3). The message (4) uses the principle of blind intermediaries. The voter encrypts

199

NN LN

Pisarev I.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from source code. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 191-202

his vote filledBallot on the session key with VS, applies his personal data to the ciphertext, and
encrypts it on the session key with AS. AS hashes the sent personal data, searches for the hash in
the database and, and, if detected, redirects the message to the VS component. VS memorizes the
vote, generates a checkID through which the user can check his vote after the end of the election,
and sends it to the user.

Code organization of cryptographic protocols in this project is simple. Message sending or
receiving located in methods' block, so there is no difficult code structure. Our parser was
launched for this project and we cad this result:

1. A - B:SymENC(RANDOM)

C = B: SymENC(RANDOM,RANDOM)

C - A: SymENC(RANDOM)

B —» A: SymENC(RETURN,DATA, SymENC(RETURN,RANDOM, DATA))

A — C: SYymENC(RETURN,RETURN)

C - A: SymENC(RANDOM,RETURN,DATA)

C - B: SYymENC(RETURN,RETURN,DATA)

As we can see from output cryptographic protocol structure was extracted correctly. It is necessary
to say that in message 4 A gets «SYymENC(RETURN,RANDOM,DATA)», but in message 5 it sends
this like «<RETURN». So side A doesn't know key for decryption and for it this is some data that
was sent to it and it sends this data to another side so there is 1 element «KRETURN» instead of 3.

N R LN

7. Future work

Future work primarily includes a segmentation of DATA semantic data into classes:

1) party identifiers;

2) keys;

3) timestamps;

4) authentication Codes;

5) data received from the user.

It is also an important point to determine the ownership of a key by any of the parties in the case of
asymmetric encryption, and to the list of parties in the case of symmetric encryption. Support for
protocols involving more than two parties will also be needed. In addition, a complete solution to
the problem of accurately determining the returned data is necessary to make it possible to build a
complete structure of a cryptographic protocol and its further analysis using formal verification
tools. After obtaining the structure of the cryptographic protocol, it is necessary to develop an
algorithm for automated translation into the specification language of the most well-known
protocol verification tools, such as Avispa [16], Scyther [17], ProVerif [18], and others. It is also
necessary to improve the parser. At the moment, the structure can only be retrieved from areas of
code where all functions for sending and receiving messages are combined into one block, for
example, into the body of a function or class method. In the future, it is planned to improve the
parser to work with complex code structures.

8. Conclusion

An algorithm was presented for analyzing the source code of the C# programming language for
extracting the structure of cryptographic protocols, based on identifying important code sections
that contain cryptographic protocol-specific constructions and determining the chain of variable
transformations from the sending or receiving status to their initial initialization, taking into
account possible cryptographic transformations to compose a tree, from which it is possible to get
simplified structure of a cryptographic protocol. An example of a protocol containing all
cryptographic functions is given. The output structure of the cryptographic protocol is shown.

200

Tncapes V.A., Baberko JLK. C# mapcep st n3BnedeHns CTpyKTypbl KPHITTOrpaduecKrX IPOTOKOJIOB M3 HCXOAHOTO KofI. Tpydet UCIT PAH, Tom 31, BB 3,
2019, crp. 191-202

Successful practical testing on real e-voting system based on blinded intermediaries is done. For
the further possibility of the application of formal verification of protocols and dynamic analysis, it
is necessary to make an additional classification of semantic data, determine whether the keys
belong to any party or parties, and also solve the problem with the returned values.

References

[1] Chaki S., Datta A. ASPIER: An automated framework for verifying security protocol implementations.
In Proc. of the 22nd IEEE Computer Security Foundations Symposium, 2009, pp. 172-185.

[2] Goubault-Larrecq J., Parrennes F. Cryptographic protocol analysis on real C code. Lecture Notes in
Computer Science, vol. 3385, 2005, pp. 363-379.

[3] Goubault-Larrecq J., Parrennes F. Cryptographic protocol analysis on real C code. Technical report,
Laboratoire Spécification et Vérification, Report LSV-09-18, 2009.

[4] Jurjens J. Using interface specifications for verifying crypto-protocol implementations. In Proc. of the
Workshop on foundations of interface technologies (FIT). 2008.

[5] Jurjens J. Automated security verification for crypto protocol implementations: Verifying the jessie
project. Electronic Notes in Theoretical Computer Science, vol. 250, Ne 1, 2009, pp. 123-136.

[6] O’Shea N. Using Elyjah to analyse Java implementations of cryptographic protocols. In Proc. of the
Joint Workshop on Foundations of Computer Security, Automated Reasoning for Security Protocol
Analysis and Issues in the Theory of Security (FCS-ARSPA-WITS-2008). — 2008.

[7] Backes M., Maffei M., Unruh D. Computationally sound verification of source code. In Proc. of the 17th
ACM conference on Computer and communications security, 2010, pp. 387-398.

[8] Bhargavan K. et al. Cryptographically verified implementations for TLS. In Proc. of the 15th ACM
conference on Computer and communications security, 2008, pp. 459-468.

[9] Bhargavan K., Fournet C., Gordon A. D. Verified reference implementations of WS-Security protocols.
Lecture Notes in Computer Science, vol. 4184, 2006, pp. 77-106.

[10] Bhargavan K. et al. Verified interoperable implementations of security protocols. ACM Transactions on
Programming Languages and Systems, vol. 31, Ne. 1, 2008.

[11] Bhargavan K. et al. Verified implementations of the information card federated identity-management
protocol. In Proc. of the 2008 ACM symposium on Information, computer and communications security,
2008, pp. 123-135.

[12] Bhargavan K. et al. Cryptographically verified implementations for TLS. In Proc. of the 15th ACM
conference on Computer and communications security, 2008, pp. 459-468.

[13] Needham R. M., Schroeder M. D. Using encryption for authentication in large networks of computers.
Communications of the ACM, vol. 21, Ne. 12, 1978. pp. 993-999.

[14] Capek P., Kral E., Senkerik R. Towards an empirical analysis of. NET framework and C# language
features' adoption. In Proc. of the 2015 International Conference on Computational Science and
Computational Intelligence (CSCI), 2015, pp. 865-866.

[15] Babenko L., Pisarev I. Distributed E-Voting System Based On Blind Intermediaries Using
Homomorphic Encryption. In Proc. of the 11th International Conference on Security of Information and
Networks, 2018.

[16] Vigano L. Automated security protocol analysis with the AVISPA tool. Electronic Notes in Theoretical
Computer Science, vol. 155, Ne 12, 2006, pp. 61-86.

[17] Cremers C. J. F. The scyther tool: Verification, falsification, and analysis of security protocols. In Proc.
of the International Conference on Computer Aided Verification, 2008, pp. 414-418.

[18] Kiisters R., Truderung T. Using ProVerif to analyze protocols with Diffie-Hellman exponentiation. In
Proc. of the 22nd IEEE Computer Security Foundations Symposium, 2009, pp. 157-171.

MHdopmauma o6 aBTopax / Information about authors

Wnes Anexcannposuy [IMCAPEB B Hacrosimiee BpeMs SIBISIETCS acIMpPaHTOM Kadelpbl
6e3omacHocTH MH(pOPMANMOHHBIX TexHonorui FOxxHoro ¢enepansHoro ynmsepcurera. O01acTh
HayYHBIX MHTEPECOB BKJIIOYAET BEpU(PHKAIMIO OE30MaCHOCTH KPUNTOTrpaUuECKUX MPOTOKOJIOB,
MPOBEPKU HA MOJIENSAX, aHAJIU3 UCXOJHBIX KOJOB IPOTPaMM.

201

Pisarev I.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from source code. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 191-202

Ilya Aleksandrovich PISAREYV is a graduate student at the Department of Information Technology
Security at the Southern Federal University. The area of scientific interests includes verification of
the security of cryptographic protocols, model checks, and analysis of program source codes.

Jronmuna KnumentbeBra BABEHKO sBnsercs mnpodeccopom kadenpel Oe3omacHOCTH
nHpOpMannOHHBIX TexHojoruid HOxHOoro denepanmsHoro yrmBepcureTa. OONAacCTh HAYIHBIX
HMHTEPECOB BKIIOYAET KPHUITOTpa(UUecKre METOABl M CPeAcTBa oOecreueHnsT HH)OPMAMOHHON
0€30MacHOCTH, TEXHOJIOTHS MapajuleIbHO-BEKTOPHBIX BBIYMCICHHWH, ONEHKa CTOHKOCTH
KpUNTOTpapUIECKIX METOIOB 3aIUTHl HH(POPMAIIHH.

Liudmila Klimentevna BABENKO is currently a professor at the Department of Information
Technology Security at the Southern Federal University. The area of scientific interests includes
cryptographic methods and means of ensuring information security, technology of parallel-vector
computing, evaluation of the strength of cryptographic methods of information protection.

202

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-16

SQLite RDBMS Extension for Data Indexing Using
B-tree Modifications

A.M. Rigin, ORCID: 0000-0003-4081-9144 <amrigin@edu.hse.ru>
S.A. Shershakov, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>
National Research University — Higher School of Economics,

20, Myasnitskaya st., Moscow, 101000, Russia

Abstract. Multiway trees are one of the most popular solutions for the big data indexing. The most
commonly used kind of the multiway trees is the B-tree. There exist different modifications of the B-trees,
including B*-trees, B"-trees and B™*-trees considered in this work. However, these modifications are not
supported by the popular open-source relational DBMS SQLite. This work is based on the previous research
on the performance of multiway trees in the problem of structured data indexing, with the previously
developed multiway trees C++ library usage. In this research the B™-tree was developed as the data structure
which combines the main B*-tree and B'-tree features together. Also, in the research the empirical
computational complexities of different operations on the B-tree and its modifications were measured as well
as the memory usage. The purpose of the current work is the development of the SQLite RDBMS extension
which allows to use B-tree modifications (B*-tree, B™-tree and B™*-tree) as index structures in the SQLite
RDBMS. The modifications of the base data structure were developed as a C++ library. The library is
connected to the SQLite using the C-C++ cross-language API which is developed in the current work. The
SQLite extension implements the novel algorithm for selecting the index structure (one of B-tree’s
modifications) for some table of a database. The provided SQLite extension is adopted by the SQLite
EventLog component of the LDOPA process mining library. In addition, the experiment on the counting the
empirical computational complexities of operations on the trees of different types is conducted using the
developed in this work SQLite extension.

Keywords: B-tree; data indexing; SQLite; DBMS; RDBMS; multiway tree

For citation: Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree
Modifications. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 203-216. DOI: 10.15514/ISPRAS-
2019-31(3)-16

Acknowledgements. This work is supported by RFBR according to the Research project No. 18-37-00438
«mol_a» and the Basic Research Program of the National Research University — Higher School of
Economics.

KomnoHeHT-pacwmpenmne PCYB[] SQLite ana nHaekcMpoBaHus
AaHHbIX moauduKaumamm B-gepeBbeB

A.M. Pueun, ORCID: 0000-0003-4081-9144 <amrigin@edu.hse.ru>
C.A. Ulepwakoe, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>
Hayuonanvuwiil uccie0osamenbCkuil yHueepcumenm « Boicuiast wkona skoHoMuKuy,
101000, Poccus, e. Mockea, yn. Macuuykas, 0. 20

AnHotammsi. CHIBHO BETBSIIMECS JACPEBbs SBISIFOTCS OJHUM M3 HauOoyiee MOMYJSPHBIX PELICHUH Uit
HHJIEKCUpoBaHMs Oonpmmx 00BEMOB maHHBIX. Hambonee pacmpocTpaHEHHOW pa3sHOBHIHOCTHIO CHIIBHO
BETBSAIINXCS JIEPEBBEB SBIIOTCS B-mepesbs. CyIIIeCTByIOT pas/uyHbIe Mo;(nquam/m B-nepeBreB, B ToM
umciIe, paccMaTpHBacMble B HacTosmeil paGore BY-mepesbs, B -mepesbs u B™Y-mepeBbs, ommako naHHbe

203

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

MOIMGUKAMN HE IOJICPKUBAIOTCS MO YMOJYAHMIO B momyisipHod pemsinuoHHOW CYBJl ¢ OTKPHITBIM
ucxoaHeM kozoM SQLite. JlanHast paGoTra BBIIOJHSETCS Ha OCHOBE MPOBEIEHHOIO paHEe HCCIICIOBAHHS
3 PEeKTHBHOCTH CHIIBHO BETBSIINXCS JIEPEBLEB B 3a]ade MHIEKCHPOBAHUS CTPYKTYPUPOBAHHBIX IAaHHBIX, C
UCIOJIb30BaHUEM Pa3pabOTaHHOi B pamMkax Hero C++-OHOIMOTEKH CTPYKTYP AAQHHBIX — CHJIBHO BETBAIMXCS
JepeBbeB. B 5TOM HcceoBaHuy 650 paspaGotano B Y-1epeBo Kak CTpYKTypa JaHHEIX, COBMEINAIOMAs B
cebe ocHOBHEIE cBoiicTBa B*-mepeBa n B -nepeBa. Takke B HCCIEIOBAHHE GBUTH H3MEPCHBI SMITHPHUCCKHE
BBIYMCIIUTEIbHBIC CIOXKHOCTH Da3IMYHBIX onepauuii Hajy B-nepeBoM u ero mMomupukauusMu U o0bEM
noTpeOsieMOod ITaHHBIMH OIEpalMsIMH OllepaTUBHOW maMsaTH. llenplo HacTosimed paOoTHI sSBISETCS
pa3pa60TKa PACIIMpPEHHs [peJ‘IHL[I/IOHHOI/I CVYB]I SQLite, mo3Bosisromero Uemonb308aTh Moaudukanmu B-
nepesa (B*-nepeso, B -IIEPEBO U B" *-NepeBo) B KauecTBe MHAESKCHPYIOIUX CTPYKTYp AaHHBIX B PCYBJI
SQLite. Momudukaiuu 6a30Boi CTPYKTYphl JaHHBIX ObLTH pa3paboransl B Buge C++-6ubinoreku. JanHas
6ubnuoTeka noakroyaercst K SQLite, ucrnosb3ys paspaboTaHHbIN 11t He€ B paMKax Hacrosiuel pabotst API
Ha seike C. Pacumpenwe mis SQLite Takke peanusyerT HOBBIA aIrOpUTM BBIOOpA HMHICKCHPYOIIECH
CTPYKTYpbl HaHHbIX (omHOW u3 Moaubukauuid B-mepeBa) mis 3amaHHOi Tabnuupl B 6a3e JaHHBIX.
[IpennoxenHoe pacmupenue wucnoiabp3yercs kommoHeHToM SQLite EventLog Oubmmorexku LDOPA
ITOPUTMOB M CTPYKTYp AaHHBIX U process mining. Kpome Toro, mpoBeaéH KCIEPHMEHT 110 CPaBHEHUIO
SMITMPHYECKON BBIYMCIHMTEIBHON CIIOKHOCTH OMNEpalii Ha JepeBbsAX pPa3HBIX THIOB B pa3pabOTaHHOM
pacmpenuu it SQLite.

