TPYADbI

MHCTUTYTA CUCTEMHOI'O
NPOrPAMMUPOBAHUA PAH

PROCEEDINGS OF THE INSTITUTE
FOR SYSTEM PROGRAMMING OF THE RAS

ISSN Print 2079-8156 MHCTUTYT cMCcTeMHOro
Tom 32 Beinyck 3 nporpaMMUpoOBaHUA
um. B.I. MeaHHukoea PAH

ISSN Online 2220-6426

Volume 32 Issue 3 Mockea, 2020 Mcn

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)

Tpyabl UHCTUTYTa cuctemHoro nporpammupoBaHusa PAH
Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH - 510 u3ganmne ¢

JIBOMHON aHOHUMHOMN CUCTEMOM

peleH3UpOBaHUs, MyOIUKYIONIee HayYHbIe

CTaThH, OTHOCSIIIUECS KO BCEM 00IaCTAX

CHUCTEMHOTO IPOTPaMMHUPOBAHUS,

TEXHOJIOTHI MTPOrPaMMUPOBAHHUS U

BBIYMCIIUTEIbHON TeXHUKU. Llenbro

W3JIaHU SBIIIETCS (POPMUPOBAHIE HAYIHO-

WH(POPMAITMOHHOM CPEJIbI B ATUX 00JIACTSIX

MyTeM IyOJIMKAIUU BRICOKOKAYECTBEHHBIX

CTaTeil B OTKPHITOM JIOCTYTIE.

W3nanue npeaHasHaueHo s

HCCIe0BaTeNe, CTYACHTOB U

ACIMPAHTOB, a TaKXKe MPakTUKOB. OHO

OXBAaTHIBAET IIMPOKHI CIIEKTP TEM,

BKJIIOYAsi, B YACTHOCTH, CJIEYIOIIHE:

® OIeparroHHBIE CHCTEMBI,

® KOMMIWJIATOPHBIC TEXHOJOTHH;

e 0a3bl JaHHBIX U HH()OPMAITMOHHBIE
CUCTEMBI;

e TapaJuIeIbHBIE U pacIpeIeIICHHbIC
CUCTEMBI;

e aBTOMATHM3HWPOBaHHAas pa3zpaboTka
porpamm;

e BepuduKkanus, BaIUIALMS U
TECTUPOBAHMUE;

® CTaTWYECKUU M JUHAMHYECKUHN aHAIU3;

e 3ammTa U obecreyeHne 6e30MacHOCTH
I10;

® KOMIIbIOTEPHBIC aJITOPUTMBI;

® HCKYCCTBEHHBIN HHTEIIJICKT.

KypHnan nznaercst mo 0oaHOMY TOMY B IO/,

IIECTH BBIITYCKOB B KAKIIOM TOME.

[MomnepkuBaeTCs OTKPBITHIN TOCTYI K

COJICP)KaHUIO M3/IaHUs, O0eCTIeunBast

JIOCTYITHOCTH PE3yJIbTAaTOB UCCIIEIOBAHUI

JUTSL OOIIIECTBEHHOCTH U TIOJ|JICPIKUBAS

JI00ATBHBIA OOMEH 3HAHUSMHU.

Tpyasl UCII PAH pedepupyroTes u/umu

UHJECKCUPYIOTCS B!

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by publishing
high quality articles on open access.

The journal is intended for researchers,
students, and practitioners. It covers a wide
variety of topics including (but not limited
to):

Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design Tools.
Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

GO (4’8[6 @ ULRICHS\WEE
R seeres EVortdcat
sy OpenDOAR
CYBERLENINKA DOA. Jumsycees
cLIBRARY.R
éos e’

| OPEN ACCESS
ot IOJRNALS

ROAR

RECOTRY OF OPEN
ACCLSS REAOSITORES

Aath- N et Ry |

VIIK004.45

Peaxonnerus

I'naBHbIil pepakTop - Aperucsy ApyTioH
Wnixanosud, akageMuk PAH, nokrop ¢usuko-

MaTeMaTHIeCKHUX Hayk, npogeccop, ICII PAH
(Mockga, Poccuiickast @eneparms)

3amecTHTEIb [JIABHOTO pefaKkTopa - Ky3neios
Cepreit JImutpuesnd, a.T.H., npodpeccop, UCIT PAH
(Mockaa, Poccuiickas ®enepanms)

YneHbl peaKoIIeruu

BoponkoB Anjipeii AnatosibeBu4, T0KTOp HU3HUKO-
MaTeMaTH9IECKHX HayK, Ipodeccop, YHUBEPCUTET
Manuecrepa (Manuectep, BenmnkoOpuranms)
Bupounkaiite Upuna BoHaBeHTYpOBHA,
npodeccop, TOKTOp HU3HKO-MaTEMaTHIECKUX HAYK,
WuetuTyT crcteM HHPOPMATHKY MM. aKaJeMHUKa
A.II. EpmoBa CO PAH (HoBocu6upck, Poccust)
Konnos Wrops BaagumMupoBuy, KaHAUAAT
(U3UKO-MaTEeMaTHUECKUX HAayK, TeXHUIeCKUui
yauBepcuteT Bensl (Bena, ABctpusi)
JlacToBenkuii AJsiexceii Jleonn10BuY, TOKTOp
(U3UKO-MaTeMaTHUECKHIX HayK, Ipodeccop,
VYuusepcuter dy6muna (Jyomun, Vpranmus)
Jloma3zoBa MpuHa AjeKcaHAPOBHA, JOKTOP
(bHM3MKO-MaTeMaTHUECKUX HayK, podeccop,
HanuonanbsHeli ucciieioBaTeNnbCKuil yHUBEPCUTET
«Bricmast mkora 5KoHOMUKI» (MocKBa,
Poccuiickas deneparust)

Hosuxos Bopuc AceHoBuY, TOKTOp PH3UKO-
MaTeMaTH4YecKuX Hayk, mpodeccop, CaHKT-
IMetepOyprekuii rocy1apCTBEHHBIH YHUBEPCUTET
(Canxrt-IlerepOypr, Poccust)

Ilerpenko Anexcanap @e1opoBnd, JOKTOP HaYK,
Hccnenoparenbckuii HHCTUTYT MoHpeanst
(Mownpeans, Kanana)

Yepubix Anjpeii, TOKTOp GU3UKO-MaTEMaTHIECKHAX
HayK, poteccop, Haydno-nccnemoBarenbCckuit
nentp CICESE (Ducenana, baxa Kamudopaus,
Mekcuka)

IlIvcrep Accad, TokTop HU3MKO-MaTEMAaTHIECKUX
Hayk, npodeccop, Texuuon — V3pauabckuii
TexHosnorndeckuit nHctuTyT Technion (Xaiida,
N3pannp)

Anpec: 109004, r. Mockga, yi. A. CoDKeHHUIBIHA,
oM 25.

Tenedon: +7(495) 912-44-25

E-mail: proceedings@ispras.ru

Caiir: https://ispranproceedings.elpub.ru/

Editorial Board

Editor-in-Chief - Arutyun I. Avetisyan,
Academician of RAS, Dr. Sci. (Phys.—Math.),
Professor, lvannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr.
Sci. (Eng.), Professor, Ivannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Editorial Members

Igor Konnov, PhD (Phys.—Math.), Vienna
University of Technology (Vienna, Austria)
Alexey Lastovetsky, Dr. Sci. (Phys.—Math.),
Professor, UCD School of Computer Science and
Informatics (Dublin, Ireland)

Irina A. Lomazova, Dr. Sci. (Phys.—Math.),
Professor, National Research University Higher
School of Economics (Moscow, Russian Federation)
Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor,
St. Petersburg University (St. Petersburg, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research
Institute of Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel
Institute of Technology (Haifa, Israel)

Andrei Tchernykh, Dr. Sci., Professor, CICESE
Research Centre (Ensenada, Baja California,
Mexico).

Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The
A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the RAS (Novosibirsk, Russian
Federation)

Andrey Voronkov, Dr. Sci. (Phys.—Math.),
Professor, University of Manchester (Manchester,
United Kingdom)

Address: 25, Alexander Solzhenitsyn st., Moscow,
109004, Russia.

Tel: +7(495) 912-44-25

E-mail: proceedings@ispras.ru

Web: https://ispranproceedings.elpub.ru/

© Unctutyt Cucremnoro IIporpammuposanns um. B.I1. IBanaukosa PAH, 2020

http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://usuario.cicese.mx/~chernykh/
http://assaf.net.technion.ac.il/
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://usuario.cicese.mx/~chernykh/
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/

Tpyast HacTtutyTa CucremHoro IIporpammMupoBanusd

Coxep:xaHnmue

ApPXUTEKTypa CUCTEMBI JACTYKTUBHOHN Bepr(pHUKAIIMK MAIIMHHOTO KO/a
Tnaoviues U.B., Kamxun A.C., Koyvinax A.M., [Iympo I1.A.,
XOPOUIUTIOB A.B. ... 7

MonenupoBanue OMOIHMOTEUHBIX (YHKIIMNA B IPOMBIIUICHHOM CTaTHYECKOM
aHaJIM3aTope Kojaa
Benaese M.B., Pomanenxog E.C., H2HAMBEE H.B.ccoiieeiiieeieeeieieeeeeeiieei e eeevein s 21

[Toaxoapl K OTIaIKe ¥ 00SCIIEUCHHIO KaueCTBa CTATHUECKOTO aHAIM3aTopa
MEHBUIUKOB M. A. oottt e ettt ettt e e e e e s et e e e e e s e as bbb te et e eessssirraeeees 33

I'eneparuist KOJOB TSI BEMIECTBEHHOM apudMeTrukn B apxutektype MIPS

[IporpamMmmMHo-anmapaTHbIH KOMILICKC 00pa0OTKH JaHHBIX JJI UCCIEAOBATEIbCKUX U
HAy4YHBIX [IeJIe ¢ UCTIONh30BaHNEM MUKpOKoMIbIoTepa Raspberry Pi 3
Ianxos I1.A., Huxugopos U.B., JIpoOUHYEE [].B.ccccoueiiiiiiiiiiiiiiiienee e 57

TpaccupoBka ceTeBbIX MakeTOB B siype Linux ¢ nucnons3zoBanueM eBPF
KOBAMEE M.I'. ...ttt 71

[onxon x TpaHCISIIMU TaOIULBI TOTOKOB KOMMYTATOpa IIPOrPaMMHO-

KOH(UTYPUPYEMOI CETH B SI3bIK acceMOJiepa CETEBOr0 Mmpoieccopa
Mapkobopooos A.A., Ckooyosa FO.A., Bonkano8 [LFQ.cccocovvveniiiiiniiiiieiienens 79

AHaNu3 aKTUBHOCTH CTYJICHTOB Ha Kypcax OHJIAH-00YYEeHHUST Ha OCHOBE JIOTOB
wiatdopmbl «OpenEdux»
bapcykos H.J[., Cvicoes U.M., Ilepeckoxosa A.A., Huxugpopos U.B.,

TIOCMEMHBITIC []. «.oovvveieiee ettt ettt e et e et e e st e e sn e e snteeentaeeetenennaeenns 91

PexoMenmaTenpHas cucTeMa Ha OCHOBE JICHCTBUM I10JIb30BaTelIe B COIMAIBLHOMN CETH
Monacmuipes B.B., JIpOOUHYEE TLJ].........c..cccoooiiiiiiiiiiiieiiiesii st 101

OHpeI[eJ'IeHI/Ie AKKayHTOB 3JIOYMBIIIIJICHHUKOB B COHHaJ'IBHOfI cetu BKonTakTe npu
nmoMonu ME€TOJ0B MAallIMHHOI'O O6y‘{€HI/IH

Pa3paboTka aBTOMaTU3UPOBAHHBIX aJITOPUTMOB KOMIBIOTEPHOTO 3PEHUS

1T 00pabOTKN MEAUIUHCKUX N300paKeHn i

Cepeees /].U1., Anopees A.E., /[poounyesa A.O., llenescka C., Kyxasuya H.,

JIDOOUHYEE TLJL.oooveiiiiiii ittt ettt et sbe ettt snbe e bea e 119

AmHanu3 3arpy>keHHOCTH Tpa(uKa Ha TIaBHBIX YJIHLAX 3JIEKTPOHHOTO TOpoJa ¢
NPUMEHEHUEM WHJIEKCa MIEPErpy3KH U HCKYCCTBEHHON HEHPOHHOM ceTH (Ha mpuMepe
ropoaa XamenaH)

Lupmoxammaou M.M., DEMAUIRYD M.c.ccoooiiiiiiiiiieiiiieeese e 131

Hcnons3oBanue KOMITBIOTCPHBIX METOAOB U CUCTEM B U3YUCHUHU IIPaBa,

WHTEIJICKTYaIbHOM aHAIU3e ¥ MOJICITUPOBAHIH ITPABOBOH JIEATEIEHOCTH:
CHUCTEMAaTHICCKUN 0030

Tpo@umos E.B., Meyrep O.1.cccooiiiiiiiiiieiiieeesie et 147

Proceedings of the Institute for System Programming of the RAS

Table of Contents

Architecture of a Machine Code Deductive Verification System
Gladyshev 1.V., Kamkin A.S., Kotsynyak A.M., Putro P.A.,

KROFOSNTIOV AV ..ottt sttt ere et sreeneste e neas 7
Modeling of library functions in an industrial static code analyzer

Belyaev M.V., Romanenkov E.S., IgnatyeV V.N........cccoveiiiiiiieine e 21
Static analyzer debugging and quality assurance approaches

MENSNIKOV IMLLA. L.ttt sttt e s teste et esaeeneesneane s 33
Code generation for floating-point arithmetic in architecture MIPS

ATKNIPOV LS. .ottt 49

Hardware and software data processing system for research and scientific
purpose based on Raspberry Pi 3 microcomputer

Pankov P.A., Nikiforov 1.V., DrobintSeV D.F.c..ooooioeee e veeee e 57
Tracing Network Packets in the Linux Kernel using eBPF
KOVAIEY MG ...t et ettt 71

An Approach to the Translation of Software-Defined Network Switch Flow

Table into Network Processing Unit Assembly Language
Markoborodov A.A., Skobtsova Yu.A., Volkanov D.YU.c.cccceereiiiiiininencceieae 79

Analysis of student activity on the e-learning course based on «OpenEdu»

platform logs

Barsukov N.D., Sysoev I.M., Pereskokova A.A., Nikiforov L.V.,

POSMEINITS Dot sttt s be et s re et e pe b sbeetaenreare s 91

Recommendation system based on user actions in the social network
Monastyrev V.V., DrobintSeV P.D. ..o 101

Machine Learning-Based malicious users’ detection in the VKontakte social network
SAMOKNVAIOV DLt 109

Development of automated computer vision methods for cell counting and endometrial
gland detection for medical images processing

Sergeev D.I., Andreev A.E., Drobintseva A.O., Cenevska S., Kukavica N., Drobintsev

o 5 PSP 119

Analysis of Traffic Congestion in Main Streets of Electronic city using Traffic
Congestion Index and Artificial Neural Network (Case Study: Hamedan City)
Shirmohammadi M.M., ESmaeilpour M.ccccooiiiiiiiiiee e 131

Application of Computer Techniques and Systems in the Study of Law, Intellectual
Analysis and Modeling of Legal Activity: A Systematic Review
Trofimov E.V., MEISKEE O.G. ...coiiiiiiiiie oottt ettt e e s v e st e e e e s s ae e reeneeeeen 147

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-1

ApqueKTypa CUCTEeMbI .qe,quTMBHOVI Bepmbm(auuu
MalLMHHOIoO Koaa

4 U B. I'naowvuues, ORCID: 0000-0002-9922-4076 <ilya.v.gladyshev@gmail.com>
1234 A.C. Kamxun, ORCID: 0000-0001-6374-8575 <kamkin@ispras.ru>
1 A.M. Koyuinsax, ORCID: 0000-0003-3499-4368 <kotsynyak@ispras.ru>
L4 [1.A. ITympo, ORCID: 0000-0001-9540-8321 <pavel.putro@ispras.ru=
1234 4 B. Xopowunos, ORCID: 0000-0002-6512-4632 <khoroshilov@ispras.ru=>

Y Uncmumym cucmemmozo npozpammuposanus um. B.I1. Heannuxoea PAH,
109004, Poccus, 2. Mockea, yn. A. Conscenuyvina, 0. 25
2 Mockosckuii 2ocydapemeennviii ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccust, Mockea, Jlenunckue eopul, 0. 1
3 Mockosckuii (husuko-mexnuueckuti uncmuntym
141700, Poccusi, Mockoeckas obnacmes, 2. [loneonpyounwvii, Hncmumymckuil nep., 9
* Hayuonanowiii ucciedosamenbCkutl ynueepcumem « Belcuids wkona 5K0HOMUKIY,
101000, Poccus, e. Mockea, yi. Macuuyxasi, 0. 20

Annoramus. B nocinennue rogst ICIT PAH pa3spabatsiBaeT cucteMy JeJyKTHBHOM Bepr(pUKALINHA MATHHHOTO
(6unapHoro) koma. MoTuBalys MOHATHA: COBpeMEHHbIe KoMmuisitophl, Takue kak GCC u Clang/LLVM, we
3aCTPaxoBaHbl OT OMMOOK; TEM CaMbIM, NPOBEpKa KOPPEKTHOCTH Cr€HEPHPOBAHHOIO Koja (XOTs Obl juis
KOMIIOHEHTOB C HOBBILIICHHBIMU TPEOOBAaHMAMH K HAJEKHOCTH M OE30MacHOCTH) HE SBISACTCS JIMIIHEH.
KitoueBast 0COGEHHOCTB MPEIIaraeMoro MoAXo/a COCTOUT B BO3MOKHOCTH IIEPEUCIIONb30BaHUS (POPMATIbHBIX
cretdukanuii (mpex- ¥ HOCTYCIOBHI, HHBAPHAHTOB LUKIIOB, JIEMM M T.I.) YPOBHS HCXOIHOIO KOAA VIS
BepU(DUKAIMK MALIMHHOIO Koza. MIHCTpYMEHT OCHOBaH Ha (OpMaIbHOM crelu(pUKaUK CUCTEMbl KOMaHA U
obecrieyrBaeT BBICOKUH YpOBEHb aBTOMAaTH3ALMU: OH JAU3aCCEMOJIMpPYeT MAIUMHHBIN KOJA, HM3BJICKas €ro
CEMaHTHKY, aJallTUPYET BBICOKOYPOBHEBbIE CIEHHU(HUKALUK IS MALIMHHOTO KOJa M IEHEPUPYET YCIOBHS
Bepudukarmy. CucreMa UCHONBb3YET Psii CTOPOHHUX KOMIIOHEHTOB, BKJIIOYAs aHAIM3aTOP MCXOIHOrO Koja
(Frama-C), ananusarop maruuaHoro koza (MicroTESK) u SMT-pemaresns (CVC4). MoayibHast apxuTeKTypa
II03BOJISIET 3aMEHSATH OJIMH KOMIIOHEHT APYr'UM IPY U3MEHEHHH ()OpMaTa BXOAHbIX JIaHHBIX WIIY HCHIONIb3YEeMON
TeXHUKH Bepupukaimu. B padore paccMaTpuBaercst apXMTEKTypa HHCTPYMEHTa, OIMCBIBAeTCS Halla
peanu3alys U ISMOHCTPUPYETCs IpUMep BepuduKay OHOIHoTeuHoN QyHKIMKM Memset.

KimroueBble ci1oBa: hopmanbHble METO/IBI; JSyKTHBHAS BepU(DUKALUS; aHau3 OMHAPHOTO KOJia; IPOBepKa
9KBHMBAJICHTHOCTH; aPXUTEKTypa CUCTEMbI KOMAH/I; MAIIMHHBIN KO/I; TECTUPOBAHUE KOMITHIITOPOB.

Jas uurupoBanus: ['mageimes U.B., Kamxun A.C., Koupiask A.M., Ilyrpo I1.A., Xopomuios A.B.
ApXUTEKTypa CUCTeMBbI AeAyKTHBHOM Bepubukauu MammaHoro koaa. Tpyast UCIT PAH, tom 32, Beim. 3,
2020 1., ctp. 7-20. DOI: 10.15514/ISPRAS-2020-32(3)-1

Baarogapaoctu. Pabora nomnepxana rpantom Munobpaayku PO RFMEFI60719X0295.

Gladyshev I.V., Kamkin A.S., Kotsynyak A.M., Putro P.A., Khoroshilov A.V. Architecture of a Machine Code Deductive Verification
System. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 7-20

Architecture of a Machine Code Deductive Verification System

4 .V. Gladyshev, ORCID: 0000-0002-9922-4076 <ilya.v.gladyshev@gmail.com>
1234 A S, Kamkin, ORCID: 0000-0001-6374-8575 <kamkin@ispras.ru>
1 A.M. Kotsynyak, ORCID: 0000-0003-3499-4368 <kotsynyak@ispras.ru=>
14 p.A. Putro, ORCID: 0000-0001-9540-8321 <pavel.putro@ispras.ru=
1234 AV, Khoroshilov, ORCID: 0000-0002-6512-4632 <khoroshilov@ispras.ru>

! lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
3 Moscow Institute of Physics and Technology (State University),
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
4 National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000, Russia

Abstract. In recent years, ISP RAS has been developing a system for machine (binary) code deductive
verification. The motivation is rather clear: modern compilers, such as GCC and Clang/LLVM, are not free of
bugs; thereby, it is not superfluous (at least for safety- and security-critical components) to check the correctness
of the generated code. The key feature of the suggested approach is the ability to reuse source-code-level formal
specifications (pre- and postconditions, loop invariants, lemma functions, etc.) at the machine code level. The
tool is highly automated: provided that the target instruction set is formalized, it disassembles the machine
code, extracts its semantics, adapts the high-level specifications, and generates the verification conditions. The
system utilizes a number of third-party components including a source code analyzer (Frama-C), a machine
code analyzer (MicroTESK), and an SMT solver (CVC4). The modular design enables replacing one
component with another when switching an input format and/or a verification engine. In this paper, we discuss
the tool architecture, describe our implementation, and present a case study on verifying the memset C library
function.

Keywords: formal methods; deductive verification; binary code analysis; equivalence checking; instruction set
architecture; machine code; compiler testing.

For citation: Gladyshev 1.V., Kamkin A.S., Kotsynyak A.M., Putro P.A., Khoroshilov A.V. Architecture of a
Machine Code Deductive Verification System. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 7-
20 (in Russian). DOI: 10.15514/ISPRAS-2020-32(3)-1

Acknowledgements. The research was carried out with funding from the Ministry of Science and Higher
Education of the Russian Federation (the project unique identifier is RFMEFI60719X0295).

1. BeedeHue

Poms mporpammuoro obecneuenus (I10) B xputmdeckoit WHPOPMANMOHHONW WHPPACTPYKTYpE
IIOCTOSIHHO pacTeT. B pesynprare cefiuac KpaifHe BOCTpeOOBaHBI TPHUKIAAHBIE METOABI M
HMHCTPYMEHTHI 00€CTIeUeHHsI KOPPEKTHOCTH HanOoJee OTBETCTBEHHBIX KoMnToHeHTOB [10. Hay4anpim
COOOIECTBOM MPELIOKEH PsIi TOAXOA0B: HEKOTOPBIE M3 HUX OrPAaHWYMBAIOTCS IIPOBEPKOU
OTCYTCTBUSI B KOMIIOHEHTE OIIMOOK OIPEACICHHBIX THIOB (HAampUMep, OMMOOK BpEMEHH
WCTIONTHEHUST), B TO BPEMsI KaK JIPyr'He TbITAIOTCS JOKA3aTh NOHYIO KOPPEKMHOCHb, 9TO O3HAYAET,
YTO BCE BO3MOXKHBIC BBHIUMCICHHUS] KOMIIOHEHTA 3a8epULAiOmcs N YIOBIETBOPSIIOT HPOSPAMMHOMY
KOHmMpakmy, BBIpAXXEHHOMY B (opme nped- m nocmyciosuii Ha mHTEpdEich KoMmmonenTa. s
JIOKa3aTENbCTBA TAKOTO POJIa CBOWCTB MPUMEHSIOT METOIBI 0e0YKMUGHOU 8epupuKayuu.

[lepBrIe naen TakuX METOIOB MOSBIIINCH B padoTax dioiina [1] u Xoapa [2] eme B korre 1960-b1x
rofioB (MHAYKTHBHBIC YTBEPKICHHS, aKCHOMAaTHIECKasi CeMaHTHKa | mpodee). HecmoTps Ha 310,
Bepudukanus npomsinnienHoro 110 crana peanucmuunoii coceMm HenasHo [3-7]. Bee m3BecTHbIe
MHCTPYMEHTHI ACAYKTHBHON BepH(pUKAIMK MMIEPATUBHBIX IPOTPAMM CIEAYIOT SIMHOMY MOIXOLy

[8l:
8

I'mapenues U.B., Kamkun A.C., Koussk AM., ITyrpo IT.A., XopoumiaoB A.B. ApxuTekTypa CUCTeMBI IeyKTUBHON BepH(UKauu
MammHHOro koxa. Tpyowt UCIT PAH, tom 32, Beim. 3, 2020 1., ctp. 7-20

® (hopmanvHo OTIPENENSIETCS CeMaHMUKA BCEX OIEPaTOPOB S3bIKa MPOrpaMMUPOBAHUS;

e (yHKIMOHAJBHBIE TPEOOBAHMS K KOMIIOHEHTY (POPMaIM3YIOTCSI B BUIE Npeo- U NOCHYCN08UlL
(yHKIMH (MIIM METO/IOB) Ha HEKOTOPOM A3bIKe CheyuduKayuu;

® [0JIB30BATENIEM MPEIOCTABIISIFOTCS IOTIOHUTENbHBIE MTOJCKAa3KH JJIsl HHCTPYMEHTA, TaKhe Kak
UHBAPUAHMbBL YUKILO08, scnomozameinbhblil koo (ghost code) u zemmot;

® Ha OCHOBE crienU(pHUKALUI U TOJCKa30K HHCTPYMEHTOM T€HEPUPYIOTCS YCI06UsL 6epuuKkayuu,
KOTOpBIE IPOBEPSIOTCS € IHOMOIIBIO pewiamens (SOIVEr) wmm ummepaxmugnoil cucmemol
odokazamenvcmea meopem (proof assistant);

e JI0Ka3aTeNIbCTBO BCEX YCIOBHH BepU(HKAIIMU O3HAYAET, UTO 6CE€ BOIMOMICHbIE BLIYUCTEHU
KOMITOHEHTa Y/IOBJIETBOPSIIOT (DYHKIMOHAIBHBIM TPEOOBAHUAM C YUETOM NpPeOnonodceHull
(eunome3) o cpene UCHIONHEHUs, CPEACTBAX Pa3pabOTKU H T.I1.

OnHO U3 MPEAIIONOKEHUH COCTOMT B TOM, YTO MAaIIMHHBIH (OMHApHBINA) KOA, CreHepHpOBaHHBIN

KOMITWJISITOPOM, COOTBETCTBYET CEMaHTHKE S3blKa IporpamMmupoBaHus. OYeBHIHO, YTO JTYy

THITOTE3y MOXKHO MPHHSATH TOJBKO JUIsl BEpU(PHUIIMPOBAHHBIX KOMIIIATOPOB, Hanpumep, CompCert

[9], ucronb3yeMbIX B OCHOBHOM B HMCCJIEJOBATEIBCKUX MPOEKTaX. B MHIyCTpHHM ke Mmo-npekHEMY

HCTIONIB3YIOT «TSDKEJIOBECHBIEY» ONTUMH3HpYIoIue KoMmmisaTopel, Takue kak GCC u Clang/LLVM.

K coxaneHuio, OHM CIMIIKOM CJIOXHBI JJIsi BepU(UKAIMM, W OUIMOKH B CreHEPHPOBAHHOM

MAaIlTUHHOM KOJIe He SIBJISIFOTCS peaKocThio [10].

B kauecTBe anbTEpPHATUBHOI'O MOJIX0J12, HE IPHHUMAIOLIETO Ha BEPY KOPPEKTHOCTh KOMITHIISTOPA,

MBI TpeIaraeM sl KaKAOoW MporpamMMbl JI0Ka3bIBaTh, YTO CICHEPUPOBAaHHBIM OMHAPHBIA KOI

YIOBJIETBOPSIET (YHKIMOHAIBHBIM CIelM(UKANNAM, 3aJaHHBIM JUIS HMCXOJHOro Koma. Mnes

BBITJISIUT TPUBJIEKATEIbHOW — TOpa3io Mpolle MPOBEPUTh OIHO KOHKPETHOE NpeoOpa3oBaHHE

KOJla, YeM KOMIWIATOp IeNUKOM. boriee Toro, 3To MO3BONSET MCHOIB30BATH ArpECCHUBHBIC

ONTHMH3ALMHU, KOTOPBIE B 1IEJIOM HEOEe30MacHbl, HO MPUEMIICMBI Il KOHKPETHOTO KOMIIOHEHTa U

€ro KOHTpakTa. B To e BpeMsi eCTb MHOTO TPYIAHOCTEH, KOTOPbIE HYKHO IPEOIOIETh!

e 1eneBas apxumexmypa (cucmema KoMano) — PEruCTPBI, HaMSTh, PSKUMBI aAPECALUH 1
KOMaH/Ibl — JOJDKHA OBITh (hopmanuzogana (MHA4€ HEBO3MOXKHO MaTEMaTH4ECKH CTPOTO
paccyxJaTb O CEMaHTHKE MAIIMHHOIO KOZIa);

® BbICOKOYPOBHEGble Cheyughukayuy TOIKHBI HEKOTOPBIM 00pa3oM adanmuposamuvcs K
OUHApHOMY KOy (B YaCTHOCTH, JIOJDKHO OTIPEAEIATHCS COOTBETCTBUE MEXIy IEPEMEHHBIMHU B
HCXOJHOM KOJIE U 3JIEMEHTaMH MaMATH B MAIIMHHOM KOJIE);

® TI0JCKAa3KHU [Vl HHCTPYMEHTA BepU(HKALNY, BKII0YAsi HHBAPHAHTHI IIMKJIA, BCIIOMOTaTeIbHbIH
KO/l ¥ JIEMMBI, JIOJIXKHBI nepeucnonb306amscsl Ha ypoBHE OMHAPHOTO Koza (MM AOIDKEH
CYIIECTBOBATH ATbTEPHATUBHBIN CIIOCO0 MX 3aJaHU);

e HMHCTPYMEHT JOJDKEH HPOBEPAThH (PyHKIMOHAJIBHBIC CBOMCTBA MOJYy4AIOIIErocst ONHAPHOTO
KOJIa TIPY HAJTMYIHUHN IPOU3BOJIBHBIX ONMUMUZAYUL KOMAULAMOPA.

OcraBmiasics 4acTb CTaTbU OPTaHMU30BaHA CIEMYIOINM oOpa3zoM. B pazn. 2 memaercst 0630p pador,

TIOCBAIICHHBIX JEAYKTUBHOM BepU(HKalUHM MMpOorpaMM Ha ypoBHE OMHapHOro koxma. B pasm. 3

OITMCHIBAETCA APXUTEKTYpa CHCTEMBI NEIYKTUBHOM BepH(UKAIMM MalIMHHOrO kKoma. B pasnm. 4

MIPUBEICH IPUMEP UCIIOIB30BaHMS IPEUIOKEHHOT0 oAX0Aa — bnbianorednast pyHKIus memset,

kommmnpyeMass B cucremy komann RISC-V. Hakowen, B pasnm. 5 memaercs 3akiiodeHHE M

OOpPHCOBBIBAIOTCS] HANIPABIICHHS NATBHEHIINX UCCIIEAOBaHNH.

2. 0630p numepamypsbli

B mpoekte Why3-AVR [11] ¢ nomompro mratdgopmer Why3 [12] BepuduiupyroTcs mporpaMmsl
0e3 BETBIICHWA M ITMKJIOB, pa3paboTaHHBIE Ha s3BIKE acceMOliepa MUKpOKoHTpoiuiepa AVR.
Cucrema xomann AVR npexncraBmsercs ¢opmansHo Ha si3pike WhyML — cuHTakcuc mo3Bomser
OIMMCHIBATh KOMAaHABI TakUM 00pa3oM, dYTOOBI acceMOJepHBIH Kox (Tocie IMpocToro
npenporeccupoBanus) 061 qomyctumMbiM WhyML-TtekcTom. TIporpaMMuctT MoXeT aHHOTHPOBATh

9

Gladyshev I.V., Kamkin A.S., Kotsynyak A.M., Putro P.A., Khoroshilov A.V. Architecture of a Machine Code Deductive Verification
System. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 7-20

KOJI IPEeAI- U OCTYCIOBUSIMU U IIPOBEPATH €T0 KOPPEKTHOCTD C IIOMOIIBIO BHEIIHUX pEIIaTesIeH HiTH
WHTEPAaKTUBHBIX CHCTEM JIOKa3aTeldbCcTBA TeopeM. VHCTpyMEHT MOXKeT OBITh IMOJe3eH Ul
HU3KOYPOBHEBOM pa3paboTku, mockoabky Why3 obmagaer 60oraTbiMu BO3MOXKHOCTSIMU JJTST aHAITA32
u npeoOpa3oBaHus koxa. Ham monxoxn ommmuaercs: (1) OoH MO3BONSIET MOBTOPHO HCIONB30BAaTh
cnemuduKaMu ypoOBHA HMCXOAHOIO KoAa sl Bepudukanuu OuHapHOro Kona; (2) oH
Macmradupyercs Ha Oosee CIOKHBIE apXUTEKTYPBI 33 CUET UCTIONb30BAHMS CIICIHATN3UPOBAHHBIX
SI3BIKOB, TakuxX Kak nML [13], mst cnermdukanmy cucreM KoMaHz; (3) OH HOAIEPKUBAET LUKIIE B
nporpamMmax (4, COOTBETCTBEHHO, HHBAPHAHTHI IUKJIOB B CIICHU(HKALINIX).

B pa6ore [14] ans Bepudukanuy ManmmHHOTO koja Ha moaMHokecTBax ARM, PowerPC n x86 (IA-
32) ucnonb3yeTcs WHTEpaKTHBHAS CHCTeMa jaokaszarenscrBa teopeM HOLA [15]. YnomsiHyThIE
apXHUTEeKTYpHl ObuH (popManu3oBaHbl HezaBucuMo: Monen ARM u x86 [16,17] pazpabGoransl Ha
HOLA, a monens PowerPC [18] — Ha Coq [19] (B pamkax npoekra CompCert [9]), a 3aTeM Bpy4dHYIO
nepeBezriena Ha HOL4. ABTOp BbIAENSET YeThIpE YPOBHS aOCTpaKIMK: MaIIMHHBIN KoJl (YpoBeHb 1)
ABTOMATHUYECKU JIEKOMITMIIUPYETCS] B HU3KOYPOBHEBYIO peasn3anuio (ypoBeHb 2); MOJb30BaTeNb
BpYYHYIO pa3palaTbiBaeT BBICOKOYPOBHEBYIO peanu3auuio (ypoBeHb 3), a Takxke
BBICOKOYPOBHEBYIO crienn(HKanuio (ypoBeHb 4); 0Ka3aTeIbCTBO COOTBETCTBHS MEXIY 3THMHU
YPOBHSIMH TapaHTUPYET, YTO MAIIUHHBIN KOJ YIIOBJIETBOPSET BHICOKOYPOBHEBOM CrielM(UKAIINH.
[Ipenmy1iecTBO pelIeHns: COCTOUT B BO3MOXKHOCTH IIEPEUCIIONb30BaHU HEKOTOPBIX 10Ka3aTeIbCTB
(ypoBHH 3 u 4 He 3aBUCAT OT apXHUTeKTypbl). Emle oAnH MOMEHT, KOTOPBIH clelyeT OTMETUTh, —
aBTOMATHUeCKasi TPAHCISIMS IUKIOB B peKypcuBHble (QyHKImM. Ha Ham B3misn, ypoBeHb
ABTOMATHU3allM MOXXHO IIOBBICUTH 32 CUET MWCIIOJIb30BAHUS CIIEIUATU3UPOBAHHBIX SI3BIKOB
ONMCaHUs CUCTEM KOMaH[I.

WHTepecHbIil IOAXOM K MPOBEpKe cOOTBeTCTBHs MammHHOro kona ACSL-crnenudukanumsm [20],
paccmotpen B pabore [21]. Ilponecc BeirsauT cnepyroium obpasom: (1) ACSL-aHHOTanmu
3alMCHIBAIOTCA B BHIE acceMOJEpHBIX BCTaBOK; (2) MOIM(UIMPOBAHHBI MCXOAHBIH KOA
TpaHCIUpYyeTCsi B SI3bIK accemOiepa; (3) momydeHHbI acceMOnepHbIil KoJ mnpeoOpasyercs B
WhyML; (4) mnardopma Why3 renepupyert ycnoBusi BepupHKalui ¥ IPOBEPSIET UX C TIOMOIIBIO
BHEIIHEro pemrarens. MeToJ MOXOXK Ha MNpeljaracMblii HaMH, OJHAKO €CThb CYILECTBEHHBIE
ormund. OCHOBHOE M3 HHX 3aKIIOYaeTcss B TOM, YTO MpoLecC BepUUKaLUM «3aBi3aH» Ha
KOMIIMJIAITOP — TIPH NEPEX0Jie C OJHOI0 KOMIIMIIATOPA HA APYroi MOXKeT NOTpeOoBaThes 10paboTka
uHCTpYMeHTa. Kpome Toro, Bepudukaiys Ha YpoBHE s3bIKa acceMOiepa He M03BOISET IOJTHOCTHIO
OTKa3aTbCs OT THUIOTE3bl O KOPPEKTHOCTH KOMIWIATOpPA — acceMONEpHBIM KOx sBiseTcA
MIPOMEXYTOUHBIM TPECTaBICHUEM, ITOUISKAIINM JaibHeNel Tpancasauu. Hamma nens — caenarth
HUHCTPYMEHT BepU(HKALIMI KaK MOKHO OoJiee He3aBUCHMBIM OT KOMITIUIATOPA U LIeJIEBOH MAILIMHBI.
B pabore [22] neMOHCTpUpYyETCS BO3MOXKHOCTD IIEPEUCIIONbH30BAHHMS I0KA3aTENIbCTB KOPPEKTHOCTH
HCXOIHOT0 Kofia 11l Bepr(HUKaIlMy MamMHHOT 0 Koza. [logxon muttoctpupyercs Ha npumepe Java-
MOJOOHOTO $S3bIKA, KOMITWIMPYEMOTro B OalT-KOx aOCTpakTHOW cTeKoBOW MammiHbBL. CTaThs
MOCBAIICHA KOAMpOBaHMIO ¢ mepenocoMm gnokaszarenabctB (PCC — Proof-Carrying Code) u
TIOKA3bIBAET, YTO (TP ONPEEICHHBIX MPEANOIOKEHNAX) KOMITWIALISA COXPAHsET JOKa3aTenbCTBA;
JIPYTUMH CIIOBAMH, JIOKa3aTeIbCTBO KOPPEKTHOCTH UCXOIHOTO KoJa (TIOCTPOEHHOE aBTOMATHUECKH
WIN WHTEPAKTHBHO) MOXKET OBITh NPEe0oOpa3oBaHO B JI0KA3aTENbCTBO KOPPEKTHOCTH MAIIMHHOTO
Kofa. XOTS MIEH 3TOro IOAX0/a MOTYT OBITh IOJE3HBI, pelraeMas HaMH 3aJada OTIMYaeTcs OT
onucaHHoil. Kpome Toro, mnpennoXeHHOE pELIEHUE MPUBA3AHO K KOHKPETHOW ammapaTHON
mwiatdopme.

3. Mpednazaemas apxumekmypa

B aToM pazznerne onuchBaeTCs MpeaiaraeMasi apXUTEKTypa CHCTEMbI JeAyKTUBHOW BepH(prKaImm
MamuHHOrO Kozaa. CucremMa mpenHasHa4deHa JUIS MPOBEPKHM MAIIMHHOTO Koja (YHKIMK Ha
COOTBETCTBHE CIeNU(UKanyaIM YpOBHS HCXOAHOrO Koma. MHCTpYMEHT INpHWHHMMaeT Ha BXOJ
CJIEYIOIIHE JaHHbIE:

10

I'mapenues U.B., Kamkun A.C., Koussk AM., ITyrpo IT.A., XopoumiaoB A.B. ApxuTekTypa CUCTeMBI IeyKTUBHON BepH(UKauu
MammHHOro koxa. Tpyowt UCIT PAH, tom 32, Beim. 3, 2020 1., ctp. 7-20

e BEpUPHUIMPOBAHHBIN UCXOOHbII KOO QYHKIHA U e cneyugpuxayuu (TIPeN- 1 MOCTYCIIOBUS,
WHBApHAHTHI [IUKJIOB U T.IL.);

® HEONMUMUBUPOBAHHBIN 00BEeKMHBIU KOO PYHKIIHM;

® ONMUMUSUPOBAHHBIL 00BeKMHbLI K00 QPYHKIMHU (KOJI, TTOTeKAIIUH TPOBEPKeE);

o cneyugukayus yeresou apxumexkmypol (opManbHOE ONMUCAHUE PETHCTPOB, PEKUMOB
aJpecaliii 1 KOMaH]] MHKPOIIPOIIeccopa);

® KOH@ucypayus KoOMIuIamopa u yenegon mauiurvl (pa3Mephbl TUIIOB JaHHBIX U IBOMYHbIH
uHTepQeiic NPUIoKEHUH).

BEIX010OM HHCTpYMEHTA SBIISCTCS OTYET O BEPUPHUKAINH, COACPIKAITIIA OO BEPUKT — SBJISCTCS
JIU MAITUHHBIA KOJI (YHKIIMM KOPPEKTHBIM, — & TAK)KE YACTHBIC BEPIUKTHI JUIS MOTYYCHHBIX B
Tporiecce aHaau3a yciaoBuid Bepudukanmu. Ha puc. 1 u300paskeHbl KOMIIOHEHTHI CUCTEMBI U CBSI3U

MCKAY HUMHU.

ObkesTHuIR Kog
GEF ONTHMIAIA WG

Eal Komnunauua I l
‘ WN3asneyeHne MalWMHHOTO Koaa

OfbekTHLA xoa
L ONTAMUIALAAMA
¥

AHanu3 MaLMHHOTO KOOa

b
+ ArcemBnepHui
‘ Nwiaccembnen }»
Hamsveine page | RIS ocrpammwe
NOTOKE YPARNeHR \\\r-:.nmu«nro Py MOLETN PEBAKIALAR
Mpad no I“Jm

‘.__H\
J‘e"‘““" “ Mogehs PcaJw:auw | | Monese peanmzauiny

MCAENEHNR BN(HOMH fie3 nnrmuwma = € QrITUMASELIMSIMI
ynp — g

80 S

MNMpoBepKa KOPPEKTHOCTH \\ MNpoBepKa 3KBHBANEHTHOCTH
y —_— — —
AHAMNAE rpada CaRzKA NEPEMEHHLIK [EHBPATOR YCNOBHR Yenoswa -4 MocTpoeH®e
o e o
NOTOKS YNPa8IEHnA H ANEMEHTOE NAMATH FEET AT EE T u&umhwndum‘ COBMBLTHDR MOASNK

7_J

_‘_HK\ Cansinane COEMEI:THE:\
T camssaniog o] AokasaTenscreo iyl
— FEREHTOR TEMFTH TEOPQM’
!
— Mposeona
— —
Mopene I/ME'I&HEHHHE\\ Beppmﬂ- % COBMBCTHDR MOASIKH
CNELMEMKILNA \\&cmunaw ROREER THOL m
. — -

A
BepaukT off
AHanus ucxoaHoOro Koga AKEMARIEH THOCTH

‘ MNocTposdue Mopeni cneuw@rkauni ‘

.

Hepeso L 4
abcrpakTHoro
CHHTAKCWCA

CHHTAKCAHECK MR

ananis Fenepaums oTHeTa |

Vicxoanei kop, § Om4eT 0
Creuudgise aumn BEpAMRaLMIA

Kontmrypaunn
HOMOWAATORE 1
MELUMH L

Puc. 1. Ilpeonacaemas apxumexmypa cucmemuvl 0e0YKMUBHOU 8ePUDUKAYUU MAUUHHOLO KOOd
Fig. 1. The proposed architecture of the system for deductive verification of machine code

11

Gladyshev I.V., Kamkin A.S., Kotsynyak A.M., Putro P.A., Khoroshilov A.V. Architecture of a Machine Code Deductive Verification
System. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 7-20

3.1 Moaynb usBnevYyeHUss MalWMHHOIO Koaa

Mooyab uzsneuenus mawunHo2o Koo TIPUHUMAET Ha BXOJ 00beKmHblll haill, TIONyIeHHBIH pH
KOMITWJISILIAN UCXOOHO20 KOOd, Vi BBIIETISIET MaluMHbil KOO 3aJJaHHON (PYHKIIMH C YIETOM ITOpsi/IKa
0aiiToB 1IeNeBOil MaIMHBI. Peamu3anus MOayis 3aBUCUT OT (opMaTa 0OBEKTHOTO (aiiyia 1 MOXET
HCIIONB30BaTh CyllecTBYIoMuMe yTiuThl, Hanpumep, GNU Binutils [23]. [Tomumo npodero, Moayib
U3BIICKAET U3 O0OBEKTHOrO (paiiia BCIIOMOTaTELHYI0 WH(OPMAIUIO (MemadakHble), B TOM YUCIIC
TaONHUILY aPECOB BhI3BIBAEMBIX (DYHKIIHH.

3.2 Moaynb aHanu3sa MalwMHHOrO Koaa

AHanu3 MalMHHOTO KOJa B TOM BHJE, B KAKOM OH €CTh, OIPaHWYMBAET O0JACTh MPUMEHEHUs
WHCTPpYMEHTa OJIHOW apXHUTeKTypoi. bomee rubkoe perieHHe — HCHOIB30BaHHE APXUTEKTYPHO-
HE3aBHCUMOT'O NPOMEICYMOYHO20 npedcmasienus. JIns TpaHCHSAIMH MaNIMHHOTO KoJa B
MIPOMEXYTOYHOE ITPEACTABICHUE UCTIONB3YETC Juszaccembnep. ITO MOKET ObITh KaK OT/AEIbHBIH
WHCTPYMEHT, pa3pa0OoTaHHbIH JJIsl KOHKPETHOH CHCTEMBI KOMaHJ, TaK U MOJYJb, aBTOMAaTHYECKH
MIOCTPOEHHBIN Ha OCHOBE crneyugurayuu yeregou apxumexmypul. B cienudukayy onuchIBatoTCs
pETHCTPbl MUKPOIIPOILIECCOPA, PEXUMBI ajpecaliii U KoMaHnbl. [ToMuMo crieruann3upoBaHHOTO
NPOMEKYTOYHOTO MPEJICTABICHHST TU3acceMOIep BhIIACT accemOiepHblll KOO, UCTIONb3yeMBbIH IS
OTJIaaKUA U POPMUPOBAHKS OTUYETA O BepH(PHUKAIIHH.

Ha ocHOBe MoNy4eHHOro MPOMEKYTOYHOTO TPEJICTABICHHS CTPOUTCS 2pagd nomoxa ynpasieHus..
,ZIJ'I?I 9TOr'0 B I1OCJICA0OBATCIIBHOCTH MAIlIMHHBIX KOMAaH/[I/I)]eHTI/I(bI/II_[I/IpyIOTCH KOMaH/bl BETBJICHUS U
BBIYHCIISIIOTCS aJipeca MepexoioB. 3a pelIeHne Tl 3a/jauu OTBeUaeT MOOYIb UsneueHus epaga
nomoxka ynpasnenusi. IlomydeHHbIH rpad cHaOXaeTcsl AOMOTHUTENBHON HHpOpMAIKeEi, B3STON 13
creuupUKaK apXUTEKTYPhI, B TOM YHUCJIE YCIIOBHSMH MEPEXOJI0B.

Mooyas nocmpoenusi mooenu peanusayuu EPEBOAUT IPOMEKYTOYHOE MTPECTABICHNE MAITUHHOT O
Kolla B JIOTHYECKYIO0 (OpMy, MOHATHYIO HHCTPYMEHTaM JoKaszarelbcTBa TeopeM. CIO0KHOCTh
MPOIICYPHl 3aBUCHUT OT s3bIKA MpECTaBICHUS: ecinu oH (opmanusosan [16]-[18], B kauectBe
MOJEIM MOXKET BBICTYHAThb CaMO MPEJICTaBJICHWE; B MNPOTHBHOM ciy4ae [13] HyXHBI
JIOTIOJIHUTENIbHBIE TIpeoOpa3oBanusi. Jlyiss 3ammMcH MOIENIM MOXKHO —HCIIONb30BaTh SI3BIKH,
NpUMEHsSEMbIE B CHCTEMax [OKa3aTelbCcTBa TeopeM, Takue kak SMT-LIB [24], HOL [15] u
Coq [19], wiu sI3B6IKH, TOMYCKAOIIHE TPAHCIINIO B yKa3aHHbBIe BhIme, Hanpumep, WhyML [12].

3.3 Moaynb aHanuM3a NCXoQHOro Koaa

Cunmakcuyeckuil auanuzamop TIONy4aeT HA BXOI HCXONHBIH KOI (QYHKIMH BMeECTe C ee
crierpUKAIMAME U CTPOUT depego abecmpaxmuozo cunmarcuca (AST — Abstract Syntax Tree).
HepeBo oroOpaxaercs B MoOelb cheyugukayuti — MHOXKECTBO YTBEPKICHHUH, 3aJafolux
(GyHKIMOHANBHBIE TPeOOBaHMS (U1 NPEICTaBICHHS YTBEP)KICHUI Takke MOXKHO HCIIONB30BATh
SI3BIKH, TPUMEHSEMBIE B CHCTEMax JJOKa3aTelIbCTBA TEOPEM).

[TnathopMBl CTaTHYECKOTO aHANW3a IIO3BOJSIOT pa3pabaThiBaTh IUIATHHBL UL TPAHCISIUH
HCXOIHOT0 KoJia B TpedyeMble peacTaBlIeHus. Mooyab nocmpoerus Mooenu cneyughukayuti MOxeT
OBITh pEaNM30BaH KaK Takod IuraruH. J{ms pacnpocTpaHEHHBIX S3BIKOB MOJIEIHPOBAHHS
CYIIECTBYIOT T'OTOBBIE TPAHCIATOPHI, OJHAKO OHHM HE BCErAa MOIXOIST Ul aHalM3a MAIIMHHOTO
Koza (B 9aCTHOCTH, B HUX HE YUUTHIBACTCS ABOWIHBIA MHTEPEHC IPIITOKEHHI).

3.4 Moaynb npoBepKu KOPPEKTHOCTU

OcHOBHOE pa3iaudne B MPOBEPKE KOPPEKTHOCTH MCXOAHOI'O M MAaIIMHHOTO KOJa IPOSBISIETCS Ha
CTaguy TEHEepaluHW YCIOBUH Bepudukanuu. s HMCXOOHOrO Kojxa YCIIOBHS BepH(HKAIMH
TEHEPHPYIOTCS U JIOKA3bIBAIOTCSI HE3aBUCHUMO JIPYT OT Apyra. Bo Bpemst KOMITMISAIMN HH(POPMALUS
0 MepeMEeHHbIX (YHKIMU TEPSETCs, YTO JAETaeT HEBO3MOXXHBIM HCIIOIb30BaHNE BHICOKOYPOBHEBBIX

12

I'mapenues U.B., Kamkun A.C., Koussk AM., ITyrpo IT.A., XopoumiaoB A.B. ApxuTekTypa CUCTeMBI IeyKTUBHON BepH(UKauu
MammHHOro koxa. Tpyowt UCIT PAH, tom 32, Beim. 3, 2020 1., ctp. 7-20

WHBapUAHTOB LIMKIIOB B paMKax KJIACCHYECKOI CXeMbI TeHepalluy YCIoBHi BepupuKanuu. B obmem
ciydae TpeOyeTcsl IPOBEPHUTh BCE BO3MOXKHBIC COOTBETCTBHUS MEXKIY HMEPEMEHHBIMH HCXOTHOTO
KOJIa ¥ DJIEMEHTaMH MAMSTH MAaIIMHHOTO KoJa (BKJIrouast peructpsl). Ecnu K — umciio nepeMeHHbIX,
HCIIONB3YEMBIX B IIUKJIAX, a N — YHCIIO 3JIEMEHTOB MaMSTH, 33JcHCTBOBAHHBIX B MAIIMHHOM KOJE,
Tpebyerca paccmotpets k! CF apuanTos.

JInsi TIoMCKa COOTBETCTBHS MEKAY MEPEMEHHBIMU U 3JIEMEHTAMH MaMSTH HCIOIb3YeTCsl MOOYIb
ceazviganus. CHavaJa ananu3amop epaga nomoxa ynpasieHus BeIICIAET 0a308bie nymu — HENOUKU
0a30BBIX OJIOKOB (B o0OmIEM ciydae, anuKIW4eckue monarpadel), mokpeiBatomue rpad wu
COCMHSIONINE BEPIIMHBI CICAYIONIMX THIIOB: Hayano (YHKIUH, KOHEl (YHKIHH, BXOJ B IHKI,
BBIXOJ U3 IMKIa. CBA3bIBAaHUE MEPEMEHHBIX M JJIEMEHTOB MAaMATH OCYLICCTBIISETCS HTEPATHBHO,
MyTeM MO3TAHOrO MOMOMHEHHS MHOXECTBA C6530K: TpPU JOOABICHHH CBS3KH IMPOBEPACTCS
HCTHHHOCTh YCIOBHI BepuuKanuu Bcex OA30BBIX IyTeH, 3aBUCHMBIX OT CBSA3bIBAEMOIl
MePEMEHHO; TIOPSIIOK Tepebopa CBI30K YIPaBISIETCS SBPUCTHKAMH.

SIIPOM CHCTEMBI SIBISCTCS 2eHEPAmop YCA08ull eepugurayuu, KOTOpbId I 3aaHHOr0 0a30BOr0
MOYTH W 33J]AHHOTO COOTBETCTBHUSI MEXKIY MEPEMEHHBIMH U JJICMEHTAMH TaMSITH CTPOHUT YCao8ue
sepugurayuu, NOIIISKAIIee TOKA3aTENbCTBY. HacTo Ui YCHENIHOrO J0Ka3aTeabCTBa YCIOBHI
BepUuKanuu TpeOYIOTCS BCIIOMOTaTENbHbIC JeMMbL U AKCUOMbL.

3.5 Moaynb npoBepKU 3KBUBaNeHTHOCTH

Onmumuzuposanuviii k00, TMOAIEKAMNN BepUPUKALUY, CONPOBOXIACTCS HEONMUMUSUPOBAHHOU
6epcuell, TOTYYEHHOW M3 TOTO K€ MCXOMHOro Koza. [Ipu oTcyTCTBUM ONTHMU3AIMK COXpaHsETCs
CTPYKTYypa IMOTOKa YIpaBIICHUS] W, KaK CJEICTBHE, MHBAPUAHTHI LUKIOB (0€3 3TOr0 OMHMCaHHBIN
BBILIE MMOJX0J] HE prMeHnM). Takum 00pa3oM, (GYHKIMOHAIBHBIE TPEOOBAHMUS ITPOBEPSIIOTCS IS
Kola 0e3 ONTHUMHU3AaLMH, MOCIE YEro IIOKa3bIBACTCS IKEUBANEHMHOCHb ONTUMHU3UPOBAHHOM M
HEONTHMHU3UPOBAaHHON Bepcuil. Mcnonb3yeMblil MOAXOA K IIPOBEPKE SKBUBAJICHTHOCTH, KaK U
MHoOrHe apyrue [25,26], ocHOBaH Ha CEMaHTHYECKOM COIOCTABICHHHM MOJENEH MporpaMm M
MOCTPOSHUU COBMECTHOW Moienu (rpaga COBMECTHOTO UCTIOTHEHHUS).

3.6 Moaynb fokasaTenbCcTBa TeOpeEM

Jns mokazaTenbCTBa YCIOBHH BepUGHKALIMU UCIIONB3YETC MOOYab doKazamenvbcmea meopem. B
Ka4ecTBE ATOr0 MOZYJS MOXKHO HCIOJIB30BaTh CYLIECTBYIOIINE PEIIaTeNd, KaK aBTOMAaTHYECKHUE,
TaKk ¥ HMHTepakTHBHBIE. OCHOBHOE TpeOOBaHHWE — IMOAAEPKKA OMTOBBIX BEKTOPOB M MacCHBOB.
JlaHHOe TpeOoBaHHE BO3HUKAET U3-3a CIIOCO0a MOJICIMPOBAHUS MUKPOIIPOIIECCOPOB: (1) perucrpsr
U SYeHKH mamsTH — OWUTOBBIE BEKTOpHI, (2) peructpoBble (ailiibl U OJOKH MaMITH — MacCHBBI
OUTOBBIX BEKTOPOB; (3) KOMaH/IbI — OMEPAIK HaJl ONTOBBIMU BEKTOPAMHU.

Tabn. 1. Peanuzayus cucmemvl 0eOyKMueHol 6epu@UKayul MauuHHo20 Kood
Table 1. Implementation of a deductive verification system for machine code

MonyJs/¢popmar Peanuzanus KommenTapuii
JaHHBIX

Tonynsipublit opMaT AJst IpeCTaBICHUS

OOGBEKTHBIH KOJT ELF [29]

00BEKTHOTO KOJIa
Moyib U3BI€YEHHST OcHOBaH Ha HWcnons3yer readelf mis useneuenns
MAIIHHHOTO KOJIa Binutils [23] MaIIHHHOTO KO/Ia

13

Gladyshev I.V., Kamkin A.S., Kotsynyak A.M., Putro P.A., Khoroshilov A.V. Architecture of a Machine Code Deductive Verification

System. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 7-20

MeranaHHbIE MAITUHHOTO
Koma

Tabnwma agpecos
byHKIHI

ConepXHUT OTHOCUTEILHBIE
(hyHKIH B 00BEKTHOM (haiiie

agpeca Bcex

Monynb ananuza
MAaITMHHOT'0 KOoJa

MicroTESK [30],
[31]

Jln3accembnupoBaHue, HOCTpoeHHE rpada
HOTOKA YHPABJIECHUS, HOCTPOSHUE MOJIEIH
peaszanuu

SI3bIK crienmguKanuu

OrnucaHue CHHTAaKCHCa SI3bIKa acceMGHepa,

MalIMHHOI'O KoJa

APXUTEKTYPBI ML [13] JBOMYHON KOAUPOBKU M CEMAHTHKH KOMaH]{
MMKpOHpOLEccopa

ITpomesxyrounoe MIR B MicroTESK

TpeICTaBICHHE HyTpeHHee npezacrasnenue Micro

AcceMOnepHBIN KOJ

SI3bIK acceMOmepa

@dopmar onuchBaeTcs B celUpUKanun
ApXUTEKTYpBI

I'pad morok yrpasneHus

JSON

OnuckIBaeT rpaHuIbl 0a30BBIX OJIOKOB,
Hepex oIkl MeXTy 0a30BBIMH OJIOKaMH U
YCIIOBHSI TIEPEXOJI0B

Mopnens peainzanuu

SMT-LIB 2.6 [24]

Kon 6a3oBbix 0110k0B B SSA-hopme

Hcxonnblit ko 1
crieruKanum

C/ACSL [20]

Kon Ha s3b1ke CH, aHHOTHUPOBaHHBIH IIpe- U
HOCTYCJIOBUSIMH Y HHBapHaHTaMH LIUKJIOB

Kongurypauus ueneBoii
MaIIHHbBI ¥ KOMITHJIATOPa

JSON

Pa3meps! TunoB naHHbIX A3b1ka CH U ONUCaHue
JBOMYHOIO MHTEp(deiica mpuitoxeHui

Monyne ananusa
HCXOJHOTO KOZIa

Frama-C [32] /
Why3 [12]

Frama-C — pa36op Cu u ACSL, mnarus —
tpancisinus ACSL 8 WhyML, Why3 —
tpaucisus ACSL 8 SMT-LIB

Mopens cienudukarmit

SMT-LIB 2.6 [24]

IIpen- u mocTycnoBHs, MHBAPHAHTHI LIUKJIOB U
T.IL

MeranaHHble HCXOIHOTO
KoJa

JSON

OnHCHIBAIOT CUTHATYPBI CTEHEPHPOBAHHBIX
SMT-LIB ¢ynkimit

14

I'mapenues U.B., Kamkun A.C., Koussk AM., ITyrpo IT.A., XopoumiaoB A.B. ApxuTekTypa CUCTeMBI IeyKTUBHON BepH(UKauu

MammHHOro koxa. Tpyowt UCIT PAH, tom 32, Beim. 3, 2020 1., ctp. 7-20

JIeMMBI ¥ aKCHOMEI SMT-LIB 2.6 [24]

Bcenomorarensasie onpenenenus it SMT-
peuiarenei

Monyinb npoBepku

MicroVer [33]
KOPPEKTHOCTHU

OCHOBHast 4acTh MHCTpyMeHTa (cM. pasi. 3)

VYcnoBust BepupuKanum SMT-LIB 2.6 [24]

I/IHI/ILII/IZUH/B&L[I/IS{ " COXpaHCHUEC MHBAPUAHTOB
IUKJIOB, BBITIOJJHUMOCTD ITOCTYCJIOBUA

Monynb I0Ka3aTeNbCTBa
TeopeM

CVvC4

OtxpoITEIid SMT-pemarens ¢ moanepKKoit
OWUTOBBIX BEKTOPOB U MAaCCHBOB

Bepaukt o koppektHOCTH | OOBIYHBIN TEKCT

“Ila”, “Her” Wiu ‘““HEW3BECTHO: €CIIN “HET”, TO
MPEIOCTaBIISETCS] KOHTPIPUMED

Moxyib iposepkit MicroTESK [31]

HpOBepﬂeT OKBHBAJICHTHOCTH

SKBHUBAJIEHTHOCTH ONTHMH3UPOBAHHOTO U HEONITHMH3UPOBAHHOTO
Koza
Bepaukr 06 .
P OOLIYHBIN TEKCT CM. BEpIHKT O KOPPEKTHOCTH
DKBUBAJIEHTHOCTH

Otuer o BepupuKauu OOBIYHBII TEKCT

Pesynbrar Bepudukaiuu: pe3yabraTsl
HPOBEPKHU BCEX YCIOBUH BepUHUKALUH U
KOHTPHPHMEPBI

4. Anpobauyusi nodxoda

B 3TOM pa3szene onuceIBaeTCs peanu3anis CUCTEMBI IeNYKTHBHON Bepu(HKaMi MalllMHHOT O KOJa
U ee IIpUMeHeHHe Ui OnbianoTeuHol pyHkumu memset [6], KoMIUINPYeMoil B cHCTEMY KOMaHI
RISC-V [27]. B Tabn. 1 mpuBeieHbl JaHHBIE O KOMIIOHEHTax U QopMmarax BBOJAA-BHIBOJA,

UCTIONB3YEMBIX B PEAIN30BAHHON CHCTEME.

B tabn. 2 npencrasnena nudopmanus 0 GyHKIMU memset: HCXOAHBINA KoJ Ha s3bike Cu (BMecTe
¢ ACSL-crienudpukanusmu), acceMONEpHbIA KOJ ¥ OMHAPHBIA KOJ. Pe3ynbTaThl Bepu(HKaIH
(GYHKIMH, BKIIIOYAsl CTeHEpHUPOBaHHbBIE YCIIOBHS BepU(HKALIMN U HHCTPYMEHTHI, HEOOX OIMMBIE IS
BOCIIPOM3BEICHNS IIaTOB METO/Ia, HAXOSTCS B OTKPBITOM goctyre [28].

Tabun. 2. Hexoomsiil, accembnephulil u bunaphuiii Koo yurkyuu memset
Tab. 2. Source, assembly and binary code of the memset function

Hcxonublii ko AccemOJiepHbIii Bunapublit
KO/ KOJ
/@ addi sp, sp, -64 1301 01FC

15

Gladyshev I.V., Kamkin A.S., Kotsynyak A.M., Putro P.A., Khoroshilov A.V. Architecture of a Machine Code Deductive Verification
System. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 7-20

requires \typeof(s) <: \type(char *); sd s0, 56(sp) 233C 8102
requires \valid((char *)s+(0..count-1)); addi sO, sp, 64 1304 0104
assigns ((char *)s)[0..count-1]; sd a0, -40(s0) 233C A4FC
ensures \forall char *p; addia5,al, 0 9387 0500
(char *)s <= p < (char *)s 4+ count ==> *p == (char AENO) ¢; |sda2,-56(s0) 2334 C4FC
ensures \result ==s; sw a5, -44(s0) 232A F4FC
*/ 1d a5, -40(s0) 8337 84FD
void *memset(void *s, int c, size_t count) { sd a5, -24(s0) 2334 FAFE
char *xs =s; 1d a5, -56(s0) 8337 84FC
/*@ sd a5, -32(s0) 2330 F4FE
loop invariant \valid((char *)xs+(0..count-1)); jal zero, Oxe 6F00 C001
loop invariant \valid((char *)s+(0..\at(count, Pre)-1)); 1d a5, -24(s0) 8337 84FE
loop invariant 0 <= count <= \at(count, Pre); addi a4, a5, 1 1387 1700
loop invariant (char *)s <= xs <= (char *)s + \at(count, Pre); sd a4, -24(s0) 2334 E4FE
loop invariant xs - s == \at(count, Pre) - count; lw a4, -44(s0) 0327 44FD
loop invariant \forall char *p; andi a4, a4, 255 1377 F70F
(char *)s <=p < xs ==> *p == (char AENO) ¢; sb a4, 0(a5) 2380 E700
loop assigns count, ((char *)s)[0..\at(count, Pre)-1]; 1d a5, -56(s0) 8337 84FC
loop variant count; addi a4, a5, -1 1387 F7FF
*/ sd a4, -56(s0) 2334 E4FC
while (count-- AENOC) bne a5, zero,-18 | E39E 07FC
*xs++ = (char) AENOC ¢; 1d a5, -40(s0) 8337 84FD
addi a0, a5, 0 13850700

returns; 1d s0, 56(sp) 0334 8103
} addi sp, sp, 64 1301 0104

jalr zero, ra, 0 6780 0000

5. 3aknoyeHue

Wupyctpus I10 Hyxaetcs B IPUKITaTHBIX CpencTBax GpopManbHON Bepudukanni. B OonpmmHCTBE
MHCTPYMEHTOB aHAJIU3UPYETCS] HCXOTHBIM KOJ MPOTrpaMM; MEKIY TeM, TIOCKOIBKY KOMITHIISTOPHI
MOTYT cofep)kaTh OMmMOKH, Hambosee kputnaHoe [1O cremyer MOMOMHHUTENHHO MPOBEPSATH Ha
ypoBHe OmHapHOro Koma. B a3rolf pabore mpemiokeHa apXHUTEKTypa CHUCTEMBI IeTyKTHBHOW
Bepr(HUKANI MAITMHHOTO KOJIa ¥ ONFCaHa KOHKPETHasI CHCTeMa (pealn3yonias 3Ty apXuTeKkTypy),
MO3BOJISIONIAsl ABTOMATHYECKH TMPOBEPSTh MAIIMHHBIA Koj Ha coorBerctBue ACSL-

16

I'mapenues U.B., Kamkun A.C., Koussk AM., ITyrpo IT.A., XopoumiaoB A.B. ApxuTekTypa CUCTeMBI IeyKTUBHON BepH(UKauu
MammHHOro koxa. Tpyowt UCIT PAH, tom 32, Beim. 3, 2020 1., ctp. 7-20

CHGIII/I(l)I/IKaHI/IHM, 3alaHHbBIM JIsI HCXOJHOIo KoOJa Ha A3BIKC Cun. HpC,HJ'IOH(eHHLIf/i IoaxXo0Q
MPAKTUYCCKU HE3aBUCHUM OT HCJ’ICBOﬁ APXUTCKTYPBI, IMOCKOJbKY OCHOBAH Ha CHGHI/I(I)I/IKEIIII/ISIX
CHUCTEMbI KOMAaH/.

Pabota 1mo co3gaHuI0 CHCTEMBI He 3aBEpIIICHa, 1 MHOTHE €€ DJIEMEHTHI MOJISKAT YIIydIieHuo. B
OyayImeM MBI TUIAaHUPYEM PACIIHPHUTH MOIACPKKY s13bika ACSL U MOMOTHUTE CIIMCOK HOCTYITHBIX
LIEJICBBIX apXUTEKTyp (Ha MaHHbI MOoMeHT crienmdurporansl RISC-V, ARM, MIPS u, yactiuso,
Power). Kpome Toro, mMel paboraeM HajJ MPAKTUYCCKH NPHUMEHUMBIMH METOJAMH IIPOBEPKHU
SKBHBAJICHTHOCTH MAIIMHHBIX MPOrPaMM, MOJTYYCHHBIX ITYTEM KOMITWJISIUH OJHOTO HCXOIHOTO
KOJIa ¢ pa3HBIMH TapaMmeTpaMu ontuMuszauu. OTIACIBHBI BONPOC — TECTHPOBAHUE CUCTEMBI U
pa3paboTka pernpe3eHTaTHBHOIO TECTOBOr0 Habopa (K HACTOSIIEMYy BpPEMEHM cHcTeMa Obuia
ucnbITana Ha 20 HeOONMBINX (DYHKIMAK, YTO SBHO HEIOCTATOYHO IS OIICHKU €€ BO3MOKHOCTEH U
OrpaHUYEHUH).

Cnucok nutepatypbl / References

[1] R.W. Floyd. Assigning Meanings to Programs. Mathematical Aspects of Computer Science. Proceedings
of Symposia in Applied Mathematics, vol. 19, 1967, pp. 19-32.

[2] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM, vol. 12,
issue 10, 1969, pp. 576-585.

[3] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, G. Heiser. Comprehensive
Formal Verification of an OS Microkernel. ACM Transactions on Computer Systems (TOCS), vol. 32,
issue 1, 2014, pp. 2:1-2:70.

[4] E.Cohen, W. Paul, S. Schmaltz. Theory of Multi Core Hypervisor Verification. Lecture Notes in Computer
Science, vol. 7741, 2013, pp. 1-27.

[5] P.Philippaerts, J.T. Miihlberg, W. Penninckx, J. Smans, B. Jacobs, F. Piessens. Software Verification with
VeriFast: Industrial Case Studies. Science of Computer Programming, vol. 82, 2014, pp. 77-97.

[6] D. Efremov, M. Mandrykin, A. Khoroshilov. Deductive Verification of Unmodified Linux Kernel Library
Functions. Lecture Notes in Computer Science, vol. 11245, 2018, pp. 216-234.

[71 D.R. Cok. OpenJML: JML for Java 7 by Extending OpenJDK. Lecture Notes in Computer Science, vol.
6617, 2011, pp. 472-479.

[8] A. Kamkin, A. Khoroshilov, A. Kotsynyak, P. Putro. Deductive Binary Code Verification Against Source-
Code-Level Specifications. Lecture Notes in Computer Science, vol. 12165, 2020, pp. 43-58.

[9] CompcCert Project. Available at: http://compcert.inria.fr, accessed 12.07.2020.

[10] C. Sun, V. Le, Q. Zhang, Z. Su. Toward Understanding Compiler Bugs in GCC and LLVM. In Proc. of
the International Symposium on Software Testing and Analysis (ISSTA), 2016, pp. 294-305.

[11] M. Schoolderman. Verifying Branch-Free Assembly Code in Why3. Lecture Notes in Computer Science,
vol. 10712, 2017, pp. 66-83.

[12] J.-C. Filli"atre, A. Paskevich. Why3 — Where Programs Meet Provers. Lecture Notes in Computer Science,
vol. 7792, 2013, pp. 125-128.

[13] M. Freericks. The nML Machine Description Formalism. Technical Report TR SM-IMP/DIST/08, TU
Berlin CS Department, 1993, 47 p.

[14] M.O. Myreen. Formal Verification of Machine-Code Programs. Ph.D. Thesis. University of Cambridge,
2009, 131 p.

[15] K. Slind, M. Norrish. A Brief Overview of HOLA4. Lecture Notes in Computer Science, vol. 5170, 2008,
pp. 28-32. DOI: 10.1007/978-3-540-71067-7 6.

[16] A. Fox. Formal Specification and Verification of ARM6. Lecture Notes in Computer Science, vol. 2758,
2003, pp. 25-40.

[17] K. Crary, S. Sarkar. Foundational Certified Code in a Metalogical Framework. Technical Report CMU-
CS-03-108. Carnegie Mellon University, 2003, 19 p.

[18] X. Leroy. Formal Certification of a Compiler Back-End or: Programming a Compiler with a Proof
Assistant. In Proc. of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of programming
languages (POPL), 2006, pp. 42-54, DOI: 10.1145/1111037.1111042.

[19] Y. Bertot. A Short Presentation of Coq. Lecture Notes in Computer Science, vol. 5170, 2008, pp. 12-16.

[20] P. Baudin, P. Cuoq, J.-C. Filli"atre, C. March’e, B. Monate, Y. Moy, V. Prevosto. ACSL: ANSVISO C
Specification Language. Version 1.13, 2018, 114 p.

17

Gladyshev I.V., Kamkin A.S., Kotsynyak A.M., Putro P.A., Khoroshilov A.V. Architecture of a Machine Code Deductive Verification
System. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 7-20

[21] T.M.T. Nguyen, C. March’e. Hardware-Dependent Proofs of Numerical Programs. Lecture Notes in
Computer Science, vol. 7086, pp. 314-329.

[22] G. Barthe, T. Rezk, A. Saabas. Proof Obligations Preserving Compilation. Lecture Notes in Computer
Science, vol. 3866, pp. 112-126.

[23] GNU Binutils. Available at: https://www.gnu.org/software/binutils, accessed 12.07.2020

[24] C. Barrett, P. Fontaine, C. Tinelli. The SMT-LIB Standard Version 2.6. Release 2017-07-18. 104 p.

[25] M. Dahiya, S. Bansal. Black-Box Equivalence Checking Across Compiler Optimizations. Lecture Notes
in Computer Science, vol. 10695, pp. 127-147.

[26] B. Churchill, O. Padon, R. Sharma, A. Aiken. Semantic Program Alignment for Equivalence Checking. In
Proc. of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
2019, pp. 1027-1040.

[27] RISC-V Foundation. Available at: https://riscv.org, accessed 12.07.2020.

[28] Results of memset binary code verification. Available at: https:/forge.ispras.ru/attachments/7472,
accessed 12.07.2020.

[29] Executable and Linkable Format (ELF. Awvailable at: http://www.skyfree.org/linux/references/ELF
Format.pdf, accessed 12.07.2020.

[30] M. Chupilko, A. Kamkin, A. Kotsynyak, A. Protsenko, S. Smolov, A. Tatarnikov. Test Program Generator
MicroTESK for RISC-V. In Proc. of the International Workshop on Microprocessor and SOC Test and
Verification (MTV), 2018, 6 p.

[31] MicroTESK Framework. Available at: http://www.microtesk.org, accessed 12.07.2020.

[32] Frama-C Platform. Available at: http://frama-c.com, accessed 12.07.2020.

[33] MicroVer Project. Available at: https://forge.ispras.ru/projects/microver, accessed 12.07.2020.

[34] CVC4 Solver. Available at: https://github.com/CVVC4/CVC4, accessed 12.07.2020.

UHcopmauua o6 aBTopax / Information about authors

Wnes Brnagnmuposuu I'JIAIBIIIEB — ctymeHT Maructparypsl IO HampasieHHto «CucTeMHOe
nporpammupoBanue» B BIID. Cdepa HayuHblx HHTepecoB: QopManbHas BepudUKALUs U
ONEPpaAllMOHHBIC CUCTEMBI.

llya Vladimirovich GLADYSHEYV is a Master's student studying system programming at the
National Research University "Higher School of Economics”. His research interests include formal
verification and operating systems.

Aunekcannp Cepreesnu KAMKUH — kanauar pu3nko-MaTeMaTHYeCKUX HAYK, BEAYIUI HaYdHBIH
COTpYZHHUK oTaena TexHonormi nmporpammupoBanus VCII PAH; npenogaer 8 MI'Y, M®TU u
BIID. O6nacte Hay4HBIX MHTEPECOB: MPOEKTHPOBaHKE IU(POBOIl anmaparypbl, BepupUKalus u
TECTHPOBAaHUE, CTATUIECKUH 1 TuHaMudeckuit ananu3 HDL-onmcanuii, BBICOKOYPOBHEBBII CHHTES.
Alexander Sergeevich KAMKIN is a leading researcher at the Software Engineering Department of
Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS). He is
also a lecturer at Moscow State University (MSU), Moscow Institute of Physics and Technology
(MIPT), and Higher School of Economics (HSE). His research interests include digital hardware
design, verification and testing, static and dynamic analysis of HDL descriptions, and high-level
synthesis. Alexander has a PhD in Physics and Mathematics.

Aprem Muxaiinopua KOLBIHAK wmmagmmii HaydHBIM COTPYOHHK OTHENa TEXHOJIOTHI
nporpammupoBanus. OOmacTb HAay4yHBIX HHTEPECOB: BepH(DHUKALMA ¥ TECTHPOBaHHE,
KOMITHJIITOPHBIE TEXHOJIOTHH, BEICOKOYPOBHEBBIN CHHTE3 M (DOPMATIbHBIE METOMBI.

Artem Mikhailovich KOTSYNYAK is a junior researcher at the Software Engineering Department
of Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS).
His research interests include verification and testing, compiler technologies, high-level synthesis
and formal methods.

MaBen Aunpeesud [TYTPO momywmn crenens 6akanaBpa B 00JACTH MPOTPAMMHON WH)KEHEPHH U
CTENEeHb MarucTpa B 001acTu cucteMHoro nporpammupoBanns B BIIID, Mocksa, Poccust. Pabotaer
NCIT PAH. HccnenoBaTenbckne HHTEPECH! BKIIOYAIOT JIEIYKTUBHYIO BEPU(HKALUIO, JIOTHYECKOE
IporpaMMHpPOBAHUC U CTaTHYECKUH aHAJIN3 MAIIMHHOIO Koza.

18

I'mapenues U.B., Kamkun A.C., Koussk AM., ITyrpo IT.A., XopoumiaoB A.B. ApxuTekTypa CUCTeMBI IeyKTUBHON BepH(UKauu
MammHHOro koxa. Tpyowt UCIT PAH, tom 32, Beim. 3, 2020 1., ctp. 7-20

Pavel Andreevich PUTRO received a bachelor's degree in software engineering and a master’s
degree in system programming from the National Research University Higher School of Economics,
Moscow, Russia. He works at the Ivannikov Institute for System Programming of the RAS. His
research interests include deductive verification, logic programming, and machine code static
analysis.

