TPYADI

MHCTUTYTA CACTEMHOIO
NnPOrPAMMUPOBAHUA PAH

PROCEEDINGS OF THE INSTITUTE
FOR SYSTEM PROGRAMMING OF THE RAS

ISSN Print 2079-8156 NHCTUTYT cucTeMHoro
Tom 33 Bbinyck 3 nporpamMmmMmupoBaHus
uwm. B.IN. UBaHHKuKoBa PAH

ISSN Online 2220-6426

Volume 33 Issue 3 MockBa, 2021 mcn

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)

Tpyabl UHCTUTYTA cuctemHoro nporpammupoBaHua PAH
Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH - 510 u3ganmne ¢

JIBOMHON aHOHUMHOMN CUCTEMOM

peleH3upoBaHus, IyOIUKYOIIee HAYYHbIC

CTaThH, OTHOCSIIHECS KO BCEM 00JIaCcTsIX

CHCTEMHOTO TIPOTpaMMHUPOBAHHUS,

TEXHOJIOTUH MPOTPAMMUPOBAHUS U

BBIUHMCIIUTEIIbHON TeXHUKH. Llennro

W3JIaHU SBIIIETCS (POPMUPOBAHIE HAYIHO-

WH(POPMAITUOHHOM CPEJIBI B ATUX 00JIACTSIX

MyTEeM ITyOJIMKAIIUU BEICOKOKAUECTBCHHBIX

CTaTeil B OTKPHITOM JIOCTYTIE.

W3nanue npeaHasHaueHo s

HCCIe0BaTeNe, CTYACHTOB U

ACIMPAHTOB, a TaKXKe MPakTUKOB. OHO

OXBAaTHIBAET IIMPOKHI CIIEKTP TEM,

BKJIIOYAsi, B YACTHOCTH, CICAYIOIIHUE:

® ONCPAIMOHHBIC CHCTEMBI;

® KOMIIJIATOPHBIC TEXHOJIOTHH;

e (0a3bl JaHHBIX U HHHOPMALTUOHHBIE
CHCTEMBEI,

e TapajuieJbHBIC U PacTIpeICIICHHbIC
CHCTEMBEI,

® aBTOMAaTHU3WpOBaHHAas pazpadoTkKa
Iporpamm;

e BepudwuKanys, BAIUIANNS U
TECTUPOBAHUE;

® CTaTWMYCCKUU M JTUHAMHYCCKHUI aHAIIN3;

e 3ammra u odecrneucHue 0e30MacHOCTH
I10;

® KOMIBIOTEPHBIC AITOPUTMEI,

® JCKYCCTBEHHBIN MHTEJIICKT.

JKypranm nzmaercs 1mo 0JHOMY TOMY B TOJ,

IIECTH BBIITYCKOB B KAKIIOM TOME.

ITognepxuBaeTcs OTKPBITHIN TOCTYII K

COJICP)KaHUIO M3/IaHUs, O0eCTIeunBast

JIOCTYITHOCTH Pe3yIbTAaTOB UCCIIEIOBAHMIA

JUTSL OOIIIECTBEHHOCTH U TIOJ|JICPIKUBAS

ra00anbHBIN OOMEH 3HAHUSIMHU.

Tpyasl UCII PAH pedepupyroTes u/umu

UHJECKCUPYIOTCS B!

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by publishing
high quality articles on open access.

The journal is intended for researchers,
students, and practitioners. It covers a wide
variety of topics including (but not limited
to):

Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design Tools.
Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

GO (4’8[6 @ ULRICHS\WEE
R seeres EVortdcat
sy OpenDOAR
CYBERLENINKA DOA. Jumsycees
cLIBRARY.R
éos e’

| OPEN ACCESS
ot IOJRNALS

ROAR

RECOTRY OF OPEN
ACCLSS REAOSITORES

Aath- N et Ry |

VIIK004.45

Peakoanerus

I'naBHbIil pepakTop - Aperucsy ApyTioH
Wnixanosud, akageMuk PAH, nokrop ¢usuko-

MaTeMaTHIeCKHUX Hayk, npogeccop, ICII PAH
(Mockga, Poccuiickast @eneparms)

3amecTHTEIb [JIABHOTO pefaKkTopa - Ky3neios
Cepreit JImutpuesnd, a.T.H., npodpeccop, UCIT PAH
(Mockaa, Poccuiickas ®enepanms)

YireHbl peaKoJIerun

BoponkoB Anjapeii AHATOILEeBUY, TOKTOP (PHU3HUKO-
MaTeMaTH9IECKHX HayK, Ipodeccop, YHUBEPCUTET
Manuecrepa (Manuectep, BenmnkoOpuranms)
Bupounkaiite Upuna BoHaBeHTYpOBHA,
npodeccop, TOKTOp HU3HKO-MaTEMaTHIECKUX HAYK,
WuetuTyT crcteM HHPOPMATHKY MM. aKaJeMHUKa
A.II. EpmoBa CO PAH (HoBocu6upck, Poccust)
Konnos Urops Baagumuposuy, kKaHauaaT
(U3UKO-MaTEeMaTHUECKUX HAayK, TeXHUIeCKUui
yauBepcuteT Bensl (Bena, ABctpusi)
JlacToBenkuii AJsiexceii Jleonn10BuY, TOKTOp
(U3UKO-MaTeMaTHUECKHIX HayK, Ipodeccop,
VYuusepcuter dy6muna (Jyomun, Vpranmus)
Jloma3oBa UpuHa AneKkcaHIPOBHA, TOKTOP
(bHM3MKO-MaTeMaTHUECKUX HayK, podeccop,
HanuonanbsHeli ucciieioBaTeNnbCKuil yHUBEPCUTET
«Bricmast mkora 5KoHOMUKI» (MocKBa,
Poccuiickas deneparust)