KuaroueBbie ciioBa: B-nmepeBo; unnexcuposanue nanubix; SQLite; CYBI; PCYB]l; cuibHO BeTBsIeecs
ZIepeBo

Jas uutupoBanus: Purma A.M., IlllepmakoB C.A. Kommonent-pacmmpenue PCYBJ] SQLite s
HHICKCUPOBaHUs JaHHBIX Moaudukauusamu B-nepesseB. Tpyast CIT PAH, tom 31, Beim. 3, 2019 r., crp.
203-216 (ua anrmuiickoM si3eike). DOI: 10.15514/ISPRAS-2019-31(3)-16

Baarogapuoctu. Padora BeimonHeHa mpu mnopuepixkke POOU (mpoekr Ne 18-37-00438) u IIporpamMmer
GbyHIaMeHTATBHBIX HcclieqoBaHui HalOHAIBHOTO HCCIEeI0BATEIbCKOrO YHHBEPCUTETa — BhICIICH MIKOIIBI
9KOHOMHKH.

1. Introduction

Last decades, the amount of data volume is growing substantially, which exposes the well-known
problem of big data [1]. Many companies and laboratories need to collect, store and process big
data. There exist many algorithmic and software solutions to cope with these problems. One of
these solutions is using indices which are usually represented by data structures such as hash tables
and trees.

Using indices creates a new problem — when data are stored on slow carriers, it is more efficient to
load data batches from a storage instead of splitting to individual elements. Multiway trees solve
this problem. One type of them is a B-tree which was initially described by Bayer and McCreight
in 1972 [2]. The B-tree also has several modifications. In this paper, the following B-tree
modifications are considered: B*-tree [3], B'-tree [4] and B™*-tree (the latter is developed by the
author of this paper data structure, which combines the main B*-tree and B™-tree features) [5].

This paper extends the research made in the framework of the term project [5].

One of the popular open-source relational database management systems (RDBMS) is SQL.ite [6].
It is used in mobile phones, computers and many other devices. However, this RDBMS does not
support using B*-tree or B’-tree as data index structures by default.

The main goals of the work are the following:

e to add B-tree modifications such as B*-tree, B -tree and B™*-tree to SQLite;

e to develop and implement an algorithm that would allow selecting the appropriate indexing
data structure (B-tree, B*-tree, B'-tree or B™*-tree) when a user manipulates a table.

The work includes linking of B-tree modifications from a C++ library (developed by the author of

this work previously) to SQLite using a C-C++ cross-language APl and developing an algorithm

for selecting an indexing data structure.

204

Purim AM., Hlepimakos C.A. Komnonent-pacimpenre PCYBJ] SQLite 11t HEASKCHPOBaHMS JaHHBIX MonuduKatmsmu B-nepesben. Tpyost ICIT PAH, Tom
31, Bbim. 3, 2019 1, c1p. 203-216

The rest of the paper is organized as follows. Firstly, B-tree, B*-tree, B -tree and B™*-tree are
shortly described. After this, the SQLite, its indexing algorithms and extensions are presented.
Then, the B-tree modifications C++ library and connecting it to the SQLite RDBMS is described.
After this, our previous researches conducted using this library are presented. These researches
have proved the main theoretical B-tree modifications complexity hypotheses and they show the
abilities of this library. Then, the indexing approach, the methods for outputting the index
representation and information and the development of algorithm of selecting the index structure
for table are discussed, after which the experiment conducted using the developed in this work
SQLite extension is described. After this, the main points of the paper are summarized in
conclusion and used references are presented.

2. B-tree and its modifications

2.1 B-tree

The B-tree is a multiway tree. It means that each node may contain more than one data key.
Furthermore, each node except of the leaf nodes contains more than one pointer to the children
nodes. If some node contains k keys than it contains exactly k + 1 pointers to the children nodes
[2].

The B-tree depends on its important parameter which is called B-tree order. The B-tree order is

such a number ¢ that:

o for each non-root node, the following is true:
t-1 < k < 2t- 1, where k is the number of keys in the node [2];

e for root node in the non-empty tree the following is true:
1 < k < 2t- 1, where k is the number of keys in the node [2];

e for root node in the empty tree the following is true: k = 0, where k is the number of keys in
the node [2].

B-tree operations complexities are the following (t is the tree order, n is the tree total keys count):

o for the searching operation: time complexity is O(tlog,n), memory usage is O(t) and disk
operations count is O(log,n) [2];

e for the nodes split operation (the part of the insertion operation): time complexity is 0(t),
memory usage is 0(t) and disk operations count is 0(1) [2];

o for the insertion operation (includes the nodes split operation): time complexity is O(tlog.n),
memory usage is O(tlog,n) for simple recursion and O(t) for tail recursion and disk
operations count is 0(log,n) [2];

e for the deletion operation: time complexity is O(tlog,n), memory usage is O(tlog,n) for
simple recursion and 0(t) for tail recursion and disk operations count is O (log:n) [2].

B-tree is usually used as the data index [2].

The example of B-tree is shown on the fig. 1.

_— —— = —

(O E BT [] (EE T IE e (A =] [FE E IR0

Fig. 1. The B-tree example, tree ordert = 6

2.2 B-tree modifications

B-tree is the B-tree modification in which only leaf nodes contain real keys (real data), other
nodes contain router keys for searching real keys. Leaf nodes in B*-tree contain t < k < 2t
keys, where t is the tree order, the rules for other nodes are the same as in B-tree [3]. Keys

205

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

deletion in B*-tree is expected to be faster than in B-tree since it is always performed on the leaf
nodes.

B’-tree is the B-tree modification in which each node (except of the root node) is filled at least by
2/3 not 1/2 [4]. Keys insertion in B”-tree is expected to be faster than in B-tree.

B"™*-tree is the B-tree modification developed by the author of this paper which combines the main
B*-tree and B™-tree features together. In this data structure only leaf nodes contain real keys (real
data) as in B*-tree and each node (except of the root node) is filled at least by 2/3 as in B -tree.

3. Implementation and tools

3.1 SQLite and its extensions

The SQL.ite is the popular open-source C-language library which implements the SQL.ite relational
database management system (RDBMS) [6]. The SQLite default index algorithms are hash-table
and B-tree. The SQLite does not implement B*-tree and B"-tree based indices.

Nevertheless, SQL.ite supports loading its extensions at run-time, which can add new functionality
to the SQLite. For example, it can be a new index structure implementation. One of such
extensions is the R-tree. The R-tree is a B-tree modification which allows to index geodata. It is
loaded by the SQLite as the extension and delivered together with the SQLite RDBMS default
build.

3.2 B-tree modifications C++ library

The B-tree modifications C++ library was developed by the author of this paper previously. It
contains B-tree, B*-tree, B'-tree and B"*-tree implementations written in C++ [5].

In the current work this library is connected to the SQLite as the run-time loadable extension. For
this goal the C-C++ cross-language API is implemented. It is possible to do using the extern "C" {
... 4 C++ statement. The other tasks are to implement base SQLite extension’s methods and to use
Makefiles to make this extension run-time loadable correctly. The extension provides module for
creating virtual tables (tables which encapsulate callbacks instead of simple reading from database
and writing to database) based on this module.

3.3 Research conducted using the library

The B-tree modifications C++ library was previously used for conducting a research on the
performance of multiway trees in the problem of structured data indexing by the author of this
paper [5].

The CSV files with random content were generated for the indexing, with sizes of 25000, 50000,
75000, 100000 rows. The value of the first cell of each row was considered as a key («nhame») of
the row and was saved in the tree together with the bytes offset of the row in the indexed CSV file.
The charts of different dependencies were built using the Python 2.

The chart with the indexing time dependence on the tree order for a file where the «names» (keys)
of the rows are uniformly distributed, with the size of 25000 rows is shown on the fig. 2.
According to this chart, B"-tree and B™*-tree have a better time performance on the keys insertion
than B-tree and B'-tree, as expected. These results are confirmed by the experiments with other
parameters (for example, on the larger files with different keys).

However, the better time performance of B™-tree and B™*-tree on the keys insertion has a cost of a
larger memory usage as shown on the fig. 3.

The monotonous dependence of the keys searching on the tree order is not detected as shown on
the fig. 5.

The B’-tree and B™*-tree require more memory during the keys searching than the B-tree and B*-
tree as shown on the fig. 6.

206

Purim AM., Hlepimakos C.A. Komnonent-pacimpenre PCYBJ] SQLite 11t HEASKCHPOBaHMS JaHHBIX MonuduKatmsmu B-nepesben. Tpyost ICIT PAH, Tom
31, Bbim. 3, 2019 1, c1p. 203-216

In addition, the B*-tree and B™*-tree have a better time performance on the keys removing than B-
tree and B’-tree as expected and shown on the Fig. 7. This chart also proves that the B™-tree has
the best time performance on the keys removing among all the considered in this paper multiway
trees and that the dependence of keys removing time on the tree size is logarithmic.

Therefore, the main theoretical hypotheses were confirmed [5].

25000 indexing_time_tree types partially_equal names

17000 --—— btree
—— bplustree
bstartree
—— bstarplustree

16500 -

[
&
=]
(=]
(=1

exingTime

na

15500 -

14500 -

1000 1250 1500 1750 2000
tree order

-~

500

=18
o
=1

Fig. 2. The chart with the indexing time dependence on the tree order for a file where the «names» (keys) of
the rows are uniformly distributed, with the size of 25000 rows

207

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

25000_indexing_used_memory_tree_types_equal_names

— bree

—— bplustres P
bstartres
2000000 - = bstarplustres

¢ %0 500 750 1000 1250 1500 1750 2000

tree order

Fig. 3. The chart with the indexing memory usage dependence on the tree order for a file where all the
«namesy (keys) of the rows are equal, with the size of 25000 rows

25000_indexing_disk_operations_count_tree_types_equal_names

—_kree

—— bplustree
bstartree

—— bstarplustres

8,38E+04 -
5,37E+04 -
5, 10E+04 -
4956404 -
4,85E+04 -
1,04E+05 -
9,31E+04 -
5 7,76E+04 - N

522E+04 - ———

skOperationsCount

5,02E+04 - —

ngDi

!4 90E+04 - ==

7,28E+04 -

Index

561E+04 -
493E+04 -
4.81E+04 -

471E404 -

461E404 -

0 250 500 750 1000 1250 1500 1750 2000
tree order

Fig. 4. The chart with the indexing disk operations count dependence on the tree order for a file where all the
«namesy (keys) of the rows are equal, with the size of 25000 rows

208

Purna AM., llepraxos C.A. Kommonent-pacumpenre PCYB]] SQLite 1yt mrexcipoBanus naHHbIX Momudukarisivir B-nepesbes. 7pyost ICIT PAH, Tom
31, Bbim. 3, 2019 1, c1p. 203-216

25000_index_searching_time_tree_types_partially_equal_names

—— htree

—— bplustree
bstartree

—— bstarplustres

o
]
=

405 - [

400 -

IndexSearchingTime

330 -

385 -

500 750 1000 1250 1500 1750 2000
tree order

o
[

L

(=1

Fig. 5. The chart with the index searching time dependence on the tree order for a file where the «names»
(keys) of the rows are uniformly distributed, with the size of 25000 rows
Also, indexing using B"-tree or B™*-tree requires more disk operations than indexing using B-tree or B*-tree
as shown on the fig. 4.

index_searching_used_memory_real

— btree
5a0pp0g - —— Dbplustree
bstartree
—— bstarplustree

5600000 -

5400000 -

5200000 -

5000000 -

index searching used memory

4800000 -

4600000 -

0 =0 500 730 1000 1250 1500 1750 2000
tree order

Fig. 6. The chart with the index searching memory usage dependence on the tree order for a file with real
(not randomly generated) data

209

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

int_keys_removing_time_tree_type_and_order

btree, order=50
- bplustree, order=50

2000 -7
bstartree, order=50
bstarplustree, order=50
btree, order=2000
bplustree, order=2000
bstartree, order=2000
— —— bstarplustree, order=2000
@
i
= 10040 - ,-"”/ _,_,_-—"""-'_F'_—'_F
5 — | =5
- = — _ _—
— = e e
.t/ _// _,_,-:—'—"_H-'—Fﬂ_'_'_ .'—'—"'_'_-'_F‘-
" . -Jﬂ_ﬂ_-x-"'ﬂ:__d-—-f
500 - = e e
———
e — ;:;i::’ =
= // /_—_:_f;-
- =
==
0 .—Q”{
0 20000 40000 BDO0D BDO0D 100000
tree size

Fig. 7. The chart with the keys removing time dependence on the tree size

4. Working with indices while manipulating DB data

4.1 Table creation, data search and updating

In the current work B-tree modifications based indices are built over the existing SQL.ite table
implementation which is represented in the storage as pages of a B-tree by default.

The table creation and main data operations (inserting, searching, deleting and updating) use the
methods presented in the Table. 1.

Table. 1. Main extension methods

Method Purpose

btreesModsCreate(sqlite3*, void*, int, | Creates a new table.
const char* const*, sglite3_vtab**, char**)

btreesModsUpdate(sqlite3_vtab*, int, | Inserts, deletes or updates a
sqlite3_value**, sqlite_int64*) value of a row in the table.

btreesModsFilter(sqlite3_vtab_cursor*, int, | Searches for a row in the table.
const char*, int, sqlite3_value**)

The extension with the B-tree modifications based indices provides module for creating virtual
tables. User should create a virtual table using the module called btrees_mods in order to use one
of the B-tree modifications as index for the table. When a user creates such virtual table, the
btreesModsCreate() method of the extension is called and the matching real table is created in the
database. Also, one of B-tree’s modifications is created using the algorithm of selecting the
index’s structure (see the section 5) and the information about the created table and index’s
structure (including the name of the file with the B-tree or its modification and the attributes of the
primary key of the table) is stored in a special table.