Aunekceir Baamumuposrny XOPOIIMJIOB, Bexymuii HaydHBIH COTPYAHHK, KaHIUIAT (HU3HUKO-
MaTeMaTH4ecKuX Hayk, aupektop Llentpa Bepudukammu OC Linux 8 UCIIPAH, noueHT kadeap
cucremHoro nporpammupoBanust MI'Y, BIID u MOTU. OcHoBHbIE HayYHbIE UHTEPECHI: METObI
MMPOCKTUPOBAHUA H pa3pa6OTKI/I OTBCTCTBCHHBIX CHCTCM, d)OpMaHLHLIe METO/bI HpOFpaMMHOfI
HWHXCHCPHUHU, MCTO/bI BepI/I(l)I/IKaHI/II/I 1 BaJlyaaliuv, TECTUPOBAHUC HA OCHOBE Moueneﬁ, METOObI
aHaM3a TpebOBaHMIA, orepaliMonHast cuctema Linux.

Alexey Vladimirovich KHOROSHILOV, Leading Researcher, Ph.D. in Physics and Mathematics,
Director of the Linux OS Verification Center at ISP RAS, Associate Professor of System
Programming Departments at Moscow State University, the Higher School of Economics, and
Moscow Institute of Physics and Technology. Main research interests: design and development
methods for critical systems, formal methods of software engineering, verification and validation
methods, model-based testing, requirements analysis methods, Linux operating system.

19

Gladyshev I.V., Kamkin A.S., Kotsynyak A.M., Putro P.A., Khoroshilov A.V. Architecture of a Machine Code Deductive Verification
System. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 7-20

20

Tpyowt UCI1 PAH, mom 32, suin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-2 M

Modeling of library functions in an industrial static
code analyzer

1 M.V. Belyaev, ORCID: 0000-0003-3489-3508 <mbelyaev@ispras.ru>
2E.S. Romanenkov, ORCID: 0000-0001-9736-5492 <esromanenkov@ispras.ru=>
12V N. Ignatyev, ORCID: 0000-0003-3192-1390 <valery.ignatyev@ispras.ru>

! lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. SharpChecker is an industrial level static analyzer, which is aimed at detection of various bugs in C#
source code. Because the tool is actively developed, it requires more and more precise information about
program environment, especially about results and side-effects of library functions. The paper is devoted to the
evolution of models for the standard library historically used by SharpChecker, its advantages and drawbacks.
We have started from SQL.ite database with the most important functions properties, then introduced manually
written C# model implementations of frequently used methods to add support of data container states and have
recently developed a model, built by a preliminary analysis of library source code, which allows to gather all
significant side-effects with conditions for almost whole C# library.

Keywords: static analysis; library; source code analysis

For citation: Belyaev M.V., Romanenkov E.S., Ignatyev V.N. Modeling of library functions in an industrial
static code analyzer. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 21-32. DOI:
10.15514/ISPRAS-2020-32(3)-2

MoaenupoBaHue 6MGNNOTEYHbIX (PYHKLUA B MPOMbILLNEHHOM
cTaTU4eCKOM aHanusaTope koga

Y M.B. benses, ORCID: 0000-0003-3489-3508 <mbelyaev@ispras.ru>
2E.C. Pomanenxos, ORCID: 0000-0001-9736-5492 <esromanenkov@ispras.ru=
L2 B H. Henamwes, ORCID: 0000-0003-3192-1390 <valery.ignatyev@ispras.ru=>

Y Unemumym cucmemnozo npoepammuposanus um. B.I1. Ueannuxosa PAH,
109004, Poccus, 2. Mockea, ya. A. Condcenuyvina, 0. 25
2 Mockosckuii 2ocyoapcmeennbiii ynueepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwi, 0. 1

Abstract. SharpChecker — sto crarudeckuii aHaIM3aTOp MPOMBIIIIEHHOTO YPOBHS, MPEIHA3HAUCHHBINA JUTS
00Hapy)XEeHHS Pa3IMIHBIX OIIHOOK B HCXOmHOM Kozie C#. TI0CKOMbKY HHCTPYMEHT aKTHBHO pa3padarhIBaeTcs,
eMy TpebyeTcs Bce bosee TouHast HH(MOPMAILIHS O IIPOrPaMMHOM cpelie, OCODEHHO O pe3yJIbTaTaX U MOOOIHBIX
addekrax GyHkiwpii 6nbmHoTeKkrn. CTaThsl MOCBSIICHA IBOIIONMN MOJCICH Ui CTaHTAPTHON OUOIMOTEeKH,
HcTOpUUeckH ucrons3yemoii SharpChecker, ee mpenmymectBam 1 HeocraTkaM. Mbl Hadanu ¢ 6a3bl JaHHBIX
SQLite ¢ HanGonee BaXHBIMH CBOWCTBaMH (DYHKLHI, 3aTeM M00ABIIN HAMHCAHHBIC BPYYHYIO peaTH3allin
Mmonenu C# 49acTo MCHONB3yeMbIX METOIOB JUIS MOIICPIKKH COCTOSIHHIM KOHTEHHEepa NaHHBIX, a HEJaBHO
pa3paboTtain MOIeNb, MOCTPOCHHYIO Ha OCHOBE IPEIBAPUTENBHOTO aHAIN3a MCXOIHOTO KOJa GHOIHOTEKH,

21

Belyaev M.V., Romanenkov E.S., Ignatyev V.N. Modeling of library functions in an industrial static code analyzer. Trudy ISP RAN/Proc.
ISP RAS, vol. 32, issue 3, 2020, pp. 21-32

KOTOpasi TMO3BOJSIET coOpaTh BCE CyIIECTBEHHbIE MO004YHBIE 3(D(MEKTBI C YCAOBHSAMH IS [OYTH BCE
oubmmorexu C#.

KiaroueBble c10Ba: CTaTUYECKHI aHaJIu3; 6PI6J'H/IOTCK3; aHaJIn3 UCXOOHOI'0 KoJda

Jdas uutupoBanusi: benses M.B., PomanenkoB E.C., Urnatees H.B. MopnenupoBanue OHOIMOTEUHBIX
(YHKIMH B IPOMBIIIICHHOM CTaTH4YeckoM aHanu3arope koga. Tpyast ICII PAH, Tom 32, Bem. 3, 2020 1., cTp.
21-32 (ua anrnuiickom sizsike). DOI: 10.15514/ISPRAS-2020-32(3)-2

1. Introduction

There are four main methods for finding defects in programs: manual inspection, testing, dynamic
analysis and static analysis. Testing requires to prepare a large number of tests, but even if the code
is fully covered by tests, some part of program execution cases is left unconsidered.

Fuzz testing, or fuzzing, is automatic generation of random correct and incorrect input data and
running the program on that input data with error detection. Fuzzing requires a large number of
program runs, and its applicability is limited by the difficulty of finding the input data that causes
an error.

Dynamic analysis also requires to prepare an execution environment and a set of input data, and it
covers only the paths reachable on given input data.

Static analysis allows to find defects in programs without execution. The result of a static code
analyzer is a list of potential defects found in the program with defect type, origin location and
propagation trace.

Source-level static analysis allows the analyzer to get more information about the source code,
including variable types and syntax, that is lost after transforming the program into the compiler's
intermediate representation. Such information can be used to increase the quality of analysis and to
report the defect trace precisely mapped to the source code. Moreover, there are several types of
errors that could be discovered only using static analysis, for example, unreachable code, copy-paste
errors and comparison of a pointer with \texttt{null} after dereferencing it.

Most projects use external libraries in binary form, so source-level static analyzer is unable to get
any information about such functions and the resulting analysis quality is significantly reduced. To
be able to produce precise results it is necessary to provide the most sensitive information about
called external functions, for example, which exceptions can be triggered with their conditions,
which values are changed, etc. This paper is devoted to the possible methods for data provision that
were tested with the static analysis tool SharpChecker [1], which is also available as a part of Svace
[2], [3] static analyzer tool-set. SharpChecker contains several analysis engines: AST, dataflow,
symbolic execution [4], taint [5] and experimental machine learning based subsystem [6].
Modeling of external libraries code is an important task in interprocedural source code analysis.
Knowing the preconditions, return values and side effects of external functions can improve the
precision and recall of analysis in general. Programming languages such as Java and C# have large
standard libraries — Java Class Library and .NET Framework (or .NET Core) respectively, which
are widely used by programmers. So this problem gets high priority even for initial analyzer version.
We will demonstrate the evolution of our approaches, that were used by SharpChecker in historical
order. At each stage the specified method was sufficient to meet the requirements of the analyzer.
During the evolution of algorithms, used by SharpChecker, or because of the development of
detectors for new error types it becomes necessary to get higher precision of modeling, to cover
huge amounts of new libraries, to model specific properties of several functions. Since
SharpChecker is the industrial level tool which is deployed into large companies, we also have to
consider such criteria as performance, results stability and determinism. As a result, we can't be
limited by the single approach and will show how we combine all of them to achieve better results.
The paper is organized as follows. In Section 2 we define the set of metrics and properties used to
evaluate and compare the described techniques. Section 3 is devoted to the existing and well-tested

22

Benses M.B., Pomanenxos E.C., Urnarses H.B. MonenupoBanne 6n6anoTedHbix GyHKINIT B TPOMBIIUICHHOM CTaTHYECKOM aHaIN3aTope
xona. Tpyowt UCI1 PAH, Tom 32, Beim. 3, 2020 1., cTp. 21-32

approaches. In Section 4 we describe the newly developed approach that we plan to finish and
integrate into production. We present most serious problems that we have solved and address.
Evaluation of the proposed approach using artificial examples and a representative set of opensource
projects, containing more than 4 million lines of code (LOC) from 24 projects, is shown in Section
5. In the last Section 6, we summarize the results of the work and present

directions of future research.

2. Comparison criteria

Although SharpChecker uses several approaches for library modeling, it may be due to historical
and other reasons, which are not based on the actual drawbacks of any specific technique. We
propose the set of criteria that we will use for comparison in the conclusion. We classify the
following list as the most important properties.

e Scalability — the approximate number of methods that are modeled using the specific approach.
We measure only the order of magnitude of the corresponding value.

e Performance — the influence of resulting function model on the analyzer performance. Since it
is hard to measure it, we will sort all methods and use comparative order as a value.

e Completeness is a logical property which clarifies if the given approach covers all method
properties or it will be necessary to add something in future. For example, it is possible to specify
only a single property of a method, such as whether it can return nul1. It will require a way to
specify additional properties, such as precondition for nul1 return value, or that method also
uses locks or creates a resource that should be managed.

e Maintainability means how easy it is to update or correct existing models, when a new library
version is published or to supplement with models for newly added functions.

e Manual correction — a property which specifies who is able to correct models manually:
analyzer developer, user, both or nobody.

e Size — the total size in bytes of all models. The average size of a model of a given method could
be calculated as a result of division of given value by the total number of methods, covered by
the approach.

e Private code — a logical property, which means if it is possible for the user to add data about
private libraries without sharing it with analyzer developers.

All listed metrics are calculated for SharpChecker but the order of magnitude of resulting values is

valid for general case because of the nature of the analyzed approaches.

3. Approaches

3.1 Hardcoded semantics

The simplest approach for modeling individual properties of several methods, which was used in the
earliest versions of analyzer, is hardcoded semantics. It is a very flexible method, because it makes
it possible to model almost everything. It is still used by SharpChecker. For example, the semantics
of the following functions is hardcoded in the analysis engine:

string.IsNullOrEmpty (string);
string.IsNullOrWhitespace (string);
various built-in, NUnit and xUnit asserts;
System.Environment.Exit (int);
System.Nullable<T>.HasValue;
System.Nullable<T>.Value and so on.

The main drawback of this approach is inability to scale for substantial share of methods that is
necessary to cover, because writing support for each function in different parts of analysis engine is

23

Belyaev M.V., Romanenkov E.S., Ignatyev V.N. Modeling of library functions in an industrial static code analyzer. Trudy ISP RAN/Proc.
ISP RAS, vol. 32, issue 3, 2020, pp. 21-32

rather difficult. At the same time it allows to represent some unique properties, for example, that
System.Environment.Exit (int) terminates the execution and that
System.Nullable<T>.HasValue doesn't dereference this and instead compares it with
null. Since the number of such properties and corresponding methods is very small and these
properties are very different, so that the unified approach is not possible, and hardcoding is the only
way to cover such situations.

3.2 Property database

One of the earliest and most important detectors of SharpChecker is related to null dereference. It

requires to know, for example, if some method throws ArgumentNullException, when it's

argument is nul1l. For the majority of functions such information is provided in documentation. As

a result, the first approach to library function modeling implemented in SharpChecker [1] is

extracting some properties of methods from the documentation at MSDN, which is now replaced

with Microsoft Docs [7], and storing it in per-method XML files. The extracted properties include:

method signature, which includes its fully qualified name and types of parameters;

a list of possible thrown exception types;

the possibility of returning null;

which parameters must be non-null.

Other properties are manually added for some methods. Such method properties specify whether a

described method:

e disposes this;

e enters or exits a synchronization monitor;

e changes the inner state of this;

e is pure (has no side effects and returns the same value if called with the same arguments
multiple times);

e uses multithreading;

e isan obsolete cryptographic algorithm implementation;

e isavirtual method which must be called in any method that overrides it.

Later thousands of XML files were transformed into an SQLite database of method properties,

because such database allows more compact storage and faster lookup. Boolean fields are

represented as bit flags in a single Attributes integer column.

This approach allows a rather compact storage of method annotations, doesn't depend on the

availability of library source code, covers all methods that have available documentation at the

moment of parsing and allows easy manual correction of annotations.

However, it doesn't represent a large part of method semantics, including exception conditions, field

assignments, return value conditions, etc., and adding any new information field requires the

developers to fill it by hand for all known methods. When new methods are added into .NET

Framework, manual fields should also be filled.

An additional significant issue with such database is that it becomes outdated and it's hard to transfer

manually added fixes and new information into updated version. Even if we overcome this difficulty,

we cannot verify that the resulting database doesn't contain parse errors, which could suddenly

appear only on customers' code.

3.3 Code models

C# programs widely use collections — data structures and methods for data manipulation. C#
programming language itself supports LINQ [8] — SQL-like language which is used as a unified API
for collections library. For path-sensitive analysis it is very important for the analyzer to be able to
understand if any specific collection could be empty or not, because a lot of errors are related with

24

Benses M.B., Pomanenxos E.C., Urnarses H.B. MonenupoBanne 6n6anoTedHbix GyHKINIT B TPOMBIIUICHHOM CTaTHYECKOM aHaIN3aTope
xona. Tpyowt UCI1 PAH, Tom 32, Beim. 3, 2020 1., cTp. 21-32

corner cases, when loop iteration over collection will not perform even a single iteration. Listing 1
demonstrates an example of such situation, when lastSatisfied could have value null if
1ist has no elements. However, it can never happen, because an element is always added to the
list before the loop, so it’s never empty. It is impossible to reuse both described approaches: there
are too many types and interfaces to hardcode all of them, and it is impossible to hold internal state
of object, which represents a collection, using a database.

1 private bool check(object obj) => true;

2 private void foo(IList<object> list, object elem)
3 A

4 object lastSatisfied = null;

5 list.Add (elem) ;

6 foreach (var elem in list)

7 {

8 if (check (elem))

9 lastSatisfied = elem;

10 }

11 Console.Writeline (lastSatisfied.ToString());
12 }

Listing 1. NRE defect example

To overcome the described problem, we have developed another approach that still doesn't require
the source code of libraries to be available. This approach is to model the most frequently used
methods with handwritten C# code. It isn't necessary for such implementation to be a complete drop-
in replacement of the corresponding library method. Instead, such code contains only some key
features useful for analysis, such as management of the internal state of an object, exception
conditions, data flow between arguments, fields and return value, the possibility of returning null
etc. When the analysis engine is improved, it becomes able to analyze such models better, and so
the quality of library modeling improves even though the models are not changed.
The implementation of the given method is not very hard. The models are organized similarly to
their implementation in the standard library using identical names. All models are joined into the
single C# project, which is analyzed before the target code. So, analyzer can differ these
implementations from user code only because of special labels and prefer to apply summaries of
models instead of using library database.
The main disadvantage of this approach is that the models are written manually, and that means that
they cover only a small fraction of .NET Framework methods. Another theoretically possible
drawback is that if we managed to write manual models for a large number of methods,
SharpChecker would spend a lot of time analyzing these models in the beginning of each run. This
disadvantage is important especially for using SharpChecker with small projects. Such modeling is
very significant for taint analysis engine [5], because it makes it possible to specify paths of tainted
data propagation and cleanup between arguments, object fields and return value.
The described approach seems to have an evident extension. What if it would be possible to perform
preliminary analysis of open source standard libraries, save its results similarly to a regular user
method and reuse for all further static analyzer runs? To make it possible to explore the proposed
approach it is necessary to solve several serious problems. First of all, regular code of library
methods implementation is much more complex than used for models, so the analyzer should be
very precise, stable and deterministic, because an error of analysis of library will be distributed and
multiplied into dozens of errors on target user code. Analyzer must also be very efficient, because
the conditions of every interesting property, gathered from real implementation, are big and
complex. Analyzer should be able to generate compact summaries, because the summaries of
preliminarily analyzed libraries become a part of tool distribution package. It took several years to
overcome mentioned problems, and the most interesting issues and its solutions are presented in the
next section.

25

Belyaev M.V., Romanenkov E.S., Ignatyev V.N. Modeling of library functions in an industrial static code analyzer. Trudy ISP RAN/Proc.
ISP RAS, vol. 32, issue 3, 2020, pp. 21-32

4. Library pre-analysis

Growing collaboration of Microsoft with open-source community has lead to development of .NET

Core — a cross-platform open-source runtime and class library for .NET programming languages.

.NET Core is partially compatible with .NET Framework, although now it doesn't support all classes,

methods and features of .NET Framework. .NET 5, which is planned to be released this year, will

join .NET Core and .NET Framework into one open platform.

The SharpChecker's interprocedural analysis engine works by traversing the call graph in the reverse

topological order, analyzing methods from callees to callers and saving all the knowledge that it has

gained about a method into a method summary, which can be kept in memory or written into a file.

When the analyzer encounters a call of an already analyzed method, it applies its summary to bring

that knowledge into the context of current method.

A fully automatic approach to library modeling is to analyze the source code of a library (.NET Core

in this case, but the technique could be used with any library with source code) with SharpChecker

and to save all summaries of the library methods into a file. Then, when analyzing a user's project,

SharpChecker loads the summaries of called library methods from the file and applies them.

Like the previous approach, the quality of library modeling is closely connected with the quality of

the main analysis engine. This property has the following consequences:

o when the analysis engine is improved, the quality of library modeling increases;

e item improvements that are aimed to improve the quality of models make the main analysis
better;

e jtem to get good results when using library summaries, it is necessary to fix many
previously unknown bugs in the analysis engine and even to implement some new features.

4.1 Summary size reduction

Before the introduction of pre-analysis for library modeling, SharpChecker used method
summaries during analysis to keep gathered information and cleared summary after the analysis
of all callers. The first implementations used identical summaries that were serialized and stored
on disk. The resulting file has 0.5 gigabyte size for 137 thousand records. Initially the size was
even more, because it contained multiple instances of summaries for each method, as some
statistical information is changed after the first serialization and needs to be saved again, and
it's impossible to remove previously serialized record from a compressed archive without
rewriting the whole archive. To use the approach in production it would be necessary to add
that huge file into distribution package, and it is inconvenient to use and update.

A method summary consists of several components, gathered by the common analysis engine
and separate error detectors. Analysis of the biggest summaries showed that a lot of space is
occupied by the information, required for statistics-based detection of possible null return value
dereferences. Since it is not necessary to discover errors in the library during the analysis of the
user code, all statistical data for library methods were removed. Summaries of all private
methods, which are not available from the user code, were also removed. All these fixes allowed
to reduce the total size to 230 MB for 80 thousand records.

Currently we are developing additional more complex features which will also decrease the
total file size, such as simplification of stored conditions.

4.2 Performance issues

Previously used methods for modeling the majority of library functions were unable to store
pre-conditions. Despite of them pre-analysis produces tons of conditions for every property.
Joined with user conditions they reach performance limits. For example, consider the example
at Listing 2. Modeling based on the pre-analysis will generate condition argl != null

26

Benses M.B., Pomanenxos E.C., Urnarses H.B. MonenupoBanne 6n6anoTedHbix GyHKINIT B TPOMBIIUICHHOM CTaTHYECKOM aHaIN3aTope
xona. Tpyowt UCI1 PAH, Tom 32, Beim. 3, 2020 1., cTp. 21-32

\&\& arg2 == null instead of the simpler form arg2 == null, build by the previous
library modeling subsystem. Moreover, every condition, obtained as a result of analysis of foo
will contain argl !'= null \&\& arg2 != null,significantly increasing the complexity
of every further condition.

1. void foo(object argl, object arg2)

2.

3 if (argl == null)

4. throw new ArgumentNullException () ;
5. if (arg2 == null)

6 throw new ArgumentNullException () ;
-

8

9

}

Listing 2. An example of a method throwing ArgumentNullException

To address the problem, we develop condition simplification methods. Since all conditions are
automatically generated, they have a lot of redundancy. Manual inspection of generated
conditions showed that variable substitution will remove a lot of useless conditions. We extract
the known values from equality for conjunction or its negation for disjunction and substitute
value into other components of condition. But conditions, generated by analyzer are very
complex. The current limit for every condition is 200000, what means that a condition tree can
have 200000 nodes. Condition tree is a non-binary tree, where leaves represent atomic
conditions, such as x = 5, and non-leaf nodes contain one of three operations: negation,
conjunction or disjunction. Thus simplification should be carefully preformed, because it is
necessary to prevent multiple traverse of such huge conditions.

4.3 New features

An example of a feature that has not been implemented yet is field sensitivity. If
string.IsNullOrEmpty (string) method was implemented as Listing 3 shows the
analyzer would correctly “understand' its behavior from summaries, removing the necessity of
hardcoded semantics.
1. static bool IsNullOrEmpty(string value)
{

return value == null ||

value == string.Empty;

g w N

Listing 3. Simple implementation of string. IsNullOrEmpty
However, in .NET Core this method has following implementation [9] shown in Listing 4.

1. static bool IsNullOrEmpty(string value)

2.

3. return (value == null ||

4 Ou >= (uint)value.lLength) ? true : false;
5.}

Listing 4. The original implementation of st ring. IsNullOrEmpty

The comments say that such trick with a ternary operator and >= instead of == are used to
workaround some performance issues with the current JIT compiler. Analysis of such
implementation discovered a bug in the control flow graph, where the logical disjunction
operator affected only the control flow, but the value for its result was not created. Even after
fixing this issue, the analyzer can't infer that string.IsNullOrEmpty (x) && x ==

27

Belyaev M.V., Romanenkov E.S., Ignatyev V.N. Modeling of library functions in an industrial static code analyzer. Trudy ISP RAN/Proc.
ISP RAS, vol. 32, issue 3, 2020, pp. 21-32

"Hello, world!" is false, because it lacks some kind of field sensitivity: a = b #a.f
= b.f.

Using summaries allows the analyzer to provide warning traces inside library functions that
make it more easy for the user to understand the reason of the defect and to determine if the
warning is true positive or false positive. It is similar to Microsoft SourceLink [10] technology
that allows to browse and step library source code when debugging.

5. Practical evaluation

The current state of summary pre-analysis implementation doesn't allow to deploy it to the main
analyzer branch, since it has significant regressions in analysis results. We consider separate
major error detectors consequently to decrease the number of false positives, which were
produced by the approach. The results of evaluation are presented for the NRE . * . ARGUMENT
checker family that should be one of the most beneficial from the new technique.

5.1 Artificial examples

Evaluation on existing set of tests used during SharpChecker development showed that the
analyzer, unfortunately, fails more tests with the pre-analysis summaries than without any
function models (except hardcoded). One of the causes is that we focused on null dereference
checker during the development of library pre-analysis approach, and some other checkers are
either accidentally broken or not properly supported. However, even if we filter only null
dereference tests, we still get more failures (18 versus 10) when using pre-analysis summaries.
Some tests are specifically designed to check warnings for library methods, which may return
null, and now they don't pass because the analyzer doesn't distinguish between library and
source methods. Another cause is that this approach is currently in early preview stage, and
there are many things to improve, because this method is very sensitive to any analysis errors.

5.2 Open source projects

Evaluation on a set of 24 open-source projects confirmed that the analyzer is not yet ready to
use summary pre-analysis instead of the database. Among new null dereference warnings there
are many false positives, and some true positives disappeared. However, there are some new
true positive warnings which were not found before due to outdated and incomplete database,
and the trace that shows where inside the library the null value is dereferenced is useful for
reviewing expert. Some warning changes seem to be accidentally introduced analyzer
imprecisions or bugs, because these warnings are not related to external methods at all. We will
continue our efforts in development of summary-based approach to make it production-ready,
as it has significant advantages over other approaches, and fixing issues that arise during the
analysis of libraries helps to improve the analysis quality for user code.

As for the performance, the total slowdown of summary-based analysis is about 1 hour (=60%)
on this project set in comparison with property database approach. It may be noted that the
slowdown for single project may be slightly less, because for a set of projects the summaries
are loaded from file and deserialized multiple times. However, most time is spent due to
increased complexity of analysis, because the analyzer has significantly more information about
methods, such as value flow and exception conditions.

5.3 Related work

ReSharper [11] (a code analysis and refactoring plugin for Visual Studio) and Rider [12] (a
.NET IDE from JetBrains, which is based on ReSharper analysis engine) use XML annotation
files for .NET Framework, .NET Core and many widespread libraries, such as Xamarin, Entity

28

Benses M.B., Pomanenxos E.C., Urnarses H.B. MonenupoBanne 6n6anoTedHbix GyHKINIT B TPOMBIIUICHHOM CTaTHYECKOM aHaIN3aTope
xona. Tpyowt UCI1 PAH, Tom 32, Beim. 3, 2020 1., cTp. 21-32

Framework, NUnit, xUnit, Newtonsoft.Json, log4net etc. Currently annotations allow to specify
such properties of methods [13]: whether a method can return null, is pure, invokes passed
delegate, takes a path as a parameter, is implicitly used through reflection, modifies a collection,
is an assertion with condition, terminates the control flow. Annotations can also define method
contracts, which specify the dependencies between method input (parameters) and output
(returned value, out parameters and control flow effect). JetBrains annotations are documented,
regularly updated and released under MIT license, so they should be considered for usage in
SharpChecker as a free source of quality improvement.
Coverity static analyzer [14] allows users to specify the behavior of external functions using
code models, that are similar to our models [15]. Such models are compiled and analyzed like
regular code, but they have special builtin function invocations that represent specific features,
for example, nondet () represents an unknown condition, unknown () represents an
unknown value and UseAfterFreePrimitives.use (x) represents a usage of a value.
Coverity can produce such models automatically by analyzing source code with cov-make-
library command, and a set of models for Java and Android classes is bundled with the
analyzer. Although this approach allows to use both automatically generated and manually
written models, it has the following disadvantages:
e generating models from the internal representation of analysis data loses some information
in comparison with serialized summaries;
e item constant effort of the analyzer's developers is required to write and support code that
generates the model for each feature;
e item compilation and analysis of models consumes additional time, though it's less than
time required for the analysis of original source code.
Some languages and frameworks have built-in support for annotating code properties and
checkers in the compiler that verify these properties. For example, C# adds nullable
reference types analysis, that makes all reference types non-nullable by default and
requires the user to mark all variables which may hold nul 1 with a 2 postfix. These annotations
are preserved in compiled libraries and allow to check, for example, whether a function can
return null or can take null as a parameter value. AllowNull, MaybeNullWhen,
NotNullWhen and other attributes [16] allow to specify more complex nullability cases.
However, conformance to the annotations is not enforced: the compiler emits warnings (not
errors) when it detects violations, and these warnings may be suppressed with a postfix !
operator. So, a static analyzer should ignore nullability annotations for user code and use them
for library functions only when there are no other models. Java uses @Nullable and
@NotNull annotations for this purpose, but it adds a third state~-- not annotated. The fact
that nullability annotations are integrated into the languages and checked by the compiler
stimulates programmers to annotate their code; on the contrary, a developer that doesn't use a
particular static analyzer wouldn't provide annotations for his library for this static analyzer.
However, these attributes, annotations and language features describe only some properties like
nullability, and do not replace proper modeling of library functions.

6. Conclusion

The paper presents all pros and cons of different approaches used by SharpChecker. Major
benefits and drawbacks of all described approaches are summarized in Table 1.

Table 1. Benefits and drawbacks of described approaches

Hardcoded | Database | C# model | Pre-analysis
Scalability 10t 104 102 10*
Performance 0 1 2 3

29

Belyaev M.V., Romanenkov E.S., Ignatyev V.N. Modeling of library functions in an industrial static code analyzer. Trudy ISP RAN/Proc.
ISP RAS, vol. 32, issue 3, 2020, pp. 21-32

Completeness | — - — +
Unique prop + — + +
Maintainability | - - - +
Manual corr. Developer | Both Both Nobody
Size N/A 27 MB 0.8 MB 230 MB
Private code - -+ - +

Table 1 demonstrates that pre-analysis approach is more flexible and covers all features of all
other approaches. The major drawback of the technique is significant performance degradation.
But the resulting models always have quality suitable for analyzer, because models are
generated by the same algorithms and the quality will increase together with improvement of
analysis engine itself. It covers all libraries, since most of them have opened sources. Library
models can be easily updated and moreover created from private sources by the user
independently. The additional advantage of the approach is predictability~-- it is unlikely to get
very poor results due to parse or human error that could suddenly appear on inaccessible code.
All algorithms, used for generation and application are tested twice, similarly to a compiler
bootstrap.

The production version of SharpChecker now uses hardcoded semantics and a database
together, and used C# models before recent changes. The authors think that usage of four
different ways for library modeling is redundant, so when analyzer is ready and the pre-analysis
approach is tested enough, it will replace all others completely. But it doesn't mean that this
way is the only right technique, because it is impossible to use it for earlier versions, when
analyzer was not able to extract and reuse data precisely and efficiently and, moreover, didn't
require such high accuracy of modeling.

Further improvement of library modeling may be the analysis of library binaries. Since C# uses
CIL [17] as an intermediate representation and it could be decompiled back to C# source code
with a reasonable quality and processed as regular sources, so it doesn't require a separate
analysis engine for CIL. The most advanced use case can include decompilation and analysis
of binary libraries on the fly.

References / Cnucok nutepartypbl

[1]. V. K. Koshelev, V. N. Ignatiev, A. I. Borzilov, and A. A. Belevantsev. SharpChecker: Static analysis tool
for C# programs. Programming and Computer Software, vol. 43, issue 4, 2017, pp. 268-276.

[2]. V. P. lvannikov, A. A. Belevantsev, A. E. Borodin, V. N. Ignatiev, D. M. Zhurikhin, and A. I. Avetisyan.
Static analyzer Svace for finding defects in a source program code. Programming and Computer Software,
vol. 40, issue 5, 2014, pp. 265-275.

[3]. A. Belevantsev, A. Borodin, I. Dudina, V. Ignatiev, A. Izbyshev, S. Polyakov, E. Velesevich, and D.
Zhurikhin. Design and development of Svace static analyzers. In Proc. of the 2018 Ivannikov Memorial
Workshop (IVMEM), 2018, pp. 3-9.

[4]. Koshelev V., Dudina I., Ignatyev V., Borzilov A. Path-Sensitive Bug Detection Analysis of C# Program
Illustrated by Null Pointer Dereference. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 5, 2015, pp.59-86
(in Russian). DOI: 10.15514/ISPRAS-2015-27(5)-5 / Komenes B.K., Jyauna U.A., Urnartee B.H.,
Bopsunos A.W. UyBcTBUTENBHBIH K MyTIM HOKMCK Ae(eKToB B Mporpammax Ha s3sike C# Ha mpumepe
pasbiMeHoBaHusl HyneBoro ykasarens. Tpyast UCIT PAH, Tom 27, Beim. 5, 2015 1., ctp. 59-86

[5]. M.V. Belyaev, N.V. Shimchik, V.N. Ignatyev, and A.A. Belevantsev. Comparative analysis of two
approaches to static taint analysis. Programming and Computer Software, vol. 44, issue 6, 2018, pp. 459-
466.

[6]. G. Morgachev, V. Ignatyev, and A. Belevantsev. Detection of variable misuse using static analysis
combined with machine learning. In Proc. of the 2019 Ivannikov ISP RAS Open Conference (ISPRAS),
2019, pp. 16-24.

[7]. .NET Framework APl Reference. Available at: https://docs.microsoft.com/en-
us/dotnet/api/?view=netframework-4.5. Accessed: Apr. 10, 2020.

30

Benses M.B., Pomanenxos E.C., Urnarses H.B. MonenupoBanne 6n6anoTedHbix GyHKINIT B TPOMBIIUICHHOM CTaTHYECKOM aHaIN3aTope
xona. Tpyowt UCI1 PAH, Tom 32, Beim. 3, 2020 1., cTp. 21-32

[8]. E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling object, relations and XML in the .NET
Framework. In Proc. of the 2006 ACM SIGMOD International Conference on Management of Data, 2006,
p. 706.

[9]. Source code implementation for string.IsSNullOrEmpty(). Available at:
https://github.com/dotnet/coreclr/blob/1f3f474al13bddelc5fecdf8cd9ce525dbe5df000/src/System. Private
.CoreLib/shared/System/String.cs#L439-L448. Accessed: Apr. 10, 2020.

[10]. Source Link —a language- and source-control system for providing source debugging experiences for
binaries. Available at: https://github.com/dotnet/sourcelink/blob/master/README.md. Accessed: Apr.
10, 2020.

[11]. Features — ReSharper. Available at: https://www.jetbrains.com/resharper/features/. Accessed: May 18,
2020.

[12]. Features — Rider. Available at: https://www.jetbrains.com/rider/features/. Accessed: May 18, 2020.

[13]. External Annotations — Help ReSharper. Available at:
https://www.jetbrains.com/help/resharper/Code_Analysis__External_Annotations.html. Accessed: May
18, 2020.

[14]. Coverity Static Analysis. Awvailable at: https://www.synopsys.com/content/dam/synopsys/sig-
assets/datasheets/SAST-Coverity-datasheet.pdf. Accessed: May 18, 2020.

[15]. Coverity 2018.09 Command Reference. Awvailable at: https://www.academia.edu/38375284/Cov
command ref. Accessed: May 18, 2020.

[16]. C# Reserved attributes: Nullable static analysis. Available at: https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/attributes/nullable-analysis, Accessed: May 18, 2020.

[17]. CIL-Common Intermediate Language. Available at: https://en.wikipedia.org/wiki/Common Intermediate
Language. Accessed: Apr. 10, 2020.

Information about authors / Unchopmaums o6 aBTopax

Mikchail Vladimirovitch BELYAEV - Intern Researcher. Research interests: compiler
technologies, static code analysis.
Muxaun Bnamumuposuu BEJISIEB — craxkep-uccnenoBarens. Haydunble MHTEpeECHI:

KOMITWISAITOPHBIC TEXHOJIOTUH, CTAaTUYECKUN aHAJIN3 KoJa.

Egor Sergeevitch ROMANENKOV — Master student of the CMC faculty. Research interests:
compiler technologies, static code analysis.

Erop Cepreesnu POMAHEHKOB - cryment wmaructparypel ¢akynsrera BMK. Hayunbie
HHT! epecm: KOMIIWIATOPHBIC TEXHOJIOTHH, CTaTUYECKUN aHaIIN3 KoJa.

Valery Nikolaevitch IGNATYEV - Candidate of Physical and Mathematical Sciences, Senior
Researcher, ISP RAS, Senior Lecturer, Faculty of VMK MSU. Research interests: static code
analysis, vulnerability search methods, machine learning.

Banepuit Huxonaesuu HWI'HATBEB — kanampat Qu3uKo-MaTeMaTHYECKUX HAYK, CTapIIUid
Hayusabli corpynauk VMCII PAH, crapumii nmpemomaBatens ¢akyasrera BMK MI'Y. Hayunsie
HWHTEPECHl: CTATHYECKUH aHAIN3 KOJIa, TIOMCK YA3BUMOCTEH, MAIIMHHOE 00yUIeHHE.

31

Belyaev M.V., Romanenkov E.S., Ignatyev V.N. Modeling of library functions in an industrial static code analyzer. Trudy ISP RAN/Proc.
ISP RAS, vol. 32, issue 3, 2020, pp. 21-32

32

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-3 M

Static analyzer debugging and quality
assurance approaches

M.A. Menshikov, ORCID: 0000-0002-7169-7402 <info@menshikov.org>
St Petersburg State University,
7-9, Universitetskaya nab., St. Petersburg, 199034, Russia

Abstract. Writing static analyzers is hard due to many equivalent transformations between program source,
intermediate representation and large formulas in Satisfiability Modulo Theories (SMT) format. Traditional
methods such as debugger usage, instrumentation, and logging make developers concentrate on specific minor
issues. At the same time, each analyzer architecture imposes a unique view on how to represent the intermediate
results required for debugging. Thus, error debugging remains a concern for each static analysis researcher. In
this paper, our experience debugging a work-in-progress industrial static analyzer is presented. Several most
effective techniques of constructive (code generation), testing (random test case generation) and logging (log
fusion and visual representation) groups are presented. Code generation helps avoid issues with the copied
code, we enhance it with the verification of the code usage. Goal-driven random test case generation reduces
the risks of developing a tool highly biased towards specific syntax construction use cases by producing
verifiable test programs with assertions. A log fusion merges module logs and sets up cross-references between
them. The visual representation module shows a combined log, presents major data structures and provides
health and performance reports in the form of log fingerprints. These methods are implemented on a basis of
Equid, the static analysis framework for industrial applications, and are used internally for development
purposes. They are presented in the paper, studied and evaluated. The main contributions include a study of
failure reasons in the author's project, a set of methods, their implementations, testing results and two case
studies demonstrating the usefulness of the methods.

Keywords: static analysis; debugging; goal-driven random test case generation; code generation; log file
analysis; visual representation

For citation: Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-48. DOI: 10.15514/ISPRAS-2020-32(3)-3

Mopxoabl K oTnagke n obecneyeHUIo Ka4ecTBa CTaTUYECKOro
aHanunisartopa

M.A. Menvuuxos, ORCID: 0000-0002-7169-7402 <info@menshikov.org>
Canxm-Ilemepbypeckuii 2ocy0apcmeeHHblll yHUGepcumen,
Poccus, 199034, Canxm-Ilemepbype, Ynusepcumemckas nab., 0. 7-9

Abstract. Harmcanue cTaTHYeCKHMX aHAIM3aTOPOB 3aTPYIHEHO M3-33a HAJIHYMSI MHOKECTBA SKBHUBAJIEHTHBIX
npeoOpa3oBaHUil MEXIy MCXOIHBIM KOJOM IMPOrPaMMBbI, NPOMEXYTOYHBIM HPECTABICHHEM M OOJNBIIMMU
¢dopmynamu B ¢opmare Satisfiability Modulo Theories (SMT). TpaauioHHBIE METOMBI, TAKHE Kak
UCHOJIB30BaHUE OTJIaA4YMKa, WHCTPYMEHTapUii M BEJCHHE JKYPHAJIOB, 3aCTaBISIOT Ppa3pabOTUMKOB
COCPEI0TaYMBaThHCS Ha ONPE/IeNICHHBIX MEJIKMX pobiemax. B To jxe BpeMs Kak/iast apXUTEKTypa aHaIH3aTopa
HaBS3BIBACT YHHMKAJIbHOE INPEJCTABICHHE O TOM, KaK CIEIyeT MPEACTaBIATh IIPOMEXKYTOUHBIE PE3YJbTaThl,
HEOOXOIUMBbIE Ul OTJIaAKH. TakuM 00pa3oM, OTJIajgKa OCTaeTcs MpoOJIeMOi Ul KaKIOro MCCIeoBaTeNs
CTaTMYECKOro aHain3a. B 3Toil craThe mpejcTaBieH HAIl OMBIT OTJIaAKH HE3aBEPIICHHOTO IPOMBIIUIEHHOTO
CTaTHYECKOro aHanu3atopa. IIpeacTaBiaeHO HECKONbKO Haubosiee G PEKTUBHBIX METOJOB KOHCTPYKTHBHON
(reHepanmsi KoAa), TECTOBOWM (TeHepamusi CIIyJalHBIX TECTOBBIX CIIy4acB) TPYMI, a TaKKe TPYIIIBI

33

https://english.spbu.ru/events/3326-st-petersburg-university-invites-foreign-citizens-to-prepare-for-successful-admission

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

KypHanm3army (0ObeJUHEHNEe W BU3yalbHOE NPEICTABICHHE >KypHAIOB). ['eHepamus Koma IOMOraer
n30exaTh IpobJIeM C KONMPYEMBIM KOZOM, MBI YIIydIIaeM €ro C IOMOIIBIO MIPOBEPKU HCIIONB30BAHMS KOJA.
Ieneparus cirydaifHBIX TECTOBBIX HAOOPOB HAa OCHOBE LieNied CHIDKAeT PUCKU Pa3pabOTKU MHCTPYMEHTA,
CHJIBHO CMEIIIEHHOTO B CTOPOHY KOHKPETHBIX BApHAHTOB HCIOJIB30BAHHS KOHCTPYKIUH CHHTAKCHCA, ITyTEM
CO3IaHMS MIPOBEPSEMBIX TECTOBBIX IPOrPaMM C yTBepKaAeHNAMHA. CIIHSIHIE KypHAIOB 00BEIUHSET SKypHAaJIbI
MOZyJIeH W YCTAaHABIMBAET IEPEKPECTHBIE CCBHUIKM MEXIy HHUMH. MOMyIb BH3YaIBbHOTO IIPEICTaBICHUS
TIOKa3bIBaeT O0BEIMHEHHBIN JKypHA, IIPEICTABISIET OCHOBHBIE CTPYKTYPHI JAaHHBIX U IPEIOCTABISIET OTYETHI
0 paboTOCIOCOOHOCTH ¥ IIPOU3BOANTEIHHOCTH B (hOPME OTIIEUATKOB JKypHaIa. DTH METOIbI peaH30BaHbl HA
ocHoBe Equid, rutardopMel cTraTHuecKOro aHalli3a [IPOMBILIICHHBIX PUIIOKEHUH, 1 UCHIONB3YIOTCS IS
BHYTpeHHUX Ienedl. OHHM NpeACTaBIeHbl B CTaTbe, M3ydeHBI U OleHeHbl. OCHOBHBIE BKJIAJIBI BKIIOYAIOT
H3y4eHHe IPUIMH cOOEB B aBTOPCKOM TPOEKTE, HA0Op METO/IOB, MX PEAN3ALIH, PE3yIbTaThl TECTUPOBAHUS 1
JIBa TEMaTUYECKUX HCCIEOBAHNS, IEMOHCTPHPYIOIINE MOJIE3HOCTh METOJIOB.

KinroueBble cj10Ba: CTaTUUECKUH aHAIW3; OTJIA[Ka; LEJICHAIPABICHHAs I'€Hepalys CIydalHBIX TECTOBBIX
MIPUMEPOB; TeHepaIys KOjIa; aHaJIM3 KYPHAIBHBIX (ailiioB; BHU3yalbHOE NpE/ICTaBICHUE

Josi murupoBanmsi: MenpmmkoB M.A. Tlomxombl K oTiagke M OOECIIEUSHHIO KadecTBa CTATHIECKOTO
ananuzaropa. Tpyaet MICIT PAH, tom 32, Beim. 3, 2020 r., ctp. 33-48 (Ha anrmmiickom si3bike). DOI:
10.15514/ISPRAS-2020-32(3)-3

1. Introduction

Software engineering is ailing from quality assurance issues. Many approaches are aiming at
achieving runtime error absence (reviewed in Section 2), but logical correctness is not trivially
reachable even if it is guaranteed statically. This is often the case because the correctness is not
automatically derived from internal consistency.

The static analysis is aimed at verification of the real-world problems written in the form of
programs. Analyzers follow the generic debugging and quality assurance trends, however, there is
specificity which should be taken into account [1]. The input program undergoes several
transformations, and each of them has a significant impact on the validity of the final result.
Moreover, several transformations, when combined, may have cumulative effects. The issues during
transformations are usually not runtime errors, which are easy to narrow down using traditional
methods, but rather logical defects. Since transformations are unique products of each static
analyzer, quality assurance is the sole responsibility of the analyzer's author.

In the Equid project [2], the author had several observations. First, feature testing looked biased
towards the developer's interpretation: there is a tendency to test constructions in a way they are
used by the person. Second, thorough bugs may be hidden behind multiple abstractions and appear
unexpectedly as analyzer grows. Third, a significant amount of errors could have been found if there
was a simple measure indicating that action was required. Inserting heuristics for every aspect of a
large software project log is barely achievable (consider limited system resources when making such
advanced logging), so log analysis is the foremost goal for analysis debugging. Fourth, contracts
and formal requirements undeniably contribute to the quality of the product, however, they cover
integrity and consistency rather than the absence of logical issues. In that sense, static analyzers have
no specificity. And the last, static analyzers have a rare environment with little to no requirements
for issue reproduction. For example, reproducing the issue in network router software may require
days and months just to repeat the pattern. That makes it possible to increase logging verbosity until
the issue is detected, so the developer may put efforts into making logs as informative as possible.
With that in mind, the paper suggests an approach for increasing the visibility of issues and/or
reducing the likeliness of bugs, based on code generation, log file improvements, goal-driven
random test case generation, and visual representation. These four methods make up the author's
static analysis debugging and quality assurance approach. The study starts with the description of
third-party approaches (Section 2), continues with the key issue sources identified by the author
(Section 3), the method is presented in Section 4 and evaluated in Section 5.

34

MensbumkoB M. A. TTogxos! k 0TIaAKe U 00SCIEYCHHIO KauecTBa CTaTUYeCcKoro aHaimm3saropa. Ipyost UCI1 PAH, Tom 32, Bem. 3, 2020 T,
crp. 33-48

Motivation. The debugging field concentrates on runtime issues and doesn't answer the question
how to debug deep logical issues in the static analyzer. Thus, solving this problem and employing
the right methods brings many practical benefits, such as improvements in stability, reduced risk of
problems after implementing new features, a faster development pace.

Novelty. The suggested approach covers a significant amount of issues found in the real-world
analyzer's development. The code generation stage is enhanced with the post-processing phase in
which the internal use cases are loosely verified, making integration of new objects faster. The log
fusion adopts hypertext-like approach, making the output more linked and indexable, allowing for
better search and filtering. To the knowledge of the author, the logging had never been integrated
with the hypertext. Random test case generation usually covers trivial input data or just compilable
programs, but in this study, it produces programs with specified verification goals, which is an
improvement over completely random programs. The visual representation is usually aimed at the
visualization of control flow graphs, but in this paper, it is intended for data structures and internal
health/performance reports.

Main contributions. Main contributions comprise the study of the issues in the Equid project, four
debugging and quality assurance techniques, implementations for 3 of the mentioned platform-
independent methods, the testing results, and two case studies presenting the usefulness of the
method.

2. Related work

Most works are about analyzing complex systems with static analyzers rather debugging analyzers,
however, there is a study of defects in static analyzers [1], which gives useful insight to the opinions
of other researchers. According to the paper, visualization and handling of intermediate results is
still not satisfactory for the most developers, as well as handling of data structures. While the author
hadn't synchronized with this research when the development of the analyzer started, a significant
match with the practical experience had been determined.

There are well-known complex tools for debugging of complex systems, e.g. GDB [3], supporting
all major Central Processing Unit architectures. The LLDB [4] is an LLVM-based GDB analogue,
which aims to provide reusable infrastructure. Of course, there is a number of language-specific
tools, but GDB and LLDB are among the most universal ones (e.g. UndoDB [5], which is based
upon GDB, can be used to debug Java and Go applications). Such debuggers provide a way to debug
tools in the direction from the beginning to the end and support analyzing core files.

The reverse direction debugging (or «omniscient debugging») is covered by GDB itself; the
Mozilla's RR [6], the record and replay framework; the Undo Debugger [5], which is claimed to be
one of the first commercial reverse-debuggers [7]. The reverse-debugging tools are useful for
runtime errors, but the majority of the defects, at least in our project, don't fall into this category, so
the usefulness is limited.

Random program generation has been first shown in [8], this method then evolved into CSmith [9]
framework, which had extremely successful applications to industrial compilers. An interesting
result was achieved in the paper [10], in which the author tries to avoid generating dead code by
using all the temporary computations for the final result. Intel has also prepared its random program
generator [11] capable of triggering compiler optimization bugs, with over 140 defects found in
LLVM and GCC. The research [12] covers Orange4 random program generator with an idea of
equivalent transformations — which is, by the framework, similar to goal-based generation from our
study, however, the generated programs are completely random without any goals set. The
MicroTESK [13] project generates test programs for various microprocessors (ARM, MIPS, RISC-
V and other architectures), however, it is aimed at a lower level than the tool described in our
research.

The static analysis visualization is a highly specialized topic, only applicable to concrete tool
developers. Still, the authors of the paper [14] explored the ways to animate the static dependence

35

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

analysis, and the result is very different from standard still visualizations. The closest generic
solutions so far are brought by code visualization tools, e.g. Sourcetrail [15], CVSscan~--- code
evolution visualizer [16], which are at least capable of visualizing programs. The negative part is
that local intermediate representations aren't supported in such tools. Graph-based program
evolution is estimated by GEVOL [17] project, which is important for tracking defects produced by
specific authors and functions. Software performance evolution had been examined in [18], as a list
of functions along with performance results.

The logging is well-investigated in [19], with useful insight about the usage of logging in open-
source projects. The study [20] concentrates on characterizing when do developers log the
information. Additionally, researchers performed the survey on how to improve the logging. Three
suggestions are relevant to our study: log filtering, categorization and analysis/visualization.

The current methods for information retrieval are mostly for natural languages. For unstructured
data, it implies the usage of n-grams, machine learning and other text search methods [21]. One of
the examples is DeepLog [22] system, which aims to find anomalies using deep neural network
model utilizing Long Short-Term Memory (LSTM). Paper [23] reconstructs control flow graph of
the distributed system to find anomalies. Anomaly detection in computer systems using decision
trees is performed in [24]. Those are valid methods for unstructured log analysis, however, these
methods are more suitable for malware action detection on sets of third-party applications, while the
study concentrates the single application development, where defects are detected by the developer.
Our log handling approach is closer to classic hypertext [25].

3. Sources of issues

Throughout 2019 author had been analyzing defects for the issues in more than 1500 commits in the

closed static analysis project. Key issue sources had been identified:

e missing support for the specific syntax/intermediate representation (IR) construction in
submodules;

o small differences in implementations for repeating parts (classes)};

e transformation and ordering issues.

The developers fix such issues promptly if they are observed, but they are not trivial to find. The

author had determined the following three main reasons.

e Low visuality of the transformation passes and the development process. The developer sees the
input, the result, but intermediate transformations might be incorrect. That might lead to false
testing results.

e Unattainable cross-dependencies between modules. The engineer creates a new feature and
edits modules to integrate it, yet different parts might be broken.

e Low quality of tests. This is the main reason why non-trivial issues are often not found. For
example, if tests verify separate handling of if and switch constructions, there might be
problems in their combinations if their implementations have interchanged code.

The following ideas were evaluated to make these issues more visible.

e Automatic generation of major cross-linked data structures to avoid unattended defects.

¢ Making an interface for viewing log that would detect cross-references between pass logs,
visualize the steps, the internal error rate. That's similar to the approach suggested by the paper
[1].

e Improving test cases: make random tests that would be more representative than those written
by hand.

No single solution can be engineered to solve these problems. All typical quality assurance

techniques were used in the project, which is not extraordinary, considering that the ultimate goal

for the static analyzer is to promote good software engineering practices. The \textit{recipes}

36

MensbumkoB M. A. TTogxos! k 0TIaAKe U 00SCIEYCHHIO KauecTBa CTaTUYeCcKoro aHaimm3saropa. Ipyost UCI1 PAH, Tom 32, Bem. 3, 2020 T,
crp. 33-48

suggested by this paper are extensions of the typical methods, designed specifically for static
analyzers. In subsection 5.5, we predict the classes of the programs which might also benefit from
the approach.

Fig. 1 summarizes the findings, matches the issues with the reasons why they are not found and the
solutions.

Missing syntax/IR Differences in
construction support implementations

Actual issues

v

Transformation and
ordering issues

Y Y Y Y
Unattainable cross-
dependencies between [---

modules

| Low visuality of passes
and processes

Reasons why they
are not observed

v

Low quality of tests

G —

Log fusion [» Random test case
generation
Solutions
- » Visual representation Code generation [<-*

Fig. 1. Sources of the issues, reasons why these issues are not observed and their solutions

In the next section, the author's solutions to these problems are demonstrated, along with their
implications.

4. Methods

As stated in the introduction, the paper aims to develop methods assisting in debugging of logical
issues in static analyzers. Unlike other kinds of issues, these issues do not cause runtime failures and
thus are often unattended. The form of assistance varies for every method.

4.1 Code generation

As the code base grows along with the number of syntax constructions, it gets important to ensure
that repeatable fragments are written strictly and concisely, not breaking the stability of the whole
program. Code generation reduces the risk of adding logical mistakes by producing modules with
high integrity and compatibility. This technique itself is not new and can be applied to any software
project, however, the analysis had shown that verification of the usage is vital as static analyzers

37

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-

48

introduce transformations between different models. Also, the plurality of the models implies the
need for the model instantiation for different occasions. This way, the risk of logical issues in this
domain reduces due to common code generation base.

Thus, in the case of Equid, there are three major considerations for the code generation.

Enumerations. When a new element is added to the enumeration, there is a high chance that
dependent enumerative functions are invalidated. A mechanism that indicates the expected use
of enumeration within the source code had been developed.

For example, if a selected code needs to handle just specific enumeration elements, then, before
using the enumeration EnumerationName, the developer may indicate the all-variant usage
of the enumeration:

core_indicate use (EnumerationName, CoreEnumUse::AllVariants).

If the code intentionally uses just selected enumeration values, then the developer indicates it:
core indicate use (EnumerationName, CoreEnumUse::Selected).

The post-code generation phase verifies whether all or selected elements are used. This is a
cheap yet effective mechanism to ensure that all enumeration values are processed. Noteworthy
is that GCC has a switch-checking approach (-Wswitch-enum or -Wswitch), which can be
used with #pragma GCC diagnostic push for the region selection, however, GCC's
approach is compiler-dependent.

Repetitive classes. A big software project doing many data transformations inevitably gets
many classes representing nodes participating in different analysis passes. In most cases, nodes
have a similar structure. The rule of thumb is that classes that can be described declaratively
should be written this way. For instance, in the project, we cover not only syntax structures but
also data classes, language semantics.

Multi-model data. Input data sets may be cross-linked and can be used for different purposes.
There should be a way to interpret the data differently.

4.1.1 Practical implementation

To get code generation, the author had written a standalone C++ tool?. This version is limited
regarding supported syntactical constructions, only intended for demonstration.}. The input is
in customized YAML? format. Several models were employed: enumerations, expressions and
intermediate representation commands. The tool produces a not strictly formal syntax tree,
which is transformed into the real code file.

The Enumeration model has the following format:

type: <A complete type, can have reference to a different namespace
clean type: <A type name without namespace references>

namespace: <Namespace in which enum is introduced>

dont create enum: [false/true]

header:

- <extra header entry>
field:
- name: <Field name>
- token: <string representation>

unknown: <Unknown field for default alternative>

mapping:
- name: <MappingName>

! https://github:com/maximmenshikov/eq_codegen. This version is limited regarding supported syntactical
constructions, only intended for demonstration.

2 https://yaml:org/

38

MensbumkoB M. A. TTogxos! k 0TIaAKe U 00SCIEYCHHIO KauecTBa CTaTUYeCcKoro aHaimm3saropa. Ipyost UCI1 PAH, Tom 32, Bem. 3, 2020 T,
crp. 33-48

- from: <Source type>
- to: <Target type>
- unknown: <default result for unmapped values>
- map:
- from: <Source value>
- to: <Destination value>

The product is a C++ enum class with the given name, a set of fields, a mapping function
between enum and std: : string, and several custom mappings.

The Expression model borrows many ideas from enumerations, but it is slightly more oriented
towards expression model:
type: <Short expression type>
value type:

- direct: <fixed type>

- indirect: <expression to borrow type from>
constructor:

- name: <Internal constructor name>

- parameter:

- <list of parameters, named as members>

member:
- name: <Friendly member name>
- internal: <Private member name>
- type: <Member type>
- default: <Default value>
header:
- <extra header entry>

operation: <enumeration-like list of operations>
function:

- name: <custom function name>

- signature: <function's signature>

- body: <function's body>
override:

ToString: <Code that will return entry's string representation>
This is a short description of expression model, in fact, the model has more parameters for
handling minor cases, e.g. children handling, whether the entry is LValue, and a more
sophisticated return type handling.

The source for the command model (not presented in the paper) is provided at GitHub?.

4.2 Log fusion

A typical log is a flat file with thousands of lines. Developers often struggle to find an optimal

balance between verbosity and conciseness [19], but as mentioned in Section 1, static analyzers

are in the unique position in which running debugging versions is possible without complete

reproduction of the environment. In that case, it is possible to make tools as verbose as possible.

This method does not find logical issues by itself, but, in conjunction with the fact that logs

present a significant part of intermediate objects being the inputs and the outputs of

transformations, it assists in making the log analysis quicker.

An approach based on the following two concepts is suggested.

1) Module-specific logs. Each module writes to its log, however, the core keeps track of
unique timestamps for each log entry. Thus, it is possible to view separate logs if required

3 https://github:com/maximmenshikov/eq codegen models
39

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

or to view combinations of logs. This approach has important implications from a practical
perspective. First, it decreases the resources required for categorization and search. A single
log would have to be parsed from the beginning to the end — which would inevitably mean
a slowdown. Second, the reader gets an opportunity to select points of interest and
completely avoid unrelated parts.

2) Internal bookmarks/tags. Each object (in our classification, a resource, a fragment or a
virtual machine command) has unique ID within the object pool. Objects are referenced by
a tuple (name:id:type), and each action on the object is bookmarked by a tuple
(id:type:action). The log viewer allows quick navigation between these objects and by that
reduces the cognitive load on log reader. This implies that the log is less of \textit{flat}
structure, but rather a technical document, more oriented towards understanding.

4.2.1 Implementation

Separate logging is very implementation-specific and novelty-free. The analyzer simply opens
a number of streams and provides a debug context object allowing for access to all of these
streams.

The bookmark approach requires attention to the implementation of Uniform Resource Name
(URN) producing methods. URN must be both readable and short, since reading log files in
plain text is still an option. In the author's implementation, the URN doesn't adhere to RFC
2141* to save space. The practical URN grammar is presented in the corresponding GitHub
repository®.

4.3 Goal-driven random test case (program) generation

Order of actions and bias towards specific use case for syntax structures is the major source of
the issues during the development. They are not detectable mainly because preparing a
reasonable selection of tests proving the issue source is hard. The random test program
generation is helpful in such cases due to its ability to test software against large volumes of
varying input data. In result, not only logical issues are detected, but also a number of runtime
issues, as seen in compilers.
A random program generator creating a set of tests with the following properties was prepared.
First, all tests have one goal defined and asserted in main (), this is unlike other random
program generators, which produce compilable programs without assertions. Second, all of the
test cases are identical in terms of final results.
Our algorithm revolves around the idea of a \textit{verification goal}. The straight-forward
algorithm for main () is as follows.
1) Create a function main () with empty block.
2) Insert a randomly named variable. Let it be x.
3) Assume arandom goal as a target value for variable x. Let it be a.
4) Generate a random block or a random function returning a or modifying the input pointers
so that x is receiving a.
5) Insert an assertion x = a.
A random block or a random function is generated accordingly. The goal is transformed
into a final statement (e.g. return aorx = a, based on whether the block or a function
is being generated).
6) The statement is transformed into a different statement based on the random value (which
chooses the next operation from the list below):
a) ifthe statement isn't a block, it is transformed into a block of statements;

4 https://tools:ietf:org/html/rfc2141
5 https://github:com/maximmenshikov/eq-urn-grammar
40

MensbumkoB M. A. TTogxos! k 0TIaAKe U 00SCIEYCHHIO KauecTBa CTaTUYeCcKoro aHaimm3saropa. Ipyost UCI1 PAH, Tom 32, Bem. 3, 2020 T,
crp. 33-48

b) ifthe statement is a block, then a new variable is added to a block;

c) ifthe statement is a block, then a random (not goal) variable is assigned.

d) the statementisrolledintothe if else if else statement, where the goal is put
into the first if then statement. For the rest of the branches, the false goal is
generated and rolled into a random block.

e) the statement is rolled into the switch / case statement, where the goal is put into
the first case body. For the rest of the cases, the false goal is generated and rolled into
a random block. The false cases are randomly ended with break.

f) the statement isrolled into for or while loop. In the author's implementation, these
constructions were of minor interest, so they were implemented trivially, similarly to
Orange4 [12]} same-assighment.

After executing the first two procedures, the outcome is a valid program which must be well-
parsed (syntactically correct by construction), should be analyzable and, if compiled, must
satisfy all assertions. To get a set of programs, the shuffling is performed on all constructions
allowing for it (the showcase is for i £ and switch). i £ branches are shuffled if the condition
expressions are not intersecting (i.e. swapping branches doesn't change the semantics), cases
are switched based on break existence. All-break switch-case statements can be shuffled
completely.

The practical implementation is located in corresponding GitHub repository®.

4.4 Visual representation

The visual introspection assists in finding logical issues by using a graphical view. A number
of issues, especially those involving formulas and type conversions, are not distinguishable in
textual forms. The following directions were in the focus of the research. First, making passes
visually observable. Second, provide reasonable health reports for performance figures, error
occurrence rates.

Equid LogFuse v oA X

File Edit View Help

Log Performance | Transformation Logs
Resources
y =3; -
Source: | Containers |
Name
assign (y:int|res) = 3 assign (1_nopintjres) = 0
VM IR: branch ((1_nop:int:6|res) ==1 ...

(| | assign (1_nop:intjres) = 1
var_1 6 == 1 var_1 6 == @ && assign (y:intjres) = 3
cvca: var_ 1 2 == 5) => (var_1 4 = 3 &&
" addrof(var_1_4) = var_345 &&
deref(var 345) = var 1 4)

var_1 4 = [3, 3]

assign (1_nop:intjres) = 2
end branch
branch ((1_nop:int:6|res) == 1...
>

Al:

Fragments
Stages

0%

Fig. 2. The transformation view of IR commands

6 https://github:com/maximmenshikov/eq_fuzzytest
41

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

As for the first goal, our main intention was to make an internal Virtual Machine intermediate
representation (IR) viewable. The IR can be represented using a tree view since branches may
contain child entries. To simplify interface development, a plain tree view from Qt7 framework
had been used. Clicking on any IR command brings a list of related parts: a simplified SMT
representation, a simplified abstract interpretation view (Fig. 2). At the moment of writing, the
IR representing module is not directly linked to the debugger e.g. via GDB/MI interface [26],
but the project's debugging framework is capable of generating the commands to set the
breakpoints at the specific execution points (like IR transformation phases) for the RR [6]
replaying.

As for the second, the following formulas had been used to prepare a chart. The first formula is
trivial. Consider t;, a start time of ith verification phase, where i € [1, n], and ¢t ' is the final
execution time. If, for simplicity, t' = ¢, + 1, then durations are calculated accordingly:
At; = t; - t; where i e [1, n]. However, this computation gives a very rough
approximation of internal time spans.

Module log separation provides two other useful empirical formulas. One formula is based on
log size. Consider that the logging is more or less uniformly spread around the modules. In that
case, module log size is a simple profiler for the module execution times, without an actual
profiler running.

The other formula requires building a time series. The complete execution time t' is collected,
and it is divided up to 40 chunks: At; = t' / 40, wherei e [1, 40]. The graph with
timestamp occurrence frequencies for each At; group is built for every module. The result of
the implementation can be roughly described as a digital fingerprint for the execution (Fig. 3).
The source code is located at GitHub®.

Concluding, these three formulas provide insight into performance. They consider (a) total
phase time, (b) total time spent in the module, (c) time distribution. They are useful if logging
invocation distribution is uniform.

aisolver 9% ===_=

cvcdsolver 86% = =
cvcdsolverType 9% =====

debug 86% = = A —
diagmodel 9% =

executionmedel 0%

flattening 0%

fragmentvisitor 12% E—

hypervisor 0% s

multisolver 9% —==——

output 0% E___

parsing 13% li=ll===

resourcevisitor 12% =—

stpsolver 0%

tagvisitor 11% =llll===

virtualprocessor 0% = _

Fig. 3. The «fingerprinty of the execution

5. Evaluation

The implementation of the proposed approaches had been tested in the Equid project. For
random test case generation, it is common to measure how many errors of which severity had
been found using the technique, that's what determines the real usefulness of the method.

For log fusion, the developer's time to find an error was continuously monitored. This way is
not accurate since the issues might differ at every testing instance.

7 https://github:com/maximmenshikov/eq fuzzytest
8 https://github:com/maximmenshikov/loghealth
42

MensbumkoB M. A. TTogxos! k 0TIaAKe U 00SCIEYCHHIO KauecTBa CTaTUYeCcKoro aHaimm3saropa. Ipyost UCI1 PAH, Tom 32, Bem. 3, 2020 T,
crp. 33-48

For code generation, we investigated the time needed to bring up a new syntax structure. We
were lucky to have had a syntax processing refactoring right after tool bringup due to new
language requirements to the static analyzer (which are out of the scope of the paper), that made
the evaluation easier.

Visual representation isn't trivially testable. The only evaluation the author could do is the
subjective contribution to the issue investigation.

5.1 Random test case generation

After introducing the random test case generation, the author observed the decrease in a number
of issues with both existing and newly added syntax constructions. Several defects were found,
which could be classified as logical, performance, ordering and runtime issues. Logical issues
comprise of verification-breaking issues, not related to ordering (which is a separate group).
Performance issues are due to slow handling of syntax constructions. For this group, the time
required for the execution of generated source had been evaluated and tested for sanity. The
time twice larger than the empiric average for the syntax construction had been considered an
error. Ordering issues appear during transformations when specific elements can't be trivially
reordered in a destination form. When resulting messages differ for reordered sources, the case
is considered a failure.

Table 1. Discovered issues & their severity

Defect type Number of issues | Severity Comment

Performance 3 Medium | Slow handling of specific combinations of syntax
constructions, branches, especially with a high
number of objects

Ordering 5 High Ordering of syntax constructs affects the
processing. This kind of issues appears during the
transition from AST to IR form due to change in

linearity
Runtime 1 High Other critical issues with failing statements
failure
L_ogical 1 Medium* | Problems with expression-to-formula mapping.
Issues * — This issue usually has high severity, but this

concrete case was not as critical

The results of testing are provided in Table 1. In total 10 issues had been detected during the
evaluation, 6 of them had high severity, and 4 of which had medium severity. The author
considers the method applicable to finding mistakes in static analyzers but needs significant
improvement to cover all language features. However, it is hard to judge the usefulness for
compilers because no investigation had been done.

5.2 Log fusion

The logging engine can be practically evaluated only by checking the time to resolve a typical
issue. The evaluation time (1 month) had been divided into two periods, in one period no
logging features were used during issue-resolving, the other period is characterized by intensive
usage of log fusion.

The time to resolve the typical issue reduces twice or thrice (see table 2). The improvement
ratesare 1.92, 5, 3.3, 1, which result in an average of 2.8 among these test groups. These results
also indicate that the method is feasible for static analyzer development tasks, however, the
effect is vastly different for different groups (and, supposedly, tests). But, at least, the method
doesn't make the process slower.

43

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-

48

Table 2. Time to resolve typical defects

Defect type Time to resolve | Time to resolve Comment
before (h) after (h)

Performance 25 13 Performance issues require significant
refactoring, but it was taking time to properly
diagnose where does the issue appear

Ordering 5 1 Bookmarks make ordering issues easier to
diagnose
Runtime 1 0.3 Runtime failures are easy to work around, but
failure harder to fix completely. All information in one
place makes it quicker
Logical 1 1 No large difference~--- when a logical issue is
issues expected, you watch the log with this
information. Technically, it reduces the need to
find the mapping, but we haven't found it
measurable

5.3 Code generation

The code generation covers a significant part of the process of adding a new syntax structure.
For the project, class support had to be implemented again due to customer's requirements
changed the project's infrastructure. The result is as follows. It was determined that adding class
support has taken 7 times less time than the same feature several years before this test.
Moreover, it was noticed that previous attempts had a month-long trail of commits revising the
architectural modules and minor issues, however, the attempt after introducing code generation
didn't have so many visible effects. The representability of this empirical test is very low: after
all, the project has become more mature over years, however, it is hard to perform a more fair
comparison to see the improvement.

5.4 Visual representation

For the visual representation, the low improvement for maintenance development phases was
observed. The reason is that no developer or tester would ever look at visual reports for everyday
testing. However, it is profitable for the active development phase. At least 2 performance issues
were discovered using the performance chart implemented in our log viewing tool. They were
related to different timings between stages, while the overall result was about the same: this situation
happened due to substantially simplified processing of structures due to all of them getting the same
visibility level. The deeply nested test had much longer table lookup time with much shorter
propagation stage. While the visual representation testing implies little representability, the whole
method can benefit if the developer is taught to have a critical look on charts.

5.5 Classes of programs

During the evaluation, the techniques had been tested not only on the main static analyzer
project but also on various software packages surrounding it, to a possible extent. Author's
experience shows that not only static analyzers may benefit from these methods. The class of
«compatible» software comprises the programs performing a significant number of
transformations. It includes the compilers, their optimization passes, refactoring, code
obfuscation tools, archivers, encryption tools. The improvement would be seen in case both the
input and the output are in the readable representation and if the intermediate representations
are cross-linked. The approach is not cost-effective if the project is small due to a high level of
an initial investment.

44

MensbumkoB M. A. TTogxos! k 0TIaAKe U 00SCIEYCHHIO KauecTBa CTaTUYeCcKoro aHaimm3saropa. Ipyost UCI1 PAH, Tom 32, Bem. 3, 2020 T,
crp. 33-48

5.6 Case studies

5.6.1 The case of GNU statement expressions

In this case study, we would like to stress how the developed software package helps add new
functionality. The GNU Compiler Collection (GCC) has the support for statement-expressions,
which represent code blocks with the last statement being the result of the block. The infrastructure
of the analyzer was highly biased towards blocks and statements, and the statement expression was
an example of the construction which could be used on the unexpected levels.

By simply adding a new compound type («BlockWithResult») to the model, the code generator-
related tools had shown the places which had to be touched. These areas included \textit{parsing},
expression flattening, expression cloning, type deduction and IR conversion. However, the IR
conversion stage was not ready for the adoption of the statement expressions, it took around 7
working days to refactor the algorithm for it. The visualization approach let the author find the issue
with the incorrect placement of internal statements: e.g. conditions were set on entering wrong
fragments. The random program generation supported the process by providing a suitable number
of examples. In total, the addition of statement expressions took approximately 10 working days.

5.6.2 The case of wrong constructors

This case is more towards mechanical mistakes when writing the code. The author did a mistake
making a constructor with std: :string parameter and a constructor with bool parameter.
When passing regular strings, they are internally represented by const char* object, and the
closest implicit casting for the argument was to boo1. This mistake flowed from a Directed Acyclic
Graph (DAG) level to VM intermediate representation and then materialized in missing predicate
check during the verification stage. The issue had been noticed after using visual representation: it
was determined that the object in DAG was missing a minor property only after reading the
expression dump linked to the VM IR command. The omniscient debugging wasn't of help because
the time to break the execution was unclear.

6. Conclusion and future work

In the paper, the sources of errors in the author's static analyzer project were studied. Defects
are mostly related to logical issues plaguing from missing syntax/IR support, minor issues in
repeating parts, transformation defects and ordering problems. To cope with them, four
sustainable solutions were prepared and shown. They include random test case (program)
generation, log fusion, code generation and visual representation. These methods allowed
finding at least 10 defects and decreased the time to resolve defects by 2.8 on average. The
response differs for different test groups or even tests, from 5x for ordering issues, down to 1x
(no improvement) for logical issues. Two presented case studies support the thesis of
applicability of these methods.

In future, we expect to continue improving the functionality of the logging package and
increasing the number of cross-links between log parts. Code generation will experience further
generalization of the models. More metrics will be investigated to make health reports more
useful.

References / Cnucok nutepartypbl

[1]. Lisa Nguyen Quang Do, Stefan Kriiger, Patrick Hill, Karim Ali, Eric Bodden. Debugging static analysis.
IEEE Transactions on Software Engineering, 2018.

[2]. M. Menshikov. Equid —a static analysis framework for industrial applications. Lecture Notes in Computer
Science, vol. 11619, 2019, pp. 677-692.

[3]. GDB: The GNU Project Debugger. Available at: https: //www.gnu.org/software/gdb/.

45

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-

48

[4]
(5]

[6].

[7].
8].
[9].

[10].

[11].

[12].

[13].
[14].
[15].
[16].
[17]

[18].

[19].

[20].

[21].

[22].

[23].

[24]

46

. The LLDB Debugger. Available at: https:/lldb:llvm:org.

. The interactive reverse debugger for Linux-based applications. Available at:

https://undo.io/solutions/products/undodb-reverse-debugger/.

R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush. Engineering record and replay for

deployability. In Proc. of the 2017 USENIX Annual Technical Conference (USENIX ATC’17), 2017, pp.

377-389

J. Engblom. A review of reverse debugging. In Proc. of the 2012 System, Software, SoC and Silicon

Debug Conference, 2012, pp. 1-6.

E. Eide and J. Regehr. Volatiles are miscompiled, and what to do about it. In Proc. of the 8th ACM

International Conference on Embedded Software, 2008, pp. 255-264.

X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in ¢ compilers. In Proc. of the

32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, 2011, pp.

283-294.

G. Barany. Liveness-driven random program generation. Lecture Notes in Computer Science, vol. 10855,

2018, pp. 112-127.

V.Yu. Livinskij, D.Yu. Babokin. Automation of search for optimization errors in C / C ++ language

compilers using the Yet Another Random Program Generator. In Proc. of the 60th All-Russian Scientific

Conference of MIPT. Radio engineering and computer technology, 2017, pp. 40-42 (in Russian) / B.1O.

JIusunckuii, J1.1O. baboknH. ABTOMAaTH3aIuUs IMOUCKA OIMMMOOK ONTHMHU3AIMH B KOMIHISATOPAX S3BIKOB

C/C++ ¢ momoripro reHepaTopa cirydaiiHbix TectoB Yet Another Random Program Generator. Tpysst 60-

it Beepoccuiickoit Hayunoi koH(pepentmn MOTU. PagnorexHuka n KOMIbIOTEpHBIE TeXHONOrUH, 2017

r., cTp. 40-42.

S. Takakura, M. lwatsuji, and N. Ishiura. Extending equivalence transformation based program generator

for random testing of ¢ compilers. In Proc. of the 9th ACM SIGSOFT International Workshop on

Automating TEST Case Design, Selection, and Evaluation, 2018, pp. 9-15.

M. Chupilko, A. Kamkin, A. Kotsynyak, and A. Tatarnikov. Microtesk: Specification-based tool for

constructing test program generators. Lecture Notes in Computer Science, vol. 10629, 2017, pp. 217-220.

D. Binkley, M. Harman, and J. Krinke. Characterising, explaining, and exploiting the approximate nature

of static analysis through animation. In Proc. of the 2006 Sixth IEEE International Workshop on Source

Code Analysis and Manipulation, 2006, pp. 43-52.

Sourcetrail — documentation. Available at: https://www:sourcetrail:com/documentation.

L. Voinea, A. Telea, and J. J. Van Wijk. Cvsscan: visualization of code evolution. In Proc. of the 2005

ACM symposium on Software visualization, 2005, pp. 47-56.

C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system for graph-based visualization of

the evolution of software. In Proc. of the 2003 ACM Symposium on Software Visualization, 2003, pp.

77-86.

J.P.S. Alcocer, F. Beck, and A. Bergel. Performance evolution matrix: Visualizing performance variations

along software versions. In Proc. of the 2019 Working Conference on Software Visualization (VISSOFT),

2019, pp. 1-11.

D. Yuan, S. Park, and Y. Zhou. Characterizing logging practices in open-source software. In Proc. of the

2012 34th International Conference on Software Engineering (ICSE), 2012, pp. 102-112.

Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie. Where do developers log? an

empirical study on logging practices in industry. In the Companion Proceedings of the 36th International

Conference on Software Engineering, 2014, pp. 24-33.

D. Jurafsky, J. Martin, P. Norvig, and S. Russell. Speech and Language Processing. Pearson Education,

2014, 1032 p.

M. Dy, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection and diagnosis from system logs

through deep learning. In Proc. of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, 2017, pp. 1285-1298.

A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya. Anomaly detection using program

control flow graph mining from execution logs. In Proc. of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2016, pp. 215-224.

. O.l. Sheluhin, V.S. Rjabinin, and M.A. Farmakovskij. Anomaly detection in computer system by
intellectual analysis of system journals. VVoprosy kiberbezopasnosti, vol. 26, no. 2, 2018, pp. 33-43 (in
Russian) / Iexyxun O.U., Ps6unnn B.C., ®apmaxosckiii M.A. OOHapy)KeHne aHOMAITBHBIX COCTOSHHI
KOMITIBIOTCPHBIX CUCTEM CPEIACTBAMU HWHTCIUICKTYAJIbHOI'O aHalin3a MaHHBbIX CUCTEMHBIX XYPHAJIOB.
Bormpocsr kubepbe3omnacHocTH, Tom 26, no. 2, 2018 r., ctp. 33-43.

https://www:sourcetrail:com/

MensbumkoB M. A. TTogxos! k 0TIaAKe U 00SCIEYCHHIO KauecTBa CTaTUYeCcKoro aHaimm3saropa. Ipyost UCI1 PAH, Tom 32, Bem. 3, 2020 T,
crp. 33-48
[25]. B. John Smith F. Stephen Weiss. Hypertext. Communications of the ACM, vol. 31, no. 7, 1988, pp. 816—

819.
[26]. R. Stallman, R. Pesch, and S. Shebs. Debugging with GDB: The GNU Source-Level Debugger. 12th Media

Services, 2018, 826 p.