Hosuxos Bopuc AceHoBuY, TOKTOp PH3UKO-
MaTeMaTH4YecKuX Hayk, mpodeccop, CaHKT-
IMetepOyprekuii rocy1apCTBEHHBIH YHUBEPCUTET
(Canxrt-IlerepOypr, Poccust)

Ilerpenko Anexcanap @e1opoBnd, JOKTOP HaYK,
Hccnenoparenbckuii HHCTUTYT MoHpeanst
(Mownpeans, Kanana)

Yepubix Anjpeii, TOKTOp GU3UKO-MaTEMaTHIECKHAX
HayK, podeccop, Hayano-nccnenoBarenbckuit
nentp CICESE (Qucenana, baxa Kamudopans,
Mekcuka)

IlIvcrep Accad, TokTop HU3MKO-MaTEMAaTHIECKUX
Hayk, npodeccop, Texuuon — V3pauabckuii
TexHosnorndeckuit nHctuTyT Technion (Xaiida,
N3pannp)

Anpec: 109004, r. Mockga, yi. A. CoDKeHHUIBIHA,
oM 25.

Tenedon: +7(495) 912-44-25

E-mail: proceedings@ispras.ru

Caiir: https://ispranproceedings.elpub.ru/

Editorial Board

Editor-in-Chief - Arutyun |. Avetisyan,
Academician of RAS, Dr. Sci. (Phys.—Math.),
Professor, lvannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr.
Sci. (Eng.), Professor, Ivannikov Institute for System
Programming of the RAS (Moscow, Russian
Federation)

Editorial Members

Igor Konnov, PhD (Phys.—Math.), Vienna
University of Technology (Vienna, Austria)
Alexey Lastovetsky, Dr. Sci. (Phys.—Math.),
Professor, UCD School of Computer Science and
Informatics (Dublin, Ireland)

Irina A. Lomazova, Dr. Sci. (Phys.—Math.),
Professor, National Research University Higher
School of Economics (Moscow, Russian Federation)
Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor,
St. Petersburg University (St. Petersburg, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research
Institute of Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel
Institute of Technology (Haifa, Israel)

Andrei Tchernykh, Dr. Sci., Professor, CICESE
Research Centre (Ensenada, Baja California,
Mexico).

Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The
A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the RAS (Novosibirsk, Russian
Federation)

Andrey Voronkov, Dr. Sci. (Phys.—Math.),
Professor, University of Manchester (Manchester,
United Kingdom)

Address: 25, Alexander Solzhenitsyn st., Moscow,
109004, Russia.

Tel: +7(495) 912-44-25

E-mail: proceedings@ispras.ru

Web: https://ispranproceedings.elpub.ru/

© Unctutyt Cucremuoro IIporpammuposanus um. B.I1. UBannukosa PAH, 2021

http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://usuario.cicese.mx/~chernykh/
http://assaf.net.technion.ac.il/
http://forsyte.at/people/konnov/
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://usuario.cicese.mx/~chernykh/
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/

Tpyasl Hucturyra CucrtemHoro IlporpaMMuUpoBaHuA

ConepxaHue

Kakue cTrinm apXuTeKTyphl IPOTPaMMHOTO 00SCTICUCHUSI TTOTYIISIPHBI?
Muyior A.A., ZKameapsits H.A.ccooviiiiiiiiiiii st 7

00630p Mozene paboThl CTATUYECKUX aHAIN3aTOPOB
MEHDUIUKOB ML A. ...ttt et re e e e eneaes 27

ABTOMaTH3MPOBAHHAS CUCTEMA TECTHPOBAHUS MHCTPYMEHTOB CTATUYCCKOTO
aHaJIM3a Koua
Tumamounos /.M., I'epacumos A.1O., IIpusanos I1.A., Bymxesuy B.H., Yepnosa H.A.,

TOPEIOBA A Ao 41
OnTuMu3anyy pacnoIokeHns JaHHbIX 11t Kommusitopa LCC it apXUTeKTyphl
Dmsopyc

Hlamnapog B.E., HeiMaH-300€ M.H.ccccoooiiviiiiiiiiieii e 51

Jlokanu3oBaHHOE MPUMEHEHUE YaCTUIHON THITU3AIMN
KPotumanoUu B.C.cccuiiiiieiieiii sttt 61