210

Purim AM., Hlepimakos C.A. Komnonent-pacimpenre PCYBJ] SQLite 11t HEASKCHPOBaHMS JaHHBIX MonuduKatmsmu B-nepesben. Tpyost ICIT PAH, Tom
31, Bbim. 3, 2019 1, c1p. 203-216

When a user inserts a row into a table, the btreesModsUpdate() method of the extension is called
and a corresponding record for the index structure is created. The record consists of the primary
key value of this row and the row id. This record is saved as a data key into the index structure (B-
tree or one of its modifications).

When a user searches for a row in a table, the btreesModsFilter() method of the extension is called
and the value of the primary key of the row being searched is compared with the keys of the index
structure. During the key searching only the primary key value part of the tree’s keys is compared
with the value of the primary key of the row being searched. If the necessary tree’s key is found,
the row id is extracted from the key and a row found in the table by the row id is considered as a
result of the searching.

When a user deletes a row from a table, the btreesModsUpdate() method of the extension is called,
the primary key of the deleted row is found in the index structure using the same approach as in
the search case. The found key is deleted from the index structure.

When a user updates the value of the primary key of a row in a table, the btreesModsUpdate()
method of the extension is called. The old value of the primary key is deleted from the index
structure and the new value is inserted to the index structure.

4.2 Index structure’s graphical representation and main information
outputting

Also, the several methods are available to output the index structure’s graphical representation and
main information. They are presented in the Table. 2.

Table. 2. Index structure’s information and graphical representation outputting extension methods

Method Purpose

btreesModsVisualize(sglite3_context*, int, | Outputs the graphical
sglite3_value**) representation of the table’s index
structure (tree) into the GraphViz
DOT file.

It is called after the SQL query
such as SELECT
btreesModsVisualize(“btt”,
“btt.dot”),;, where btt is the table
name, btt.dot is the outputting
GraphViz DOT file name.

btreesModsGetTreeOrder(sqlite3_context*, int, | Outputs the order of the tree used
sglite3_value**) as the table’s index structure.

It is called after the SQL query
such as SELECT
btreesModsGetTreeOrder(“btt”);,
where btt is the table name.

btreesModsGetTreeType(sqlite3_context*, int, | Outputs the type of the tree (1 — B-
sqlite3_value**) tree, 2 — B*-tree, 3 — B'-tree, 4 —
B™*-tree) used as the table’s index
structure.

It is called after the SQL query
such as SELECT
btreesModsGetTreeType(“btt”);,
where bitt is the table name.

211

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

SQLite version 3.26.8 2018-12-81 12:34:55

Enter ".help" for usage hints.

Connected to a .

Use ".open FILENAME" to reopen on a persistent database.
sqlite> .load ./btrees_mods

sqlite> CREATE VIRTUAL TABLE btt USING btrees_mods(id INTEGER PRIMARY KEY, a INTEGER, b TEXT);
sqlite> INSERT INTO btt VALUES (4, 2, "ABC123");
sqlite> INSERT INTO btt VALUES (7, 3, "def");

sqlite> SELECT * FROM btt WHERE id 4;

4|2|ABC123

sqlite> SELECT * FROM btt WHERE id

7|3 |def

sqlite> SELECT * FROM btt WHERE id

4|2 |ABC123

7|3 |def

sqlite> .tables

btrees_mods_idxinfo btt btt_real
sqlite> SELECT * FROM btt_real;

sqlite> SELECT * FROM btrees_mods_idxinfo;
btt|1|@|id|INTEGER|4|tree_18291557263897.btree
sqlite> DROP TABLE btt;

sqlite> .tables

btrees_mods_idxinfo

sqlite> SELECT * FROM btrees_mods_idxinfo;
sqlite> .exit

Fig. 8. SQLite extension’s usage example

4.3 SQL.ite extension’s usage

The developed in this work SQLite extension’s usage example is presented on the screenshot (fig.
8).

The provided SQLite extension is adopted by the SQLite EventLog component of the Library for
Dynamic Operational Process Analysis (LDOPA) [7].

5. Algorithm of selecting the index structure

In this work an algorithm for selecting the index structure for a table is developed and

implemented in the following way.

The algorithm considers B-tree’s modifications (B*-tree, B™-tree and B™*-tree) for using as an

index structure.

The algorithm is executed at the start of each operation on the table (search, insertion, deletion or

update of the table’s row) which uses the btrees_ mods module. The algorithm consists of the

following steps.

1) If the current total number of the operations on a tree is equal to 0, or more than 10000, or not
a multiple of 1000, then the algorithm stops, otherwise it goes to step 2.

2) Ifthe current number of the modifying operations (key insertions, key deletions) on the tree is
less than 10 % of the current total number of the operations on the tree, then the algorithm
stops, otherwise it goes to step 3.

3) If the current number of the key insertion operations is more than p = 73.97 % of the total
number of the modifying operations on the tree, then the algorithm selects the B -tree as the
index structure and goes to step 5, otherwise it goes to step 4.

4) The algorithm selects the B™*-tree as the index structure and goes to step 5.

5 If the new index structure has been selected at the steps
3 — 4, then the algorithm rebuilds the existing index structure replacing it by the new selected

212

Purim AM., Hlepimakos C.A. Komnonent-pacimpenre PCYBJ] SQLite 11t HEASKCHPOBaHMS JaHHBIX MonuduKatmsmu B-nepesben. Tpyost ICIT PAH, Tom
31, Bbim. 3, 2019 1, c1p. 203-216

index structure and copies all the data stored in the previous index structure to the new index
structure.
The tree order of the B-trees and their modifications used in the SQLite extension developed in
this work equals 750. For selecting this tree order the average times (for all the four tree types — B-
tree, B*-tree, B'-tree and B™*-tree) of performing 1000 modifying operations (insertions and
deletions) on the tree were measured, for each of the tree orders from 100 to 1000 inclusive with
the step of 50 (100, 150, 200, ..., 1000). The least average time was achieved for the tree order of
750 and it was equal to 9.55 ms (for 1000 modifying operations on the tree).
The p = 73.97 % constant was selected in the following way. The splines for the plots of the
average time of performing 1000 modifying operations (insertions and deletions) on the tree
depending on the percentage of the insertions among all the modifying operations were drawn for
all the four tree types (B-tree, B*-tree, B™-tree and B™*-tree) using the Python 2 language. The
abscissa of the intersection point of the splines for B -tree and B™*-tree was equal to p =
73.97 %. This intersection point is shown on the fig. 9.
The B*-tree is used as the default index structure in the developed SQLite extension since its
operations have the least memory usage according to the previously conducted experiments (see
the section 3.3).

6. Experiment conducted using the developed SQLite extension

The experiment on the counting the empirical computational complexities of operations on the
trees of different types is conducted using the developed in this work SQLite extension. The
operations’ times were counted using the SQLiteStudio GUI manager [8]. The results are
presented in the Table 3.

plot_time_750

B-tras

B+-tree e
B*-tree — —

B 4-tres

Fig. 9. The splines for the plots of the average time of performing 1000 modifying operations on the tree
depending on the percentage of the insertions among all the modifying operations.

213

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

Table. 3. Experiment results

Operation on the table Total execution Mean
time (ms) execution time
per row (ms)
Table creation 20 -
First 500 rows insertion 10301 20.6
Next 500 rows insertion 10322 20.6
1001st row insertion (including the | 40 40
B*-tree into the B -tree rebuilding)
Next 499 rows insertion 9386 18.8
Last 500 rows insertion 9032 18.1
First 500 rows deletion 11558 23.1
Next 500 rows deletion 10708 21.4
1001st row insertion (including the | 62 62
B -tree into the B *-tree rebuilding)
Next 499 rows deletion 9418 18.9
Last 500 rows deletion 8863 17.7
1000 rows insertion 18890 18.9
Next 5000 rows insertion (including | 92395 18.5
the B™*-tree into the B-tree
rebuilding)

According to the data in the Table. 3, the key insertion into the B”-tree was faster than into the B*-
tree during the experiment. The key deletion from the B™-tree was faster than from the B -tree
during the experiment. Also, the key insertion into the B™-tree was slightly faster than into the B™-
tree during the experiment.

The search in a table took about 1 ms on all the B-tree modifications considered in this work.

7. Conclusion

The big data problem currently affects the world. There are many mathematical and software
solutions for collecting, storing and processing big data including the data indexing. Many of the
index data structures are tree-based ones such as B-tree and its modifications. B-tree is used as an
index structure in many DBMSs including the popular open-source RDBMS SQL.ite. However, the
SQL.ite does not support its modifications which may be more appropriate for some tasks than the
original B-tree. In the current work this problem is elaborated.

Firstly, the B-tree modifications C++ library is connected to the SQL.ite as the extension using C-
C++ cross-language API. After this, the algorithm of the index structure selection is developed and
implemented and the experiment is conducted using the developed in this work SQL.ite extension.
The developed B™-tree has smaller running time for keys insertion and deletion than B-tree,
however it has greater memory usage, which is confirmed by the experiments conducted using the
B-tree modifications C++ library.

This work tests new data indexing approaches using the SQLite as an example. The results of the
work can be used by researchers and professors in this field and their students. The developed
SQL.ite B-tree modifications extension can be used by all the developers who use this DBMS.

214

Purim AM., Hlepimakos C.A. Komnonent-pacimpenre PCYBJ] SQLite 11t HEASKCHPOBaHMS JaHHBIX MonuduKatmsmu B-nepesben. Tpyost ICIT PAH, Tom
31, Bbim. 3, 2019 1, c1p. 203-216

References / Cnucok nutepartyphbl

[1]. Manyika J., Chui M., Brown B., Bughin J., Dobbs R., Roxburgh C., Hung Byers A. Big data: The next
frontier for innovation, competition, and productivity. McKinsey Global Institute, May 2011. Available
at:
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20l
nsights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.
ashx, accessed Jan. 20, 2019.

[2]. Bayer R., McCreight E. Organization and maintenance of large ordered indexes. Acta Informatica, vol.
1, no. 3, 1972, pp. 173 — 189.

[3]. Pollari-Malmi K. B*-trees. Available at: https://www:.cs.helsinki.fi/u/mluukkai/tirak2010/B-tree.pdf,
accessed Dec. 24, 2018.

[4]. B™-tree. NIST Dictionary of Algorithms and Data Structures. Available at:
https://xlinux.nist.gov/dads/HTML/bstartree.html, accessed Dec. 24, 2018.

[5]. Rigin A.M. On the Performance of Multiway Trees in the Problem of Structured Data Indexing.
Coursework, Dept. Soft. Eng., HSE, Moscow, Russia, 2018 (in Russian) / Purua B.M. Hccienoanue
3(1)(1)6KTI/IBHOCTI/I CUJIBHO BETBAIIUXCA ACPEBLEB B 3adady€ HWHACKCUPOBAHHSA CTPYKTYPUPOBAHHBIX
naHHbIX. KypcoBas pabota, [lenaprament nporpammHoi nmwxenepun, ®KH, BIID, Mocksa, 2018.

[6]. SQLite Home Page. Available at: https://www.sqlite.org/, accessed Jan. 20, 2019.

[7]. Library for Dynamic Operational Process Analysis (LDOPA). xiart.ru Projects. Available at:
https://prj.xiart.ru/projects/ldopa, accessed Jul. 1, 2019.

[8]. SQLiteStudio. Available at: https://sqlitestudio.pl/, accessed Jan. 26, 2019.

MHdopmauma o6 aBTopax / Information about authors

AnToH Muxaitnosua PUTMH noxy4mn cTerneHs 6akanaBpa B 0071aCTH MPOTPaMMHON WH)XKEHEPUH
B 2019 r. B HanmoHanbHOM HCCIEI0BAaTENBCKOM yHUBEpcHUTETE «BbIcIIas mIKoja 3KOHOMUKH»
(Mocksa, Poccust). Ero mccienoBaTenbCkue MHTEPECH! BKIIOYAIOT MPOTPaMMHYI0 HH)KCHEPHIO,
QITOPUTMBI U CTPYKTYpPbI JAHHBIX M UX IPUMEHEHHE B 3aJauyax XpaHEHHS U WHIEKCHPOBAHHA
naunbix B CYB/I, Bkimtouas ucnonb3oBanue B-jepeBbeB M MX MoaudUKaLMK U PELICHHS THX
3a1ad.

Anton Mikhailovitch RIGIN received his bachelor’s degree in software engineering from National
Research University — Higher School of Economics (Moscow, Russia) in 2019. His research
interests include software engineering, algorithms and data structures and their usage in the
problems of data indexing and storage in DBMSs, which involves the usage of the B-trees and
their modifications in these problems solving.

Cepreit Angpeesnu UIEPIIAKOB momydnmn cremeHp Marucrpa B 00NacTH IPOTPaMMHON
MHKeHepnH B HalmoHanbHOM HCCIIeI0BaTeIbCKOM YHUBEpCUTETe «BBICIIas MIKOoIa 3KOHOMHKI
(Mocksa) B 2012 romy. B HacTosmmii MOMEHT OH SIBIIICTCS HAyYHBIM COTPYIHHUKOM HaydHO-
yueOHOH 11a00paTopuy HPOLECCHO-OPUEHTUPOBAHHBIX HWH(MOPMAIMOHHBIX CHCTEM (haKyjbTeTa
KOMIIBPIOTEPHBIX HayK BrwICIIeld MKOJIBI AKOHOMHKH. B dHCIIO HAayYHBIX HHTEPECOB BXOMST
U3BIICUCHUE W aHAIM3 MporeccoB (Process mining), Bepudukamus MporpaMMHOTO 00eCTIeUeHHS,
apXUTEKTypHl MHPOPMAIMOHHBIX CHCTEM U MPEToAaBaHue MPOrPaMMHON HHXEHEPHH.