Information about authors / UHchopmaums 06 aBTOpax
Maxim Alexandrovich MENSHIKOV — PhD student of the Department of System Programming.
Research interests: static analysis of programs, debugging tools.

Maxcum Anekcanaposny MEHBIIIMKOB — acimpaHT kadenpsl CHCTEMHOTO TPOrpaMMHPOBaHHS.
HayuHble HHTEepeCHl: CTaTUUECKUI aHANIN3 IPOrpaMM, CPEACTBA OTJIAIKU IPOrpaMM.

47

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

48

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-4 toclﬁu

Code generation for floating-point arithmetic in
architecture MIPS

I.S. Arkhipov, ORCID: 0000-0002-8566-1654 <arkhipov.iv99@mail.ru>
St Petersburg State University,
7-9, Universitetskaya nab., St. Petersburg, 199034, Russia

Abstract. This article is related to code generation for floating-point arithmetics in the MIPS architecture. This
work is a part of the «RuC» project. It is specialized only in code generation for operations with floatting-point
numbers. This paper does not consider lexical, syntactic, and species-specific analyses.

Keywords: code generation; translator; floating-point arithmetic; MIPS

For citation: Arkhipov I.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 49-56. DOI: 10.15514/ISPRAS-2020-32(3)-4

I'enepanus Ko0B 1JI1s BelleCTBeHHOM apudgMeTuku B apxurekrype MIPS

HU.C. Apxunos, ORCID: 0000-0002-8566-1654 <arkhipov.iv99@mail.ru>
Canxm-Ilemepbypeckuil 20cydapcmeenubill yHUsepcumen,
Poccus, 199034, Canxm-Ilemepbype, Ynueepcumemcrkas nab., 0. 7-9

Abstract. Ota crarest moCBsICHA TeHEPALMH KOJIa TS BEIIECTBEHHON aprdMeTHKH B apxurekrype MIPS. Dta
paboTa sBisieTcst 4acThio mpoekta «RUCY. B Heit paccMaTpuBaeTcst TOIBKO FeHeparys KOIOB A OHepaLHii ¢
qucraMy ¢ IUIaBalolled 3amaroil. B craThe HE PaccMaTpPHBAIOTCS JICKCHUECKHH, CHHTAKCHYCCKHH H
BHU/I03aBHCUMBIIl aHAU3BI.

KitroueBble cjioBa: KogoreHepaLs; TpaHcsTop; apudMernka yncen ¢ masaroieit 3ansroit; MIPS

Jost mutupoBanus: Apxunos U.C. ['eHepalist KOJOB IS BEILIECTBEHHON apudMeTrku B apxurekrype MIPS.
Tpyast UCII PAH, Tom 32, Beim. 3, 2020 1., crp. 49-56 (#a anrnuiickom ssbike). DOI: 10.15514/ISPRAS—
2020-32(3)-4

1. Introduction

RISC and CISC architectures, unlike stack architectures and virtual machines systems, have
different ways to express high-level language features. There are many registers for working with
data, which creates a large variability in optimal code generation. Therefore, code generation in
these architectures is quite a difficult task.
For work with such architectures, a technique of request and response [1] have been developed at
the mathematics and mechanics faculty of the Leningrad State University: from the top of the
constructed parse tree the requests for values are received, and from below the answers — form
submission parse (register, memory, constant). In addition, there are certain relationship agreements.
For example, in the MIPS32 architecture, function parameter values must be in some specific
registers, and function values must be in other specific registers. There are stored registers that must
be preserved when calling functions, and there are non-stored (unsafe) registers. For example, the
left operand of a binary formula must be represented in a stored register if the right operand has calls
or slicing that apply the same rules as functions, otherwise the left operand can also be represented
49

https://english.spbu.ru/events/3326-st-petersburg-university-invites-foreign-citizens-to-prepare-for-successful-admission

Arkhipov 1.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp.
49-56

in an unsaved register. Determining the complexity of the right operand is the task of optimizing
parse.

This work has practical application: the MIPS32 architecture is the basic architecture of one of the
Russian computers Baikal-T1 [2].

The goal of this work is to generate codes for floating-point arithmetic in MIPS32 codes using the
request and response technique.

2. Motivation

The development of a domestic translator is an actual task, since many industries require domestic
software to avoid «back doors» in foreign software. Writing your own translator is a difficult task.
This work is part of the «RuC» project [3] and is specialized only in code generation of operations
with floating-point numbers. At the moment, this project has a customer, which is an additional
evidence of the relevance of this work.

3. Problem statement

To achieve the goal of this work, the following tasks were set:

e toimplement code generation for operations with floating-point numbers in RuC using the query
and response technique;

e to implement printing floating-point numbers to the console;
e to prepare tests and test the implemented code generation.

The results can be considered successful if the assembler code received during code generation is
executed on the Baikal-T1 machine and displays the correct result in the console.

4. Overview

Since this work is part of the RuC project, the same ideas as in the RuC are used to achieve the set
goals. The code generator will view the parsing tree of the program and generate code based on the
lexemes located in it.

It is necessary to describe the principles of RuC in general. The RuC translator has a traditional two-
view structure. On the first view a scanner (lexical analyzer), a view-independent analyzer (parser)
and a view-dependent analyzer work. The result of the first view is a parsing tree. This tree is input
to the second code generation view, which outputs the result in MIPS32 architecture codes. This
work is a part of second code generation view module, that implements operations with floatting-
point numbers. More information about RuC may be found in section wiki of 'RuC' project github
[9] and in the following article [10].

It is also worth mentioning a few general decisions made during the work.

e It was decided to generate commands for working with single-precision floatting-point numbers.
This is due to two reasons. Firstly, at the moment there is no need for double-precision
calculations on the Baikal-T1 computer. Secondly, the computer Baikal-T1 (another name BE-
T1000) has 2 32-bit p5600 processor cores of the MIPS32 r5 architecture, which makes it
unsuitable for double-precision computing. For example, because of the 32-bit version, you will
need two commands to load a double-precision number from memory, not one.

e Implementation of using registers manually without using LLVM [8], firstly, to support RuC,
and secondly, to guarantee the absence of malicious code, since due to the huge amount of code
in LLVM, it is difficult to check, for example, the absence of “back doors".

e Processing requests of the register-to-register type only (more on this later), since there are no
commands with a direct operand for floating-point values, and working with memory is
represented by only two commands: load and store.

50

Apxumnos U.C. I'enepanust K0g0B 1715 BeliecTBeHHON apudmeTrku B apxurekrype MIPS. Tpyoet UCII PAH, Tom 32, Bbm. 3, 2020 1., cTp.
49-56

RuC has its own virtual machine, so assembly code could be generated like this: first code in virtual
machine codes is generated, and then each virtual machine instruction is translated to MIPS32
assembly code. It was decided to abandon this approach because it generated large code that is
difficult to optimize in the future.

5. Related Work

In the process, we also looked at the code generated by the gcc compiler [7] and compared it with
our own code. Of course, the gcc compiler has already implemented many optimizations, which
makes the code generated by it better. At the moment, RuC does not have any optimizations related
to arithmetic operations. Optimization is the next stage of RuC development and a topic for future
work.

If you compare the code generated by RuC with the non-optimized code generated by gcc, you can
see that RuC uses more temporary registers than gcc for intermediate calculations. This approach is
closer to a relationship agreement in mips architecture.

RuC has its own virtual machine, so it was possible to generate assembly code like this: firstly
generate code in virtual machine codes, and then translate each virtual machine instruction into mips
assembly code. We abandoned this approach because it generated a large code that is difficult to
optimize in the future.

As an alternative approach to code generation, generation to LLVVM [8] codes can be also offered.
But, as it was written above, you can not guarantee that there are no «back doors» in LLVM.

As for the application, after further improvements, RuC can be used in areas where a security
guarantee is required, which is why it is not possible to use foreign software products. This is the
novelty of RuC — it is the first Russian translator that modifies the C language.

6. Implementation

6.1 Parse tree lexemes

As described above, the code generator views lexemes from the parse tree. We are only interested
in lexemes that describe operations with floating-point numbers, namely the following:

e TConstf — floatting-point constant;
e TIdenttovalf — take the value of an identificator;
e «Unary» arithmetic operation lexemes:
ASSR — =
PLUSASSR — +=,
MINUSASSR — —=;
MULTASSR — *=;
DIVASSR - /=;
INCR — increment;
POSTINCR — postincrement;
DECR — decrement;
o POSTDECR — postdecrement;
e «Binary» arithmetic operation lexemes:
o LPLUSR—+,
o LMINUSR - -;
o LMULTR — *;
o LDIVR-/;

O O O O O O

51

Arkhipov 1.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp.
49-56

e Logic operation lexemes:
EQEQR — ==
NOTEQR — !=;
LLTR — <=
LGTR — >=;
LLER —<;
o0 LGER-—>.
The processing of each type of lexemes will be shown below.

O O O O O

6.2 A technique of request and response

Before describing the processing of lexemes, it is necessary to describe the technique of requests

and responses. There are several types of requests, we are interested in the following:

e BREG — load the result in a register «breg». «breg» is a global variable in the translator, that
contains the register's number;

e BREGF —request on the left operand, you can get an answer. Answers will be shown below;

e BF — free request on the right operand.

Type of request is contained in global variable «mbox».

The types of responses are:

e AREG —theresult in a register «aregy». «areg» is a global variable in the translator, that contains
the register's number;

e AMEM — the result in memory. Global variable «adispl» contains displacement and global
variable «areg» contains register»

e CONST —result is a constant.

Type of request is contained in global variable «mansty.

6.3 TConstf

This lexeme means that a constant request was received. After this lexeme in the tree there is a
constant value. Depending on the request type, we can get a register to put the constant value in
«bregy. If we don't get a register, the constant value is put in a temporary register $£4 with the
pseudo instruction 11 . s. Itis described about floating point registers in [4]. The type of the response
is AREG.

4.4 Tidenttovalf

This lexeme means that the value of variable must be put in register by identificator. If this is register
variable, it is necessary to move it to the register «breg» when request BREG or BREGF is received.
Otherwise we must put the value of this variable from memory in register «breg» or $f£4 with the
instruction 1wc1 [5].

6.5 «Unary» arithmetic operation lexemes

These operations are called «unary» operations because when processing them, it is necessary to
request the right operand, and the left operand is already known. The left operand may be already in
register if it is register variable or in memory. If it is in memory it is necessary to put it in register.
Only a register request must be issued for the right operand since there are not operations addition,
subtraction, multiplication and division for floating point numbers with register and number
operands. So, left and right operands must be in registers.

52

Apxumnos U.C. I'enepanust K0g0B 1715 BeliecTBeHHON apudmeTrku B apxurekrype MIPS. Tpyoet UCII PAH, Tom 32, Bbm. 3, 2020 1., cTp.
49-56

After this it is necessary to execute the instruction (addition, subtraction, multiplication or division).
Then if variable is in memory new value of variable is saved in memory. In «areg» register of left
operand is put. The type of the response is AREG.

It is worth noting that the division operation is performed like the rest with a single command, in
contrast to the similar operation with integers.

6.5 «Binary» arithmetic operation lexemes

«Binary» operations differ from «unary» operations in that both the left and right operands must be
requested before operation is executed. In contrast to the similar operation with integers for
executing operations with floating point numbers left and right operands must be in registers. That's
why only a register request must be issued for the left and right operands.

After getting values of left and rights operands in registers the instruction may be executed. This
stage is performed as for unary operations. The type of the response is AREG.

6.6 Logic operation lexemes

Just like in «unary» and «binary» operations, both operands must be in registers. That's why only a
register request must be issued for the left and right operands.

Unlike in similar operations with integers floating point operations change flag FP. Based on the
logic operation, conditional transition commands are generated. If the conditional expression is
complex (contains operations «and» or «or»), it is divided into simple logical expressions, the result
of which is stored in the global variable in translator. When processing subsequent conditional
expressions, the value of this global variable is also taken into account.

6.7 Printf

To see the results of code generation, print £ function must be implemented. Firstly, string in data
segment is generated. String is given in parse tree after TSt ring lexeme. Then text segment begins
again. Address of string is put in register $a0. After this a register request for the second operand
is created. If this operand is integer or char value of this operand is put in register Sal and printf
is executed. If this operand is float pointing due to mips agreements we must convert the single
precision floating point number to a double precision number. After these operations printf is
executed.

If print£ has more than one arguments string is divided into several parts and for each part printf
is executed.

7. Evaluation

After implementing code generation for operations with floating-point numbers and printing
floating-point numbers tests were prepared. Tests have been prepared that demonstrate the code
generation for each operation separately and for complex expressions with floating-point operations.
For example, RuC translates a program in Application 1 to the assembly code in Application 2.
Itis important to note that the goal is considered achieved only when the generated code is assembled
successfully and is executed on the Baikal-T1. This is significant since we can think that code
generation is correct but in fact it does not work. Also in such way successfulness of this work can
be demonstrated.

For this purpose:

e emulator gemu [6] was installed;

e Baikal-T1 was bought;

53

Arkhipov 1.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp.
49-56

e Baikal-T1 was connected to a laptop.

After this the prepared tests for arithmetic operations were first tested on the emulator, and then on
the Baikal-T1. The tests were successful, so we can assume that the goal was achieve. You can find
tests in [3] in branch mips.

8. Conclusion

This work solves the problem of code generation in MIPS32 codes of arithmetic operations with
floating point numbers. Various approaches to code generation have been considered and one of
them has been implemented — direct code generation.

The novelty of this work is that this work is part of the RuC project, the first Russian translator to
modify the C language in favor of programming security.

In the course of the work, important results were obtained showing the applicability of the results of
this work in practice. Direct code generation was implemented MIPS32 codes for floating point
arithmetic operations. The generated code was successfully run on Baikal-T1.

This work has many opportunities for further research. The RuC project is not yet complete, and
some C language structures are not yet implemented. Optimization of generated code is also a big
area of research. Also it is necessary to implement a linker. As you can see, there are still many
sources for research.

References / Cnncok nutepartypbl

[1]. ALGOL 68. Methods of implementing. G.S. Zeitin, ed. Publishing House of Leningrad State University,
1976, 224 p. (in Russian). / Anron 68. Meroas! peanusaiwu. ITon penakuueii I'.C. Leiituna. U3n. JITY,
1976 r., 224 ctp.

[2]. Baikal-T1 specifications. URL: http://www.baikalelectronics.ru/products/35/ (in Russian), accessed:
15.05.2020.

[3]. RuC project, github. URL.: https://github.com/andrey-terekhov/RuC, accessed: 15.05.2020.

[4]. System V Application Binary Interface MIPS RISC Processor Supplement, 3rd Edition. Santa Cruz
Operation, 1996.

[5]. MIPS Architecture for Programmers Volume 1I-A: The MIPS32 Instruction Set Manual. Document
Number: MD00086, Revision 5.04. MIPS Tech, December 11, 2013.

[6]. QEMU official site. URL: https://www.gemu.org/, accessed:15.05.2020.

[7]. GCC official site. URL: https://gcc.gnu.org/, accessed: 15.05.2020.

[8]. LLVM official site. URL: https://llvm.org/, accessed: 15.05.2020.

[9]. RuC project github, section wiki. URL: https:/github.com/andrey-terekhov/RuC/wiki (in Russian),
accessed: 15.05.2020.

[10]. A.N. Terekhov, M.A. Terekhov. RuC project for education and reliable software systems development.
University News, North-Caucasian region, Technical Science, issue 3, 2017, pp. 70-75 (In Russian) / A.H.
TepexoB, M.A. TepexoB. [Ipoekr PyCu mns o0y4deHust U co3gaHHsA BBICOKOHAJEKHBIX MPOIPAMMHBIX
cucteM. M3Bectus Boicuinx yueOHbIx 3aBenenuid. CeBepo-Kaskasckuii peruon. TexHu4IecKre HayKu, BbIIL.
3,2017 r., ctp. 70-75

Application 1

void main ()

{

float a = 5.1, b = 6.3, ¢ = 2.3;
if (¢ > a && b < 5.3 || 5.2 >= a)
c += (a + b) * 3.2 - 6.7 / c;

printf ("$f\n", c);

54

http://www.baikalelectronics.ru/products/35/
https://github.com/andrey-terekhov/RuC

Apxumnos U.C. I'enepanust K0g0B 1715 BeliecTBeHHON apudmeTrku B apxurekrype MIPS. Tpyoet UCII PAH, Tom 32, Bbm. 3, 2020 1., cTp.
49-56

Application 2

.file 1 "tests/mips/float.c"
.section .mdebug.abi32
.previous
.nan legacy
.module fp=xx
.module nooddspreg
.abicalls
.option picO
.text
.align 2
.globl main
.ent main
.typemain, @function
main:
move fp, Ssp
addi fp, Sfp, -4
sw Sra, 0(S$fp)
1i $t0, 268500992
sw $t0, -8060(Sgp)
j NEXT2
nop
FUNC2:
addi fp, Sfp, -96
sw $sp, 20($fp)
move sp, Sfp
sw Sra, 16($sp)
li.s $f4, 5.100000
swcl $f4, 80 ($sp)
li.s $f4, 6.300000
swcl $f4, 84 ($sp)
li.s $f4, 2.300000
swcl $f4, 88 ($sp)
lwcl $£f20, 88 (S$Ssp)
lwcl $f4, 80($sp)
c.le.s $£f20, S$f4
bclt ELSE4
lwcl $£f20, 84 (S$Ssp)
li.s $f4, 5.300000
c.lt.s $f20, $f4
bclt ELSE3
ELSE4:
li.s $£f20, 5.200000
lwcl $f4, 80 ($Ssp)
c.lt.s $f20, $f4
bclt ELSEL
ELSE3:
lwcl $£20, 80 ($sp)
lwcl $f4, 84 ($sp)
add.s $f20, $f20, S$f4
li.s $f4, 3.200000
mul.s $£20, $f20, $f4
li.s $f22, 6.700000
lwcl $£f4, 88 (S$sp)
div.s $f22, $f22, s$f4
sub.s $£f20, $f20, $f22
lwcl $£f6, 88 (S$sp)

Arkhipov 1.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp.
49-56

add.s $f4, $fe6, $£20
swcl $f4, 88 (S$sp)
ELSE1l:
.rdata
.align 2
STRINGI1:
.ascii "Sf\n\0"
.text
.align 2
lwcl $f4, 88 (S$sp)
cvt.d.s $f4,$f4
mfcl $5,S$f4
mfhcl $6,S$f4
lui $tl, %hi (STRING1)
addiu $a0, $tl, %1o(STRING1)
jal printf
nop
j FUNCEND2
nop
FUNCEND2 :
1w Sra, 16($sp)
addi $fp, $sp, 96
1w $sp, 20($sp)
jr Sra
nop
NEXT2:
jal FUNC2
nop
1w Sra, -4($sp)
jr Sra
nop
.end main
.sizemain, .-main

Information about authors / UHcpopmauums o6 aBTopax

Ivan Sergeevich ARKHIPOV - undergraduate student in the Department of System Programming.
Research interests: MIPS architecture, compilers, code generation.

Usan Cepreesuu APXUIIOB — crynenT GakanaBpuara kadeapbl CHCTEMHOTO TPOTPAMMHUPOBAHHS.
Hayunbie untepecsl: apxutekrypa MIPS, koMnuisTopsl, TeHepaius Koja.

56

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-5 tocl%

Hardware and software data processing system
for research and scientific purposes based on
Raspberry Pi 3 microcomputer

P.A. Pankov, ORCID: 0000-0002-4007-451X <pankov.pavel.a@gmail.com>
I.V. Nikiforov, ORCID: 0000-0003-0198-1886 <igor.nikiforovwv@gmail.com>
D.F. Drobintsev, ORCID: 0000-0001-7876-3313 <drobintsev@mail.ru>

Peter the Great St.Petersburg Polytechnic University,
29, Polytechnicheskaya, St.Petersburg, 195251, Russia

Abstract. In the past ten years, rapid progress has been observed in science and technology through the
development of smart mobile devices, workstations, supercomputers, smart gadgets and network servers.
Increase in the number of Internet users and a multiple increase in the speed of the Internet led to the generation
of a huge amount of data, which is now commonly called «big data». Given this scenario, storing and processing
data on local servers or personal computers can cause a number of problems that can be solved using distributed
computing, distributed data storage and distributed data transfer. There are currently several cloud service
providers to solve these problems, like Amazon Web Services, Microsoft Azure, Cloudera and etc. Approaches
for distributed computing are supported using powerful data processing centers (DPCs). However, traditional
DPCs require expensive equipment, a large amount of energy to run and operate the system, a powerful cooling
system and occupy a large area. In addition, to maintain such a system, its constant use is necessary, because
its stand-by is economically disadvantageous. The article is aimed at the possibility of using a Raspberry Pi and
Hadoop cluster for distributed storage and processing of «big data». Such a trip provides low power
consumption, the use of limited physical space, high-speed solution to the problems of processing data. Hadoop
provides the necessary modules for distributed processing of big data by deploying Map-Reduce software
approaches. Data is stored using the Hadoop Distributed File System (HDFS), which provides more flexibility
and greater scalability than a single computer. The proposed hardware and software data processing system
based on Raspberry Pi 3 microcomputer can be used for research and scientific purposes at universities and
scientific centers. Considered distributed system shows economically efficiency in comparison to traditional
DPCs. The results of pilot project of Raspberry Pi cluster application are presented. A distinctive feature of this
work is the use of distributed computing systems on single-board microcomputers for academic purposes for
research and educational tasks of students with minimal cost and ease of creating and using the system.

Keywords: data processing; data storage; big data; cluster; supercomputer; Raspberry Pi; Hadoop

For citation: Pankov P.A., Nikiforov 1.V., Drobintsev D.F. Hardware and software data processing system for
research and scientific purpose based on Raspberry Pi 3 microcomputer. Trudy ISP RAN/Proc. ISP RAS, vol.
32, issue 3, 2020, pp. 57-70. DOI: 10.15514/ISPRAS-2020-32(3)-5

57

Pankov P.A., Nikiforov I.V., Drobintsev D.F. Hardware and software data processing system for research and scientific purpose based on
Raspberry Pi 3 microcompute. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 57-70

MporpamMmHo-annapaTHbIM KOMMIIEKC 06paboTkmM AaHHbIX Ans
nccnenoBaTeNbCKMX U Hay4YHbIX Lierien ¢ UCNoJSib3OBaHUeM
MUKpokoMnbioTepa Raspberry Pi 3

I1.A. Ilanxos, ORCID: 0000-0002-4007-451X <pankov.pavel.a@gmail.com>
U.B. Huxughopos, ORCID. 0000-0003-0198-1886 <igor.nikiforovw@gmail.com>
. @. Jlpobunyes, ORCID: 0000-0001-7876-3313 <drobintsev@mail.ru>

Cankm-Ilemepbypeckuil nonumexnuyeckuil ynugepcumem Ilempa Benuxoeo,
195251, Poccus, Cankm-Ilemep6ype, yr. [lonumexunuueckas, 0. 29

Abstract. B nocnenHue necars JieT HaOmogaercss OBICTPBII IIporpecc B HayKe M TEXHOJOTHSX Oiaromapst
pa3paboTKe HHTEIUICKTYAIbHBIX MOOWIBHBIX ~YCTPOICTB, pabOYMX CTaHIMi, CYNEpKOMIIBIOTEPOB,
MHTEJUICKTYaIbHBIX TaJDKETOB M CETEBBIX CEPBEPOB. YBEIMUYCHHE 4YHCIA IONB30BATENICH HMHTEpHETa U
MHOTOKpPATHOE YBEJIMUCHHE CKOPOCTH HWHTEPHETa MPHBEJIO K TeHepalMd OrPOMHOr0 KOJIMYECTBA JAHHBIX,
KOTOpBbIe ceifuac 0OBIYHO Ha3bIBAIOT «OONBIIMMHU JaHHBIMIY. [IpH TakoM CLICHApHK XpaHEeHHe W 00paboTKa
JAHHBIX Ha JIOKAJIBHBIX CEpBEpax MM MEPCOHATBHBIX KOMITBIOTEPaX MOXKET BBI3BATH PSIfl POOJIEM, KOTOPbIC
MOT'yYT OBITh PELICHBI C MOMOIIBIO PACIpPE/ICIICHHBIX BBIYMCICHHH, PACIpPEICICHHOIO XPaHEHHUs aHHBIX H
pacIpe/ieNIeHHO! nepeiaud JaHHBIX. B Hacrosiee BpeMsl CYIIECTBYET HECKOIBKO IMPOBaiIepOB 0OJIauHBIX
yCIIyT JUIS pelleHns 3THX mpobiieM, Takux kak Amazon Web Services, Microsoft Azure, Cloudera u 1. /1.
IMonxo/pl K pacrpeieSIeHHbIM BBIYUCICHHAM IMOICPIKHBAIOTCS C MOMOIIBI0 MOIIHBIX IIEHTPOB 00paboTKH
nanHbeix (LIOM). Onmnako tpamuumonssie L{O/[p1 TpeOyroT nopororo o0opyaoBaHUs, GOJIBIIOTO KOINYECTBA
SHEPTUH Ul pabOThl M SKCIUTyaTAllMd CHCTEMbI, MOIHON CHCTEMbI OXJIXICHUS U 3aHUMAIOT OGOJBIIYIO
wromanb. Kpome Toro, sl moanepikaHusl TaKoH CHCTEMBI HEOOXOAMMO €€ IMOCTOSHHOE HCIOJIb30BaHHE,
MOCKOJIbKY €€ pe3epBHUPOBAHHE 3KOHOMHYECKH HEBBITOAHO. LleNbi0 CTAaThH SIBJISETCS BO3MOKHOCTH
ucronp3oBanus kiacrepa Raspberry Pi m Hadoop ms pacnpenenenHoro xpaneHus 1 o0pabOTKH «OONBIINX
JaHHBIX». Takoe OTKIIOUEHHE 00ecHeYnBaeT HU3KOE HHEPronorpediIeHHe, UCIONb30BAHUE OrPAHMYEHHOT O
(u3MYecKoro MpoCTpaHCTBa, OBICTpoe pelleHHe IpodieM oOpaborku naHHbIX. Hadoop mpenocraBmser
HEOOXOIUMbIE MOIYIHM [UISl paclpeleleHHOH o0paGoTKM OOJBIIMX JaHHBIX ITyTeM pa3BepPThIBAHUS
nporpamMMHbIX moaxonoB MapReduce. [/laHHbIe XpaHSATCS C HCIOJIb30BAHUEM pacIpe/ieNieHHOH (aiinoBoi
cucremsl Hadoop (HDFS), xotopast o6ecrieunBaet OONbIIyi0 THOKOCTh U OOJIBIIYI0 MAaCIITaOUPyeMOCTh, YeM
onuH Kommbiorep. Ilpemiaraemas ammapaTHO-IpOrpaMMHas cucreMa o0OpaOOTKM JaHHBIX Ha 0Oase
MHKpokomIbtoTepa Raspberry Pi 3 MoxkeT ObITh HCHIONB30BaHA 1711 UCCIEA0BATENbCKUX U HAYYHBIX LieJeH B
YHMBEPCUTETaX W HAyyHbIX LEHTpaX. PaccMOTpeHHas paclpeliesieHHas CHUCTeMa JeMOHCTpUpYeT
9KOHOMHYECKYI0 3((deKTHBHOCTh 1O cpaBHeHHI0 ¢ TpaauiuonHbiMu 1O/, TlpeacraBieHbl pe3yabTaThl
MIJIOTHOTO TPOeKTa NmpuMeHeHus1 kiacrtepa Raspberry Pi. OmnnunrensHON 0COOCHHOCTBIO JaHHOW PadoThI
SIBJISICTCS UCIIOJIb30BaHUE PACIIPEJIETICHHBIX BHIYMCIUTEIBHBIX CUCTEM Ha OJHOIUIATHBIX MUKPOKOMITBIOTEPAX
ULt aKaJIEMHYECKUX LEJIeH ISt NCCIIeI0BAaTENbCKUX M YHeOHBIX 3a/1a4 YHaIHXCsl ¢ MUHMMAaJIbHBIMU 3aTpaTaMu
U NIPOCTOTON CO3IaHMS U UCIIONIb30BAHUS CHCTEMBI.

KioueBrble ciioBa: 00paboTKa JaHHBIX; XpaHEHUE JaHHBIX; OOJIbLINE JaHHBIC; KIIACTEP; CYNEPKOMIIBIOTED;
Raspberry Pi; Hadoop

Jns uutupoBanusi: [Tankos [1A., Hukudopos U.B., Ipobunnes /J.B. TIporpamMmmHo-anmnapaTHbI KOMILIEKC
00paboTKH IaHHBIX JUIS HCCIENOBATEIbCKUX M HAYYHBIX LIeJIeH C MCIONB30BAHHMEM MHKPOKOMIIBIOTEpA
Raspberry Pi 3. Tpymst UCIT PAH, tom 32, Beim. 3, 2020 r., crp. 57-70 (Ha anrmumiickoMm sizeike). DOIL:
10.15514/ISPRAS—-2020-32(3)-5

1. Introduction

Today, huge amounts of data are being generated, the source of which is social networks,
meteorological organizations, corporate firms, scientific and technical institutions, web services,
smart 10T devices [1], etc. Therefore, the development of tools for storing, processing and restoring
information from huge volumes of data is today one of the most important issues in the research of
information technology [2]. In order to meet the growing need for storage, manipulation and
recovery of information, new data centers are being created.

58

Iaukos I1.A., Hukudopos U.B., [Ipo6unues /1.B. IIporpaMMHO-anmapaTHbIi KOMIUIEKC 00pabOTKY JAHHBIX IS HCCIEA0BATEIBCKUX U
HAYJHBIX LIeNIel C MCIOIb30BaHnEeM MUKpoKommbioTepa Raspberry Pi 3. Tpyower HCIT PAH, Tom 32, Bem. 3, 2020 1., cTp. 57-70

Traditional data centers do their job well for commercial purposes, but have a number of
disadvantages:

e consist of powerful hardware that is expensive;

e require a large amount of electricity to work;

e require powerful cooling;

e occupy a large area.

In addition, the use of powerful equipment provides for its continuous workload, since the operation
of such systems without performing useful tasks is expensive.

Usually, big data means big sets of huge amounts of data that are difficult to work with using
traditional data management tools, because of their huge size and complexity [3].

The inevitable problems of big data include the fact that the infrastructure necessary to process huge
amounts of data must be created using limited resources and strictly limited processing time periods.
In addition, extracting features from such data requires the use of clusters and complex data
processing applications [4]. It is often necessary to work with similar data in real time.

In addition, these data centers must have capabilities such as extreme scalability, data distribution,
load balancing, fault tolerance, etc. To solve these problems, Jeff Dean and Sanjay Ghemavat created
the MapReduce model [5] for processing large amounts of data on large clusters.

Apache Hadoop [6, 7] is a project of the Apache Software Foundation, an open source and freely
distributed set of utilities, libraries and frameworks for developing and running distributed programs
running on clusters. Apache Hadoop v2.0 consists of four main modules — HDFS (Hadoop
Distributed File System), Hadoop Common (a set of software libraries and utilities), YARN (Yet
Another Resource Negotiator) and Hadoop MapReduce (software framework for easily writing
applications which process vast amounts of data in-parallel).

Apache Hadoop is considered one of the main technologies for interacting with big data.

A single-board computer (SBC) is a universal computer that is built on one printed circuit board
together with the required processor, memory, 1/O ports and other functions necessary for a well-
designed computer [8]. Raspberry Pi is an inexpensive and most common single board computer.
An important contribution of this study is the use of the Raspberry Pi single-board computer with
Hadoop clusters, which provides parallel and distributed processing with increased performance and
fault tolerance.

The system under development is considered for academic purposes for research and scientific
purposes. The goals also include training employees or students to work with cluster infrastructure.
In addition, it is important to provide the ability to verify the work of the developed data processing
algorithms, including in enterprises, without using the capabilities of systems for production
purposes.

The main goal of the project is to create a cheap solution for academic use. This is the main feature
of the project, compared with the existing solutions under consideration.

Section 2 shows the related work. Section 3 shows system design. Section 4 shows the
implementation process and result of the pilot project. Section 5 presents the conclusion.

2. Review of related works

First of all, let’s take a look at relatives works that use single-board computers (SBC) as a main
computational unit.

2.1 Single-board computers review and selection

A single board computer (SBC) is a complete, self-contained computer. The difference between
SBC and traditional personal computer is that SBC is assembled on one printed circuit board, on
which all the devices necessary for the functioning of the device are installed:

59

Pankov P.A., Nikiforov I.V., Drobintsev D.F. Hardware and software data processing system for research and scientific purpose based on
Raspberry Pi 3 microcompute. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 57-70

CPU;

RAM,;

video memory;

input-output interfaces;

etc.

This approach to the manufacture of a single-board computer allows this to make it inexpensive and
compact. In addition, the device becomes even cheaper through the use of systems on a chip (SoC).
On the other hand, expanding capabilities by changing the processor, increasing the amount of
memory and replacing other hardware components is impossible, since most of all these components
are soldered to the board. On the other hand, these features of SBC make it possible to use them as
industrial computers or as computers for embedded systems.

The big advantage of SBC is that they can easily be used as a system module from many of these
modules, due to the fact that all the necessary components are on the same printed circuit board.
This allows quick replacement of a broken assembly. It is enough to take a new SBC, insert an SD
card with an operating system into it and connect the power and Ethernet wires.

Another advantage of using SBC is the general purpose input / output interface (GPIO) ports. A
GPIO is an interface for interaction between components, for example, between a microcontroller
or microprocessor and various peripherals. Most often, GPIO contacts can work both input and
output, with some exceptions. The presence of GPIO ports allows you to use a SBC in embedded
systems to read data from various external sensors (temperature, humidity, infrared radiation,
angular speeds, accelerations, voltage, current, etc.) and control external devices (LCD displays,
servos, DC motors, electric drives, LEDs and LED strips, etc.)

The following single-board microcomputers were selected for consideration:

e Banana Pi M1+;

e Orange Pi PC2;

e Raspberry Pi 3 Model B+.

There are a large number of different models of single-board computers. Table 1 compares several
SBC with a similar price. As the comparison criteria were selected:

e CPU (K1);
e RAM (K2);
e network access interfaces (K3);
e supported operating systems (K4);
e price (K5).
Table 1. Comparative analysis of SBCs
Banana Pi Orange Pi Raspberry Pi 3
M1+ PC2 Model B +
K1 | A20 ARM Allwinner Broadcom
Cortex -A7 Cortex-Ab3 64-bit | Cortex-A53 64-
Dual-Core Quad-Core bit Quad-Core
1GHz 1.2 GHz 1.4GHz
K2 | 1 Gbh DDR3 1 Gb DDR3 1 Gb LPDDR2
K3 | Wi-Fi, Ethernet Ethernet Wi-Fi, Ethernet
K4 | Android Android Raspbian
Armbian Ubuntu Ubuntu Mate
Debian Debian Ubuntu Core
Other Linux Win10 loT
K5 | 3000 —4000 rub. | 2900 — 3400 rub. 3000 — 4000 rub

Based on a comparative analysis, the Raspberry Pi is the optimal choice. In addition, the Raspberry
Pi is the most common SBC, which makes development easier due to community support. In

60

Iaukos I1.A., Hukudopos U.B., [Ipo6unues /1.B. IIporpaMMHO-anmapaTHbIi KOMIUIEKC 00pabOTKY JAHHBIX IS HCCIEA0BATEIBCKUX U
HAYJHBIX LIeNIel C MCIOIb30BaHnEeM MUKpoKommbioTepa Raspberry Pi 3. Tpyower HCIT PAH, Tom 32, Bem. 3, 2020 1., cTp. 57-70

addition, the availability of Raspberry Pi in many electronics stores is a significant advantage over
other SBCs.

In addition to the presented single-board computers, there are also Odroid. These single-board
computers have better characteristics and greater performance, but they have a higher cost, greater
power consumption, greater heat dissipation and require better cooling. In addition, Odroid is less
accessible and the developer community is many times smaller than the Raspberry Pi developer
community.

Raspberry Pi clusters were implemented to solve some business, scientific and academic problems.
The SBC Raspberry Pi offers competitive advantages: they are inexpensive, low power, and at the
same time offer features similar to a simple personal computer.

2.2 Raspberry Pi clusters

Next we provide a review of several articles and projects that conduct research on the effectiveness
of using Raspberry Pi based cluster.

2.2.1 Beowulf cluster

The paper [9] presents a performance benchmarking of a Raspberry Pi 2 cluster (fig. 1). The research
project shows the design and construction of a high performance cluster of 12 Raspberry Pi 2 Model
B single-board computers. The Raspberry Pi 2 Model B is the second-generation Raspberry Pi. It
has:

e ARM Cortex-A7 CPU 900 MHz;

e 1GbRAM.

All of the nodes are connected over an Ethernet 100 Mbps Network in a parallel mode. Test
performed using High Performance Linpack (HPL) benchmark.

As aresult of their research, the authors collected cluster performance metrics in GFlops for different
number of nodes and different problem sizes.

Fig. 1. Construction of Beowulf Cluster [9]

2.2.2 Iridis-Pi cluster

The project of Iridis-Pi [10] used the Raspberry Pi (one) Model B microcomputer (fig. 2). The cluster
had the following characteristics:

e 64 Raspberry Pi Model B nodes;

e Broadcom BCM2835 700 MHz;

e 512 Mb RAM.

61

Pankov P.A., Nikiforov I.V., Drobintsev D.F. Hardware and software data processing system for research and scientific purpose based on
Raspberry Pi 3 microcompute. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 57-70

Fig. 2. Construction of Irdis Pi [12]

Like the previous project, this one uses LINPACK to test single-node performance and High-
Performance LINPACK (HPL) to test cluster performance. In addition, SD card performance was
measured. This is also important since the operating system and all files with which raspberry pi
works are recorded on these cards.

2.3.3 Raspberry Pi Hadoop cluster and FAST algorithm

In the project [11], the Raspberry Pi Hadoop cluster is used in more realistic conditions. To test
cluster performance, the authors run on it the SURF algorithm from the OpenCV library. The SURF
algorithm is used to search for fixed objects (retaining their external attributes) in images using the
characteristic points of the object. The similar use of the Raspberry Pi cluster in a similar task is a
very illustrative example, since image processing requires high performance.

In their research, the authors compared the work of an ordinary desktop computer and a raspberry
pi cluster with a different number of nodes and a different amount of data.

The result showed that the effectiveness of the built cluster occurs only with large amounts of data
(in the case of the project, the required amount of data was from 64,000 and above).

2.3.4 Traditional DPC and single-board computer DPC

An important part of the research is the comparison of traditional data processing centers and data
processing centers based on single-board microcomputers. As projects for comparison the last article
(B) and the cluster of the higher school of software engineering of St. Petersburg Polytechnic
University (A) were taken.

For comparison, the following criteria were identified:

types of tasks to be solved (K1);

examples of using (K2);

hardware (K3);

software (K4);

hardware price (K5);

areas of use (K6).

Comparison is presented in the Table 2.

Table 2. Traditional cluster and SBC cluster comparison

Traditional cluster SBC cluster
A B
K1 | Students laboratory and Big data processing using
course works on big data computer vision
processing algorithms
K2 | Hadoop Hadoop
Distributed data processing | Image processing using
and storage the SURF algorithm

62

Iaukos I1.A., Hukudopos U.B., [Ipo6unues /1.B. IIporpaMMHO-anmapaTHbIi KOMIUIEKC 00pabOTKY JAHHBIX IS HCCIEA0BATEIBCKUX U
Hay4YHBIX LeJIeH ¢ HCIoMb30BaHUEM MUKpOKoMbioTepa Raspberry Pi 3. Tpyds: MCIT PAH, Tom 32, Bem. 3, 2020 1., cTp. 57-70

K3 | -4 Intel Xeon 6 core E5 -5—-10 RPi 3 Model B
2620 2GHz 1.2GHz*
-32 TBHDD -80-320 Gb + HDD *
- 256 Gbh RAM -5-10 Gbh RAM
K4 | Linux Ubuntu
Hadoop Hadoop, OpenCV
K5 | ~450 000 rub. ~ 25000 - 45 000 rub
Traditional cluster SBC cluster
A B
K6 | Production Research
Research Education
Commercial use Science
Academic use
* depending on the number of nodes

As we can see from the table, the advantages of using a cluster on Raspberry Pi for research and
academic purposes, since it is economically more profitable. Such a system fully fulfills the
functionality of a software-hardware system for distributed storage and processing of data, and high
performance is not so important for research and academic purposes, unlike commercial use.

In addition, a rather important task is to create a system that is cost-effective during downtime, as
traditional data centers use hardware that consumes a large amount of energy and generates a large
amount of heat.

3. System description

This section describes the architecture of the project. Below will be described the hardware and
software that are used.

3.1 Hardware: Raspberry Pi 3 Model B +
Raspberry Pi [12] 3 Model B + (fig. 3) is the third generation of Raspberry Pi SBCs.

Fig. 3. Raspberry Pi 3 Model B plus?

Raspberry Pi was originally developed as a budget platform for learning computer science, but later
gained wider fame and scope.

! https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
63

Pankov P.A., Nikiforov I.V., Drobintsev D.F. Hardware and software data processing system for research and scientific purpose based on
Raspberry Pi 3 microcompute. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 57-70

3.2 Software

A cluster requires a certain set of software. First of all, nodes need an operating system. It is
necessary to install a set of programs on the operating system that will allow you to create a
distributed file system and perform distributed computing. Next will be described the software that
was used during the research.

3.2.1 Raspbian OS

Raspbian OS [13, 14] is the main operating system for the Raspberry Pi based on the Debian Linux
operating system. Raspbian was originally created by Mike Thompson and Peter Green as an
independent project. The system is optimized for operation on low-performance ARM processors.
PIXEL (Pi Improved Xwindows Environment, Lightweight) is used as the desktop environment.

3.2.2 Hadoop

Apache Hadoop is the open source project by the Apache Software Foundation. Hadoop is used for

reliable and scalable distributed computing, but can also serve as a distributed storage of large

amounts of data. Many companies use Hadoop for production and scientific purposes.

Hadoop consists of four key components:

e HDFS. Hadoop Distributed File System is a distributed file system that is responsible for storing
data on a Hadoop cluster;

o MapReduce system, which is designed for computing and processing large amounts of data on a
cluster;

¢ Hadoop Common — this module provides the tools (written in the Java language) needed on the
user's operating systems (Windows, Unix, or others) to read data stored in the Hadoop file system;

¢ YARN module manages the resources of systems that store data and perform analysis.

HDFS. Hadoop Distributed File System (HDFS) is the primary storage system used by Hadoop.

HDFS repeatedly copies data blocks and distributes these copies to the computing nodes of the

cluster, thereby ensuring high reliability and speed of calculations:

o datais distributed across several machines at boot time;

o HDFS is optimized more for streaming file reads than for irregular, random reads;

o files in the HDFS system are written once and making any arbitrary entries in the files is not
allowed,;

o applications can read and write HDFS files directly through the Java programming interface.

MapReduce. MapReduce is a programming model and framework for writing applications designed

for high-speed processing of large amounts of data on large parallel clusters of computing nodes:

e provides automatic parallelization and distribution of tasks;

e has built-in mechanisms to maintain stability and performance in case of failure of individual
elements;

e provides a clean level of abstraction for programmers.

Other tools. However, Hadoop has a number of other tools. Here is some of them:

HBase — NoSQL database that supports random read and write;

Pig — data processing language and runtime;

Spark —a set of tools for implementing distributed computing;

Hive — data warehouse with SQL interface;

ZooKeeper — storage of configuration information.

It is important that the Hadoop software allows you to use horizontal scaling. Horizontal scaling
allows to reduce the execution time of the same tasks.

64

Iaukos I1.A., Hukudopos U.B., [Ipo6unues /1.B. IIporpaMMHO-anmapaTHbIi KOMIUIEKC 00pabOTKY JAHHBIX IS HCCIEA0BATEIBCKUX U
HAYJHBIX LIeNIel C MCIOIb30BaHnEeM MUKpoKommbioTepa Raspberry Pi 3. Tpyower HCIT PAH, Tom 32, Bem. 3, 2020 1., cTp. 57-70

4. Implementation

A cluster of four Raspberry Pi nodes was created for research and a pilot project. Fig. 4 shows the
assembled cluster. It was decided to use different models of the Raspberry Pi single-board
microcomputer, thereby creating a heterogeneous cluster.

Fig. 4. Example of an assembled system of four nodes

On the created cluster, the word count algorithm using Hadoop MapReduce was tested. The Hadoop
license file was used as a test file.

Table 3 shows some collected metrics from the test bench.
Table 3. Hadoop cluster performance metrics

Metric name Value
HDFS number of bytes read 147239
HDFS number of bytes written 34796
HDFS number of read operations 8
HDFS number of write operations 2

Total time spent by map tasks (ms) 66853

Total time spent by reduce tasks (ms) | 21310

Map input / output records 2746 1 21463
Combine input / output records 21463 / 2965
Reduce input / output records 2965 / 2965

The presented metrics were obtained for the operation of the cluster from one node, the second node
did not participate in data processing due to configuration settings.

Next, we collected the time metrics for the algorithm for counting words in the text with different
system configurations.

Tests were carried out in several stages. The algorithm was launched taking into account the fact
that the text file was not divided into blocks. Further, the file system configuration was configured
so that the file was divided into 3 blocks, the work with which was distributed across different nodes.
Various configurations of the operating modes of the nodes were also tested. Three single-board
computers performed a different role at each stage. At each stage there was 1 «master node» — it is
engaged in the distribution of tasks and monitoring nodes. In addition, the number of «work nodes»
that are responsible for data processing has changed. At stages 1, 3 and 5, the “master node” was at
the same time a «working node».

65

Pankov P.A., Nikiforov I.V., Drobintsev D.F. Hardware and software data processing system for research and scientific purpose based on
Raspberry Pi 3 microcompute. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 57-70

Table 4 shows the processing time for a 38.5-megabyte file with various system configurations.

Table 4. The collected metrics of the test algorithm for calculating words in the text

1 block 3 blocks

1 worker | 3min 37sec

1 master

2min 38sec | 2min 13sec
1 worker

2 workers | 2min 44sec 2min 15sec

1 master

2min 46sec 2min 14sec
2 workers

3 workers | 2min 49sec 2min 13sec

As can be seen from the table, when working on one node, the time of work with one block is the
greatest. The best time was shown by the configuration of one «master node» and one «work node».
In other conditions, since the file is not divided into blocks, we only lose time on the work of the
«master node» for the distribution of tasks. In the case of splitting the file into 3 blocks, the execution
time is approximately the same, since in each case all 3 blocks were immediately distributed to all
nodes, however, the reduction in the operating time of the algorithm compared to 1 block is visible.
The second basic algorithm for checking the operation of distributed computing systems is
distributed computing the value of Pi. Table 5 shows parameters of Pi calculation tests.

Table 5. Test Parameters

Constant Variable
parameters parameters
10

10 samples per Map 16

operation 32
64
10
16
32
64
10
64

1000

10000

10 Map operations

64 Map operations

The first results will present a graph of the dependence of the execution time of calculations on a
different number of nodes and various settings that are indicated in the previous table. The graph is
shown in fig. 5.

66

MMankos I1.A., Hukudopos W.B., Ipoounues [.B. IIporpaMmmHo-anmaparHbiii KOMILUIEKC 00pabOTKH JaHHBIX AMIS HCCIEI0BATENbCKHX U
Hay4YHBIX LeJIeH ¢ HCIoMb30BaHUEM MUKpOKoMbioTepa Raspberry Pi 3. Tpyds: MCIT PAH, Tom 32, Bem. 3, 2020 1., cTp. 57-70

Pi calculations time
400

350

150
100
o T b OO
0
10 16 32 a4 10 16 32 a4 10 !

Calculation time (seconds)
.
[=]
(=]

1000 10000
10 samples per Map, Map 10 Map operations, 64 Map operations,
operations increasing samples per map samples per map
increasing increasing
H1lnode B2nodes 3 nodes 4 nodes

Fig, 5. Pi calculation time

In addition, a comparison was made of the time spent on one Map operation. The results are
presented in fig. 6.

Time spent on one Map operation
12
10
h=
=
g 8
5
£ 6
2
w4
g
o, i i
0
10 16 32 64 10 16 32 64 10 64 1000 10000
10 samples per Map, 10 Map operations, 64 Map operations,
Map operations samples per map samples per map
increasing increasing increasing
B 1node M2nodes 3 nodes 4 nodes

Fig. 6. Time spent on one Map operations

A distinctive feature of this work is the use of distributed computing systems on single-board
microcomputers for academic purposes for research and educational tasks of students with minimal
cost and ease of creating and using the system.

In addition, as a result of the study, a number of features and disadvantages of using the Raspberry

Pi were identified.

e Such a cluster is effective in performing lightweight tasks, for which there is the possibility of
splitting them into a large number of small tasks that do not require large computing power. The
same feature leads to the fact that this cluster is not effective in such tasks where high performance
is needed, for example, when working with graphics.

e SD card. Since the operating system is on an SD card, this can be a vulnerability, since the SD
cards do not differ in high performance;

o During the tests, it was noticed that during prolonged operation of the cluster, the number of errors
that occur during the execution of tasks increases, which may be associated with the accumulation

67

Pankov P.A., Nikiforov I.V., Drobintsev D.F. Hardware and software data processing system for research and scientific purpose based on
Raspberry Pi 3 microcompute. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 57-70

of garbage files. To restore stability, a reboot of the cluster was required. This leads to the need
for a more detailed approach to cluster configuration.

e In asituation when the number of nodes increases, errors may occur due to the fact that the node
does not have enough memory to allocate resources that the main node requests from the node.
The solution to this problem is the addition of certain configuration parameters to the files of the
main node. It is necessary to indicate to the main node about the need to check the availability of
the requested both virtual and hardware resources. In addition, you should correctly configure the
operating system itself on each node, including the amount of allocated memory for Java, which
may affect the operation of the cluster. It is necessary to approach in detail the configuration of
various nodes that differ in hardware characteristics.

e For comfortable operation, the Raspberry Pi requires active cooling. However, a single fan is
sufficient to cool two SBC’s. The fan used was powered from 5 volts and consumed 0.06 amperes,
which equals a power of 0.3 watts, which is energy efficient.

5. Conclusion

As a result of the research, the following tasks were completed:

o research and analysis of existing projects on the use of SBCs within the cluster;

e comparison of the cost-effectiveness of a traditional data center and data center using SBCs for
research and academic purposes. Based on this comparison, the relevance of developing a system
on SBCs was revealed;

e comparison of SBCs. As a result of the comparison, the Raspberry Pi 3 Model B + single-board
computer was chosen for the project, since it is the most optimal, due to its characteristics, price,
and also availability and prevalence.

From the results of the test benchmarks it can be seen that the created system supports horizontal

scalability, which meets the system requirements. In addition, based on the results, it can be

concluded that the goal of creating a cheap, scalable distributed computing system for academic
purposes has been achieved.

5. Future work

The project is under development. In the future, it is planned to perform the following tasks:
e increase the number of nodes for analysis to increase productivity;
o increase the number of metrics;

o analyze the performance of SD cards from different manufacturers, as their characteristics affect
the operation of the Raspberry Pi;

e use an external USB (flash / HDD / SSD) drive (s) as storage media;
e analyze the efficiency of using a cluster on single-board computers in various tasks;
e use software tools for testing distributed applications and systems [15].

References / Cnucok nutepartypbl

[1]. P. Pankov, I. Nikiforov, Y. Zhang. Hardware and software system for collection, storage and visualization
meteorological data from a weather stand. In Proc. of the International Scientific Conference on
Telecommunications, Computing and Control (TELECCON-2019), 2019 (in printing).

[2]. A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research problems in data center
networks. ACM SIGCOMM Computer Communication Review, vol. 39, no. 1, 2008, pp. 68-73.

[3]. P. Zikopoulos, C. Eaton, D. deRoos, T. Deutsch, and G. Lapis, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data. McGraw-Hill, 2011, 176 p.

[4]. L. Xue, J. Ni, Y. Li, and J. Shen. Provable data transfer from provable data possession and deletion in
cloud storage. Computer Standards & Interfaces, vol. 54, 2017, pp. 46-54.

[5]. J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. in Proc. of the 6th
Symposium on Operating System Design and Implementation (OSDI), 2004, pp. 137-150.

68

Iaukos I1.A., Hukudopos U.B., [Ipo6unues /1.B. IIporpaMMHO-anmapaTHbIi KOMIUIEKC 00pabOTKY JAHHBIX IS HCCIEA0BATEIBCKUX U
HAYJHBIX LIeNIel C MCIOIb30BaHnEeM MUKpoKommbioTepa Raspberry Pi 3. Tpyower HCIT PAH, Tom 32, Bem. 3, 2020 1., cTp. 57-70

[6]. C. Lam. Introducing Hadoop. In Hadoop in Action. Manning Publications, 2011, pp. 3-20.

[7]. Tom White. Hadoop: The Definition Guide. 4th Edition, O’Rilley Media Inc., 2015, 688 p.

[8]. W. P. Birmingham and D. P. Siewiorek. MICON: a knowledge based single board computer designer. In
Proc, of the 21st Conference on Design Automation, 1984, pp. 565-571.

[9]. Dimitrios Papakyriakou, Dimitra Kottou and loannis Kostouros. Benchmarking Raspberry Pi 2 Beowulf
Cluster. International Journal of Computer Applications, vol. 179, no. 32, 2018, pp. 21-27.

[10]. Simon J. Cox et al. Irdis-Pi: A low-cost, compact demonstration cluster. Cluster Computing, vol. 17, no.
2, 2013, pp. 349-358.

[11]. Kathiravan Srinivasan et al. An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for
Robust and Augment Computing Performance. Journal of Information Processing Systems, vol.14, no. 4,
2018, pp. 989-1009.

[12]. Molloy Derek. Exploring Raspberry Pi. Interfacing to the Real World with Embedded Linux. Wiley, 2016,
720 p.

[13]. William Harrington. Learning Raspbian. Packt Publishing, 2015, 154 p.

[14]. Roberto Morabito. Virtualization on Internet of Things Edge Devices with Container Technologies: a
Performance Evaluation. IEEE Access, vol. 5, 2017, pp. 8835-8850.

[15]. Kobyshev K.S., Nikiforov I.V., Prokofyev O.V. Tool for automating testing components of a distributed
application using an esb bus. In Proc. of the Scientific and Practical Conference on Modern Technologies
in Theory and Practice of Programming, 2019, pp. 212-214 (in Russian) / Ko6sies K.C., Hukudgopos
W.B., IIpokodreB O.B. MHCTpyMEHT U1l aBTOMATH3aLMH TECTUPOBAHUS KOMIIOHEHT PaclpeeleHHOTO
NpUIOXKeHHs, ucrnonp3ytomero ESB-mmHy. Tpyasl HaydHO-IPakTHUECKOH — KOH(EpEHINH
«CoBpeMeHHbIEe TEXHOIOIMH B TEOPHH U MIPAKTHKE IIPOrpaMMHUpoBanus», 2019 r., crp. 212-214.

Information about authors / Uncpopmaums o6 aBTopax

Pavel Aleksandrovich PANKOV is a graduate student at the Higher School of Software Engineering
at the Institute of Computer Science and Technology. Research interests: big data, data analysis,
computer vision, robotics, automation of technological processes, embedded systems.

[TaBen Anexcanapoud ITAHKOB — cryment maructpatypsl Beicmiei mikoisl mpoOrpamMMHOM
umxeHepud MHCTUTyTa KOMIBIOTEPHBIX HayK M TexHoioruid. Cdepbl HaydHBIX HHTEPECOB:
OosplIne JaHHBIC, AHAJIM3 IAaHHBIX, KOMIIBIOTEPHOE 3PEHHE, POOOTOTEXHHKA, ABTOMATH3AaLMA
TEXHOJIOTHYECKUX TIPOLIECCOB, BCTPAaBAEMBIC CHCTEMBI.

Igor Valerievich NIKIFOROV - candidate of technical sciences, associate professor of the Higher
School of Software Engineering at the Institute of Computer Science and Technology. Research
interests: parallel data processing, distributed data storage systems, big data, software verification,
test automation.

Urops BanepreBuu HUKM®POPOB — kaHgumaT TEXHWYECKUX HayK, HAOIEHT BhICIIel MIKOIBI
MPOrpaMMHON HHXeHepud WMHCTUTYyTa KOMIIBIOTEPHBIX HayK W TexHonoruid. Cdepbl HaydHbBIX
MHTEPECOB: MapauienbHas 00pabOTKa JaHHBIX, CUCTEMbI PACIPEACICHHOTO XPaHEHUs TaHHBIX,
OoIbIlINE JaHHbBIC, BEpUPUKAIHS TPOrPAMMHOTO 00ECIICUEH s, aBTOMATH3A1IUsI TECTUPOBAHUSI.

Dmitry Fedorovich DROBINTSEYV is a senior lecturer at the Higher School of Software Engineering
at the Institute of Computer Science and Technology. Research interests: big data, information
analytics, software verification.

HOvurpmiit @énoposnu JJPOBMHIIEB — crapmmii npenonaBaTens Bricmied MIKOIbI porpaMMHOI

uHKeHepud VIHCTHTyTa KOMIBIOTEPHBIX HAyK M TeXHONoruid. Cdepbl HaydHBIX HHTEPECOB:
OoIpInye JaHHBIC, AHATTUTHKA HHPOPMAITUH, BepU(DUKAIS TPOTPAMMHOTO 00ECTICUCHHSI.

69

Pankov P.A., Nikiforov I.V., Drobintsev D.F. Hardware and software data processing system for research and scientific purpose based on
Raspberry Pi 3 microcompute. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 57-70

70

Tpyowt UCI1 PAH, mom 32, suin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-6 M

Tracing Network Packets in the Linux Kernel
using eBPF

M.G. Kovalev, ORCID: 0000-0003-1050-052X <restonich@gmail.com>
St Petersburg State University,
7-9, Universitetskaya nab., St. Petersburg, 199034, Russia

Abstract. During the development and maintenance of complex network infrastructure for a big project,
developers face a lot of problems. Although there exist plenty of tools and software that helps to troubleshoot
such problems, their functionality is limited by the API that Linux kernel provides. Usually, they are narrowly
targeted on solving one problem and cannot show a system-wide network stack view, which could be helpful
in finding the source of the malfunction. This situation could be changed with the appearance of a new type of
tools powered by the Linux kernel's eBPF technology, which provides a flexible and powerful way to run a
userspace code inside the kernel. In this paper, an approach to tracing the path of network packets in the Linux
kernel using eBPF is described.

Keywords: Linux; kernel; networking; tracing; eBPF

For citation: Kovalev M.G. Tracing Network Packets in the Linux Kernel using eBPF. Trudy ISP RAN/Proc.
ISP RAS, vol. 32, issue 3, 2020. pp. 71-78. DOI: 10.15514/ISPRAS-2020-32(3)-6

TpaccupoBkKa ceTeBbIX NakeToB B ssape Linux
¢ ucnonb3osaHmem eBPF

M.I'. Kosanes, ORCID: 0000-0003-1050-052X <restonich@gmail.com>
Canxm-Ilemepbypeckuil 20cy0apcmeeHublil yHusepcumen,
Poccus, 199034, Canxm-Ilemepbype, Ynueepcumemcrkas nab., 0. 7-9

Annoramus. [Tpu pa3paboTke u 00CIy)KMBaHUU KOMIUIEKCHBIX CETEBBIX HHPPACTPYKTYP B OOJIBILINX IIPOSKTAX
Pa3pabOTUMKK CTAIKUBAIOTCI C MHOXKECTBOM mpoOiieM. HecMOTpst Ha TO, YTO CyIIECTBYET MHOMKECTBO
MHCTPYMEHTOB JUIsl IIOUCKA U YCTPAHEHUS TaKUX NpoOIeM, NX (yHKIHMOHAIBHOCTH OrpaHUYEHA IIPOrP aMMHBIM
uHTepdeiicoM, mpeaocraBisieMbiM siapoM Linux. OOBIYHO OHU CHEHATU3UPYIOTCS HA PEIICHUH KOHKPETHBIX
3a/1a4 ¥ HE MOT'YT JIaTh IIMPOKUH B3IJIA] HAa BECh CETEBOM CTEK CUCTEMBI, YTO MOIJIO Obl IOMOYb B TIpOLiEcCe
MOMCKA UCTOYHHUKA HETONa K1, DTa CUTyalis MOKET U3MEHHUTHCS C MOSBJICHHEM HOBOT'O THIIA HHCTPYMEHTOB,
UCTIONB3YIOUIMX TexHonoruto siapa Linux eBPF, paromryto rubkuii W MOIIHBI cnoco0 3amyckaTh
TI0JIb30BATEJIbCKUI KOJI B IPOCTPAHCTBE sipa. B 3TOl craThe omuchIBaeTCs NOAXOM K TPACCUPOBKE CETEBBIX
naketoB B siape Linux ¢ nomorisio eBPF.

KuoueBsble ciioBa: Linux; siipo; cetu; TpaccupoBka; eBPF

Jons ummrupoBanusi: Kosanes M.I'. TpaccupoBka ceTeBbIX makeToB B simpe Linux ¢ ucnonb3oBanueM eBPF.
Tpyaet UCIT PAH, tom 32, Beim. 3, 2020 r., ctp. 71-78 (Ha anrmmiickom sizeike). DOI: 10.15514/ISPRAS—
2020-32(3)-6

1. Introduction

Software and hardware solutions are becoming increasingly complex, which leads to an increasingly
complex network infrastructure that lies at the basis of such solutions. Such infrastructures could
71

https://english.spbu.ru/events/3326-st-petersburg-university-invites-foreign-citizens-to-prepare-for-successful-admission

Kovalev M.G. Tracing Network Packets in the Linux Kernel using eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 71-78

include multiple physical devices and virtual interfaces, various network namespaces, firewall
settings, routing tables, packet filtering, networking protocols, and so on. These technologies are
very powerful and feature-rich, but on the other hand, it also makes troubleshooting of such network
systems much harder and more time-consuming.

There are a lot of ways to troubleshoot networking problems. One of them is to walk through the
OSl stack: go all the way up from the link layer to upper ones checking the system to work correctly
on each layer. Check if the network interface is working and is configured right, look at the ARP
and routing tables, firewall rules, packet filtering, and move on to check the high-level
configurations. Most problems are solved in one of these steps. But complexity of the system
configuration will eventually lead to non-obvious relations between different parts of it and more
difficult problems will appear. Such problems are solved by excluding possible sources of
malfunction one by one with different tools. This is a long and tedious process, and it needs to be
repeated for every problem over and over since, for each problem, possible sources of malfunction
are new and need to be rechecked. Most of the tools, being narrowly targeted on solving specific
issues, do not help either. Though doing their job very well, they cannot provide a system-wide
network stack view, which could help us solve non-obvious problems in complex network
infrastructures.

In this paper, the «system-wide network stack view» means a path of the network packet through
Linux's networking stack. It shows which functions processed the packet and for how long, where
it was consumed or dropped, or if it went the wrong way, not intended by the network architecture.
With this information, the developer could narrow down the scope of troubleshooting and solve the
problem quickly with the use of the appropriate tools.

In the past, information about the packet's path would not be possible to obtain without direct kernel
code modification or some serious restrictions. Now it can be easily done with the use of eBPF
technology.

2. Technology Overview

2.1 BPF

Berkley Packet Filter (BPF) is a technology that consists of the register-based virtual machine and
the instruction set for that machine. It was designed for a highly optimized and performant network
traffic filtering [1]. It is used as the backend for the libpcap library and does packet filtering for tools
such as tcpdump. When tcpdump is executed with some filtering rule, it generates BPF bytecode for
that rule and sends it to the kernel to attach at the early stages of the network stack processing. That
bytecode then gets interpreted on the virtual machine and decides which packet shows up in
tcpdump's output [2].

This filtering mechanism is performant and secure by design. BPF programs executed isolated on
the in-kernel virtual machine. They are limited to 4096 instructions, cannot have loops, and all
memory accesses are checked for a valid range. So, execution of the BPF bytecode is guaranteed to
terminate; it cannot cause a kernel fault, a denial of service, or memory damage.

While being a useful concept of securely running userspace code in the kernel, BPF is limited by its
design and age. Two registers are not enough to write powerful programs, and the instruction set is
outdated as modern processors moved to 64-bit architecture. So, to take advantage of contemporary
hardware, BPF had to be improved [3].

2.2 eBPF

Massive rework of the BPF was initiated in 2014 by Alexei Starovoitov [4][5].

1. 512 bytes multi-use stack space replaced old spill-fill stack.

2. The number of registers was increased from two to ten, and their width became 64-bit. All of
them map one to one to hardware registers.

72

Kosanes M.I'. TpaccupoBka ceTeBsIx makeToB B siape Linux ¢ ucnons3oBanuem eBPF. Tpyow: HCII PAH, Tom 32, Bbim. 3, 2020 r., ctp. 71-
78

3. Various old instructions were modified, and new ones added, all of them becoming a close match
to the hardware instructions. It greatly improved JIT compilation.

4. Maps were introduced — generic key-value data structures to exchange information between
the BPF programs and with the userspace.

5. New attachment points for the programs were implemented: kernel probes (kprobes),
tracepoints, perf events, and sockets. These programs are invoked every time an attachment
point is passed by, and they have access to the corresponding context.

These improvements significantly increased the programmability and performance of BPF. After

some other modifications, APl of that rework was frozen and named as extended BPF (eBPF) [6].

Since then, eBPF has been actively developed, providing more usability and flexibility for extending

the Linux kernel's functionality without editing its source code. There is an example of the Linux

TCP stack extension from the user space with the help of eBPF [7].

Plenty of attachment points makes eBPF a very useful technology for creating tracing and profiling

tools. bcctools and bpftrace are great examples that make use of this functionality. A thorough

explanation of how to use these tools in performance testing can be found in Brendan Gregg's «BPF

Performance Tools» [8].

2.3 Toolchain

Classic BPF programs were written directly in VM instructions. This approach would be restricting
for the eBPF as it would be harder to use new features and extensions. To simplify programming,
the eBPF backend for LLVM was introduced [9]. It allows to write eBPF programs in restricted C
language and then compile them to the ELF objects with a clang. Restrictions for C language come
from the eBPF design and features of ELF parsing.

1. Main program functions and map structures have to be defined with section() attribute as loaders
need eBPF objects to be self-contained in the ELF sections.

Multiple programs can be described inside a single C file in different sections.

No global variables, constant strings, or arrays allowed.

The stack is limited to 512 bytes.

No ability to call library functions (except for those defined with inline in included headers or
for eBPF helpers).

6. Only bounded loops are available.

These are not all of the limitations and features of writing eBPF programs in C. An up-to-date list
with explanations can be found in Cilium's BPF and XDP Reference Guide [10]. Since technology
is being actively developed, some restrictions are being fixed. For example, bounded loops were
introduced relatively recently, and before that, no loops at all were allowed in the eBPF programs
(or they had to be unrolled with pragma directive) [11].

The eBPF helpers are special in-kernel functions intended to expand functionality and ease
programming. They are used to interact with the eBPF maps, get the time elapsed since system boot,
print some information for debugging, edit the network packets, and many more. The exact set of
helpers accessible by the eBPF program is determined by its type [12].

Successfully compiled ELF objects with eBPF objects (programs and maps) are passed to the kernel
via loader. This is done via bpf() syscall, but for ease of use, bpftool loader backed by libbpf library
should be used instead. Though bpftool covers overall management of eBPF objects, the attachment
eBPF programs to the network path should be done via the tc tool from the iproute2 suite.

When the eBPF program is loaded into the kernel, it is processed by a static verifier. A directed
acyclic graph is created from the program to check for the loops and unreachable instructions. Then
the verifier simulates the execution of the program for every possible path and observes the state
change of registers and stack. If the program passes, a descriptor is created for it that is then used to
attach it to an appropriate attachment point.

a ks owd

73

Kovalev M.G. Tracing Network Packets in the Linux Kernel using eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 71-78

3. Implementation

The tool has a command-line interface, taking a filter expression as an input and passing network

packet path in plain text format as an output. The general sequence is shown in Fig. 1.

1. Filter expression describing network traffic that needs to be observed is passed to the tool.

2. eBPF program for the network path traffic control attachment point (TC program) is generated
from that filter and loaded into the kernel along with skb_map and path_map eBPF maps.

3. eBPF programs for the attachment to kprobes of the main network functions (kprobe programs)
are compiled and loaded into the kernel.

4. The TC program matches every packet against the filter. Upon finding a match, the program
stores a pointer to the packet's sk_buff structure in the skb_map.

5. The kprobe program checks arguments passed as the probed function's context, and if it matches
the pointer stored in the skb_map, program stores current timestamp in the path map. If the
program's probed function is marked as the last in packet path, it also fills the skb_map with 1's.
That serves as a signal for the tool to stop the packet tracing.

6. The tool retrieves information from the path_map, sorts it by the timestamp values and passes
it as the output.

i [‘Tool] [:TF- J [e] [:skb_map J [:palh map}
program program - -

User '
=t i H N
Filter o ! TC program
» :
generation

4)

Load

Load

Load

L &

kprobe programs
compilation

.)

Load

Write

Y

Read

Write

h 4

Write

Read

Read

Packet path

Fig. 1. Program flow implementation details

Every eBPF program has a different context passed to it based on the program type (which depends
on the attachment point). For the TC programs, itisastruct sk buff *skb and for the kprobe
programs — struct pt regs *ctx.

struct sk buff is a user-accessible mirror of the in-kernel struct sk _buff. It is not a copy,
more like access instructions. Accesses to the fields of this struct are processed in the eBPF verifier
and translated to the accesses to the same fields of the real buffer structure. This approach improves
security and portability, as programs do not rely on the in-kernel definition of the sk _buff.
struct pt regs stores saved registers of the probed function. Arguments of the function are
accessed from this structure by architecture-dependent macros, which improves portability of the
kprobe functions.

74

Kosanes M.I'. TpaccupoBka ceTeBsIx makeToB B siape Linux ¢ ucnons3oBanuem eBPF. Tpyow: HCII PAH, Tom 32, Bbim. 3, 2020 r., ctp. 71-
78

Typically, eBPF programs cannot store their state. Therefore, eBPF maps are used to save the
observed packet's pointer and to collect the information about its path. This allows to filter the packet
only once in the early stages of its processing and to make the kprobe programs as simple as possible.
The TC program is attached to the appropriate point with the tc tool. c1sact qdisc is added to the
network interface, through which the observed traffic will be passing, and the TC program is passed
to it as a classifier. Full command reference can be found in the tc man page [13].

To load and attach the kprobe programs, I've implemented a program based on the 1 ibbpf library,
as bpftool lacks such functionality. My loader also replaces eBPF maps in loaded objects for
those already created by the TC program load. This is necessary to establish communication between
programs.

The Code of the kprobe programs is basically the same and simple. To attach them to the various
kernel functions they are identified by the macros:

e KP_NUM stores a number of the probed function;

e KP SEC stores aname of the probed function in the format "kprobe/<function name>";
e KP FIN stores 1 if probed function marked as the last one and 0 otherwise.

These values are taken from a kp funcs. txt file and are filled on the compilation phase with
the use of the clang's -D<macroname>=<value> option. This way kprobe programs for all the
observed functions are created from the only one source file. This mechanism creates unnecessary
overhead and is to be changed for a more suitable solution.

kp_ funcs.txt file used in the kprobe program's compilation is necessary to provide portability
for the tool. Itis to be adapted for different Linux versions as names of the in-kernel functions change
from time to time. Also, users can easily add new functions to this list to observe if the packets pass
through them.

Onthe Linux systems /etc/security/limits.conf file controls limits of the various system
values such as maximum file size, stack size, or processes count [14]. For my tool memlock value
is the most important one. It is a maximum locked-in-memory address space that limits an amount
of the memory pages in RAM that are not to be placed in the swap space. So, to be able to load a
large amount of kprobe programs, this limit needs to be increased by the user.

4. Similar approaches

4.1 VMware Traceflow

Traceflow is a part of the VMware NSX Data Center for vSphere platform [15]. It injects packets
into the network and traces them as they travel between nodes. It provides a good overview of the
whole network, from which an administrator could get information about possible sources of
malfunction or performance reduction.

Traceflow operates on a high level of networking and does not tell about internal packet processing.
My tool can operate only on one node yet provides a thorough network packet path through the
kernel. Additionally, it does not inject special traffic into the system and works on the existing one.
Also, usage of the Traceflow is restricted to the vSphere platform, while my solution runs on any
system with a recent enough Linux kernel version.

4.2 ftrace

ftrace system [16] also could be used to trace network packets in the Linux. This could be done by
restricting all network traffic in the system except for the one that is to be observed. Then
function graph tracer can be used on the function such as
__netif receive skb list core () toshow the path of the incoming packet.

75

Kovalev M.G. Tracing Network Packets in the Linux Kernel using eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 71-78

It is an easy and detailed approach, though not so useful on a production system. My tool traces
determined network packets, and the presence of another traffic in the system does not interfere with
it.

4.3 tcpdrop

tcpdrop tool is a part of the BCC (BPF Compiler Collection) project and is built on the eBPF [17].
It provides a stack trace of Linux kernel functions that led to the drop of the TCP packet along with
other useful information. This helps answer why such drops are happening.

Though being limited to only TCP traffic and not observing the full path of the packets, tcpdrop
shows a good example of the usefulness of the approach that lies in the foundation of my tool.

6. Future Work

The current state of the tool is as follows.

1. The TC program is static and can trace incoming ICMP, TCP, or UDP packets with a manual
macro modification.

2. The kprobe programs are compiled manually with appropriate values passed.

3. Information of the packet passing through functions is printed by programs via
bpf trace printk() helper and is observed through the
/sys/kernel/debug/tracing/trace pipe file.

To reach an MVP (minimum viable product) state for the tool, the following things are to be

implemented.

1. The generation of the TC program based on the filter passed.

2. Akp func.txt file composition and a kprobe programs compilation automatization.

3. Apath map information retrieval mechanism and a packet path composition.

At the scope of the whole project, there are several points of consideration.

1. Amount of the kprobe programs that is acceptable to sustain a balance between performance
and usability of the tracing information.

2. Different use-cases need to be described as well as scenarios of troubleshooting comparison
with and without this tool.

3. Kprobes are not a part of the stable Linux API, the name of the functions could change. This
should be handled to guarantee the operation of this tool on various kernel versions. Also, it is
possible that thorough kprobe tracing is unnecessary in some scenarios, so instead the tool could
rely on the tracepoints as a more stable kernel APL

The tool source files can be found in my GitHub repository [18].

References / Cnucok nutepartypbl

[1]. Steven McCanne, Van Jacobson. The BSD Packet Filter: A New Architecture for User-level Packet
Capture. In Proc. of the USENIX Winter 1993 Conference, 1993, pp. 259-270.

[2]. Marek Majkowski. BPF - the forgotten bytecode. The Cloudflare Blog, May 2014, available at:
https://blog.cloudflare.com/bpf-the-forgotten-bytecode/.

[3]. Matt Fleming. A thorough introduction to eBPF. LWN.net, December 2017, available at:
https://lwn.net/Articles/740157/.

[4]. Alexei Starovoitov. net: filter: rework/optimize internal BPF interpreter's instruction set. index:
kernel/git/torvalds/linux.git, March 2014, available at:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49
e6d0fd55dffc551b8.

[5]. Jay Schulist, Daniel Borkmann, Alexei Starovoitov. Linux Socket Filtering aka Berkeley Packet Filter
(BPF). Linux in-kernel documentation, available at:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt

76

Kosanes M.I'. TpaccupoBka ceTeBsIx makeToB B siape Linux ¢ ucnons3oBanuem eBPF. Tpyow: HCII PAH, Tom 32, Bbim. 3, 2020 r., ctp. 71-

78

(61.

[71.
[8].
[a].

[10].
[11].

[12].
[13].
[14].

[15].

[16].

[17].

(18]

Alexei Starovoitov. net: filter: split filter.h and expose eBPF to user space. kernel/git/torvalds/linux.git,
September 2014, available at:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=daedfb22451dd02b35c0549
566chb7cc06bdd53b

Viet-Hoang Tran, Olivier Bonaventure. Making the Linux TCP stack more extensible with eBPF. In
Proc. of the Netdev 0x13, Technical Conference on Linux Networking, 2019, available at:
https://netdevconf.info/0x13/session.html?talk-tcp-ebpf.

Brendan Gregg. BPF Performance Tools. Addison-Wesley Professional, 2019, 880 p.

Alexei Starovoitov. BPF backend. LLVM project, commit, December 2014, available at:
https://reviews.llvm.org/D6494.

BPF and XDP Reference Guide. Cilium, available at: https://docs.cilium.io/en/latest/bpf/.

Daniel Borkmann, Alexei Starovoitov. Merge branch ‘bpf-bounded-loops’, kernel/git/torvalds/linux.git,
June 2019, available at:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=94079b64255fe40b9b53fd2
e4081f68b9b14f54a.

BPF-HELPERS - list of eBPF helper functions, manual page, available at: http://man7.org/linux/man-
pages/man7/bpf-helpers.7.html.

Bert Hubert. tc - show / manipulate traffic control settings. manual page, available at:
http://man7.org/linux/man-pages/mang/tc.8.html.

Cristian Gafton. limits.conf - configuration file for the pam_limits module. available at:
http://man7.org/linux/man-pages/man5/limits.conf.5.html.

VMware Docs. VMware NSX Data Center for vSphere Documentation. Traceflow documentation, May
2019, available at: https://docs.vmware.com/en/\VVMware-NSX-Data-Center-for-
vSphere/6.4/com.vmware.nsx.admin.doc/GUID-233EB2CE-4B8A-474C-897A-AA1482DBBF3D.html.
Jftrace - Function Tracer. Linux in-kernel documentation. available at:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/trace/ftrace.rst.
Brendan Gregg. Linux bcc/eBPF tcpdrop. Brendan Gregg's Blog, May 2018, available at:
http://www.brendangregg.com/blog/2018-05-31/linux-tcpdrop.html.

Mark Kovalev. Bpfpath. GitHub repository, available at: https://github.com/restonich/bpfpath.

Information about authors / Uncphopmaums o6 aBTopax

Mark Germanovitch KOVALEV - student of the Department of System Programming, Faculty of
Mathematics and Mechanics. Research interests: network infrastructure management, operating
systems.

Mapk I'epmanoBry KOBAJIEB — ctyneHT kadeapbl CHCTEMHOTO POrpaMMHPOBAHHUS MATEMaTHKO-
MexaHudeckoro Qakynprere. HaydHble HHTEpechl: yIpaBIeHHE CETeBOW HH(PACTPYKTYpPO,
ONE€PAllMOHHBIC CUCTEMBI.