Knaccuduxarus HTTP-3anpocoB k cepBepy B 3a/jaue aBTOMaTHYECKOro 00X0/1a
COBpPEMEHHBIX BEO-TIPUIIOKEHHH
Jankuna A.B., TIeMYX08 A.A.cccooueioiiiiiiii ittt 77

Bricokonpon3BoauTenbHBIN pacipeeleHHbINH BeO-CKpamnep
Duzenax /1.C., Pameiikoe A.C., HUKUGDOPOG UL B.c...cccoovioiiiiiiiiiiieiie s 87

Power Fx: Low-code s3bIK 1T MHCTPYMEHTOB COBMECTHOMN pa0OTHI.
Boponxos H.A., CapaosrtcuttdBUIU C.D.ccceriiieeiiiieeiiiie s 101

MeTto/1 aHaIM3a IPOU3BOIUTEIIBHOCTH KPUTHYHBIX 110 BPEMEHH MPUIIOKESHUH C
nomorsro DB-Nets
Pueun AM., HIEPUIAKOB C.A.eeeieiieiiei et 109

TpaHCKPUNILIKSI KUCTOPHUUECKUX 3aMMCEH aKTOB IPaXKIaHCKOTO COCTOSIHUSA C
UCIOJIb30BaHUEM SKCTPEMAIBHOTO MOJICIIbHO-YIIPABJISIEMOI0 TOX0/1a
Xan P., Hlugex A., Bpemnax C., Map2apuisi T.ccccocooviiieiiiieiiie e 123

MexaHu3upoBaHHasi TEOPUS CTPYKTYP COOBITHI: CciTydail mapauieIbHOW PerucTpoBOi

MAIIHHBI
Tnaowmenn B.I1., Muxaiinosckuii /].B., Mouceenxo E.A., Tpynog A.A.ccccoveevencenn 143

I'enepanus cereit [leTpu ¢ TOMOIIBIO CTPYKTYPHBIX TPaHCHOPMAIIHIA, COXPAHSIOIIIX
ITOBEICHUECKIE CBOMCTBA
Hecmepos P.A., Cagenneg C.HO.ccccccoviiiiiiiiiiiiieieceese e 155

AHanuTHKa B pealbHOM BPEMEHHU, TUOpUIHAS TPaH3aKI[MOHHAS/aHATUTUIECKAas
00paboTKa, ynpaBieHHEe JaHHBIMU B OCHOBHOM MaMSTH U SHEPrOHE3aBUCHUMas TaMSATh
Kysueyos C ., Benuxo8 ILE., @Y L.c..ccccooviuiiiiiiiiiiiinie st 171

[IpumMeHeHne SI3BIKOBBIX MOJIETICH B 3aa4e W3BJICUCHHS OLEHOYHBIX OTHOILIEHUH
PyCHAUEHKO H. JI. ...ttt 199

Proceedings of the Institute for System Programming of the RAS

Tableof Contents

What Software Architecture Styles are Popular?

MitSyuk A.A., JaMGAryan NoA. ..o 7
Review of static analyzer service models

MENSNTKOV VLA <.ttt bbbt 27
An Automated Framework for Testing Source Code Static Analysis Tools

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Chernova N.A., Gorelova AA............ 41
Data Layout Optimization for the LCC Compiler

Shamparov V.E., Neiman-zade M.L. ... 51
Localized Lama Gradual Typing

KryShtapOVICN V.S, ..o 61
HTTP-request classification in automatic web application crawling

Lapkina A.V., PELUKNOV ALA.ooeece ettt st ne et 77
High performance distributed web-scraper

Eyzenakh D.S., Rameykov A.S., NIiKIforov LV.ccccciiieiiiiice e 87
Power Fx: Low-code language for collaboration tools

Voronkov LLA., SaradgishVili S.E.ccooiiiiiiiiie e 101
Method of Performance Analysis of Time-Critical Applications Using DB-Nets

Rigin AIM., ShEershakov S.A.ooi e 109
Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach

Khan R., Schieweck A., Breathnach C., Margaria T.ccccoeeviiiiieniieciie i 123
Mechanized Theory of Event Structures: A Case of Parallel Register Machine

Gladstein V.P., Mikhailovskii D.V., Moiseenko E.A., Trunov A.A.ocooceeeveveeeeiiiieeeins 143
Generation of Petri Nets Using Structural Property-Preserving Transformations

NeSterov R.A., SAVEIYEY S.YU.iii ittt st 155

Real-time analytics, hybrid transactional/analytical processing, in-memory data
management, and non-volatile memory
Kuznetsov S.D., Velikhov P.E., FU Q.....cooiiiie et 171

Language Models Application in Sentiment Attitude Extraction Task
WSy g =T =T o T N SR 199

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-1 M

What Software Architecture Styles are Popular?