Sergey Anreevitch SHERSHAKOV received the MS degree in software engineering from
National Research University — Higher School of Economics (Moscow, Russia) in 2012. He is
currently a researcher at PAIS Lab of the Faculty of Computer Science at Higher School of
Economics. His research interests include process mining, software verification, information
systems architectures and teaching software engineering.

215

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

216

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-17

«Life» in Tensor: Implementing Cellular Automata
on Graphics Adapters

N.A. Shalyapina, ORCID: 0000-0001-8742-4903 <nat.shalyapina@gmail.com>
M.L. Gromov, ORCID: 0000-0002-2990-8245 <maxim.leo.gromov@gmail.com>
“National Research Tomsk State University,

36 Lenin Avenue, Tomsk, 634050, Russia

Abstract. This paper presents an approach to the description of cellular automata using tensors. This
approach allows to attract various frameworks for organizing scientific calculations on high-performance
graphics adapter processors, that is, to automatically build parallel software implementations of cellular
automata. In our work, we use the TensorFlow framework to organize computations on NVIDIA graphics
adapters. As an example cellular automaton we used Conway's Game of Life. The effect of the described
approach to the cellular automata implementation is estimated experimentally.

Keywords: Cellular Automata; Conway’s Game of Life; Tensor

For citation: Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on
Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 217-228. DOI:
10.15514/ISPRAS-2019-31(3)-17

«XU3Hb» B TeH30pax: peanu3auus KfeTo4YHbIX aBTOMaToOB Ha
BuaeoKapTax

H.A. lllansnuna, ORCID: 0000-0001-8742-4903 <nat.shalyapina@gmail.com>

M.JI. T'pomos, ORCID: 0000-0002-2990-8245 <maxim.leo.gromov@gmail.com>

Hayuonanvnoui uccnedosamenvcxuti Tomckuil 2ocyoapcmeenuviil yHugepcumen,
634050, Poccus, e. Tomck, np. Jlenuna, 0. 36

AnHoTanus. B 1aHHOM cTaThe MpeacTaBiIeH MOAX0 K OMICAHHIO KIIETOYHBIX aBTOMAaTOB C HCIOIb30BaHHEM
TeH30poB. Takoil MOAX0J MO3BOJISET MPHUBIEKATh Pa3iMdHbIe HPEHMBOPKH AJIsI OpraHU3AIMN PACYETOB Ha
BBICOKOIIPOM3BOJUTENBHBIX ~ TpaHUyeckuX BHAEOKApPTaX, T.6. Ui aBTOMAaTHYECKOTO IOCTPOCHUS
MapauIeIbHBIX MPOTPAMMHBIX peajM3alliii KICTOYHBIX aBTOMATOB. B Hamieil pabOThl MBI HCIOJb3yeM
¢peiimBopk TensorFlow s opranusaiuu BelYUCIeHuid Ha Tpaduyeckux Bugeokaprax NVIDIA. B kauectse
npuMepa KIETOYHOr0 aBTOMaTa MbI paccMoTpenu urpy <«OKusupy. Dddexkr oT ommcaHHOro moaxona K
NPOTrPaMMHO# peain3aliuy KJIETOYHBIX aBTOMATOB OLIEHEH IKCIIEPUMEHTAILHO.

Ki1ioueBble ¢J10Ba: KIETOUYHBIH aBTOMaT, urpa (()KI/BHI)»; TCH30p

Joas uutupoBanusi: Hlamamuaa H.A., I'pomos M.JL. «OKW3Hb» B TeH30pax: MoJennpoBaHHE KIETOYHBIX
aBTOMaTroB ¢ momomeio BuAeokapT. Tpymer VCIT PAH, tom 31, Bem. 3, 2019 r., crtp. 217-228 (ma
anrmuiickom sizpike). DOI: 10.15514/ISPRAS-2019-31(3)-17

1. Introduction

The use of automata in description of a dynamic systems’ behavior has been known for a long
time. The key point of this approach to the description of systems is a representation of the object
under study in the form of a discrete automatic device — automaton (State Machine or Transition

217

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

System). Under the influence of input sequences (or external factors) an automaton changes its
state and produces reactions. There are many types of such automata: the Moore and Mealy
machines [1], the cellular automaton [2], and others. The knowledge of the features of the object
under study can provide enough information to select the appropriate type of automaton for the
object’s behavior description. In some cases, it is convenient to use an infinite model. But finite
models are mostly common. In the latter case, the sets of states, input actions (or states of the
environment), and output reactions are finite.

Our work deals with cellular automata (CA). The theory of cellular automata began to take shape
quite a long time ago. The work of John von Neumann [3] might be considered as the first work of
the cellular automata theory. Today, a large number of studies devoted to cellular automata are
known [4, 5]. Note that a major part of these works is devoted to the simulating of spatially
distributed systems in physics, chemistry, biology, etc. [6]. The goal of the simulation is to find the
states of the cells of a CA after a predetermined number of CA cycles. The resulting set of states in
some way characterizes the state of the process or object under study (fluid flow rate at individual
points, concentration of substances, etc.). Thus, the task of simulating a certain process or object
by a cellular automaton can be divided into two subtasks. First, the researcher must select the
parameters of the automaton (the dimension of the grid of cells, the shape of the cells, the type of
neighborhood, etc.). And secondly, programmatically implement the behavior of the selected
cellular automaton. Our work is focused on the second task — the software implementation of the
cellular automaton.

In itself, the concept of a cellular automaton is quite simple and the idea of software
implementation is obvious. However, the number of required calculations and the structure of
these calculations suggest the use of modern supercomputers with a large number of cores and
supporting large-block parallelism. In this case, the cell field of the automaton is divided into
separate blocks. Processing of blocks is done in parallel and independently from each other. At the
end of each processing cycle, the task of combining the processing results of each block arises.
This problem was solved in [7] in the original way. The experimental study in [7] of the efficiency
of parallelization was carried out on clusters with 32 and 768 processors. Despite the high
effectiveness of this approach, it has some issues. First, this approach assumes that a researcher
has an access to a cluster. Supercomputers are quite expensive and usually are the property of
some collective access center [8]. Of course, after waiting a certain time in the queue, access to the
cluster is possible. But another difficulty arises: a special skill is needed to write parallel programs
in order to organize parallel sections of the program correctly. And this leads to the fact that it
takes a certain number of experiments with the program to debug it before use. The latter means
multiple times of waiting in a queue for a cluster, which, of course, delays the moment of
launching actual (not debugging) experiments with cellular automata.

We offer an alternative approach for software implementation of cellular automata, which is based
on the use of modern graphics adapters. Modern graphics adapters are also well-organized
supercomputers, consisting of several specialized computational cores and allowing execution of
operations in parallel. Compared to clusters, graphics adapters are available for a wide range of
users and we believe that their capabilities are enough to implement cellular automata. In addition,
there are special source development kits or frameworks (for example, ThensorFlow [9]) that can
exploit multi-core graphics adapters and help a researcher quickly and efficiently create a software
product, without being distracted by thinking about parallelizing data flows and control flows. In
this paper, we demonstrate an approach to implementation of cellular automata on graphics
adapters based on TensorFlow.

In order to use this tool, we propose to describe the set of states of an automaton cells’ by the main
data structure used in this framework, namely, the tensor. Then we describe the process of
evolution of the automaton in terms of tensor operations. A well-known cellular automaton, the
Conway’s Game of Life, is used as a working example.

218

lansmina H.A., T'pomos MUJL. «JK3Hb» B TeH30pax: MOZETHPOBAHIE KICTOYHBIX aBTOMATOB C TIOMOILBEO BUCOKAPT. Tpyost UCIT PAH, Tom 31, BB 3,
2019, crp. 217-228

The paper is structured as follows. Section 3 presents the basic concepts and definitions
concerning the theory of cellular automata. Section 3 provides a description of the game Conway’s
Game of Life, its features and rules of operation. Section 4 is devoted to a detailed presentation of
the proposed approach for software implementation of cellular automata on graphics adapters. The
results of computer experiments with the implementation of the Conway’s Game of Life and
comparison with the results of a classical sequential implementation are presented in section 5.

2. Preliminaries

The Moore machine (finite, deterministic, fully defined) is a 6-tuple A = (S, 3,1, 0, p,), where S
is the finite nonempty set of states of the machine with a distinguished initial state § € S, | is the
finite set of input stimuli (input signals), O is a finite set of output reactions (output signals),
@:S x I - S is a fully defined transition function, ¥»: S — 0 is a fully defined function of
output reactions. If at some moment of time the Moore machine (S, 3,1, 0, @,) is at the certain
state s € S and the input signal i € I arrives, then the machine changes its state to the state
s'" = ¢ (s,i), and the signal o = ¥ (s") appears at its output. The machine starts its operation
from the initial state § with the output signal (8). It is important to note that originally Moore
defined the machine so that the output signal of the machine is determined not by the final state of
the transition, but by the initial one (i.e. in the definition above instead of o = 1 (s") should be
o = Y(s)). However, for our purposes it is more convenient to use the definition we have
specified.

Let Z be the set of integers. Consider the set of all possible integers pairs (i,j) € Z X Z. With each
pair (i,j) we associate some finite set of pairs of integers N; ; € Z X Z, called the neighborhood of
the pair (i, j). Pairs of N;; will be called neighbors of the pair (i, j). The sets N; ; must be such that
the following rule holds: if the pair (p, g) is the neighbor of the pair (i, j), then the pair (p + Kk,
g+ 1) is the neighbor of the pair (i +k, j+ 1), where k and | are some integers. Note that the
cardinalities of all neighborhoods coincide and the sets will have the same structure. For
convenience, we assume that all neighbors from N; ; are enumerated with integers from 1 to | N; ; |,
where | N; j | is the cardinality of the set N; ;. Then we can talk about the first, second, etc. neighbor
of some pair (i, j). If the pair (p, q) is the n-th neighbor of the pair (i, j), then the pair (p +k, g + I)
is the n-th neighbor of the pair (i + k, j +I).

Consider the set of Moore machines of the form 4; ; = (S, §i_]-,S|NiJ|,S, @, Y) such that Y (s) = s.
Here i and j are some integers, B™ is the n-th Cartesian power of the set B. The machines
corresponding to the neighbors of the pair (i, j) are called neighbors of the machine A ;.
Neighboring machines will be numbered as well as the corresponding neighboring pairs (that is,
the first neighbor, the second, etc.). We specifically note that (i) for each machine A; ; the set of
states is the same, i.e. S; (ii) for each machine A; j, the set of output signals coincides with the set
of states, that is, also S; (iii) as an output signal, the machine gives its current state; (iv) all
machines have the same transition function and the same function of output reaction; (v) as an
input signal, machines take tuples of states (of their neighbors), the number of elements in the
tuple coincides with the number of neighbors, that is, equals to | N; ; |; (vi) machines differ only in
their initial states. Let at a given time moment the current state of the first neighbor of the machine
A j is equal to s,, the state of the second neighbor is s, ..., the state of the n-th neighbor is s,,
where n=|N; ;| Then the tuple (s, Sz, ..., Sn) is the input signal of the machine A; ; at this very
moment. All machines accept input signals, change their states and provide output signals
simultaneously and synchronously. That is, some global clock signal is assumed.

The resulting set {Ai,]-| N EZXZ} of the Moore machines is called a two-dimensional
synchronous cellular automaton (or simply cellular automaton — CA). Each individual Moore
machine of this set will be called a cell. The set of states of all cells the CA at a given time
moment will be called the global state of the cellular automaton at this time moment.

219

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

The transition rules of cells from one state to another (the function ¢), the type of neighborhood of
the cells (the sets N; j), the number of different possible cell states (the set S) define the whole
variety of synchronous two-dimensional cellular automata.

For clarity, one can draw cellular automata on the plane. For this, the plane is covered with figures.
Coverage can be arbitrary, but of course, it is more convenient to do it in a regular way. Classic
covers are equal squares, equal triangles and equal hexagons. The choice of one or another method
of covering the plane is dictated by the original problem a CA is used for and the selected set of
neighbors. Next, the cover figures are assigned to the cells of the cellular automaton in a regular
manner. For example, let the plane be covered with equal squares, so that each vertex of each
square is also the vertex of the other three squares of the coverage (fig. 1a). Choose the square of
this coverage randomly and associate it with the cell Aqp. Let the cell A;jj be associated with a
certain square. Then we associate the cell A; ., with the square on the right, the cell A;.q; with the
square on the left, the cell A;j. , with the square above, and the cell A;;.; with the square below
(fig. 1b). Cell states will be represented by the color of the corresponding square (fig. 1c)

Apo
* »
‘41 - d .
"1|',.I—I Al.j -"1."_j+]
a) b) c)

Fig. 1. A CA represented on a plane covered by equal squares: a) the coverage of the plane; b) association of
the cells with the squares; c) colour representation of cells’ states (for the case |S|=2, «white» — state 0,
«blacky» — state 1)

The resulting square based representation of a CA on a plane is classical one. In our work we
consider only this representation.

For the square based representation of a CA, the neighborhoods shown in fig. 2 are the most
common.

a) b)

Fig. 2. The neighborhood (grey cells) of a cell (the black one) by a) von Neumann, b) Moore Geometric
figures

If a given cellular automaton models a process (for example, heat transfer), then the various global
initial states {§i,]-| (i,/)) € ZxZ} of the cellular automaton correspond to different initial
conditions of the process. According to the definition of cellular automata introduced by us, the set
of cells in it is infinite. However, from the point of view of practice, especially in the case of an
implementation of a cellular automaton, a set of cells have to be made finite. In this case, some of
the cells lack some neighbors. Therefore, for them the set of neighbors and the transition function

220

lansmina H.A., T'pomos MUJL. «JK3Hb» B TeH30pax: MOZETHPOBAHIE KICTOYHBIX aBTOMATOB C TIOMOILBEO BUCOKAPT. Tpyost UCIT PAH, Tom 31, BB 3,
2019, crp. 217-228

are modified. Such modifications determine the boundary conditions of the process being
modeled.

3. Conway’s Game of Life

In the 70s of the 20th century, the English mathematician John Conway proposed a cellular

automaton called the Conway’s Game of Life [10].