77

Kovalev M.G. Tracing Network Packets in the Linux Kernel using eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 71-78

78

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-7 tocl%

An Approach to the Translation of Software-Defined
Network Switch Flow Table into Network
Processing Unit Assembly Language

A.A. Markoborodov, ORCID: 0000-0003-4525-6133 <amark@Ivk.cs.msu.su>
Yu.A. Skobtsova, ORCID: 0000-0001-8351-3191 <xenerizes@Ivk.cs.msu.su>
D.Yu. Volkanov, ORCID: 0000-0001-9940-5822 <volkanov@asvk.cs.msu.su>
Mockoeckuiti cocyoapcmeennwitl ynugepcumem umenu M.B. Jlomonocosa,
119991, Poccusi, Mocksa, Jlenunckue 2opot, 0. 1

Abstract. This paper considers the OpenFlow 1.3 switch based on a programmable network processing unit
(NPU). OpenFlow switch performs flow entry lookup in a flow table by the values of packet header fields to
determine actions to apply to incoming packet (classification). In the considered NPU assembly language,
lookup operation may be implemented on the basis of search trees. But these trees cannot be directly used for
OpenFlow classification because of compared operands width limitation. In this paper, we propose flow table
representation designed for easy translation into NPU search trees. Another goal was to create a compact
program that fits in NPU memory. Another NPU limitation requires program updating after each flow table
modification. Consequently, the switch must maintain the current flow table state to provide a fast NPU
program update. We developed algorithms for incremental update of flow table representation (flow addition
and removal). To evaluate the proposed flow table translation approach, a set of flow tables was translated into
NPU assembly language using a simple algorithm (based on related work) and an improved algorithm (our
proposal). Evaluation was performed on the NPU simulation model and showed that our approach effectively
reduces program size.

Keywords: OpenFlow; network processing unit; flow table; software-defined network

For citation: Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of
Software-Defined Network Switch Flow Table into Network Processing Unit Assembly Language. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90. DOI: 10.15514/ISPRAS-2020-32(3)-7

Moaxopn K TpaHCcNAUUKM Tabnuubl NOTOKOB KOMMyTaTopa NPOrpaMmHoO-
KOHpUrypupyemom ceTu B A3blk accembriepa ceTeBoro npoweccopa

A.A. Maprxotopooos, ORCID: 0000-0003-4525-6133 <amark@Ivk.cs.msu.su>
I0.A4. Cxobyosa, ORCID: 0000-0001-8351-3191 <xenerizes@Ivk.cs.msu.su>
I.FO. Bonkanos, ORCID: 0000-0001-9940-5822 <volkanov@asvk.cs.msu.su>
Mockoeckuii cocyoapcmeennwitl yuugepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwi, 0. 1

Abstract. B crarbe paccMaTpuBaeTCs KOMMYTATOp, (YHKIMOHHUPYIOIIMA IO YIPABICHHEM IMPOTOKOIA
OpenFlow 1.3. Kommyratop pabortaer Ha 6a3e MpOrpaMMHPYEMOTrO CETEBOTO MPOILECCOPHOrO YCTPOMCTBA
(CITY). Ana xnaccuukanuy MPUXOAAIIAX MAKETOB KOMMYTATOpP BBHIMOJHSET MOWCK 3amucH (MIpaBuia) B
TabnMIle MOTOKOB IO 3HAYEHHSAM IIOJEil 3arojoBKa ISl OMpeAeNeHUs] NEeHCTBUM, KOTOpble HEOOXOAMMO
BBINIOTHUTD HAJ NOMYYCHHBIM makeToM. Ilomck B mporpamme Ha si3bIKe accemOliepa paccMaTpHUBAEMOTO
CIIY moxer ObITh peann3oBaH B BHAE HAOOpa JEpeBhEB IOUCKA. IIpH 3TOM CyImecTByeT OrpaHHYEHHE Ha
IIMPUHY CPABHUBAEMBIX 3HAUCHUH, YTO HE MO3BONSET HAMPSIMYIO HCIIONB30BAaTh AEPEBbSI IOHMCKA IS

79

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software -Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

KIaccHpUKAMM Mo Taliume IOTOKOB. B crarbe mpernaraercss mpencTaBiIeHHE TaOJUIBI IOTOKOB,
pa3paboTaHHOE AJIS TPAHCISIIUY TaOJIHIEI TOTOKOB B IporpaMMy Ha si3sike accemOuiepa CITY, peanusyronryro
TIOVCK 110 Habopy mpaBwiI TabuIm!. Emme ogHo# 1embio SBISIIoCch CO3AaHIe KOMIIAKTHOM IIPOrpaMMBI, KOTOpast
MoxeT ObITh 3arpyxeHa B mamars CIIY. Apxwurekrypa paccmarpuBaemoro CIIY Taroke oOmamaer
0COOEHHOCTBIO, 3AKIIIOYAIOIIEHCS B HEOOXOIMMOCTH OOHOBJICHHS NPOTPAaMMBI IIOCNIE KaXKIOTO M3MEHEHHUS
TabmmIE! ToToKoB. [loaToMy Henecoobpa3zHo moaIep)KUBATh TEKyIee IpeCcTaBIeHIe TaOIHIB! IIOTOKOB IS
obicTporo oOHoBieHust mporpammel CITY. B crarbe mpencraBieHbl aurOpuThl Ui HHKPEMEHTHOTO
OOHOBJICHUsI Pa3pabOTaHHOTO MPEJCTABIEHUS TAOIMIBI IOTOKOB (NOOABICHHS M YHAJICHUS MpaBUIIA).
Pa3paboranHblii moaxox OBUT HCCIEAOBaH Ha HKCHEPHMEHTANBHBIX HAOOpax IpaBWJ, KOTOpHIE OBUIH
TPaHCIMPOBAaHBl B IporpaMmbl Ha s3bIke accembiepa CIIY ¢ ucnomb3oBaHMEM MPSMOro Crocooa,
OCHOBAaHHOI'O Ha CYIIECTBYIOIIMX HOAXOZaX, W pa3pabOTaHHOro aaropurMa. OKCIEPUMEHTAIbHOE
HCCIeIoBaHNUe MPOBOAMIIOCH Ha ocHoBe Monenau CIIY u mokasaio, 4Tto pa3paGOTaHHBIM MOIXOX CIIOCOOEH
3¢ PEeKTUBHO YMEHBIIATH Pa3Mep MPOrpaMMEI.

KioueBbie ciaoBa: OpenFlow; cereBoe mporeccopHOe YCTpOHCTBO; TaOJHMIA ITOTOKOB; IIPOrPaMMHO-
KOH(HUTYypUpyeMBIE CETH

Jas nurupoanusi: Mapko6oponos A.A., Cko6rosa F0.A., Bonkanos 1.1O. [Toaxon k TpaHCISAINH TaOIUIIBI
MIOTOKOB KOMMYTaTOpa IpOrpaMMHO-KOH(HUTYPHPYEMOH CeTH B sI3BIK acceMOiepa CeTeBOro Iporeccopa.
Tpynst UCIT PAH, tom 32, Bbim. 3, 2020 r., ctp. 79-90 (Ha anrmmiickom si3eike). DOI: 10.15514/ISPRAS—
2020-32(3)-7

1. Introduction

Software-Defined Networks (SDN) have been actively developed recently. In SDN network devices,
or switches, implement data forwarding plane, when device and data flow management (control
plane) is performed by special software — SDN controller, running on a separate server [1]. For
interaction between the data plane and the control plane, a special control protocol is used. The
OpenFlow [2] protocol is one of the most widespread SDN control protocols.

Packet processing in the OpenFlow switch is performed using special processing rules (called flow
entries in the OpenFlow protocol) organized in flow tables. SDN controller updates these flow
entries by sending OpenFlow messages. To classify incoming packets, OpenFlow switch looks up
for the flow entry in the flow table that matches values of corresponding packet header fields.

One of the directions of the SDN technology development are high-performance switches based on
programmable network processor units (NPU) [3], which are widely used. NPU is a System-on-a-
Chip with architecture specialized for network traffic processing. NPU performs packet header
parsing, classification of incoming packets, modification of the packet header and traffic
management functions [4]. Programmable NPUs allow us to change packet processing algorithms
and distinguishable packet header fields, which is highly valuable in SDN deployments with
emerging standards like data centers or 5G [5].

NPU is a specialized device that executes packet processing program loaded into its memory and
usually does not make changes to its program itself. The central processing unit (CPU) of the switch
implements the interface with the SDN control plane. OpenFlow software in the operating system
environment of the CPU provides a connection with the controller and makes changes to the NPU
program. Program update requires a special system to translate OpenFlow abstractions into the
assembly language of the NPU. This research is devoted to the development of such a system,
specifically, its part responsible for packet classification according to the flow table.

The paper has the following structure. Section 2 describes the main architectural features of the NPU
and its assembly language. Section 3 contains the problem statement of this research. In Section 4,
we perform an analysis of related work applied to flow table representation in considered NPU.
Section 5 presents developed data structure and algorithms for translating it into the assembly
language and also the data structure updating algorithms. Section 6 is devoted to the evaluation of
the developed flow table translation approach.

80

Mapko6oponos A.A., Cxobrosa F0.A., Bonkanos [I.1O. IToaxox K TpaHCIAINE TaOIHIIEI TOTOKOB KOMMYTATOPa MPOrPaMMHO -
KOH(UTYpHPYeMOHi CeTH B s3bIK acceMbiiepa ceteBoro npoueccopa. Ipyost UCI1 PAH, Tom 32, Beim. 3, 2020 ., crp. 79-90

2. NPU architecture

Our research considers a switch with the NPU based on specialized computing cores. This NPU
contains a set of parallel packet processing pipelines consisting of the uniform stages that execute
binary code loaded into them.

The computing core of the NPU pipeline stage contains a single general-purpose register and a
memory area to store the currently processed packet header and associated metadata (such as ingress
port identifier). The register is used as an operand register and a result register. NPU does not contain
a separated memory area to store program data. Program data is recorded directly to the binary code
of the stage processor instructions. Thus, any change of the data, such as flow removal in OpenFlow,
requires a new program to be loaded.

The assembly language of the NPU contains conditional jump instructions that compare the value
in the register with the value from the instruction operand. Length of the value should be 64 bits or
less. Conditional jump can be made only to the label located in the program below. Therefore, for
example, it is impossible to implement loops or return to previously defined packet modifying
action.

The program in the assembly language of the NPU can be represented as a finite set of linear
instruction blocks connected by jump instructions. The program contains the following main types
of linear instruction blocks.

e Load value. The sequence of instructions of this block loads a value from the packet header
memory area or associated metadata memory into the register.

e Change register. The sequence of instructions of this block performs arithmetical or logical
operations to change the current value of the register.

e Search tree. In the simplest case (exact match search tree) this block contains a set of jump
instructions. The search key is an integer value, which length is 64 bits or less. It can also be the
longest-prefix match search tree, which additionally requires prefix length for the searchkey.

e Apply actions. The sequence of instructions of this block performs modifying actions on the
packet header memory or associated metadata memory, such as changing header field values,
pushing tags.

A directed graph of the program can be created from the instruction blocks of the program. In this

graph vertices are created for each instruction block. An arc leads from one vertex to another, if the

block corresponding to the first vertex has jump instruction to label located in instruction block
corresponding to the second vertex. The program graph has no cycles and contains only one vertex
without incoming arcs.

[Load field value }

[Search tree]

Fig. 1. Example NPU program graph

81

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software -Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

Fig. 1 shows the graph for a simple NPU program which performs classification by the value of one
header field and applies one of the three packet modifying actions. The program has one instruction
block for loading the value of this field and one block containing the search tree. In the program
graph three arcs lead from the vertex of search tree block to three vertices of action blocks to apply.

3. Problem statement

Consider a switch that operates under the OpenFlow 1.3 protocol, based on the NPU described in
Section 2. Let R be flow table with flow entries containing only match fields with exact values. The
set of flow table match fields is denoted by | = {m.; m;; ... ; m}. Flow entry may specify exact value
only for a subset of I allowing any value in other match fields. Let the symbol «*» denote any value
of the match field. To avoid search ambiguity, each flow entry is marked with priority p.

Our goal is to create a program in the assembly language that is compliant with the graph described
in Section Il and performs received packet classification by the given flow table R. The program
must perform the search for matching flow entry in the flow table that has the highest priority and
matches packet header fields.

Additionally, we have to load a new program into the NPU each time flow table contents are
changed. Considering the usual frequency of flow table updates, it is advisable to maintain an
incrementally updated intermediate representation of the flow table for quick translation after the
update.

Thus, the problem is to develop a data structure for translating given flow table R into the program
in the assembly language of the considered NPU, which implements a search on this set of flow
entries and supports the addition and removal of flow entries.

4. Related work

This section provides a brief review of other researches devoted to data structures developed for
classification by the flow table or similar multi-field tables.

The papers [6], [7] investigate an approach based on the decomposition of the classification by many
fields into several classifications by one field. This approach uses a separate data structure for each
match field, such as search trees or hash tables. The search result for one data structure is the Bloom
filter [8] or label identifier. To get the classification result for all fields, it is necessary to intersect
pairs of separate classification results. As a result, an identifier of the required flow entry is
calculated.

This approach has significant limitations in implementation for the considered NPU, including the
impossibility of hash function implementation required for Bloom filters and the necessity to store
intermediate labels when classification results are intersected.

The papers [9], [10], [11], [12] suggest an approach that uses decision trees. Each vertex of such a
tree is associated with a predicate. During the search, the predicate determines the next descendant
vertex to continue the search. During passing from vertex to its descendant, the initial set of flow
entries decreases and, as a result, turns into a smaller set of flow entries, among which the desired
flow entry is determined by simple enumeration.

This approach also has limitations for implementing in the considered NPU. In the search process,
it is required to load the header field values more than once, that can lead to unreasonable expenses
for the packet processing time and multiple duplication of instruction blocks for loading the field
value.

All considered approaches to the representation of flow tables have limitations and disadvantages
for their implementation in the assembly language of considered NPU. Data structures based on
decision trees are more suitable for our research problem. However, the disadvantages of such data
structures should be eliminated, or the program just will not fit into NPU memory. 3

82

Mapko6oponos A.A., Cxobrosa F0.A., Bonkanos [I.1O. IToaxox K TpaHCIAINE TaOIHIIEI TOTOKOB KOMMYTATOPa MPOrPaMMHO -
KOH(UTYpHPYeMOHi CeTH B s3bIK acceMbiiepa ceteBoro npoueccopa. Ipyost UCI1 PAH, Tom 32, Beim. 3, 2020 ., crp. 79-90

5. Proposed approach

In this section, we describe the developed data structure for representing the flow table and the
developed algorithms for flow addition and removal from the data structure and for translating the
data structure into a program in the assembly language of the NPU.

5.1 Data Structure

To represent a flow table with the set of flow entries R, we use a tree with marked vertices and arcs.
The following values are associated with each tree vertex, except for leaf vertices.

e Match field from the set of considered fields | = {ml; m,; ..., mk}: the tree root corresponds
to the field M, the descendants of the root correspond to the field M., etc.

o Subset of the flow set R. The tree root corresponds to the whole set R.

Table 1. Example flow table

Flow | Priority | Field1 | Field 2
F1 2 0 0
F2 2 0 1
F3 2 1 0
Fs 1 1 *

Each tree leaf is associated with a flow entry subset of R sorted in descending priority order. The
tree has a depth of k, and all the tree leaves are vertices of the depth k. Table 1 presents an example
flow table with two match fields, consisting of four flow entries F1, Fo, F3, Fa. In Fig. 2, the data
structure constructed for example flow table that is shown in Table 1.

Field 1
{F1, F2, F3, F4}

¥ 4

Field 2 Field 2
{F1, F2} {F3, F4}
|

0/ 0 *

|
1
h 4 h 4
{F1} {F2} {F3. F4} {F4}

Fig. 2. Data structure constructed from flow entries given in Table 1

Consider the tree vertex v, which corresponds to the field m and a flow subset S = R. Then:

o if Misa set of all possible values of the field m in the flow entries from the set S, including the
special value *, for each value /' € M the vertex v has a descendant which arc is marked f;

e Ifthe vertex u is a descendant of the vertex v with arc marked £, the flow subset of the vertex u
contains only those flow entries from S, which value for the field m is for *.

The developed data structure differs from approaches shown in related work by a fixed order of

viewing fields. Vertices having the same depth refer to the same match field. This allows us to load

the value of each match field only once in the search process. This order also allowed us to develop

an algorithm for translating the data structure into the assembly language of the NPU, which receives

the program without duplicating the instruction blocks for loading field value.

5.2 Flow Addition

Flow addition to the data structure is performed by traversing the tree vertices, starting from the
root. When traversing a vertex, a new flow entry is added to its flow subset. Then, traversing

83

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software -Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

continues in vertex along the arc, which is marked with the value of the field specified in the added

flow entry. If such an arc is in absent, a new vertex descendant is added.

When traversing a vertex, two special cases require additional actions.

1) The value of the field corresponding to the vertex specified in the added flow entry is *. In this
case, in addition to the descendant along the arc marked *, it is necessary to traverse all other
descendants of this vertex.

2) The value of the field corresponding to the vertex in the added flow entry is f# * and this vertex
has a descendant along the arc marked *. Then, in case of adding a new descendant, it is
necessary firstly to copy the subtree corresponding to the arc marked * to the subtree along the
arc marked f; and then continue the traversal.

5.3 Flow Removal

Flow removal from the data structure is also performed by traversing the tree vertices, starting from
the root. When traversing a vertex, the removed flow entry is deleted from the vertex flow subset,
and traversing continues in vertex along the arc, which is marked with the value of the field specified
in the removed flow entry.

When traversing a vertex, two special cases require additional actions.

1) The value of the field corresponding to the vertex specified in the removed flow entry is *. In
this case, in addition to the descendant along the arc marked *, it is necessary to traverse all the
other descendants of this vertex.

2) The value of the field corresponding to the vertex in the removed flow entry is f# *, and this
vertex has a descendant along the arc marked *. For this case, after traversing the subtree along
the arc marked £, it is necessary to compare the subtree along the arc marked f'and the subtree
along the arc marked *. In case of equality, the subtree along the arc f'is removed, because it is
redundant.

5.4 Translation into NPU Assembly Language

Proposed data structure can be directly translated into a program in the assembly language of the
NPU. The program graph will have a structure similar to a tree, but for each vertex of the tree, except
for the leaves, the program graph will contain sequentially connected vertices corresponding to the
instruction block of loading the field value, which corresponds to the vertex, and the instruction
block of a search tree, for the values that mark the outgoing arcs from the vertex. The tree leaf will
correspond to the instruction blocks of actions of the flow entry that has the highest priority in leaf
flow set.

<...> // Load Field 1
tree in "tree 1"
j End

Ll: // Load Field 2
tree in "tree 2"
j End

L2: <...> // Load Field 2
tree in "tree 3"

j F4

Fl: <...> // Actions F1
j End

F2: <...> // Actions F2
j End

F3: <...> // Actions F3
j End

F4: <...> // Actions F4
j End

84

Mapko6oponos A.A., Cxobrosa F0.A., Bonkanos [I.1O. IToaxox K TpaHCIAINE TaOIHIIEI TOTOKOB KOMMYTATOPa MPOrPaMMHO -
KOH(UTYpHPYeMOHi CeTH B s3bIK acceMbiiepa ceteBoro npoueccopa. Ipyost UCI1 PAH, Tom 32, Beim. 3, 2020 ., crp. 79-90

End:

Listing 1. Program obtained by direct translation method

Listing 1 and Fig. 3 show the program and the program graph translated by the direct method from
flow table representation presented in Fig. 2.

Load Field 1

Search tree 1

Load Field 2

Load Field 2

‘jSearch tree 2! |-Search tree 3.‘

EAct:‘mnsé EActions'; !Actions! E,Actiunsi
i Fp i+ Fp ¢ i Fz i Fg |

Fig. 3. Program graph obtained by direct translation method

However, with the direct method of translation, the resulting program contains a lot of search trees
for similar key sets and duplicating instruction blocks for loading the field value (see duplicating
field loading block in Fig. 3). To eliminate this drawback, a method for translating the data structure
with encoding arcs was developed (method with encoding).

When translating by the method with encoding, tree levels are introduced. Tree level corresponds to
the table match field and includes vertices of the same depth. The arcs outgoing from the tree levels
vertices are numbered, that is, the code is assigned to each arc. Numbering for each level is
independent. Then, for each tree level, a level list, consisting of all pairs (code of the incoming arc,
marker of the outgoing arc) is formed. For the root vertex, zero is used instead of the incoming arc
code. Fig. 4 shows arc encodings, tree levels, and level lists for our example data structure.

Field 1 el | List
_____________ L S | X
value: 0, code: 1| |value: 1, code: 2
[List
Level 2 i (1’ D}
___________________________________ A1)
(2,0)
*
v\ b\ CRl

{Fa} || {F2} {Fa.Fa}| | {Fa}

Fig. 4. Flow table representation marked up with tree levels encoded arcs and level lists

Instruction blocks of the search tree and loading field corresponding to the level are created for each
list of pairs. Jumps in the block of the search tree are performed in a special block for loading the
code of the outgoing arc, to which the pair corresponds. Then jump is performed to loading the value
of the next field. In Fig. 5, the resulting program graph, obtained by the method with encoding from
marked flow table representation in Fig. 4, is shown. In Listing 2, the corresponding program in the
assembly language is presented.

85

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software -Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

Thus, the resulting program contains one loading instruction block for each match field and a fixed
number of search trees, one search tree per match field.

Load Field 1

Search free 1

Load Field 2
next to code

[Search tree 2]

5' Actions Actions 5' Actions 5' Actions
v Froit Fpoii Faoin Fgo

Fig. 5. Program graph obtained by translation method with encoding

Listing 2. Program obtained by translation method with encoding
<...> // Load Field 1
tree lpm "tree 1"

j End
Ll: loadi 1
j L3
L2: 1loadi 2
j L3

L3: rol FIELD 2 WIDTH
<...> // Load Field 2
tree lpm "tree 2"

j End

Fl: <...> // Actions F1
j End

F2: <...> // Actions F2
j End

F3: <...> // Actions F3
j End

F4: <...> // Actions F4
j End

End:

6. Evaluation

For the developed data structure, we evaluated translation method with encoding in comparison to
the direct translation method inspired by approaches from related work.

For the evaluation, we used a simulation model of the NPU pipeline. The simulation model receives
a program in the assembly language, translated by one of the methods in our case, and a set of input
packets to be processed. As an output the model produces a set of outgoing packets along with
statistics, including the amount of memory occupied by the program binary code and the average
number of ticks spent on processing the input packets. Before processing the packets, the simulation
model translates the program in assembly language into binary code, where each instruction has 16
bytes length.

86

Mapko6oponos A.A., Cxobrosa F0.A., Bonkanos [I.1O. IToaxox K TpaHCIAINE TaOIHIIEI TOTOKOB KOMMYTATOPa MPOrPaMMHO -
KOH(UTYpHPYeMOHi CeTH B s3bIK acceMbiiepa ceteBoro npoueccopa. Ipyost UCI1 PAH, Tom 32, Beim. 3, 2020 ., crp. 79-90

We generated a set of OpenFlow tables with match fields of the data link (L2) and network layer
(L3) header fields with different numbers of flow entries. For each table, the evaluated data structure
was built and translated into NPU assembly language. For each flow table, one input packet per flow
entry was generated.

| Direct mathod | /
70000 4 === Method with encoding I .
60000 - :
50000
40000 4

30000

Number of instructions

20000 A

10000 4

T T T T T
600 800 1000 1200 1400
Number of flows

Fig. 6. Average number of instructions for different flow table sizes
The dependency between the number of table flow entries and the average number of instructions is
presented in Fig. 6. The measurements show that the program translated by the direct method takes
from 1.2 to 1.5 times more memory than the program translated by the method with encoding.

Proportion of search trees among all instructions,
3 il

8

-]
]

I

-l
65 / i
60 | —— Direct method
4 -—- Methed with encoding
600 800 1000 1200 1400

Number of flows
Fig. 7. Proportion of the search trees instructions for different flow table sizes
Fig. 7 shows the proportion of the search trees instructions in the program depending on the number
of table flow entries. The proposed method with encoding uses memory much more effectively than
the direct method, removing from 15 to 30% duplicating code from the program.

w4154
-
(¥
3 45.0
=
1]
o 42,54
]
-
5 40.0 4
= —— Direct method
; 37.5 1 i ~—- Method with encoding
o
5 35.0 1
| =
g 325 |
i //’—
oot —— |
600 800 1000 1200 1400

Mumher of flnws

Fig. 8. Average number of ticks per packet for different flow table sizes

87

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software -Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

However, the fee for reducing the size of the program is an increase in the number of ticks per
packet, which is about 10%. In Fig. 8, the dependency between the number of flow entries in the
table, and the average number of ticks per packet is rendered. The increase in packet processing
time, though, is still within acceptable limits for our NPU and does not lead to unexpected delays or
packet drops.

In future research, we are going to determine the dependencies of the evaluated characteristics by
the number of match fields in the flow entries. All of the proposed algorithms, including flow
addition and removal, will be evaluated in terms of data structure update time.

7. Conclusion

In our research, we considered the switch based on programmable NPU, which has architectural
limitations in memory organization. To use this NPU in the SDN switch operating under the
OpenFlow 1.3 protocol, the system for translating flow table into NPU program was developed. The
system allows us to get a program for the NPU with acceptable packet processing time, which takes
up to 30% less memory comparing to the programs based on data structures in the considered related
work. These results are achieved by reducing the duplication of instruction blocks that load the value
of the same fields, reducing the program size (in some cases by 1.5 times). In the future, we will
consider maskable match fields of the flow entries and examine the effect of the fields parsing order
on the resulting program characteristics.

References / Cnncok nutepartypbl

[1]. Open Networking Foundation. Software-defined networking: the new norm for networks. ONF white
paper, 2012. Available at: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf.

[2]. Open Networking Foundation. OpenFlow switch specification version 1.3.0. 2012. Available at:
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

[3]. Giladi R. Network processors: architecture, programming, and implementation. Morgan Kaufmann, 2008,
736 p.

[4]. Orphanoudakis T., Perissakis S. Embedded multi-core processing for networking. In Embedded Multi-
Core Systems, CRC Press, 2010, pp. 399-463.

[5]. Bifulco R., Rtvri G. A survey on the programmable data plane: abstractions, architectures, and open
problems. In Proc. of the IEEE 19th International Conference on High Performance Switching and Routing
(HPSR), 2018, pp. 1-7.

[6]. Taylor D., Turner J. Scalable packet classification using distributed crossproducting of field labels. In
Proc. of the IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies,
2005, pp. 269-280.

[7]. Kekely M., Korenek J. Packet classification with limited memory resources. In Proc. of the Euromicro
Conference on Digital System Design (DSD), 2017, pp. 179-183.

[8]. Bloom B. H. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
vol. 13, no. 7, 1970, pp. 422-426.

[9]. Gupta P., McKeown N. Classifying packets with hierarchical intelligent cuttings. IEEE Micro, 2000, vol.
20, no. 1, pp. 34-41.

[10]. SinghS., Baboescu F., Varghese G., Wang J. Packet classification using multidimensional cutting. In Proc.
of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2003, pp. 213-224.

[11]. Qi X., Xu L., Yang B. Packet classification algorithms: from theory to practice. In Proc. of the IEEE
International Conference on Computer Communications (IEEE INFOCOM), 2009, pp. 648-656.

[12]. Li W, Li X, Li H., Xie G. CutSplit: a decision-tree combining cutting and splitting for scalable packet
classification. In Proc. of the IEEE International Conference on Computer Communications (IEEE
INFOCOM), 2018, pp. 2645-2653.

88

Mapko6oponos A.A., Cxobrosa F0.A., Bonkanos [I.1O. IToaxox K TpaHCIAINE TaOIHIIEI TOTOKOB KOMMYTATOPa MPOrPaMMHO -
KOH(UTYpHPYeMOHi CeTH B s3bIK acceMbiiepa ceteBoro npoueccopa. Ipyost UCI1 PAH, Tom 32, Beim. 3, 2020 ., crp. 79-90

Information about authors / UHchopmaums 06 aBTOpax

Andrei Aleksandrovich MARKOBORODOV - student of the faculty of the CMC. Research
interests: software-configured networks, network processor units.

Annpeit Anexcanaposudy MAPKOBOPO/IOB — crynent ¢akynsrera BMK. HayuHble nHTEpECH:
MIPOrpaMMHO-KOH(UTypUPYEMBIE CETH, CETEBBIE ITPOIIECCOPHBIE YCTPOHCTBA.

Julia Alexandrovna SKOBTSOVA - specialist, faculty of the CMS, department of automation of
computer systems, laboratory of computer systems. Research interests: software-configurable
networks, network processor units, hardware description languages.

HOmus AnexcanppoBHa CKOBIIOBA — crenmanuct, ¢dakynster BMK, kadenpa aBromarusanmu
CHUCTEM BBIYUCIHUTCIBHBIX KOMIIJIECKCOB, ﬂa6opaT0pHs[BBIYHUCIIUTCIIbHBIX KOMIIJICKCOB. HaquLIe
HUHTEPCCHI: HpOl”paMMHO-KOH(l)I/IprI/IpyeMHe CETHU, CCTCBBLIC NPOLICCCOPHBIC yCTpOﬁCTBa, SA3BIKN
OIMCaHus armnapaTyphbl.

Dmitry Yuryevitch VOLKANOV - candidate of physical and mathematical sciences, associate
professor. Areas of research: analysis and design of network processing unit architecture.
HOmutpuit FOpeeBuy BOJIKAHOB — kanampat (HU3MKO-MaTeMaTHYeCKHX HAyK, JIOLEHT.
HaHpaBJ‘IeHI/IH HCCHGI[OBaHPIﬁi aHaJIu3 U pa3pa60TI<a APXUTCKTYPhbI CETCBOI'O ITpoHeccopa.

89

https://istina.msu.ru/organizations/department/276173/
https://istina.msu.ru/organizations/department/276173/
https://istina.msu.ru/organizations/department/276175/

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software -Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

90

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-8 tocl%

Analysis of student activity on the e-learning
course based on «OpenEdu» platform logs

N.D. Barsukov, ORCID: 0000-0003-3962-9087 <nikOxff@gmail.com>
I.M. Sysoev, ORCID: 0000-0001-5748-5529 <ivanabc97@gmail.com>
A.A. Pereskokova, ORCID: 0000-0002-6937-150X <alina.alexandrovna.sh@gmail.com>
I.V. Nikiforov, ORCID: 0000-0003-0198-1886 <igor.nikiforovwv@gmail.com>
D. Posmetnijs, ORCID: 0000-0001-9573-9286 <posmetnijs@gmail.com>

Peter the Great St.Petersburg Polytechnic University,
29, Polytechnicheskaya, St.Petersburg, 195251, Russia

Abstract. A lot of people nowadays use online education platforms. Most of them run on the free «Open edX»
open-source software platform. Using the logs that the platform provides us, we can get psychometrics of
students, which can be used to improve the presentation of material or other things, which can increase the
quality of online courses. We provide a ready-to-use tool that will help figure out how and for what purpose
you can analyze the log files of platforms based on «Open edX».

Keywords: Big Data; e-learning; analytics; logs; online educational platforms; microservices

For citation: Barsukov N.D., Sysoev |.M., Pereskokova A.A., Nikiforov L.V., Posmetnijs D. Analysis of
student activity on the e-learning course based on «OpenEdu» platform logs. Trudy ISP RAN/Proc. ISP RAS,
vol. 32, issue 3, 2020, pp. 91-100. DOI: 10.15514/ISPRAS-2020-32(3)-8

AHanu3 akTMUBHOCTU CTYAEHTOB Ha Kypcax OHNTanH-00y4eHus Ha
ocHoBe noros nnartgopmbl «OpenEdu»

H.J]. bapcyrxos, ORCID: 0000-0003-3962-9087 <nikOxff@gmail.com>
HU.M. Cricoes, ORCID: 0000-0001-5748-5529 <ivanabc97@gmail.com>
A.A. Iepeckoxosa, ORCID: 0000-0002-6937-150X <alina.alexandrovna.sh@gmail.com>
U.B. Huxughopos, ORCID: 0000-0003-0198-1886 <igor.nikiforovw@gmail.com>
. Iocmemnwitic, ORCID: 0000-0001-9573-9286 <posmetnijs@gmail.com>

Cankm-Ilemepbypeckuii nonumexuuueckuil yHugepcumem Ilempa Benuxoeo,
195251, Poccus, Canxm-Ilemep6ype, yn. [lonumexuuueckas, 0. 29

Abstract. B Hacrosiee BpeMs MHOTHE JIFOJM HCIONB3YHOT 00pa3oBaTeNbHBIEC OHJIANH-TIAT()OPMBI.
BonbIIMHCTBO M3 HUX paboTalOT Ha OECIUIaTHON NPOrpaMMHOM IIIaTGOpPME ¢ OTKPBHITHIM MCXOJHBIM KOJOM
«Open edX». Hcnonb3yst JIOTHM, KOTOpbIE IIPEAOCTaBIsET HaM IUIATGOpMa, MBI MOXEM IIOITY4UThb
NICUXOMETPHYECKUE JJAHHBIC CTYJEHTOB, KOTOPbIE MOXKHO HCIOJB30BATh VIS YAYYIICHHS NPEACTABICHUS
MaTtepHalia WM JPYTHX Bellel, KOTOpble MOTYT NOBBICUTH KaueCTBO OHJIAWH-KYpCOB. MBI TpenocTaBisieM
TOTOBBII MHCTPYMEHT, KOTOPBII MOMOXET BBISICHUTB, KaK U C KAKOH LIEJIBIO BBl MOXKETE aHAIM3UPOBATh JIOT-
¢aitner Ha ocHOBe «Open edX».

KioueBbie ciioBa: Oonblive JaHHbIC, OHNANHH-O0yYeHHEe, aHAJIUTHKA;, JIOTH; IIaTQOpMbI TS OHIAMH-
00y4YeHHUS; MUKPOCEPBHCHASI apPXUTEKTYPa

91

Barsukov N.D., Sysoev I.M., Pereskokova A.A., Nikiforov 1.V., Posmetnijs D. Analysis of student activity on the e-learning course based on
«OpenEdu» platform logs. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 91-100

Js uutupoBanus: bapcyxos H./I., Ceicoe .M., IlepeckokoBa A.A., Hukugopos U.B., Tlocmerssriic /.
AHanm3 aKTUBHOCTH CTYAEHTOB Ha Kypcax OHJaWH-oOydeHHs Ha OCHOBe JioroB IuiaTdopmel «OpenEduy.
Tpymst UCIT PAH, Tom 32, Boim. 3, 2020 r., crp. 91-100 (Ha anrmmiickom sieike). DOI: 10.15514/ISPRAS—
2020-32(3)-8

1. Introduction

Online electronic educational learning platforms are very popular nowadays. One of the biggest and
widely used platforms is «Open edX» [1-3]. This is an open-source software platform that provides
off-the-shelf tools for educational services. One of the important features of the platform is that it
generates student and teacher activity log files. But the disadvantage of the platform is that it does
not provide any data analysis tools for monitoring educational progress and success.

One of the most popular educational platform based on «Open edX» in our region is «Open
Education» [4]. The problem of the Open edX platform and in particular of one of its
implementations «Open Educationy» is that the teachers, conducting courses on this platform, are
missing the tools for analyzing the educational process, which leads to missing control on the
educational process and decreasing its efficiency. On the other hand, the students, who use the
platform, are also not able to monitor their academic performance.

It’s important to provide teachers, course administrators, and students with educational analytics
tools that help them to make the educational process more efficient [5] Improving online educational
platforms can make online learning at universities more friendly, easy, and happy for all the involved
actors.

Our work and project aim consist of several important parts:

e make research on the structure and format of the Open edX platform logs for applicability for
automatic analysis of the students’ performance. The result of the research showed that all
required and important user activity actions (audits) are presented in the logs, so the analytics is
possible. Also, we realized that the size of the logs is huge, and they contain millions of actions
logged, which makes us think about the usage of Big Data technologies for analytical purposes;

e create and formulate analytic tasks, that can be solved on the logs. The result of that activity is
that there is a list of 18 analytics tasks that help students and teacher to monitor the progress;

e implement the software solution, that demonstrates the idea and all the possibilities that Open
edX logs provide. As an outcome, there is a tool for extracting, transforming, and preserving
logs from a specific course / courses from this platform and the number of analytics tasks
implemented in that tool. The result of the analysis is presented in the form of files with metrics,
and graphs based on the data obtained.

The paper has the following structure. Section 2 shows the related work. Section 3 describes the

system design. Section 4 discusses the implementation process and result of the pilot project. Section

5 presents the conclusion.

2. Related work

There are some articles facing the similar problem of online courses activity analysis.

In [6] (below, Article 1), authors take Moodle as a target platform of further analysis. Authors also
use log files as a data source for further analysis. The files are stored in a database, processed and
visualized to provide data implementation for teachers who are the final users of that tool. The
metrics which authors take for analysis are “the grades of online assignments, reading time, the total
number of login times, the total number of online discussions” and others. The choice of these
metrics is based on log files content — such values may be easily extracted from raw data.

Speaking about analytics, authors of [7] (Article 2) use advanced machine learning methods such as
Random Forest to provide analytics of the online learning process. Particularly, the work describes
the prediction of a student's dropout from a course.

92

Bapcyxos H./JI., CsicoeB V.M., [lepeckokoBa A.A., Hukudopos U.B., TlocmetHsriic []. AHani3 akTHBHOCTH CTYICHTOB Ha Kypcax OHJIAiiH-
o0yueHust Ha ocHoBe Jioros miaatdopmst «OpenEdu». Tpyow UCII PAH, Tom 32, Bem. 3, 2020 r., crp. 91-100

Authors of [8] (Article 3) also suggest a method for detection of students who seem to be expelled
at the end of the course. Authors use machine learning methods to make the prediction of the further
academic performance of students. The prediction is based on logged data of the educational platform.
In [9] (Article 4), authors make statistical analysis of the online course data. The course is running
on Moodle platform. Authors also use a self-made logging system to extend log data provided by
the platform with new types of recorded events.

Authors of [10] (Article 5) make the visualization of LMS log data. Firstly, they make preprocessing
of logs and then draw the scatter plot of student activity within a specific class and the plot of whole
faculty activity during one online course.

We’ve made an analysis of these papers using 5 characteristics. These characteristics describe each
of the solutions proposed by papers’ authors. The characteristics are:

o name of educational platform used for analysis — the name of online educational platform used
in article;

o log files were used for analysis — did authors use log files to make analysis or not;

o prediction methods were used in analysis — do authors use prediction methods in their analysis
or not;

e data visualization was made — did authors make a visual interpretation of their results or not;

e ceady-to-use tool was developed — have authors developed a ready-to-use tool for third-party
usage or not.

The result of related works analysis is presented in Table 1.

Table I. Articles’ comparison analysis

Paper 1 Paper 2 Paper 3 Paper 4 | Paper 5
Name of educational
Not Not
platform used for Moodle - - Moodle | Moodle
. mentioned | mentioned
analysis
Log files were used
. + — + + +
for analysis
Prediction methods
i ; — + + + —
were used in analysis
Data visualisation
+ + + + +
was made
Ready-to-use tool was
+ R R R R
developed
Legend: “+” - supported; “— - unsupported

According to the result of related works analysis, all of the authors make analysis of student activity
during one or more online courses and all of them make the visual interpretation of the results. Most
authors base their results on log files data from educational platforms. Talking about platforms,
Moodle is the most popular one within paper authors. Some papers also contain descriptions of
prediction methods to make forecasts of student academic performance.

However, only one paper describes a ready tool which contains all analytics methods described there
and which can be utilized by other people. Also, any of these articles doesn’t describe work with the
Open edX platform.

93

Barsukov N.D., Sysoev I.M., Pereskokova A.A., Nikiforov 1.V., Posmetnijs D. Analysis of student activity on the e-learning course based on
«OpenEdu» platform logs. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 91-100

Within our work we are going to implement a tool for analysis of online courses data based on log
files of the Open edX platform.

Ultimately, our tool differs from others in that we directly process the platform logs, which allows
flexibility in the approach to the analysis of what happened on the course. Thus, the teacher can get
an answer to the question on a very specific task, in contrast to other tools.

3. System design

In our solution, we are using microservice architecture presented in fig. 1. This allows us to
conveniently implement and modify the logic of the service rebuild and redeploy a small part of the
tool instead of full application rebuilding. We are using Docker and other DevOps practices. Docker
effectively helps us in leveraging microservices architecture [11]. We see three microservices here.
e Ul Service — allows the end-user to interact with the application.

e ETL Service — is responsible for receiving, transforming unstructured logs, and loading them
into the Database; This service can receive logs from the local machine or directly from the
platform based on «opened». In our case, this is the platform — «Open educationy.

e The analytical service contains a set of analytical scripts that work with the database and a
module for building the output file - result or report, which will be sent to the appropriate user
interface.

Platform
based on

UpenkEdx

o
. Ul Service
o ETL Service

[
L

\‘._ Amalytics Service =
Tk Task run | 5
N o ;
Interface 1
\'\ || mierace | b Analytical task 1 -
\1—, > Analytical task 2 o
Results Results i-- P .
Interface |~ N\ o,
™ i

-y Analytical task N i

Fig. 1. Architecture of the application

3.1 Log-file structure

All educational platforms can maintain the activity (actions) of users on the platform while
undergoing learning on the course or performing test and examination tasks By this way, it becomes
possible to analyze user behavior and, based on the obtained analytics, improve educational courses
and receive psychometric [12-13] data of students. Due to the improvement of the courses, it will be
more convenient and easier for students to learn the material obtained, it will be easier for teachers
to distinguish distinguished students and more accurately set final grades.

94

Bapcyxos H./JI., CsicoeB V.M., [lepeckokoBa A.A., Hukudopos U.B., TlocmetHsriic []. AHani3 akTHBHOCTH CTYICHTOB Ha Kypcax OHJIAiiH-
o0yueHust Ha ocHoBe Jioros miaatdopmst «OpenEdu». Tpyow UCII PAH, Tom 32, Bem. 3, 2020 r., crp. 91-100

The typical log file is presented in fig. 2. It is a JSON file describing the events occurring in the
LMS system [14]. An example of a log-file is shown in figure 1. An event is an entity that describes
individual user activity in a course (for example, enrolling in a course, watching a video lecture,
sending a response during testing, etc.). In the log file, the event is represented by a JSON object
and contains a set of fields.

{B
"ip" 8 le a285b1hd lea
"hest" - "c
"page” ‘nu
"time" "2
"agent" " pleWebK 7.36 (KHT ke Ge
"event” 05
"context" :{ &
"path" : " /api/extended/calendar/course-v1:spostu+PHYLOS+all_2818
"org_id"
"user_1d" :955066
"course_id"
"referer” :"htips:/
"username” “al
"event_type" rse phstu+PHYLOS+fall_28
"event_source"
"accept_language" ‘ru,en;q=0.9
)
)

Fig. 2. Log example

Among the fields that are most interesting as part of the analysis tasks, one can single out the time
field (the time the event was recorded in the log file), user_id (user identifier - the initiator of the
event), course_id (course identifier) and event_type (the type of event listed in the documentation).
A complete list of events used in Open edX is given in the documentation.

3.2 User interfaces

The latest stable version of our tool provides the CLI (command-line interface). After starting the
tool, the user is asked about the logs that he would like to analyze, and all available log names are
shown to the user in a list. The user must select the name of the log and enter it. The next step is to
select an analysis task. The user will see all available tasks and will have to enter the number of the
selected task for analysis.

Some tasks require additional input parameters to run. If the user selects such a task, he will be
given the corresponding messages in the console, and the user will have to enter the necessary
parameters, such as launching the task for all users or only one selected user. After starting this task,
the user must wait for its completion. The user will receive a message with information about the
placement of the results, and if any graphs are created after the task is completed, they will be
automatically opened in the browser.

In addition, we are developing a new graphical user interface that is not yet included in the stable
version. It consists of several pages on which the user can see the instructions, select the logs, start
the analysis, and see the results. The graphical user interface is more user-friendly.

We have our log analysis algorithm. Using a query in the database, we get the information necessary
for analysis from the log, then we analyze it using various mathematical techniques. In one of the
tasks, we use some innovation.

95

Barsukov N.D., Sysoev I.M., Pereskokova A.A., Nikiforov 1.V., Posmetnijs D. Analysis of student activity on the e-learning course based on
«OpenEdu» platform logs. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 91-100

3.3 Innovative aspects of the design

Since the tasks of analytics depend on the requirements of the customer, it is necessary to create
such a backend architecture in which we can easily integrate new tasks for analytics. OOP
architecture and Reflections API is well suited for solving this problem, so we can add new tasks
inherited from an abstract task by adding only the database queries without changing the architecture
of the project.

At each startup, the system overloads the log, which makes it resistant to user crashes and software
error implementation.

4. System implementation

4.1 Description of the implementation

We use laptops for development and production deployment. Our tool is designed for teachers who
create their courses and for administrators of educational platforms based on the Open Source “Open
edX” software platform. We designed our tool for any hardware platform which meets minimum
requirements: 4GB RAM, 2.5Ghz processor.

For user interface we use React, Redux libraries, webpack, and Babel for modules bundling and
converting JavaScript code to backward-compatible representation. Npm is a package manager we
use for handling packages in development. Lodash is a modern JavaScript utility library delivering
modularity, performance, and extras. (See Table 2 for licensing information.)

For analytical and ETL services we are using Java 8 with Spring 5 [15]. For better readability of
Java code, we use the Lombok library [16], which allows you to reduce the boilerplate code
(constructors, «Object»-methods and etc.) by using annotations. Reflection allows us to look at
existing tasks in the project, create a list of tasks and give it to the Ul. For documentation we use
swagger, it allows us to create documentation in a semi-automatic mode for our services.

We use PostgreSQL [17] as a database. Our build system — Gradle [18-19]. Interaction between
database and service is provided by JDBC [20] driver. Our system is RESTful. All microservices
use the REST paradigm to interact with each other.

Table 2. Components acquired from external sources

Library License

Spring Apache License 2.0
Springfox-swagger Apache License 2.0
Reflections BSD 2-clause
Lombok MIT License

React MIT License
React-bootstrap MIT License
Redux MIT License
Webpack MIT License
Lodash MIT License

4.2 Innovative aspects of the implementation

In the implementation of our system, we decided to record each log file (which is a JSON-file) as
every row in our PostgreSQL database. So, we use it like a No-SQL database. SQL query for logs
selection is presented in fig. 3.

PostgreSQL has many standard functions such as working with strings or JSON-files, which allow
working with logs more effectively. We are thinking about transferring our database to No-SQL [21]
in the future if it is proved that it will be more productive.

96

Bapcyxos H./JI., CsicoeB V.M., [lepeckokoBa A.A., Hukudopos U.B., TlocmetHsriic []. AHani3 akTHBHOCTH CTYICHTOB Ha Kypcax OHJIAiiH-
o0yueHust Ha ocHoBe Jioros miaatdopmst «OpenEdu». Tpyow UCII PAH, Tom 32, Bem. 3, 2020 r., crp. 91-100

SELECT log_line -> 'username' as user name,
log line #>> '{context, user id}' AS user id

FROM logs
WHERE log line -> 'username' != 'null'
Fig. 3. Select query example
5. Results

5.1 System output

As aresult, we received a solution that provides course administrators the following functionalities:
e download log files from educational platforms;
e choose log files between different courses on a platform;
e store log files in a database;
e run analytic tasks based on downloaded logs, a few of them:
1) Calculate total user time on the course and user time distributed per day;
2) Show activity type for all users (or for a particular user) on course depending on the date;
3) Show the user way over the pages;
4) Show amount of video play events per day;
5) Show words from pdf search field;
6) Get video watching durations by elements of course.
The system gives the calculations in the form of tables saved in XLSX or CSV format and generated
graph from these tables.
On the graph in figure 4 we can see the rule that the user visited on the course. We can conclude that
this user watches the lectures for two months. After that he decided not to continue studying but we
can write him a letter and find his opinion perhaps he didn't like this course or problem was in the
poor presentation of material.

Student 108160 activty on the Course by days

Lesson on the Course
Number of events

1
1
Aar 8
a

Fig. 4. User activity on course graph

5.2. Challenge and issues

The main challenge was to study the logs and their loading, conversion, and analysis. It was required
to read and learn a lot of Open edX documentation. On the other hand, the initial log file that we
took was 18Gb to analyze, which made it almost impossible to leant it manually, so we had to create

97

Barsukov N.D., Sysoev I.M., Pereskokova A.A., Nikiforov 1.V., Posmetnijs D. Analysis of student activity on the e-learning course based on
«OpenEdu» platform logs. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 91-100

simple pasting scripts to learn it fast, and only then we were able to retrieve a small log for testing
purposes.

Our current database design has limitations that do not allow us to process the logs as fast as we
wanted. Therefore, we have found a solution that is now improving. Logs can be larger than 18 GB
and contain more than 10 000 000 events generated with semi-structured information inside, so the
problem is to process the logs quickly enough.

Open edX platform doesn’t provide a good and quick API for logs downloading for offline analysis,
so that feature request and feedback has been provided to the platform administrators, but
unfortunately, until today they have not implemented the required functionality for us.

References / Cnucok nutepartypbl

[1]. Open edX official website, Edx Documentation Resources. Available at: https://docs.edx.org/

[2]. Blagojevi¢, M., Milosevi¢ D.: Massive open online courses: EdX vs Moodle MOOC. In Proc. of the 5th
International Conference on Information Society and Technology, 2016, pp. 346-351.

[3]. Sriram M. Comparative Analysis of Massive Open Online Course (MOOC) Platforms. In Proc. of the 4th
International Conference on Global Business, Economics, Finance and Social Sciences, 2015, pp. 1-7.

[4]. Open Education official website, About the Project. Available at: http://npoed.ru/about (in Russian).

[5]. Krasnov S., Kalmykova S., Abushova E., Krasnov A. Problems of Quality of Education in the
Implementation of Online Courses in the Educational Process. In Proc. of the International Conference on
High Technology for Sustainable Development (HiTech), 2018, pp. 1-4.

[6]. M. Furukawa, K. Yamaji, Y. Yaginuma and T. Yamada. Development of learning analytics platform for
OUJ online courses. In Proc. of the IEEE 6th Global Conference on Consumer Electronics (GCCE), 2017,
pp. 1-2.

[7]. B.B. Mishra and S. Mishra. Quality Improvements in Online Education System by Using Data Mining
Techniques. In Proc. of the 2nd International Conference on Data Science and Business Analytics
(ICDSBA), 2018, pp. 532-536.

[8]. Nobuhiko Kondo, Midori Okubo, Toshiharu Hatanaka. Early Detection of At-Risk Students Using
Machine Learning Based on LMS Log Data. In Proc. of the 6th IIAl International Congress on Advanced
Applied Informatics (I1AI-AAl), 2018, pp. 198-201.

[9]. P. Esztelecki . G. Korosi. Analysis of a short on-line course through logged data recording by a self-
developed logging module. In Proc. of the International Conference on Computer, Information and
Telecommunication Systems (CITS), 2018, pp. 1-5.

[10]. R. Raga, Jennifer Raga. A comparison of college faculty and student class activity in an online learning
environment using course log data. In Proc. of the IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation, 2017, pp. 1-5.

[11]. Jaramillo D., Nguyen D., Smart R. Leveraging microservices architecture by using Docker technology
2016. In Proc. of the IEEE Region 3 South East Conference (SoutheastCon), 2016, pp. 1-5.

[12]. Kalmykova S.V., Chapaykina M.D., Shirokova S.V. Application of a systematic approach to the project
management implementation of e-learning in a classical university (on the example of the Peter the Great
University). Obrazovatel’nye tehnologii, no. 2, 2018, pp. 67-74 (in Russian) / Kaamsikoa C.B.,
Yamaiikuna M.JI., lupokoBa C.B. [IpumeHeHne CHCTEMHOrO MOAXOAa K YHPABICHUIO MPOSKTOM
BHEJIPEHHs JICKTPOHHOro 00yueHus B KinaccuueckoM yauepcutere (Ha npumepe GT'AO BO CII6ITY
Ierpa Benukoro). Obpa3oBarenbHbie TexHOMOrHY, NO. 2, 2018 ., cTp. 67-74,

[13]. Kravchenko D. Psychometrics in online education. University Book: Journal of Information and Analysis,
no. 3, 2019, pp. 52-55 (in Russian) / Kpasuenko JI. IlcuxomeTpuka B OHJIaiH-0Opa30BaHUH.
YHuBepcHUTEeTCKAsT KHUATA: HH(OPMAIMOHHO-aHATUTHYECKHiA)KypHai, No. 3, 2019 r., crp. 52-55.

[14]. Edx, Student Events. Available at:
https://edx.readthedocs.io/projects/devdata/en/latest/internal_data_formats/tracking_logs/student_event_t
ypes.html

[15]. Spring official website, Microservices. Available at: https://spring.io/microservices.

[16]. Project Lombok Official website, Lombok Features. Available at: https://projectlombok.org/features/all.

[17]. PostgreSQL official website, Documentation. Available at:
https://www.postgresql.org/docs/10/index.html

[18]. Gradle official website. Gradle Features. Available at: https://gradle.org/features/.

98

Bapcyxos H./JI., CsicoeB V.M., [lepeckokoBa A.A., Hukudopos U.B., TlocmetHsriic []. AHani3 akTHBHOCTH CTYICHTOB Ha Kypcax OHJIAiiH-
o0yueHust Ha ocHoBe Jioros miaatdopmst «OpenEdu». Tpyow UCII PAH, Tom 32, Bem. 3, 2020 r., crp. 91-100

[19]. Voinov N., Rodriguez Garzon K., Nikiforov I., Drobintsev P. Big Data Processing System for Analysis of
GitHub Events. In Proc. of the 2019 XXII International Conference on Soft Computing and Measurements
(SCM), 2019, pp. 187-190

[20]. Oracle Help Center, Lesson: JDBC Introduction. Available at:
https://docs.oracle.com/javase/tutorial/jdbc/overview/index.html.

[21]. Strauch Christof. NoSQL Databases. 2012. Available at: https://www.christof-strauch.de/nosgldbs.pdf.

Information about authors / UHcpopmaums o6 aBTOopax

Nikita Dmitrievich BARSUKOV is a graduate student at the Institute of Computer Science and
Technology. Research interests: development of highly loaded software, development of corporate
software systems, big data analytics, financial technologies, software verification.

Huxura [Imutpuesud BAPCYKOB — cTyaeHT MaructpaTypsl IHCTUTyTa KOMIIBIOTEPHBIX HaYK U
TexHonoruil. OOyacTb MHTEpecoB: pa3pabOTKa BBICOKOHATPY)KEHHOTO IPOrPaMMHOIO
obecnieyeHusi, pa3paboTKa KOPIIOPATUBHBIX MPOrPaMMHBIX CHCTEM, aHAITMTHKA OOJIBIINX JIaHHBIX,
(bMHAHCOBBIE TEXHOJIOTHH, BEpH(UKAIMS POrPAMMHOI0 00ecTiey eHusI.

Ivan Mikhailovich SYSOYEV - graduate student at the Institute of Computer Science and
Technology. Research interests: Big Data, Big Data Analytics, Data Model Building, Data
Visualization.

WBan MuxaitnoBuu CBICOEB — crynent maructpatypsl MHCTUTyTa KOMIBIOTEPHBIX HAyK H
TexHonoruil. O0acTh MHTEPECOB: OOJIBININE NAHHBIC, AHATUTHKA OOJBINNX JAHHBIX, IOCTPOCHUE
MoJeNiel TaHHBIX, BU3yalIu3alys JaHHBIX.

Alina Aleksandrovna PERESKOKOVA — graduate student at the Institute of Computer Science and
Technology. Area of interest: big data, big data analytics, distributed data storage systems, interface
development, big data display.

Amuna AnexcanaposHa [IEPECKOKOBA — crynenTtka Maructpatypsl MTHCTUTYTa KOMIBIOTEPHBIX
HayK M TexHojorumi. OOsacTh MHTEpecoB: OOJBIINE NAaHHBIE, AHAJIUTHKA OOJBIIMX JaHHBIX,
CHCTEMBI PACIpEIeNICHHOI0 XpaHEeHHsI OONBIINX JaHHbBIX, pa3paboTka HHTepdeicoB, 0TOOpakeHHe
OOJIBILINX JIAHHBIX.

Igor Valerievich NIKIFOROV - candidate of technical sciences, associate professor of the Higher
School of Software Engineering at the Institute of Computer Science and Technology. Research
interests: parallel data processing, distributed data storage systems, big data, software verification,
test automation.

Urops BanepreBuu HUKM®OPOB — kaHgumaT TEXHWYECKUX HayK, JAOIEHT BhICIIel MIKOIBI
MpOrpaMMHON HHXeHepud WHCTUTYTa KOMIBIOTEPHBIX HayK M TexHoioruit. Cdepbl HayuHBIX
MHTEPECOB: MapauienbHas 00pabOTKa JaHHBIX, CHCTEMbl PACIpPEICIICHHOTO XpaHEHHs IaHHbIX,
OoIIbIlINE JaHHbBIC, BEpUPUKAIHS TIPOrPAMMHOIO 00ECIICUEHHSI, aBTOMATH3ALIUsI TECTUPOBAHUSI.

Deniss POSMETNIJS — graduate student at the Institute of Computer Science and Technology.
Research interests: Big Data, Big Data Analytics, Development of End User Interfaces (Front End),
Data Visualization.

Jlenncc TIOCMETHBIMC — crymeHT MarucTpaTyphl MHCTHTYTa KOMIIBIOTEPHBIX HAyK W
TexHonoruil. O0IacTs WHTEPECOB: OONBIINE JaHHBIC, aHANMNTHKA OONBIINX NAaHHBIX, pa3padoTka
HHTEP(EHCOB KOHETHOTO MOIB30BaTeNs ((DPOHTEH), BU3yaIN3alnsl JaHHBIX.

99

Barsukov N.D., Sysoev I.M., Pereskokova A.A., Nikiforov 1.V., Posmetnijs D. Analysis of student activity on the e-learning course based on
«OpenEdu» platform logs. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 91-100

100

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-9 M

Recommendation system based on user actions
in the social network

V.V. Monastyrev, ORCID: 0000-0001-6770-4481 <vit34-95@mail.ru>
P.D. Drobintsev, ORCID: 0000-0003-1116-7765 <drobintsev_pd@spbstu.ru>
Peter the Great St.Petersburg Polytechnic University,

29, Polytechnicheskaya, St.Petersburg, 195251, Russia

Abstract. Currently, a large number of people use various photo hosting services, social networks, online
services, and so on. At the same time, users leave a lot of information about themselves on the Internet. These
can be photos, comments, geotags, and so on. This information can be used to create a system that can identify
different target groups of users. In the future, you can run ad campaigns based on target groups, create
recommendation ads, and so on. This article will discuss a system that allows users to identify their interests
based on their actions in a social network. The following features were selected for analysis: published photos
and text, comments on posts, information about favorite publications, and geotags. To identify target groups,
the task was to analyze images in photos and analyze text. Image analysis involves object recognition, and text
analysis involves highlighting the main theme of the text and analyzing the tone of the text. The analysis data
is combined using a unique identifier with the rest of the information and allows you create a data showcase
that can be used to select target groups using a simple SQL-query.

Keywords: machine learning; recommendation system; natural language processing; image recognition

For citation: Monastyrev V.V., Drobintsev P.D. Recommendation system based on user actions in the social
network. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 101-108. DOI: 10.15514/ISPRAS-2020-
32(3)-9

PekomeHaaTenbHasa cMctemMa Ha ocHoOBe AeCTBUM Nonb3oBaTenen B
couuanbHOM ceTu

B.B. Monacmwipes, ORCID: 0000-0001-6770-4481 <vit34-95@mail.ru>
I1.77. pobunyes, ORCID: 0000-0003-1116-7765 <drobintsev_pd@spbstu.ru>
Cankm-Ilemepbypeckuii nonumexuuueckuil yHugepcumem Ilempa Benuxoeo,
195251, Poccus, Canxm-Ilemep6ype, yn. [lonumexuuueckas, 0. 29

Abstract. B HacTositee Bpemst O0NBIIOS KOTHYESCTBO JIFOCH MOMb3YOTCS PA3IMIHBIMU COLMATBHBIMHU CETSIMH,
OHJIAWH-CEpBUCaMH M TOMY IO100HOe. IIpy 3TOM IOJIB30BAaTENH OCTABISIOT PA3IMYHYI0 MH(OpManuio B
MoAO0OHBIX cHCTeMax. DTO MOryT ObITh (hororpaduu, KOMMEHTapPHH, FEOTErH U TaK Jaiee. Jta UHPOpMAaLus
MOJKET ObITh HCIIONB30BaHAa ISl CO3/IaHUsI CHCTEMBI, KOTOPask MOXKET UACHTU(HUIMPOBATh Pa3JIM4HbIC LIeJIeBbIE
rpymnisl none3oBareneil. Ha ocHoBe 310 nH(MOpMAalLMi MOXKHO 3aIlyCKaTh peKIaMHbIe KaMITaHHH, CO3/1aBaTh
pEeKOMEH/IaTeNbHbIE OOBSBICHUS M MHOTO Apyroe. B naHHOW craThe paccMaTpHBaeTcsi CHCTEMa, KOTopas
MO3BOJISIET WACHTU(HUIIUPOBATH UHTEPECH! TIOJIb30BATENeH HA OCHOBE UX NEWCTBUIl B COlMaNbHOM ceTu. J[s
aHanu3a ObUTH BBIOPaHBI CIIEAYIOIIME TUIIBI IJAHHBIX: OMYOIHUKOBaHHBIE (hoTOrpadvu M TEKCT, KOMMEHTapHH K
3anucsaM, MHGOpPMAIMsA O JIOOMMBIX IyONMKAUMsSX M reoterd. JIsl BBISABICHHS LENEBBIX TPynn Obuia
MOCTaBJICHa 33/1aya MPOAHATM3UPOBATh N300paXkeHNs Ha (oTorpadusix U NPOAHATU3UPOBATH TEKCT. AHAIM3
n300paKeHUH BKIIIOYAET B ce0sl pacro3HaBaHHE OOBEKTOB, a AHAJIM3 TEKCTa BKIIOYACT B ceOsl BBIJCICHHUE
OCHOBHOH TEMBI TEKCTa M aHAJIN3 TOHAIBHOCTH TeKcTa. JlaHHBIC aHamM3a OOBEAWHSIOTCS C IIOMOIIBIO
YHHUKaJIBHOTO HIICHTH(HKATOPA C OCTANBHON HH(OpMALHEil U TTO3BOJISAIOT CO3JaTh BUTPHHY JaHHBIX, KOTOpAst
MOKET OBIT HCIOIb30BaHa VIS MIOMCKA IIEIEBBIX IPYMII C MOMOIIbI0 mpoctoro SQL-3ampoca.

101

Monastyrev V.V., Drobintsev P.D. Recommendation system based on user actions in the social network. Trudy ISP RAN/Proc. ISP RAS, vol.
32, issue 3, 2020, pp. 101-108

KiroueBble cjioBa: MalIMHHOE 06yquI/Ie; PCKOMCHAATEC/IbHAss CHCTEMA; 06pa60TKa €CTCCTBCHHOI'O
A3bIKa; paCrio3HaBaHUC I/I3O6pa)KeHI/II71

Jas nutupoBanusi: MonacteipeB B.B., [Ipoounnes I1./I. PekomennaTensHast cucreMa Ha OCHOBE JICHCTBHIA
none3oBaTesiei B corpanbhoii cetu. Tpyast UCIT PAH, Tom 32, Beim. 3, 2020 1., ctp. 101-108 (Ha anriuiickom
s3eike). DOI: 10.15514/ISPRAS-2020-32(3)-9

1. Introduction

Currently, humanity actively uses various Internet services and leaves a lot of different data on the
Internet. This can be photos, text information, and so on. Based on this information, you can divide
users into groups based on their interests. Many companies have their own recommendation systems
that operate on this principle — Yandex [1], Google (YouTube) [2], Netflix [3].

In this article, we will look at a recommedation system that will identify interest groups based on
the following data: photos, text, rated publications, and geotags. The final goal is to create a target
data table (in SQL format). From the SQL table, you can get a list of users based on the specified
interest using an SQL query. To create such a table, you need to recognize objects in images, and
recognize the main theme and tone in the text. This will help you understand which topics the user
treats positively, which ones negatively, and which ones are neutral.

Thus, the final table will contain information about what the user posts, what they comment on, what
and how they evaluate, as well as information about geolocation. Based on this information, which
is specific to a particular user, you can easily get different groups of users by interests and
geolocation.

2. Existing recommendation systems

As mentioned above, many large companies use different recommendation systems to process their
data. It all depends on the specific task and the available data, so companies build the data processing
process in a way that is convenient for them and usually such solutions are not open source. These
can be systems for recommending movies, music, friends, interesting authors, and so on. Let's look
at some of them in more detail.

To generate a smart news feed, the social network Vkontakte marks data with the help of users who
have received the status of experts [4]. These users vote for or against publishing on a particular
topic. Then the marked-up data is already transmitted to the neural network, which is trained on it
and improved. Due to the large amount of marked-up data, the neural network is well trained and
can find similar publications that are more likely to attract users' interest. One of the disadvantages
is that not every project can attract a large number of users for data markup. In addition, this solution
is not an open source solution.

Another example is Yandex music. The recommendation system analyzes the user's actions: likes
and dislikes, skipped tracks, repeated playback, and so on. Each action has weights that are later
used in the algorithm. In addition, the system analyzes similar profiles. The final list of
recommendations is compiled using Matrixnet [5], which processes the list of all possible
recommendations and determines which ones should be shown to the user on the Yandex Music
home page and in what order to place them. It is worth noting that more than a hundred training
models are used when making recommendations for a single user. This consumes a large amount of
resources — hundreds of servers collect data about user requests to the search engine, viewed
products, etc. this approach can be used by large companies, but it is not suitable for small projects.
It is worth noting that the systems described above and other similar systems are sharpened for a
specific set of data that a particular service works with. Also, the entire data processing process (data
cleaning, preprocessing, model learning) is not open source. This article will discuss the process of
working with the most popular data types, as well as building an algorithm for data processing and
training models in such a way that this algorithm can be reused on other data types and in other
projects.

102

Mosnacrtsipes B.B., Jlpo6unues I1./]. PekoMennarensHas cucTeMa Ha OCHOBE ACHCTBHHN MONIb30BaTeNeH B coluanbHoit cet. Tpyost UCIT
PAH, Tom 32, Bemm. 3,2020 1., cTp. 101-108

3. Approach to building arecommendation system

The data set analyzed in this article was collected in one of the photo hosting services. This data set
contains 127 images, 307 comments, 496 rating entries (likes and dislikes), and 47 geotags. The
recommendation system will consist of several data processing modules. The algorithm of the
system is shown in fig. 1.

Image
Images processing
Text
Data Text processing Pr%(;izsed
Geotags
Ratings

Fig. 1. The architecture of the recommendation system
Raw data is sent to the system input. This data is divided into three categories:
e images;
o text;
e geotags and ratings.
To identify user interests, images and text will be processed by machine learning modules. Image
processing involves a module that will recognize objects in the image. Text processing includes two
submodules: recognition of the main subject of the text and recognition of the tone of the text
(positive or negative).
All processed data will be combined by a unique identifier (id). As a result, this will create a target
tables that will contain the following information:
what the user posts;
what the user writes about and in what key;
what the user evaluates positively;
what the user evaluates negatively;
geotags attached to the user's records.
This data will help you identify user groups based on their interests. You can use interest groups to
recommend new publications, recommend various products, and so on.
It is worth noting that MySQL [6] relational database was chosen for storing information. Moreover,
images are not stored directly in the database, but are stored in the file system. The database stores
only links to images. Machine learning modules are written in Python, as this language offers a wide
range of tools for data processing.

4. Machine learning modules

Let's take a closer look at how machine learning modules work for image and text processing.

103

Monastyrev V.V., Drobintsev P.D. Recommendation system based on user actions in the social network. Trudy ISP RAN/Proc. ISP RAS, vol.
32, issue 3, 2020, pp. 101-108

4.1 Module for recognizing objects in an image

The pre-trained Inception-v3 [7] model was used for recognizing objects in images. This is one of
the most popular models for recognizing objects in images [8]. This model achieves an accuracy of
more than 78.1% on the Imagenet dataset. The model has been trained in 1000 [9] classes. The use
of the pre-trained model is due to the fact that the model has good performance, has open source
code, is easily integrated into existing solutions, and works fast enough (about 1-2 seconds for 1
image on Intel core i7).

When analyzing images, this model outputs the top prediction classes with the highest score value.
Within the recommendation system, only the value with the highest score was recorded. An example
of how the model works is shown in fig. 2:

flags = MNamespace(image_file='server_uploads/
38/8b18a257-7569-49¢8-9622-6d15676C9169. jpeg’,
model_dir="tmp/imagenet’, num_top_predictions=
5)

unparsed = ['D:\\Users\\WinUseri\Anaconda3\\l
ib\\site-packages‘\\ipykernel launcher.py', '-

', 'C:\\Wsers\\WinUser\\AppData\\Roaming\\jup
yter\iruntime\\kernel-fafb8ag4-6d99-4718-bbed-
38878588319a.json"]

television, television system (score = 8.8473

8)

Fig. 1. Example of how the image recognition model works
In total, 127 photos from the original data set were processed using this model. Of the 1000 classes
available in the model, 87 images were recognized. The average score value for all data is about
0.49. Information about recognized objects is shown in fig. 3.

8

7

6

0O —
sundial J—
Coil Jm—

®
2
]

=
&

=

ill
er
re
st
st
st

E

=]
int b~ —
nace _f—
liff Jrm—

B8

salar fu
brideg
bannister Je—
perfume
shades Jm—
aating house
Volute “—
essenoe ——
handrai| J—
lakeside
lakeshare
off-roa
seashol
co

£ =
E
S
=

triumphal arch
sewing machine
chainlink fe nce

Fig. 2. Recognized objects

The most popular «chainlink fence» images shown on the chart are a classifier error, such images
have a very small score. The most common objects are the sea, the coast, cars, and architectural
objects. In the data set under consideration, the results of the classifier were analyzed. Correctly
predicted values had a score greater than 0.5, so these images were considered correctly recognized
and taken into account in the future (there are also incorrectly recognized images, but only about
10% of them).

All data was written to a MySQL table with the following fields:

e id;

e photo_id;

e photo_desc;
e score.

104

Mosnacrtsipes B.B., Jlpo6unues I1./]. PekoMennarensHas cucTeMa Ha OCHOBE ACHCTBHHN MONIb30BaTeNeH B coluanbHoit cet. Tpyost UCIT
PAH, Tom 32, Bemm. 3,2020 1., cTp. 101-108

Here id is a unique identifier, photo_id is a foreign key from the photo table, photo_desc is the name
of the recognized object, and score is the value of score.

4.2 The analysis module of text subject

Working with text is a more complex topic than image recognition, so there are no ready-made
models here. This is because each language has its own grammar and it is difficult to adapt one
model for all languages at once. In our case, the entire text was in Russian. However, there are
various algorithms that can be adapted to your data and trained. To highlight the main topic of the
text, a model based on the Latent Dirichlet Allocation (LDA) [10] algorithm was used. The main
idea of this algorithm is that each document is considered as a set of topics in a certain proportion.
Each topic is a set of the most common word and each document consists of a specific set of words
[14].

The origin data set cannot be passed directly to the model. First, you need to additionally process
the text:

e climinate unnecessary characters (punctuation marks);

e remove stop words (conjunctions, particles, etc.);

e form stable phrases;

e make lemmatization.

The simple_preprocess() method of the Gensim library [11] was used to remove punctuation and
tokenize the text. To delete stop words, a set of stop words from the nltk [12] package was used.
Bigrams and trigrams were formed as stable phrases using the Gensim library. The ru2 model from
the spacy package was used for lemmatization.

The main input data for the LDA model is the dictionary and corpus. Gensim creates a unique
identifier for each word in the document, and the corpus shows the frequency of occurrence of this
word.

One of the hyperparameters is the number of topics in the text. Since we had a fairly small data set,
we set 20 topics. Other alpha and eta (was set to ‘auto’) parameters affect the sparsity of topics,
chunksize (was set to 100) — the number of documents in each training chunk, and passes (was set
to 10) - the total number of training passes.

Slide 10 AdJust rElevance MRt &
sl o8 02 04 98 08 1

Top-30 Mast Salient Terms'

=0 ann s o

Fig. 3. Visualization of the LDA model operation
105

Monastyrev V.V., Drobintsev P.D. Recommendation system based on user actions in the social network. Trudy ISP RAN/Proc. ISP RAS, vol.
32, issue 3, 2020, pp. 101-108

To visualize the result, an interactive diagram was built using the pyLDAwvis [13] package, which is
shown in fig. 4.

4.3 The analysis module of text sentiment

A convolutional neural network was used to analyze the tone of the text [15, 16, 17, 18]. The
Word2Vec library was used to create the feature space. The training was conducted on a corpus of
words based on Russian-language messages from Twitter, which contains 114991 positive and
111923 negative tweets, as well as 17639674 unmarked tweets [19]. Before training, all data was
pre-processed (reduced to lowercase, replacing links to the token, etc.). The Word2Vec model was
trained using the Gensim library. The Keras library [20] was used to build the neural network. This
model, trained on tweets, was applied to text messages from the data set in question. The model
metrics are shown in fig. 5.

precision recall fl-score support

a 8.76179 8.80437 8.78258 22236

1 B.79569 8.75188 @.77312 22534

accuracy B.77791 44778
macro avg B.77874 B.77888 8.77781 44778
weighted avg B.77885 8.77791 @.77778 44778

Fig. 5. Metric models the tone of the text
This model was used to process the original data set that contained comments. As a result, the results
were obtained as fig. 6 shows.
200

180

160

140

120

100

a0

60

40

20
o

0-0.1 0.1-0.2 0.2-03 0.3-0.4 0.4-05 0.5-0.6 06-0.7 0.7-0.8 0.83-09 095-1
Fig. 6. The results of the model determine the tone of the text
In this case, the abscissus axis shows the percentage predicted by the model, and the ordinate axis
shows the number of similar comments. As you can see, most of the comments in the provided data
set had a mostly neutral accent (values between 0.3 and 0.7 were taken as neutral, this data was
viewed manually).

The trained model was used on the source data. All results were written to a MySQL table.

5. Results

The results of all three models were recorded in MySQL. All data is combined with a single id. This

way we can now distinguish user groups based on their interests. As a result, the database contains

the following tables.

e Post. This table stores the id, photo and / or text, rating, geolocation (if available), and author of
the publication;

106

Mosnacrtsipes B.B., Jlpo6unues I1./]. PekoMennarensHas cucTeMa Ha OCHOBE ACHCTBHHN MONIb30BaTeNeH B coluanbHoit cet. Tpyost UCIT
PAH, Tom 32, Bemm. 3,2020 1., cTp. 101-108

e Comment. This table stores the id, publication id, text, rating, and comment author;

e Rating. This tables stores id, user id, photo id and rating (negative, positive or neutral);

e Object in the photo. This table stores the id, information about objects in the image (this
information was obtained using the model), and the image id;

e Main theme of the text. This table stores the id, the main subject of the text, the type of post
(post or comment), and the id of the post or comment.

o Tone of the text. This table stores the id, the tone of the text, the type of post (post or comment),
and the id of the post or comment.

Let's look at an example of making recommendations using these tables. Let's say that we create an

individual recommendation system to recommend interesting authors. To do this, we need to select

what the user posts and what they rate positively (posts and comments). Then we need to find authors

who publish similar images and recommend such authors to the user. For example, if these are sea

coasts, we can use the following SQL query: «select distinct (photo.userid) from photo_desc, photo

where (photo_desc.photo_desc like '%coast%' or photo_desc.photo_desc like '%sea%') and pho-

to_desc.photo_id=photo.id and score > '0.5'». Three such users were found in the data set under

consideration (fig. 7).

userid
P |45
=]
=]

Fig. 4. Result of the SQL query

6. Conclusion

As a result, we implemented a recommendation system that allows us to identify target groups of
users. The process of data processing by several machine learning models was considered. The
Concept-v3 model was used for image processing, an LDA-based model was used to highlight the
subject of the text, and a neural network-based model was used to determine the tone of the text.

The model results were used for building SQL queries. The results of all models in the test data set

were checked manually. For the object recognition model, the extreme score value was set to 0.5.

For the text tone recognition model, the values 0-0. 3 were set for negative text, 0.3-0.7 for neutral

text, and 0.7-1 for positive text.

This system can be used on small projects, since models are trained on marked - up data from open

sources. In addition, the logic of setting up search targets is quite clear; it can be performed by any

analyst who knows the SQL language. This architecture is suitable for almost any purpose, whether
it is recommending services, searching for interesting publications, etc.

In future plans:

e Building the process of fully automating the launch of model training. To do this, you plan to
use the Linux scheduler, or Jenkins/TeamCity;

e Implementation of a recommendation system in a real project. At this point, the data was
received as a separate set of values and processed on a separate computer. For the full operation
of the service, it is planned to transfer the entire data processing process to an industrial server;

e Analysis of model metrics. After implementing this system in the service, it is planned to analyze
the accuracy of the models. This can be tracked by user clicks on the proposed content. It will
also allow you to conduct A / B tests when some users see suggestions of recommendations
from one model, and others from another. These tests will help you identify the best-performing
models.

References / Cnucok nutepartypbl

[1]. Recommendation Technology ‘Disco’. URL: https://yandex.com/company/technologies/disco/.
[2]. Covington P., Adams J., Sargin E. Deep Neural Networks for YouTube Recommendations. In Proc. of the
10th ACM Conference on Recommender Systems - RecSys 16, 2016, pp. 191-198.

107

Monastyrev V.V., Drobintsev P.D. Recommendation system based on user actions in the social network. Trudy ISP RAN/Proc. ISP RAS, vol.
32, issue 3, 2020, pp. 101-108

[3]-
[4].
[5]-
[6]-
[7].
[8].
[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17]
[18].

[19].

[20].

Gomez-Uribe C.A., Hunt N. The Netflix Recommender System. ACM Transactions on Management
Information Systems, vol. 6, issue 4, 2015, pp. 1-19.

VK Experts. URL: https://vk.com/press/theme-feeds.

Matrixnet. URL: https://yandex.ru/company/technologies/matrixnet/.

Joel Murach. Murach's MySQL. Mike Murach & Associates, 2012, 612 p.

TensorFlow models, GitHub. URL: https://github.com/tensorflow/models.