A.A Mitsyuk, ORCID: 0000-0003-2352-3384<amitsyuk@hse.ru>
N.A. Jamgaryan, ORCID: 0000-0001-9964-5850 <nazhamgaryan@edu.hse.ru>
HSE University,
11, Pokrovsky boulevard, Moscow, 109028, Russia

Abstract. One can meet the software architecture style's notion in the software engineering literature. This
notion is considered important in books on software architecture and university sources. However, many
software developers are not so optimistic about it. It is not clear, whether this notion is just an academic concept,
or is actually used in the software industry. In this paper, we measured industrial software developers' attitudes
towards the concept of software architecture style. We also investigated the popularity of eleven concrete
architecture styles. We applied two methods. A developers’ survey was applied to estimate developers' overall
attitude and define what the community thinks about the automatic recognition of software architecture styles.
Automatic crawlers were applied to mine the open-source code from the GitHub platform. These crawlers
identified style smells in repositories using the features we proposed for the architecture styles. We found that
the notion of software architecture style is not just a concept of academics in universities. Many software
developers apply this concept in their work. We formulated features for the eleven concrete software
architecture styles and developed crawlers based on these features. The results of repository mining using the
features showed which styles are popular among developers of open-source projects from commercial
companies and non-commercial communities. Automatic mining results were additionally validated by the
Github developers survey.

Keywords: software architecture style; software design; code smells; software repository mining; survey

For citation: Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP
RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-26. DOI: 10.15514/ISPRAS-2021-33(3)-1

Acknowledgments. This work is an output of a research project implemented as part of the Basic Research
Program at the Natinal Research University Higher School of Economics (HSE University). We thank our
colleagues from PAIS Lab (HSE University) whose advice was very helpful in doing our developer surveys
better. In particular, Sergey A. Shershakov proposed useful improvements.

Kakue cTunu apxuTeKTypbl NporpaMmMHoOro oéecne4yeHus
nonynsipHbI?

A.A. Muyiox, ORCID: 0000-0003-2352-3384<amitsyuk@hse.ru>
H.A.)Kameapsan, ORCID: 0000-0001-9964-5850 <nazhamgaryan@edu.hse.ru>
Hab[uOHCl]leblﬁ ucmec)ogameﬂbcmtﬁ yHu@epcumem Bblcmaﬂ wKojlad 9KOHOMUKU,
109028, Poccusi, Mocksa, Ilokposckuii 6yrveap 11

AnHotanus. B nuteparype no nporpaMMHON HHXEHEPUH MOKHO BCTPETUTH MOHATHE aPXUTEKTYPHOTO CTHIIA
nporpammuoro obecnedenus (I10). Bo MHorux xaurax no apxurekrype I10 u akageMHIecKHX JICKIHSIX 3TO
TIOHSITHE PAaCCMATPHUBAETCS KaK OJJHO M3 BaKHBIX. OHAKO, MHOTHE Pa3pabOTIHKU-TIPAKTHKU TIECCUMHUCTUIHO
HAaCTPOEHBI B OTHOIICHUH ITOHATHS apXUTEKTYPHOTO CTIIIs. TakuM 00pa3oM, He BIIOJTHE IOHATHO, SBISAETCS JIH
JTAHHOE TIOHATHE YHCTO aKaJeMHUYeCKOH KOHIENIUeH WM JeHCTBUTENHHO HCIIONB3YeTCsl pa3padOTIHKaMH
NPHUKIAJHOTO TPOrpaMMHOT0 oOecrieueHus. B 3Toif cTaThe nemaeTcsi MOMBITKA OLEHUTh OTHOIICHHE
pa3pabOTUYMKOB-PAKTUKOB K KOHIENIuu apxutekTypHoro ctuiis I1O. Takxke oreHHBaeTcsl MOMyNSPHOCTH

7

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

OJMHHAJLATH KOHKPETHBIX apXUTEKTYpHBIX cThiei. [IpuMenstores nsa merona. Onpoc pa3paboTYMKOB ObLI
NPUMEHEH /I OLEHKH OTHOIICHHsA pPa3paOOTYMKOB M OINPENENCHUS TOr0, CYHUTAET JIM COOOIIECTBO
pa3pabOTYMKOB BO3MOXKHBIM ~ aBTOMaTHYECKO€ paclo3HaBaHWE apXUTEKTYpHbIX cTwied. Jlms
HHTEJUICKTYyalbHOTO aHajn3a OTKPBITOrO HCXogHOro koza c¢ rtuiargopmel GitHub mpumensimce
ABTOMATHYECKHE CKPHUINTHL. DTH CKPHIITHI TIO3BOJITIOT BEIBIST (PAKT MCIOJIB30BAHUS CTHIIEH B KOHKPETHBIX
perto3utopusix. CKpHOTEI paboTalOT HAa OCHOBE CaMOCTOSITENBHO pa3paboTaHHBIX HAaOOPOB CBOMCTB UL
BBIOpaHHBIX CTHIICH. BbIIO 00HAPY)XEHO, YTO NOHATHE CTHIIS APXUTEKTYPBI IPOrPaMMHOT0 00€CIIEeYEHHUS — ITO
HE TOJIBKO «yHMBEPCHUTETCKas» KoHuenuus. MHorue pazpaborunku IO HPUMEHSIOT 3TO TNOHATHE H
COOTBETCTBYIOI[YIO KOHIIEMIMIO B CBOeH pabore. B pabore chopMynupoBaHbl cBOICTBA Ul OAMHHAALATH
apXuTeKkTypHbIX cTwiiedt I1O u onucaHsl pa3paboTaHHbIE HA OCHOBE 3THX CBOMCTB aBTOMAaTHYECKHE CKPHUIITHI.
Pe3ynbTaThl MHTEIUICKTYaJ bHOTO aHANM3a PEIO3UTOPHEB C HCIIONB30BAaHWEM IIPEJIOKEHHBIX CBOMCTB
MOKa3aJM, KakKhe CTHIM MOMYJSIPHBI Cpely pa3pabOTUMKOB MHPOEKTOB C OTKPBITHIM HCXOMHBIM KOJOM,
OITyOJIMKOBAaHHBIX KOMMEPUYECKMMH KOMIAHMSAMH M HEKOMMEPYECKHMH coo0mecTBamMu. Pe3ymbTaTs
HHTEJUICKTYyalbHOTO aHAIM3a PEHO3HTOPHEB JOMOJHHUTENBHO BalUaupyooTcs ompocoM GitHub-
Ppa3paboTYUKOB.