The cells of this automaton are interpreted as biological cells. The state «0» corresponds to the

«dead» cell, and the state «1» — «alive». The game uses the Moore’s neighborhood (Fig. 2b), i.e.

each cell has 8 neighbors. The rules for the transition of cells from one state to another are as

follows:

o ifacellis «dead» and has three «alive» neighbors then it becomes «alive;

e ifacellis «alive» and has two or three «alive» neighbors then it remains «alivey;

o ifacell is «alive» and has less than two or more than three «alive» neighbors then it becomes
«deady.

For the convenience of perception, the behavior of each cell of the cellular automaton Conway’s

Game of Life can be illustrated using the transition graph (fig. 3).

N=3 or

N=2 NZ3

N=3

Fig. 3. Cell Transition Graph of the Conway’s Game of Life, where N is the number of «alive» neighbors
Geometric figures

Despite the simplicity of the functioning of the automaton, it is an object for numerous studies,
since the variation of the initial configuration leads to the appearance of various images of its
dynamics with interesting properties. One of the most interesting among them are moving groups
of cells — gliders. Gliders not only oscillate with a certain periodicity, but also move through the
space (plane). Thus, as a result of experiments, it was established that on the basis of gliders
logical elements AND, OR, NOT can be built. Therefore any other Boolean function can be
implemented. It was also proved that using the cellular automata Conway’s Game of Life it is
possible to emulate the operation of a Turing machine.

4. Features of Conway’s Game of Life Parallel Implementation

According to our definition, a set of states of a cell is finite. It is obvious that, in this case, without
loss of generality, we can assume that the set of states is the set of integers from 0 to |S| - 1, where
|S] — is the cardinality of the set of states. Therefore, the global state of the cellular automaton can
be represented as a matrix A. The element A;; of this matrix is equal to the current state of the cell
Aij. We call the matrix A the matrix of the global state of the cellular automaton. If there are no
restrictions on the number of cells, then matrix A will be infinite. As have already been mentioned,
the number of cells has to be limited from a practical point of view, that is, it is necessary to
somehow choose the finite subset of cells. After that, only selected cells are considered. In this
case, the ability to describe the global state of the cellular automaton by the matrix is determined
by which cells are selected. We assume that the following set of cells is selected: {4; ;| (1 <i <
m) A (1 <j<n)}, where m and n — two fixed natural numbers. In this case, the global state
matrix is obtained naturally.

Since we use the TensorFlow framework for implementation of a CA, we should work with
concepts defined in it. The main data structure in TensorFlow is a multidimensional matrix which
in terms of this framework is called a tensor. However, in many cases, such a matrix may not

221

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

correspond to any tensor. The tensor in the n-dimensional space must have n° 9 components and is
represented as (p + g)-dimensional matrix, where (p, q) is the rank of the tensor. And, for example,
a 2 by 3 matrix does not follow these restricions. But the convenience of data manipulation
provided by the framework justifies some deviations from strictly defining the tensor. Therefore,
in the case when we are talking about the software implementation of a cellular automaton using
TensorFlow, we will consider the notion of the global state matrix of a CA and the notion of the
global state tensor of a CA as equivalent.

Fig. 4. Some initial global state of the finite state machine for the Conway’s Game of Life

Thus, the evolution of the global state of a cellular automaton can be represented (within
TensorFlow) as a transformation of the components of the global state tensor. Such a
transformation will be called the evolution of the tensor.

Thus, the logic of the transition of the cellular automaton from a given global state to the next
global state will be described using operations on tensors. In particular, for the software
implementation of Conway’s Game of Life in our work such operations are the convolution of
tensors and the “restriction” of the components value. Let us consider a small example.

Let some initial global state of the cellular automaton (fig. 4) be given.

Black cells are a «alive» cell (state 1), zero means that the cell is «dead» (state 0). The
corresponding tensor of the global state has the form (1):

0 0 0 0 0 0 0 0 O O
00 00 O0OOO0OTOTO OO
00 00O0OOTO0OTOTG OO
983015888
1
T_0000100000)
00 00O O0OOO0OTOTG OO
00 00 0OO0OTOTU OO
0 000O0OO0OO0OTO0ODTOTP O
‘0 0 0 0 00 0 0 0 O

The next state of a cell of the cellular automaton of the Conway’s Game of Life depends on the
number of living neighbors of this cell. We suggest using convolution to count the number of
living neighbors of a cell. Since set of neighbors in the Conway’s Game of Life are specified by
the Moore neighborhood, the convolution kernel will have the form (2):
1 1 1
S = [1 0,5 1])
1 1 1

Note the special role of the element S,, = 0,5. This element corresponds to the cell for which the
number of living neighbors is calculated. Let the number of living neighbors of a certain dead cell

222

lansmina H.A., T'pomos MUJL. «JK3Hb» B TeH30pax: MOZETHPOBAHIE KICTOYHBIX aBTOMATOB C TIOMOILBEO BUCOKAPT. Tpyost UCIT PAH, Tom 31, BB 3,
2019, crp. 217-228

be calculated. Then it will turn out to be integer because component S,, will be multiplied by the
state of the dead cell (and it is equal to 0), and in the sum the number S,, will not participate. It
will turn out to be half-integer in the case when the number of living neighbors of a living cell is
calculated. This is important when the cell has two living neighbors. Then the dead cell must
remain dead, and the living cell must live. That is, if after the convolution the counted number of
living neighbors turns out to be 2 (the cell is dead, it has 2 living neighbors), then in its place
should be 0 in the tensor of the global state of the cellular automaton in the next cycle. If, after
convolution, the counted number of living neighbors is 2.5 (the cell is alive, and it has 2
neighbors), then in its place should be 1 in the tensor of the global state of the cellular automaton
in the next cycle.

Constructing a convolution with the kernel S of the tensor T, we obtain the new tensor C, where at
the intersection of the i-th row and j-th column there is an element corresponding to the number of
living neighbors for the cell A;;. Note that we obtain a tensor (m — 2) x (n — 2) when constructing a
convolution with a kernel of size 3 x 3 of an arbitrary tensor of the size m x n. In order to save the
initial dimensions of the global state tensor of a cellular automaton, we will set the elements in the
first and last row and in the first and last column of the global automaton tensor to 0. We will
append these zero rows and columns to the result after the convolution is completed. Appended
elements in the formula (3) are highlighted in gray. The mentioned fact suggests that some of the
subsequent computations are superfluous (namely computations on the appended elements). The
amount of extra computations for the global state tensor with dimensions m x n will be (2m -
2) +(2n—2). Then, the part of extra computations in the amount of useful computations is
(2m-2)+(2n-2) — 0(% + %)

(m-1)(n-1)

0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 000
00 0 1 2 2 100 0
0 0 1 35 25/1 0 0 0

1o o 1135 45/ 4 1 0 0 0

t= 00 1 3 [25/2 0 0 0 O (3)
00 0 1 1 1 0 0 0 0
000 O o 0 O0O0TO0O
000 0O o 0 O0O0TO0O
0 0 0 0 0 0o 0 0 0 0

Taking into account the agreement on the half-integer value of the number of living neighbors, the
integer part of the value of the tensor component C determines the number of living neighbors of
the cell, and the presence of the fractional part means that the cell was alive in the previous step.
According to the rules of the Conway’s Game of Life it is necessary to transform the tensor C in
order to determine the global state of the cellular automaton in the next step. Components with
values in the range [2.5, 3.5] should take the value 1 (cells are alive). The remaining components
should become 0 (cells are dead). Among the classical operations on tensors there is no operation
that would allow to express the required transformation. However, the framework used in our
work was created primarily for the problems of the theory of artificial intelligence, namely, for
implementation of neural networks. The data flow there is the flow of tensors (a tensor as an input,
a tensor as an output). Computational elements, that change data, are layers of the neural network.
So, for example, in our case for the convolution we use a two-dimensional convolution layer with
the kernel S (formula (2)). Any tool for neural network implementation ought to have the special
type of layers — activation layers (layer of non-linear transformations). These layers calculate
activation functions (some non-linear functions) of each element of the input tensor and put the
result into the output tensor. TensorFlow offers a standard set of non-linear activation functions. In
addition, it is possible to create custom activation functions. We built our own activation function
based on a function from a standard set of functions, called a Rectified Linear Unit (ReLU). The
function ReLU is defined as follows (formula (4)). Its graph is shown in fig. 5:

223

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

ReLU = max(0, x) 4)
Taking into account the required transformation of the components of the tensor C described
above, we suggested the function presented in (5):

8 = ReLU(4(x — 2,125)) — ReLU(4(x — 2,125)) — ReLU(4(x — 2,125)) + ReLU(4(x — 2,125)) (5)

y

N W B~ O
I

fa)
r T T T LAY T T T T 1

5-4-3-2-10123 45

Fig. 5. Diagram of ReLU function

OoOFrRLNWkO

00511522533544555566577.58X

Fig. 6. Diagram of the transition function of the Conway’s Game of Life

As a result of applying the function & to each component of the tensor C, the tensor of the global
state of the cellular automaton will take the following form (formula (6)).

0 0 0 0 0 0 0 0 O 07
0000 O0OO0OUOTO OO
000 O0O0OOTOTO OO OO
028135888
" 1
T_0001100000(6)
000 O0O0OOOTO OO OO
000 O0O0OOUOTG OO O
000 0O0OOOTOOTO
‘0 0 0 0 00O O O 0O O

Thus, the software implementation of the Conway’s Game of Life using TensorFlow is a two-layer
neural network. The first layer is convolutional, with the kernel from formula (2). The second
layer is the activation layer with the activation function from formula (5).

5. Experimental results

We have implemented the described approach for the cellular automaton of the Conway’s Game of
Life in Python. Since there was no one in our group familiar with TensorFlow, but we have some
experience in Keras [11], the implementation was built using Keras as a kind of wrapper over
TensorFlow. Keras is a high level interface to various low-level artificial intelligence libraries,
including TensorFlow.

The resulting program was launched on a graphics adapter with CUDA support. For comparison
with the classical implementation of the cellular automaton of the Conway’s Game of Life on a
uniprocessor system, we used the implementation of [12].

224

lansmina H.A., T'pomos MUJL. «JK3Hb» B TeH30pax: MOZETHPOBAHIE KICTOYHBIX aBTOMATOB C TIOMOILBEO BUCOKAPT. Tpyost UCIT PAH, Tom 31, BB 3,
2019+, crp. 217-228

R-pentamino located in the middle of the field (fig. 4) was used as the initial global state of the
cellular automaton of the Conway’s Game of Life in the experiments.

We took a square game field (the matrix of the global state of the cellular automaton) with
dimensions m x m, where m varied from 10 to 350 with the step 10. For each m, we calculated
1000 subsequent global states of the cellular automaton. The execution time was measured. The
calculations were repeated 10 times. Time was averaged. All experiments were conducted on a
computer with the following characteristics: Intel Core i5-3470@3.2 GHz CPU, 8 GB RAM,
Windows 7-x64 OS, GeForce GTX 650 Ti graphics adapter (1024 MB RAM, 928 MHz base
frequency, 768 CUDA cores).

Dependency diagrams of the program execution time on the «lengthy of the square field side m of
the game are shown in fig. 7 and 8. We also built regressions. The regression curves are shown in
fig. 7 and 8 as well. A second-degree polynomial was chosen as the regression hypothesis.

18
16

4=

—
B

—
=

The run time, sec
(]

2

[T =

[=]
1
P

0 100 200 300 400
The number of cells along the square game field side

——The regrssion crve —»— The experimental results

Fig. 7. Results of experiments with a single-threaded implementation

.

(e
L

[

(5]
(]

2

,_.
L

The mun time, sec

0 50 100 150 200 250 300 350 400
The number of cells along the square game field side

The regression curve —*—The experiments] results
Fig. 8. Results of experiments with CUDA (Keras+TensorFlow) implementation

It can be noted that for small values of m, the execution time of a single-threaded program is
smaller than the execution time of the multiprocessor (the graphics adapter) implementation
225

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

proposed by us. However, as m grows, the situation changes and the proposed multiprocessor
implementation begins to outperform the classical single-threaded implementation. We associate
this with the overhead of transferring data from the computer’s general RAM to the graphics
adapter’s RAM and returning the result from the graphics adapter’s memory to the computer’s
memory. When the dimensions of the game field of the Conway’s Game of Life are small, the time
of actual calculations of the global states of the cellular automaton is much less than the time of
transmission of information. As the field size grows, the computation time of the cellular
automaton state becomes significant and the multiprocessor implementation on the graphics
adapter begins to outrun the single-threaded speed.

Obviously, the dependence of the execution time of programs on the “length” m of the square field
side of the Conway’s Game of Life must be parabolic. With the growth of m, the number of cells
grows as m?, each cell needs to be processed once per cycle. Therefore, the number of operations
must be of the order of m? According to the obtained results we constructed regression
polynomials of the second degree. Regression curves are in good agreement with experimental
data (Fig. 7, 8). It may seem that for a multithreaded implementation the dependency should be
different. However, we note that when the number of cells becomes much more than the number
of cores in a multi-core system (in our case, the graphics adapter had 768 cores), then processing
will be performed block by block: first comes one block of 768 cells, then another, etc. Thus, m%K
operations will be done, where K is the number of cores, that is, also of the order of m?,

6. Conclusions

In this paper, a tensor approach to the software implementation of cellular automata is described
and programmatically implemented. The approach is focused on launching programs on multi-core
graphics adapters. The program is implemented in Python using TensorFlow and Keras as an
interface to TensorFlow. TensorFlow allows automatically generate and run multi-threaded
programs on multi-core graphics adapters.

The effectiveness of using the developed approach was shown during a series of computer
experiments. For the experiments the Conway’s Game of Life was chosen. If the number of cells
in the automaton is less or equal to the number of cores, then the maximum acceleration can be
observed. If the number of cells exceeds the number of cores, then the parallel sections of the
program are executed sequentially. This means that with a very large size of the playing field the
type of dependence will be parabolic when using a graphics adapter. The latter is confirmed by
regression analysis.

References / Cnncok nutepartypbl

[1]. Harris D., Harris S. Digital Design and Computer Architecture. Morgan Kaufmann, 2012, 721 p.

[2]. Toffolli T., Margolus N. Cellular Automata Machines. MIT Press, 1987, 279 p.

[3]. von Neumann J. Theory of Self-Reproducing Automata. University of Illinois Press, 1966, 403 p.