Szegedy C., Vanhoucke V., loffe S., Shlens J., Wojna Z. Rethinking the Inception Architecture for
Computer Vision. In Proc. of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 2818-2826.

1000 synsets for Task 2 (same as in ILSVRC2012). URL: http://image-
net.org/challenges/LSVRC/2014/browse-synsets.

Bir6 1., Szab6 J. Latent Dirichlet Allocation for Automatic Document Categorization. Lecture Notes in
Computer Science, vol. 5782, 2009, pp. 430-441.

Gensim project page. URL: https://pypi.org/project/gensim/.

NLTK project page. URL: https://www.nltk.org/.

pyLDAvis project page. URL: https://www.nltk.org/.

Thematic modeling using Gensim (Python). URL: https://webdevblog.ru/tematicheskoe-modelirovanie-s-
pomoshhju-gensim-python/.

JinR., Lu L., Lee J., Usman A. Multi-representational convolutional neural networks for text
classification. Computational Intelligence, vol. 35, issue 3, ,2019, 599-609.

Text tonality analysis using convolutional neural networks. URL:
https://habr.com/ru/company/mailru/blog/417767/.

Cliche M. BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs. In Proc.
of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 573-580.

Zhang Y., Wallace B.A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural
Networks for Sentence Classification. arXiv preprint arXiv:1510.03820, 2015.

Rubtsova Y.V. (2015). Constructing a corpus for sentiment classification training. Programmnye produkty
i sistemy, no. 27, 2015, pp. 72-78 (in Russian) / Py6uosa }0.A. TlocTpoeHne Kopiyca TEKCTOB VIS
HACTPOMKH TOHOBOI'O Kiaccudukaropa. [IporpaMmHbIe IPOAYKTHI M CHCTEMBI, NO. 27, 2015 ., ctp. 72-78.
Keras project page. URL: https://keras.io/.

Information about authors / Uncpopmaumsa o6 aBTopax

Vitaly Viktorovich MONASTYREV - student. Research interests: neural networks, recommender
systems, machine learning.

Buranuit BuxropoBuu MOHACTBIPEB — cryment. HayuHble HHTEpechl: HEWpOHHBIE CETH,
peKOMeHZlaTeJ'ILHLIe CHUCTEMBI, MAIITMUHHOC 06yquHe.

Pavel Dmitrievich DROBINTSEV - Ph.D., Associate Professor. Research interests: test automation,
formal models, software verification, artificial intelligence applications.

[aBen JmutpueBmu JAPOBUHIIEB — k.T.H., HomeHT. HaydHble HWHTEpechl: aBTOMATH3ALUS

TECTHUPOBaHMs, (hOpMaJIbHBIE MOJENH, BepU(pHKAIUs IPOrpaMMHOTO OOECTICUeHUs, TPHUIOKEHHS
HCKYCCTBEHHOT'O MHTEIUICKTA.

108

https://link.springer.com/bookseries/558
https://link.springer.com/bookseries/558

Tpyowt UCI1 PAH, mom 32, sbin. 3,2020 2. /| Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-10 M

Machine Learning-Based malicious users’ detection
in the VKontakte social network

D.l. Samokhvalov, ORCID: 0000-0003-4719-9638 <disamokhvalov@edu.hse.ru>
National Research University Higher School of Economics,
20 Myasnitskaya ulitsa, Moscow, 101000 Russia

Abstract. This paper presents a machine learning-based approach for detection of malicious users in the largest
Russian online social network VVKontakte. An exploratory data analysis was conducted to determine the insights
and anomalies in a dataset consisted of 42394 malicious and 241035 genuine accounts. Furthermore, a tool for
automated collection of the information about malicious accounts in the VKontakte online social network was
developed and used for the dataset collection, described in this research. A baseline feature engineering was
conducted and the CatBoost classifier was used to build a classification model. The results showed that this
model can identify malicious users with an overall 0.91 AUC-score validated with 4-folds cross-validation
approach.

Keywords: VKontakte; malicious users; machine learning; social networks; classification models

For citation: Samokhvalov D.l. Machine Learning-Based malicious users’ detection in the VVKontakte social
network. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 109-118. DOI: 10.15514/ISPRAS-2020-
32(3)-10

OnpeaeneHne akkayHTOB 3510y MbILWNEHHUKOB B COLManbHOWN ceTu
BKoHTakTe npu nomowm MeToaoB MaLLMHHOIO 00y4yeHus

U Camoxeanos, ORCID: 0000-0003-4719-9638 <disamokhvalov@edu.hse.ru>
Hayuonanvhulil ucciedosamenvckuil ynusepcumem «Buvlcuias wikona s3xoHomMukuy,
Poccus, 101000, e. Mockea, yn. Macnuykas, 0. 20

Abstract. B panHoii paGore mpeacTaBiieH MOAXOM s OOHAPYKEHHSI aKKayHTOB 3JOYMBIIUICHHHKOB B
KpymHeiilieil poccuiickoil counanbHoi cetn BKoHTakTe Ha OCHOBE METOJOB MAIIMHHOIO 00y4eHHs. Bbit
NPOBEJEH MCCIIC/IOBATEIbCKUI aHAIN3 JaHHBIX JUIS ONpe/eIeHHs] aHOMaJIMil M 3aKOHOMEPHOCTEH B Habope
JNAHHBIX, cocTosimeM u3 42394 BpemonocHbIXx U 241035 MOMIMHHBIX YYETHBIX 3alUCced MONb30BaTenen
BKonTtakre. Kpome Toro, s nonydetus Habopa AaHHBIX ObLT pa3paboTaH HHCTPYMEHT AJIsl aBTOMATHYECKOTrO
cOopa uHGOpPMAIMK O BPEIOHOCHBIX aKKayHTax B couuanbHOi cetn BKoHTakTe, ommcaHue apXUTEKTYpHI
JIAHHOTO MHCTPYMEHTA NpHBE/IeHO B pabore. Ha ocHOBE MPU3HAKOB, CreHEPUPOBAHHBIX U3 MOJIb30BATEIBCKUX
JIaHHbIX, ObliIa 00yYeHa Mojesb Kiaccudukanuu mpu momory oudnnorexu CatBoost. Pe3ynbratsl mokasanu,
YTO 3Ta MOJETIb MOXET HICHTU(QHUIUPOBATh 3JIOYMBIIUICHHHKOB ¢ o6mmM kadectBom AUC 0.91,
MIOITBEPIKICHHOH YeTBIPEXKPATHBIM METOJIOM HIEPEKPECTHOH IPOBEPKH.

KuioueBbie cioBa: BKonrakre; 370yMBINUICHHHKH, MalIMHHOE OOY4YCHHE, COLMANbHBIC CETH; MOAECIH
KiIaccu(UKaIMN; aHATTH3 JaHHBIX

Jas uutupoBanus: CamoxsanoB /.M. OnpezneneHue akkayHTOB 3JI0YMBIIUIEHHUKOB B COIIMANBHON CETH
BKonTakre mpu momoriu MetroqoB Mammuaoro odoydenus. Tpymast UCIT PAH, tom 32, Beim. 3, 2020 1., cTp.
109-118 (na anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2020-32(3)-10

109

Samokhvalov D.I. Machine Learning-Based malicious users’ detection in the VKontakte social network. Trudy ISP RAN/Proc. ISP RAS,
vol. 32, issue 3, 2020, pp. 109-118

1. Introduction

An online social network (OSN) is an online platform that allows people who share the same views
or have real-life connections to interact with each other online [1]. OSNs also provide users with a
great ability to communicate, entertain, consume and share a different type of information that they
are interested in. Moreover, modern social networks have become the platforms where companies
can promote and even sell their products while maintaining good relationships with their customers
through clear communication channels [2, 3].

Being a great instrument for connecting people and hosting useful information, OSNs try to attract
as many users as possible, thus a strong authentication (by personal ID or driving license for ex.) is
not required for an account creation as a rule. For example, in the OSN VKontakte, for a long time,
it was possible to register an account by submitting only an e-mail address. VVKontakte team made
an authentication by mobile telephone number required for a valid account creation, however, this
still does not fully solve the issue, since it is possible for a malicious identity to use multiple sim-
cards or so-called virtual numbers [4].

Lack of strong authentication provides an opportunity for malicious users to evade OSNs with
malicious activity, such as spamming, phishing, distribution of malicious software, trolling,
terrorism and others [5-8]. While these are the activities that evaded the internet almost since its
invention, several new threats relevant to OSNs have appeared [9. 10].

e C(Clickjacking — a malicious practice where a user is made to click on something that behaves not
the same way as it should to the prior knowledge of the user.

e Crowdturfing — a campaign that aims to gain or destroy the reputation of people, products and
other entities through spreading biased opinions and framed information.

e Fake account attack — a most commonly used type of attack when an account with fake
credentials created for interaction with the legitimate users.

e Identity clone attack — a malicious practice where an attacker creates a new fake profile while
using stolen private information of an existent user.

o Cyberstalking —harassment of an individual in the social network.

The aforementioned threats are relevant for most of the existing social networks and in most cases,

they are performed by fakes.

Facebook, the largest social network in the world, reports that 8.7\% of its accounts which amounts

to approximately 206 million do not belong to real users [11]. For addressing this vital issue

Facebook even created its security system for protecting users from malicious activity and it is

known as Facebook Immune System (FIS) [12]. While being a scalable real-time system that can

process hundreds of thousands read and write actions per second, it cannot still detect all the types

of malicious activity [13, 14].

The goal of this research is to analyze the application of machine learning techniques for the

detection of malicious users in OSN VKontakte. The information about the total number of 42394

malicious accounts was collected with the help of developed automated VK-scraper tool. In this

research, we show that VVKontakte malicious users have a specificity that is possible to use for

building a highly accurate classification model.

The main contributions of this paper are the following.

e We propose an architecture for automated malicious accounts collection tool called VK-scraper.

e An exploratory data analysis of malicious VKontakte accounts was conducted and the main
differences between malicious and genuine accounts were revealed.

e We show that Catboost performs better than Neural Nets approach proposed by other researcher
for this problem.

e We provide a benchmark of the most important features identified by Catboost.

110

Camoxsanos JI.1. OnpenencHue akkayHTOB 3JI0yMBILITICHHIKOB B COLUATIBHON ceTi BKOHTaKTe MpH MOMOIIM METO0B MAIINHHOTO
obyuenust. Tpyoet UCII PAH, Tom 32, Bem. 3, 2020 r., ctp. 109-118

The outputs of this paper can be used further by other researches of malicious activity in VKontakte
OSN.

2. Related work

The machine learning-based detection of malicious users in OSNs has attracted the attention of both
researches and businesses when machine learning became an industrially popular and valuable
approach. In [15] an application of Matrix factorization and SVM for spam accounts detection in
Chinese OSN Renren was proposed. In this work, authors collected a dataset out of 33116 accounts,
manually classified them into spammers and non-spammers and applied the SVM algorithm for
spammers detection on a set of messages content and users' social behavior. They managed to reach
an outstanding performance with a true positive rate of spammers detection reaching 99.1\%.

The Longitudinal Data Analysis of the Social graph method for the detection of so-called «Friends
farms» in VKontakte was developed in [16]. This work aimed to detect fake identities among newly
registered users of vk.com. According to conducted longitudinal analysis, authors revealed that fake
profiles are more likely to be found among those users that show abnormal behavior in the growth
of social graph metrics such as degree, reciprocated ties and clustering.

In [14] a framework for detecting Fake account attacks on Facebook was described. The research
studied the temporal evolution of OSNs and the characteristics of the real users’ profiles.
Researchers presented a way to analyze social network graphs from a dynamic point of view within
the context of privacy threats.

The application of machine learning techniques for fake profiles identification in Linkedin was
described in [17]. Since Linkedin is a quite closed OSN that does not expose any API to the outer
world, it is rather hard to get any data for the analysis from there. Authors of this work showed that
even having a very limited dataset of only 27 fake accounts, it is possible to achieve a result
comparable to the results obtained by other existing approaches based on the larger data set.

An instrument called SybilRank was developed in [18]. SybilRank is used for detecting the fake
users (called Sybils) in Tuenti OSN by analyzing the social graph properties. The developed tool
allowed to achieve at least 20\% lower false positive and negative rates than the second-best
contender in most of the attack scenarios.

Sophisticated techniques for data normalization and noise removals such as Artificial Bee Colony
(ABC) and Ant Colony Optimization (ACO) were used in [19] among which 3 supervised machine
learning algorithms (Naive Bayes, SVM, and Decision Trees) were applied to predict the fake users’
profiles on Facebook.

The CRAWLER tool was developed in [20] and a total number of 992 profiles were crawled with
the help of this tool, out of which 201 turned out to be malicious. An application of both supervised
(Decision Trees, KNN, SVM) and unsupervised (K-means, K-medoids) machine learning
algorithms were used for classification, and a decent qualities of the models were obtained.

In [21], an application of methods such as PCA, Spearman’'s Rank-Order Correlation, Wrapper
Feature Selection using SVM is described for dimensionality reduction to reduce the number of low-
importance features for the fake accounts’ detection in the social media. In the research, several
existing datasets of both real and fake Twitter accounts, crawled by other researchers, is used. A set
of feature selection techniques was evaluated to achieve the best performance and classification
results.

In [22], an analysis of the tonality of the statuses of users of the OSN Facebook is conducted. Authors
compared machine learning algorithms Naive Bayes, Rocchio, and multi-layer perceptron by
applying them on the 7000 status updates received from 900 Facebook users. All of the statuses
were manually divided into two classes: positive and negative, however since there were
significantly fewer negative reviews in the sample, the authors used 1131 reviews of each class to
balance the classes in the final training dataset.

111

Samokhvalov D.I. Machine Learning-Based malicious users’ detection in the VKontakte social network. Trudy ISP RAN/Proc. ISP RAS,
vol. 32, issue 3, 2020, pp. 109-118

In [12], a software application and architecture described. The application aims to protect users and
the social graph from malicious actions by cybercriminals. The described system operates in real-
time and, according to the statements of its creators, checks and classifies each read and write action.
As of March 2011, the system performed 25 billion checks per day, with a peak frequency of 650,000
checks per second.

Authors of [23] describe an approach to identify automatically managed accounts or so called bots
in the VKontakte OSN. Authors use a feedforward neural network and a sample of 4918 blocked
accounts to train the model that shows a decent result on the validation set. Authors use an approach
for sampling malicious accounts that is similar to one described in this paper, however the method
they use in their research is not automated and thus can not be done in a standalone way. There is
now evidence of what features turned out to be the most important and also it is not clear how exactly
status-based features were generated.

In [24], authors explore stacking ensemble approach on top of a combination of different types of
models that were trained on the attributes of three different types: friendship graph, subscription
information and user’s texts. The result received in this article is 4-9\% better than in [23].

In [25], a framework for extracting a large collections of Twitter accounts was proposed. Based on
these features, several highly accurate models were built and their performances were evaluated on
both an existing public dataset and an additional sample of manually-annotated Twitter accounts
collected with a different strategy. Based on the models predictions, authors evaluated that
percentage of Twitter accounts exhibiting social bot behaviors is between 9\% and 15\% and the
behaviour of such accounts can be detected by supervised machine learning techniques.

In [26], a model which increases the recall in detecting bots, allowing a researcher to delete more
bots in Twitter, was proposed. Authors proposed an algorithm called Boosting through Optimizing
Recall which was applied on top of a combination of twitter-specific heuristic features and features
obtained through topic modelling of the tweets. The algorithm showed a result relatively better than
other state-of-the-art models like AdaBoost.

3. Proposed method

In this paper, a description of state-of-the-art machine learning techniques application for malicious
users’ identification in VKontakte OSN is presented. Moreover, an automated tool VVK-scraper for
scraping the data about malicious accounts before their actual removal by VVKontakte administration
is developed and its architecture is described in this research. A sample of 42395 of actual malicious
users was collected and a set of data and feature engineering techniques were applied before the
actual ML-model training.

3.1 VK-scraper

One of the most challenging parts of the malicious accounts detection domain is data collection.
Even though some OSNs provide a useful API for the developers to interact with the platform and
query the publicly available data, there is still a lack of techniques that allow gathering the available
information about the blocked accounts since this data is not exposed by OSNs to the outer world
after an account was blocked for a malicious activity. There were some workarounds proposed by
researchers to deal with this obstacle, for example, expert evaluation, manual labeling, friends
connections crawling, social graph properties analyses, etc. [16, 17, 20].

As was noted in [17] VKontakte assigns a unique incremental id to every user that is registered on
the platform, thus it is easy to reverse engineer the relative timeline of VKontakte accounts
registration. Since most of the malicious accounts are manually banned by VKontakte administration
(due to the legitimate users complains mostly) within the first week of their existence, it is quite hard
to detect a malicious user among the users that were registered a long time ago.

112

Camoxsanos JI.1. OnpenencHue akkayHTOB 3JI0yMBILITICHHIKOB B COLUATIBHON ceTi BKOHTaKTe MpH MOMOIIM METO0B MAIINHHOTO
obyuenust. Tpyoet UCII PAH, Tom 32, Bem. 3, 2020 r., ctp. 109-118

7 &> docker

/o Obtain the information about the users
registered today via VK API.

‘ e Save the info to the DB.)
| -" | o

e Refresh the info about users in the DB. -
mongoDB TR S

\—— e

cron:00***

N

Fig. 1. VK-Scraper architecture
VK-scraper tool works in the following way (fig. 1). Every day it checks if there were any changes
in the data that are stored in the VK-scraper MongoDB [27] database by simply calling the
VKontakte API and comparing the data from the response to the data stored in the database. If there
was a change, for example, a user updated its status or has been banned by the administration, it
updates the information in the database by changing the differing fields. After that, it collects the
information about 120,000 newly registered accounts in VVKontakte by simply iterating over the
120,000 largest accounts ids that exist in the OSN. The newly scraped ids are stored in the VK-
scraper database.
MongoDB was used as a local DB for storing data as it perfectly suits for storing JSON data and
does not require a schema.
VK-scraper is wrapped with Docker [28] and deployed on a dedicated VPS provided by
DigitalOcean developer cloud [29].
VK-scraper worked for 30 days (from 01.10.2019 to 30.10.2019) on a dedicated VVPS and collected
information about 3.5 million accounts, out of which 42394 turned out to be malicious.

3.2. Feature Engineering

VKontakte API provides access to query all the publicly available information about any open VK
account. For example, it is possible to get information about the schools or universities that a specific
user attended or what types of music she prefers if this data is provided by the user. Most of the
accounts features available via VK API are categorical. The categorical feature is a feature that has
a discrete set of values that are not necessarily comparable with each other (e.g., user ID or name of
a city) [30].

Unfortunately, the number of values that are relevant for some feature can be quite large (for
example, there are more than 200 countries available for selection during registration in vk.com)
and this can make the model training and evaluation quite hard and even biased if the training dataset
is limited and cannot cover all the available values. Thus, unlike other approaches specified in [23,
24], it was decided to convert all the categorical features into binary which are simply the indicators
of whether this feature was specified by the account holder or not.

113

Samokhvalov D.I. Machine Learning-Based malicious users’ detection in the VKontakte social network. Trudy ISP RAN/Proc. ISP RAS,
vol. 32, issue 3, 2020, pp. 109-118

3.3 Catboost

There are plenty of machine learning algorithms for solving a binary classification model available
today. One of the most robust is gradient boosting algorithm. Catboost [30] — is an open-source
library developed by Russian tech-giant Yandex that implements gradient boosting algorithm with
special orientation on performance and processing of categorical features. It outperforms other
popular implementation of gradient boosting in terms of quality on the classification tasks.

4. Experiments and results

Before building the actual model, an Exploratory Data analysis was conducted to compare the
malicious and genuine user datasets and find the anomalies or extract the insights from the data.
After that, a CatBoost model was trained on 4-fold cross-validation with the Log-Loss metric
optimized on the fly.

4.1 Exploratory data analysis

A comparison of malicious and genuine accounts dataset revealed that there is a larger portion of
genuine users who has certain info fulfilled in their profiles rather than malicious users (fig. 2). For
example, 57% of genuine users specified the country they currently live in their profiles, compared
to 28% for malicious accounts; 40% of genuine users indicated the schools they studied in, while
only 15% of malicious accounts had this information in their profiles. Most of the malicious accounts
(78%) have female sex and also most of them (81%) have at least one photo uploaded. 36% of
malicious accounts has at least one friend. Two most popular professions are entrepreneur and
princess. It was also revealed that 98% of malicious users have their mobile phones connected to
their accounts, while only 59% of genuine users linked their phone numbers to their profiles.

Comparison of different features distribution among malicious and gentine accounts
100 = - Maiicious
2 - Gen

19
1

!

¥ :?g-?;
&

FERT]

JE‘:F

| |
4
ll[i;
i f
g 3
& ¥

5

Fig. 2. Comparison of different features distribution among malicious and genuine accounts

After researching for a while about that, it was found out that until a certain time, it was possible to
register in VKontakte without having a phone number linked to the account during the registration
process, however, nowadays it is impossible to create an account without having a mobile phone
number assigned to the actual account. Since the malicious users’ dataset contains only newly
registered users and the genuine dataset is by one half a random selection from all of the existing
accounts, it was decided to remove this feature from the both of the datasets when training the model
to prevent overfitting on the peculiar properties of our data.

Another interesting part that requires a more detailed exploration is user statuses. Status - is a short
(less than 140 symbols) text that a user can outline right below his profile name on the main page.
114

Camoxsanos JI.1. OnpenencHue akkayHTOB 3JI0yMBILITICHHIKOB B COLUATIBHON ceTi BKOHTaKTe MpH MOMOIIM METO0B MAIINHHOTO
obyuenust. Tpyoet UCII PAH, Tom 32, Bem. 3, 2020 r., ctp. 109-118

It was found out that roughly 19% of malicious accounts have a status specified on their page and
the meaning of those statuses is generally malicious. The biggest portion of the accounts promote
sexual services or contain extremist slogans. It might be interesting to research on NLP techniques
application for detection of malicious statuses in the future.

4.2 Model training

The CatBoost classifier was trained on the given dataset with 4-fold cross-validation, with 20% of
the dataset belonging to a fold on each training round (Fig. 4).

CTeHa WHPopMaLUA

Fig. 3. Malicious users’ statuses wordcloud.
The larger the word the more often it occurs in the statuses of malicious accounts

As can be seen, a baseline of 0.91 was achieved on 4-fold cross-validation which is 15 points better
than in [23]. A benchmark of feature importance is provided in Table 1.
Table 1. Feature importance

Feature Importance
bdate-day 22.335
sex 15.46
has-country 12.638
has-schools 8.989
has-relatives 8.532
friends-number 7,648
unique-domain 2.738
has-city 1.674
has-maiden-name | 1.026
has-status 0.417

5. Further directions

Further research concerns both technical and performance improvement of the VK-scraper tool and
investigation of more advanced supervised learning techniques such as Deep Learning and NLP. It
also might be interesting to try to apply some rotating proxy services such as Micro-leaves [31] for
bypassing VKontakte API query restrictions and a larger-scale network scanning. This approach
might require a larger-scale computational resource.

The application of Deep Learning models can be considered after a larger sample of malicious users
will be gathered. For example, it could be interesting to predict the probability of an account being
malicious by applying Convolutional Neural Networks to profile photos of the gathered accounts.
Another interesting direction is the application of NLP techniques for analyzing the accounts statuses
and wall posts. It might be not such a good standalone solution since the majority of accounts do not
have any status in their profiles and the daily quota for the wall API requests is limited to 5000 per

115

Samokhvalov D.I. Machine Learning-Based malicious users’ detection in the VKontakte social network. Trudy ISP RAN/Proc. ISP RAS,
vol. 32, issue 3, 2020, pp. 109-118

day, but within an ensemble of Machine Learning and Deep Learning models, it could make a
valuable contribution to the overall ensemble score.

6. Conclusion

In this work, a Machine-Learning based approach for detection of the malicious users in the
VKontakte OSN was presented. 42394 malicious users were scraped with the developed automated
tool called VVK-scraper. An exploratory data analysis for both malicious and genuine datasets was
conducted and revealed that there is an evident difference between malicious and genuine VKontakte
accounts.

Table 2. 4-fold cross-validation AUC scores
fol f1l 21 3l fot flt 2t 3t

curr. | 0.89 | 089 | 0.89 | 089 | 0.88 | 0.89 | 0.89 | 0.89
best. | - - - - 090 | 091 | 091 |0.91

While the result of 0.91 AUC-score (Table 2) looks promising, there is still a room for improvement
where more sophisticated techniques such as Deep Learning and NLP might come in.

References / Cnncok nutepartypbl

[1]. J.A. Obar and S.S. Wildman. Social Media Definition and the Governance Challenge: An Introduction to
the Special Issue. Telecommunications Policy, vol. 39, no. 9, 2915, pp. 745-750

[2]. D. M. Romero, W. Galuba, S. Asur, and B. A. Huberman. Influence and passivity in social media. In Proc.
of the 20th International Conference Companion on World wide web, 2011, pp. 113-114.

[3]. Ay6ms [1] J. A. Obar and S. Wildman, “Social media definition and the governance challenge: An
introduction to the special issue,” Telecommunications Policy, vol. 39, no. 9, pp. 745-750, Oct. 2015.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0308596115001172

[4]. 1. Shatilin. What are virtual SIM cards and what do they do? Available at:
https://www.kaspersky.com/blog/virtual-sim/11572/.

[5]. K. S. Adewole, N. B. Anuar, A. Kamsin, K. D. Varathan, and S. A. Razak. Malicious accounts: Dark of
the social networks. Journal of Network and Computer Applications, vol. 79, 2017, pp. 41-67.

[6]. A. V. Filimonov, A. V. Osipov, and A. B. Klimov. Application of neural networks to identify trolls in
social networks. arXiv:1504.07416 [cs], Apr. 2015.

[7]1. A. Malm, R. Nash, and R. Moghadam. Social Network Analysis and Terrorism. In Handbook of the
Criminology of Terrorism, G. LaFree and J. D. Freilich, eds., John Wiley & Sons, Inc., 2017, pp. 221-
231.

[8]. Z. Mao, D. Li, Y. Yang, X. Fu, and W. Yang. Chinese DMOs’ engagement on global social media:
examining post-related factors. Asia Pacific Journal of Tourism Research, vol. 25, no. 3, pp. 274-285.

[9]. D. DeBarr and H. Wechsler. Using Social Network Analysis for Spam Detection. Lecture Notes in
Computer Science, 2010, vol. 6007, pp. 62—69.

[10]. L. Wu and H. Liu. Detecting Crowdturfing in Social Media. In Encyclopedia of Social Network Analysis
and Mining, R. Alhajj and J. Rokne, eds, Springer, 2017, pp. 1-9.

[11]. M. Fire, D. Kagan, A. Elyashar, and Y. Elovici. Friend or foe? Fake profile identification in online social
networks. Social Network Analysis and Mining, vol. 4, 2014, Article no. 194

[12]. T. Stein, E. Chen, and K. Mangla. Facebook immune system. In Proc. of the 4th Workshop on Social
Network Systems, 2011, article no. 8, pp, 1-8 pp. 1-8.

[13]. S. Ali, N. Islam, A. Rauf, I. Din, M. Guizani, and J. Rodrigues. Privacy and Security Issues in Online
Social Networks. Future Internet, vol. 10, no. 12, 2018, article no. 114, pp. 1-12.

[14]. M. Conti, R. Poovendran, and M. Secchiero. FakeBook: Detecting Fake Profiles in On-Line Social
Networks. In Proc. of the 2012 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, 2012, pp. 1071-1078.

[15]. AJ. Banu, N.N. Ahamed, B. Manivannan, K. Vanitha, M.M. Musthafa. Detecting Spammers on Social
Networks. International Journal of Engineering and Computer Science, vol. 6, issue 2, 2017, pp. 20240-
20247.

116

Camoxsanos JI.1. OnpenencHue akkayHTOB 3JI0yMBILITICHHIKOB B COLUATIBHON ceTi BKOHTaKTe MpH MOMOIIM METO0B MAIINHHOTO
obyuenust. Tpyoet UCII PAH, Tom 32, Bem. 3, 2020 r., ctp. 109-118

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].
[26].
[27]
[28].

[29].
[30].

[31].

A. Romanov, A. Semenov, and J. Veijalainen. Revealing Fake Profiles in Social Networks by Longitudinal
Data Analysis. In Proc. of the 13th International Conference on Web Information Systems and
Technologies., 2017, pp. 51-58. 8

S. Adikari and K. Dutta. Identifying fake profiles in linkedin. In Proc. of the 19th Pacific Asia Conference
on Information Systems, 2014, article no. 278.

Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the detection of fake accounts in large scale
social online services. In Proc. of the 9th USENIX Conference on Networked Systems Design and
Implementation, 2012, pp. 197-210.

S. Y. Wani, M. M. Kirmani, and S. I. Ansarulla. Prediction of fake profiles on facebook using supervised
machine learning techniques-a theoretical model. International Journal of Computer Science and
Information Technologies, vol. 7, no. 4, 2016, pp. 1735-1738.

M. Albayati and A. Altamimi. MDFP: A Machine Learning Model for Detecting Fake Facebook Profiles
Using Supervised and Unsupervised Mining Techniques. International Journal of Simulation: Systems,
Science & Technology, vol. 20, no. 1, 2019, article no. 11, pp. 1-10.

S. Khaled, N. El-Tazi, and H.M.O. Mokhtar. Detecting Fake Accounts on Social Media. In Proc. of the
2018 IEEE International Conference on Big Data (Big Data), 2018, pp. 3672-3681.

C. Troussas, M. Virvou, K. J. Espinosa, K. Llaguno, and J. Caro. Sentiment analysis of facebook statuses
using naive bayes classifier for language learning. In Proc. of the International Conference on Information,
Intelligence, Systems and Applications, 2013, pp. 1-6.

P.D. Zegzhda, E.V. Malyshev, and E.Y. Pavlenko. The use of an artificial neural network to detect
automatically managed accounts in social networks. Automatic Control and Computer Sciences, vol. 51,
no. 8, 2017, pp. 874-880.

K. Skorniakov, D. Turdakov, and A. Zhabotinsky. Make social networks clean again: Graph embedding
and stacking classifiers for bot detection. In Proc. of the 2nd International Workshop on Rumours and
Deception in Social Media, 2018, paper 39.

0. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini. Online human-bot interactions: Detection,
estimation, and characterization. arXiv:1703.03107, 2017.

F. Morstatter, L. Wu, T. H. Nazer, K. M. Carley, and H. Liu. A new approach to bot detection: Striking
the balance between precision and recal. In Proc. of the 2016 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), 2016, pp. 533-540.

MongoDB, 2020. Available at: https://www.mongodb.com/

Docker, 2020. Available at: https://www.docker.com/

DigitalOcean, 2020. Available at: https://www.digitalocean.com/

L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, and A. Gulin. Catboost: unbiased boosting
with categorical features. In Proceedings of the 32nd International Conference on Neural Information
Processing, 2018, pp. 6638—6648.

Microleaves, 2020. Available at: https://microleaves.com/

Information about authors / UHcpopmaums o6 aBTopax
Denis Igorevich Samokhvalov — master student. Research interests: social network analysis,
machine learning.

Hennc UropeBna CaMOXBaJIOB — CTYJEHT MaructpaTypbl. Hay4dHsle HHTEpeCHl: aHAN3 COLHAIBHBIX
ceTeld, MalnHHOE 00yYeHHE.

117

Samokhvalov D.I. Machine Learning-Based malicious users’ detection in the VKontakte social network. Trudy ISP RAN/Proc. ISP RAS,
vol. 32, issue 3, 2020, pp. 109-118

118

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-11

Development of automated computer vision
methods for cell counting and endometrial gland
detection for medical images processing

1D.1. Sergeev, ORCID: 0000-0003-2503-6272 <densvrl@gmail.com>
2 A.E. Andreev, ORCID: 0000-0003-3343-2937 <alexander597@mail.ru>
3 A.O. Drobintseva, ORCID: 0000-0002-6833-6243 <anna.drobintseva@gmail.com>
1S, Cenevska, ORCID: 0000-0002-2272-8882 <slobodankacenevska@yahoo.com>
IN. Kukavica, ORCID: 0000-0001-6477-357X <nikola.kukavica.94@gmail.com>
1P.D. Drobintsev, ORCID: 0000-0003-1116-7765 <drob@ics2.ecd.spbstu.ru>

! Peter the Great St.Petersburg Polytechnic University,
29, Polytechnicheskaya, St.Petersburg, 195251, Russia
2The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott,
3, Mendeleevskaya line, Saint Petersburg, 199034
3 St.Petersburg State Pediatric Medical University
2 Litovskaya st., St. Petersburg, 194100, Russia

Abstract. Current work is focused on the processing of medical images obtained by performing a
pathomorphological analysis of preparation. The algorithms for processing images of nuclei of light and
confocal microscopy and tissue of light microscopy were considered in particular. The application of the
proposed algorithms and software for detecting pathologies was justified.

Keywords: computer vision; image processing; digital pathology; detection and classification; cell and tissue
nuclei; light microscopy; confocal microscopy

For citation: Sergeev D.l., Andreev A.E., Drobintseva A.O., Cenevska S., Kukavica N., Drobintsev P.D.
Development of automated computer vision methods for cell counting and endometrial gland detection for
medical images processing. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 119-130. DOI:
10.15514/ISPRAS-2020-32(3)-11

119

Sergeev D.1., Andreev A.E., Drobintseva A.O., Cenevska S., Kukavica N., Drobintsev P.D. Development of automated computer vision
methods for cell counting and endometrial gland detection for medical images processing. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3,
2020, pp. 119-130

Pa3paboTka aBTOMaTU3NPOBaHHbLIX aNirTOPUTMOB KOMMNbLIOTEPHOrO
3peHuna ans o6paboTkn MeaULMHCKUX U30bpaxeHumn

L 1.U. Cepzees, ORCID: 0000-0003-2503-6272 <densvr1@gmail.com>
2 A.E. Anopees, ORCID: 0000-0003-3343-2937 <alexander597@mail.ru>
3 4.0. [pobunyesa, ORCID: 0000-0002-6833-6243 <anna.drobintseva@gmail.com>
1 C. IJenescra, ORCID: 0000-0002-2272-8882 <slobodankacenevska@yahoo.com>
L H. Kykasuya, ORCID: 0000-0001-6477-357X <nikola.kukavica.94@gmail.com>
Y111, qpobunyes, ORCID: 0000-0003-1116-7765 <drob@ics2.ecd.spbstu.ru>

Y Canxm-Ilemep6ypecxuii nonumexnuveckuii yuueepcumem Ilempa Beauxozo,
195251, Poccus, Cankm-Ilemep6ype, yr. [lonumexuuueckas, 0. 29
2 HUU axywepcmea, 2unexono2uu u penpodykmonozuu umenu J.0. Omma,
199034, 2. Canxm-Ilemepbype, Menoeneesckas aunus, 3
8 Canxm-ITemepbypacruii neduampuyeckuii yHusepcumen,
194100, Poccus, Cankm-Ilemepbype, yr. Jlumosckas, 0.2

Abstract. Tekymias pabora opHeHTHpOBaHa Ha 00pabOTKY MEANIIMHCKUX H300paKEHHH, MOMYYCHHBIX MTyTeM
MPOBEJEHHUS TTaTOMOP(OJIOrHYECKOr0 aHalM3a Ipenapara. B uyacTHocTH, ObUIM PacCMOTPEHBI alrOPUTMBI
00paboTKK M300paXeHUH s1ep CBETOBON U KOH(OKAIbHOH MUKPOCKOIMH M M300pakKeHUH TKaHel CBETOBOH
MHKpockonuu. B pabore pmoka3aHa NPUMEHHMOCTH IIPEIOKEHHBIX AITOPUTMOB M IIPOrPAMMHOIO
obecrieyeHus VIS BBISIBJICHHS TATOJIOT .

KiioueBble ¢J10Ba: KOMIBIOTEPHOE 3peHHe; 00paboTka 300paXkeHuii; L poBas MaToNOrHs; 0OHApYKEHUES
U KIaccH(UKAIHs; A/Ipa KJIETOK U TKaHel; CBETOBAas MUKPOCKOIHS; KOH(POKaIbHAS MUKPOCKOIIHS

Jns nurupoBanus: CepreeB J[.M., AugpeeB A.E., JlpobumnneBa A.O., lleneBcka C., KykaBmma H.,
Jpobunues I1.JI. PazpaboTka aBTOMAaTH3MPOBAHHBIX AITOPUTMOB KOMIIBIOTEPHOIO 3peHHUs Juisi 00paboTKH
MeauuuHCKHX u3o0paxenuit. Tpyast UCIT PAH, tom 32, Beim. 3, 2020 r., crp. 119-130 (Ha aHriwmiickom
s3eike). DOI: 10.15514/ISPRAS-2020-32(3)-11

1. Introduction

The processing of medical images is an extremely important issue for biology and medicine.
Pathomorphologists have to process hundreds of images of preparations per day. Their work can be
automated due to computer analysis.

Medical image processing can be performed in semi-automatic and automatic modes. Semi-
automatic mode is based on manual adjustment of simple, intuitive parameters for evaluating single
microphotographs. Automatic mode otherwise does not require both direct operator intervention and
initial settings in the processing of preparations.

Modern experts in the field of pathomorphology have an access to a wide range of technologies that
make it possible to carry out various measurements depending to required tasks. A striking example
of such technologies is the universal ImageJ software [1], which is capable for performing operations
aimed at evaluating the geometry and color gamut of the resulting images. The main idea of this
software is to write macroses that require a minimum understanding of computer technology from a
specialist. This approach makes ImageJ flexible, but not user friendly. More intuitive tools are
commercial software such as VideoTestMorphology [2, 3] and ImageProPlus [4]. There are various
microcopy solutions. The most popular software at the moment are compared in Table 1.

Table 1. Software features

Automatic | Machine . Open
Software Language mode learning Coding source
Image J [1] Java macros plugin no no

120

Ceprees JI.1., Auapees A.E., [Ipoounnesa A.O., Llenescka C., Kykasuna H., [Ipo6unnes I1.[]. Pa3paboTka aBTOMaTH3MPOBaHHBIX
AIrOPUTMOB KOMITBIOTEPHOT0 3peHUsI 17151 00paboTKK MeqUIMHCKUX n300pakenuit. Tpyost UCII PAH, Tom 32, Bbmm. 3, 2020 r., ctp. 119-130

FSG])” profiler Python macros no yes no
Orbit Image | Java,

Analysis [6] python yes yes no yes
Axio

vision 48[7] | macros yes no no
Video test

morphology - macros yes no no
5.2[3]

CellSens [8] - macros no no no
IMAGE-

PRO- .NET yes yes no no
Premium [4]

BioVision - yes yes no no

Thus, there are a lot of modern software, designed for morphometry. However, there are a number
of facts that severely limit the domain specialist in choosing his own tools. Firstly, most of the free
automatic and semi-automatic programs are incomplete and require bioinformatics in the team.
Secondly, the already collected, semi-automatic programs in most cases are universal, which means
the absence in the process of taking into account the parameters of the microscope, the type of tissue
being examined and the lighting of a particular picture. These parameters must be driven manually,
relying on the empirical experience of the specialist responsible for setting up the program. Thirdly,
the most convenient and user-friendly programs have a high cost. Therefore, they are not available
in small laboratories.

The aim of this work is the development of software that partially eliminate the shortcomings of
modern non-commercial software for processing digital images with automatic objects recognition
by series of images and extracting from them the minimum set of basic features necessary for
researchers to work with.

Typical operations for this task are initialization, localization, segmentation, shape analysis,
modeling, analysis of cell parameters, etc. [9]. Although there are many methods of segmentation,
precise segmentation is a complex task, and it plays a significant role in biological imaging studies

2. Typical tasks

2.1 Processing of cell and tissue preparations

Processing of preparations is carried out both at the cellular and tissue levels. In both cases, the cells
are usually tinted with the help of their special reaction to the examined «marker». In this study,
nuclear markers such as estrogen receptors (ER) and progesterone (PR) were detected. A
quantitative analysis of nuclei with receptors for ER and PR is essential, since they are involved in
the mechanisms of growth and metastasis of tumors. The research of the expression of ER and PR
is included in the standard of examining patients with breast cancer, as it allows us to determine the
sensitivity of the tumor to hormone therapy and to clarify the prognosis of the disease.

The research of ER and PR is also used in the diagnosis of infertility, endometrial hyperplasia [10].
Pathomorphologist needs to calculate the number of cell nuclei highlighted in color on the
preparation, which correspond to the expression of the researched markers, as well as the total
number of nuclei per unit area.

Another assignment of the pathomorphologist is to isolate the contours of glands and tissues on the
preparation and determine the number of glands with high total marker expression.

121

Sergeev D.1., Andreev A.E., Drobintseva A.O., Cenevska S., Kukavica N., Drobintsev P.D. Development of automated computer vision
methods for cell counting and endometrial gland detection for medical images processing. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3,
2020, pp. 119-130

According to statistical data, such as the number of nuclei and glands with and without marker
expression, conclusions about the structure of the tissue are made, the effectiveness of treatment is
considered, a diagnosis and the prognosis of the disease are specified.

2.2 Light and confocal microscopy

Medical preparations can be obtained in various ways. Preparations obtained using light and
confocal microscopes are studied in this work. Confocal microscopy has been used relatively
recently and, compared to the light one, gives more contrasting color images, with staining of the
nuclei with different fluorescent dyes with antibodies of the corresponding markers. However,
confocal microscopy requires special equipment and the quality of the preparation, which makes it
impossible for mass application. Therefore, for the diagnosis of diseases light microscopy is still
used in most cases [11].

3. Popular algorithms

Medical imaging algorithms typically consist of the steps described in this section below.

3.1 Image pre-processing

It is used to create conditions that increase the efficiency and quality of the isolation and recognition
of nuclei in medical preparations. It includes morphological operators and filters, border detectors,
filters with brightness normalization [12].

3.2 Detection of objects of interest

At this stage, the X and Y coordinates of the proposed center of each object of interest (nucleus) are
determined. As aresult of the stage, a set of objects of interest, which are probably nuclei is obtained.
The algorithm parameters at this step are set in the particular way in order to create the redundant
number of objects of interest. In other words, the detection of false objects is acceptable, but the
admission of real cores isnot. Basically, the following algorithms are used: active contour algorithm,
watershed algorithm, image segmentation by known classes, segmentation with preliminary
detection of class boundaries [12].

3.3 Selection of characteristics of objects of interest, classification and
arrival at a decision

The final stage allows to attribute each of the objects of interest to one of the target classes. For the
task of classifying nuclei using fluorescence and light microscopy preparations, the topological,
texture, and color intensity-based characteristics of following classes are distinguished.

At the classification stage, objects of interest classes are determined by markers used for coloring
the nuclei and include:

e Anucleus not highlighted with a marker;

e Background (stroma);

e A core highlighted with marker;

e Several nuclei.

The case with several nuclei should be considered separately (see subsection 3.4).

The method for determining the intensity and clustering of the color histogram allows you to
automatically determine the number of markers and their colors. This saves the precious time of
pathomorphologists.

122

Ceprees JI.1., Auapees A.E., [Ipoounnesa A.O., Llenescka C., Kykasuna H., [Ipo6unnes I1.[]. Pa3paboTka aBTOMaTH3MPOBaHHBIX
AIrOPUTMOB KOMITBIOTEPHOT0 3peHUsI 17151 00paboTKK MeqUIMHCKUX n300pakenuit. Tpyost UCII PAH, Tom 32, Bbmm. 3, 2020 r., ctp. 119-130

The following classifiers are used for pathomorphological analysis: the support vector method,
Bayes classifier, Haar cascade, convolutional neural network [13].

3.4 Methods for the separation of overlapping nuclei

A specific task is the separation of overlapping nuclei. This can be caused by cell division, the
camera’s viewing angle in the process of shooting the preparation, and also, the location of the nuclei
on top of each other in the depth of the examined tissue. The following approaches can be used to
separate the fused nuclei and accurately determine their number:

o the method of active contours with the preliminary use of erosion;

o classifiers (convolutional neural network), previously trained in classes that determine the number
of cells in the area of a given size;

o watersheds algorithms;

e segmentation algorithms focused on topological features of objects [14].

4. Image dataset

Many images of cell structures and tissues preparations of light and confocal microscopy were
collected and labeled (see Table 2).

Material and equipment for shooting images was provided by the Institute of Obstetrics, Gynecology
and Reproductology Ott. The shooting of individual classes of images was carried out with a fixed
scale of the microscope. Image preparations of various types of tissues with different lighting
conditions and marker colors were collected and labelled.

To accelerate nuclei and glands labelling on images, a software was developed that allows a
specialist to set a marker on an object of interest in the image. Subsequently, the coordinates of the
centers of these markers (x, y), as well as the length (SizeY) and width (SizeX) were recorded in a
csv file (see Table 3). Thus, a numerical data of the location and shape of the investigated structures
were obtained. The markup was carried out by an employee from the laboratory by a cell biologist
at the Ott Research Institute.

Table 2. Collected images

Collected image class Number of images

Confocal microscopy

; 30
cell preparations
Confocal microscopy 9
tissue preparations
Lightinh microscopy 100

cell preparations

Table 3. A dataset part for the cells

Image sixeX | sizeY | x y
name
1(5).ipg 963 963 | 278 | 100

1(5)jpg | 963 | 963 | 441 | 201
1(5)jpg | 963 | 963 | 795 | 246

123

Sergeev D.1., Andreev A.E., Drobintseva A.O., Cenevska S., Kukavica N., Drobintsev P.D. Development of automated computer vision
methods for cell counting and endometrial gland detection for medical images processing. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3,
2020, pp. 119-130

1(5)jpg | 963 | 963 | 911 | 417
1(5)jpg | 963 | 963 | 627 | 475

5. Formulation of the problem

The aim of the work is the research and development of the following algorithms:

o the cell nuclei number estimation with and without researched marker expression on light
microscopy image preparations;

o the cell nuclei number estimation with and without researched marker expression on confocal
microscopy image preparations;

¢ highlighting the internal and external glands borders in the confocal microscopy image
preparations.

For all algorithms, the following requirements are established:

work without an operator;

resistance to changes in the brightness of the preparation;

resistance to various colors of markers;

image scale is an input parameter of the algorithms.

6. Suggested algorithms

The algorithms were developed in the PyCharm environment in Python 3.7 using the OpenCV-
python 4.0.0.21 library. The source code of developed algorithms is available on github.com [15].

6.1 Counting the number of cell nuclei in confocal microscopy images

Enter the scaling parameter expectedPixelsPer100Nm — the number of pixels per 100
nanometers;

e Read color image I in RGB format, depth 8 bits per channel;
e Bring the image I to a scale of 1.5 nanometers per pixel;
e Convert I to HSV format, write the V component to the variable V/;

e Apply the contrast limited adaptive histogram equalization method with clipLimit = 2 and
titleGridSize = 8 on image V;

e Perform erosion on image V with an ellipse core of size 3;
e Calculate mean as the average value of pixels V;

e For each pixel V;;: if V;; > mean + 20, assign V;; = min(V;; + 100, 255) if V;; < mean — 20,
assign V;; = max(V;; — 100, 0);

e Apply a median filter with a core of size 5 to the image V;
o Perform threshold binarization of image V with a threshold 127. Write the result to variable B;
o Perform a contour search on image B, leaving contours that do not have nested paths;

Calculate the centers of mass (C,, C,) for each contour using formulas (1):

C =@'C =my,/m
X mag Y 01/Moo
myq = Zx,y:l..n xpyq (1)

124

Ceprees JI.1., Auapees A.E., [Ipoounnesa A.O., Llenescka C., Kykasuna H., [Ipo6unnes I1.[]. Pa3paboTka aBTOMaTH3MPOBaHHBIX
AIrOPUTMOB KOMITBIOTEPHOT0 3peHUsI 17151 00paboTKK MeqUIMHCKUX n300pakenuit. Tpyost UCII PAH, Tom 32, Bbmm. 3, 2020 r., ctp. 119-130

Leave only those contours for which |C, — C, | < 1;

The number of contours received will be the total number of nuclei.

6.2 Detection of the internal contours of the glands in confocal microscopy
images

Read color image I in RGB format, depth 8 bits per channel;
Bring the image to a scale of 1.5 nanometers per pixel;
Convert image I to HSV format, write the V. component to the variable V;

Use the contrast limited adaptive histogram equalization method with parameters clipLimit = 2
and titleGridSize = 8 on image V;

Perform threshold binarization on ¥V component of HSV with a threshold of 127;
Perform 27 erosion steps on the image V with the ellipse core of size 3;

Perform a contour detection on image B, leaving paths that do not have nested paths. Write the
result to the contours variable;

For each contour: calculate the area, count the number of pixels V;; falling into this contour, taking
into account the V;; exceeding 15, and write to the variable nonZeroPixelsArea;

o suppose that the contour is the inner border of the gland if the nonzero pixels of the region
exceed the product of the contour of the region 0.4;

Recognized glands boundaries will be in the contours list an on the output image.

6.3 Counting the number of cell nuclei in light microscopy images

Enter image I in RGB format and bring it to a scale of 1.5 nanometers per pixel (similar to
algorithms A and B);

Convert I to HSV format, write the V component to the variable V' (similar to algorithms A and
B);

o Equalize the histogram of the V component in intensity. To do this,
o obtain the hist distribution vector of colors (0..255);

o accumulate the histogram values in chist, where chist[n] = X, , hist[i] (hist[i]);

(100-thresh)

o calculate the V,,,, as: V. = chist[len(chist) — 1] * o0

threshold value equal to 1;

, wWhere thresh is a

o replace V pixels with a value greater than V,,, ., with a value of /,,,.;

Perform Laplass transforms on image V with sigma equal to 3, 6 and 9, write the resultsin L,, L,,
L, respectively;

o calculate the sum of the images L, L,, L5 by pixels and write to laplaceSum; normalize Lg,,,,,
in the range from 0 to 255;

o perform Otsu binarization on Lg,,,,; write the result to variable B;

Search for contours in image B, leaving contours that do not have nested paths (similar to
algorithm A);

125

Sergeev D.1., Andreev A.E., Drobintseva A.O., Cenevska S., Kukavica N., Drobintsev P.D. Development of automated computer vision
methods for cell counting and endometrial gland detection for medical images processing. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3,
2020, pp. 119-130

o theresult is written to the contours variable;
e Calculate the moments of the contour C,, C,, according to formulas (1);
o leave only those contours for which |C, — C, | < 1;

The task of scaling the image to 1.5 nanometers per pixel was solved by manual measuring the
length of the scale bar on the image in pixels. However, we plan to develop automated recognition
of the scale bar’s length on images

The coefficients of the algorithms were selected by optimizing the criteria by the simplex method
and the gradient descent method when testing on the analyzed preparations. The criteria are given
in the section 7.

7. Results

7.1 The algorithm for counting the number of cell nuclei in confocal
microscopy images

The percent of successful recognition in the researched images was 84%. An example of image
recognition is presented in Fig.1.

For the task of counting nuclei, the percentage of successful recognition was presented as the average
value for the analyzed images. For each image I, there were the number of detected nuclei N, and
the number of labeled nuclei N;. The percent of recognition pi for image I was calculated by the
formula (2):

_ min(Ny, Np)
" max(Ny,N))

«100% 2)

Fig. 1. Highlighting of nuclei on the preparations of confocal microscopy.
Initial image (left), image with selected nuclei (right)

7.2 Highlighting of the internal contours of the glands on confocal
microscopy images.

The percentage of successful recognition in the researched images was 70%. An example of image
recognition is shown in Fig. 2.

126

Ceprees JI.1., Auapees A.E., [Ipoounnesa A.O., Llenescka C., Kykasuna H., [Ipo6unnes I1.[]. Pa3paboTka aBTOMaTH3MPOBaHHBIX
AIrOPUTMOB KOMITBIOTEPHOT0 3peHUsI 17151 00paboTKK MeqUIMHCKUX n300pakenuit. Tpyost UCII PAH, Tom 32, Bbmm. 3, 2020 r., ctp. 119-130

Fig. 2. Highlighting of the internal borders of the glands using confocal microscopy preparations.
Initial image (left), image with highlighted glands (right)

For the problem of counting glands, the percentage of successful recognition was given as the
average value for the analyzed images. For each image /, there were internal contours of the glands
detected by the algorithm — detectedContours and internal contours of the glands marked by the
pathomorphologist — labelledContours. The intersection area of the marked and detected contours
A, and the total area of the marked out contours — A; were calculated. The percent pi of recognition
for image I was calculated by the formula (3):

Ad
p= |——1 «100% 3)
Al

7.3 The estimation of the number of cell nuclei in light microscopy images

The percentage of successful recognition was 90% in the researched images. An example of image
recognition is presented in Fig. 3.

For the task of counting nuclei on light microscopy preparations, the percentage of successful
recognition was analyzed by the formula (2) similarly to the percentage of recognition for confocal
microscopy.

At : I
P o
2 o #fﬁw'r o

’ s - ’ -~

Fig. 3 Highlighting of nuclei on light microscopy preparations.
Initial image (left), image with selected nuclei (right)

8. Comparison with existed software

The purpose of last stage of this work was to compare the obtained data with the results of other
applications used to evaluate microphotographs.

Since most of the software intended for cytological studies are either expensive or require a long
study of the manual and programming languages, it was decided to compare the performance of the
created software with FiJi —the ImageJ plugin for evaluating microscopy images, which is the most
balanced among its plugins. The initial task was to estimate the number of cells in 30
microphotographs in the jpg format. The comparison results between proposed algorithm and Fiji
for confocal imagery task is presented in Table 4.

127

Sergeev D.1., Andreev A.E., Drobintseva A.O., Cenevska S., Kukavica N., Drobintsev P.D. Development of automated computer vision
methods for cell counting and endometrial gland detection for medical images processing. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3,
2020, pp. 119-130

Table 4. Comparison of created algorithm and FiJi for confocal imagery

No Labelled | FiJi | % FiJi | Created algorithm | % of created algorithm
1(5) 11 15 73,3 14 78,5
1(6) 11 17 64,7 18 61,1
17) | 95 109 | 87,2 94 98,9
1(9) 12 25 48,0 21 57,1
1(13) | 360 424 | 84,9 195 54,2
1(30) | 145 261 | 55,6 165 87,8
1(31) | 128 161 | 79,5 128 100
1(38) | 45 59 | 76,3 57 78,9
1(41) | 189 192 | 98,4 182 96,2
1(42) | 123 121 | 984 117 95,1
Result of Fiji 76% +/— 16.1%

Result of created algorithm 83,8% +/- 11.8%

For the task of counting nuclei on light microscopy preparations, the percentage of successful
recognition was analyzed by the formula (2) similarly to the percentage of recognition for confocal
microscopy preparations.

Thus, the developed algorithm exceeds the FiJi accuracy by 7.8%. It should be noted that in order
to achieve maximum accuracy in FilJi, the threshold parameter is required and the estimated radius
of the object of interest should be introduced as the lower limit, whereas in the written code the
determination of the size of objects takes place automatically, which excludes the element of
subjectivity from the study and the necessity for preliminary processing of photographs. For
example, to evaluate the image, the created algorithm does not require preliminary removal of the
scale bar from the image. Also, for the various color markers expression in the nuclei classification
task using Fili, it is necessary to set the Color Threshold value for each type of marker in each photo
separately, which not only significantly increases the time of analyze carried out by the
pathomorphologist, but also greatly reduces the quality of this analysis, since nuclei having weak
expression are most likely will not be included in the corresponding group. Unlike Fiji, the created
algorithm equally effectively copes with the task of counting the total number of cores as well as
with the task of classifying them.

6. Further research

In the future, it is planned to continue research in this area, improving the reliability of the
algorithms, particularly:

use CNN and U-net networks for better segmentation of core images [16, 17];

detect the contours of the scale bar for automatic scaling of the drug;

automatically recognize marker colors (support more than two colors).

References / Cnnucok nutepartypbl

[1]. Kuznets S.M., Panteleev V.G. The application the Hardware-Software Complex «VideoTesT —
Morphology» for the differentiation of tumor cells. Clinic. N.1. 2011, pp. 122-123 (in Russian) / C.M.
Kysnen, B.I'. IlanteneeB. lcmonp3oBaHme ammapaTHO-IporpaMMHoro komruiekca «BumeoTecT —
Mopdonorus» amst auddepeHnnaniy onyxoneBsix KieTok. [lomuknuauka, no. 1, 2011 r., crp. 122-123.

128

Ceprees JI.1., Auapees A.E., [Ipoounnesa A.O., Llenescka C., Kykasuna H., [Ipo6unnes I1.[]. Pa3paboTka aBTOMaTH3MPOBaHHBIX
AIrOPUTMOB KOMITBIOTEPHOT0 3peHUsI 17151 00paboTKK MeqUIMHCKUX n300pakenuit. Tpyost UCII PAH, Tom 32, Bbmm. 3, 2020 r., ctp. 119-130

[2]. ImageJ software homepage (2020). Available at https://imagej.net.

[3]. VideoTestMorphology software homepage (2020). Available at
http://www.digitalimagingsystems.co.uk/pdfs/morpho_en.pdf.

[4]. IMAGE-PRO-Premium software homepage (2020). Available at https://www.mediacy.com/imagepro.

[5]. CellProfiler software homepage (2020). Available at https://cellprofiler.org.

[6]. OrbitimageAnalysis software homepage (2020). Available at https://www.orbit.bio.

[7]. AxioVision 4.8. software homepage (2020). Available at https://www.micro-
shop.zeiss.com/en/us/system/software-axiovision+software-products/1007/.

[8]. CellSens software homepage (2020). Available at https://www.olympus-
lifescience.com/en/software/cellsens/.

[9]. Berezsky O.N., Melnik G.N. Information technology for the analysis and synthesis of histological images
in automated microscopy systems. Control systems and computers, no. 4, 2013, pp. 26-32 (in Russian) /
O.H. bepe3sckuii, [.H. Menpauk. MHbDOpMaMOHHAS TEXHOJIOTHS aHAIM3a U CHHTE3a TUCTOJIOTMYECKUAX
H306pa)KeHI/II71 B CUCTEMaxX aBTOMaTH?,HpOBaHHOﬁ MUKPOCKOITHUH. anaBnﬂ}omHe CHUCTEMBI U MAIlIUHEI, NO.
4,2013 r., cTp. 26-32.

[10]. Carrarelli P., Rocha A. Increased expression of antimullerian hormone and its receptor in endometriosis.
Fertility and sterility, vol. 101, no. 5, pp. 1353-1358.

[11]. Drobintseva A.O., Polyakova V.O., Masing D.S., Matyushkin L.B. Confocal microscopy. Role and
importance in the study of the reproductive system. Tutorial. SPb., TSOP "Nevsky", 2015, .18 p. (in
Russian) / A.O. [Ipob6unnesa, B.O. TlomsikoBa, O.C. Masunr, Matromkun JI.b. KondoxkansHas
MHKpPOCKOIUSL. POJIb M 3HAYEHHE B MCCIIENO0BAaHUM PENPOIYKTUBHON cucTeMsl: yueGHoe nocodue. CII6.,
LOIT «Hesckwity, 2015 ., 18 ctp.

[12]. Chen, S., Zhao, M., Wu, G., Yao, C., Zhang, J. Recent Advances in Morphological Cell Image Analysis.
Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 101536, 10 p.

[13]. Gurcan M. N., Boucheron L., Can A., Madabhushi A., Rajpoot N., & Yener B. Histopathological Image
Analysis: A Review. IEEE Reviews in Biomedical Engineering, vol. 2, 2009, pp. 147-171.

[14]. Kovrigin A.V. Application of the principles of constructing machine vision systems in the task of
analyzing images of cellular structures. Scientific journal of KubSAU, no. 29 (5), 2007, pp. 1-10 (in
Russian) / Kospurux A.B. TIpuMeHeHne PUHIMIIOB IOCTPOCHHS CUCTEM MAIMHHOTO 3PEHHS B 3a/1a4e
aHanuM3a M300paKeHHH KIETOYHBIX CTPYKTyp. Hayunsnii sxypHan KyOaHCkoro rocynapcTBEHHOTO
arpapHoro ynuBepcurerta, no. 29(5), 2007 r., crp. 1-10.

[15]. Xue Y., Ray N. (Cell Detection with Deep Convolutional Neural Network and Compressed
Sensing. arXiv:1708.03307, 2007.

[16]. Falk, T., Mai, D., Bensch, R. et al. U-Net: deep learning for cell counting, detection, and morphometry.
Nature Methods, vol. 16, 2019, pp. 67—70 (2019).

[17]. Sergreev D.l., Drobintseva A.O. et al. Biomedicine diagnostic repository. Source code of this paper.
Auvailable at https://github.com/densvr/biomedicine-diagnostic.

Information about authors / UHcpopmaums o6 aBTopax

Daniel Igorevich SERGEEV — PhD student of the Institute of Computer Science and Technology.
Scientific interests: computer vision, machine learning, development in the Android environment.

Haamn Uropesmu CEPI'EEB — acmmpant WHCTHTYTa KOMIBIOTEPHBIX HAYK M TEXHOJIOTHH.
Hayunple nHTEpECH: KOMIBIOTEPHOE 3pEHHe, MAIIMHHOE 00yUYeHUE, pa3paboTKu B cpene AHAPOU.
Alexander Evgenievich ANDREEV - graduate of the magistracy of SPbPU, researcher. Research
interests: biomedical diagnostics, computer vision, machine learning.

Anekcanap EsrenreBuu AHJIPEEB — Bemyckamk wmaructpatypsl CIIOITY, wmccremoBaTems.
Hayunpie wHTEpech: OHMOMENWIIMHCKAs IHArHOCTHKA, KOMITBIOTEPHOE 3pEHHE, MAaIInHHOE
obOyueHwue.

Anna Olegovna DROBINTSEVA - Associate Professor, Candidate of Biological Sciences,

Associate Professor of the Department of Medical Biology. Research interests: biomedical
diagnostics, molecular markers, peptide hormones, infertility, microscopy.

129

https://imagej.net/
http://www.digitalimagingsystems.co.uk/pdfs/morpho_en.pdf
https://cellprofiler.org/
https://www.orbit.bio/
https://www.micro-shop.zeiss.com/en/us/system/software-axiovision+software-products/1007/
https://www.micro-shop.zeiss.com/en/us/system/software-axiovision+software-products/1007/
http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=UJRN&P21DBN=UJRN&S21STN=1&S21REF=10&S21FMT=JUU_all&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=IJ=&S21COLORTERMS=1&S21STR=Ж14024
http://ej.kubagro.ru/2007/05/pdf/03.pdf
http://ej.kubagro.ru/2007/05/pdf/03.pdf
https://github.com/densvr/biomedicine-diagnostic

Sergeev D.1., Andreev A.E., Drobintseva A.O., Cenevska S., Kukavica N., Drobintsev P.D. Development of automated computer vision
methods for cell counting and endometrial gland detection for medical images processing. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3,
2020, pp. 119-130

Anna Onerona JJPOBUHIIEBA — noreHt, kaHmuaaT OMOJIOTHYECKUX HAYK, JONEHT Kadeapsl
MEIUIIUHCKON Ouonornu. HaydHbsle WHTEpeCH: OMOMEIUIIMHCKAS IWATHOCTHKA, MOJICKYISPHBIC
MapKephl, ENTHIHBIE TOPMOHBI, OECIUIONNE, MUKPOCKOITHSL.

Nikola KUKAVITSA is a graduate student of the Institute of Computer Science and Technology.
Scientific interests: computer vision, machine learning, python

Hukona KYKABUIIA — crynent Maructpatypsl HCTHTYTa KOMOBIOTEPHBIX HaYK M TEXHOIOTHI.
Hayunble nHTEpECH: KOMIIBIOTEPHOE 3pEHHE, MAIIMHHOE 00y4YeHHUE, TTUTOH.

Slobodanka CENEVSKA — graduate student at the Institute of Computer Science and Technology.
Research interests: computer vision, machine learning, python.

Crnobonanka LIEHEBCKA - crynmentka MmaructpaTypsl MHCTHTyTa KOMIBIOTEPHBIX HAYK H
TexHonorui. Hayunble HHTEpECHl: KOMIBIOTEPHOE 3peHNE, MAIIMHHOE 00y4YeHne, TUTOH.

Pavel Dmitrievich DROBINTSEV — Associate Professor, Candidate of Technical Sciences, Director
of the Higher School of Software Engineering at the Institute of Computer Science and Technology.
Research interests: computer vision, machine learning, python.

ITaBen Omutpuesuu JJPOBUHIIEB — nonent, kaHauaaT TEXHUYECKUX HAyK, TUPEKTOp Boicuieit
LIKOJIbl IPOTPaMMHOM MH)KEHEepUM VHCTUTyTa KOMIBIOTEPHBIX HAyK M TexHosorui. Hayunble
UHTEPEChl: KOMITBIOTEPHOE 3pEHHE, MAIIMHHOE 00Y4eHHE, TUTOH.

130

Tpyowt UCIT PAH, mom 32, sbin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-12 M

AHanus 3arpyxeHHocTH TpadumkKa Ha rmaBHbIX
yrnuuax 3s51IeKTPOHHOro ropoga C NpMMeHeHuem
MHAOEeKca neperpy3kn 1 UICKYCCTBEHHON HEMPOHHOM
cetu (Ha npumepe ropoga XamenaH)

M.M. Hupmoxammaou, ORCID: 0000-0001-8858-3770 <mmshirmohammadi@iauh.ac.ir>
2M. Dcemauanyp, ORCID: 0000-0002-2475-518X <esmaeilpour@iauh.ac.ir>
YApaxcruii punuan Ucnamckozo ynusepcumema Azao,

Hpan, Apax, 3-ii km dopoeu Xometina, nrowaos Umama Xometinu
2Xameoanckuii punuan Mcnamckozo ynueepcumema Azao,

Hpan, Xameoan, oyn. Mycusano, Maoanu Tayn

AHHOTauMsi. 3aTOpbI Ha JOpOrax SIBISIFOTCSA CEPbE3HOM MPOOIEMOI s 3JIEKTPOHHBIX T'OPOJOB, W VIS
peteHust 3Toi mpobIeMbl HEOOXOIMMO aHATU3HUPOBATh IPOOKK B TOPOJICKOM OPOXKHOW ceTH. B 3Toit craThe
u3ydaercs rokasareib 3Q()eKTHBHOCTH TPAHCIIOPTHBIX CPEJCTB VI OILEHKU YCIOBHI JTOPOKHBIX cereil. B
HaIlleM HCCIIeJOBaHUH HCCIIeYeTCsl INIOTHOCTE TpadyKa IJIaBHOM TOPOXKHOM ceTH ropoaa XameiaH Ha OCHOBE
JaHHBIX O CKOPOCTH, COOpAaHHBIX CHCTEMOH yIpaBieHHsS IBWKeHHeM XamenaHa. Ha ocHoBe 3TOro aHammsa
ObLIM OMpezeNeHbl HHACKC TpaduKa U MUKOBbIC Yackl Tpaduka. Kpome Toro, ¢ MCroib30BaHHEM HEHPOHHOH
CETH ¥ TeHETHYECKOro aropuT™Ma Oblila OIpeielieHa MpeicKazyeMas CBA3b MEXIy CKOPOCTBIO TPAHCIIOPTHBIX
CPEICTB U 3arpyKeHHOCTbIO Tpaduka. B pabore ucnonp3oBanuch naHHble LleHTpa yrnpaBieHUs IBHKCHUEM
XaMmeaHa 0 CKOPOCTH JBMKEHHS TPAHCIIOPTHBIX CPECTB B TYCTOHACEIEHHBIX paliOHaX.

Kirouesble ci10Ba: mpoOku Ha foporax; 3G¢GeKTHBHOCTb CKOPOCTH,; FOPOACKUE JOPOXKHBIE CETH; YIIPaBICHHE
1 KOHTPOJIb Tpa(uKa; HEHPOHHAsS CETh; TEHETHYECKHUI alrOpPUTM

Jost murupoBanmsi: [lupmoxammanun M.M., Dcmannnyp M. AHanu3 3arpykeHHOCTH Tpa(uKa Ha TJIaBHBIX
yAULAX 3JIEKTPOHHOIO ropoja ¢ NPUMEHEHUEM HHJEKca Meperpy3ku U UCKYCCTBEHHOW HEHpOHHOHU ceTH (Ha
npumepe ropoma Xamenan). Tpymet MCIT PAH, tom 32, Bem. 3, 2020 r., crp. 131-146. DOI:
10.15514/ISPRAS-2020-32(3)-12.

Analysis of Traffic Congestion in Main Streets of Electronic city
using Traffic Congestion Index and Artificial Neural Network
(Case Study: Hamedan City)

IM.M. Shirmohammadi, ORCID: 0000-0001-8858-3770 <mmshirmohammadi@iauh.ac.ir>
2M. Esmaeilpour, ORCID: 0000-0002-2475-518X <esmaeilpour@iauh.ac.ir>
!Islamic Azad University Arak Branch,
3rd km of Khomein road, Imam Khomeini Square, Arak, Iran
2Islamic Azad University Hamedan Branch,

Mousivand Blvd., Madani Town, Hamedan, Iran

Abstract. Smart cities are a kind of umbrellas of different technologies for responding to the problem of
increasing urban population. The priority of intelligent electronic cities is a strategy to collecting information
about the city and its smart use to improve the provided services to citizens or to create new services. These
smart cities have weather forecast, urban monitoring, pollution monitoring and various applications. Traffic is

131

Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic Congestion Index and Artificial Neural Network in
Main Streets of Electronic city (Case Study: Hamedan City). Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146

a major challenge for electronic cities and coping with it requires analyzing traffic congestion in the city road
network. The data transmission with wireless signals in smart cities is one of the challenges because
construction of high buildings and barriers reduces the power and quality of the signal. Widespread use of
wireless signals and equipment may lead to interference and reduce service quality. Therefore, in order to solve
the traffic problem, it is necessary to achieve traffic congestion levels by collecting information, especially with
wireless signals so that it can be programmed to control and manage traffic. In this paper, the performance
index of vehicle speed was estimated to evaluate the conditions of road networks. This study analyzes the traffic
density for the main network of Hamedan communication routes based on the collected data of Speed
performance of Hamedan traffic control system. According to this analysis, the congestion index and traffic
peak hours were determined. Also the relationship between vehicle speed and traffic congestion was predicted
by neural network and the genetic algorithm. In this study areas of traffic were identified using Hamedan Traffic
Control Center according with the speed of vehicles.

Keywords: Traffic Congestion; Speed Performance; Urban Road Network; Traffic Management and Control

For citation: Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic
Congestion Index and Artificial Neural Network in Main Streets of Electronic city (Case Study: Hamedan City).
Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146 (in Russian). DOI: 10.15514/ISPRAS—
2020-32(3)-12

1. BeedeHue

OcHoBoOM OJICKTPOHHBIX HHTCIUICKTYaJIbHBIX TOPOAOB ABJIAIOTCA PA3JIMYHBIC TCEXHOJIOI'MU,
MOMOTAIOIIHE PEHIUTh MPOOJIEMy pocTa TOPOICKOTO HaceneHus. [IpHOpHTETHBIM HATpaBIeHHEM
SBJISIETCS COOp MH(OPMAIIMHU O FOPOJIE M €0 UHTEIUIEKTYalbHOM HMCIOJIb30BAHUM JUIS YAYYIICHUS
YCIYT, MPEIOCTABIAEMBIX TPaXKIaHaM, WM JJIsl CO3JaHus HOBBIX yciyr [1]. B uHTemIeKTyansHbIX
ropofax HMEIOTCS NPWIOKEHUS Ui INPOrHO3a IIOTOABI, MOHUTOPHMHIAa TPaJlOCTPOMTEIBCTBA,
MOHHUTOPHUHTA 3arPSI3HECHUI U APYruX pa3HOOOpa3HbIX NpuMeHeHui [2].

[IpoGiiemoit GONBIINX TOPOAOB ABJISIOTCS TPOOKH, U OJJHUM M3 PELICHUH ATOI NPOOJIEMbI SIBIISIETCS
MOBBIIICHUE YPOBHS HHTEINIEKTYaJIbHOCTH ropozia. Bianenue TouHol nH(popMalmei o cutyanyu B
rOpOZE MOXET [IOMOYb IIPUHATH BasKHbIE PELIICHHS B TOPOACKOM yIpaBiieHHH. B Macmrabe ropona
MOT'YT UCIOJIb30BaThCS Pa3INyHble AATYUKU, 00bEANHCHHBIC B OCCIPOBOAHYIO CEHCOPHYIO CETh U
cobuparorye reHHyo uHpopmaruio [3].

Onnako GecripoBO/IHAs Iepeiada JaHHBIX B HHTEIUICKTYaJIbHBIX TOPOZaX 3aTPyAHUTENIBHA, IOTOMY
YTO HAJIMYHE BBICOKMX 3JaHUH MPUBOAWT K CHIDKCHHIO KadectBa curHaimoB [4]. Ilupokoe
UCIIONB30BAaHHE OECHPOBOIHOIO OOOPYIOBAaHMS MOXET IMPHBECTH K IOMEXaM M CHHIKEHHIO
KauectBa obcmykuBanus [5]. [ToaToMy, 9T0OBI pemuTh IPobdIeEMy eperpy3Kku Tpaduka, Tpedyercs
cobupath uHGOPMALMIO (C HCIIONB30BaHHEM OECIPOBOJIHBIX CETeil), YTOOBI HAa €€ OCHOBE
o0ecreunTs KOHTPOJIh TpaduKa U yIpaBICHNAE FIM.

B Hacrosimiee BpeMs HeT (PMKCUPOBAHHBIX U CTAOMIBHBIX OLIEHOYHBIX MHCTPYMEHTOB ISl OLIEHKH
cocTosHUSA TpahuKa; PaKTHUECKH, B Pa3HBIX PETHOHAX MCIIONB3YIOTCS pa3IndHbIe MEPHI M OLICHKH,
OCHOBaHHBIEC HAa KOHKPETHBIX NPMIOKEHUAX 1 NOTPEOHOCTAX. OTHAKO MOXKHO BEIYUCIIHTH CpEIHEe
BpeMsI TMKOBOH Harpy3ku Tpauka IIyTeM ONpeneeH s HHAEKCa OLCHKH 3arpyKeHHOCTH.

Bo BTOpOoM pasnene craThbu NpHBEAEH 0030p padoT, CBA3aHHBIX C AIEKTPOHHBIMHU Topomamu. B
TpeTbeM pasjielie 00CyKIaeTcs mpeiaraeMblii METOJ ISl pacdeTa MHIEKCOB. B uerBepToM pasyene
OIMCBIBACTCS NMPUMEHEHHE ATOr0 METoJa B YCIOBHAX ropona XamenaH, H B MOCICIHEM, ISTOM
paszene npeacTaBIeHO 3aKITI0YCHHE.

2. CocmosiHue obnacmu

WuTennexTyaapHBIE TOPOAA Pa3HOro MacimTada ObBLH CO3IaHBI BO MHOTHX KPYITHBIX TOPOIaX MUpa
Pa3IMYHBIMH CIIOCO0aMH JUT KOHKPETHBIX MPUMEHEHNH, BKiIfo4ast ynpasienne tpadpuxom. OanH
N3 TaKux HpOGKTOB 6LIJ'I peaJ'II/IBOBaH B CI/IHFaHpr. 3TOT HpOGKT OCHOBAH Ha O6J'Ia‘IHLIX
BBIYUCJIICHUAX, OH q)OKYCI/IpyeTCﬂ Ha HHTGHHGKTY&J’ILHHX TpaHCHOpTHBIX 3azadax, I/IMI/ITI/IpyeT nu

132

Iupmoxammanu M.M., Demannmyp M. Ananus 3arpy:keHHOCTH TparKa Ha [IABHBIX YIIHIIAX 3JICKTPOHHOrO ropojia C IPHMCHEHHEM
HHJIeKca Teperpy3KH U HCKYCCTBEHHOM HEMPOHHOI ceTn (Ha mpumepe ropoaa Xamenau). Ipyoet UCII PAH, Tom 32, Beim. 3, 2020 1., cTp.
131-146

OLIEHWBAET CTPYKTYPY NOTOKa JaHHBIX, XapakTepu3yroumx Tpaduk. J{Is ONEHKH CUTyalud C
JOPOKHBIM JBH)KEHHEM B 3TOM MPOEKTE OBUIH BBIICICHBI TapaMeTpbl JOPOXKHBIX ceTeil, ObLIN
W3y4eHBI CIICHApUH TpaduKa U pa3paboTaHbl AITOPUTMbI U3BIICUCHHS TAHHBIX [6].

B AsuM OJHHUM M3 CaMbIX Pa3BUTHIX WHTEIUICKTyalbHBIX ToponoB sBisiercs Conrmo (HOxHas
Kopest). D10 mOMHOCTRIO IMPPOBOX TOPOA, B KOTOPOM Bce WHGOPMAIMOHHBIC CHCTEMEI
B3aUMOCBSI3aHBI, M MPAKTHYECKH BCE OOBEKTHI MPUBSI3aHbI K HHPOPMALIHOHHO# cucteme [7]. DTot
MIPOEKT IIpeHa3HaueH IS POJIBM)KEHMSI HHTEPECOB YacTHOTO OM3Heca, He o0palias BHUMaHHs Ha
MOTPEOHOCTH COODIIECTBA PSIOBBIX rpaxkaaH [8].

B o1HOM M3 yCHIEmIHBIX MPOEKTOB IO CO3JIaHHI0 MHTEIIEKTYaJbHOTo ropoaa B . CaHTaHzep B
Hcnanum wucnosnp30Bauch OECHpOBONHBIE JATYMKW B Cpelle WHTEPHETa Ui M3MEPEHUS
KOHLIEHTPAllMM YTrapHOTO Ta3a, WHTEHCUBHOCTH CBETa, IIyMa, TEMIEPAaTypbl W JBHKEHHS
TpaHCHOPTHBIX cpescTs [9].

Bapcenona [10] siBnsieTcs emié oAHUM TPUMEPOM YCIIEIIHOT O HHTEIIEKTYaIbHOrO TOpOIa, KOTOPhIH
M3BECTEH KaK caMblidi yMHBIH ropox B mupe. B Bapcenone mmeercs momuas matdopma c
KOMIUTIEKCHOM MH(PACTPYKTYpOi. DTa TEXHOJIOIUsl 00eCIeunBaeT CBI3HOCTh AJIEMEHTOB TopoJia
MO3BOJISIET MM JIETKO B3aUMOJIEHCTBOBATH JIPYr C JAPYTOM, a TakKe YIPaBISATh UMHU C IIOMOIIBIO
AJIEKTPOHHBIX YCTPOUCTB. MHTEIeKTyansHast Moaesb bapcenoHsl npeqycMarpuBaer 12 pernoHoB
¢ akosoruuecknumMu npoekramu, ICT, MOOMIIBHOCTBIO, BOJIOH, SHEPTUeH, YIIpaBJICHHEM OTXOAAMH,
IIPUPOJOH, TEPPUTOPUEN U COOPYKEHUSAMHU, OTKPBITBIM IIPOCTPAHCTBOM U yCIyTaMHU.