KiiroueBble €JIOBA: CTWIIb apXUTEKTYPBl MPOTPAMMHOTO OGECTICIEHHS; TPOSKTHPOBAHIE TPOTPAMMHOTO
obecnedeHns; 3anaxy KoJa; MHTeIUIeKTyalbHbIH aHAIN3 PEO3UTOPHEB C HCXOJHBIM KOJOM; OIPOC

Jdasa ourupoBanusi: Mumrok A.A., XKawmrapsa H.A. Kakue CTHIM apXHUTEKTypbl IPOTPAMMHOIO
obecnevenus nomyasipabt? Tpyast UCIT PAH, tom 33, Bem. 3, 2021 1., ctp. 7-26 (Ha aHTIHHACKOM SI3BIKE).
DOI: 10.15514/1SPRAS-2021-33(3)-1.

Baaropapuocru. Pabota BemomHeHa B pamkax IlporpaMMbl (yHIAMEHTAIBHBIX HCCIIEIOBAaHUHA
HWY BHID. M Gnarogapum Hammx kosuier w3 PAIS Lab (HUY BIID), 4bM COBETHI MOMOIJIH HaM
YIIyYIINTh HAIM HCCIEIOBaHUs pa3paboT4nkoB. B wactHOCTH, TOJNe3HBIe yiydimeHHst npemtoxut C.A.
[epmakos.

1. Introduction

Software architecture [1] is a discipline within software engineering dealing with software systems'
structural and behavioral design. Software architects and designers define how the system is
organized, its components, how these components communicate, etc. Software engineering
literature (see, for example, foundational works by Shaw and Garlan [2], Taylor et al. [3], Richards
and Neal [4]) applies a notion of architecture style or pattern. Shaw and Garlan [2] define it as
follows: «An architectural style defines: a family of systems in terms of a pattern of structural
organization; a vocabulary of components and connectors, with constraints on how they can be
combined.» Taylor et al. [3] proposed another definition: «An architectural style is a named
collection of architectural design decisions that (1) are applicable in a given development context,
(2) constrain architectural design decisions that are specific to a particular system within that
context, and (3) elicit beneficial qualities in each resulting system.» These definitions are general
and relatively abstract as well as most other definitions from software engineering books and papers.
Usually, no clues on how these styles can be identified and implemented in a concrete software
source code are given.

This work summarizes our team's first results to understand better the concept of software
architecture style and make it more tangible.

To do so, we first tried to find out the developers' attitude towards the concept of software
architectural style. Are real non-academic developers familiar with this concept in general and with
different particular styles? Do they consider this concept useful in their everyday professional
activities? Secondly, we tried to identify empirical features of software architecture styles, which
can be used in practice to recognize the usage of software architecture styles in Java and Python
programs.

For our research, certain architecture styles were chosen. Then, we chose a small sample of software
repositories, which were investigated to get empirical features of the architecture styles in source

Mmook A A., Kamrapsa H.A. Kakue cTian apxuTeKTyphl porpaMMHOro obecnederus nomyasipust? Tpyost UCIT PAH, Tom 33, Bbim. 3,
2021 r., ctp. 7-26

code. Afterward, the crawlers were written and applied to parse the bigger sample of open source
repositories on GitHub? service.

Besides, we conducted two developers' surveys. The first survey aimed to find out the developers'
attitude towards the concept of software architecture styles. We held the survey to understand better
whether this topic is worth researching. The second survey aimed to validate the results of the
crawlers' parsing.

The aim of our research project — to identify empirical features of architecture styles — is new to
software engineering, while the applied methods are well known. Surveys and repository mining
were applied in many other research projects on code smells detection and design patterns
identification (see Section 6). The methods we used had shown themselves as feasible in exploratory
research projects.

Due to the first survey results, developers have positive attitude towards architecture styles. Many
of them apply this concept in their projects, and even more of them think it is beneficial to be
acquainted with the concept. In data provided by the automatic crawlers we found, how much each
of the chosen architecture styles is used in practice. We validated the results of crawlers mining
using the second survey.

2. Research Questions and Paper Structure

In this paper, we consider the three following research questions.