[4]. Bandman O. Simulation Spatial Dynamics by Probabilistic Cellular Automata. Lecture Notes in
Computer Science, vol. 2493, 2002, pp. 10-19

[5]. Malinetski G.G., Stepantsov M.E. Simulation of diffusion processes by means of cellular automata with
Margolus neighborhood. Computational Mathematics and Mathematical Physics, 1998, vol. 38, no. 6,
pp. 973-975.

[6]. Weimar J.R. Cellular Automata for Reaction-Diffusion Systems. Parallel Computing, vol. 23, no. 11,
1999, pp. 1699-1715.

[7]. Medvedev Yu.G. Development and Research of a Three-Dimensional Cellular Automaton Model of a
Viscous Fluid Flow. PhD thesis, Novosibirsk, 2005, 108 p (in Russian). / Mensenes FO.I'. PaspaGoTka u
UCCIIEIOBaHUE TPEXMEPHON KJIETOYHO-aBTOMAaTHOM MOJENM MOTOKa BSA3KOM kuakocTu. Juccepranus Ha
COHCKaHHE YUYEHOH CTeleHH KaHauaaTa TeXHUUecknx Hayk, HoBocubupck, 2005 r., 108 ctp.

[8]. Computing Cluster «SKIF Cyberia». Available at: https://cyberia.tsu.ru, accessed 12.05.2019 (in
Russian) / Beraucnurensasrit knactep CKU® Cyberia.

[9]. TensorFlow. Available at: https://www.tensorflow.org, accessed 12.05.2019.

226

lansmina H.A., T'pomos MUJL. «JK3Hb» B TeH30pax: MOZETHPOBAHIE KICTOYHBIX aBTOMATOB C TIOMOILBEO BUCOKAPT. Tpyost UCIT PAH, Tom 31, BB 3,
2019, crp. 217-228

[10]. Gardner M. The Fantastic Combinations of John Conway's New Solitaire Game "Life". Scientific
American, vol. 223, no 4, 1970, pp. 120-123.

[11]. Keras: The Python Deep Learning library. Available at: https://keras.io, accessed 12.05.2019.

[12]. Implementation of the Game "Life" using C++. Available at: https://code-live.ru/post/cpp-life-game,
accessed 12.05.2019.

MHdopmaumsa 06 aBTopax / Information about authors

Haramus Anppeesna HIAJIAINIMHA mnonyumna cremeHs Maructpa paguodmuku B 2018 1. B
HauunonanesHoM nccienoBaTeslbckoM TOMCKOM TOCyqapcTBEHHOM yHuUBepcutere, Tomck, Poccus.
B Hacrosimee BpeMs OHAa TOTOBHT TUCCEPTALlMI0 HAa COMCKAHHME CTETeHW KaHOHmaTa (hU3NKO-
MaTeMaTHYECKUX HayK IO HampaieHHio MHpopMmaThka M BBRYHCIHTENbHAS TexHHKA. OOmacTb
HHTEPECOB — KJIETOYHBIC aBTOMAThI, MOACIINPOBAHUE.

Natalia Andreevna SHALYAPINA received the M.S. degrees in radiophysics from National
Research Tomsk State University, Tomsk, Russia. She is currently pursuing the Ph.D. degree in
the field of Information and Computer Engineering. Research interests — cellular automata,
simulating.

Maxkcum JleonmnoBna ['POMOB okonumn pamuodmsmdeckwmii QaxyiapTeT TOMCKOTO
rocyIapCcTBEHHOTO yHHBepcHuTeTa W B 2004 roay MONydYni CTEIeHb Marucrpa paanoQus3uku. B
2009 roxy 3amuTuia Kanguaatckyro auccepranuio. C 2009 rona 3aHMMAaeT IOJKHOCTH JOIEHTA
Tomckoro rocygapcTBEHHOro yHHUBepcuTeTa. HaydHble WHTEpechl CBSI3aHbl C JUCKPETHBIMU
MOJICIISIMU Pa3JIMYHBIX CHCTEM, 00paboTKH HH(OpMALIUH.

Maxim Leonidovitch GROMOV graduated from Radiphysics faculty of Tomsk State University
and got master degree of Radiophysics in 2004. In 2009 he defended the PhD thesis in computer
science. Since 2009 he holds the position of Associate Professor of Tomsk State University.
Scientific interests are connected with dicrete models of different systems, information processing.

227

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

228

Tpyowt UCIT PAH, mom 31, evin. 3,2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-18

Modeling Nonlinear Stabilization System on
Clusters with Intel Xeon Phi Coprocessors

D.V. Melnichuk, ORCID: 0000-0002-6689-8904 <melnichukdv@sgu.ru>
Saratov State University,
83 Astrakhanskaya Street, Saratov, 410012, Russia

Abstract. Currently, cluster systems are widely used, the nodes of which use processors with a large number
of cores. Effective software implementation on such computing systems requires that the corresponding
mathematical models have a significant parallelism resource. For the problems of modeling of hybrid
dynamical systems (HDS) a significant resource of parallelism is typical, since in this class of mathematical
models the (theoretically infinite-dimensional) phase space of control objects with space-distributed
parameters is isolated. The purpose of this work is to study the effectiveness of the software implementation
on parallel computing systems of the class of modeling problems of the influence of typical nonlinearities and
nonstationarity on the output vector function of the HDS. As an example, a nonlinear stabilization system for
a mobile control object (the rocket taking into account the elastic deformations of its body) is considered.

Keywords: hybrid dynamical systems; processors with scalable architecture

For citation: Melnichuk D.V. Modeling of Angular Stabilization System on Processors with Scalable
Architecture. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 229-240. DOI: 10.15514/ISPRAS-
2019-31(3)-18

MopgenupoBaHue HeNMMHENMHOWN CUCTEMbI CTabunusauum Ha Knacrtepax
¢ conpoueccopamu Intel Xeon Phi

JI.B. Menvnuuyx, ORCID: 0000-0002-6689-8904 <melnichukdv@sgu.ru>
Capamosckuii 2ocydapcmeennuiii yHueepcumem umenu H.I'. Yepnviuescrkoeo,
410012, Poccus, 2. Capamos, yn. Acmpaxanckas, 83

AHHOTammsi. B HacTosiee BpeMsi MIMPOKOE pacHpOCTPaHEHHWE IOJIy4aloT KIacTepHBIE CHCTEMBI, B y3llax
KOTOPBIX MCIOJIB3YIOTCS IIPOLIECCOPHI C OOJBIIMM YUCIOM siiep. DddexTrBHAs MporpaMMHas peanu3anus Ha
NOAOOHBIX BBIYUCIHUTENBHBIX CHCTEMax TpeOyeT, 4YTOOBl COOTBETCTBYIOLIME MaTeMaTHYeCKHe MOJETH
o0namany 3HAYMTENBHBIM pecypcoM mapaiienusma. JlIs 3amad MOJETIMpPOBaHHS KOMOMHHPOBAHHBIX
muHaMudecknx cucteM (KJIC) TunmdeH 3HAYUTETBHBIN pecypc Mapaulesin3Ma, IIOCKOIbKY B JaHHOM KJlacce
MareMaTHYeCKuX MoJjeneil (TeopeTHdyeckd OecKoOHeYyHOMepHOe) (a3oBoe MPOCTPAHCTBO OOBEKTOB
YIpaBJICHUSI C PaclpeieSeHHBIMH II0 TPOCTPAHCTBY MapaMeTpaMu sIBISETCS H30JMPOBaHHBIM. Ilenbio
paboThl sBISeTCs HccienoBaHue 3(GEKTUBHOCTH IPOTPAMMHOM —peali3aliid Ha IapajulesIbHBIX
BBIUMCIIMTEIBHBIX CHCTEMax Kjlacca 3aJad MOJCIMPOBAHMS BIHMSHUS THUIOBBIX HENUHEHHOCTEH U
HECTAI[OHAPHOCTU Ha BbIXOoAHbIe BekTop-GyHkuun KJC. B kadecTBe mprMepa pacCMOTpeHa HENUHEHHas
cucTeMa crabHIM3alMi TO/IBIDKHOTO OOBEKTa yMpaBieHHs (pakeThl ¢ y4eToM yHpyrux nedopmanuii ee
KOpITyca).

KnioueBble ci10Ba: KOMOMHHMpPOBAaHHBIE JUHAMHYECKHE CHCTEMBI, MPOILECCOPHl C MacCIITaOHpPyeMBIMU
apXUTEKTypaMu

229

Melnichuk D.V. Modeling of Angular Stabilization System on Processors with Scalable Architecture. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 229-240

Jst nurupoBanusi: Mensauuyk J[.B. MoznennpoBanue cucTeMBI YIIIOBOH CTaOMIIN3alUK Ha MIPOLECCOPax ¢
MaciitabupyemsiMu apxutekrypamu. Tpyaet CIT PAH, tom 31, Bbm. 3, 2019 r., crp. 229-240 (ua
anriickom si3bike). DOI: 10.15514/ISPRAS-2019-31(3)-18

1. Introduction

Currently, cluster systems are widely used, in the nodes of which one or several processors with a
large number of cores are used. Examples include computing systems with new Intel Xeon
processors with scalable architecture or computing systems with Intel Xeon Phi coprocessors that
are used as virtual cluster nodes. Parallel computational architectures of this class are effective
only when solving problems with a significant parallelism resource. In this case, classes of
mathematical models that are effectively implemented on Intel Xeon Phi, will be effectively
implemented on modern scalable Intel Xeon architectures.

Hybrid dynamical systems (HDS) [1, 2] are mathematical models of a number of technical systems
containing control objects with lumped parameters and connected to them across the boundaries of
control objects with distributed parameters (see fig. 1). HDS is characterized by input and output
vector functions. The nonlinear system of angular stabilization of the movable control object with
deformable body is the example [3, 4]. HDS are systems of ordinary differential equations (ODE)
and partial differential equations (PDE) connected by means of boundary conditions (BC) and
constraint's conditions (CC) under appropriate initial conditions (IC). For the problems of HDS
modeling a significant resource of parallelism is typical, since the (theoretically infinite-
dimensional) phase space of control objects with distributed parameters is isolated.

x(1)
—>

y(t)
—

HDS

Fig. 1. HDS Structural scheme

2. Related work

MPI technology is standard for cluster systems with distributed memory, and both optimization of
MPI itself [5] and parallel libraries [6] and algorithms based on it are relevant. Examples are
problems of mathematical physics [7, 8], graph theory [9], sparse matrix factorization [10].
Optimization of parallel algorithms for cluster systems with many-core processors was considered
in [11, 12]. If adaptive algorithms of numerical modeling are used or nodes of the cluster have
different capacities, dynamic balancing of computational load is required [13]. For dynamic
balancing of computational load on cluster systems, the MPI-MAP parallelization pattern was
previously implemented [3]. The main theorems on the stability of linearized HDS are formulated
and proved in [1, 2]. In work [4] adaptive algorithms of HDS parametric synthesis are offered.
Modeling of systems of angular stabilization of movable control objects with deformable body was
considered in [14, 3, 4].

230

Messrirayk J1.B. MozienpoBanie CHCTeMBI YITIOBOH CTAOMITH3AIMH Ha TIPOLIECCOPaX ¢ MaCIITabHpyeMbIMU apXuTekTypamu. 1pyost ICIT PAH, Tom 31, BeI.
3,2019r., c1p. 229-240

3. Problem formulation

The purpose of this work is to study the effectiveness of the software implementation on parallel
computing systems of the class of modeling problems of the influence of typical nonlinearities and
nonstationarity on the output vector function of the HDS. We consider a similar [4] system of
angular stabilization of the movable control object (the rocket taking into account the deformations
of its body), but providing stabilization both with respect to the vertical direction and with respect
to the longitudinal axis, as well as a smooth change in the time of the thrust force of the rocket
engine.

4. Parallel algorithms for modeling of hybrid dynamical systems

HDS with piecewise continuous input vector function x(t), x:R — R¥x and continuous output
vector function y(t), y: R - R correspond to equations

y = f(X, Y! h! p! H' utt); u = F(u! X, Y! Y! H: lltt): re)

G(uy,wls =0,5=00;h = [H(u,wds 1)

y(0) = yo,u(r, 0) = uy(r)
Here r € R¥ — are independent spatial coordinates of individual points of the object with
distributed parameters, Q c R¥ — area occupied by an object with distributed parameters,
f: RNV x RV x RVh x RM» x RVe x RVt - RNy, h:R - R, u(r,t), w:RM xR - RM
distributed output vector function, operators F:(RM x R - RM:) x (R - RMx) x (R - RM) x
(R = R¥) x R¥1 x RVt — (RMr x R — RMuw), G: (R¥ x R - RM:) x (R - RM) x RMe —
(R¥ x R -» RM9), H:(RM x R - RM) x R¥+ - (R - RVr) correspond to partial differential
equations, boundary conditions, and coupling conditions; p € R¥» — feedback parameters;
p € RV — the parameters of model nonlinearities; p, € RNt — parameters characterizing the
unsteadiness of the system from the point of view of the automatic control theory; the point at the
top indicates the time t differentiation. When p = p, = 0 HDS (1) becomes linear stationary.
After parametric synthesis, numerical simulation of the effect of typical nonlinearities and
unsteadiness on the output vector function of a nonlinear HDS (1) is performed. In this case, the
input vector function x(t) and the initial conditions y,, u,(r) are fixed, and the components of the
vectors p and p, change with a fixed step within a parallelepiped. The element-by-element
transformation of sequence (u]-,utj), j=1,2,3,... into a sequence of values characterizing the

maximum and standard deviations of function y(¢; w;, ptj) from y(¢; 0,0) is parallelized
(M) = (1,027,) = 123,50, = omax |y(t;n) —y(t;0,0)]

<t<tmax
o rtm Y)

v, = [tk [y V(6 1 1) — Y(5 0,0) 2| ey >> 1

The transformation (2) can be adapted to the "two-layer” MPI-OpenMP scheme, where a separate

MPI-MAP executing process performs the transformation of

(e,) = Lm} > {(v,,v,)7,) = Lm} ©)
by parallelizing calculation of the values on the right side (3) based on OpenMP.
Numerical integration of the initial boundary value problem (1) is implemented by the Galerkin’s

projection method [4] and subsequent application of the BDF method to the resulting Cauchy
problem for the system of ordinary differential equations.