I35 (Shunping Jia) u Ap. MOJXYYUSIM BCECTOPOHHIOK OIIEHKY MOJIENell TOpOACKOro Tpaduka Ha
OCHOBE CpeJJHEeH CKOPOCTH JIBHXKESHHS TPAHCIIOPTHBIX CPEJCTB C YUETOM XapaKTEPUCTUK IIPOCTOSI B
JIBIKEHHM W TPOIYCKHOU cmocobHocTn aopokHoit cetu [11]. Wky (Fuling Zhu) uccrnenosan
CHCTEMY OLIEHKHM HMHIEKCa 3arpy)KEHHOCTH TOPOJICKOr0 TPAHCIIOPTa M pacipeAeieHle CKOPOCTH
aBTOTPAHCIIOPTHOT'O CPEICTBA C HCIIOIB30BAHMEM CMEIIaHHON Mozenu ["aycca s XxapakTepuCTHK
miotHocTH [12].

Kupora (Cesar A. Quiroga) uCHoOIb30Ball BpeMsi HAaXOXKICHUS B TYTH JUIS HW3MEPEHUs
3¢ PEKTUBHOCTH TPaHCHOPTHOH ceTh. B cBoeil pabore oH 00cyxmaer Meroabl cOopa JaHHBIX O
BpPEMEHH MOE3KH U cKopocTH [13].

Pobepr (R. Robert) u ap. obcyannu MOHATHS BPEMEHH HAXOXKACHHS B MYTH WU JUTHTEIBHOCTH
MOE3IKH M M3YYWIM BIHMSHHE Pa3IMYHBIX IOKa3aTelied Ha KadecTBO 3arpy)KEHHOCTH, a TaKkKe
NPEeUIOKHUIN METOX KIaCCH(HUKALMU IEePerpy30K Ha OCHOBE BPEMEHH IOE3JIKH C TOYKH 3PCHUS
MYTEIIeCTBEHHUKOB. B nx pabore Takke OTMEYAETCs, YTO CIOKHOCTh M JHHAMUYECKUI XapakTep
TpaduKa SBISIOTCI MPOOJIEMOH, KOTOPYIO TPYIHO PEIIMTh C HCIIONB30BAaHHEM TOJBKO OJHOTO
OLICHOYHOI'0 HHJEKca. B pe3ynpTaTe pa3nuyuHBIX HCCIEJOBAaHWH TpaduK CTanmu OLEHHBATh Ha
OCHOBE HECKOJIBKMX ITOKa3ateneii [14].

Bapruau (Robert L. Bertini) u ap. ucrmons3oBanu BpeMsi HaXOKIACHHUSA B IIyTH TPAHCIIOPTHOTO
cpencTBa, JaHHbIe 0 ckopoctu aBmwkeHus B [loptmenne (mt. Operon, CIIA) mist omeHKH yCIIOBHit
JOpOKHOTO IBIOKeHus [15,16].

Kondman (Benjamin Coifman) u ap. WCHONB30BaIM CPEACTBA aBTOMATHYECKOTO OIPECIICHUS
MECTOIIOJIOKEHUSI aBTOMOOWIIEH Ui W3MEPEHUs] BPEMEHM IBIDKEHUS M CpelHeld CKOpOCTH
aBTOMOOWJIE Ha aBTOMAarucTpajsix, a TakKe ONpEleleHHs CYIIECTBYIOMEH IOpOXKHO-
TpaHCIOpTHOH obcTaHoBKH [17].

Hyau (Houli Duan) u ap. mpuMeHWIH 00beM W TUIOTHOCTH TpadWKa IS aHainu3a W HaTJSIHOTO
npencraBneHns Tpaduka [18].

Typoun (Rod Turochy) u ap. BBIYHCISAIOT MHAEKC W3MEHYMBOCTH HA OCHOBE MHOTO(AKTOPHOM
CTATHCTUKH, HCHONB3ysd OOJBLIYI0O apXHMBHYIO KOJUISKIIMIO JaHHBIX O Tpaduke. HWHIekc
W3MEHYUBOCTH TO3BOJISIET ONPENEIATh BpeMs CYTOK M JIHH HENeN, B KOTOpble HaOoaaeTcs
BBICOKAsI CTETICHb H3MEHYUBOCTH JI0POXKHO-TPAHCIIOPTHOM 06cTaHoBku [19].

133

Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic Congestion Index and Artificial Neural Network in
Main Streets of Electronic city (Case Study: Hamedan City). Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146

Ban (Y. Wang) u ap. OLEHHBAIOT JOPOKHO-TPAHCHOPTHYHO OOCTAHOBKY Ha OCHOBE 3HAYCHHIA
MEepEeMEHHBIX TpaduKa, TaKUX KaK CPelHss CKOPOCTh W IUIOTHOCTh Tpaduka. Hemocratkamm
MOZIXO/Ia SBJISFOTCS CJIOKHOCTh BBIYUCIICHHHU, TPYIHOCTH B cOOpe TpeOyeMbIX HabOpOB JaHHBIX M
1.1. [20].

Brnaxosaau (Eleni 1. Vlahogianni) u ap. mpemtoxmwnin crnocod oObeIMHEHUs BPEMEHHBIX H
MPOCTPAHCTBEHHBIX XapaKTePUCTHK TMOTOKAa Tpauka HM €ro ONTHMHU3AIUH C [OMOIIbIO
TEHETHYECKUX AaJTOPUTMOB, TO3BOJSIOIIMMA JIydIlle MPOTHO3UPOBATh MOTOKHM Tpaduka ™o
CpaBHEHHIO ¢ IPyruMH Metoaamu [21].

Wup (Hongbin Yin) u ap. ucmonb30Baiy HEYETKYIO HEWPOHHYIO MOJENb Ul MPOrHO3HPOBAHUS
MoTOoKa Tpaduka. Vcrmons3ys HEUETKUil METOJ, OHU Pa30MBAIOT BXOMHBIC JAHHBIC HA HECKOIBKO
KJIACTEPOB, a4 3aTEM Ha OCHOBE HEWPOHHOH CETH OMPEACNAIOT B3aUMOCBSI3H MEXIY BXOJHBIMH U
BBIXOJHBIMH JAaHHBIMH. OJTO YBEIHYMBAET MPOTHOZHPYIOUIYIO CIOCOOHOCTh MOJCTH 3a CYeT
aNANTUBHOTO PErYIHPOBaHUS ee KO3(D(DHIMEHTOB B COOTBETCTBUH C TEKYIeH JOpPOXKHO-
TpaHCHOPTHOH 00CcTaHOBKOI [22].

JIroii (Yisheng Lv) u ap. npemiox iy HOBBIA METO]T TPOTHO3WPOBAHUSI IOTOKA TpaduKa Ha OCHOBE
rnybokoro obydeHus. B 3TOM MeTole YUYMTBHIBAIOTCS KOPPENSAIMH MPOCTPAHCTBEHHBIX U
BpPEMEHHBIX MMoKa3atenei [23].

Cwmur (Brian Lee Smith) u ap. 3aHuManuch KpaTkOCPOUHBIM IPOTHO3MPOBAHIEM TOTOKA Tpaduka
C UCIIONB30BAHUEM TEHETUIECKOTO TTOIX0/Ia M MTOKA3AJIH, UTO JJIsl 3TOr0 XOPOIIIO MOIXOAAT MOIEIH
Ommkaiinmx coceneii [24].

Yen (Dawei Chen) u ap. IpeyIokKHIA KOMOMHAIMIO HEHPOHHOW CETH M MTYETTMHOTO aJrOPUTMa JIJIs
Cpeabl 6OJ'IBU_II/IX JaHHBIX, KOTOpas MCIIOJIb30BaJlaChb B YCJIOBHAX IIJIOTHOI'O Tpa(])HKa JIIsL
IMPOrHO3UpPOBaHUA €ro MOTOKOB U 06ecneqHBaHa 6OJ'IBHIy}O TOYHOCTb, YEM MPEALIAYIHINE METO/bI
[25].

Ma (Xiaolei Ma) u ap. MpemTOKUIN KCIOIb30BATh LI KPATKOCPOUHOTO MPOTHO3HPOBAHHSI
Tpaduka HEHPOHHYIO CEThb C KpPaTKOBPEMEHHOM IaMsAThiO, KOTOpas YMEHBIIAET OIIMOKY
[POTHO3UPOBAHUS M IO3BOJISET IPOrHO3UPOBATH CKOPOCTD IBIDKEHUSI [26].

Abnynxaii (Baher Abdulhai) u gap. pa3paboramu MeTon KpaTKOCPOYHOTO MPOTHO3UPOBAHHS
TPAaHCHOPTHBIX MOTOKOB, OCHOBAHHBIH Ha MPOCTPAHCTBEHHON MH(OpMAaLH, ¥ OOHAPYXWIH, 9TO
€CIIU MCKIIIOYUTH IPOCTPAHCTBEHHYIO MH(OPMANUIO, TO OMMOKA MPOrHO3UPOBAHUS YABaUBaeTCS
[27].

Macco6puo (Massobrio) u ap. IIpeacTaBuitn OTKPBITYIO TPAHCIIOPTHYIO CHCTEMY, HCIIOIB3YIONTYIO
HCTOpUYECKUE TaHHbIE aBTOOYCHOTO IBIDKEHHS JUIS NPOrHO3UPOBAHUS MOOHIBHOCTH IIACCAXKHPOB
Ha OCHOBE JIAHHBIX O MPOJaXKe OUIIETOB C OMOIIBI0 cMapTKapT [28].

Anapkon-AkuHo (Vicente Alarcon-Aquin0) © 1p. TNPEIIOKHIH MHOTOQYHKIIHOHAIBHYO
HEHPOHHYIO CETh, B KOTOPOI HCIOIB3YIOTCS METO/IBI TEOPHHU BEUBIIETOB M KOTOpPask QYHKIUOHHUPYET
JydIlie HEKOTOPBIX JIMHEWHBIX IIPOTHO3HBIX cucTeM [29)].

Yern (Yuehui Chen) w nap. wucnomp3oBamu THOKYIO MOJAETb HEHPOHHOTO JepeBa Juis
MEJIIKOMACIITa0HOTO TPOTHO3MPOBAaHMS Tpaduka, KoTopas oO0ecreyrBaeT JYydIIyl0 TOYHOCTh
[POTHO3UPOBAHUS M MEHBIIYIO IIOIPEIIHOCTD, YeM mpeaplayme Merost [30].

®ab6uann (Fabbiani) u ap.. cTpowy MaTpHIly MCXOOHBIX W KOHEYHBIX IYHKTOB JBIMIKEHHS Ha
OCHOBE aHaJIM3a MPOJIaK OUIIETOB M CBEACHHUI O JIoKanu3anuu aBTooycos [31].

Sur (Hong-jun Yang) w ap. TPEAIOKIIM KIACTEPHYIO MOJENs IIPOTHO3UPOBAHUS C
UCIIONB30BAaHAEM T€HETHYECKOro airopurMa. Moenb MOo3BONMIA OOECIeYUTh TOYHOCTb
KPaTKOCPOYHOTO IPOTHO3MPOBAHUS IIOTOKA Tpaduka, Oojee BBICOKYI, YeM Yy IpPEeIbIAYLIHX
Mmertomos. [32].

Jly (Baichuan Lu) 1 ip. 171si IporHO3MpoOBaHKs MOTOKOB TpadKa HCIIONb30BaIN peabHbIe TaHHbIC
TpaduKa, UCKyCCTBEHHYI0 HEHPOHHYIO CEThb M BOJIHOBBIE MNpeoOpa3oBaHWs. MeTox MO3BOJSET
MOBBICHTH TOYHOCTH MPECKA3aHui 3a cUeT GoIbliero oobema BoraucieHunit [33].

134

https://www.sciencedirect.com/science/article/pii/S0968090X15000935#!
https://www.sciencedirect.com/science/article/abs/pii/S0030402616306386#!

Iupmoxammanu M.M., Demannmyp M. Ananus 3arpy:keHHOCTH TparKa Ha [IABHBIX YIIHIIAX 3JICKTPOHHOrO ropojia C IPHMCHEHHEM
HHJIeKca Teperpy3KH U HCKYCCTBEHHOM HEMPOHHOI ceTn (Ha mpumepe ropoaa Xamenau). Ipyoet UCII PAH, Tom 32, Beim. 3, 2020 1., cTp.
131-146

3. lpednazaembili Memood

CornacHo OpeabIAyliuM UMCCICAOBAHUAM, CKOPOCTb TPAHCHOPTHOrO0 CpEACTBa ABJILACTCA
II0Ka3aTCJIEM OLCHKH IINIOTHOCTH JBMIXKCHHA. B mamewm HCCICAOBAHUN HHIACKC CKOPOCTHU
TPAHCTIOPTHOI'O CPEACTBA OIPCALCIIACTCA Ha OCHOBE CpeﬂHeﬁ CKOpPOCTHU NBUIKCHUA, MaKCHMaJIbHOHM
pa3pemeHHOI71 CKOPOCTH U KHaCCI/I(bHKaHI/IOHHOFO HWHACKCA 3arpy>KCHHOCTU JOPOT.

3.1 UHpekc adpchpekTMBHON CKOPOCTH

CKOpOCTb TPaHCIIOPTHOT'O CPEJCTBA SIBJISETCS BaXKHBIM IMApaMeTPOM JUIS M3MEPEHHs IUIOTHOCTH
tpaduka. Ckopocts He MokeT TpeBbimiath 100 kM/yac, U HHIAEKC CKOPOCTH (Co 3HaYeHHsMH OT 0
no 100) mpexcraBisier co0Oif yacTHOE OT JAeNEHHS CKOPOCTH TPAHCIIOPTHOI'O CPENCTBAa Ha
MaKCHMaJIbHYI0 DPa3pelIeHHYI0 CKOpOCTh. B Hamem wHccienoBaHMM Uil OLIEHKH JOPOXHO-
TPaHCIIOPTHOW O0OCTaHOBKH HCIONB3yeTcs: uHAeKC dddexTuBHON ckopoctH. s knaccudukanmu
TOPOJICKOH JTOPOKHO-TPAHCIIOPTHOW OOCTAHOBKHM OBUIM BBHIOPAHBI YETHIPE MOPOTOBBIX 3HAYCHUS:
25, 50, 75, 100. Yem ™MeHbIlle 3HAYCHUEC HHACKCA I(PQPEKTUBHOW CKOPOCTH, TEM MEIICHHEES
JIBIDKETCSI TPAHCIIOPT U TEM BeposiTHee cuTyalms 3atopa. OCHOBBIBAsICh Ha TaKUX OLCHKAX aHAJIH3
3arpy’>k€HHOCTH TOPOJCKOH JIOPOYKHOW CETH MOXKHO BECTH Ha OCHOBE WHJEKCa IUIOTHOCTH
JOPOXKHOTO CErMEHTa M ero W3MepeHHbIX 3HadeHuid. Hampumep, ecnu 3HaueHue WHIEKca
3¢ GEeKTUBHON CKOPOCTH HAXOIWTCSA B auana3oHe oT 0 70 25, CpeaHIO CKOPOCTh HAIO CUMTATh
OuYeHb HU3KOM, a 3arpy’kKeHHOCTb JOPOT'H OYEHb BRICOKOH. /lMana3oH OT U3MEpEeHHbIX 3HaUeHUH 25-
50 moOKa3bIBAET CPE/HIOID 3arpy3Ky M HEBBICOKYIO CpPEIHIO CKOpocTh. B nmamazone 50-75
CKOpOCTB YK€ BBIIIIE, a Anana3zoH 75-100 moka3biBacT BHICOKYIO CKOPOCTb U XOPOILHE YCIOBUS IS
JBWKEHUS TPAHCIIOPTA.

Wnnexc ckopoctu Berumcisgercs no ¢opmyie (1). B artoit dpopmyne V — cpegnsas ckopocTh
IBIKeHust, V4, — MAKCUMAIIBHO pa3pellieHHasi CKOpOCTh Ha joporax u R, uHaekc a3 pexkTHBHOM
CKOpPOCTH:

R, = X 100 (1)

Vmax

3.2 UIHpeKc NNOTHOCTY 3arpy3kyn AOPOXKHOIo cerMmeHTa

Jlnst aHanmM3a 3aTOPOB Ha JOPOrax UCIIONB3YeTCsS HHAECKC INTOTHOCTH 3arpy3KH JOPOXKHOI'0 CErMEHTa
TOPOACKUX JOPOKHBIX ceTell. J[ms pacuera MHAEKca IUIOTHOCTH 3arpy3KH CerMeHTa JOpOTH
HaOJIIoIeHNe BEJIOCh 3a Tpa(UKOM Ha cepeHHe 3TOro CerMeHTa. MHAeKC MIOTHOCTH HOPOKHOTO
cerMenTa Bbuucisiercst o Gopmynam (2) u (3). Dror uHACKe Haxomures Mexay 0 u 1, u dem
MEHBIIIE YUCII0, TeM OOoJIbllie 3aTpyqHeHus B Tpaduke. B aTux ypaBHeHusx R; npencrasiser coOoii
MHJIEKC TJIOTHOCTH 3arpy3KH IOPOXKHOTO cerMeHTa, R, — uHaekc agdextuBHoi ckopocTH, Ryc —
J0JTIsl BpeMEHH NpeObIBaHUS JTOPOKHOTO CETMEHTa B HE3arpyKEHHOM COCTOSHUH, Eyc — BpeMs
HE3arpy>KEHHOTO COCTOSHMS (B MUHYTaX) U t — mepro HaOIoIeHIS (B MUHYTAaX).

v

Ri = th RNC (2)
NC
Ryc = ? 3)

3.3. UHpeKkc NNoTHOCTU 3arpy3Kku goporu

JlopoxHasi CeTh COCTOMT M3 YYacTKOB JIOPOTH, WHIEKC IUIOTHOCTH 3arpy3KH CErMEHTa IOpOTH
BEMHUCIsIETCS 10 popmyne (4). 3HadeHHe WHAEKCA IUIOTHOCTH JIOPOXKHOW CETH HAXOMUTCS B
npexaenax ot 0 1o 1, n yeM MeHbIIe YUCI0, TEM OOJNBIIE MIIOTHOCTh 3arpy3KH JAOPOXKHOW ceTH. B
910l (hopmyne R — 3TO MHAEKC 3arpy3Kd JOPOXKHON ceTH, a L; — JUIMHBI OTJEeIbHBIX CErMEHTOB
JIOPO’KHOM ceTH.

135

Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic Congestion Index and Artificial Neural Network in
Main Streets of Electronic city (Case Study: Hamedan City). Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146

iR

R =
XL

C))

4. Onbim npoeedeHHbIXx uccnedosaHull

ABTOpamu OBUIM PacCMOTPEHBI XapaKTEePHCTHKH TPAHCIIOPTHOTO ABIKEHUs ropona XamenaH. B
TeyeHue moutd 10 JeT B 3TOM ropoje MPOBOAMIMCH AKTHBHBIE MEPONPUATHSA IS CO3AaHUS
CTaOWJIBHOM 3JIEKTPOHHOM TOpoACcKOi cpenbl. OCHOBHas TPaHCIOPTHAs CeThb ropoja XaMelaH
COCTOHUT U3 JBYX KOJIEL, OJHOI0 MOIYKOJIbIA U IIECTH COSTUHUTENbHBIX TUHUN MEXAY KOIbIIaMU.
ABTOpamH ObUla IpOaHAIM3UpOBaHa WHQOpManus, IMOJTyYeHHass HAa OCHOBE JAHHBIX IIEHTpa
ynpaBieHus ABrmxeHueM Xamenasa. Ha puc. 1 mokasaHa kapTa OCHOBHBIX JOPOT ropoja XaMesaH,
BHJIHBI KOJIbIIA U COETUHUTENbHBIE TUHUU MEXAY HUMHU.

Puc. 1. Cxema enasuvix 0opoe 2opoda Xameoana u 20poOCKOU YeHmp YnpagieHusi 08UNCEHUEM
Fig. 1. Scheme of the main roads of the city of Hamedan and the city traffic control center

Pe3ynbpTaT MccaeqoBaHUS MMOKa3bIBAeT, YTO Haubosiee YacTO BCTpevarolleecs 3HaYeHHe MHIEKca
3 PEKTUBHOCTH CKOPOCTH, BBIYHCIEHHOTO [0 BCEMY MacCUBY 3a()MKCHPOBAHHBIX B XamelaHe
ckopoctel, cocraBisier 65, uto npesbimiaer 50%. C pocToM cKOpocTH 110 3HaveHHs: uHjekca 60
3arpy’KEHHOCTb JOPOKHOI CETH pacTeT MEICHHO, a 3aTeM TeMII ee pocTa Bo3pacraer. CpenHuit
uHIeKe 3((GEKTUBHON CKOPOCTH Ha TJIABHBIX JIOpOrax XamelaHa, PacCYMTaHHBIA JJIsl pa3HOro
BpEMEHHU CYTOK, NpuBeJieH B Ta0u. 1.

B rtabmune 1 crpoka WD mpencraBnser paboune AHU Henenu, a ctpoka WE — BbIXOIHBIE U
npa3aHugHble 1HA. CTpoka D COmepiKUT pasHULy MEXIY STUMH THAMH. M3 TaOMuIBl BUIHO, YTO
camble OOMbIIME pa3inyusi B CKOPOCTSX aBToMoOuIei 3adukcupoBansl B 8, 13 u B 15 yacos, u B
paboune AHM B 3TU Yachkl TPAHCIIOPT IBIDKETCS C MEHbIIEH CKOPOCTHIO HM3-32 BO3PACTAOLIEro
Tpaduka. CpenHsisi CKOpOCTh aBTOMOOMIIEH B paboumii ieHb cocTaisieT 67,08, cpenHsst CKOpoCTh
B KOHIIE Heaenu gocruraer 69,95.

Tabn. 1. Cpasnenue cpeoneii ckopocmu Ha 2nasuvix dopoeax Xameoana ¢ padouue (WD) u evixoonsie (WE)
OHU

Table 1. Comparison of average speed on the main roads of Hamedan on working days (WD) and weekends
(WE)

Bpewmst cyTok (uac) 0|12]|]3|4]|]5]6]|]7]81])9 10 | 11
Pa6oune gru (WD) 72 | 78 | 82 |90 | 95| 85| 81 | 75 | 55 | 60 65 | 62
Beixomusie quu (WE) | 75 | 75 |1 80 | 87 |93 |82 |79 | 75|72 |70 70 | 65
Pasnuna (D) 3 |3|-2|3|-2|-3|-2|01]17]|10 5| 2

Bpews cytok (vac) | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21| | 22| 23
PaGoune aum (WD) | 58 | 50 | 55 | 57 | 60 | 65 | 63 | 56 | 59 | 60 | | 62 | 65
Buixommsie aun (WE) | 64 | 63 | 65 | 70 | 65 | 65 | 60 | 55 | 60 | 62 | | 63 | 64
Pastma (D) 6 |13/10]13|5 |0 |3 |11 |2 11

136

npmoxammaan M.M., Demannyp M. AHanm3 3arpy:KeHHOCTH TpaMKa Ha TIaBHBIX YIHIAX 2JIEKTPOHHOTO ropojia C IPUMEHEHHEM

HHJIeKca Teperpy3KH U HCKYCCTBEHHOM HEMPOHHOI ceTn (Ha mpumepe ropoaa Xamenau). Ipyoet UCII PAH, Tom 32, Beim. 3, 2020 1., cTp.
131-146

90 A
- / /\"\.‘ —WD
T80 SR
g 70 7 P ——WE
50 -_\/,-' i
40 ==
0

0012 34567 8 910111213 14 1516 17 1819 20 21 22 23
hour

Puc. 2. Ilouacosoii unoexc sghgexmusHocmu ckopocmu 6 cpeoHem 3a 00UH OeHb
Fig. 2. Hourly average speed efficiency index for one day

Puc. 2 noka3piBaeT moyacoBble MHAEKCH d(PPEKTUBHON CKOPOCTH B paboune U BBIXOJIHBIE JHHU.
[TukoBbIe Yackl B OyaHME THH 00BIYHO BO3HUKAIOT yTpoM ¢ 07:00 mo 09:00, maem ¢ 12:30 o 14:30,
a BeuepoM ¢ 17:00 no 19:00. Camble BBICOKHE HArPy3KH HAOJIOAAIOTCS YTPOM, JTHEM M BEYCPOM B
8:00, 13:00 u 18:00. Bpems BeuepHeil MMKOBOW Harpy3kd Ha JOPOTH OKa3bIBAaeTCS pa3HbIM B
BBIXO/IHBIE M OY/IHUE JIHU, HO YTPOM U JTHEM B OynHHE AHU TpaduK yBelnuuBaercs 0OJblIe, YeM B
BBIXOJIHBIC. KpOMe TOI'0, IICUXOJIOTHYCCKH BAXXHBIC YaChl Tpad)I/IKa TMPpUXOJATCS Ha paHHEE YyTpO, U
IpHu 5TOM HET 60.]'[]3HIOI>1 Ppa3HHUIBI MEXAY BBIXOAHBIMHU U 6y)IHI/IMI/I JHAMMUA.

4.1 OueHKa neperpysku cetu

Ha puc. 3 nmokasaHsl Tpu KpHUBbIE, IEMOHCTPHPYIOIIUE 3aTPy>KEHHOCTh JOPOXKHOI ceTn XamenaHa
B OynHue THU. VI3MEHEeHUs COCTOSIHUS CETH B Yachl UK YTPOM, JHEM U BEYEpPOM, COOTBETCTBEHHO,
MOKa3aHbl C MOMOLIBIO pacyera nHuekca 3(M(EKTUBHOI CKOPOCTH Ha A0pOre Kaxkiple 15 MHHYT.
YTpom, IHeM U BeuepoM Ha puUcYHKe 3 (2, b 1 ¢) COCTOsIHUE JOPOKHOM CETH YXYALIAETCS, HO COBCEM
paHO yTPOM CUTYaIHs CIIOKOHHee.

a0
T o0 4
i s - ——WD
8 70 - h\“\
60 <
50 | |
0
SN S Y BN SRR S B S
FEFFIFFF PSS EE S
hour
70 ¢
2 e
g
50 +
hour
90
-
$ 80 |
&

J0
B0

50

17:0017:1517:3017:4518:0018:1518:3018:4519,0019:1519:3019:4520:00
r

Puc. 3. [loxasamenu unoexca s¢hghekmusHoll CKOpOCMU 6 Yachl NUK
Fig. 3. Indicators of the index of effective speed during rush hours

137

Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic Congestion Index and Artificial Neural Network in
Main Streets of Electronic city (Case Study: Hamedan City). Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146

4.2 MporHo3supoBaHue 3arpyxXeHHOCTU HEMPOHHOMN CeTbio

ABTOpBI TIPOBENTM HCCIIEOBAaHWE W3MEHEHHH CKOPOCTEH TPAHCIIOPTHBIX CPEACTB W IUIOTHOCTH
JBIDKEHUSI BO BPEMEHH, IIPH 3TOM BBISABILUIACH CBS3b CPEAHEH CYyTOYHOW IIOTHOCTH Tpaduka co
CHIDKEHHEM CKOPOCTH JBIKEHHS. AHAIM3 JIaHHBIX O CKOPOCTH aBTOMOOWJIEH HpPOBOIWICS C
WCIIONIb30BaHUEM CTaTUCTHUECKOTro Kodddunmenta koppensiuu [Iupcona, ypaBHeHUH THHEHHOM
perpeccuy, MOJIMHOMHAIBHOW perpeccud (momyiauHeWHbIH MeTon) [34-35] M MCKYCCTBEHHBIX
HeHpoHHBIX ceTeil [36-37]. JIi1s TOYHOro MPOrHO3UPOBAHHUS TIOTHOCTH TpadUKa HCIOTb30BaTUCH
HCKYCCTBEHHAs! HEHPOHHASI CETh W TEHETHUECKHE allTOPUTMBI.

[lepBOHauaNkHO 1aHHBIE, UCIIOIBb3yeMbIe B HCKYCCTBEHHOW HEMPOHHOW CeTH, ObLIN pa3zeieHbl Ha
JIBE OT/IENbHBIE YaCTH, TPUYEM ITOJIOBUHA JaHHBIX IpeTHa3HavaIach Ui OOy4eHHUs CETH, a BTopas
MOJIOBMHA JIAHHBIX HCIIOJb30BANACh JUISl TECTHpOBaHMA. B KadecTBe (YHKIMU CTUMYJSIMU B
MeTofie TOCT-paclpocTpaHeHus: ucnoms3yercst ¢ynkius Tankcona (Tanxon). Drta (yHKmums
npeoOpa3yeT MHTEPBAJ 3HAUCHHUN KaXI0r0 HEMpOHa B MHTEPBAJI, OTPAHWMYCHHBINA 3HAYCHUSIMH -1 U
1. 3HaueHMs1 U3 ITOrO CXKATOTO WHTEPBaja PacCMATPHBAIOTCSH KaK KOI((GUIMEHT KOPPENSIUH.
Koappunuent xoppensiyy MmokasblBaeT COOTHOIICHUE MEXy BBIXOJOM CETH U (haKTHUECKHM
3HA4YEHHEM HCCIIeyeMOro apaMeTpa. 3HaueHue 1, o3HayaeT TOYHOe CJeOBaHHE BBIXOJA CETH 3a
u3MeHeHneM (akThyeckoro mapamerpa, a -1 o3Hayaer, 4TO W3MEHEHHs BBIXO/IA CETH WU
(bakTHYeCKOro TMapaMeTrpa IpOMCXOASAT B mporhBodaze. B kauecTBe BXOAHOro mapamerpa
paccMarpHBaiach CKOPOCTh TPAHCIOPTHOTO CPEJNICTBA, & BBIXOJ CETH TPAKTOBAJICS KaK IUIOTHOCTh
Tpauka. UToObl yMEHBUIMTH OMIMOKY MNPOTHO3UPOBaHMs, NPH pacyeTax MapaMeTpOB CETH
HNpUMEHsUICS MeTo[ITpo0 1 ommOoK. J{iist 00ydeHust CeTH UCTIoNb30BaIach MOJIETh MHOTOCIIOHHOT O
nepuentpoHa. [lyiss o0yueHHs] CETH HWCIONb30BAJICS OJHMH CKPBHITBIA cllod M [lenbTa-mpaBuiio c
ko3¢ ¢uimerroM o0ydenust 0.1, KOHTPOIMPOBABIIMM CTEIIEHb COOTBETCTBHUS BECOB CBSI3CH MEXIY
HEHpOHaMHU.

KonnuecTBO HEHPOHOB CKPBHITOrO CIIOS IJIsl CETEBOr0 OOydeHWs ObUIO BBIOPaHO paBHBIM 4 H
MOMEHT, KOTOpPBIM SIBJISIETCS OJHUM W3 OCHOBHBIX IapaMeTpoB OOy4eHHs M OIpenelnseT
BO3JICHCTBUE NCXOMHBIX 3HAUECHUI BECOB CBS3€H HAa HOBBIC 3HAUCHMS ITUX BECOB, paBeH 0.7.

[lpu aHanmu3e perpeccCMOHHOr0 M TOJNYIMHEHHOIO METOIOB MOJMHOMHAIbHBIA KOd((uIMeHT
KOPPEJALUH MKy IUIOTHOCTBIO TpaduKa 1 MUHHUMAJIBHOH CKOPOCTBIO TPAHCIIOPTHOTO CPEACTBA
cocraBun 0.88% B TeueHue BTopoii nosnoBuHbl 2017 rozia, 4To SIBISETCS 3HAYMMBIM Ha YPOBHE oL =
0.01, a koadduument onpenenenns paccuntad kak 0.77%. DTOT aHANIN3 MTOKA3BIBAET, YTO MEXKIY
cpenHeil AHEBHOW IUIOTHOCTBIO TpadWka M MHUHHMAJBHOM CKOPOCTBIO IBIKEHHS CYIIECTBYET
oOpaTHasi 3aBUCUMOCTb.

IIpn wncnonb30BaHUM HCKYCCTBEHHOH HEMPOHHOM CETH pe3yJIbTaThbl, IOJIYyYEHHBIE B CETH,
00y4IEeHHOH Ha PEryspHO MTOCTAaBISEMBIX NIPUMEPAX, OKA3bIBAIOTCS 00JEe XOPOIIMMHU, YEM B TOM
ciIydae, KOrAa BEIOOp 00YyJaronIiX MPUMEPOB OCYIIECTBIACTCS CIIydailHBIM 00pa3oM. B peanpHOIt
KU3HM METOJ 00paTHOTo pacrpoctpanenus ommoOku (BP) wacto paGoraer ouenp memieHno. Jis
MIPEOJI0NIEHHS 3TOH MPOOIEMBI HCIIONIB3YETCS TCHETHUECKUIT allTOPUTM BbIOOpPA JIYUIINX MEPBUYHBIX
BECOB CBs3eH. Y CKOPEHHS MOITYIECHHUS PE3YABTATOB MOXKHO JOOUTHCS NCIOIH30BAaHNEM HEHPOHHOM
CETH U €€ COYETAHNEM C TeHETHIECKUM AJITOPUTMOM.

CpaBHeHHE CpeHECYTOUHOH IIOTHOCTH Tpa(HKa ¢ €ro MPOTHO3UPYEMBIM YPOBHEM, ITOTYICHHBIM
Ha OCHOBE CIIyYaiHBIX JAHHBIX C HCIIOJb30BAHHEM T'€HETHYECKOTO aJIrOpPHTMa, ITOKA3bIBAET, YTO
MHUHUMAaJbHas cpenanekBaaparnynas omuoka (MMSE) B stom pexume pasaa 0.01, mpu sTom
KO3(HUIMEHT KOPPEISAINI MEXIY CPETHECYTOUYHON INTOTHOCTHIO Tpa(uKa M BBIAAHHBIM CETHIO CO
CITy4aifHBIMH 00YYarONIMMH JAHHBIMHU TIPOTHO30M M T€HETHYECKUM allrOpUTMOM cocTaBisieT 94%,
a ko3 urment nerepmunarmu cocrasisier 0.90.

CpaBHeHHEe METO0B JIMHEHHOW 1 TIOMTMHOMHAIBHON PETPECCHH C NCTIONb30BAHUEM HCKYCCTBEHHOM
HEWPOHHOW CETH I0Ka3aio0, YTO KOI(PPHUIMEHT IeTePMUHAIINH 3aBUCUMOCTH CPEIHEH IUIOTHOCTH

138

Iupmoxammanu M.M., Demannmyp M. Ananus 3arpy:keHHOCTH TparKa Ha [IABHBIX YIIHIIAX 3JICKTPOHHOrO ropojia C IPHMCHEHHEM
HHJIeKca Teperpy3KH U HCKYCCTBEHHOM HEMPOHHOI ceTn (Ha mpumepe ropoaa Xamenau). Ipyoet UCII PAH, Tom 32, Beim. 3, 2020 1., cTp.
131-146

Tpaduka ¢ MUHIMAaJIHHOW CKOPOCTHIO TPAHCIIOPTHOTO CPENICTBA B JIMHEHHOM perpeccuu paseH 0.77,
B ITOJTMHOMHUAJBHOI perpeccun paBeH 0.90, a B HeliponHo# cetn paBeH 0.94 (Tabnwma 2).
Tabn. 2. CpasHenue K03¢huyuenmog 1uHeHo u NOTUHOMUATBHOU PeePecCcull ¢ HEUPOHHOU Cembvio

Table 2. Comparison of the coefficients of linear and polynomial regression with a neural network
Heiiponnas | IlonmHoMuaibHas JIunelinas
CCTh perpeccust perpeccust
Cpennuii ko3 urment 0.94 0.90 077
JACTCPMUHAIUN

CoryacHO IOJTy4€HHBIM pe3yJIbTaTaM MOXKHO CKa3aTh, YTO HEHPOHHASI CETh XOPOLIO MPE/ICKa3bIBACT
B3aMMOCBSI3b MEXIY CpEIHEH JIHEBHOM IUIOTHOCTBIO TpadUka M CKOPOCTHIO TPAHCIIOPTHBIX
CpPE/ICTB.

Ha puc. 4 nmokazaHo cpaBHEHHE CPEIHECYTOYHOIO 3HAYCHUS (haKTHUCSCKON IIOTHOCTH Tpaduka C
MPOTHO3UPYEMBIM YHCJIOM, MOJYYSHHBIM HAa CIyJalHBIX JAHHBIX COBMECTHO C T'€HETHYCCKHUM
aIropuTMOM. TaMm jke TMOKa3aHO CpPaBHEHHE CPEITHECYTOYHOro (HhaKTHUECKOro KOJINYecTBa
IUIOTHOCTHU TpauKa C MPOrHO3UPYEMBIM YUCIIOM, TIOTYUCHHBIM Ha YIIOPSAIOYCHHBIX JaHHBIX U 0€3
TCHETHYECKOr0 aJirOpUTMa, a TaKXkKe CPEIHHE CKCIHCBHBIC IaHHBIC IUIOTHOCTH Tpaduka B
YIOPSOYCHHBIX TaHHBIX BMECTE C TEHETUYCCKUAM aJITOPUTMOM.

125 135

,_.
)
=]

—* Real p 120

—=-predicted =Rl

— predicted

o

115

110] —

=]
o

=]
=

95
1 2 3
week days

average traffic congestion
o}
=2 E
average traffic congestion

4

105

100

3 4
week days.

6

b) pecyrspuvie oannvie 6e3 npumenenus
ceHemu4ecKozo ajlecopumma
b) regular data without the use of a genetic

a) cryyatinvle OaHHble U 2eHemUu4ecKull
anzopumm
a) random data and genetic algorithm

algorithm
125
/l
el —*Real r
5 redicted
‘g 15 -
% 110
® 1
g 105
100
95
1] 3 4 5 &
week days

C) peecyisipHele oaHHwle ¢ NpUMEHEeHUemM ceHemu4ecKkozo aicopumma
c) regular data using the genetic algorithm
Puc. 4. Cpasnenue ghaxmuyeckou u npocHo3upyemori niomHOCmu mpagura
Fig. 4. Comparison of actual and forecasted traffic density
Ha puc. 5 TIOKa3aHBI PE3YIBTATHI MOCICAYIOIMINX I/ICCJ‘IGLIOB&HI/IfI, BBIITOJTHCHHBIX JUISI CPaBHCHUSA
JaHHBIX O q)aKTI/I‘IGCKOM POCTE 3arpy3Ku OOpoOr, IMOJTYy4YCHHBIX IIPU HaﬁJ‘I}OlICHI/ISIX B XaMe)laHe, C
TIPOrHO3aMH 3arpy3Ku JOPOr, paCCYUTAHHBIMU Ha OCHOBEC HCITIOJIb30BAHUSA HCf/ipOHHOf/i CCTH.

139

Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic Congestion Index and Artificial Neural Network in
Main Streets of Electronic city (Case Study: Hamedan City). Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146

average traffic congestion
60

50

40

30

Real
-+ -Predicted

20

10

0 - " ' P
1 2 3 4 5 6

Week Days

average traffic congestion
60

50

40

30

Real
-+ -Predicted

20

10

0 - " ' PR I
1 2 3 4 5 6

Week Days

a) cryyatinvle OaHHbIe U 2eHeMUYecKUll
anzopumm
a) random data and genetic algorithm

average traffic congestion

b) pecynspnvie Oannvie be3 npumeHenus
2CeHemu4ecKkozo aieopumma

b) regular data without the use of a genetic
algorithm

60
Predicted number
a0 55 |
40 _ Y=1.143x - 59162
30 R?= 0.9066 s
30 Real
—— Predicted 45
20
40 1
10
i , 35 | ,
1 2 3 4 5 6 35 40 45 50
Week Days real number
¢) pezynsapnvle OanHvle ¢ NPUMEHEHUEeM d) Cpeonsisi koppensayusi, @oIHUCIEHHAS HA
CEHemMuU4ecKoco ajicopumma C]ly’-laﬁHblx OAHHBIX C UCNONb308AHUEM
¢) regular data using the genetic algorithm HEUPOHHOI Cemu U 2eHEMUYECK020
anreopumma
d) Average correlation calculated on random
data using a neural network and a genetic
algorithm
Predicted number Predicted number
*] y=1.003x + 2.0592 * y=1.0147x + 1.5076
45 | 45 | s
40 40 ‘ B
35 ! : : : . 35 ‘ . 3 i . : :
35 37 39 41 43 45 47 49 35 037 39 41 43 45 47 49
real number real number

e) CpeoHsas Koppenayus, blYUCIeHHAs Ha
PecyNAPHLIX OAHHBIX C UCNONB30BAHUEM HEUPOHHOU
cemu

e) Average correlation calculated on regular data
using a neural network

) Cpeonsist koppensiyusi, 8bl4UCIeHHAS HA
pecyisipHblX OAHHBIX C UCTIONIb308AHUEM
HelPOHHOU Cemu U 2eHemu4ecKo2o
areopumma

f) Average correlation calculated on regular
data using neural network and genetic
algorithm

Puc. 5. Cpednecymouroe cpagnerue hakxmuueckoi u npocHO3Upyemo NIOMHOCIU mpagura
Fig. 5. Average daily comparison of actual and forecasted traffic density

140

npmoxammaan M.M., Demannyp M. AHanm3 3arpy:KeHHOCTH TpaMKa Ha TIaBHBIX YIHIAX 2JIEKTPOHHOTO ropojia C IPUMEHEHHEM
MHJEKca Meperpy3Ky U HCKYCCTBEHHOI HeipoHHO# cetr (Ha mpumepe ropoga Xamenan). Tpyost MCII PAH, Tom 32, Bem. 3, 2020 1., cTp.
131-146

B kauecTBe MPaKkTHYECKOrO pe3yiabTaTa MPOBENCHHOTO HCCICIAOBaHHMS ObUla TIOIyYeHa
BO3MOXHOCTh JIOCTATOYHO TOYHOTO ONpPEACICHHs Teorpaduueckoro MoJoKeHUsI TPAHCTIOPTHOTO
3aTopa Ha KapTe ropo/ia Mo BBISBIISEMBIM MMOKA3aTEISIM CHUKEHHS CPETHEH CKOPOCTH MOTOKA.
BbIsBJIeHHE Y3KHX MECT IIOMOTaeT CTaBHTh 3aJadyy HM3MEHCHUs WM, [0 KpaWHel Mepe,
[UTAHUPOBAHUS U3MEHEHHUI T€OMETPHUU TPAHCIIOPTHBIX MYTEH JIst OANTaHCUPOBKU HArPY3KH Ha BCEX
aJbTEPHATUBHBIX MyTAX U MMOCIIEAYIONIETO CHIKEHUSI CTEIICHN TIEPErPY)KEHHOCTH CETH.

Ha puc. 6 mokasaHbl y4acTKH ILIOTHBIX TPAHCIIOPTHBIX MPOOOK B ropoae XamemaH. Ha stom
PHCYHKE BHJHO, YTO HEPaBHOMEPHOCTH B POCTE Tropofa XaMmelaH MPHBOIAT K 3aTPYAHEHUSAM
JIBIJKEHUS] B HEKOTOPBIX YaCTSAX Topoja B yackl muk. C APyroil CTOPOHBI, B APYrOi 4acTH ropoja
3arpy)KeHHOCTH Tpa(uka He HAOMI0JaeTCs, U JBIKEHUE MPOJOIDKAeTCS 63 0COOBIX 3aTPyIHCHHH.
[puBeneHHAs WUTIOCTPALIUS TIOKA3bIBAET, YTO B YAChl TMKOBOM 3arpy»KEHHOCTH TpauKa T€ TOUKH
Ha KapTe TOPOJICKUX PaflOHOB, I/Ie UMEIOTCS 3aTPYAHEHHS B IBU)KEHUH TPAHCIIOPTA, JOKHBI OBITh
HCIIPABJICHBI.

Puc. 6. Omobpasicenue mecm niommno2o 08udiCcenust 20pode Xameoan 6 4acvl NUK
Fig. 6. Display of heavy traffic in Hamedan during rush hours

ABTOpBI TECTHPOBAJIH BO3MOXXHOCTH HCIIONB30BAaHHS CIIENUATM3UPOBAHHOIO IPOrPAMMHOIO
HMHCTpyMeHTa, pa3padorannoro komnanueit IBM (IBM Traffic Prediction Tool) auist uccnenoBanus
yCIIoBHI OBIKEHHs TpaHcropra B CuHramype. DTOT HHCTPYMEHTApUH MO3BOJIAET TaKkkKe IenaTh
NPOTHO3BI OTHOCHTENBFHO BpPEMEHH BO3BpAIlleHHs Tpaduka K HOPMAJIBHOMY YpPOBHIO, YTO
JOCTUraeTcs HCIONB30BAaHUEM BHIEOKaMep, CUCTeMbl mo3uunuoHupoBaHus GPS, cucremsr
VIpaBJIeHUS! TAaKCH W JATYMKOB, YCTAHOBJIECHHBIX Ha YIWIaxX. Takod MOIXon OKa3bIBaeTcs
3HAYUTENBHO 0OJiee JOPOrOCTOSIINM, YeM METO[, NPEIOKEHHBIH B HACTOSIIEH CTaThe, KOTOPBIH
He TpeOyer IOporo oOOOpPYZOBaHHS U CYIIECTBEHHOTO HAKOIUICHHs OONBLIIMX MAacCHBOB
uHpopmarmu [38].

ABTopaMu ObITa pacCMOTpEHA MOJENb, NpeoKeHHas koMmmanned Anmexc (Yandex), xoTtopas
BBIJIACT PEKOMEHIALUH 10 YIPaBICHHIO TpAUKOM Ha OCHOBEe cobupaemoil mHpopmanmu. [Ipu
BBIPa0OTKE 3THX PEKOMEHIALNHA YYUTHIBAIOTCS reorpaMaecKre KOOPIMHATHI, OPSIOK U CKOPOCTh
JBIDKEHHS TpaHcropTa. OIMOKH B OTCISKHBAHUH MTOJOXKESHUS TPAHCIIOPTHBIX CPEJNICTB Ha JOPOre
HCIIPABIISIOTCS C MOMOIIBIO CHUTHAIOB OT TNIOOANBHBIX CHCTEM MO3HLHOHHUPOBaHHS (HAIIPUMED,
GPS). Cucrema mo3BOsSeT HAXOMUTH PABIIIBHBINA MapIIPYT, Oa3upysich Ha COOCTBEHHOM METOIC
MapIIpyTH3aIMH, ¥ XOPOLIO MOAXOAUT Ul KPYIHBIX IpocTpaHCTB. [IpoekT SHnekca 3aBUCHT OT
r7100aJIbHOTO MIO3UIIMOHUPOBAHUSL, B TO BPEMsi, KAK METOJ, PEJCTABICHHBINA B 3TOH CTAaThe, TAKOH
3aBucuMocTd He umeet [39].

141

Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic Congestion Index and Artificial Neural Network in
Main Streets of Electronic city (Case Study: Hamedan City). Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146

Jlnst TIOBBIIIIEHHWST TOYHOCTH TIPOBENCHMSI HCCIenoBaHMK B XamenaHe ObUT BbIOpaH paiioH c
HaIpPsDKEHHBIM [TOTOKOM JBIKEHHS. BBUTO IpOBeeHO MOAEIMpOBaHNE PEAIbHOTO IIEpeKpecTKa —
Ha FO)KHOM cTopoHe ruroniaau Jl>kaxaza B ropoie XameaaH. DTOT MEPEKPECTOK OKPYKEH KIIBIMHA U
KOMMEPYECKUMH ~ KBapTaJlaM{, KIIOYEBBIMH 3JAaHMSIMHM, OH XapaKTepu3yeTrcs OOJbIINM
KOJIMYECTBOM TICIIEXO0JI0B U TPAHCIIOPTHBIX CPeJCTB. B TaHHOM citydae paccMaTpHBajIHCh TOIBKO
MIOTOKU TPAHCIIOPTa B ONpeJelieHHbIe paboyne JHH, IPU STOM W3yYalHuCh Pa3jInuus B XapakTepe
nBrkeHus. Vcnonb30Banuch JTaHHBIE O MOTOKax JABIKEHUs ¢ 6 10 8 Mapta u ¢ 23 no 25 mas
(bukcanust JaHHBIX B KXKIOM HHTEpPBAJe OCYIIECTBILIACH Kax/Iple 15 MUHYT). BbUTH MOTy4eHBI 1
n3ydeHs! 288 HAOOPOB JTaHHBIX 10 Ka)JIOMy BPEMEHHOMY HHTEpBaIly, TO €CTh Bcero 576 HabopoB.
Hamnpumep, 1u1st mporHO3MpOBaHUsT TPAHCTIOPTHBIX TOTOKOB MCITOIb30BAINCH IaHHBIE, TOTYYSHHBIE
¢ Hysa 9acoB 23-ro Mas 1o 24 acoB 25-ro Mas.

CpaBHeHHE METOJOB OIICHKH, BBHINOJHSABIIEECS aBTOpaMH HACTOSIIEH paboThl, Oasupyercs Ha
KOHIIETIIIMM aHaju3a BpeMeHHBIX psinoB ARIMA (aBToperpeccMBHOE HWHTETPUPOBAHHOE
CKOJIB3SIIIEE CPEHEeE), UCIIONb3YeMOH B KayecTBE MOJIENM HECTAl[HOHAPHOI'O BPEMEHHOTro psija,
¢dopmuposasuierocs ¢ 1979 no 2018 rox ¢ HEKOTOPBIMU U3MEHEHUSIMU, BHOCUBILIUMUCS JUIsl OoJiee
MOJTHOTO HKCIIONB30BaHUS TMPEUMYIIIECTB KOHKpeTHBIX mnpriokenuit. Taup (Tang) B 2018 romy,
UCIIONB3Ysl Ty € KOHIEMIHUIO, PacCMaTpUBaj TPAHCIOPTHBIH TOTOK KaK HECTAIIMOHAPHYIO
cnydaiinyto mocnenoBarensHocth [40]. JIpyruM BO3MOXKHBIM METOZOM AHAIH3a SIBIISIETCS
paspabatsiBaBmmiics ¢ 2002 no 2015 rox meronq WNN (BeiiBiieT-HEHpOHHas CeTh), TO €CTh
HEJIMHElHas: BOJIHOBAasi HEWPOHHAas CeTh. DTOT METOJ OCHOBAaH Ha WCIIONB30BaHHM BeiiBlieTa B
KauecTBe (DYHKIIMH aKTUBAIMHU [UTSl CKPBITBIX Y3JIOB M BECOB BXOJHBIX HeiipoHoB [41].

Huapwkyn Xoy (Qinzhong Hou) u ero komrern Takke MNPSUIOKAIH KOMOMHAIIHIO
BBIIIIEYKa3aHHBIX METOJIOB, Ha3BaHHYIO MMHU THOpuaHOH Monenbio ARIMA & WNN, B koTopoii
Beca Ha3HAYAIOTCS Ha OCHOBE HEUCTKHX BbIUMCICHUH [42]. Jlist aTOM Moaenu, MpeaCcTaBIeHHOM ee
aBtopamu B 2019 roamy, Obuin mo ¢opmynam (5) B NpoLEHTaX paccuuTaHbl (hakTUdecKas
OTHOCHTENbHAs MOrpemHocTs Beixoga RPE (relative pointing error), cpemmsis mporieHTHAs
abcomotHas omubka MAPE (mean percentage absolute error) u xopeHb cpeaHEKBaIpaTHYHOM
norpemHoctd RMSE (root mean square error). B mpuBeneHHbIx GopMmynaax U, — HaOIIOIaEMbIit
Tpaduk, Q, —pe3yabTaT MPOrHOZUPOBaHHS, | — KOMUYECTBO CIEITaHHBIX HaGmoAeHu [42].

l

1 —
MAPE = —Z U= 0 100,
l U,
t=1
RPE = U= Q x 100,
U
1 o, — Q2
RMSE = || =x Z <¥) x 100. (5)
l - U

Tabn. 3, comepxamias JaHHBIE O CpPaBHEHWHM pPa3JIMYHBIX MoOJeedl OLEHKH pe3yabTaToB
MOJICITUPOBAHUS, IIOKA3bIBAET, YTO IPEUIaraeMblii aBTOPaMH METOX HAMHOTO JIydlle, 4YeM
npenpIIymme MeToasl. B aToM Merone ¢ yderoM pasinuuid B Tpaduke B pasHble MECAIBI ObUTH
PacCMOTpPEHHI JiBa CIieHapHs Tpaduka B MapTe MecsIe U TpapuK ¢ PUKCHPOBAHHON CKOPOCTHIO B
Mae. [IpemnoxkeHHsIi MeTox (caM 1o cebe 1 B COYCTaHHUH C BEHBIIET-HEHPOHHOM CETHI0) OBLT TaKXKe
CpaBHEH C paHee HCIIOIb30BABIINMHCS METOAAMH.

142

Iupmoxammanu M.M., Demannmyp M. Ananus 3arpy:keHHOCTH TparKa Ha [IABHBIX YIIHIIAX 3JICKTPOHHOrO ropojia C IPHMCHEHHEM
HHJIeKca Teperpy3KH U HCKYCCTBEHHOM HEMPOHHOI ceTn (Ha mpumepe ropoaa Xamenau). Ipyoet UCII PAH, Tom 32, Beim. 3, 2020 1., cTp.
131-146

Tabn. 3. Cpasnenue npednazaemo2o Memood OYeHKU pe3yibmama ¢ panee UCNOoNb3068aA8UUMUC MEMOOaMU
no ()aHHblM, HOJIYYEHHbIM 6 Mapme U mae cCoomeemcmeeHHo

Table 3. Comparison of the proposed method for evaluating the result with previously used methods
according to the data obtained in March and May, respectively

HYERID PROPOSED" PROPOSED 2
ARIMAZWNN &WNN

15.64 13.45 4.07 3.97 312

MAPE 991 7.65 5.98 5.42 4.83

RMSE 848 7.31 6.12 572 5.01
RUNMINGTIME 14,33 3.59 17.36 1241 10.24

ARIMA&WNN &WNN

1312 12.03 3.84 3.61 3.57

MAPE B8.84 6.16 5.12 5.01 5.01

RMSE 7.24 5.82 572 5.20 5.11
RUNNINGTIME 12.48 174 15.72 13.01 13.96

5. 3aknroyeHue

B HpOBelICHHOM HUcCciIeaJ0BaHUU HepBOHa'—IaJ'IBHO B KayeCTBC HHJACKCA OLICHKU 6])1_]'[BI)I6paH
MOYacOBOM TMOKa3zaTenb CKOpocTH. OCHOBBIBASCh HA BBIINOJIHEHHOM HCCICIOBAaHUH, OBLIO
BBISIBJICHO, B KaKO€ BpeMsl B ropojae XamedaH BO3pacTacT KOJHYECTBO MPOOOK, a JIBHIKCHUE
TPAHCIIOPTHBIX CPEICTB 3aMeIIseTCs. bbUIO onpeeneHo, YTo B CPeIHEM B TEUCHHE THS TPU pas3a
HaOIroaeTcs 3aMeIJICHUE JIBHXKCHUS TPAHCIIOPTHBIX CPENICTB M YBEINMYCHUE IUIOTHOCTH TpaduKa.
B uacel UK yTpoM, JIHEM M BEYepOM Ha JOPOrax BO3HUKAIOT 33JICP>KKHU U 3aTOPBI, JAJISIIHECS OKOJIO
JIBYX 4aCOB.

Ha ocHoBe ananm3a reorpaduu ceT OCHOBHBIX JOpor XamenaHa ObLia IMOBBILIIEHA TOYHOCTD
MOJIYYaeMbIX JIAHHBIX M YAY4IICHO IOHMMaHUE CUTYAIlMU C CETeBbIM TpadukoM B XamenaHe, 4yTo
CO3J]a€T OCHOBY JUIs yIIPaBJeHHs TpadhrKoM B OyayIiem.

OHOBPEMEHHO Ha OCHOBE WCIIONb30BaHHMS HEWPOHHOH CeTH Oblla BBUIBICHA CBS3b MEXKIY
CHIDKEHUEM CKOPOCTH TOPOJICKUX TPAHCIIOPTHBIX CPEJICTB M YBEINYEHHEM TUIOTHOCTH JIBHXKEHUSI.
[NonyueHHbIe pe3yNbTaThl OKA3aIId, YTO O0YIEHHE CETH Ha YIIOPSIOYCHHBIX IaHHBIX JaeT JTy4Ile
Pe3yNbTaThl PU MPOTHO3UPOBAHUH CPEAHECYTOUHOM 3arpy:KEHHOCTH, HEXEIH Takoe 00ydeHHe Ha
CIIy4aHbIX JaHHbIX. [Ipy 3TOM B ciydae KOMOMHUPOBAHHUSI T€HETHUECKOrO AIrOpUTMa U
HEWPOHHOM CETH CKOPOCTh aHAJM3a U TOYHOCTh IMPOTHO30B BO3PACTAIOT, OIIUOKU CHIKAFOTCSI.
BbisiBIIeHHE MeCT Ha TOPOJICKUX JIOPOrax, T/ie BO3HHUKAIOT 3aTOPhI MPU IBMKCHUHM TPAHCIIOPTA,
TaKKe MOMOraer HUACHTU(QHUIMPOBATh MPOOKU TOPOAa M PErHCTPUPOBATH CBSI3aHHBIE C HUMH
COOBITHS B 3JIEKTPOHHBIX CHCTEMax ropoja, MPOBOIUTh M3MEHEHHUS TOMOJIOTUU JOPOT M CTPOUTH
HOBBIC JIOPOTH TaM, TJIe 3TO HEOOXOAUMO JUIsl YIYUIICHHUs YCIOBHUil IBMKEHHSA. ABTOpaM yIaaoch
BBISIBUTH YCIIOBUSI, BO3HUKAIOIIUE HA IOPOrax ropojia XaMme/aH B 4achl UK. B naipHeIeM MOXHO
OyIeT YCTPaHUTh MPOOIIEMBI IBIKEHUS B TOPOJIE, MOXKHO OY/IET TaK BECTH IUTAHUPOBaHKE TpaduKa,
4T00BI MUHUMU3UPOBATH JUIUTEIBHOCTD 3aTOPOB U YJIYUIIATh 3Ty CUTYAIUIO B TOPOJIE.

Cnucok nutepatypbl / References

[1] Chourabi H., Nam T., Walker S., Gil-Garcia J.R., Mellouli S., Nahon K., Pardo T.A., Scholl J.
Understanding smart cities: An integrative framework. In Proc. of the 45th Hawaii International
Conference on System Science, 2012, pp.2289-2297.

[2] Rashid B., Rehmani M.H. Applications of wireless sensor networks for urban areas: A survey. Journal of
Network and Computer Applications, vol. 60, 2016, pp. 192 —-219.

143

Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic Congestion Index and Artificial Neural Network in
Main Streets of Electronic city (Case Study: Hamedan City). Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146

[3] SahooJ., Cherkaoui S., Hafid A. A novel vehicular sensing framework for smart cities. In Proc. of the 39th
Annual IEEE Conference on Local Computer Networks, 2014, pp. 490-493.

[4] Al-Turjman F., Hassanein H., lbnkahla M. Efficient deployment of wireless sensor networks targeting
environment monitoring applications. Computer Communications, vol. 36, issue 2, 2013, pp. 135-148.

[5] Al-Turjman F. Cognitive-node architecture and a deployment strategy for the future sensor networks.
Mobile Networks and Applications, vol. 24, issue 5, pp. 1663-1681.

[6] Geisler S., Quix C., Schiffer S., Jarke M. An evaluation framework for traffic information systems based
on data streams. Transportation Research, Part C: Emerging Technologies, vol. 23, 2012, pp. 29-55

[7]1 Anthopoulos L., Fitsilis P. From Online to Ubiquitous Cities: The Technical Transformation of Virtual
Communities. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 26, 2009, pp. 360-372.

[8] Shwayri S.T. A model Korean ubiquitous eco-city? The politics of making Songdo. Journal of Urban
Technology, vol. 20, issue 1, 2013, pp. 39-55.

[9] Sanchez L. et al. SmartSantander: 10T experimentation over a smart city testbed. Computer Networks, vol.
61, 2014, pp. 217-238.

[10] Bakici T., Almirall E., Wareham J. A smart city initiative: the case of Barcelona. Journal of the Knowledge,
vol. 4, issue 2, 2013, pp. 135-148.

[11] Jia S., Peng H., Liu S. Urban traffic state estimation considering resident travel characteristics and road
network capacity. Journal of Transportation Systems Engineering and Information Technology, vol. 11,
issue 5, pp. 81-85.

[12] Zhu F. Research on index system of urban traffic congestion measures. Master Degree thesis. Nanjing,
Jiangsu, China, Southeast University. 2006, pp. 4-15 (in Chinese).

[13] Quiroga C.A. Performance measures and data requirements for congestion management systems.
Transportation Research, Part C: Emerging Technologies, vol. 8, issue 1, 2000, pp. 287-306.

[14] Robert R., Theodore F. Contrasting the Use of Time-Based and Distance-Based Measures to Quantify
Traffic Congestion Levels: An Analysis of New Jersey Counties. In Proc. of the 81th Annual Meetings of
the Transportation Research Board, 2002.

[15] Bertini R.L., Leal M., Lovell D.J. Generating Performance Measures from Portland’s Archived Advanced
Traffic Management System Data. In Proc. of the 81th Annual Meetings of the Transportation Research
Board, 2002.

[16] Bertini R.L., Tantiyanugulchai S. Transit buses as traffic probes: Use of geolocation data for empirical
evaluation. Journal of the Transportation Research Board, vol. 1870, issue 1, 2004, pp. 35-45.

[17] Coifman B., Kim S.B. Measuring freeway traffic conditions with transit vehicles. Journal of the
Transportation Research Board, vol. 2121, issue 1, 2009, pp. 90-101.

[18] Houli D. et al. Network-wide traffic state observation and analysis method using pseudo-color map.
Journal of Transportation Systems Engineering and Information Technology, vol. 9, issue 4, 2009, pp. 46-
52.

[19] Turochy R.E., Smith B.L. Measuring variability in traffic conditions by using archived traffic data. Journal
of the Transportation Research Board, vol. 1804, issue 1, 2002, pp. 168-172.

[20] Wang Y., Papageorgiou M., Messmer A. Real-time freeway traffic state estimation based on extended
Kalman filter: Adaptive capabilities and real data testing. Transportation Research, Part A: Policy and
Practicem, vol. 42, issue 10, 2008, pp. 1340-1358.

[21] Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-
term traffic flow prediction: A genetic approach. Transportation Research, Part C: Emerging Technologies,
vol. 13, issue 3, 2005, pp. 211-234.

[22] Yin H., Wong S., Xu J., Wong C.K. Urban traffic flow prediction using a fuzzy-neural approach.
Transportation Research, Part C: Emerging Technologies, vol. 10, issue 2, 2002, pp. 85-98.

[23]Lv Y., Duan Y., Kang W., Li Z, Wang F.Y. Traffic flow prediction with big data: a deep learning
approach. IEEE Transactions on Intelligent Transportation Systems, vol. 16, issue 2, 2015, pp. 865-873.

[24] Smith B.L., Demetsky M.J. Short-term traffic flow prediction models-a comparison of neural network and
nonparametric regression approaches. In Proc. of the IEEE International Conference on Systems, Man and
Cybernetics, vol. 2, 1994, pp. 1706-1709.

[25] Chen D. Research on traffic flow prediction in the big data environment based on the improved RBF neural
network. IEEE Transactions on Industrial Informatics, vol. 13, issue 4, 2017, pp. 2000-2008.

144

https://www.tandfonline.com/toc/cjut20/current
https://www.tandfonline.com/toc/cjut20/current
https://www.tandfonline.com/toc/cjut20/20/1
https://www.sciencedirect.com/science/article/abs/pii/S1570667210601420#!
https://www.sciencedirect.com/science/article/abs/pii/S1570667210601420#!
https://www.sciencedirect.com/science/article/abs/pii/S1570667210601420#!

Iupmoxammanu M.M., Demannmyp M. Ananus 3arpy:keHHOCTH TparKa Ha [IABHBIX YIIHIIAX 3JICKTPOHHOrO ropojia C IPHMCHEHHEM
HHJIeKca Teperpy3KH U HCKYCCTBEHHOM HEMPOHHOI ceTn (Ha mpumepe ropoaa Xamenau). Ipyoet UCII PAH, Tom 32, Beim. 3, 2020 1., cTp.
131-146

[26] Ma X., Tao Z., Wang Y., Yu H., Wang Y. Long short-term memory neural network for traffic speed
prediction using remote microwave sensor data. Transportation Research, Part C: Emerging Technologies,
vol. 54, 2015, pp. 187-197.

[27] Abdulhai B., Porwa H., Recker W. Short-term traffic flow prediction using neuro-genetic algorithms.
Journal-Intelligent Transportation Systems Journal, vol. 7, issue 1, 2002, pp. 3-41.

[28] Massobrio R., Nesmachnow S., Tchernykh A. et al. Towards a Cloud Computing Paradigm for Big Data
Analysis in Smart Programming and Computer Software, vol. 44, issue 3, 2018, pp. 181-189.

[29] Alarcon-Aquino V., Barria J.A. Multiresolution FIR neural-network-based learning algorithm applied to
network traffic prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 36, issue 2, 2006, pp. 208-220.

[30] Chen Y., Yang B., Meng Q. Small-time scale network traffic prediction based on flexible neural tree.
Applied Soft Computing, vol. 12, issue 1, 2012, pp. 274-279.

[31] Fabbiani E., Nesmachnow S., Toutouh J. et al. Analysis of Mobility Patterns for Public Transportation and
Bus Stops Relocation. Programming and Computer Software, vol. 44, issue 6, 2018, pp. 508-525.

[32] Yang H. J., Hu X. Wavelet neural network with improved genetic algorithm for traffic flow time series
prediction. Optik, vol. 127, issue 19, 2016, pp. 8103-8110.

[33] Lu B., Huang M. Traffic flow prediction based on wavelet analysis, genetic algorithm and artificial neural
network. In Proc. of the 2009 International Conference on Information Engineering and Computer Science,
2009, pp. 1-4.

[34]1Yi J., Prybutok V.R. A neural network model forecasting for prediction of daily maximum ozone
concentration in an industrialized urban area. Environmental Pollution, vol. 92, issue 3, 1996, pp. 349-357.

[35] Grander M.W., Dorling S.R. Neural network modeling and prediction of hourly NOx and NO2
concentrations in urban air in London. Atmospheric Environment, vol, 33, issue 5, 1999, pp. 709-719.

[36] Mobley B.A. et al. Predictions of coronary artery stenosis by artificial neural network. Artificial
Intelligence in Medicine, vol. 18, issue 3, 2000, pp. 187-203.

[37] Boone J.M. X-ray spectral reconstruction from attenuation data using neural networks. Medical Physics,
vol. 17, issue 4, 1990, pp. 647-654.

[38] IBM Traffic Prediction Tool — IBM Research. Available at:
https://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=1248

[39] Kak pa6orator Sunexc.ITpo6ku / How Yandex. Traffic Works, available at:
https://yandex.ru/company/technologies/yaprobki/ (in Russian).

[40] Tang T.Q., Yi Z.Y., Zhang J., Wang T., Leng J.Q. A speed guidance strategy for multiple signalized
intersections based on car-following model. Physica A: Statistical Mechanics and its Applications, vol.
496, 2018, pp. 399-409.

[41] Moretti F., Pizzuti S., Panzieri S., Annunziato M. Urban traffic flow predicting through statistical and
neural network bagging ensemble hybrid modelling. NeuroComputing, vol. 167, 2015, pp. 3-7.

[42] Hou Q., Leng J., Maa G., Liu W., Cheng Y. An adaptive hybrid model for short-term urban traffic flow
prediction. Physica A: Statistical Mechanics and its Applications, vol. 527, 2019, article 121065.

MHcopmauusa o6 aBTopax / Information about authors

Mexmu HIMPMOXAMMA/IM mnomydun creneHb MarucTpa B 00macTH WH(POPMAaIHMOHHBIX
TexHonoruii B Kazsunockom ¢uimane Menamckoro yHuBepcurera A3a, OH SBJISAETCS aCTUPAHTOM
B O00JAacCTH KOMIIBIOTEPHBIX IPOTpaMMHBIX CHCTEM B ApakckoM ¢umimane Icmamckoro
yHHBepcuTeTa A3zama. B Hacrosimee BpeMs OH TMpemojaeT Ha (akKylIbTeTe KOMITBIOTEPHOM
nmwkenepun Xamenanckoro ¢unuana Mcnamckoro ynuBepcurera A3aa. Ero ocHOBHbIE HaydHBIC
MHTEPECHI: CEHCOPHBIE CETH W CHCTEMBI IPUHATHS PELICHHH.

Mehdi SHIRMOHAMMADI received his MS degree in Information Technology from Islamic Azad
University, Qazvin Branch, Qazvin, Iran and he is PhD student in Computer Engineering-Software
systems in Islamic Azad University, Arak Branch, Arak, Iran. He is currently lecturer at Department
of Computer Engineering, Islamic Azad University, Hamedan Branch, Hamedan, Iran. His main
research interest is Sensor networks and decision systems.

Mancyp OCMAWJIIIYP nomydun creneHs KaHIWIaTa KOMITBIOTEPHBIX Hayk B HarpoHaiabHOM
yHuBepcurere Manaiizun, Mamaizus, B 2011 romy. OH sBnsiercs IOLEHTOM Kadeapsl

BBIYUCIIUTCILHON TEXHUKH U pa3pa60TKH nporpaMMHOro o0ecrieueHus OTACICHUA XaMeHaHCKOFO
145

Shirmohammadi M.M., Esmaeilpour M. The Traffic Congestion Analysis using Traffic Congestion Index and Artificial Neural Network in
Main Streets of Electronic city (Case Study: Hamedan City). Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020. pp. 131-146

(l)I/IJ'II/IaJ'Ia Wcaamckoro YHUBCPCUTCTA A3a/:[. OH aKTHUBHO KOHCYJIbTUPYCT MPOMBINUICHHOCTh U
Y4acCTBYCT B HCCKOJIBKUX IMPOCKTAX IO UCCICAOBAHUIO U NIEpEeaavC TeXHOJ’IOFHﬁ, OCYHICCTBIACMBIX
B COTpYAHHUYCCTBE C IMPOMBINIJICHHBIMU HAapTHEPAMU. Ero HCCIICAOBATCIIbCKUC HHTECPECHI
BKJIFOYAIOT APXUTEKTYPY MPOrpaMMHOI'0 obecrieueHusl, 3JIEKTPOHHOE o0yueHue,
MHTEIUIEKTYaJIbHBIN aHAIN3 JaHHBIX W cucTeMbl oOydeHus. OH sBisiercs wieHoMm |EEE, IEEE
Computer Society u ACM.

Mansour ESMAEILPOUR received the PhD degree in Computer Science from the National
University of Malaysia, Malaysia, in 2011. He is an Assistant professor of Computer Engineering,
Software Engineering Department of the Islamic Azad University Hamedan Branch, Hamedan, Iran.
He is actively consulting in industry and has been involved in several research and technology
transfer projects conducted in cooperation with industrial partners. His research interests include
software architecture, e-learning, data mining and learning systems. He is a member of the IEEE,
the IEEE Computer Society, and ACM.

146

Tpyowt UCI1 PAH, mom 32, suin. 3,2020 2. /| Trudy 1SP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-13 @ @

Ucnonb3oBaHne KOMNbIOTEPHbIX METOA0B U
CUCTEM B U3YYEHUM NpPaBa, UHTENNEeKTyallbHOM
aHanuse n MoaenMpoBaHUN NPaBOBOWM
AeATeNbHOCTU: CUCTEeMaTU4YeCKMn ob3op

LE.B. Tpoghumos, ORCID: 0000-0003-4585-8820 <diterihs@mail.ru>
20.I'. Meyxrep, ORCID: 0000-0003-3427-7932 <olegmetsker@gmail.com>
! Beepoccuiickuii 2zocyoapcmeennuiii ynusepcumem iocmuyuy (PIIA Muniocma Poccuu),
117638, Poccus, 2. Mockea, yn. A3oeckas, 0. 2, kopn. 1
2 Hayuonanvuoiii meduyunckuil uccredoeamensekuti yenmp umenu B. A. Anmasosa,
197341, Poccus, e. Canxm-Ilemepbype, yn. Akkypamosa, o. 2

AnHoTamms. VMHTErpanus BEIYUCIUTENBHBIX CUCTEM U METOJIOB B IOPHANYECKYIO JESTEIHHOCTH MO3BOJISET
W3BJIeYb TaKWe BBITOIBI, KaK pecypcocOepexeHHe, MOBBIMICHHEe OObEKTHBHOCTH, ITOJHOTHI W TOYHOCTH
MHTEIUICKTYaJIbHBIX Pe3ynbTaToB. [IOHMMaHHE OCHOBHBIX HAYYHBIX IOCTIKCHMH M TCHACHLMH HAa CTHIKE
KOMIIBIOTEPHBIX M NPaBOBBIX HAyK aKIEHTHPYET BHUMAaHHME Ha IMEPCIEKTUBHBIX HAYYHO-TEXHOJIOTHYECKHX
HarpasieHusX uH(opMarusauu npasa. Hacrosumii 0030p cucreMaTH3upyeT BaKHEHIIME NOCTH)KEHHUS Ha
CTBIKE MPABOBBIX U KOMIIBIOTEPHBIX HAYK, OXBAaTbIBas 3apyOe)KHbIE U OTEUCCTBEHHBIC HAY4YHbIC ITyOIMKALN
3a 19492020 ronel. ViccnenoBaHus KOMIBIOTEPHBIX METOJOB U CHCTEM, WHULMHPOBAHHbIE aMEPHUKaHCKOU
IOPUMETPUKOH, ObUTM HamlpaBJICHbl HA XpaHEHHE, MHJIEKCAllHio, abCTparupoBaHHE M IMOMCK IOPUIMYECKUX
TEKCTOB U TPUBENN K CO3JaHHIO MIPABOBBIX MH()OPMAIIOHHO-TIONCKOBBIX CHCTEM, TOI'/ld KaK OTCYECTBEHHAS
IpaBoBasi KHOEPHETHKA CTasla IMOHEPOM B cepe aBTOMATH3aLMK KpUMHUHAIMCTHYECKO# skcnepTusbl. Ha 6aze
METOZOB MCKYCCTBEHHOTO HMHTEJUIEKTa Ppa3BWJIOCH KOMIIBIOTEPHOE MOJEIUPOBAHHE FOPUIMYECKUX
paccyXaeHui, CMECTHBIIEECs B JajbHEHIIEM B 00JacTh IOPHANYECKOrO AMAJIOra M KOHQJIMKTa MPaBOBBIX
apryMeHTOB, a B IOCIEIHHUE TObl TPaHCHOPMHPYIOLIEr0 MOJIYYCHHbIH ONBIT HA OCHOBE COBPEMEHHBIX
KOMIIBIOTEPHBIX MoJieJieH, abOHOB U apXuTeKTyp. Ilomyaspu3auust CHUCTEM IUIs HMOJUICPIKKH NPHHSTHS
pelieHuii odecrneymnia MyJIbTH3aJa4HOCTh CUCTEM, BKIIOYAIONIYI0 HH()OPMALMOHHBIN HNOUCK, IOPUIMYECKYIO
apryMeHTal{Io0, aHAIUTHUKY, [IPOrHO3 U KOHTPOJb. HoBeIie cerMeHThl HCCiIel0BaHNH OPUEHTHPOBAHbI Ha
[PUMEHEHUE METOJJ0B MAllIMHHOTO OOYYEHHUs U MHTEJUICKTYaIbHbIM aHaIN3 OONBIINX JaHHBIX. [IpakTuyeckn
BCE YCICIIHBIE METOJOJOTHYECKHE PELICHHS COXPAHAIOT CBOE 3HA4YEHHE, HPOJNOIDKAs IMPUMEHSTHCS
HETIOCPE/ICTBCHHO WJIM IOCIYXXHMB OCHOBOW JUIS JAIbHEHINErO pPa3sBUTUS BBIYMCIUTEIBHBIX METOIOB U
MH(POPMALMOHHBIX CUCTEM B IIPAaBOBOM JIEATEIBHOCTH.

KiroueBble cjoBa: 1NpaBO M HCKYCCTBEHHBIM HMHTEIUICKT; HOPUMETPHKA; HpaBoBas HHPOPMATHKA,
KHOEpHETHYECKUE IOPUANUECKUE MOJIEIH; TIPABOBbIE SKCIIEPTHBIE CHCTEMBI; HHTEIIEKTYaIbHOE yIpaBIeHUE
JOKyMEHTaMy; OOJNbLIME JaHHbIE; MAIIMHHOE OOY4YeHHE, IPABOBBIE CHCTEMbI, OCHOBAHHbIC Ha 3HAHMSX;
MIPUKJIQJAHBIE IOPUANYECKUE OHTOIOTUU

Joas murupoBanusi: Tpodumor E.B., Meukep O.I'. Mcnons3oBaHne KOMIBIOTEPHBIX METOIOB U CHUCTEM B
H3y4EHHH [IPaBa, HHTEJIEKTYaJIbHOM aHaJIN3€ U MOJAEIHPOBAHUM IIPAaBOBOH JEATEIBHOCTU: CUCTEMAaTHIECKUil
00630p. Tpyast UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170. DOI: 10.15514/ISPRAS-2020-32(3)-13

Baarogapuocru. VccrnenoBanue BBIMONHEHO mpu (GuHAHCOBOH momaepxke PODU B pamkax HaydHOTrO
mpoekra Ne 19-111-50534.

147

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

Application of Computer Techniques and Systems in the Study of
Law, Intellectual Analysis and Modeling of Legal Activity:
A Systematic Review

LE.V. Trofimov, ORCID: 0000-0003-4585-8820 <diterihns@mail.ru>
20.G. Metsker, ORCID: 0000-0003-3427-7932 <olegmetsker@gmail.com>
L All-Russian State University of Justice,

2 Bldg. 1, Azovskaya Str., Moscow, 117638, Russia
2 Almazov National Medical Research Centre,

2, Akkuratova Str., St. Petersburg, 197341, Russia

Abstract. Integration of computing systems and methods in legal activity allows to extract benefits such as
resource saving, increase objectivity, completeness and accuracy of intellectual results. Understanding of the
main scientific achievements and trends at the intersection of computer and legal sciences focuses on promising
scientific and technological areas of informatization of law. This review systematizes the most important
achievements at the intersection of legal and computer sciences, covering foreign and domestic scientific
publications for 1949-2020. Researches of computer methods and systems initiated by American jurimetrics
were aimed at storing, indexing, abstracting and searching for legal texts and led to the creation of legal
information retrieval systems. Domestic legal cybernetics became a pioneer in the field of automation of
criminalistics expert examination. Computer modeling of legal reasoning developed on the techniques of
artificial intelligence, later it shifted to the field of legal dialogue and conflict of legal arguments, but in recent
years it transforms the acquired experience on the basis of modern computer models, patterns and architectures.
The popularization of decision-making support systems has provided multi-tasking systems, including
information retrieval, legal reasoning, analytics, predictions and control. The latest research segments are
focused on the application of machine learning and big data processing. Almost all successful methodological
solutions retain their significance, continuing to be applied directly or as the basis for the further development
of computational methods and information systems in legal activity.