RQ1: What is the community attitude towards the concept of software architecture style? Software
architecture is taught in universities. Technical experts and master coaches promote advanced styles.
However, what does a typical software engineer think about this concept? We try to answer this
question in Section 3 using a developers' survey.

RQ2: How can we detect a software architecture style in code? Results of the RQ1 survey
encouraged us to try to construct a procedure for detecting software architecture styles in an actual
source code. To do so, we first needed to select features related to particular styles using which we
can automatically detect them. Section 4 answers the second research question and presents style
features and automated scripts which help us to detect styles in code.

RQ3: What software architecture styles are popular in open-source projects? Finally, it is of interest
to investigate the source code of existing software to decide what styles are popular. Fortunately,
much open-source software is available for researchers in the modern world. Thus, we can mine
open-source repositories and apply our architecture style detection tool to them.

This procedure is presented and discussed in Section 5.

Section 6 describes some works related to our research project, while Section 7 concludes this paper
and proposes the ideas for further work.

3. Software Architectural Styles (RQ1)

Our first questions were as follows. Whether the concept of software architecture style is familiar to
developers? Is this concept considered applicable? What particular styles are familiar to developers
and are worth considering in the following steps of our research?

3.1 Architecture Styles Survey

To answer these questions, we provided a developers' survey described in this section.

For our research, we have created a survey? using Google Forms3. This survey consisted of 3
categories of questions.

! GitHub web-page: https://github.com/
2 It can be found at the web-page of our project: https://pais.hse.ru/en/research/projects/softarchstyles
3 Google Forms: https://docs.google.com/forms

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

Demographical questions: These are questions about programming experience, job area,
preferences in technologies, and a respondent's frameworks.

General questions about software architecture styles: Whether participant had or had not heard and
used the concept of architecture styles in their professional life?

Questions about the set of particular architecture styles we selected for our research: We asked
whether the participant knew the name of the style and how he or she thought it is possible to identify
that certain style in code.

These questions aimed to find out what community of developers thinks and knows about
architecture styles usage and architecture styles identification.

3.2 What Styles did We Select?

We have selected the following eleven software architecture styles for this research:

e Model-View-Controller (MVC) architecture;

e Main and sub-programs;

e Machine-learning-based software;

e Event-driven software architecture;

o Reflection-using software;

e Data-centric software architecture;

e Expert system;

e Cloud-service-based software;

e Software with containerization;

e Aspect-oriented software architecture;

e Reactive-based software architecture.

These particular styles were chosen based on software architecture pattern and style catalogs from
foundational literature of the field [3-7]. Usually, software architecture books are large and contain
profound discussions on each of the styles considered important by book authors. The list of software
architecture styles is a massive one. We had to limit this list somehow for it to be treatable within a
single research project's borders. To select the particular set of styles, we consulted with literature
of the field [3-7] as well as Wikipedia.org information*. Some of these styles (for example, MVC
and Event-driven architectures) are popular and frequently used among software developers. Others
(for example, aspect-based software and expert systems) are not famous in modern software
engineering. Besides, we selected styles for which we can define features based on which the style

smells can be detected in source code. Thus, we consider it worth investigating this particular set of
styles. However, we do not state that this is an exhaustive set.

3.3 Survey Data

The survey was held from September till December 2020. As it has been mentioned, Google Forms
were used for the survey. The survey form was spread in different developer communities connected
with various areas of development: game development, back-end development, front-end
development, data science, etc. We hoped to achieve randomness and broader coverage by doing so.
In total, 111 developers participated in the survey.

Participants of the survey have different experiences in software programming. Fig. 1 shows
participant programming experience in years. From this figure we can conclude that about half of
all participants were in the middle of the experience range: slightly less than one quarter have
experience from 1 to 2 years, a little bit more than one-quarter of the total have experience from 3

4 See page https://en.wikipedia.org/wiki/List_of software_architecture_styles_and_patterns which itself
refers to the paper of Sharma et al. [8].
10

Mumtok A.A., Xamrapsa H.A. Kakue cTHiIn apXuTEKTypbl IPOrpaMMHOro obecnedennus nonyasapust? Tpyost UCIT PAH, Tom 33, BbimL. 3,
2021 r., ctp. 7-26

to 5 years. Experienced developers make one-third of the total number: about one-fifth have
experience from 6 to 10, and slightly more than 15% have experience from 11 to 20 years. At the
ends of the distribution, we can observe 5% of developers with experience less than 1 year and about
3% of very experienced developers who are in the field for more than 35 years.

Programming experience

- <l
- 1.2
Em 35
- 510
- 11.20
. 21-35
mm =35

243 %

27.0%

5.4 %

2.7 %

5.4 %

Fig. 1. Participant programming experience in years

Fig. 2 represents fields of software engineering which participants selected as their primary
occupation. Note that a participant could select several fields as their primary occupations. We can
conclude that survey participants in different areas, with most of them, are back-end developers. The
top 7 categories of participant job areas were: back-end development (65.8%), front-end
development (34.2%), mobile development (22.5%), data analytics (19.8%), machine learning
(18.9%), research (18%), and game development (9.9%).