5. Model of stabilization system

The object moves with respect to a fixed coordinate system Oyx,y,2, (see fig. 2) under the action
of force P, attraction to the Earth and external disturbing horizontal force F, = (0, Feyo,FeZo)T.

231

Melnichuk D.V. Modeling of Angular Stabilization System on Processors with Scalable Architecture. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 229-240

2

Fig. 2. Structural scheme

The coordinate system Oxyz is connected to the body 1, and r; = (xy,y1,2,)" and B; =
(B11, P12, Br3)" characterize its linear and angular displacements relative to 0Oyxoyoz,. Linear
1, = (x5, ¥, 2,)" and angular B, = (Ba,1, P22, B23)" displacement of body 2 with respect to Oxyz
is caused by the elastic displacement u = (u,, u,, u,)" = u(x, t) of the centerline of the hull. The
rotation angle a = (a;, ay, a3)T of the body 2 relative to 0,x,y,2, Mmeasures the gyrostabilizer,
and the control moments of the forces MJ.(C), j =1,2,3 are formed. Under the action of MZ(C) and

M3(C) body O rotates at angles By = (0, Bo2, Bo,z)" relative to Oxyz. The moment Ml(c) acts on the
body 1 and compensates for the rotation of the movable object relative to the longitudinal axis. Let
wy = (Wo,, W, Wo,) Q= (Qy, 0, Q,)7¥,oQ, = Q) Q5,, Qg)T be the relative and
absolute angular velocities of bodies 0, 1, 2; Q = (Q4, Q5,Q5)", M = (M,, M,, M3)T be the internal
forces and moments acting in the cross sections of the body. Here x(t) = (F;yo(t), F, (N7 and

y(©) = (Brz(t), Baz(t), Bra(t), Ba2(t), Bri(t), P21 ()T are input and output vector functions,
p = (P, P2 ..., p12)" are feedback parameters. The model equations of the nonlinear stabilization
system are given in Appendix A. The set of parameters p = (uq, u,, 13)T characterizes typical
nonlinearities, and the parameter p, = {u,}, @, = 0 characterizes a smooth change in the
characteristic overload according to the law

a,(t) = a™™ 4 (@™ — gMMye-uat t >0, g™ < q, < o™ (4)
At p = 0, the model equations are linearized and decomposed into three independent subsets
corresponding to the motion in the Oyx,y, and Oyx,z, planes (by virtue of symmetry, they pass

into each other), as well as to the rotation relative to the longitudinal axis. In this case, ps.; = p;,

j = 1,5, correspond to the stabilization system in the vertical direction, and p,;, p;, correspond to
the stabilization system with respect to the longitudinal axis.

232

Messrirayk J1.B. MozienpoBanie CHCTeMBI YITIOBOH CTAOMITH3AIMH Ha TIPOLIECCOPaX ¢ MaCIITabHpyeMbIMU apXuTekTypamu. 1pyost ICIT PAH, Tom 31, BeI.
3,2019r., c1p. 229-240

6. Numerical simulation results

In the numerical simulation of the output vector functions of the nonlinear angular stabilization
system, the components of the input vector function were given as F, (t) = 1(¢), F,,(t) =

1(t) — 1(t — 1), where 1(t) is the unit jump function of Heaviside. For stabilization system with
a set of parameters

Jo =0.02,m; = 0.3,], = 0.07, m, = 0.2,], = 0.05, a = 0.166667, a™™ = 0.2, o™ = 2,
¥ = 0.01, /1 = 0.1, /5 = 0.05, J = 2, u; = 0.08, u, = 0.15, 5 = 0.055, p, = 0.05 (5)
The feedback parameters of the stabilization system in the direction of vertical p; = pg = 6.347,
Py =p; = 13.12, p3 = pg = 17.59, p, = py = 14.03, ps = p;, = 5.951 were chosen on the
basis of an adaptive algorithm of parametric synthesis of the family of linearized models of HDS
[4]. Since the stabilization of the object with respect to the longitudinal axis is intended to
compensate for the slow accumulation of errors due to nonlinear effects, the feedback parameters
p11 = 0.04, p,, = 1 are selected in the central part of the stability region.

Fig. 3 presents the results of numerical simulation of the components g, , and fS; 3 of the output
vector functions of the original nonlinear unsteady HDS (shown as a solid line) and its linear
stationary analog at u; = u, = usz = s = 0 (shown as a dashed line). The significant difference
of the results is explained by the fact that the dimensionless overload a, decreases smoothly, with
the decrease of a, in the considered range of overload changes in the linear stationary system, the
attenuation of transients decreases, and the characteristic value of the output vector function
increases. Nevertheless, parametric synthesis by the linearized model allows to stabilize the
original nonlinear system in the vertical direction in the entire range of overloads. As follows from
the results presented in Fig. 4, the selected values of the feedback parameters p;, and p,, allow to
stabilize the movable control object with respect to the longitudinal axis, i.e. to compensate for the
slow accumulation of errors due to nonlinear effects.

BW_Z Bl,}
0.08
iy 0.24
0 oo \
-0.08 0.16 ! \
’ \\
-0.16 0.08 |
1
1
-0.24 ol \
=
-0.32 -0.04
0 10 20 30 t 0 50 100 150 200 1
Fig. 3. Stabilization in the vertical direction
Bri I
0.005
0 , A A I\ ..
-0.005
-0.01
0 10 20 30 40 t

Fig. 4. Stabilization with respect to the longitudinal axis

233

Melnichuk D.V. Modeling of Angular Stabilization System on Processors with Scalable Architecture. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 229-240

Fig. 5 shows the dependences of the parameters u; € [0,0.055] and u, € [0,0.05] at fixed y, and
U, maximum v, and standard v, deviations (see eq. (2)) of the output vector function of the
nonlinear HDS on the output vector function of the linearized HDS for t,,,, = 250. As follows
from the data presented in Fig. 5, when changing the overload according to (9) the greatest
influence on the output vector function of the nonlinear HDS has parameter pu,, characterizing the
unsteadiness of the system.

- =0 =0.08 1,=0.15
0,25 0,3
0,2 0,25
015 01s
0,1 _ g
0,05 004125 “g0s 0,04125
0 0,020625 0 0,020625
Q Q
£ 0 o) o 0 o
AV o & = \HV 3 - =
SRS . & & ¢
.0_0_0&‘14 #0,05-0,1 0.1-0,15 ®0-0,05 ®0,05-0,1 0,1-0,15
=0 11,=0 11,=0.08 p,=0.15
0,12
0,12
0,08 0.08
o £
=~ 0,04)
%.04 0,04125
0 0 0,020625
Q o
“ 0 =
P e
NS & P &
IO-'.‘LO‘&114 =0,04-0,08 0,08-0,12 = 0-0,04 #6,04-0,{}8 0,08-0,12 = 0,12-0,14

Fig. 5. Maximum and standard deviations

Similar data characterizing the efficiency of stabilization with respect to the vertical, longitudinal
axis, as well as the influence of the parameters of nonlinearity and unsteadiness on the output
functions of the stabilization system with parameters

Jo =0.00003, m; =0.0667, J; =0.00009728, m, = 0.333, J, = 0.00345, a = 0.166667,
a, =1, y=0.01, p, =pg =4.098, p, =p; =9.553, p; =pg=7.687, p, =py =7.714,
Ds = P1o = 3.269, J1; = 0.002, Jo = 0.005, J, = 2, u; = 0.08, u, = 0.2, u3 = 0.04, p, = 0.05,
P11 = 0.05,p;; =1 (6)

are shown in fig. 6-8. Similarly to the previously discussed non-linear stabilization system allows
to compensate for the unwanted errors throughout the range of overload (see fig. 5, 6). The
greatest influence on the output vector function of the nonlinear HDS has the parameter u,, which
characterizes the unsteadiness of the system (see fig. 8).

234

Messrirayk J1.B. MozienpoBanie CHCTeMBI YITIOBOH CTAOMITH3AIMH Ha TIPOLIECCOPaX ¢ MaCIITabHpyeMbIMU apXuTekTypamu. 1pyost ICIT PAH, Tom 31, BeI.
3,2019r., c1p. 229-240

B p
P v 07 VAN
- 06 / \
s 05 / \
02 h/ \
S/ \
-0.3 0.3 I|.v \
_0.4 0.2 .l. \
0.1
05 ol
-0.6 0.1
0 10 20 30 t 0 50 100 150 200 t
Fig. 6. Stabilization in the vertical direction
B,
0,008 FH
0,004
o]
-0,004
-0,008
-0,012
-0,016
0 10 20 30 I

Fig. 7. Stabilization with respect to the longitudinal axis

;=0 p,=0 1,=0.08 p,=0.2
0.6
0,5 0,8
0,4 0,6
0,3
D2 0,4
0,1 0,03 0,2 0,03
0 0,015 0 0,015
= Y 9w o o P (=TT T ’
25588 2w % =2 SE88 2w 00 2
2 S5 oo 8 a2 g3 2am 5 38
- s 3e3d° s° 38338 -°
1S 2
M4 w001 =07-02 s =002 =02-04
=0 1,=0
0,3 0,4
0,25
: 0,3
0,2
0,15 0,2
0,1
=%0,05 0,03 0.1
0 = 0,015 0 - .
o u
S e o w0 o e L =
=R =N-=NR =N - S} = S8 ¥ o 9 B g
s°2°8%ZE-< ==3°883%-°
Hy = o S
=0-0,05 ®0,0501 —=0,1-0,15 2001 M w0102 0,2-0,3 0,3-0,4

Fig. 8. Maximum and standard deviations

7. Efficiency analysis of parallel algorithms

Consider the effectiveness of the implementation on computer systems with coprocessors Intel
Xeon Phi parallel algorithm (2), (3) modeling the effect of typical nonlinearities and unsteadiness
on the output functions of the HDS. The data corresponding to the modeling of a nonlinear
stabilization system with parameters (5) are presented in Table 1. The calculations were performed
on a cluster of faculty of Computer Science and Informational Technologies and Volga Region
Center of New Information Technologies of SSU. The four-dimensional grid of change of
parameters uq, U,, Uz Uy dimension 6 X 9 X 9 x 9 was used.

235

Melnichuk D.V. Modeling of Angular Stabilization System on Processors with Scalable Architecture. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 229-240

Table 1. Modeling of the impact of model nonlinearities and non-stationary, sec.

Grid6x9x9x9

Processor, serial/parallel Testl | Test2 | Test3 | Test4 | Tests

Intel Xeon E5-2603 v2, serial 16411 | 16325 | 16470 | 16531 | 16314

2 processors Intel Xeon E5-2603 v2, OpenMP. 2480 | 2471 2501 2492 | 2485
Coprocessor Intel Xeon Phi 5110P, OpenMP 1667 | 1635 1673 1649 | 1655

2 coprocessors Intel Xeon Phi 5110P, MPI-MAP/OpenMP 1023 | 1015 1032 1008 | 1040

As follows from the Table 1 results, in this case, the use of a single Intel Xeon Phi coprocessor is
more efficient than the use of two quad-core CPUs. The most profitable strategy of using
coprocessors is parallelization based on OpenMP inside the coprocessor and parallelization based
on MPI-MAP between coprocessors. Similar data for the stabilization system with parameters for
the stabilization system with a set of parameters (6) are presented in Table 2. And in this case,
using one Intel Xeon Phi processor is more efficient than using two quad-core CPUs. The most
profitable strategy for the use of coprocessors is the parallelization based on OpenMP within the
coprocessor and parallelization based on MPI-MAP between the coprocessors.

Table 2. Modeling of the impact of model nonlinearities and non-stationary, sec.

Grid6x9x9x9

Processor, serial/parallel. Testl | Test2 | Test3 | Test4 | Test5
Intel Xeon E5-2603 v2, serial. 9637 | 9597 | 9645 | 9657 | 9675
2 processors Intel Xeon E5-2603 v2, OpenMP 1443 | 1470 | 1430 1412 1467
Coprocessor Intel Xeon Phi 5110P, OpenMP 1052 | 1042 | 1063 | 1037 1055
2 coprocessors Intel Xeon Phi 5110P, MPI-MAP/OpenMP 703 699 710 707 705

Analogical evidence of the effectiveness of the implementation of the parallel algorithm (2), (3)
using a single Intel Xeon Phi coprocessor (OpenMP) and two Intel Xeon Phi coprocessors (MPI-
MAP — OpenMP) for a more detailed meshes, changing parameters pu,, u,, Uz W, are given in
Table 3 for stabilization system with parameters (5) and in Table 4 for the stabilization system
with parameters (6).

Table 3 - Modeling of the impact of model nonlinearities and non-stationary, sec.

Processor, serial/parallel. | Testl [Test2]| Test3 [Test4 | Test5
Grid6 x 16 x 16 X 16

Coprocessor Intel Xeon Phi 5110P, OpenMP 8953 | 9005 | 8934 | 8902 | 8985

2 coprocessors Intel Xeon Phi 5110P, MP1-MAP/ OpenMP 4726 | 4753 | 4715 | 4703 | 4744
Grid12x 16 X 16 X 16

Coprocessor Intel Xeon Phi 5110P, OpenMP 18132 | 18243 | 18025 | 18187 | 18053

2 coprocessors Intel Xeon Phi 5110P, MPI-MAP/ OpenMP 9478 | 9529 | 9435 | 9501 | 9439

Table 4 - Modeling of the impact of model nonlinearities and non-stationary, sec.

Processor, technology of parallelization ‘ Test 1 ‘ Test 2 ‘ Test 3 ‘ Test 4 ’ Test 5
Grid6x 16 x16 X 16

Coprocessor Intel Xeon Phi 5110P, OpenMP 5671 | 5634 | 5654 | 5754 | 5698

2 coprocessors Intel Xeon Phi 5110P, MPI-MAP/ OpenMP 2988 | 2969 | 2967 | 3031 | 3002
Grid 12 x 16 X 16 X 16

Coprocessor Intel Xeon Phi 5110P, OpenMP 11205 | 11278 | 11154 | 11174 | 11237

2 coprocessors Intel Xeon Phi 5110P, MPI-MAP/ OpenMP 5777 | 5809 | 5735 | 5741 | 5798

As follows from the Table 3 and 4 results, with an increase in the average number of nodes on the
grid measurement, the multiplicative contribution to the acceleration of the MPI-MAP pattern
quickly tends to the number of coprocessors used.