Keywords: law and artificial intelligence; jurimetrics; legal informatics; cybernetic legal models; legal expert
systems; intelligent document management; big data; machine learning; legal knowledge-based systems; legal
ontologies

For citation: Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of
Law, Intellectual Analysis and Modeling of Legal Activity: A Systematic Review. Trudy ISP RAN/Proc. ISP
RAS, vol. 32, issue 3, 2020. pp. 147-170 (in Russian). DOI: 10.15514/ISPRAS-2020-32(3)-13

Acknowledgments. The reported study was funded by RFBR, project number 19-111-50534.

1. BeedeHue

3a mocnemHHWE HECKONBKO MECATWICTHH WH(POPMAaMOHHO-KOMMYHHKAIIOHHBIE TEXHOIOTHH
pacipocTpaHUIIICh Ha pa3iIHdHble c(hepbl O0IIECTBEHHOH KH3HH, BKIII0OYas IS TEIbHOCTD FOPHUCTOB.
Ilocnme co3maHmst KOMITBIOTEPOB OBUTM HHUIMHMPOBAHBI HMCCIENOBAHUS IO BHEAPEHHIO
BBIYUCIIUTEIBHBIX CPEIICTB, TEXHOMOIMH, CHCTEM M METO/IOB B IOPUANYECKYIO Cepy ¢ TeM, YTOOBI
M3BJIEYb U3 ABTOMATU3ALNH TAKHE BBITOABI, KaK pPecypcocOepeKeHune, TOBBILCHNE 00bEKTHBHOCTH,
TIOJTHOTHI M TOYHOCTH MHTEIIEKTYaIbHBIX PE3YIbTATOB.

B Hacrosmiel cratbe MPHWBENCH CHCTEMAaTHICCKHI 0030p Ba)KHEWINHMX HANPaBICHUH HAy4IHOTO
TIOMCKA, O3HAMEHOBABIIMX TPOTPECcC B pPa3pabOTKe KOMIBIOTEPHBIX METOAOB M CHUCTEM JUIS
W3y4eHUs] TpaBa, WHTEUICKTYalbHOO aHaJW3a JAaHHBIX W MOJEIHPOBAHWS TPAaBOBOU
JeATeNbHOCTH. BriepBple moqo0HBIH 0030p OXBATBHIBACT KaK 3apyOeXHBIE, TAK M OTEUYECTBEHHBIC
HaydHbIE MMyOnuKanuu. B craThe pacKphIBalOTCS METOAOJIOTHYECKHE NOCTIDKEHHs XX Beka, Ha
KOTOpBIX 0a3MpyIOTCS COBPEMEHHBIE HCCIEIOBAaHMS M CHCTEMBI, a TaKXe JIEMOHCTPHPYETCS
pa3HooOpa3ne METONOJIOTMYECKHX MOAXOAOB K pa3paborkam u skcnepuMentam XXI Beka,
3HAYUMOCTb KOTOPBIX €IIE MPEACTOUT OLICHUTD.

148

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

Ilornmanue I[OCTI/I)KeHI/Iﬁ u TeH)leHIII/Iﬁ Ha CTBIKC KOMIIBIOTCPHBIX U IMPABOBLIX HAYK ITO3BOJIACT
AKICHTUPOBATL BHUMAHHC HaA HanOolee MEPCHCKTUBHBIX HAYYHO-TECXHOJOIMYCCKUX o0acTax u
HaIlpaBJICHUSX. HaCTOHIHI/Iﬁ O630p, KaK HaJACKTCAd aBTOPbI, IIOMOKET Ppa3sBUBATL HACHU
I/IH(l)OpMaTI/BaIII/II/I IpaBa, IpuHUMAasn 000CHOBaHHEIE CTPAaTCTUYCCKUC PCUICHUS MTPU INTAHUPOBAHU N
HCCJ’IGJ.'[OBaHPIfI, MMPOCKTUPOBAHUUN I/IH(l)OpMaIII/IOHHLIX CHUCTEM, pa3pa60TKe 1 peain3anunn HpaBOBOfI
TIOJIUTHUKH.

2. Kpumempuka u npagoeoli UHhopPMaUyUOHHbLIU MOUCK

WneitHpIM OcHOBaTENEM IOPUMETPHUKU KaK HAYYHOTO HAIPaBICHUS M CO3JAaTElIEeM CaMoro TepMHUHa
«topumerprka» ctai Jlu JloBeHrep, KOTOpBI Hammcall OZHOWMEHHYIO CTaThblO MPOTrPaMMHOTO
xapakrepa B 1949 r. 1 3ad4BUI B HEH, 4TO HCIOIb30BAHNE COBPEMEHHOW Hay4YHOW METOJIOIOTHH U
TEXHOJIOTUH (B TOM YHMCJIe KHOEPHETHUECKOI) JOJIKHO CTAaTh CIIETYIOLINM IIaroM B pa3BUTHH IIPaBa.
KoMmrmbroTepHble METOABI M CHCTEMBI, YYWTHIBas HMX TOTJAIIHHK YPOBEHb, BOCIHPUHHMAINCH
IOPUMETPHUKOM OOoJbllle KaK NepCleKTHBHbIE (B 0003puMOM OyaylieM) HHCTPYMEHTaJbHBIC
Cpe/ICTBa ISl TIOBBIIICHHS! TTPOM3BOANUTEIBHOCTH BhIYHCIEHUH. JIOBHHTEp, B YACTHOCTH, CTaBHII
BOIPOC O CO3JIaHMW MAIIMHBI JUIS pa3peleHus CyqeOHbIX JieN, HAUBHO Iojlaras, 4To CJIOKHOCTb
9TOH 3aJa4M COCTOUT B OTCYTCTBMM IOPHIMUYECKHX TEPMHMHOB, KOTOpBIE, MOAOOHO mUdpam u
CHUMBOJIaM, MOXHO BBECTH B MamuHy [71].

C xonna 1950-X r. unen OpUMETPUKH U BHEIPEHHUs KUOSPHETUKU B IPABO CTaM MOMYJSPHBI HE
ToNIbkO B AMepuke, HO U B EBpone. Tak, Jlrocken Menb, poaBurasi ujeu UHTETPAlUU JIOTUKH,
ByneBoii anreOpsl ¥ JBOWYHOM 3amKCH, MPEIJIOKHI CO3JaHHE YETHIPEX THIIOB IOPUIMYCCKHIX
Mamme»: 1) «uMHQOpMAlMOHHOW MAalIMHBIY JUIS TIOMCKa TpaBoBOM MH(pOpMAaIHy,
NPEIOCTABIISIONIEN PEeBaHTHBIE 3JIeMEHThI MHQOpMAIMK, CO3/IaHHE KOTOPOHM Mpelonaraioch
MyTeM CHCTeMaTH3aluu (KoAM(HKALMKM) TPaBOBOM WHQOpMAIMK, OIpeAeieHus: 0a30BbIX
IOPUINYIECKUX TOHATUM MO THUITy KJIIOYEBBIX CIOB M KOJOHTHUTYJIOB M IPEICTABICHUs IaHHBIX,
MOHSTUHM, CUTyallMd W mpobjeM B OuHapHOW (opme; 2) «KOHCYJIbTALMOHHOM MAaIIWHbD»,
BBINOJHSIONICH Ha OCHOBE JIOTUKH M BylieBoit anreOpbl KOHLENTYaNbHBINA U PENISIMOHHBIN aHaIH3
U JaroIiei TOYHBIA OTBET Ha IOCTAaBJICHHBIN IMepesa Hell I0pUIMYecKHi BONpoc; 3) MamIduHbI IS
MIPOBEPKU JIOTMYECKON COTJIACOBAHHOCTH IIPABOBBIX TIOJIOKEHMH 3aKOHOB HIJIM KOHBEHIWI; 4)
MAIIHHBI I IepeBOAa IOPUINIecKuX TeKCToB [80].

VY3ke B HayaJie CBOEro IyTH IOpPUMETPHKA Pa3BHBasa UJIEH KOMIIBIOTEPHOIO XpaHEHHs U IOHCKa
nH(OpMaIUH, TOCKOJIBbKY 3TO ObII HACYIIHBII SKOHOMHYECKHI BOIIPOC, CBA3aHHBIH C COKpalLIeHHEM
OIlepallMOHHBIX 3aTpaT Ha paboTy ¢ 3alpeenbHbBIMU U1 PyYHOTO IIOHCKa 00beMaMy HH(OPMAaLUH.
B cepenune XX B. OCHOBHBIM METO/IOM OpPTaHHU3alMHU IOMCKAa IOPUANYECKUX IOKYMEHTOB ObLia
«py4dHas» HHIEKCAIHs JOKYMEHTOB C MOCIEAYIOINM «PYYHBIMY» IPOCMOTPOM HHIEKCOB. PazBuTne
KOMITBIOTEPHBIX CHCTEM M METOJOB IOCTaBWJIO Ha OOCY)KICHHE TPU OCHOBHBIX MMOJXOJa K
KOMIBIOTEPHOMY PpEIICHUIO S3TOH MpoOiemsbl: 1) mepeBoq WHAEGKCOB W TOHWCKAa IO HHUM B
JNEKTPOHHYIO (QOpMY; 2) KOMIBIOTEPHOE COBEPIICHCTBOBAHUE CAMOr0 METOJa WHIACKCALUH; 3)
MIepex o] OT MHICKCAIMH K TIOJIHOTEKCTOBOMY 3JIEKTPOHHOMY HOMCKY. Bee Tpu HampaBieHus, XOTS
U TO-pasHOMY, Jald pe3yiabTaTbl, ObUIM BOCHPHHATH B JAJbHEHIINX HCCICAOBAaHUSIX U B
OIIPEIETIEHHOIN Mepe UCIONIB3YIOTCSI 10 CHX TOP.

2.1. kcnepumeHTbI MopraHa

CaMbIM OYEBHIHBIM CTall IIEPEBOJ] B AIICKTPOHHBIA BHJ OYMaXkKHBIX HHJICKCOB M MOHMCKA 110 HUM.
INomxon obecrieurBasl MHASKCAIMIO JOKYMEHTOB IYTEM HX 3KCIIEPTHOrO aOCTparMpoBaHHMS, a
TTOMCKOBBIH 3aIIPOC COCTABIIUICS Ha OCHOBE SKCIIEPTHO chopmupoBaHHOTO MHAEKca. B xoHme 1950-
X IT. B YHUBepcutete mTata Oxraxoma PobepT Mopran ucnons30Bail KOMIBIOTED VI HHISKCHOT O
TIOMCKA, Ha3BaB €ro MOAXO0/I0M IIPABOBOTO BOIPOCAY.

PedepupoBannas ropuaudeckass OMONMOTEKa MEpeBOAWIACH B 3JIEKTPOHHBINH (opmar, 49TOOBI
obecreunTs MOMCK 1Mo pedepaTam. IKCHEPT OCYIIECTBILUT ClIeNU(pUKANNIO ITyTEM aHan3a (aKToB

149

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

KOHKPETHOTO JIeNla JUIS ONPENeNICHUs] CYTH TPaBOBOTO Bompoca, (GOPMYIHPOBAI €ro B BHIC
FOPUINIECKH OCMBICIICHHOT'O KOHIIENTa (CI10Ba, pa3kl, maparpada u T.1.) ¥ HHICKCHPOBAJ 3a1poc.
[To mdpoBOMYy HMHIIEKCY KOMITHIOTEP BBIIABAJI CIIUCOK PEICBAHTHBIX FOPUIUYCCKIX HCTOYHHKOB,
TpeOOBABIINX yXKe SKCIEPTHOro 0TOO0pa [86].

2.2. 9kcnepumeHTbl MenToH n BeHcuHra

B 1959-1960 rr. YHuBepcurere 3anaaHoro pe3epBHOro paiiona (r. KimuBieHI) B SKCIIepUMEHTE
oxeccukn Menton u PoGepra beHcuHra k OpHauYecKuM TeKCTaM OBUT HPUMEHEH METO
«CEMaHTHYECKH KOAMPOBAHHOIO pehepHpOBAHMD», CTPATETMUECKON IIENbI0 KOTOPOTo SIBIISUIOCH
CO3JjaHMe HOBBIX 3HAHUH Ha OCHOBE M3BECTHBIX. CyTh IMOIXona CBOAWIACH K aOCTparupoBaHHIO
TEKCTOB, MHIEKCAIMH, HOPMAJIN3alMU sI3bIKa (TEPMHHOJIOTHN W CHHTAKCHCA) M HCIOJIb30BAHUIO
MAaIIMHHOTO Te3aypyca Ul XpaHeHUs M TOMCKa TeKCTOB. Pa3zpaborunkamu ObUIH 3aKOAWPOBAHBI
craths 2 EqunoobpasHoro Toproeoro komekca CIIA 1952 r. 1 HECKOIBKO CYICOHBIX PEIICHUM.
OCHOBY PKCIIEpUMEHTa COCTaBJISUI CIELUATIBHO CO3/ITaHHBIM CeMaHTUYECKUI KOJI, TPEeICTaBIIABLINN
co0oif coueraHue Te3zaypyca M MHOTropazMepHOi KiaccM(PUKalMM Hay4HOW TEPMHUHOJIOTHH, B
OCHOBE KOTOpOW HaxOIWJINCh HWHJEKCHbIE TEPMHUHBI, OTOOpaHHBIE M KiIacCH()HUIMPOBAHHBIC
SKCHEPTHBIM MyTeM. 3HAYCHHsI TEPMHHOB (CJIOB, BBIPAXKCHUI) KOJUPOBAIUCH «CEMAHTHUCCKUMHU
(dakTopaMu» M «YHCIEHHBIMH (AKTOPaMm», a OTHOIICHHSI MEXIY TEPMHUHAMH — «POJIEBBIMU
HWHAUKATOpaMm» U 3HaKaMU ITYHKTYalluu.

KoaupoBka mMena CXOACTBO C YHUBEpCaJIbHOW jecsTuuHOM kinaccudukamumei I1. Otne m A.
JladoHTeHa, HO pU ATOM HOPMAHM3ALMS SI3bIKA U MCIIOJIb30BAHME MAIIMHHOIO Te3aypyca JaBajiu
BO3MOKHOCTb OCYIIECTBIISTH TIOMCK HE TOJNBKO IO KOHIENTaM (a0CTPaKTHBIM 3HAYEHHSIM), HO U 110
KOHKPETHBIM TE€PMHUHAM, a TAKXE B OTUACTH YUWUTHLIBATH O6LHPIﬁ CMBICJI TTIOUCKOBOI'O 3arpoca "
abcTparupoBaHHOr0 JOKyMeHTa. [IpouenypHo moaxo npeaycMaTpuBall KOAUpOBaHUE pparMeHTOB
TEKCTa U TIOMCKOBBIX 3aIllPOCOB C MOCIEAYOIIeH naeHTuuKaimei pedepara, coaepkalero Koabl
WJIN DJIEMEHTBI KOZIOB, KOTOPhIE COOTBETCTBYIOT JIOTHUECKOI KOH(PHUIYpaIiK MOUCKOBOTO 3arpoca

[81, 82].

2.3. dkcnepumeHTbl Xoptn 1 Kena

B 1958-1962 rr. B YHuepcurere [Iutrcoypra non pykoBoacteom xona Xoptu u Yunbsima Kena
MIPOBOAMJIOCH HCCIIEAOBAHUE II0 DJIEKTPOHHOMY XPAaHCHUIO, YIOPSJOYECHUIO HOPHIMYECKUX
MaTepHajoB U IOUCKY PEIEeBaHTHOH MH(OpPMALMH, MMOTydHBILIee Ha3BaHUA MOAXO0IA «KIFOYEBBIX
CIIOB B KOMOMHAIIMM» WIH «IHTTCOYPrcKoil cucTeMbl». B Xone mccrmenoBaHMs CTATYTHI INTaTa
[encunpBanus oobeMoM 6230529 cioB (Bimrodast 2815340 obmux cioB), 00beanHeHHBIX B 31113
CEeKIIMH CTaTYTOB (IOKyMEHTOB), OBLIIH HaOpaHbI, IPOBEPEHBI, UCTIPABIICHBI BPYUHYIO, TIEPEBEACHBI
B JIEKTPOHHBIA BUA. M3 BeTpedaBImMXCsl B cTaTyTax 24 ThIC. CIIOB (IIPUBEACHHBIX K HAYaJIbHBIM
(dopmam), UCKITFOUYasi IMEHA cOOCTBEHHBIE W 112 0OmIX CIIOB, HE HMCIOIH30BABIINXCS B TIOMCKE,
OBLT cocTaBieH an(aBUTHBIA CIOBapb, a YK€ W3 Hero ObUI CO3/IaH IOPHIMYECKUH Tezaypyc, Ha
OCHOBE KOTOPOT'O COCTABIILICS TOMCKOBBIM 3ampoc Ui 0oliee TOYHOW IMOCTAHOBKH ITOMCKOBOM
3aJaum.

ITouck oOecrieunBancst MO OTAETBHBIM CIOBAaM WIM MX KoMOuHaimsaMm. KasyambHas mpoBepka
TOYHOCTH TIOMCKA ITOKa3ajia, YTO «PYJHOID» MOUCK BBIABWII 42,6% peleBaHTHBIX CTATYTOB IPOTHB
97,9% B KOMIBIOTEPHOM TIIOMCKE, OJHAKO IIOCICIHUI BBIJABAI TAaKK€ HWHTEHCHOHAIBHO
HEpeJeBaHTHBIE OTBETHl W IIOTOMY TpeOOBad SKCHepTHOro aHammsza [45, 46, 49]. ITuonepckue
pabotsl XopTH MproOpenn BCEMUPHYIO U3BECTHOCTh M TIOCTYKHIM TEOPETHUECKUM 0a3UCOM IS
JaTbHEHIINX U3bICKaHUH B 00IaCTH MOIHOTEKCTOBOT'O MTOMCKA.

2.4. N"uchopMaLMOHHO-NONCKOBbIE CUCTEMbI MHAEGKCHOIO TMNa

B manmpHeliieM OCHOBY 3JIEKTPOHHBIX MHACKCOB OBLIH TMOJOXEHBI pa3pa0OTaHHBIC B O0IIEM BHIE
Xancom Jlynom wunnmekcammss KWIK (xmoueBoe cioBo B koHTekcte) u SDI (BBIOOpOUHOE
150

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

pacripocTpaHenie HH(GOPMAIHN), KOTOpbIEe BO MHOIOM OBLUTH BOCIIPHHSTHI M B MOJHOTEKCTOBOM
noucke. Tak, B 1964—1966 rr. B npoekre «Law Research Services» mox pyxkoBojacTBoM Diinaca
XonmeHdenbra ObUT peann3oBaH MHIACKCHBINH IOAXOA HAa KapTOTeKe B 0oObeMme CBbIme 1 MIIH.
abCTparupoBaHHBIX Cy/EOHBIX PELIEHHH, a TMONCK 00ECHEeYMBAaJICS Ha OCHOBE INCKPUIITOPOB U
Byneseix onepaTopos [44].

B 1967 r. B benbruu Obi1 co3nan ManoOrokeTHbIH paBoBoit nHaekc CREDOC, ocHOBaHHEIH Ha
SDI u merone perpocriektuBHOro mnoucka; 6asy CREDOC coctaBunmu 60 ThIC. TOKYMEHTOB, a
Tesaypyc BiIrodan 6500 mepBHYHBIX KOHIICNITOB, KOTOphie B codeTaHuu ¢ S50 0a30BBIMU
KJII0YEBBIMH c10BaMu U 500 KIr0UeBBIMH JECKPUNTOPAMHU AaBaiu 31 Teic. TEpMHHOB [99].

2.5. MNonHoTeKCcTOBLIE MH(bOpMaLlVIOHHO-HOVICKOBbIe CUCTEMDbI

B cepenune 1960-x rr. Heckonbko uccienoBarenbekux rpynm B CIIA, Kanane u BennkoOpuranuu
MIPUCTYIIIIN K pa3paboTKe MMOMCKOBBIX CUCTEM IO MOJIHOTEKCTOBBIM ITPAaBOBBIM JOKYMEHTAM.
HawnbGonee w3BecTHBI OmBIT, Oiarojaps OBICTPOMY pacUIMpeHHI0O WH(OPMAlMOHHOW 0a3bl H
KOMMeEpIMaIN3aliK pe3yiabTaTa, — 3To nouckoBas cucrema OBAR, uccnenoBaHus mo co3gaHuto
KOTOpO# NnpoBoAwIHCh B 1964—1967 rr., a B 1968—1970 TT. MIepenuin Ha 3tan pa3pabOTKH peantbHO
paboraromeli CHCTEMbl HHTYHTHUBHO MTOHSITHOT'O TTOMCKA 10 KIIFOYEBBIM CJIOBaM, ONEPHPOBABILETO
Ha MacCHBE MOJHOTEKCTOBBIX 3aKOHOJATEIBHBIX U CYAeOHBIX JOKyMeHTOB mTata Oraifo [43, 128].
K 1973 r. pacmupennas cucrema, nepeumenoBanHas B LEXIS, oxBaTeiBana mpaBo HECKOIBKUX
IITAaTOB W psif orpacieil ¢penepanbHoro npasa CILIA B o6beme okono 600 muH. cumBonoB [106].
Opmnaxko LEXIS eme He uMena aBTOMAaTHUECKOrO Te3aypyca, MpeAararoniero CHHOHUMEI,
AQHTOHMMBI, O0000IIeHHs, TpamMMaTHyeckue uin opgorpaduueckue BapHaHThl BBIOPAHHBIX
IMOUCKOBBIX TCPMHWHOB, a JIOTMKa IIOMCKa 6])1.]'[3 OorpaHM4€Ha ByJ'lCBbIMI/I orneparopamu,
JONIOJTHEHHBIMHU YKa3aTEIsIMU PACCTOSHIS U HalpaBiIeHUs KOHbIOHKIMH [120].

B BenukoOpuTaHMM KOMIIBIOTEPHBIE HCCIENOBAaHHSA B OOJACTH MPABOBBIX MOHCKOBBIX CHCTEM,
BJIOXHOBJICHHBIE paboTamMu XOPTH U U3BECTHBIE KaK «OKC(OPICKUE IKCIIEPUMEHTBI», BElHCh ¢ 1961
T. IOPUCTaMU U CTaTHCTHKaMHU 1oJ pykoBoacTBoM Kommua Tammepa [121]. bnaronaps ux ycrnexam
B 1968-1969 rr. Bpaiian Hubnerr u Hopman Ilpaiic paspaboranu Ha si3bike Fortran cucremy
STATUS, o0ecrieyrBaBIIYIO KOMIIBIOTEPHBIH TOHMCK IO CTaTyTHOMY mpaBy CoeIMHEHHOro
KoponesctBa B 00yacTi aTOMHOW 3HepreTHkd (okono 150 ThIC. CIIOB) Ha OCHOBE YaCTOTHOT'O
cnoBaps u uHAekcupoBanust Tuma KWIC [90].

B 1967-1973 rr. B YuuBepcutere Kymnc B Kunrcrone mox pykosonctBom Xeio Jloydopaa
paspabatsiBainicst nouckoBblii cepBuc QUIC/LAW, xoropblid BrIO4YMI 0a3y JAaHHBIX U3
MIOJTHOTEKCTOBBIX MEPECMOTPEHHBIX cTaTyToB KaHampl Ha aHIIMICKOM M (paHIy3CKOM SI3BIKaX,
HeopUIMaNbHYI0 KOHCOMMAAIMIO (elepalbHBIX INPHKA30B W MpaBwil, 0a3y MAaHHBIX W3
TIOJTHOTEKCTOBBIX CY/EOHBIX PEIICHWH W OTYETOB M JIBE HAaydyHbIE 0a3bl JaHHBIX, COAEPKaBILHUC
cBbilie 67 ThIC. M30paHHBIX pedepaToB ¢ Oubmmorpaduyeckumu 3amucsmu [65]. B 1968 r.
KOJDIEKTHB Tof] pykoBoacTBoM JKaka bymie n Dmkana Maxkaiis Hauan paboTy HaJ aBTOMATHIECKAM
MIPaBOBBIM TIOMCKOBBIM cepBrucoM mo mpeneneHtaM DATUM, um k 1971 1. Opu1 co3man OaHK
MTOJTHOTEKCTOBBIX CYIEOHBIX aKTOB 00beMOM OKoiIO 140 MIH. CHMBOJOB; METOIOIOTHIECKYIO
OCHOBY CHCTEMBI COCTaBIJIH JIBYS3bIUHBIN Te3aypyc U byneBa joruka, a moucK OCyIIeCTBIISUICS Ha
AHIVINICKOM M (DpPaHILy3CKOM S3bIKax, 00ecTeunBas 61arofaps Te3aypycy y4eT CHHOHUMHYHBIX U
6osee obmux TepmMuHOB [14, 73].

[MomoGHEBIE pa3paOOTKU BEMHCh M B CTpaHaX KOHTHHEHTaIbHOW EBpomsl: HampuMmep, B 1lIBermm
1972 r. yxe Obuia co3maHa TpaBoBas WHPOpManMOHHO-TIonckoBas cuctema IMDOC, 3atem
BHeApeHHas Taxke B Ouamstaanm mon HazBanmem MINTTU [66], a B @PI' ¢ Havama 1970-x T.
aKTHBHO pa3pabaTeiBanach nHpopMannoHHO-TTonckoBas cuctema JURIS [16].

151

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

2.6. MeToabl ycoBepLeHCTBOBaHUA MH(bOpMaLIMOHHO-nOVICKOBbIX cuctem

Psn mocTwkeHWI B BBINICYKAa3aHHBIC CHCTEMBl HE OBUIM WHTETPHUPOBAHBI, HECMOTPS HE
npoBoAuBIIKEcs uccnenoBanus. Tak, B koHue 1960-x rr. Konmun Tanmep cTaBuil SKCIIEPUMEHTHI
TTOMCKA IT0 MAaCCHUBY CY/ICOHBIX aKTOB C UCITOF30BaHHEM BHYTPUTEKCTOBEIX CCHUIOK HA MPEIIEACHTHI
[119], a ¢ 1965 r. mpoekTHas rpynma YuibsMa ODIApUIKka paboTana HaI YIydIICHUEM
ABTOMATU3UPOBAHHOI'O WHIEKCHUPOBAHUS M IMOMCKA 32 CUET MaTeMaTHYECKOT'0 MOJEIHPOBAHUS
YaCTOTHOCTH MTOUCKOBBIX TEPMUHOB U aHAJIM3a UX CTATUCTUYECKON 3HAUYUMOCTH [28].

[TosToMy TmoOCIe BHEAPEHHS VCIEIIHBIX HH()OPMAIOHHO-TIOUCKOBBIX ~ CHCTEM BEJIHCH
HCCIIEIOBAHUSl [0 YIYYIIEHUIO TOWCKA Ha OCHOBE KIIOYEBBIX CJIOB, CTaTHCTUYECKOTO U
CEMaHTHUYECKOTO TMOAXOJIOB, a TAKKE Pa3HOOOPA3HBIX METOJOB, CPEIM KOTOPHIX byneBa Jioruka,
peryisipHble BBIpa)KEHHUSI, IPUMEPHOE COBMAJIEHHE CTPOK, KIACcTepu3allusi, YaCTOTHBIN aHallu3,
Te3aypyc, MapCUHT ¥ MOHUMaHHE €CTECTBEHHOTO SI3bIKa, (POPMHUPOBAHHIE TUIIOTE3, KOHIICTITYyaIbHOE
NpecTaBleHNe, COMOCTaBICHUE 0 MPaBUiIaM, Pa3INuHbIe BUbI PACCYKJIEHUH U T.1I.

[oxanyit, HamboNee METOMOJOTMYCCKHA 3HAUYMMBIMU HATPABICHUSIMH B 3TOW 0O0JACTH,
BBIXOJSINIMMU 32 JIAJIeKO paMKHM TMOWCKOBBIX 3ajlad, CTalM KOHLENTYyaJbHOE MOJEIUPOBAHHE U
MOJIETIM TIPEJICTaBJICHUS] 3HAHUM, KOTOpble B HEKOTOpBIX uccienoBanusx [130] gaxe cranu
00bEIMHATHCS.

2.7. KoHuenTyanbHoe moaenupoBaHue

Hcrnosnp30BaHWe KOHIENTYaJIbHOTO MOJAENMPOBAHUS HAINpaBIEHO HAa JIOCTHKEHUE SI3BIKOBOM
BBIPA3SUTEIIBHOCTU U TO3BOJISIET BKJIIIOYATh B CUCTEMY KOHLENITOB €ANHUYIHBIC q)aKT])I, HN3BJICKACMBIC
U3 BBOAIMMO# MH(OpMAIIUK, U TEM CaMbIM, B YACTHOCTH, pelIaTh MPoOJIeMy CHHOHUMHYHOCTH [77],
HO OCHOBHasl Ipo0JieMa TaKoro MOAXO0AA COCTOUT B 00ECIICUeHUH CaMOOOHOBIICHUS I CUCTEMBI
KOHLIENITYyaJIbHO OPTaHU30BAHHOI'O IIOMCKA, IO3BOJIAIOIIETO HHTETPUPOBATH HOBBIE KOHLEITHI
[110], uro B obnacTu mnpaBa Ype3BbIYAWHO AKTYAJIbHO.

B xonne 1970-x rr. Kapons Xadnep Ha koHIEnTyaipHOW ocHOBe cratedd 3 u 4 ExuHooOpasHoro
toproBoro kozaekca CIIIA noctpouna cucremy LIRS ¢ 6a30ii 3HaHMIA B BUI€ CEMaHTHYECKOM CETH,
cojieprkaitei okoso 300 BepIUH U MO3BOJISBIIICH BECTH MOUCK 110 MHPOPMAIIMOHHOMY MaCCHBY U3
186 cynednbix aemn, 110 cexkuuii kogekca u 188 opunmansHeIX pazbsicHenuit [42].

B 1980-x rr. 3TOT MOIXOA OBUT YCIOKHEH OPYIMMH METOJIaMH W MPEACTABIICH, HalpuMmep, B
amepukaHckoii cucteme RUBRIC, BiitrouaBIeil CIoXXKHBIE TpaBWIa PAacCyKIEHH Ha OCHOBE
KpPUTEPUEB, KOHIIENITOB M HEONPENCICHHBIX WHTEPBAIBHBIX 3HAUCHUI C MHCIOJIB30BAHUEM
TEXHOJIOTHI MCKyCCTBEHHOro mHTeiekTa [123-125], a Taroke B HopBexckoin cucteme ARCTIS ¢
Te3aypycoM, OTPaXKAIOIINM CTPYKTYPy HOpMaTHBHOTO Maccusa [12].

2.8. Mopenun npeacTaBneHUA HOPUANYECKUX 3HAHUA U COBPEMEHHble
npoGnembl

Monenu NpeACTABICHUS IOPUOMYECCKUX 3HAHWH OOECIEUMBAIOT — HMHTEIUIEKTYAIHU3ALHUIO
HH(OPMAIMOHHO-TIPABOBOTO ITOHUCKA. TakK, HEKOTOPHIE YUCHBIE BHICTPAHBAIOT IOMCKOBBIE MOIEIH,
OpHEHTHPYSICh Ha kinaccudukammioo u Qakropuzanuio [138]. Jpyrue yuensie pa3pabarbiBaioT
NpeIMETHO-OPUEHTHPOBAHHBIE ~ OHTOJOTHH, OOECIeUHBalOIe Oojiee BBICOKHH ypOBEHb
BEIpazuTensHOCTH, YeMm Tte3aypyc [40, 108]. IlpeanmpwHMManNWCh TONBITKH BBICTPAUBATH
IOpUIMYECKUE OHTOJIOTUHM Ha OCHOBE SI3bIKA OINHCAHMS OHTOJOTHH JJIsi CEMAHTHYECKON MayTHHBI
(OWL): mampumep, B 2005 1. B mpeaqMeTHO-OPUCHTHPOBAHHON OHTOJOTHH IS IIpaBa
HHTEJUIEKTya bHOH cobctBerHOCTH RDDOnto [30].

Ho u ceifvyac, kak ¥ B paHHUX KCIIEPUMEHTaX, 00pabOTKa M BBOA MCXOIHBIX JaHHBIX B IIPABOBBIC
HUH(OPMAIMOHHO-TIONCKOBBIE CHCTEMBI TPEOYIOT 3HAYUTENBHBIX 3aTpaT SKCIepTHOro Tpyaa. Kpome
TOrO, CTaB CEPBUC-OPHEHTHPOBAHHBIMH, OOJNEe TMOJHBIMH M TOYHBIMH 3a CUET HCIIOJIb30BAHMS
KOMIUIEKCOB JIOTHYECKMX, MATEMaTHYeCKHX, CTaTUCTHYECKMX M KOMIIBIOTEPHBIX METOJIOB H

152

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

00JIETYUB PYTHHHYIO pabOTy IOPUCTOB, 3TH CUCTEMBI IIOKa HE 00ECIICUMBAIOT MOJIB30BATEIBCKOM
MPOCTOTHl U BBICOKOH CTENEHH IMOJHOTHI M TOYHOCTU TMOKCKA /IS WHTCHCHOHAIBHO CIIOXKHBIX
3aIPOCOB.

3. OmeyecmeeHHas npasosas KU6€pHemUKa

B CCCP B 1957 r. J. T. DOmkyOboB Hayanm paboTy HaJx aBTOMaTHU3alMed CHCTEMBI
JaKTuiIockonuueckor perucrpamuu, a JI. A. KepuMoB mHMImupoBan paboTy Haja CO3JaHUEM
CHeUUaIbHOr0 MH(POPMAIIOHHOTO SI3bIKa B 00JacTH 1paBa [54]. DTu 1Ba HampaBJeHUs U 3aajH
BEKTOPHI Pa3BUTHSI KOMITBIOTEPHBIX CUCTEM M METOZIOB B IPABOBOM cepe, MOCKOIbKY B PELICHHH
OOJBIIMHCTBA 33/1a4 IOPUIUUECKOH KHOSpHETHUKI» (Ha3BaHHOW Tak akageMukoMm A. U. Beprom B
1962 r.) He OBUIO METOAOJIOIMYECKOro Tmporpecca. Hampumep, npeanpHHUMAaNNCh MOMBITKH
BbIpa0oTaTh MOJXOA K aIrOpUTMHU3alMK (IPOrpaMMHPOBaHHIO) IOPHIAMYECKOrO Mpolecca H
nokasbianus [20, 62, 129], HO UX BBIYUCIUTENbHAS COCTABIIAIONIAS ObLIa KpaliHe citaba, XOTs U 0
cel ieHb [57] nenaroTcsa NONBITKY peaHUMAIH ITOH HJEH.

3.1. KpumunHanuctuyeckme aBTOMATU3UPOBAHHbIE WH(OPMALMUOHHLIE
cucTeMbl

PeanuzoBannblii JI. I'. DmKkydoBeiM coBMecTHO ¢ C. A. JINTMHCKMM KOMITBIOTEPHBIA METOJ| pelal
npobiieMy paboThl ¢ OOJBIIMM OOBEMOM PETHCTPAIIMOHHOTO MaTepuajga 3a CYeT KOIOBOIO
NPE/ICTABIICHUsST OTIEYaTKOB W MAaNbLEBBIX CJEJOB. B OCHOBY HOBOrO MOJX0Ja, BMECTO
(dbopMynsIpHOro, OBLIM IOJOXKEHBI Y4eT OJHOPOAHOI'0 YAaCTHOTO TpH3HaKa (MECTOMOIOKEHHS
JieTaliel NIanuUIIPHOTO y30pa Ha IoJIe OTIIeuaTKa), KOOPIMHATHOE KOAUPOBAHUE M HICHTH(DUKAIHS
Ha OCHOBE 30HAJILHO-TOYEYHOT0 CPaBHEHUS OTIIEYaTKOB M MaJlbLEBBIX ClIeoB. B pamkax HOBOro
MOJX0/1a JIBa aBTOPCKUX KOJUICKTHBA yke B 1957-1959 rr. monmanu mecTs 3aBOK Ha aBTOPCKUE
nzobperenus, B 1959 r. cocTosIMCh UCIBITAHUS KCIEPUMEHTAILHOTO 00pa3ia (pOTOIEKTPOHHOM
MOJIENIN JTaKTUJIOCKOIIMYECKOro aBToMaTa, a B 1960 r. ObIT co31aH NMPOMBIIUICHHBIH 00pasern
CHeIMaIn3upOBaHHON JakTuiockonndeckoii OBM «Munck-100» [26, 100]. Ha tor MoMmeHT B
00JIacTH aBTOMAaTH3allUK AakTuiockonuueckoit skcneptuzsl CCCP Gonee yeM Ha JecsiTuieTHe
olepeaul Jpyrue CTpaHbl, TJe aHaJOTH4HbIH nmoaxox K paspadorke A/INC (APIS) Tonbko k 1969
r. Obu1 Ipopaboran Jxxo3edom Yarcreiinom [136].

OCHOBHOWl ~ KOMIBIOTEPHOH IpOOJIEMOH B NPaBOOXPAHUTEIBHOM CETMEHTE CYMTAlach
aBTOMaTU3alUsi NPOLEAYPhl MACHTU(GHKAINK JIMI M OOBEKTOB, M OHAa pelajach pa3paboTKoH
CHELHUATIBHBIX AJITOPUTMOB U HCTIOIb30BAHUEM CTATHCTUYIECKUX M BEPOSITHOCTHBIX METOOB [32, 95,
112], a OCHOBHBIMHM 3a/1la4aMHU CTaJIM TOYHOCTh, CKOPOCTH U TIOJIHOTA HccienoBanus. Hampumep, B
1964 r. Jlurosckuit HUMCD coBMecTHO ¢ stabopaTopueil TeopeTnyeckoir kubepHeruku JII'Y
MPOBEN YCIIENTHBIE SKCIIEPUMEHTHI B 00JIACTH MMOYEPKOBETIECKOM IKCIIEPTH3BI, TIOJIOKHB B OCHOBY
pemienust 3aja4 uneHtHdukampu 0 W auddepeHIManMi HOYEPKOBBIX OOBEKTOB
alMpPOKCUMALMOHHBI TOAX0A IO TNPHHLOUIY «oOydaromiefics MaIliHBD, KOTOpas IpH
pacno3HaBaHMM Trpauyeckux oOpa3oB HE HCIONB3YeT 3apaHee 3aJaHHbIe NPH3HAKH, a
«BBIPa0ATHIBAET» UX caMa, 00y4asch PacIlO3HABAHHIO Ha TPEHHPOBOYHOM ITOCIIETOBATEINEHOCTH 10
PEKYypPPEHTHOMY KOHEYHO-CXOSIIEMYCS aITOPUTMY PELICHUs CUcTeM HepaBeHCcTB [60, 61].

[ocme 1970 r., xorma aBTOMATH3AIMS ITOCTETIEHHO MPOHUKIA B MPABOOXPAHUTEIHHYIO CHCTEMY,
WCCIICIOBAHUS BHOBH AKTHBU3HWPOBAIMCH W PACIPOCTPAHIUIUCH Ha aBTOpoBequeckyio [134],
moptpetHyto [140], cymeOHo-aBTOTeXHHUYECKYIO [27], Tpacomormueckyro [39] m mpyrue BHUIBI
SKCHepTH3 (MCCIIEAOBAHMIA), a TAaKKe HA pa3iNYHBIC BUABI YIETOB: KPHUMHHAIACTHYECKHX [92],
anMuHUCTpaTUBHBIX [113] 1 onepatuBHBIX [36]. OmHako, HE cunTas BHEAPEHUS OYEBHUIHBIX IS
CBOETO BPEMCHH TEXHHUYECKUX PEIICHWH (HE CIeMU(PUIHBIX I IpPEeIMETHOH 00NacTH IpaBa),
TOJBKO K KOHITY 1980-X rT. BeTOMCTBEHHOW HayKOH OBLIN MOTY9eHbI 3HAYNMbIE METOIOTIOT NI ECKHIE
pe3yNbTaThl B 00JIaCTH KOMITBIOTEPHBIX CHCTEM [56].

153

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

3.2. Opngnyeckmn MHPOPMaALIMOHHbIN A3bIK U UH(POPMALMOHHbIN NOUCK

BaxHpIM HampaBJICHHEM CTaja aBTOMATU3aIlUs IOPHIMYECKON JESITETBbHOCTH C HCIOIh30BAHUCM
CICIMAThHO CO3JMaHHOTO HWH()OPMAIMOHHOTO S3bIKa, AJalTHPOBAHHOTO IS KOMITBIOTEPHBIX
BBIYUCIICHUH. DTU pabOTHI TEPBOHAYATEHO BEJIHCH Ha opuaindeckoM akymbrere JII'Y, B ToM dncie
COBMECTHO C 3KCIIEpUMEHTAIBHON JTabopaTopueil MamMHHOTO TepeBoja [4], HO, B OTIHYHE OT
IOPUMETPHKH, pEIaBIIell MOMCKOBYIO 3ajady JUIsl MPaBONMPHUMCHEHHS, OTCUCCTBCHHBIC YUCHBIC
CTaBUJIM 1I€JIb COBEPILIEHCTBOBAHUS MpaBoTBopuecTBa [50].

B mepBbie HECKOJIBKO JIET UCCICIOBAHUN TOMUHHPOBATH WJICH, TIOXOKHUE Ha MOIX0A MENTOH U
Bencunra, HO codyeraBimecs ¢ Te3MCOM Melst O TOJTHOM CHCTEeMaTH3alrH MTPaBOBON MH(OPMAIIUH:
JUTSl HavyaJia [peyiarajoch co3/aTh CeHaibHbIN (POpMaTN30BaHHbIN S3bIK, CTAHIAPTU3UPOBATH U
KJIaCCU(UITUPOBATH FOPUANICCKHE KOHIICTITHI, OTPEAAKTUPOBATh U (POPMaIH30BATh FOPUIUICCKUI
MaTepuay Ha OCHOBE OOIIMX MPUHIMIIOB CHMBOJIM3AIMH, CJIOBApsS TEPMHUHOB, JIOTMYCCKUX H
rpaMMaTHYECKUX CBSI30K, a TIOTOM pa3padoTaTh aJrOPUTMBI PEIICHUS Pa3HOOOPa3HBIX
topuandeckux 3amad [51]. HccnemoBanmst B obnactd MHGOPMAIMOHHOTO TOKMCKa, BKIIOYAs
pa3paboTky HH(MOPMAITMOHHOTO si3bIKa [48], B Havane 1960-X IT. CYMTANIKCh YCIICITHBIMU U, KaK U
SKCHEPUMEHTBI XOPTH, JICMOHCTPHPOBAIM HAMHOTO OOJBIIYI0 TOYHOCTh AaBTOMATHYECKOTO
MPaBOBOI'0 MIOMCKA, 10 CPABHEHMIO C «PYUHBIM»: 3% MpoIyckoB MpoTuB 53% cooTBeTCTBEHHO [55].
OllHaKO IOTIBITKA MCIIOJIB30BATH A3BIK-TIOCPCIHUK MC)K}Iy IOpUIUYCCKUM U MallMHHBIM SA3BIKOM
yIKe TOr/Ia IMCCOHMPOBAa ¢ aprymenTamu Meromya Bap-Xuiena, KOTopble JHCKPEHTHPOBAIIH B
MHUPOBOH HayKe UJIEF0 KOPPEKTHOI'O MAIIMHHOTO MePEeBO/IA.

B 1964 r. 66110 3asBJICHO, YTO KHOEPHETHKA HE TPUTOIHA JJIs CHCTEMATH3alluK MpaBa, B OTINYLE
oT peuieHuss MH(GOPMAIMOHHO-TIOUCKOBBIX 3aad [52], ¥ HccleqoBaTeNy MNMEepeKIOYMINCh Ha
npo0ieMy aBTOMATH3alMH CIIPABOYHO-WH(POPMAIIMOHHOW FOpUANYECKOi ciayxk0el [53]. O6a
HaMEYEHHBIX IyTH: IPOCTOE a0CTParMpOBaHHWE HOPMATHBHBIX AaKTOB C BBISBICHHEM B HX
COJIEpKAHUU OIPAaHMYEHHOTO KOJIWYECTBA OCHOBHBIX TEPMHHOB JUIS PELICHUS TIOMCKOBOM 3aa4u
(mopobuo ombiTy MopraHa) W METOAOJIOTHYECKHM TpoOiieMHass pa3paboTka MpaBOBOTO
MH(OPMALIMOHHO-JIOTHYECKOr0 SI3bIKA C YHUBEPCAJIbHBIMH BO3MOXKHOCTSIMH JUIS JIOTHYECKHX
orepanuii Haja IOpUIMYecKuM MaTepuaioMm [114], — okazamuck npoBalbHBIMY, U K Hadany 1970-x
IT. UCCIIEIoBaTeNIbCKas 3a/1aua Obuia peayuupoBana [137] no 3amafHOro ombITa, rje yxe Obuin
CO3/1aHBI IOTHOTEKCTOBBIE TIOMCKOBBIE CUCTEMBI.

3.3. OTeuecTBEHHbIe NHHOPMALUOHHO-MOUCKOBLIE CUCTEMbI

B 1973 r. mon pykoBojcteoMm C. C. MockBuHa Obu1a pa3paboTaHa Crenuain3upoBanHas (B 00nacTu
necHoro xo3siictea) UIIC «IIpaBo-1» [10, 29]. C 1976 r. mox pykoBoactsoM B. A. KombiioBa
cHayana ObUT pa3pabOTaH NpPaBOBOM Te3aypyc W3 S5 ThHIC. IECKPUNTOPOB C PONOBHUIOBBIMHU
oTHOWmIEHWsAMHU, a 3aTteM B 1982 r. BHeapena yrmBepcambHast AUIIC «3akoHOTATETBCTBOY,
MPE/ICTaBNsABINAS COOOM MOMU(UIMPOBAHHBIA THII yX€ HW3BECTHOM JIOKYMEHTAJIbHOM
nH(pOPMAMOHHO-TIONCKOBOM cucTeMbl. [lepen BBOZOM B CHCTEMY IOKYMEHTHI MPOXOAMIH
MIPEeBApUTENBHYI0 JKCIEPTHYI0 00pabOTKy IO NPUHIWITY CBOOOJHOTO HHICKCHPOBAHUSA, a
CO3JaHHBIN 3KCIIEpTaMU Te3aypyC aBTOMATHYECKH TIIOMONHSAJICA TPH BBOJAE IOKYMEHTOB, YTO
MIPUBEJIO K ero yBeiamdeHuto K 1989 1. mo 125 Teic. meCKpUITOPOB, M3 KOTOPHIX TONBKO AJist S5O THIC.
9KCTIEPTHI 33111 OTHOLIECHHSL.

Jluareuctraeckoe obecreuenne AUIIC Bkmowano MH(POPMAIMOHHO-TIOMCKOBBIA SI3BIK
JECKPUNTOPHOTO TUIA, a IOMCKOBOE MPEAIIICAHIE MOTJIO COJEPKaTh KIFOUEBBIE CIIOBA, TEKCTOBBIC
ponu, dakTorpaduUecKie AaHHBIE, CBsA3aHHBIE Jormdeckmmu omepauusmu (U, WJIW, HE) u
orepaTopaMu CpaBHEHUS TEKCTOBBIX moneil [133]. B skcnepumenTtax mo oreHke 3GQGeKTHBHOCTH
morucka Obutn momydeHBl 81% momHOTEI W 72% TOYHOCTH CHCTEMHOTO TOWcKa [5], dTo
JFICCOHMPOBAJIO C KPUTEPUSMH connanbHo-paBoBoit sddextusaoctn AUIIC, 060cHOBaHHBIMHY B
camoM xe BHUNC3 eme B nepuon paspadorku stoit AUTIC [19]. MeTomonorndeckuM BEHIIOM
3TOT0 3Tana MOXKHO CUUTATh JOKTOPCKyIo auccepTamiio B. A. Komsutosa [58].

154

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

B konme 1980-X rr. akTHBH3MPOBAJIHNCH TEXHOIOTHUECKHE pa3pabOTKU M OBUIM CO3JaHblI JPYTHE
AUTIC: «IOCUC» (1989), «I"apanT» (1990), «3akom» n «Konmekey (1991), «Koncynsrantllmocy
(1992), «Cucrema» (1993) u T.1. D11 pa3pabOTKH COMPOBOKAATICH HEMHOTOUNCIICHHBIMH (B CHITY
KOMMEPIMATTU3AIMA TPOAYKTa) MyONMKAIMsIMH, OOOCHOBBIBaBIIMMHU BHeApeHne B AUIIC
OTIIEIBHBIX TOCTHXKEHUHN TOUHBIX Hayk [33, 91, 94].

4. lpaso u mMemoodsbl UCKyCCMmeEeeHHO020 UHmMeJlJieKkma

[Moaxonpl K BHEAPEHHUIO KOMIBIOTEPHBIX METOAOB W MH(POPMAIOHHBIX CHCTEM B IMPEAMETHYIO
o0JacTh mpaBa, IOJYYMBIINE B COIMAIMCTUYECKUX CTpaHaX Ha3BaHHE MPABOBOH (FOPUIMUECKOM)
KHOEPHETHKHY, a 32 pyO0eKOM HMEHOBABILIHECS] HEKOTOPBIMH HCCIIE0OBATEISIMH «FOCKHOEPHETHUKOM»,
MIOMHMO TIPaBOBOM MH(OPMATHKH, KOTOpasi CKOHIIEHTPHPOBAIACh HA MH()OPMALMOHHOM IOHCKE,
BKIIIOYAJIH TAaK)KE HAIpPAaBJICHUE KHOCPHETUUCCKUX IOpUAMYCCKHX Mojenet [72]. Ycmexwu
KOMITBIOTEPHBIX HayK M NpaBoBoil nHpopmaTuku K 1970-X rT. cenany peajibHBIM KOMITBIOTEPHOE
MOJICTIMPOBAHHE HA OCHOBE IPOM3BOJHUTENBHBIX BBIYUCIUTEIBHBIX METOJNIOB, TIONy4HBIIee oOuIee
Ha3BaHUE «IPaBO M MCKYCCTBEHHBIM HHTEIUIEKT». IlepBEHCTBO NMOCTAaHOBKM BONpOCa B TaKOM
codyeTaHnM npuHauIexuT bprocy belokeneny u Tomacy Xenpuky, kotopeie B 1970 r. moansiu
BONpPOC O KOMIBIOTEPHOM MOJEIHPOBAHUY IOPUINYECKUX paccykaeHuit [15].

OTH UAEHU CTAIN OCHOBOH JUIsSl pa3pabOTKU NMPaBOBBIX IKCIEPTHBIX CUCTEM, OCHOBAHHBIX (B CAaMOM
obmem Buze) Ha 0a3ax 3HAHWIA M alrOpUTMax BBHIBOAA WM NPEAHA3HAUCHHBIX JUIS HAKOIUICHHS U
U3BJICUEHNS 3HAHUI B Y3KHUX MPEAMETHBIX 001acTAX MpaBa Ui SKCIEPTHOrO PelIeHNUs pa3InyHbIX
npobneM. [IpaBoBbIe dKCIIEPTHBIE CUCTEMBI BBICTPAUBAINCH 110 THITY I€AYKTUBHBIX PacCyXIeHUN
WU TIPELENeHTOB, YCIOKHSINCh 10 THOPHUAHBIX MOJENel, MOjeNell C HEeYeTKOH JIOTMKOH,
UHTETPUPOBAIIUCH C HEUPOHHBIMU CETSIMHU.

4.1. NpaBoBble 3KCNepPTHbIe CUCTEMbI Ha NpPaBuUNax UIn Kemcax

B 1972-1973 rr. B CIIIA nwmonep B 3toit odnactu JI. Topn MakkapT 000CHOBaNI U pa3padoran
MIEPBYI0 TPEAMETHO-OPHEHTHPOBAHHYIO JKCHepTHYI0 cucreMy TAXMAN, MO3BONSBIIYIO C
UCIIONB30BaHKHEeM (hopMan30BaHHBIX NpaBui noAriassl «C» raasbl I Hanorosoro xopexca CIA
1954 r. Ha ocHOBe KJ1acCU(UKALIMK BBOAUMON HHPOPMAIMHU BbIIABATh OPHIMUYECKOE 000OCHOBAHHE
IUIsl pelieHus 3aJadd OCBOOOXKICHHS OT IOJOXOQHOTO Hajora B Clydae HEKOTOPBIX THIIOB
peopranmzanuu Kopropauuit [76]. C ydeToM HAECKPUNTHUBHONW OrPAaHMYEHHOCTH CO3JaHHOMN
CHCTEMBbI U TIOHUMAHUsI HEUETKOCTH U ANHAMUYHOCTH KOHIIENITOB B Cy/1eOHOM npakTuke MakkapTu
k Hayany 1980-x rr. pa3paboran Ha s3bike AIMDS ycoBepieHcTBoBanHyto cictemy TAXMAN 11,
B KOTOPO# YCIOXKHUII CTPYKTYPY KOHIIETITOB MOJIENBIO «poToTHIl + nedopmanus» [78].

C 1984 r. B MaccauycerckoM yHuBepcurere peannzobsiBaics npoekT COUNSELOR no m3ydenuto
mpoOJIeM B CTPYKTYpe TUCKypca M 00pabOTKe TeKCcTa B paMKaxX MHTErPHPOBAHHOTO MHTepQeiica c
CHIIBHOU SKCTIIepTHOH cucteMoi. B xoze sToro mpoekta k 1987 r. DnBunoii Puccnang u KeBunom
Onumm Oputa paspaborana cuctema HYPO, kotopass mcmomb3oBana pacCyKOSHHS IO THITY
MIPELIeACHTOB Ha OCHOBE MH/IEKCOB («M3MEPEeHHUI») U paboTaia B MPeIMETHOW 00JIACTH HapYIIICHHS
KOMMep4ecKoii TaiHbl. BMecTo omno3HauHbIX 0TBeTOB HY PO reneprpoBana apryMeHTsI TSt HCTIa
Y OTBETYHKA, COMIOCTABIISIEMBIE C OJIATONMPUATHBIMA sl HUX ciaydasmu [101].

4.2. T'MbpuaHble NpaBoOBbIe 3KCMNEPTHbIE CUCTEMBI

K 1989 r. OnBuna Puccnang u J{»Bua Cxanak B rubpuanoii cucteme CABARET o0benunmm kefic-
mogxon HYPO c¢ monymem mo Tumy mpaBwi, OOECIEUMBABIINM TIPSAMYI0 W OOpaTHYIO MEITH
paccyXIeHuH, a TAKKe C IBPUCTHUECKAM YIPABICHUEM 3aJladaMi 110 CO3/IaHHIO apTyMEHTOB JUIS
noasiep Kk KoHKpeTHoW curyarmu. Cuncrema CABARET Oputa mporpamMMHON 000IOYKOM,
BBICTPOEHHOM HE3aBUCHMO OT JIOMEHA, & BRIYMCIIUTENbHBIE 9KCIIEPUMEHTHI IIPOBOIIIHCEH B 001aCTH
TOJTOXOJTHOTO Hanorooomoxkenus [102].

155

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

CJ0XXHOCTH B MOJIETMPOBAHHH IIPABOBBIX PACCY)KIECHUH (B 4aCTHOCTH, B (DOPMHUPOBAHUH TIPABHI,
00paboTKe eCTECTBEHHOT'O S3bIKa, TOCTPOCHNH 0a3 3HAHMIT) IPUBOAWIN K PE3KOMY OrPaHHYCHHIO
JOMEHHOH 00JlacTH, Ha KOTOpPOM paboTaim pa3pabaTbiBaeMble METOABI M CHCTEMBI. Jlis
MIPEOOJIEHHS] 3TUX HEJOCTATKOB MPEANPHUHUMAINCH MONBITKYA BBECTU B KA4ECTBE YIyUIIAIOLIETO
aJIeMeHTa HelipoHHbIe cetd. Tak, B 1991 1. ObuIa mpensioxkeHa apXUTEKTypa SKCIEPTHBIX CHCTEM
PROLEXS nms rereporeHHOro JOMEHa, B KOTOPOM Hpeiarajgoch 00beAWHUTH HEOJHOPOIHBIE
HCTOYHUKHU 3HAHUH 32 CUET NPUMEHEHUS K HUM Pa3JINYHBIX METOJIOB U SI3bIKOBBIX IPEICTaBICHUIM.
B skcriepuMenTax ObLia MCHONIB30BaHA JTOMEHHAsi 00JIACTh JATCKOTO TpaBa B 00JACTH apeHIIbI
HEIBIJKUMOCTH, B KOTOpOH OBUIM BBIAENEHBI YETHIPE TPYIIBl 3HAaHUH (3aKOHOJATENLCTBO,
MIPaBOBbIE 3HAHUS, SKCIEPTHBIE 3HAHMS M MPELEICHTHI), KaKaas U3 KOTOPBIX MMena COOCTBEHHOE
SI3BIKOBOE IIPEACTABJIEHUE U CHEUUAIbHBIA MeXaHU3M BbIBoAa. CHCTeMa Ha JaHHOW apXUTEKType
OblTa THOPUIHOM U MCIIOIB30BAJIA PACCYK/ICHUS] HA OCHOBE IPAaBHJI U KEHCOB, a TaK)Ke HEHPOHHBIE
cetu s oTOopa npereneHToB [135].

B nanbHeiimeM ruOpuan3aiys NpaBOBbIX 3KCIEPTHBIX CUCTEM U CTPEMIICHHE K MX JOMEHHOH HiIH
METO/I0JIOTUYECKON PacHIMpsIEMOCTH CTalli oM TpernoM. Hampumep, B ABctpanuu k 1993 r.
JTxetime TTommmn obocuoBan cucremy SHYSTER, ocHoBaHHYIO Ha Keiicax, HO mpeoOpa3yeMyro B
THOPUITHYIO CHCTEMY MNpH 3aIycke MoayJsi, ocHoBaHHOro Ha npaswiax. SHYSTER He Obut cBsi3an
C JOMEHHOH o00JacThl0 M JODKEH OBUT JIEMOHCTPHPOBATh MPHHIMIHUAIBHYIO TIPOCTOTY
OpraHHU3alH CUCTEMBI, [IOATOMY CO/IEpKajl MOAYJIM TOKSHU3AIMH 1 TApCHHTa, paboTaBIIne Ha Oa3e
NPELeICHTOB, W 0 BECy aTpUOYTOB BBIUMCISUT OJIM30CTh pPAcCMATPHBAEMOro Cilydasi U3BECTHBIM
npeueaeHTam [96]. K 1994 r. B CIIIA Katpun Cannepc B pazsutie nonxonoB HYPO u CABARET
npezactaBuia cucteMy ¢ HeueTkumu npasmiamu CHIRON s penieHnst orpaHUYEHHBIX PaBOBBIX
BOIIPOCOB HAJIOr000JIOKEHHsI. B 3Tol cucreme OBUTH HCIONB30BaHbl MPOTOTUIIBI (aOCTpaKTHBIC
KOHCEPBATUBHBIC TUIAHBI) PEIICHUH B 00J1aCTH HAJIOr000JI0XKEHH S, PACCYXKICHHS 110 TUIIAM KeiCOoB
U mpaBuil 1A Moaudukanuu (nedopManMy M ajanTalyM) 3aJaHHBIX IPOTOTHIIOB, a TaKKe
MO/JIaJIbHbIE ¥ MHTEHCUOHAJIbHBIC JIOTUKH ISl BhIpakKeHHs1 (pakToB U oTHoIIeHui [107].

4.3. AGCcTpaKTHble NPaBOBbl€ apryMeHTbl, WabsIOHbl «KIMMAaCCHOM JOCKU» U
CepBUC-OPUEHTUPOBAHHAA apXUTEKTypa

Bmecre ¢ Tem, B cepeaune 1990-x IT. KayecTBe MPOMEKYTOYHOTO UTOra HMCCIENOBAHHNA OBLIO
KOHCTaTHUPOBAHO, YTO HOMBITKH CO3aTh aITOPUTMBbI, KOTOPbIE MOTYT CAMOCTOSITEIIEHO pacCyXJaTh
IIPY TIPUHATHY PABOBBIX PEIICHUH, HE YBEHUYAUCh YCIIEXOM, ITOCKOJIBKY MOJIEIMPOBAHUE 3aKOHA
U TIOJpakaHUe IpoleccaM IOPHINIECKOr0 0OOCHOBAHUS OKa3aJMCh 0oJiee CIOKHBIMU M TOHKUMH,
YeM IepBOHAayalbHO Tpeanonaranocs [2]. I[lonummanme »sToro ¢akta TpaHchopMHUpoOBaIO
HCCIIEIOBAHUS IOPUIMYECKUX PACCYKACHUHN M IPaBOBOM apryMeHTAIH, U ¢ cepequHsl 1990-x rr.
MPaBOBBIE SKCIIEPTHBIE CHCTEMBI BCe Ooee CTall yXOIUTh U3 cepbl MOACTHPOBAHHNS PaBHIBHBIX
(B MaTepuaIbHO-TIPABOBOM CMBICIIE) CYXKACHUI.

bnaromapst unesm taunanackoro npodeccopa @ana Jlanra 06 aOCTpaKTHBIX MPABOBBIX apryMEHTaX,
orepabebHBIX HE3aBUCHMO OT METOAOB MX TeHeparwu [22-24], ycunust ObUTH IepeHanpaBieHbl B
chepy ropUINUECKOro quanora (Urp) U Bbioopa (KOH(IIMKTA) MPABOBBIX apTyMEHTOB. DTOT MOAXO/
MIPEAToIaraeT ypoOBHEBOE NPEACTABICHHE APTYMEHTAlMM M OTXOA OT HEMOHOTOHHOH JIOTHKH, a
00BEKTHO OPHEHTHPYETCS Ha HCCIENOBaHME IOPHAMYECKOTO AMANora, B TOM YHCIEC B CHUTYaIlUH
HETpaBOTHl BCeX CTOPOH. Takas mapagurma (B FOPHIMYECKOM CMBICIE — IpOLEcCyaltbHasl WIH
JIOKa3aTeNbCTBEHHAS) TOMYIHIa ITMPOKOE PACTIPOCTPAHCHNE M CUMTAETCS aKTYaIbHOH 10 CHX TIOp
[3,9, 11, 97, 98].

Kpome Toro, B HacTosiiiee BpeMsi IPEATIPUHUMAIOTCS TIONBITKH CO3/IaHMs O0Niee TEXHOIOTHYHBIX
CHCTEeM, ITOCTPOCHHBIX HA WCIIOJIb30BAHWM HOBEHIIMX KOMIBIOTEPHBIX IOCTIKEHHHA B 00JIacTH
HCKYCCTBEHHOTO WHTEJIEKTa. Hampumep, HOMydMiIM paclpoCTpaHEHWE CHCTEMBI IO THITY
«KJTACCHOM [JOCKHM», OCHOBAaHHbIE Ha WCIIOJIb30BAHWM AapXWUTEKTYPHOH MOJENH HTEPaTHBHOTO
9KCIIEPTHOrO OOHOBJIEHUSI WMCTOYHUKOB 3HaHWA. Cpean TakuX CHUCTEM MOXKHO YHOMSHYTBH

156

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

sKcnepuMeHTanbHyo cucteMy FRANK, mnpennasHaueHHyr0 Uil JEMOHCTPALMU TPSAMBIX U
OOpaTHBIX CBSI3€H MEXIY BBICOKOYPOBHEBBIMH OOBSICHUTEIBHBIMU UEJSIMHU TIOJB30BATENs H
JeTasIMA BBITIONIHEHUST pacCyxaeHuil mo tuny kericoB [103]. A B BemukoOpuranum Yapies
CruBeHC U €ro KOJUIETH, CO3JaBlIMe NpOoTOTHN cucteMbl JAES, cuMTaloT mnepcrneKTUBHBIM
IIOCTPOCHHE CHCTEM HA OCHOBE IPABOBBIX PACCY)KJICHMH IO THUIy KEHCOB, COEIUHEHHBIX C
1a0JIOHOM «KJIACCHOMU JIOCKW» U CEPBUC-OPUEHTHPOBAHHON apXHUTEeKTypoit [115].

44. Cuctembl noagepXKn MNPUHATAA NPaBOBbLIX peleHUn U
MyJfbTU3afa4YHOCTb

OcnabneHre wWHTEpeca K HU3YYCHHIO CTPOTMX IPABOBBIX PACCYXKICHHH CBA3aHO TaKXKe C
MOMyJsIpU3aliel CUCTEM il TOJJIEPKKW TNPHUHATUS —pEHICHWH, He MNPOIyLHPYIOMIHUX
UMIIEPATUBHBIX CAMOCTOSITENILHBIX PACCYKIEHHN W BBIBOJOB. biaromapst 5ToMy HCCleIOBaHUS
HMHTEIJIEKTYabHBIX TPAaBOBBIX CUCTEM, KOTOpble A0 1990-X IT. aKkUEHTHpPOBAJIMCH Ha 3ajadax
MOKCKA U PACCYXACHUMN, CTANIA PACIIUPSIThCSA B HAMPABICHUN MYJIbTHU3aJa4HOCTH.

B kpyr uccienoBaTeIbCKHX HMHTEPECOB, MOMHMO HH(GOPMAITMOHHOTO IMOMCKA W HOPUIMICCKOM
apryMeHTalluW, CTaJM BKIIOYAThCSl aHAJIMTHUKA, MPOTHO3 U KOHTPOJdb. McciemoBaHus B 3THUX
00acTsaX MPOBOIWINCH M paHee (HAMpUMeEp, NMPEIUKTHBHAS aHAIMTHKA B CylneOHOH obOjacTu
BOCXOJIUT K BBIUUCIHTENbHBIM 3kcniepuMenTam K. Tammepa xonna 1960-x rr.), omHako UMEHHO B
1990-x rr. ObICTpas KOMIIBIOTEpU3AlMS BKYIIE CO CTPEMIICHMEM HAy4YHO OOOCHOBATh pEIICHUE
MOBCETHEBHBIX 3a/lad CO3JaJI0 TOBBIIEHHBIA HWHTEpEC K MPAKTHKOOPHEHTHPOBAHHBIM
I/IHTCJ'IJ'ICKTyaHI)HI)IM HpaBOBbIM CUcreMam pa3nw{Horo Ha3HA4YCHUS.

4.5, MNpaBoBble MHOPMaALMOHHbIE CUCTEMbI c MHTerpauuven
aprymMeHTaumMoHHON PyHKLMK

B KOMIIBIOTEPHBIX CHCTEMaxX YCHIMIACH UHTErPaLsl IIOMCKOBOM U apryMEHTAIMOHHON ()yHKIIUA.
Tak, B cepenune 1990-x rr. B cucreme BankXX Ha OcHOBe ceTH 3HaHMH OBUIO PEaNM30BAHO
coueraHue (YHKIMH HBPUCTHYECKOTO IIOMCKA, HWHAEKCAMM W IPaBOBOM apryMeHTAllWH,
MO3BOJISAIONIEE COOMPATh U BEICTPANBAThH apI'yMEHTHI 10 0a3e CyneOHBIX Jiell, HAyYHBIX CYKICHUH 1
nporotunoB (Qakruueckux cueHapueB [104, 105], T.e. Obuia MOCTpOEHA CHUCTEMa MOKMCKA U
apryMEeHTalllH{, [IOMOTraBIIasi IKCIEPTY B MPUHSITHH IPABOBBIX PEIICHUI.

B 2017 r. Obuta mpezcraBineHa nouckoBas cucrema LexrideLaw, u3BiekaBiuasi apryMeHThl U3
CyAeOHBIX aKTOB WM 00eCIIeunBaBIIas K HUIM JOCTYII Yepe3 BBIOOpP Y3JIOB B OHTOJIOTHH CyAeOHBIX
CIOPOB JIMOO Yepe3 MOKCK TI0 KITIOUEBBIM CJIOBaM B PENAILMOHHBIX Borpocax [35].

B 2019 r. na apxurekrype SaaS (mporpaMmmHoe obecrieueHre KaK yciryra) ObljIo CO3IaHO PAMOYHOE
Web-npunoxenne NAI st HopManu3aluy FOPUIMYECKHX TEKCTOB M aBTOMATH3MPOBAHHBIX
paccyXIeHui HaJl HUIMU C UCTIOIF30BaHUEM CTaHJAPTHOHN IEOHTUIECKOM JOTuKH [69].

4.6. MpaBoBble MHOPMaALMOHHbLbIE cucTemsbl c MHTerpauuvemn
npeackasaTenbHON PyHKLUK

TpaauionHbIe 331241 TIONCKa M PacCyKJCHUH CTalI aKTUBHO COYETAThCS C TPOTHO3UPOBAHUEM.
Hanpumep, cucrema SPLIT-UP, xoropas pa3pabarbiBaiack B ABCTpainu Ha mpoTsbkeHnH 1990-x
rr. Duapio Crpanbepu u [xoHOM 3ene3HHKOy, coderana B cebe MPaBOBYIO apTyMEHTAIHIO C
MIPEIUKTHBHON aHATUTUKOW. METONOMOTHIECKYI0 OCHOBY CHCTEMBI, (DYHKIIMOHHPOBABIIEH B
JOMEHHON 00JIacTH pa3fiela WMYLIECTBA CYNPYTOB, COCTABWIIM PACCYXKICHHS II0 IPaBUIIaM,
(hopMaM30BaHHBIM U3 aBCTPANUIICKOTO 3aKOHA O ceMeiHOM mpaBe 1975 T., a Takke HEHpPOHHBIE
ceTH, 00y4eHHbIE Ha CTaHIapTHBIX CyAeOHBIX Aenax. VcenenoBareny craBmin mepes coooi 3agaay
aBTOMATH3MPOBATh IPABOBBIC PACCYKAEHHS JUIA JOMEHHOW 00JacTH, B KOTOPOH 3HAaYMTENbHA
MIPaBOIIPUMEHHUTENbHAST JUCKPELHs, TPEMsITCTBYIONIasi ONpPEACNEeHHI0O Mozaenel cyaeOHbIX
paccyxnaennii. B SPLIT-UP 3a cuer wuHTerpamuy pasHBIX METOAOJNOIMYECKHX IOAXO/I0B

157

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

TIPEANPUHIMANACH TIONBITKA Y4eTa CyObEeKTHBHOTO (hakTopa B CyAeOHOM IpaBONpPUMEHEHHN (KakK
u, HanpuMmep, B ruopuaHoii cucteme CHIRON). OnHako, kak u qro0asi ciucTeMa ¢ UCIOIb30BaHuEM
Heliponusix ceteld, SPLIT-UP ucnbiThiBana TpyqHOCTH ¢ ()OPMHUPOBAHHEM MacCHBa JaHHBIX IS
MAaIIMHHOTO OOYYEeHUS ¥ MHTETpaliell pa3HbIX METOAONOrHYecKHX mapaaurM [116, 117].

B 2009 r. Keun Onum u Crepanu bprornnarxays npeacrasunn nporpammy SMILE+IBP, kotopas
JUISL JIOMEHHOW 00JIaCTH TIPUCBOCHUS KOMMEPUYECKOM TalHBI BbllaBajla IPOTHO3 pEIICHHS
3aJJaHHOTO CJIydasi MOCPEICTBOM H3BJICUEHHsI (DAKTOB yXKe pa3pelIeHHBIX CYNEOHBIX JIeNl U WX
(akTOpM3alMM Ha OCHOBE KJIACCU(HKALMOHHBIX KOHIIENTOB, OTPaKAIOUIUX CTEPEOTHUITHBIC
(hakTOJIOrMYECKHE MATTEPHEI [6].

B 2017 r. B 3KCmepuMEHTE IO TPEACKAa3aHHWIO HCXOJa Jielia O MPEIOCTABICHUU YOEXKHIIa,
OCHOBAaHHOMY Ha PETPOCIIEKTHBHOM aHajH3e U (pakTopu3aIy 0OCTOSTEILCTB paHee pa3pereHHbIX
Jies1, Obl1a JOCTUTHYTa POrHo3Hast TO4HOCTh 80% [25], a B ipyrom sKkcrepuMeHTe Ha MacCUBE e
B 00JIaCTH IPUCBOCHMS KOMMEPUCECKON TaliHbI OblIa co3/1aHa cucteMa VIAP, koTopas ist Kaxaoro
ciydast popMupoBaia rpad apryMeHToOB 1 00OCHOBBIBaJIa MPOrHO3 PEIIEHUs] KOHKPETHOTO CIyyasi,
UCIIONB3Ysl CXEMBl apryMEHTOB M KOJIMYECTBEHHbIE BeCOBbIe KOI((UIMEHTHI, W3BJICYCHHBIE M3
MPebIAYIINX CIy9aeB ¢ IPUMEHEHHEM METOla HTepaTUBHOM ontumusaimu [38].

B 2019 1. ans ymy4umieHUs TPOrHOCTHYECKOH (YHKIMK OBUIM TPOBENEHBI AKCIIEPUMEHTHI 10
SKCTPArMpPOBAHUIO U CYMMapHU3allu CyAeOHBIX TEKCTOB C UCIIOIb30BAHHEM TITyOOKOr0 O0y4eHHS
1o cBepToYHbIM HelpoHHbIM ceTsiM (CNN) u nocnenyromieit kinaccudukanueid. ONbIThl UMENN
HEKOTOPBI yclleX, HO TOKa3ajl OTCYTCTBHE HAJEXKHOTO OXBaTa BCEX AacleKTOB Jena MU
HEJIOCTATOYHYIO a/IeKBaTHOCTh JIBKCHUECKUX METPUK MEPEKPBITUS IS OLIEHKH aHHOTHPOBaHHBIX
TekcToB [139].

B 2020 r. aMepuKaHCKMMHU UCCIICAOBATEIAMH ObLiIa PEAJIOKEHA MOJICb, COYETAIOIIAsl CTPATETUH
MIOMCKA U MYJIBTUCTPYKTYPHUPOBAHHOE IIPABOBOE IPOCTPAHCTBO MOMCKA; 3Ta MOZIENb PACCMATPUBACT
MOMCK NPUMEHHMOIO 3aKOHa KaK IIOCIIeIOBATENbHBIH TIPOLECC NPHUHATHS pEIICHUS B
OIIPEJICTICHHBIX MOBEACHUYECKUX M KOTHUTUBHBIX PAMKaX, YTO MO3BOJIIET C HEKOTOPHIM YCIIEXOM
BBINOJHATD MPe/icKa3zaTenbHyto GpyHkimo [18].

4.7. MpaBoBble MH(OPMALMOHHbLIE CUCTEMbl C UMHTerpaumen yHKUMU
ynpaBneHus AOKyMeHTaMuU, KOHTEHTOM U 3HaHMAMU

Jnst pemieHus B oOIIeM KOMIDIEKCE TAKKe aHATMTHYECKHX 3aJad U3Y4aroTCs MHTEIUIEKTYalbHbIe
HHCTPYMEHTHl YIPAaBJIEHHS IPABOBBIMH JOKYMEHTaMH, HCIIOJb3YIOLIMMH METOIBl 00pabOTKH
ecrectBeHHOro s3bika (NLP), Bkmowass HOpManmu3alMio, BEKTOPH3AIMIO, KIACTEPU3ALUIO U
cymmapuzanuio tekcra. Tak, B 1993 r. 6buta npeacraBnena cucrema FLEXICON c peann3oBaHHO#M
B HEll MOJENbIO CTPYKTYPHPOBAHHOI'O NPEACTABIICHUS 3HAHUI B COUETAHHU CO CTATHCTHYECKUM
paHXHpOBaHMEM, 4TO obecriednBao 3(h(HheKTUBHBINA MEHEIKMEHT IOPUINIECKUX TEKCTOB 33 CUET
pemieHnst 3aad MMoucKa M cymmapmsammu Tekcra [34]. B agpyroit cucteme, KONTERM, Opumn
HCTIONB30BaHbl Te3aypyc, 0a3a 3HAHMM W OSKCIEPTHBIE MpPaBMIA, W CHCTEMa aBTOMAaTHYECKH
MIPE/ICTABIISIIA CTPYKTYPY M COZEpKaHHUE MPAaBOBOI'O JOKYMEHTA, TEM CaMbIM 00ECIIeYrBasi peLICHIE
TTOMCKOBBIX M aHAJIMTHIeCKnX 3amadq [111].

B 2009 r. 6p1a mpencraBieHa IporpaMMHO-alIapaTHas CHCTEMa HaydHO-TIPAaKTHYECKOTO TIOMCKa
1 yIpaBJIEHHUS MYJIbMEIUHHBIM KOHTEHTOM (TEKCTOBBIM, IpahpuuecKuM W ayIHOBU3yaIbHBIM) IO
MacCWBy Jel, oOpa3ylomuxcs B TpaxmaHckux cyaax HMcemanmmn. Cucrema obecnednBaia
aBTOMATHUYECKYIO KITACCH(UKANNIO N300paXKEHUH W CETMEHTOB ayJHOBU3YaJIbHBIX 3alicell B
COYETAaHNH C TEKCTOBOW CEMAHTHKON M ObUIa OPMEHTHPOBAaHA Ha IOMy4YCHHE HOBBIX 3HAHUHA Ha
OCHOBE TIPOIIEAYPHOI OHTOIOr MK e-Sentencias [17].

B 2016 1. OpDTa cOo3maHa U B JAbHEHIIIEM COBEPIIICHCTBOBAIACH CHICTEMA YIIPABJICHUS PaBOBBIMU
nokymentamu u 3HaHusMH EUNOMOS. Ha ocHOBe MHCTpYMEHTOB OOpaOOTKH €CTECTBEHHOI'O
SI3bIKA 3TA CHCTEMA B MIOJIyaBTOMATHIECKOM PEeXHUME 00ecTiedrBaa KIacCU(PHUKAIMIO FOPHIMIECKIX
JIOKyMEHTOB, BBISBIISAS TIEPEKPECTHBIE CCHUIKM W 3aKOHONATEIbHBIE W3MEHEHHS, CBS3BIBas

158

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

IOpUINYECKHE TEPMHUHBI M H3BJIEKasl KIIOYEBHIE 3JEMEHTHI IIPABOBBIX HOPM JUIS OOECIICUeHHS
SICHOCTH U PacIIMPEHHOro moucka [13].