= Area of job (interest)
65.8 %
60%
50%
40%
34.2 %
30%
22.5 %
20% 18.0% 18.0% 138%
- ﬁ . . .
Game Research Machine (Data) Mobile Frontend Backend
development [scientific lzarning analytics (software) [scftware) (software]
software development development development
develapment)

Fig. 2. Participant occupations

Finally, we asked participants about the programming languages they used in their work. Fig. 3 show
how they answered. It can be seen that the survey participants are using different languages in their
practice. The top three most popular languages in our survey are Python (45.9%), Java (33.3%), and
SQL (32.4%). Partially because of these results, we decided to continue our research based on Java
and Python source code.

11

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

Demographic data showed that our survey participants were similar to the typical software
developers. For example, the participants' set of main languages is very similar to the well-known
TIOBE Index®. Our selection is somehow shifted to object-oriented languages for back-end
development. However, of the top 10 languages in TIOBE Mar 2021 (C, Java, Python, C++, C\#,
Visual Basic, JavaScript, PHP, Assembly language, SQL) 7 are also presented in the top 10
languages used by survey participants. Developers came from different fields, which are popular in
modern software engineering.

i Languages
45.9%

Python

40%

32.49 33.3%
30% 27.0% 27.0%

22.5%
20%
16% 9.0% 9.0%
4.5% 39.4% .
: I

¥othin TypeScript C# QC++ JavaScript 50L lava

ES

Swift Go

Fig. 3. Participant main programming languages

3.4 Survey Results

Our survey asked whether participants used the concept of software architecture style in their daily
work practice. Fig. 4 shows how they answered this question. In this figure, we can see that almost
40\% frequently use the concept of architecture styles in development. 36% of all participants use
them from time to time, and one quarter does not use architecture styles at all.

Do you (explicitly) apply the
concept of software architectural
style when designing your applications?

No, | do

not use it

Yes, | use it

mm from time
to time

Yes,

= |useit
frequently

243 %
36.0%

38.6 %

Fig. 4. Do participants apply the concept of software architecture style in their work?

The next question brought us surprising results. We decided to find out what participants thought
about the developers' community in general. In particular, we asked what participants thought about
how their colleagues applied the concept of software architecture style in their work? Fig. 5 shows
that only 14.4% think that developers from their community do not use the concept of architecture

5 TIOBE Index: https://www.tiobe.com/tiobe-index/
12

Mumtok A.A., Xamrapsa H.A. Kakue cTHiIn apXuTEKTypbl IPOrpaMMHOro obecnedennus nonyasapust? Tpyost UCIT PAH, Tom 33, BbimL. 3,
2021 r., ctp. 7-26

styles. Interestingly, developers tend to think their colleagues are significantly more familiar with
the concept of software architecture style than themselves.

Finally, we were interested in what participants think about the feasibility of detecting architecture
styles. The developers were asked whether they thought it is possible to identify the usage of a
software architecture style in the source code automatically or manually.

Do you think that developers
from your job area use concept of
software architectural styles in
design of their applications?

No, they
mmm do not
use it
Yes, they
use it
from time
to time
Yes,
they
use it
frequently

41.4 %

Fig. 5. What participants think about how their colleagues apply the concept of software architecture style in
their work?

For each of the styles there were five possible answers as follows:

e Yes, by looking at language constructions manually;

e Yes, by looking at language constructions automatically;

e Yes, by looking at frameworks (you can list frameworks in ~“other" section);
e haven't used this style;

e Other (open answer).

A participant was able to select several answers simultaneously.

Fig. 6 summarizes the answers. To make the figure more illustrative we merged all the answers into
the three categories:

e Manually: variant 1) and some of variant 5);
e Auto: variant 2), variant 3), and some of variant 5);
e Have not used: variant 4).

CERRTS U 08.8 9% GRS 36.9 % 30.6 % 36.9 %

Manually

.I i H
% 29.7 % 37.8%

yzavo”
pE

PSS

LSRN 32 49, 35.1% 43.2% 33.3% 37.8% 29.7%

Auto

wve

d wen on AC e ces
LA ety Lcent i i
guent pefl gatanase CE apert 57 oud 58 e

e
& ur'\ef“eggadw

Fig. 6. What participants think about whether particular software architecture styles can be detected, or not?

Numbers in fig. 6 show how many developers selected this particular answer category for a
particular architecture style. According to our data, developers are not very optimistic regarding

13

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

software architecture style detection. However, for most architectural styles, at least one-third of all
survey developers believe they can be identified either automatically (30% — 50%) or manually.
Developers tend to think that familiar styles are more likely to be identified. For example, MVC is
the most known style among the others. Most developers think it can be identified manually (53.2%)
and automatically (51.4%). Expert systems and aspect-oriented software are unfamiliar to more than
half of the developers from our selection. Not so many participants believe these styles can be
identified by investigating the software source code.

3.5 Conclusions

The results of the developers' community survey are interesting events separately. However, we
analyze them in the context of a larger project.

The survey shows that 3 of 4 typical developers apply the concept of software architecture styles in
their practice. Moreover, developers believe their colleagues use this concept even more often. This
means that developers consider the concept important and valuable in the software engineering
process.