236

Messrirayk J1.B. MozienpoBanie CHCTeMBI YITIOBOH CTAOMITH3AIMH Ha TIPOLIECCOPaX ¢ MaCIITabHpyeMbIMU apXuTekTypamu. 1pyost ICIT PAH, Tom 31, BeI.
3,2019r., c1p. 229-240

8. Conclusions

The proposed parallel algorithm is effective on cluster systems with nodes using processors with a
large number of cores. In particular, it is effective on cluster systems with Intel Xeon Phi
COprocessors.

References

[1] Andreichenko D.K., Andreichenko K.P. On the theory of hybrid dynamical systems. Journal of Computer
and Systems Sciences International, vol. 39, no. 3, 2000, pp. 383-398.

[2] Andreichenko D.K., Andreichenko K.P. Modeling, analysis and synthesis of combined dynamical
systems. Tutorial. Saratov, Rait-Ekspo Publ., 2013. 144 p. (in Russian) / JI.K. Augpeiidenko, K.II.
AnppeitueHko. MonennpoBaHue, aHaJIN3 U CHHTE3 KOMOWHUPOBAHHBIX AUHAMHUYCCKUX CUCTEM. YueGHOe
nocobue. CaparoB, Uznarenbckuii oM «Paitt-Dkcmo», 2013 1., 144 c.

[3] Andreichenko D.K., Andreichenko K.P., Melnichuk D.V. Pattern MPI-MAP and modeling of nonlinear
hybrid dynamical systems. In Proc. of the IV International scientific conference on Problems of control,
information processing and transmission, vol. 2, 2015, pp. 19-26 (in Russian) / I.K. Aagpeituenxo, K.IT.
Anppeituenxo, J.B. Menpanuyk. Ilarrepp MPI-MAP u MopmenmupoBaHWe — HEIHHEHHBIX
KOMOWHHUPOBAaHHBIX IHHAMHYECKHX CHCTeM. B cOopHuke TpymoB IV MexmyHapomHOH HaydHOI
koH(pepennun «I1pobnems! yrpasieHus, 00paboTKH U nepenadn HHpopmaruny, T. 2, 2015 ., pp. 19-26

[4] Andreichenko D.K., Andreichenko K.P., Melnichuk D.V., Portenko M.S. Adaptive Algorithm of
Parametric Synthesis of Hybrid Dynamical Systems. Izvestiya of Saratov University. New Series. Series:
Mathematics. Mechanics. Informatics, vol. 16, issue. 4, 2016, pp. 465-475 (in Russian) / J.K.
Anppeituenxo, K.II. Amngpeituenxo, J.B. Menpanmuyk, M.C. IlopreHko. ANanTUBHBI aIropuT™M
HNapaMeTPUYECKOT0 CHHTE3a KOMOMHMPOBAHHBIX IHHAMUYECKUX cucTeM. M3Bectuss CapaToBCKOro
YHHBEPCUTETA, HOBasi cepusi, cepusi: Maremarnka. Mexanuka. Hpopmatuka, Tom 16, Beim. 4, 2016 .,
cTp. 465-475.

[5] Kang Q., Traff J.L., Al-Bahrani R., Agraval A., Choundary A., Liao W. Scalable Algorithms for MPI
Intergroup Allgather and Allgatherv. Parallel Computing, vol. 85, 2019, pp. 220-230.

[6] Dalcin L., Mortensen M., Keyes D.E. Fast parallel multidimensional FFT using advanced MPI. Journal
of Parallel and Distributed Computing, vol. 128, 2019, pp. 137-150

[7] Avdeeva A.N., Puzikova V.V. Application of parallel algorithms for numerical simulation of quasi-one
dimensional blood flow. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 2, 2018, pp. 301-316 (in Russian)
DOI: 10.15514/ISPRAS-2018-30(2)-15 / AsneeBa A.H., Ily3ukoBa B.B. IIpuMeHeHne mapamiedbHBIX
QITOPUTMOB TIPH YHMCICHHOM MOJECIHPOBAaHUH KPOBOTOKA B KBa3HOJHOMEPHOM NPUONIKEHUH. Tpymbt
NCTI PAH, Tom 30, Bbm. 2, 2018 ., ctp. 301-316.

[8] Towara M., Schanen M., Naumann U. MPI-Parallel Discrete Adjoint OpenFOAM. Procedia Computer
Science, vol. 51, 2015, pp. 19-28.

[9] Tamada Y. Memory efficient parallel algorithm for optimal DAG structure search using direct
communication. Journal of Parallel and Distributed Computing, vol. 119, 2018, pp. 27-35.

[10] Chen C., Pouransari H., Rajamanickam S., Boman E.G., Darve E. A distributed-memory hierarchical
solver for general sparse linear systems. Parallel Computing, vol. 74, 2018, pp. 49-64.

[11] Takahashi D. Computation of the 100 quadrillionth hexadecimal digit of on a cluster of Intel Xeon Phi
processors. Parallel Computing, vol. 75, 2018, pp. 1-10.

[12] Cheng X., He B., Lu M., Lau C.T. Many-core needs fine-grained scheduling: A case study of query
processing on Intel Xeon Phi processors. Journal of Parallel and Distributed Computing, vol. 120, 2018,
pp- 395-404.

[13] Lazarev D.O., Kuzyurin N.N. On-line algorithm for scheduling parallel tasks on related computational
clusters with processors of different capacities and its average-case analysis. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 6, 2018, pp. 105-122 (in Russian). DOI: 10.15514/ISPRAS-2018-30(6)-6 / JIa3apes
J.0., Kystopur H.H. AnropuTM NOCTpOSHHS pPACIMCAHUH BBIOJHEHMS IApAJUTENBHBIX 3amad Ha
IPyINIax KJIACTEPOB € MPOLECCOpaM Pa3INYHON MPOU3BOAUTENLHOCTH U €ro aHajiu3 B cpenHeM. Tpyasl
WCII PAH, Tom 30, BbIm. 6, 2018 1., cTp.105-122.

[14] Gandhi P. S., Borja P., Ortega R. Energy shaping control of an inverted flexible pendulum fixed to a cart.
Control Engineering Practice, vol. 56, 2016, pp. 27-36.

237

Melnichuk D.V. Modeling of Angular Stabilization System on Processors with Scalable Architecture. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 229-240

Appendix A.

The rotation of the coordinate system is characterized by angles a = (ay, a,, a3)T(in order
as, a,, aq), and

cosa; —sinaz cosa2 sma2
A(a) = [sinas cosoc3 cosor1 —smor1
0 —smoc2 cosoc2 sin@; cosa,

—sina,
B(a) = [cosa, cosazsinal]
0 —sina; cosa,cosa;
In dimensionless variables and parameters the equations of motion of the HDS have the form

Q, = B(.U1B1)B1' Q, = AT (u18,)Q, + B(.ulBZ)BZ' Wo, = _Bo,zsm(.“lﬁo,s)
Wo,, = BO,ZCOS(#IBO,S)r Wy, = 30,3'7”1?1 = A B)Q(0,) —
+a,[(1+my)A(u BP0, Bo) + mP(B1, Bo)]

@ (a,B) = 7 "(A(u1 AU B) — E)(1,0,0)" =

= (P,(a, B), P (at, B), P3(a, B)', E = diag{1,1,1},] D = diag{Jy, J1, J1}
Jo(@1 + 60) + DR, + 1191 X Jowo +/DQy) = M(0,) — (M, 0,0)7
Jo [Qly + woy + #1(Q1zwox - lea)oz)] =

= Méc) Cos(ﬂ1ﬁo,3) + Méc) Sin(ﬂlﬁos) Sin(ﬂlﬁo,z)

Jo [le + d’oz + U (lewoy - Qlywox)] = Méc) COS(HLBO,Z)

a; = —pit arcsin(u1¢3(Bz, 31)) J1(2) = tgz (7)
1 1 P2(B2, B1) 1 P37 (B2, By)
a3 = —arcsin——————, @, = ——arcsin————-—
H1 cos(u1az) M cos(u1az)

m,w, = a,m,[®(0, u; (0, ,32,2’.32,3)T) —®7(0, u1B1)] — A(ua (0, 32,2'.82,3)T)Q(1' t)
W, = AT BT + Q4 X Ry + 11 (Q1 - R)Q — 1, QF R, — 201,04 X B, + 1y
P, + 1,9, X JPQ, = —AT ((1182,1,0,0)IM(L, t) +
+(a,0,0)" x AT ((u1B82,1,0,0)")Q(L, £),J® = diag{/zk, J2,)2}
R, = (1+a,0,0)" + piry, @ (o, B) = pi ' (AT (u1 @) AT (11 B) — E)(1,0,0)" =
= (@7 (o, B), P3(et, B), P53 (cx, B))”
x = #1_1[(1 - ﬂ%(ulgzz +u'Z)1/2 = 1], Ly = .U1u’y:L31 = pyu',
Lyy=Q1-15 - L231)1/2'L33 =(1- L231)1/2:L12 = —Ly1/L33,Lyy = Ly1 /L33
Lyp = 0,Ly3 = —L31Lyy, Loz = LagLyg, ke = Uy (LioL 25 — LaoL's2)
u'y L'y

o ’ " " _ "
Ky = U Lyp L'y — Uy Loz — U L33, K3 = — +uyLy,

33
ily + (AT(#1B1)i:1) : (O,l,O)T - (/41Q1xuz - le(x + puy)) +
+uq[(x + ,ulux).le + l11uzQ1z]Q1y — pi (Q%x + Q%z)uy + 2wy (leuz -
—leux) = Lp1(Q"y + uy(12Q3 — K3Q2)) + L2 (Q'2 — p1 (k1 Q5 — k3Q1)) +
+Ly3(Q"3 + p1 (61Q2 — K2Q1)) — ax[®3(0,B1) + (M + 1 — x)u’y),]
i, + (AT (s B)F) - (0,07 + Oy, — Oy (x +) + (®)
+u[(x + .U1ux)Q1x + ﬂ1qu1y]Q1z — pi (Q%x + Q%y)uz -2 (leuy -
_Q1yux) = L31(Q"y + 1 (x2Q3 — K3Q2)) + L33(Q's + p1()1Q2 — 12Q1)) —
a,[®3(0,B1) + ((m, + 1=)u’,) |
238

Messrirayk J1.B. MozienpoBanie CHCTeMBI YITIOBOH CTAOMITH3AIMH Ha TIPOLIECCOPaX ¢ MaCIITabHpyeMbIMU apXuTekTypamu. 1pyost ICIT PAH, Tom 31, BeI.
3,2019r., c1p. 229-240

Q”1 — i (5 +.3)Q1 = w{—a,(my, + 1 —x)(k5 +13) +Kk'3Q; —k',Q5 +
+2K3Q", — 216,Q" ; — pytey (1,Q2 + Kk3Q3) — ((Wy)? + (W'y)* + (W' ,)?) +
+(Q1 Lig + Oy Loy + Q L3;)* = (QF + ny +03)+

+2[L11(Q1yu"z - leu’y) - L21(leu"z - leu"x) + L31(leu"y - Q1yu.'x)]}

u,(0,t) = 0,u',(0,t) = 0,uy,(1,t) = y, — ad,(0,B),u’y(1,t) = cos(u ;) -

: #flSin(#1ﬁ2,3)'uz(0' t) =0,u',(0,t) = 0,u,(1,t) = z, — ad3(0, B,),

u',(L,t) = —ui'sin(iy B22), Xz = ue(1,t) + a®4(0, B2),

Q"1 (0,£) + 11 (12(0,£)Q3(0,) — #5(0,£)Q, (0, £)) = 9
=1 - A(B1)(1,0,0)" + a,®1(0, B)

Q'1(Lt) + pa(r2(1,0)Q5(1, 1) — k3(1,0)Q2(1,8)) =

= a; @1 (B2, B1) + 1a(Qf, +03,) + (1,0,0)" - AT (s B2) W,

M, =1 (ﬁm + VBZ,l - fol K1dx)rM2 =Kz — Yd"z, M; = K3 + Vu.”y

Q2 = —M'5 + py (kK My — k. M), Q3 = M'; + py (kM — 16, M3)

B.(0) = 81(0) =B2(0) = Bz(o) = fo,2(0) = 30,2(0) = Po,3(0) = 30,3(0) =
=11(0) = 1,(0) = ¥,(0) = y,(0) = 2,(0) = 2,(0) = 11)

=uy,(x,0) =1u,(x,0) = u,(x,0) =1,(x,0) =0

Here (7) are ordinary differential equations, (8) are partial differential equations, (9) are boundary
conditions, (10) are constraint’s conditions, (11) are initial conditions, ()’ = 8()/0x.

(10)

MUHdopmauma o6 aBTope / Information about author

Omutpuit Bagumosnu MEJIBHUUYYK nonyuun creneHb MarucTpa MO HaIpaBJICHUIO
«[Ipuknagnas MmaTematuka u nHpopmatruka» B CapaToBCKOM HallMOHAIHLHOM UCCIIEJIOBATEITHLCKOM
rocynapcTBeHHOM yHuBepcutere umeHu H.I'. Uepnsimesckoro, CapatoB, Poccus. Ero
HCCJIEIOBATEIIbCKME HHTEPECH BKIIOYAKOT MaTEMAaTHYECKOE MOJEIMPOBAHME, MOJEIUPOBAHUE
YOpaBIseMbIX KOMOWHHUPOBAHHBIX JIHWHAMHUYECKUX CHCTEM, MapajuiebHbIE aJIrOPUTMBI U
napajuieJbHbIE BBIUUCIUTEIbHbBIE TEXHOJIOTHU.

Dmitry Vadimovich MELNICHUK received a master's degree in «Applied mathematics and
Informatics» at Saratov State University, Saratov, Russia. His research interests include
mathematical modeling, simulation of controlled hybrid dynamic systems, parallel algorithms, and
parallel computing.

239

Melnichuk D.V. Modeling of Angular Stabilization System on Processors with Scalable Architecture. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 229-240

240