K 2017 r. B BemukoOpuranun Oputa paspaborana cucrema CLIEL, xoropast oOecrieunBaer
AHHOTUPOBAaHUE IOPUAMYECKUX JOKYMEHTOB C HCIHONb30BaHHEM TeroB XML g ympomeHus
W3BJICYCHUS JaHHBIX Ul pa3HbIX THHOB Touek naHHbIX. CLIEL mpexactaBnsier coboi rHOKyo n
MacIITadupyeMylo Cpelly W3BJICUEHHs JaHHBIX M3 Pa3sHOPOIHBIX (IO (opmaram, CTPYKTypaMm H
MakeraM) JOKYMEHTOB B MpEIMETHOH o0O0JIaCTH KOMMEPUYECKOrO MpaBa C HCIOJIb30BaHHEM
Mmeronoiorui NLP 1 KoMHOHEHTOB 0011ei apXuTeKTypbl TekcToBoi nmxenepun (GATE), Bkirouas
MpaBwjIa MEXaHu3Ma IadaoHoB aHHoTanui Java (JAPE) [31].

4.8. npaBOBbIe MH(bOpMaLIMOHHbIe CucteMbl KOHTPOJILHOINo Ha3Ha4eHus

Pa3zBuTHE «3NIEKTPOHHOIO TPABUTENLCTBA» BBI3BAJIO HCCIEAOBAHUS B c(epe KOHTPOIBHBIX
HHTEJUIEKTYyaIbHbIX PaBoBBIX cucteM. Tak, B 2007 r. B KaueCTBE€ OHTOIMHIBUCTUYECKOIO pecypca
Obuta o0ocHOBaHa xapakTtepuctuka 3HaHuii DALOS u cucrema opranuzarmu 3uanuid (KOS) s
obecrieueHns KOHTPOJIST W TOJJIEPKKH 3aKOHOAATEIBHOTO TIPOIiecca B MHOTOSI3BIYHOW Cpefie
€BpOIEHCKNX CTpaH, 00sS3aHHBIX HMIUIEMEHTHPOBATH €BPOIMPEKTHBEI B HAIlMOHAIIbHOE NpaBo [1].
B 2019 r. ObuM TpeACTABJICHBI PE3YJAbTAThl Pa3pabOTKU WM ampoOalMyd MOJACICH Ha TaHHBIX,
o0ecreunBaIMX KOHTPOJIb HaJ HMMIUIEMEHTAllMel €BPOIENCKOro IpaBa B HalMOHAJbHbIC
NPaBOBbIE CHCTEMbI; 3TH MOZENM ObUIM PEaTN30BaHBI C HCIOIB30BAHUEM HEKOHTPOIHPYEMbIX
METO/IOB JIEKCHYECKOI'0 M CEMAaHTHYECKOr'0 CXOJCTBA, OCHOBAHHBIX HAa MOJENAX BEKTOPHOIO
HPOCTPAHCTBA, CKPBITOM CEMAaHTHUECKOM aHaJIN3€ M TeMaTH4IecKuX Moensx [88].

5. MemoOblI mawuHHO20 06y4YeHuUs1 u 6onbwue OaHHbIe 8 npedMemHou
obnacmu npaea

Eme nBa uccnenoBaTenbCKuX HalpaBieHUs BO3HUKIM yxke B XXI Beke U CBsA3aHbl C pa3BUTUEM
METOA0B MAaIlIMHHOI'0 00Y4eHHS U 00pabOTKOM OONBIINX JAHHBIX.

5.1. MeToabl MalWWMHHOIO O0y4YeHUsA B NpaBe

BHenpenne B ropuanueckyro o0nacTb METOJOB MAIIMHHOTO OOYYEHUs M HM3BJICUEHUS IaHHBIX
OCYILECTBIIETCS B CAMBIX Pa3HBIX 00JIACTAX IPaBa U VIS PEIICHUs CAMBIX Pa3HOOOpa3HbIX 3a7ad.
Hampumep, B 2005 r. B DauHOyprckom ynuBepcutere ben Xauum u Kmap I'poBep B memsix
CTPYKTYPHUPOBAHUS PE3IOME JTOKYMEHTa IPOBENU AKCIIEPUMEHTHI 110 NMOCTPOSHHIO PUTOPHUYECKON
CXeMbl aHHOTAIlMU B KayeCTBE MOJIEJIM MPABOBOI'O JHUCKYpCa, B KOTOPBIX Ha NpHUMepe PeIIeHUH
[TanaTe! 10pAOB MPOrHO3MPOBAJICS PUTOPUUECKUN CTATyC OTIENbHBIX MPELIOKEHUN B TEKCTE U
reHepupoBanach Kiouesas ¢pasa [41].

B 2005 r. cmoBeHCKO-OpHUTaHCKHN KOJJIEKTHB MPEUIOKMN ISl TIOMCKa MPABOBBIX OOOCHOBAHUMA
HCTIONB30BaTh HA MACCUBE CYACOHBIX JIEN alTOpUTMBI MammuHHOT0 00y4uernss ABCN2, sBisromuecs
pacimpeHreM MHIYKIMOHHOro anroputMa Knapka — Hubnerra u onmparomuecs Ha HEKOTOPbIE
KOHIICTIIIUH [IPaBOBOM aprymeHTanuu [87].

B 2013 r. amepuKaHCKHE Y4Y€HBIE HCIIOIH30BAIM MAIIWHHOE OOydYEHHE Ui HW3BICUYCHHUS H
TeHEPHPOBAHMA NPABOBOW apryMEHTAlMM 1O 0a3e aHHOTHPOBAHHBIX CYyACOHBIX pEIICHUH O
KOMIICHCAIIMA Bpena 3J0poBbio, mpudmHeHHoro BakuHammeil (V/IP Corpus), ¢ mpumeHeHHEeM
MHTETPALN CEMaHTHKO-TIPAarMaTHIECKNX, CHHTAKCHIECKUX M OOIIETOMEHHBIX CEMAHTHYECKUX
agHOTanwii [7]. B 2015 r. 8 CLLIA ycrenHo HCrmoib30BaIMCh CTATUCTHISCKOE MAIIIMHHOE 00yUeHHe
1 TPOTHOCTHYECKHE MOJENH Ul KIAcCH(UKAINK HOPMATUBHBIX TEKCTOB B CHEHU()UIESCKUX
(YHKIIMOHANBHBIX TEPMHHAX HA MPHMEPE 3aKOHOAATENBCTBA PA3HBIX IITATOB 00 oOecredeHun
TOTOBHOCTHU M PEaTUPOBAHUH CHCTEMEBI 3paBOOXPAHEHIS B Upe3BbIUAiHBIX cuTyanusx [109].

B 2019 r. Ha oOcHOBe aiNrOpuTMOB MAaIIMHHOTO OOydeHHs Obbta pa3paboTaHa cucTeMa
CLAUDETTE, xortopas aBTOMAaTH4eCKH BBIABIAET Ha IaropMax HHTEPHET-TOPTOBIH

159

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

TIPEUIOKEHUS, YIIEMIISIONMe npaBB moTpedutens [70], a Taxke OBUTH TMPEUIOKEHBI METOIBI
KOHTPOJIMPYEMOT0 ¥ HEKOHTPOIUPYEMOTO MAIIMHHOTO OOyUYeHHs I aBTOMAaTHYECKOIrO
TEMATHYECKOT'O paCIpeICTICHUS CYICOHBIX U JIFOOBIX IPYTUX IOPUINICCKAX TOKYMEHTOB [126].

5.2. NMpaBo n 6onbluKe AaHHbIe

Oto HampaBiieHue, ele 0ojee HOBOE, HAaXOAUTCS B CTaJUU 3apOXKJICHUSA U COCTOUT B U3y4EHUH U
00paboTke OONBIINX JaHHBIX. Takue UCCileI0BaHus TECHO CBSI3aHbI C IPENBIAYIINM HAalIpaBICHUEM,
MOCKOJIbKY ~HM3BJIeYeHHWE WH(pOpManmuM Ha TakuXx oO0ObeMax JaHHBIX YacTO CBS3aHO C
HEOOXOANMOCTBIO UCIIOIF30BaHUSI METOA0B MAIIMHHOTO 00YYEHHS.

«bonpie naHHBIE) HMCHONB3YIOTCS U1l WCCIEAOBAaHMH B caMbIX pa3HBIX cdepax NpaBOBOH
JeATeNbHOCTH. Tak, HECKOJIBKO JIET Ha3a 1 ObUIO IPEUIOKEHO UCTIONh30BAaHUE «OOJBIINX JaHHBIX)
HCTOPUYECKUX MCTOYHUKOB IJIsi OOOCHOBaHHMS MAEH OpUTHHAIM3Ma B MPAKTHKE HCTOPUYECKOTO
tonkoBaHuss Koncrurynunm CIHIA [79]. A B ABcTpaymm «Ooinbline MeTajgaHHble» HHTepHET-
MIPOBaliIEPOB UCIIOIB3YIOTCS B ONIEPATHBHO-PAa3bICKHOW JIESTENBHOCTH, TPUYEM «OO0JBIIOIN» 00beM
JAHHBIX U MCIOJIb30BaHUE aJITOPUTMOB JUTS MAIIMHHOW 00paO0TKM M MHTEIUIEKTYaIbHOIO aHajIu3a
TIO3UIIMOHUPYIOTCSL B KAueCTBE ONPENEICHHON rapaHTUH JeWHIEHTU(HUKALUA U aHOHUMHU3ALNH
TIEPCOHAJIBHBIX JaHHBIX H, KaK CJIEJICTBUE, MPEIISITCTBUSI AUCKPUMHUHAIIMOHHOMY MPOQHINPOBAHHIO

[75].

6. CoepemMeHHbIe omevyecmeeHHbIe 00CMUXXeHUs

CoBpeMeHHbIE HCCIEe0BaHHsS M pa3paOdOTKW Ha CThIKE IpaBa M KOMIIBIOTEPHBIX HAYK JIHOO
CKOHIIGHTPHPOBAHBI B IPABOOXPAHHUTEIBHOM 00JIACTH, Il TPUMEHSIOTCS JOBOJIBHO IIUPOKO, JTHO0
HOCST OoJiee YHHMBEpCAJIBHBIH XapakTep, HO B NPAKTUYECKOH IOPUCIIPYACHIIMHU €lle He 3aHsIH
nozo0atolee MecTo.

6.1. KomnbroTepHble CUCTEMbl U MeTOAbl NPaBOOXpPAHUTESILHOrO
Ha3HayYeHusA

B Poccum pasBuBaeTcs = KOMIBIOTEPHOE MOJACIMPOBAHWE, OPHEHTUPOBAHHOE Ha
[PaBOOXPAHUTENBHYIO chepy: Ha OCHOBE KPHUMHHAIMCTHYECKHX 3HAHMH CO3JAIOTCS
KOMIIBIOTEPHBIE MO IPECTYIUIEHUH ONPENeNICHHOr0 BHIA B LENAX aBTOMATH3aMHd METOAUKH
UX paccienoBanus [59], KOMIBIOTEPHBIE MOJIENTU BHEIPSIOTCS B 00J1aCTh CYIeOHBIX dKcTepTus [37,
64, 68, 74]. M3BecteH OmbBIT pa3pabOTKM KOMIBIOTEPHBIX HMMUTAIMOHHBIX MoOjeied B cdepe
npodunaktiky koppymiuu [118].

Pa3BuBaercs HampaBieHHE KOMIIBIOTEPHBIX HH()OPMAIMOHHBIX CHUCTEM, HCIOIb3YEMbIX B
PACKpBITHH M paccieoBaHuM mpecTyruieHui [21, 67, 132] u B 9KCIepTHO-KPUMHUHAINCTHIECKIX
nemsix [47, 89].

OtnmenpbHyr0 00JACTh COCTaBIS€T BHEAPEHHE TEXHOJOTHH TIpUKIamHOro («cimadoroy)
HCKYyCCTBEHHOT'O WHTEJUIEKTa: B YAaCTHOCTH, B OIEPAaTUBHO-PA3BICKHYIO AeATeNbHOCTH [93] u
KPUMHHAJIHCTHUKY [8].

Onnako B cepe IpaBOOXpaHUTENHHON IEATENEHOCTH B OOJIBIIEH CTETIeHN BEASTCS BHEAPEHHE YXKe
M3BECTHBIX THIIOB HH()OPMAIMOHHBIX CHCTEM, W TOJNBKO B OTHENBHBIX ciydasx [122] MoxHO
YBEPEHHO TOBOPHTb O TOM, YTO NPEACTABHUTENN KOMIIBIOTEPHBIX HAyK BBIpaOaTBIBAIOT JUIS
MPaBOOXPAHHUTENBHOM 00J1aCTH HOBBIE METOIOTIOTHYECKUE PEILCHUS.

6.2. KomnbloTepHble MeToAbl B YHUBEpPCarbHbIX MPaBOBbLIX UCCNefOBaHUAX

B secnemmn(u9HBIX (PETYNATUBHBIX) OONACTAX MPABOBOHM AEATENFHOCTH HAYJHBIM HMHTEpEC K
KOMITBIOTEPHBIM CHCTEMaM W METOJaM CTall MPOSBIATHCS Tocie ycrnexoB 2000-x IT. B obnactu
mudpoBU3anMy MyOIMYHOTO YHPABIEHHS W TOCYAAPCTBEHHBIX (MYHMIMIIAIBHBIX) yciyr. B

160

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

TIOCJIEIHUE TOJABI POCCHUICKHME HCCIIEIOBaHUS B JIAHHOM CErMEHTE BKIIIOYAIOT CIEAYIOLIHE
Ba)KHEHIIIME HAIIPaBJICHHUSI.

Bo-nepBrIX, BemyTcst pa®oThl B 00JIaCTH TPEIMETHO-OPHEHTHPOBAHHBIX OHTOJIOTHH, KOTOpHIE
MIPEATIONaraeTcs HCIONb30BaTh JUIS CO3JAaHMS KOMIBIOTEPHBIX CHUCTEM IIPABOTBOPUECKOTO H
MIPaBOIIPUMEHHUTEIBHOI0 Ha3HAYCHUsI, OCHOBAHHBIX Ha 0a3ax 3HaHWH. OHU HCCIEIOBaHUS B ATOH
00JIaCTH COCPEIOTOYEHBI HA HKCIIEPUMEHTHPOBAHHUH C BBIPA3UTEIBHOCTHIO OHTONOrHH [63], TOrAa
Kak Jipyrue compsratorcs ¢ MetogaMu NLP u uHTennekryanpsHoro ananusa JaHHbIX [83].
Bo-BTOpBIX, POBOIATCS SKCHEPUMEHTHI 110 NPUMEHEHHIO METOJIOB OOpPaOOTKH €CTECTBEHHOI'O
sI3bIKa Ha MAacCHBaxX FOPHIMYECKUX JIOKYMEHTOB: HalpHMep, 00beKTHBIX rpadoB [131] u merpuk
YaCTHOCTH TEPMHUHOB U 00paTHO# yactorHocTH gokymenToB (TF-1DF) [83].

B-Tperpux, Ha OONBIIMX [JAaHHBIX CYACOHOM TPAKTUKH TIPOBOIATCS BBIYMCIHUTEIBHEIC
9KCIIEPUMEHTHI 0 HWHTEJIEKTYyaIbHOMY aHAJIM3y NaHHBIX M MAalIMHHOMY OOYYEHHWIO, BKIIOUas
aHaJIN3 BPEMEHHBIX PSJIOB U PerpeccuoHHbIe AepeBbd [84, 85, 127].

7. 3aknro4yeHue

Cucrematiueckuii 0030p MO3BOJIIET CIENATh DSJ BBIBOJOB O pE3ylbTaTaXx M COCTOSHUH
uccienoBaHui B cepe UCIOIb30BaHHsI KOMIBIOTEPHBIX METOJIOB M CUCTEM B M3YyYEHWH IIpaBa,
UHTEJIJICKTYaJIbHOM aHaJIM3€ JaHHBIX 1 MOACIIUPOBAHUN HpaBOBOﬁ JACATCIIBHOCTH.
Bo-niepBBIX, HCCEIOBAHUS B JAHHOM CerMeHTe ¢ KoHIa 1950-X rr. BeayTcst JOCTaTOYHO aKTUBHO
" HaXoJiATCs B O6LL[CM pycie pa3BUTHsI KOMIIBIOTEPHBIX HAYK, UMINIEMCHTHPYS B 06_]'[8.CT]) IpaBa UxX
HoBelmme pocrwxeHud. OHako JIMIIL HE3HAUYUTENbHAs JOJIS JOCTHIKEHMl B 00J1acTH
I/IH(bOpMaTI/IBaL[I/II/I HpaBOBOﬁ JACATCIIBHOCTH OCHOBaHa Ha MCTOAOJOIMYECKUX IIPOpbIBaAxX
MECKIUCHUIUTAHAPHOT O CBOIMCTBA. I{aLue BCET'0 BEIYUCIIUTEIIbHBIE CUCTEMBI U METOABI pCAJIN3YIOT B
IpaBe y)kKe U3BECTHBIC U apOOMPOBAHHbBIC B APYTUX NPEAMETHBIX 00JIAaCTAX PELICHHs, TIOCKOIbKY
peanu3anus HAydHbIX IPOEKTOB TpeOyeT OONBIIMX 3aTpaT pecypcoB (BpeMeHH, Tpyaa,
MaTepHaIbHO-TEXHUYECKUX, BEIYUCIUTENBHBIX), HHOI' A TAKoKe TpaHC(HOpMaluy caMOl PaBoOBOii
JEATENbHOCTH B YCJIOBHSX HEONpeeiIeHHOW 3((EKTHBHOCTH M aJalTUBHOCTH IPEATaraeMbIX
CHCTEM U METOJIOB.
Bo-BTOpBIX, 3a4acTyi0 METOIONOTHYECKOI0 ycClexXa IOCTHIald HCCIEHAOBATENbCKHE KOJICKTHBEI
MEXIUCLUIUIMHAPHOTO COCTaBa, OOECIeYMBABIIME TIPAMOTHOE LeJierojaraHie, HaydHYIo
KOMMYHHUKAIIUIO, MOJAETHPOBAHNE OOBEKTOB HCCIICNOBAHUSA M Pa3pabOTKy CPEICTB peann3aluu
MEKAUCLUIUTHHAPHBIX TTOAXO/I0B.
B-Tperbux, B omimuue oT OONBIIMHCTBA APYrUX oOinacTeld OOIIECTBEHHOW IMPAKTHKH, IPAaBOBas
JeATeNbHOCTb, BKIIOYAS €€ S3BIKOBOE BBIPAXKEHHE, OXHOBPEMEHHO KpaifHe (opmanm3oBaHa U
KpaiiHe HecTaOWiIbHa, W 3TO (YHOAMEHTAIbHOE NPOTHBOPEUHE 3aTpyAHSAET aBTOMATH3ALUIO
onepandii ¢ IOPUIMYECKUMHU JAHHBIMH, IOKYMEHTaMH, TEKCTaMH, IpoleccaMd U JApYrHMH
00BEKTaMH.
B-yeTBepTHIX, BBIYMCIHTENBHBIE METOABI W CHUCTEMBI MEHSIOT IIPABOBYIO JEATEIBHOCTH U
MOBBIIAIOT €€ 3(P(PEeKTUBHOCT, HO OJHOBPEMEHHO CTaBAT €€ B 3aBHCHMOCTH OT TEXHOJIOrHWid. B
YaCcTHOCTH, He oOnagas aOCOMIOTHOW IOMHOTOM ¥ TOYHOCTBIO M HCIIONB3YS CIOXKHYIO
METONOJIOTHIO, MH(POPMAaLMOHHAs CHCTEMa IIOTEHIHAJIBGHO IPOBOLMPYET H3JHUIIHee K cebe
J0OBEepUe, TPEMATCTBYET OSKCIEePTy B IIOHUMAHWH, BBIABICHHM M HCIPABICHUH HEIOCTAaTKOB
(YHKIMOHUPOBAHMS CHUCTEMBI, KOPPEIUpYeT C HHU3KHM NPO(PECCHOHAIBHBIM ypPOBHEM
TIOJIB30BATEIIeH U 3aTPYIHACT OCIIAPUBAHUE M ONIPOBEP)KEHNE OIMOOYHBIX BHIBOIOB.
U, HakoHel, cHCTeMaTHYeCKHMHd 0030p MOKa3bIBaeT, 4YTO MPAKTHYECKd BCE YCICIIHbIC
METOAOJIOTHIECKHE pelIeHus ¢ KoHIa 1950-x IT. coxpaHsIOT cBoe 3HaUeHue. HekoToprie u3 HUX
NPUMEHSIOTCS HENOCPEIACTBEHHO, JAPYrHe CTAId OCHOBOH Ui JaJbHEWINEero pa3BUTHS
BBIYMCIIUTEIBHBIX METO0B U MH(OPMAILIMOHHBIX CHCTEM B IPAaBOBOM JIESITENEHOCTH.
be3 moHMMaHNS OCHOBHBIX HAYYHBIX JIOCT)KEHHH M TEHACHINI Ha CTHIKE KOMIBIOTEPHBIX H
MIPAaBOBBIX HAayK BPSA JM BO3MOXEH CYIIECTBEHHBIM HaydHBI IIporpecc B O3TOH CIOXKHOU
161

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

MEXIUCIUTUTMHAPHOW OOJIACTH, 3aTO CYIIECTBYET PHUCK MOBTOPCHHS YK€ WU3BECTHBIX OIMIMOOK
320K ICHAT.

Cnucok nutepatypsbl / References

[1] Agnoloni T., Bacci L., Francesconi E., Spinosa P., Tiscornia D., Montemagni S., Venturi G. Building an
ontological support for multilingual legislative drafting. In Legal Knowledge and Information Systems
(JURIX’2007), Amsterdam, 10S Press, 2007, pp. 9-18.

[2] Aikenhead M. Legal knowledge based systems: some observations on the future. Web Journal of Current
Legal Issues, vol. 2, 1995, p. 72. Available at:
http://www.bailii.org/uk/other/journals/WebJCLI/1995/issue2/aiken2.html.

[3] Al-Abdulkarim L., Atkinson K., Bench-Capon T. A methodology for designing systems to reason with
legal cases using abstract dialectical frameworks. Artificial Intelligence and Law, vol. 24, no. 1, 2016,
pp. 1-49.

[4] Annpees H.J., KepumoB JI.A. O BO3MOKXHOCTSIX KHOSPHETHKH IMPH DPELICHUH MPABOBBIX MPOOIIEM.
Cosetckoe rocyaapctso u npaso, Ne 7, 1960 r., crp. 106-110/ Andreev N.D., Kerimov D.A. Concerning
the possibilities of cybernetics in solving legal problems. Soviet State and Law, no. 7, 1960, pp. 106-110
(in Russian).

[5] AnrtJI.®., [uunesa E.JI. «AUNIIC-3akoHOIATENbCTBO» M e€¢ MpoOieMbl (aHaiW3 pe3yJIbTaToB
MaTepuaoB TIOMCKa TpaBoBOoH HWH(popManuu). [IpoOneMbl COBEpPIIEHCTBOBAHMS ~ COBETCKOTO
3akoHozaTenbeTBa. Tpyasl. M.: BHUUC3, Boim. 35, 1986 1., crp. 13-22 / Apt L.F., Tsivileva E.D. «AIRS-
Legislation» and its problems (analysis of the results of legal information search materials). Problems of
Improving Soviet Legislation. Proceedings, Moscow: All-Union Scientific Research Institute of Soviet
Legislation, issue 35, 1986, pp. 13-22 (in Russian).

[6] Ashley K.D., Briininghaus S. Automatically classifying case texts and predicting outcomes. Artificial
Intelligence and Law, vol. 17, no. 2, 2009, pp. 125-165.

[7] Ashley K.D., Walker V.R. Toward constructing evidence-based legal arguments using legal decision
documents and machine learning. In Proc. of the 14th International Conference on Artificial Intelligence
and Law (ICAIL’13), 2013, pp. 176-180.

[8] Baxrees J.B. WCKycCTBEHHBI HHTEIUICKT B KPUMHHAJIKMCTHKE: COCTOSHHE U IIEPCHEKTHBBI
ucnons3oBanus. Poccuiickoe mpaBo: 00pa3oBaHue, MpakTHKa, Hayka. Ne 2, 2018, c. 43-49. / Bakhteev
D.V. Artificial intelligence in criminalistics: state and prospects of use. Russian Law: Education, Practice,
Researches, no. 2, 2018, pp. 43-49 (in Russian).

[9] Baroni P., Giacomin M. Semantics of abstract argument systems. In Argumentation in artificial
intelligence. Boston, Springer, 2009, pp. 25-44.

[10] Baues A.A., Mocksus C.C., @ykc H.C. ABromMaTn3upoBaHHast HH)OPMALOHHO-TTOMCKOBAs CHCTEMA T10
3aKOHOZIATEJIbCTBY B OOJACTH JIGCHOI'O XO3SHMCTBA. AKTyallbHbIE INPOOJIEMbI TEOPUM U MPAKTUKH
MIPUMEHEHUS MaTeMaTU4eCKUX MeTo10B 1 OBM B fiesiTenbHOCTH OpraHoB IocTHLUH. Te3uchl JOKIa10B Ha
V Bcecow3HO# KoH(epeHImH 1o mpobiemMam NpaBoBoi KuOepHeTukH, Boi. 2, 1975 r., crp. 28-34 /
Bashev A.A., Moskvin S.S., Fuks N.S. Automated information retrieval system for forestry legislation. In
Actual Problems of the Theory and Practice of the Application of Mathematical Methods and Computers
in the Activities of the Judiciary, Abstracts at the 5th All-Union Conference on Legal Cybernetics, issue
2, 1975, pp. 28-34 (in Russian).

[11] Bench-Capon T.J.M. Before and after Dung: Argumentation in Al and law. Argument and Computation,
vol. 11, no. 1, 2019, pp. 1-18.

[12] Bing J. Conceptual text retrieval. Oslo, Tano, 1988, 109 p.

[13] Boella G., Di Caro L., Leone V. Semi-automatic knowledge population in a legal document management
system. Artificial Intelligence and Law, vol. 27, no. 2, 2019, pp. 227-251.

[14] Boucher J. Le projet Datum: Recherche sur un instrument de recherché. La Revue juridique Thémis, vol.
6, no. 1, 1971, pp. 31-49. (in French).

[15] Buchanan B.G., Headrick T.E. Some speculation about artificial intelligence and legal reasoning. Stanford
Law Review, vol. 23, no. 1, 1970, pp. 40-62.

[16] Bundesministerium der Justiz (Hrsg.). Das Juristische Informationssystem. Analyse, Planung, Vorschlige.
Karlsruhe: Verlag C. F. Miiller, 1972. (in German).

[17] Casanovas P., Binefa i Valls X., Gracia C., Teodoro E., Galera N., Blazquez M., Poblet M., Carrabina J.,
Monton M., Montero C., Serrano J., Lopez-Cobo J.M. The e-Sentencias prototype: A procedural ontology
for legal multimedia applications in the Spanish civil courts. In Breuker J., Casanovas P., Klein M.C.A,,

162

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

Francesconi E. (eds.). Law, Ontologies and the Semantic Web: Channelling the Legal Information Flood,
Amsterdam, 10S Press, 2009, pp. 199-219.

[18] Dadgostari F., Guim M., Beling P.A., Livermore M.A., Rockmore D.N. Modeling law search as
prediction. Artificial Intelligence and Law, 2020, pp. 1-32. Available at:
https://link.springer.com/article/10.1007%2Fs10506-020-09261-5.

[19] dasbinenko B.K. Teopernueckue poOIeMBI COLMAaIbHO-IIPABOBOM s dexTHBHOCTH
aBTOMAaTHU3UpPOBaHHbIX I/IHd)OpMaHI/IOHHO-HOI/ICKOBBIX CUCTEM HpaBOBOfI I/IHCbOpMaIII/II/I. ABTOpeCl). JHC.
<...> kaHz. opu. Hayk. M., 1980 r., 16 crp. / Davydenko V.K. Theoretical problems of social and legal
effectiveness of automated information retrieval systems of legal information. Abstract of the dissertation
of the candidate of legal sciences, Moscow, 1980 (in Russian).

[20] deer A.®., Tanbnepun JI.B., ViBanos FO.T. KubepHeTHKa 1 OIBIT PELICHHS HEKOTOPBIX MPABOBBIX 3a/ad.
CoBerckoe rocymapcrso u mpaso, Ne 10, 1964, c. 81-90. / Deev A.F., Gal'perin L.B., Ivanov Yu.T.
Cybernetics and experience in solving some legal problems. Soviet State and Law, no. 10, 1964 r., pp. 81—
90 (in Russian).

[21] Ayopoeun N.C. MH(DOPMALMOHHO-TIOMCKOBBIE CHCTEMbI ~ OTCYECTBEHHBIX, 3apYOCKHBIX U
MEXITyHapOIHBIX CIY)KO IPaBOOXpaHUTEIBHBIX OpPraHoB B 0opwr0e ¢ mpecTymHocThIo. [uc. <...> KaHn.
topuz. Hayk. M., 2007 r., 192 ctp. / Dubrovin L.S. Information retrieval systems of domestic, foreign and
international law enforcement agencies in the fight against crime. Dissertation of the candidate of legal
sciences, Moscow, 2007 (in Russian).

[22] Dung P.M. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence, vol. 77, no. 2, 1995, pp. 321-357.

[23] Dung P.M., Son T.C. An argument-based approach to reasoning with specificity. Artificial Intelligence,
vol. 133, no. 1-2, 2001, pp. 35-85.

[24] Dung P.M., Kowalski R.A., Toni F. Dialectic proof procedures for assumption-based, admissible
argumentation. Artificial Intelligence, vol. 170, no. 2, 2006, pp. 114-159.

[25] Dunn M., Sagun L., Sirin H., Chen D. Early predictability of asylum court decisions. In Proc. of the 16th
International Conference on Artificial Intelligence and Law (ICAIL’17), 2017, pp. 233-236.

[26] Dmxy6oB JI.T. Mcronp30BaHHEe HEKOTOPBIX METOIOB M CPEACTB KHOCPHETHKH B JAKTHIOCKOMUH. JIHC.
<...> KxaHf. ©opua. Hayk. M., 1962 r., 274 ctp. / Ehdzhubov L.G. Using some methods and means of
cybernetics in fingerprinting. Dissertation of the candidate of legal sciences, Moscow, 1962. (in Russian).

[27] Dmxy6oB JI.T., Jlutunckumii C.A. Pe3ynpTaThl W MNepCHeKTHBbI mpumeHeHuss DBM B cymeGHO-
aBTOTEXHHYECKOM dKcnepTu3e. Bornpock! kubepHeTrkH, Bbit. 40, 1977 r., crp. 118-131/ Ehdzhubov L.G.,
Litinskii S.A. Results and prospects for the use of computers in criminalistics automotive expertise. In
Cybernetics Issues, issue 40, 1977, pp. 118-131 (in Russian).

[28] Eldridge W.B. The American Bar Foundation project. MULL: Modern Uses of Logic in Law, vol. 6, no.
3, 1965, pp. 129-131.

[29] TaduuoBa U.H., JTureunoa JI.O., Mockeuu C.C., Tpopumosa N.B. Pexum u nopsiaok padorsr UTIC
«IIpaBo-1». IlpaBoBast kubepHeTrka. CoopHUK crateil. M., Hayka, 1973 r., ctp. 43-54 / Gafinova I.N.,
Litvinova L.O., Moskvin S.S., Trofimova I.V. The mode and operating procedure of the ILS “Pravo-1".
In Legal Cybernetics: A Collection of Articles, Moscow, Science, 1973, pp. 43-54 (in Russian).

[30] Garcia R., Delgado J. An ontological approach for the management of Rights Data Dictionaries. In Legal
Knowledge and Information Systems (JURIX’2005), Amsterdam, 10S Press, 2005, pp. 137-146.

[31] Garcia-Constantino M., Atkinson K., Bollegala D., Chapman K., Coenen F., Roberts C., Robson K.
CLIEL: Context-based information extraction from commercial law documents. In Proc. of the 16th
International Conference on Artificial Intelligence and Law (ICAIL’17), 2017, pp. 79-87.

[32] TapuiioB O.A., Iankparos B.B., Dmxyoos JL.I. OOCyKIeHHE HCIOIb30BAHUS METOIOB CTATUCTHKH B
ropuIeckoil Hayke. CoBETCKOe rocyaapcTBo U npaso, Ne 10, 1966 r., crp. 159-160 / Gavrilov O.A.,
Pankratov V.V., Ehdzhubov L.G. Discussion of the application of statistical methods in legal science.
Soviet State and Law, no. 10, 1966, pp. 159-160 (in Russian).

[33] Tereukopu JILA., IllmeneB A.A. 3agaud COBEPIIEHCTBOBAHMS IOMCKOBOTO arrapara
aBTOMATH3UPOBAHHBIX WH()OPMAIMOHHO-TIOMCKOBBIX CHCTEM 10 3aKOHOAATenbCcTBY. IIpaBoBast
unpopmaruka. Coopauk. M., e 1, 1996 r., crp. 63-69 / Gegechkori L.A., Shmelev A.A. The objectives
of improving the search for automated legal retrieval systems. In Legal Informatics: A Collection,
Moscow, issue 1, 1996, pp. 63-69 (in Russian).

[34] Gelbart D., Smith J.C. FLEXICON: An evaluation of a statistical ranking model adapted to intelligent
legal text management. In Proc. of the 4th International Conference on Atrtificial Intelligence and Law
(ICAIL’93), 1993, pp. 142-151.

163

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

[35] Gifford M. LexrideLaw: An argument based legal search engine. In Proceedings of the 16th International
Conference on Artificial Intelligence and Law (ICAIL’17), 2017, pp. 271-272.

[36] Tupurckuit B.E., XKypasnes B.A., Kynemos B.II., Pesuukos B.b. O mpumenennu OBM st yaera u
06pa60TKI/I JIaHHBIX O JIMIAX, 3aZICp’KaHHbIX 3a 6p0[[$I)KHI/I‘{eCTBO u HOHpOI_HaI‘/'IHI/I'ﬂIeCTBO‘ HpHMeHeHI/Ie
MaAaTCMaTU4CCKUX MCTOJOB H BBIUHCIINTEIIbHOM TEXHUKH B IpaBe, KPUMHWHAJIUCTHUKE H CyﬂeGHOﬁ
skcmeptuse. Marepuaist cummnosuyma. M., 1970 ., crp. 80-81/ Girinskii V.E., Zhuravlev V.A., Kuleshov
V.P., Reznikov V.B. On the use of computers for recording and processing data on persons detained for
vagrancy and begging. In Application of Mathematical Methods and Computer Technology in Law,
Criminalistics and Criminalistics Expertise: Proceedings of the Symposium, Moscow, 1970, pp. 80-81 (in
Russian).

[37] TonoBuanckuit A.B. TIpuMeHeHHEe KOMIIBIOTEPHOTO MOJICTMPOBAHKS MIPU YCTAHOBJICHHH OOCTOSTENBCTB
JAOPOKHO-TPAHCIIOPTHBIX HpOPICIHeCTBPIﬁ. OO0ecrieuenue IpaB MW 3aKOHHBIX HHTCPECOB TIpaxiaH B
JIeSITeIIbHOCTH OPTaHOB JIO3HAHMS | MPeBapUTeNbHOrO cinencteus. Coopuuk crareid. Open, OptOU MBJ]
Poccuu umenn B. B. JIykbsiroBa, 2018 1., ctp. 54-64. / Golovchanskii A.V. The use of computer modeling
to establish the circumstances of traffic accidents. In Ensuring the Rights and Legitimate Interests of
Citizens in the Activities of Bodies of Inquiry and Investigation: A Collection of Articles, Oryol, Oryol
Law Institute of the Ministry of Internal Affairs of Russia, 2018, pp. 54—64 (in Russian).

[38] Grabmair M. Predicting trade secret case outcomes using argument schemes and learned quantitative value
effect tradeoffs. In Proc. of the 16th International Conference on Artificial Intelligence and Law
(ICAIL’17), 2017, pp. 89-98.

[39] I'panosckuit T'JI., Tlumenos H.®., Dmxydos JLI. Hcrosnp30BaHHE MAaTeMaTHYECKHX METOJOB M
OJICKTPOHHO-BBIYUCIIUTCIIBHBIX MalllH B Tpaconornqecrcoﬁ OKCIIEPTU3E. l'[po6neMm " TIpaKTHKa
TPACOJIOrMYECKUX M OAJUTHCTHUSCKHX HccaenoBanuit. M., BHUHUCD, 1976 r., ctp. 25-42 / Granovskii
G.L., Pimenov N.F., Ehdzhubov L.G. The use of mathematical methods and electronic computers in
trasological examination. In Problems and Practice of Trasological and Ballistic Research, Moscow, All-
Union Research Institute for Criminalistics Expert Examination, 1976, pp. 25-42 (in Russian).

[40] Griffo C., Almeida J.P.A., Guizzardi G. A pattern for the representation of legal relations in a legal core
ontology. In Legal Knowledge and Information Systems (JURIX’2016), Amsterdam, 10S Press, 2016, pp.
191-194.

[41] Hachey B., Grover C. Automatic legal text summarization: experiments with summary structuring. In Proc.
of the 10th International Conference on Artificial Intelligence and Law (ICAIL’2005), 2005, pp. 75-84.

[42] Hafner C.D. Representation of knowledge in a legal information retrieval system. In Proc. of the 3rd
Annual ACM Conference on Research and Development in Information Retrieval (SIGIR’80), 1981, pp.
139-153.

[43] Harrington W.G., Wilson H.D., Bennett R.N. The Mead Data Central system of computerized legal
research. Law Library Journal, vol. 64, no. 2, 1971, pp. 185-189.

[44] Hoppenfeld E.C. Law Research Service/Inc. MULL: Modern Uses of Logic in Law, vol. 7, no. 1, 19686,
pp. 46-52.

[45] Horty J.F. Experience with the application of electronic data processing systems in general law. MULL:
Modern Uses of Logic in Law, vol. 2, no. 4, 1960, pp. 158-168.

[46] Horty J.F. The «key words in combination» approach. MULL: Modern Uses of Logic in Law, vol. 3, no.
1, 1962, pp. 54-64.

[47] Kapumor B.X. ABTOMAaTu3upoBaHHbIE HH(OPMAIMOHHO-TOMCKOBBIE CHCTEMBI KPUMHHAITMCTHYECKOTO
Ha3HAYCHHs: COBPEMEHHOE COCTOSIHUE, TeHACHIINH U MepCHeKTUBbl pa3sutus. M., IOpnutundpopm, 2014
r.. 151 crp. / Karimov V.Kh. Automated criminalistics information retrieval systems: current status, trends
and development prospects, Moscow, Yurlitinform, 2014 (in Russian).

[48] Kack JL.LU. O HEKOTOpBIX BOMpOCax MH(POPMAIMOHHOTO s3bIKa IS MpaBa. BecTHUK JIEHUHIPAICKOrO
yHuBepcureTa. Cepust SKOHOMUKH, (pruitocopus u mpasa, Beim. 2, Ne 11, 1961 r., crp. 135-138. / Kask L.I.
Concerning some issues of information language for law. Bulletin of the Leningrad University. Series:
Economics, Philosophy and Law, issue 2, no. 11, 1961, pp. 135-138 (in Russian).

[49] Kehl W.B., Horty J.F., Bacon C.R.T., Mitchell D.S. An information retrieval language for legal studies.
Communications of the ACM, vol. 4, no. 9, 1961, pp. 380-389.

[50] Kepumor I.A. OG HCHONB30BaHWM KHOEPHETHYECKHX MAIIHH B IMPOIECCE KOAU(PHUKAIUMHA COBETCKOTO
mpaBa. Bompocsl koandukaimu coBerckoro mpasa. JI., M3natenscTBo JICHHHTPaACKOro. YHUBEPCUTETA,
BoIm. 3, 1960 r., crp. 121-123. / Kerimov D.A. On the use of cybernetic machines in the codification of
Soviet law. In Issues of Codification of Soviet Law, Leningrad, Leningrad University, issue 3, 1960, pp.
121-123 (in Russian).

164

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

[51] Kerimov D.A. Future applicability of cybernetics to jurisprudence in the USSR. MULL: Modern Uses of
Logic in Law, vol. 4, no. 4, 1963, pp. 153-162.

[52] Kepumos JI.A. TlpaBo u kubepHetrka. CoBeTcKoe rocymapcTso u mpaso, Ne 9, 1964 r., crp. 86-94 /
Kerimov D.A. Law and cybernetics. Soviet State and Law, no. 9, 1964, pp. 86-94 (in Russian).

[53] Kepumos JI.A. O crpaBouHO-HH(POPMAIMOHHOM Ciy:kbe B 00aacTi mpaBa. Bompockl KHOEpHETHKH U
npaBo. CoopHuk crareit. M., Hayka, 1967 r., ctp. 61-83 / Kerimov D.A. Concerning the legal reference
service. In Cybernetics and Law: A Collection of Articles, Moscow, Science, 1967, pp. 61-83 (in Russian).

[54] Kepumos JI. A., Dmxy6oB JI.T'. Kak Bo3HHKIIa TpaBOBast KHOepHETHKA. [IyTh B GOJIBIIYIO HAYKY: aKaJIeMUK
Axcenb Bepr. Coopuuk crareit. M., Hayka, 1988 r., crp. 234-243 / Kerimov D.A., Ehdzhubov L.G. The
rise of legal cybernetics. In The Path to Big Science: Academician Axel Berg. A Collection of Articles,
Moscow, Science, 1988, pp. 234-243 (in Russian).

[55] Kepumor JI.A., TTokpoBckuit M1.®. OmbIT HCIONB30BaHUs CPEICTB KMOEPHETHUKH JUIsi aBTOMATH3AIH
nHpopMaIOHHOH Cyk061 B obyacté mpaBa. Bectruk Jlenmnrpanckoro yrusepcurera. Cepus
SKOHOMHUKH, (uocoduu u npasa, BeI. 1, Ne 5, 1964 1., ctp. 121-124 / Kerimov D.A., Pokrovskii I.F.
Experience in using cybernetics to automate information services in the field of law. Bulletin of the
Leningrad University. Series: Economics, Philosophy and Law, issue 1, no. 5, 1964, pp. 121-124 (in
Russian).

[56] XBbust-Onunatep AWM. Hcnonb3oBaHne KPUMHHAJIUCTHYECKOW XapaKTepPHCTHUKHA MPECTYIUICHUH B
aBTOMaTHU3UpPOBaHHbBIX I/IHd)OpMaHHOHHO-HOI/ICKOBBIX cucremMax TEXHUKO-KPUMHUHAJIIUCTHYICCKOT' O
Ha3HauYeHHs: 1uc. <...> KaHA. ropuna. Hayk. M., 1995 r., 225 crp. / Khvylya-Olinter A.l. Using the
criminalistics characteristics of crimes in automated information retrieval systems for technical and
criminalistics purposes: dissertation of the candidate of legal sciences, Moscow, 1995 (in Russian).

[57] Kupromkua M.B. AnropurMudeckue npeodpa3oBaHus B IOPUCIPYICHIHH. PoccHiickuil ropumudeckuit
xypran, Ne 4, 2007 r., ctp. 34-44 | Kiryushkin M.V. Algorithmic transformations in jurisprudence.
Russian Juridical Journal, no. 4, 2007, pp. 34-44 (in Russian).

[58] KonwuioB B.A. MG’TOJIBI KOMIUIEKCHOI'O CO3J1aHMs U NPUMEHEHU TUHAMUYCCKUX aBTOMATU3UPOBAHHBIX
HMH(OPMAIOHHBIX CHCTEM Ul 00paboTku cnabopopmanusyeMoii vHpopmanun: aproped. auc. <...> -
pa TexH. Hayk. M., 1994 r., 67 ctp. / Kopylov V.A. Methods for the integrated creation and use of dynamic
automated information systems for processing semi-formalized information: abstract of the dissertation of
the doctor of technical sciences, Moscow, 1994 (in Russian).

[59] KoBaneB C.A. OCHOBBI KOMIIBFOTEPHOI'O MOJCIHPOBAHKS TPU PACCICAOBAHUM HPECTYIUICHHH B cdepe
KOMITBFOTEPHOM HH(pOpPMAIIHH: HC. <...> KaH/. I0pH. HayK. Bonrorpan, 2012 r., 259 crp. / Kovalev S.A.
Fundamentals of computer modeling in the investigation of crimes in the field of computer information:
dissertation of the candidate of legal sciences, Volgograd, 2012 (in Russian).

[60] Kosunen B.H., Jlanuman P.M., SIky6oBuu B.A. KpumuHamucruueckas skcrnepTu3a OJIM3KHUX IMOYEPKOB
IIPU NOMOIIH 3JIEKTPOHHO-BBIUUCIUTENbHBIX MaluH. Jloknaasl AH CCCP, Tom 167, Ne 5, 1966, c. 1008—
1011 / Kozinets B.N., Lantsman R.M., Yakubovich V.A. Criminalistics expert examination of close
handwriting using electronic computers. Proceedings of the USSR Academy of Sciences, vol. 167, no. 5,
1966, pp. 1008-1011 (in Russian).

[61] Kosunen B.H., Jlanuman P.M., SIky6oBuu B.A. O6 0HOM KHOEPHETHYECKOM METOJE MCCIEIOBAHUS B
KPUMMHAJIMCTUYECKON dKCrepTu3e nouyepka. KubepHeruka u cyneOHas skcneptusza. BunbHioc, U3a-Bo
HUNCD, 1966 r, crp. 55-84 / Kozinets B.N., Lantsman R.M., Yakubovich V.A. Concerning one
cybernetic research method in the criminalistics expert examination of handwriting. In Cybernetics and
Criminalistics Expertise, Vilnius, Research Institute for Criminalistics Expert Examination, 1966, pp. 55—
84 (in Russian).

[62] Kynpsieuer B.H. O mporpaMMHpoBaHHH Tpoliecca MPHUMEHEHHsT HOPM TIpaBa. Borpockl KHOEPHETHKH H
npaBo. COopHuk crareil. M., Hayka, 1967 r., crp. 84-99. / Kudryavtsev V.N. Concerning programming
the process of applying the rule of law. In Cybernetics and Law: A Collection of Articles, Moscow,
Science, 1967, pp. 84-99 (in Russian).

[63] Kurcheeva G., Rakhvalova M., Rakhvalova D., Bakaev M. Mining and indexing of legal natural language
texts with domain and task ontology. In Proc. of the 5th International Conference on Electronic
Governance and Open Society: Challenges in Eurasia (EGOSE’2018), 2019, pp. 123-137.

[64] JTapuonoga E.YO., Tonoxkos 10.9., Bapanos C.A. Vcnons30BaHre KOMITBIOTEPHOTO MOIETUPOBAHUS JUTS
YCTAHOBJICHHSI CTPYKTYPhI XUMHYECKUX COSIUHEHUN — OOBEKTOB CyHeOHBIX JKCrepTu3. esTenbHocTh
MIPaBOOXPAHUTEIBHBIX OPTaHOB B COBPEMEHHBIX ycaoBusax. Marepuansl XVIII MmexnyHaponHoi HayqdHO-
NpaKTHYeCKOl KoHpepeHIwmy, nocesiuieHHoi 20-1eTuio odpa3zoBanus nuHctutyta. Mpkyrcek, Bocr.-Cubup.
uH-T MBJI Poccun, 2013 1, crp. 265-269. / Larionova E.Yu., Golodkov Yu.Eh., Baranov S.A. Using

165

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

computer modeling to establish the structure of chemical compounds — objects of criminalistics expertise.
In The activities of law enforcement agencies in modern conditions: Proc. of the 18th International
Scientific and Practical Conference Dedicated to the 20th Anniversary of the Institute, Irkutsk, East
Siberian Institute of the Ministry of Internal Affairs of Russia, 2013, pp. 265-269 (in Russian).

[65] Lawford H. QUIC/LAW: Project of Queens' University. In Automated Law Research: A Collection of
Presentations Delivered at the 1st National Conference on Automated Law Research. Chicago: ABA,
1973, pp. 67-93.

[66] Leimdorfer M. IMDOC. A computerized information retrieval system used by two governments in Europe.
Law and Computer Technology, vol. 6, 1973, pp. 75-77.

[67] JTeonos M1.H. Vcnonp30BaHHE aBTOMATH3UPOBAHHBIX HH(OPMALIOHHO-TIONCKOBBIX CHCTEM B PACKPBITHH
" pacciceaoBaHun HpeCTyHHCHHﬁ, COBEPUICHHBIX C IIPUMEHEHHEM OTHECTPEIIBHOI'O OPYXKHUs: JuC. <...>
KaHI. Fopuj. Hayk. M., 2006 r.. 172 ctp. / Leonov I.N. The use of automated information retrieval systems
in the detection and investigation of crimes committed with the use of firearms: dissertation of the
candidate of legal sciences, Moscow, 2006 (in Russian).

[68] Jlenuxora J.H., T'yakoe B.FO., Kupcanoa A.A. O0630p COBpeMEHHBIX MoOJEJEil Mpe/CTaBICHHS
JAKTHIIOCKOTINYECKHX n300pakeHnid. BectHuk HOXHO-YpanbcKoro rocyqapcTBEHHOTO YHHUBEPCHUTETA.
Cepusi: BoruncnurenbHas MaTeMaTuka 1 iHpopMaruka, Tom 7, Ne 1, 2018 r., crp. 40-59/ Lepikhova D.N.,
Gudkov V.Yu., Kirsanova A.A. An overview of fingerprint description models. Bulletin of the South Ural
State University. Series: Computational Mathematics and Software Engineering, vol. 7, no. 1, 2018, pp.
40-59 (in Russian).

[69] Libal T., Steen A. NAI —the normative reasoner. In Proc. of the 17th International Conference on Artificial
Intelligence and Law (ICAIL’19), 2019, pp. 262—263.

[70] Lippi M., Patka P., Contissa G., Lagioia F., Micklitz H.-W., Sartor G., Torroni P. CLAUDETTE: An
automated detector of potentially unfair clauses in online terms of service. Artificial Intelligence and Law,
vol. 27, no. 2, 2019, pp. 117-139.

[71] Loevinger L. Jurimetrics. The next step forward. Minnesota Law Review, vol. 33, no. 5, 1949, pp. 455—
493.

[72] Losano M.G. Giuscibernetica. Macchine e modelli cibernetici nel diritto. Torino, G. Einaudi, 1969 (in
Italian).

[73] Mackaay E. La création d’un thésaurus bilingue pour DATUM. La Revue juridique Thémis, vol. 6, no. 1,
1971, pp. 51-67 (in French).

[74] Makapos I1.10., Ceerinakos A.B., Cotun A.B., lllurees C.B., I'ycapoB A.A., Cmupenunn C.A., EmMenux
B.B., Crparuc B.b., ®eruco B.A. DpPekTUBHOCTD HCIOIB30BAHUS COBPEMEHHBIX KOMITBIOTEPHBIX
TEXHOJIOTMI B KJIMHUYECKOH MpPaKTHKE M IEPCIeKTHBBI IpUMeHeHus1 OnoMexaHndeckux 3 D-moneneii B
cyne6noi meauuune. CyneOHO-MeAnIMHCKas KenepTu3a, ToM 61, Ne 2, 2018 r, crp. 58-64. / Makarov
I.Yu., Svetlakov A.V., Sotin A.V., Shigeev S.V., Gusarov A.A., Smirenin S.A., Emelin V.V, Stragis V.B.,
Fetisov V.A. The efficiency of the application of the modern computed technologies in the clinical practice
and the prospects for the further use of the biomechanical 3D-models in forensic medicine. Forensic
Medical Expertise, vol. 61, no. 2, 2018, pp. 58-64 (in Russian).

[75] Maurushat A., Moses L.B., Vaile D. Using “big” metadata for criminal intelligence: Understanding
limitations and appropriate safeguards. In Proc. of the 15th International Conference on Artificial
Intelligence and Law (ICAIL’15), 2015, pp. 196-200.

[76] McCarty L.T. Reflections on Taxman: An experiment in artificial intelligence and legal reasoning. Harvard
Law Review, vol. 90, no. 5, 1977, pp. 837-893.

[77] McCarty L.T. Intelligent legal information systems: Problems and prospects. Rutgers Computer and
Technology Law Journal, vol. 9, no. 2, 1983, pp. 265-294.

[78] McCarty L.T., Sridharan N.S. The representation of an evolving system of legal concepts: Il. Prototypes
and deformations. In Proc. of the 7th International Joint Conference on Artificial Intelligence
(IICATI’81), 1981, vol. I, pp. 246-253.

[79] McGinnis J.0O., Stein B. Originalism, hypothesis testing and big data. In Proc. of the 15th International
Conference on Artificial Intelligence and Law (ICAIL’15), 2015, pp. 201-205.

[80] Mehl L. Automation in the legal world: From the machine processing of legal information to the «law
machine». In Mechanization of Thought Processes: Proc. of a Symposium Held at the National Physical
Laboratory: National Physical Laboratory Symposium Ne 10, London: H. M. Stationery Office, 1959, vol.
I, pp. 758-759.

[81] Melton J.S. The «semantic coded abstract» approach. MULL: Modern Uses of Logic in Law, vol. 3, no.
1, 1962, pp. 48-54.

166

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

[82] Melton J.S., Bensing R.C. Searching legal literature electronically: Results of a test program. Minnesota
Law Review, vol. 45, no. 2, 1960, pp. 229-248.

[83] Metsker O., Trofimov E., Grechishcheva S. Natural language processing of Russian court decisions for
digital indicators mapping for oversight process control efficiency: Disobeying a police officer case. In
Proc. of the 6th International Conference on Electronic Governance and Open Society: Challenges in
Eurasia (EGOSE’2019), 2020, pp. 295-307.

[84] Metsker O., Trofimov E., Petrov M., Butakov N. Russian court decisions data analysis using distributed
computing and machine learning to improve lawmaking and law enforcement. In Proc. of the 8th
International Young Scientist Conference on Computational Science (YSC’2019), 2019, pp. 264-273.

[85] Metsker O., Trofimov E., Sikorsky S., Kovalchuk S. Text and data mining techniques in judgment open
data analysis for administrative practice control. In Proc. of the 5th International Conference on Electronic
Governance and Open Society: Challenges in Eurasia (EGOSE’2018), 2019, pp. 169-180.

[86] Morgan R.T. The «point of law» approach. MULL: Modern Uses of Logic in Law, vol. 3, no. 1, 1962, pp.
44-48.

[87] Mozina M., Zabkar J., Bench-Capon T., Bratko I. Argument based machine learning applied to law.
Avtificial Intelligence and Law, vol. 13, no. 1, 2005, pp. 53-73.

[88] Nanda R., Siragusa G., Caro L.D., Boella G., Grossio L., Gerbaudo M., Costamagna F. Unsupervised and
supervised text similarity systems for automated identification of national implementing measures of
European directives. Artificial Intelligence and Law, vol. 27, no. 2, 2019, pp. 199-225.

[89] Hemumn JI.M1. Meroauyeckie OCHOBBI IPUMEHEHHs HH(OPMAIMOHHBIX KOMIIBIOTEPHBIX TEXHOJIOTHH B
CyIeOHO-0aTMCTHIECKON KCIIepTH3e: IUC. <...> KaHI. I0pHA. Hayk. M., 2002 r., 161 ctp. / Nemchin D.I.
Methodological foundations of the use of information computer technologies in ballistic examination:
dissertation of the candidate of legal sciences, Moscow, 2002 (in Russian).

[90] Niblett G.B.F., Price N.H. Mechanized searching of acts of Parliament. Information Storage and Retrieval,
vol. 6, no. 3, 1970, pp. 289-297.

[91] HoxxoB MI.M. TI'pademarrueckuii 1 MOpGHOIOrHUSCKHA MOIYIIH JUIsl PEIICHHUs 3a7a4 aBTOWHICKCAINH
tekcroB. IlpaBoBas uH(popmaTuka. C6opruk. M., HIITHA, 2001 r., crp. 49-55 / Nozhov I|.M.
Graphematical and morphological modules for solving problems of text auto-indexing. In Legal
Informatics: A Collection, Moscow, Scientific Center of Legal Information, 2001, pp. 49-55 (in Russian).

[92] Oneiinnko B.T. ABroMaTH3ailyis Mpolecca IMOMCKA B IMOPTPETHBIX Y4€TaX IO H3MEPHTEIbHBIM
TNpU3HaKaM BHEIIHOCTU. BOHpOCbI COBCPIICHCTBOBAHUA ACATEIIBHOCTH OPIraHOB BHYTPEHHUX JIEJT, Te3ucel
BBICTYIUICHHH Ha | MEXBY30BCKOIH Hay4HO-TIPAKTUYECKOW KOH(EPEHINH aJbIOHKTOB U COMCKATeNeil BO
BHHUU MBJ] CCCP. M., 1978 r., ctp. 153-155. / Oleinikov V.T. Automation of the search process in
portrait accounts by measuring signs of appearance. In Issues of Improving the Activities of the Internal
Affairs Bodies. Abstracts of Speeches at the 1st Interuniversity Scientific and Practical Conference of
Adjuncts and Applicants at the All-Union Scientific Research Institute of the USSR Ministry of Internal
Affairs, Moscow, 1978, pp. 153-155 (in Russian).

[93] OBumnckuit A.C. OrnepaTHBHO-pa3bICKHAs AaHAJIWTHKA HA MYTH K HMCKYCCTBEHHOMY HHTEJUIEKTY.
AKTyanpHbIe IPOOJIEMbI TEOPHH ONEPATUBHO-PO3BICKHON JesiTenbHOCTH. COOpPHUK HayYHBIX TPYIOB. M.,
Uudpa-M, 2017 r., crp. 364-393 / Ovchinskii A.S. Operational investigative analytics on the way to
artificial intelligence. In Actual Problems of the Theory of Operational Investigative Activity: A Collection
of Scientific Papers, Moscow, Infra-M, 2017, pp. 364-393 (in Russian).

[94] TapdhenThe A.JI. TIpobGieMbl CO3aHKMs KOMILIEKCA AITOPUTMOB U MPOrPaMM OTOOPAKEHHS U OLIEHKH
CMBICIA IOPUINYECKUX YCTAHOBJICHHH B MPABOBOI aBTOMATH3MPOBAHHON HWH(OPMAIMOHHOW CHCTEME.
IpaBoBast undpopmaruka. Coopuuk. M., ITHITH, Bbim. 3, 1998 1., crp. 111-124 / Parfent'ev A.L. Problems
of creating a complex of algorithms and programs for displaying and evaluating the meaning of legal
institutions in a legal automated information system. In Legal Informatics: A Collection, Moscow,
Scientific Center of Legal Information, 1998, issue 3, pp. 111-124 (in Russian).

[95] Monesoit H.C., lllnsxo A.P., Dmwky6os JI.I'. Mcrnionk3oBanie KUOEPHETHKH M MATEMATHIECKHX METO/IOB
B cyneOHoii skcrieptuse. [IpaBosenenue, Ne 6, 1972 r., crp. 124-131 / Polevoi N.S., Shlyakhov A.R.,
Ehdzhubov L.G. The use of cybernetics and mathematical methods in criminalistics expertise.
Jurisprudence, no. 6, 1972, pp. 124-131 (in Russian).

[96] Popple J. A pragmatic legal expert system. Aldershot, Dartmouth, 1996, 406 p.

[97] Prakken H. Reconstructing Popov v. Hayashi in a framework for argumentation with structured arguments
and Dungean semantics. Artificial Intelligence and Law, vol. 20, no. 1, 2012, pp. 57-82.

[98] Prakken H., Sartor G. A dialectical model of assessing conflicting arguments in legal reasoning. Avrtificial
Intelligence and Law, vol. 4, no. 3—4, 1996, pp. 331-336.

167

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

[99] Prestel B.M. CREDOC: Centre de documentation juridique Bruxelles. In Materialien zur
Rechtsinformatik. Folg 1: Lénderberichte USA, Schweden; Dokumentationssysteme CREDOC,
UNIDATA,; Bibliographie. Frankfurt am Main: Alfred Metzner Verlag, 1971, s. 55-70 (in German).

[100] Pammro P.C. Cucrema aBTOMATHYECKOM JIaKTHIOCKOMMYECKOM pETHCTpamnd Ha 0ase
creranu3upoBanHoii OBM «Munck-100». IIpoOGmemsr mpaBoBoil kubOepHeTHKH. Marepuasl
cummosuyma. M., 1968 r., crp. 218-220. / Rashitov R.S. Automatic fingerprint registration system based
on specialized computer «Minsk-100». In Problems of Legal Cybernetics: Symposium Proceedings,
Moscow, 1968, pp. 218-220 (in Russian).

[101] Rissland E.L., Ashley K.D. HYPO: A precedent-based legal reasoner. Amherst, University of
Massachusetts, 1987, 25 p.

[102] Rissland E.L., Skalak D.B. CABARET: Rule interpretation in a hybrid architecture. International
Journal of Man-Machine Studies, vol. 34, no. 6, 1991, pp. 839-887.

[103] Rissland E.L., Daniels J.J., Rubinstein Z.B., Skalak D.B. Case-based diagnostic analysis in a
blackboard architecture. In Proc. of the 11th National Conference on Artificial Intelligence (AAAT’93),
1993, pp. 66-72.

[104] Rissland E.L., Skalak D.B., Friedman M.T. BankXX: Supporting legal arguments through heuristic
retrieval. Artificial Intelligence and Law, vol. 4, no. 1, 1996, pp. 1-71.

[105] Rissland E.L., Skalak D.B., Friedman M.T. Evaluating a legal argument program: The BankXX
experiments. Artificial Intelligence and Law, vol. 5, no. 1-2, 1997, pp. 1-74.

[106] Rubin J.S. LEXIS has made computer-assisted legal research in the United States a practical reality.
Law and Computer Technology, vol. 7, no. 2, 1974, pp. 34-50.

[107] Sanders K.E. CHIRON: Planning in an open-textured domain. Artificial Intelligence and Law, vol. 9,
no. 4, 2001, pp. 225-269.

[108] Saravanan M., Ravindran B., Raman S. Using legal ontology for query enhancement in generating a
document summary. In Proc. of the Twentieth Annual Conference on Legal Knowledge and Information
Systems (JURIX 2007), 2007, pp. 171-172.

[109] Savelka J., Ashley K.D. Transfer of predictive models for classification of statutory texts in
multijurisdictional settings. In Proc. of the 15th International Conference on Artificial Intelligence and
Law (ICAIL’15), 2015, pp. 216-226.

[110] Schank R.C., Kolodner J.L., DeJong G. Conceptual information retrieval. In Proc. of the 3rd Annual
ACM Conference on Research and Development in Information Retrieval (SIGIR’80), 1981, pp. 94-116.

[111] Schweighofer E., Winiwarter W. Legal expert system KONTERM - Automatic representation of
document structure and contents. In Database and Expert Systems Applications: 4th International
Conference (DEXA’93), 1993, pp. 486—497.

[112] Mlaxrapuna H.M. TlpuMmeHeHHe BEpOSITHOCTHO-CTATHCTHYECKMX METOMOB OLICHKH B CyIeOHO-
MO4epKOBEAYECKOM IKciepTr3e. [Ipobiembl npaBoBoit knubepHeTHkH. Matepuaisl cummnosuyma. M., 1968
r., crp. 181-184 / Shakhtarina N.l. The use of probabilistic and statistical assessment methods in
criminalistics handwriting examination. In Problems of Legal Cybernetics: Symposium Proceedings,
Moscow, 1968, pp. 181-184 (in Russian).

[113] Ulep6unun A.W., IOpeeB B.I1. Onbit pa3paboTKu, BHEAPSHHUS M SKCILUTyaTallii aBTOMATH3HPOBAHHBIX
HMH(OPMAIOHHO-TTOMCKOBBIX CHCTEM IO y4eTy aBToTpaHcropTHbIX cpeactB B [AU. ITocobue. M., u3n-
Bo BHUU BT MBJ] CCCP, 1978 1., 71 crp./ Shcherbinin A.l., Yur'ev V.P. Experience in the development,
implementation and operation of automated information retrieval systems for the registration of vehicles
in the traffic police: a manual, Moscow: All-Union Research Institute for Traffic Safety of the Ministry of
Internal Affairs of the USSR, 1978, 71 p. (in Russian).

[114] Ulnsxos A.P., Dmky6os JI.I. CoBpeMeHHOE COCTOSHHE W HEKOTOpPBIE MPOOJIEMbI HCIOIb30BAHUS
kubepHeTuku B npaBe. COBETCKOE TOCYIapcTBO M MpaBo, NO. 6, 1965 r., crp. 83-92 / Shlyakhov A.R.,
Ehdzhubov L.G. Current status and some problems of the use of cybernetics in law. Soviet State and Law,
no. 6, 1965, pp. 83-92 (in Russian).

[115] Stevens C., Barot V., Carter J. The next generation of legal expert systems — New dawn or false dawn?
In Proc. of the International Conference on Innovative Techniques and Applications of Artificial
Intelligence, 2011, pp. 439-452.

[116] Stranieri A., Zeleznikow J. The SPLIT-UP System: Integrating neural networks and rule-based
reasoning in the legal domain. In Proc. of the 5th International Conference on Artificial Intelligence and
Law (ICAIL’95), 1995, pp. 185-194.

168

Tpodumos E.B., Merxep O.I'. Hcrnionp30BaHne KOMIIBIOTEPHBIX METOLOB M CHCTEM B H3YUCHHH [IPaBa, HHTCIUICKTYaIbHOM aHATH3E 1
MOJICTMPOBAHHH ITPABOBOM JEATENBHOCTH: cHcTeMarndeckuit 063op. Tpyosr UCIT PAH, Tom 32, Beim. 3, 2020 r., ctp. 147-170

[117] Stranieri A., Zeleznikow J., Gawler M., Lewis B. A hybrid-neural approach to the automation of legal
reasoning in the discretionary domain of family law in Australia. Artificial Intelligence and Law, vol. 7,
no. 2-3, 1999, pp. 153-183.

[118] CymoxomoB A.IL., KysueroBa M.A. Koppymims: MeXaHH3MBI pa3BHTHS, CIOCOOBI MPO(UIAKTHKA
(OI'II)IT KOMITBIOTEPHOI'0 MOACINPOBAHUA C MTPUMEHCHUEM YUCIICHHBIX Me’l'O}lOB). Becrauk Poccutickoro
yHUBepcuTeTa apykOsl HaponoB. Cepusi: MatemaTnka, HHpOpMaTHKa, (pusnka, ToMm 26, no. 2, 2018 r.,
crp. 183-193 / Sudokholov A.P., Kuznetsova I.A. Corruption: development mechanisms, ways of
prevention (experience of computer modeling with application of numerical methods). RUDN Journal of
Mathematics, Information Science and Physics Series, vol. 26, no. 2, 2018, pp. 183-193 (in Russian).

[119] Tapper C. Feasibility study of the retrieval of legal information from two types of natural language text.
Research report Ne 5062, Oak Ridge: Office for Scientific and Technical Information, 1969.

[120] Tapper C. Legal information retrieval by computer: Applications and implications. McGill Law
Journal, vol. 20, no. 1, 1974, pp. 26-43.

[121] Tapper C.F. British experience in legal information retrieval. MULL: Modern Uses of Logic in Law,
vol. 5, no. 4, 1964, pp. 127-134.

[122] Tkauenko K.N. ABTOMaTU3UpOBaHHAS nH(pOpMaIMOHHAS cucTemMa (dopMupoBaHus
(axTorpadIecKuX JaHHBIX U €€ IPUMEHEHHe IS KpUMHUHAINCTUKA, MHHOBAIIUH ¥ 00ydeHHs : uC. <...>
KaHJ. TexH. Hayk. M., 2017 r., 263 ctp. / Tkachenko K.I. Automated information system for the formation
of factual data and its application for criminalistics, innovation and training: dissertation of the candidate
of technical sciences, Moscow, 2017 (in Russian).

[123] Tong R.M., Appelbaum L.A. Conceptual information retrieval using RUBRIC. In Proc. of the 10th
Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval,
1987, pp. 247-253.

[124] Tong R.M., Appelbaum L.A. Experiments with interval-valued uncertainty. In Proc. of the Second
Annual Conference on Uncertainty in Artificial Intelligence, 1988, pp. 63-75.

[125] Tong R.M., Aksman V.N., Cunningham J.F., Tollander C.J. RUBRIC: An environment for full text
information retrieval. In Proc. of the 8th Annual International ACM-SIGIR Conference on Research and
Development in Information Retrieval, 1985, pp. 243-251.

[126] Torrisi A., Bevan R., Atkinson K., Bollegala D., Coenen F. Automated bundle pagination using
machine learning. In Proc. of the 17th International Conference on Artificial Intelligence and Law
(ICAIL’19), New York: ACM, 2019, pp. 244-248.

[127] Tpodumos E.B., Meukep O.I'. ITIpaBo ¥ HCKYCCTBEHHBIH HMHTECIUICKT: OIBIT pa3pabOTKH
BBIYHCIUTCIIBHON MCTOAOJIOI'MM 1)1 aHaJIM3a U OCHKU Ka4C€CTBCHHbBIX W3MCHCHUH B 3aKOHOIATCIbCTBE U
MpaBOIpPUMEHHUTENbHOIM mpakTuke (Ha mnpumepe cratbu 20.4 Kopmexca Poccuiickoit ®enepanun 00
aJIMUHHUCTPATUBHBIX MpaBOHapymeHusix). [IpaBo u monuruka, no. 8, 2019 r., crp. 1-17 / Trofimov E.V.,
Metsker O.G. Law and artificial intelligence: the experience of computational methodology for analyzing
and assessing quantitative changes in legislation and law enforcement practice (on the example of the
article 20.4 of the Code of the Russian Federation on Administrative Offenses). Law and Politics, no. 8,
2019, pp. 1-17 (in Russian).

[128] Troy F.J. Ohio Bar Automated Research — A practical system of computerized legal research.
Jurimetrics Journal, vol. 10, no. 2, 1969, pp. 62—69.

[129] Tpycor A.U. CynebHoe mOKa3biBaHHE B CBETE HJCiH KHOEPHETHKH. BOMpPOChl KMOEPHETHKH | MPABO.
M., Hayka, 1967 r., ctp. 2035/ Trusov A.1. Judicial proof in the light of cybernetics. In Cybernetics and
Law Issues, Moscow, Science, 1967, pp. 20-35 (in Russian).

[130] Valente A., Breuker J. Making ends meet: Conceptual models and ontologies in legal problem solving.
In Proc. of the XI Brazilian Symposium on Artificial Intelligence (SBIA’94), 1994, pp. 395-410.

[131] Bacunees B.B., I'pauesa A.B., Pomuonos A.W., BrnekanoB WN.C. I'padoBbie METOIBI BBISBICHHSL
CEMaHTUYECKH 3HAUYMMBIX TEKCTOB CyAeOHBIX pereHuil. [Iporeccrl ynpaBieHust 1 yCTOWIUBOCTS, T. 6, NO.
1,2019 ., ctp. 234-239 / Vasil'ev V.V, Gracheva A.V., Rodionov A.1., Blekanov I.S. Graph methods for
identifying semantically significant texts of court decisions. Control Processes and Stability, vol. 6, no. 1,
2019, pp. 234-239 (in Russian).

[132] Bexos B.b. Ilpumenenne WHPOPMAIMOHHBIX CHCTEM CIEIHATBLHOIO HA3HAYCHHUS B PACKPHITHH U
paccnenoBanuu mpectymienuit. OnepaTuBHO-pa3bickHoe mpaBo. COopHuk cratedl. Bomrorpan,
Bomnrorpan. akag. MBJT Poccun, 2013 1., crp. 26-32. / Vekhov V.B. The application of special-purpose
information systems in the disclosure and investigation of crimes. In Operational Investigative Law:
Collection of Articles, Volgograd, VVolgograd Academy of the Ministry of Internal Affairs of Russia, 2013,
pp- 26-32 (in Russian).

169

Trofimov E.V., Metsker O.G. Application of Computer Techniques and Systems in the Study of Law, Intellectual Analysis and Modeling of
Legal Activity: A Systematic Review. Trudy ISP RAN/Proc ISP RAS, vol. 32, issue 3, 2020. pp. 147-170

[133] Berpos A.I'. OcroBHble npoekTHbIe perenns AUTIC «3akoHOIATENBCTBOY» — MEPBON OTEIECTBEHHON
CIpaBOYHOU NpaBoBOi cucremsl. IlpaBoBoit MoruTopuHr. M., ®I'Y HIIIU npu Muntocre Poccun, BbiIL
11, 2010 r., crp. 12-17 / Vetrov A.G. The main design decisions «AIRS-Legislation» — the first domestic
reference legal system. In Legal Monitoring, Moscow: Scientific Center of Legal Information under the
Ministry of Justice of Russia, 2010, issue 11, pp. 12-17 (in Russian).

[134] Byn C.M. CrarucTuueckoe HCCIEIOBAHHE TEKCTOB ¢ MOMOIIb0 DBM U juciies B HENIX
YCTaHOBJICHHA aBTOPCTBA. HpI/IMeHCHI/Ie OBM B CyﬂC6HO-3KCHCpTHBIX HCCIICAOBAHUAX U ITOUCK HpaBOBOfI
urpopmarmu. M., BHUVCD, 1975 r., ctp. 227-233 / Vul S.M. Statistical study of texts using computers
and display in order to establish authorship. In The Use of Computers in Criminalistics Expert Examination
and the Search for Legal Information, Moscow, All-Union Research Institute for Criminalistics Expert
Examination, 1975, pp. 227-233 (in Russian).

[135] Walker R.F., Oskamp A., Schrickx J.A., Opdorp G.J., van den Berg P.H. PROLEXS: Creating law and
order in a heterogeneous domain. International Journal of Man-Machine Studies, vol. 35, no. 1, 1991, pp.
35-68.

[136] Wegstein J.H. A computer oriented single-fingerprint identification system. Technical Note 443;
National Bureau of Standards, U.S. Department of Commerce, 1969.

[137] ¥Ocynor C.H. MHbOpMAaIMOHHO-TOMCKOBBI SI3BIK 110 3aKOHOJATENLCTBY: aBTOped. Auc. <...> KaHI.
topun. Hayk. M., 1974 r.. 20 ctp. / Yusupov S.N. Legislative information retrieval language: abstract of
the dissertation of the candidate of legal sciences, Moscow, 1974. (in Russian).

[138] Zeng Y., Wang R., Zeleznikow J., Kemp E. A knowledge representation model for the intelligent
retrieval of legal cases. International Journal of Law and Information Technology, vol. 15, no. 3, 2007, pp.
299-319.

[139] Zhong L., Zhong Z., Zhao Z., Wang S., Ashley K.D., Grabmair M. Automatic summarization of legal
decisions using iterative masking of predictive sentences. In Proc. of the 17th International Conference on
Artificial Intelligence and Law (ICAIL’19), 2019, pp. 163-172.

[140] 3ununa A.M., Kpeimckuii H.K., CHerkoB B.A., ®aitn B.C. VccnenoBanue BO3MOKHOCTEH HOPTPETHO#M
I/IJIGHTI/Iq)I/IKaHI/II/I C HUCIOJB30BAaHUEM CPEJCTB BHeKTPOHHO-BLI‘H/ICJ'[I/ITBJ‘[BHOﬁ TCXHUKH. anMeHeHI/Ie
MaTEMaTU4YCCKUX MCTOIOB U BBIYUCIIUTEILHOM TEXHUKH B npaBe, KPUMHHAIUCTUKE U Cy,[[e6HOfI
9KCIIEpTH3E: Marepuaibl cumnosuyma. M., 1970 r., crp. 158-160 / Zinin A.M., Krymskii N.K., Snetkov
V.A., Fain V.S. The study of the possibilities of portrait identification using electronic computers. In The
Application of Mathematical Methods and Computer Technology in Law, Criminalistics and
Criminalistics Expertise: Proceedings of the Symposium, Moscow, 1970, pp. 158-160 (in Russian).

MHcopmauusa o6 aBTopax / Information about authors

Erop BukropoBuu TPOOMMOB — noktop MOpUAMYECKHX HAYK, JOLEHT, 3aCIYy)KEHHBIH FOPUCT
PecriyOnuku Anraif, 3amMecTHTeNb JMpPEKTOpa IO HaydHoi padore. OOIACTh HHTEPECOB:
MEXIUCLUIIMHAPHAS KOMIBIOTEPHO-IOPUINYECKAsT METOAO0IOTUs, IPOTUBOAEHCTBUE KOPPYIILIUU.
Egor Viktorovich TROFIMOV — Doctor of Law, associate professor, Honored Lawyer of the Altai
Republic, deputy director for research. Research interests: interdisciplinary computer-legal
methodology, anti-corruption.

Oner T'emnampeBnu MEIKEP — kaHmumaT TEXHWYECKHX HayK, PYKOBOAHTENb TPYIIIBI
MOJICIIUPOBAHMS M TPOTHO3UPOBAHUS YIPABICHHUS [0 peanm3anui (HemaepaibHBIX IPOEKTOB.
OO0nacTb MHTEPECOB: UHTEIICKTYaIbHbIE HH)OPMAIOHHBIE CHCTEMBI, MOJICTUPOBAHKE HA IAHHBIX,
MOJIEIMPOBAHIE KOMIUIEKCHBIX IMPOIIECCOB, MAIIMHHOE OOyYeHHe, MPHUKIATHOW MCKYCCTBEHHBIN
HUHTCIIJICKT, BBIYHUCIINTCIIBHOC 3ApaBOOXpPaHCHUE, OpraHu3anusa 3ApaBOOXpPAaHCHN,
aIMUHUCTPATUBHOE TPABO, IOPUANIECKHAE HAyKH, 00pabOTKa TEKCTOB HA €CTECTBEHHOM S3BIKE,
0a3sl 3HaHI/II‘/'I, BBICOKOITPOU3BOANUTEIIbHBIC BBIYUCIICHUS, YEJIOBECKO-MAIIMHHOE BSaHMOHCﬁCTBHC.
Oleg Gennadevich METSKER — Candidate of Technical Sciences, head of the modeling and
forecasting group of the department for the implementation of federal. Field of Interest: intelligent
information systems, data modeling, data mining, complexity, uncertainty, machine learning,
artificial intelligence, computational healthcare, legal science, text mining, process mining, natural
language processing, knowledge bases, high-performance computing, big data, administrative
sciences, e-sciences, human-computer interaction.

170