From 3.5 to 4 out of 10 typical developers believe that software architecture style can be identified
by investigating the software source code. In general, slightly more developers think that a style can
be identified manually. Besides, the more familiar a particular style is to the developer, the more
likely it would be considered identifiable by this developer.

Thus, it would be interesting to investigate if software architecture styles can be identified using an
automated procedure, how this can be done, and what styles are more prevalent in open source.
Note that we can somehow estimate styles' popularity by comparing developers' numbers unfamiliar
with different styles. However, we believe that such research based on survey data only would be
insufficient.

4. Architecture Style Identification (RQ2)

4.1 Detection Methods and Data Sources

In this research open-source software repositories were used as data. We chose 10 technological
communities and companies with extensive lists of open-source repositories on GitHub, which is
the largest resource with open software sources. Repositories related to the following companies'
Github accounts are considered in this paper:

1) Adobe - https://github.com/adobe,

2) Amazon - https://github.com/amzn,

3) Amazon Web Services — https://github.com/aws,
4) AWS Labs — https://github.com/awslabs,

5) Apache Foundation — https://github.com/apache,
6) Apple — https://github.com/apple,

7) Google — https://github.com/google,

8) IBM — https://github.com/IBM,

9) Microsoft — https://github.com/microsoft,

10) 18F — https://github.com/18F.

We decided to consider only repositories with the code written in Python and Java as these two
programming languages are among the most popular according to both well-known indices® and to
our preliminary developer survey.

6 For example, see TIOBE Index here: \ https://www.tiobe.com/tiobe-index/
14

Mmook A A., Kamrapsa H.A. Kakue cTian apxuTeKTyphl porpaMMHOro obecnederus nomyasipust? Tpyost UCIT PAH, Tom 33, Bbim. 3,
2021 r., ctp. 7-26

The crawler was written in Python 3. We used the library, called PyGitHub”. Every crawler gets
access to the companies' repositories by tokens previously generated by us manually on Github.
Our crawlers got access to GitHub repositories by using the token mechanism. Every token allows
making ten thousand requests to Github per hour. For the mining process to continue flawlessly,
several tokens have been used. The tool iterates through the token list and requests the source code
from every repository taken for the research. For every software architecture style, we created a
separate specific crawler. Their code is accessible at the project web page.

4.2 Features of Software Architecture Styles

We have created features of different origins for eleven styles from our research. These features can
be grouped into two main categories.

The first group of features contains framework-based features. We firstly identified frameworks that
propose implementations of particular architectural styles. After that, we identified usage of the style
by finding usage of these frameworks in source code. Such features were used when identifying
Model View Controller (4 python frameworks, 4 java frameworks), Machine Learning based style
(24 python frameworks, 11 java frameworks), Event-driven (10 python frameworks, 8 java
frameworks), Data-centric (25 python frameworks, 22 java frameworks), Expert systems (7 python
frameworks, 3 java frameworks), Cloud systems (10 python frameworks, 7 java frameworks),
Aspect-based applications (3 python frameworks, 1 java frameworks).

The second group of features contains language-based features. This means that we first identified
how certain styles are implemented in specific languages (Java, Python). After that, we identified
usage of the style by finding particular language constructs. These features were used when
identifying Main and Sub-programs, Reflection architecture styles.

Table 1 provides a short description of every architecture style we have chosen for our research. It
is assumed to hint about how they are presented in books and online resources. Besides, we give
examples of features that we have used to identify the architectural styles. The complete list of
features we used is available on the project web page.

Table 1. Empirical features of eleven software architecture styles

Architecture style Short description Examples of empirical features

Model-View-Controller Avrchitecture style includes: Python, Spring: @Controller, import
model (a dynamic data org.springframework.stereotype.Controller
structure), view (a Java, Django: from django.db import
component to represent the models, from models import

information), and controller
(this component accepts user
input and converts it to

commands).

Main and sub-programs Avrchitecture style assumes an | Python features: def main, fwithout defg
absence of classes. It means main()
that application use only Python anti-feature: def __init__
functions/ procedures and Java feature: public static void
may use classes only as main(String[] args),
storage for Java anti-features: class fClassNameg,

functions/procedures without | new fClassName)
creating instances of classes.

Machine-learning based Architecture style assumes Python, Scikit learn: from sklearn, import
usage of any data science- sklearn
related frameworks and Java, Apache Spark ML-lib:
libraries. org.apache.spark.mllib

" PyGitHub web page: {https://pygithub.readthedocs.io
15

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-

26

Event-driven software

Avrchitecture style implies
production, detection,
consumption and reaction to
events. Usually, implemented
based on special frameworks

Python, Apache Kafka: from kafka,
import kafka
Java, Apache Kafka: org.apache.kafka

Reflection-using software

Avrchitecture style assumes
that application’s processes
can and do examine,

introspect and modify their
own structure and behavior

Python features: type(obj), isinstance(obj,
obj)
Java features: java.lang.reflect, .getClass()

Data-centric software

Avrchitecture style implies
that database is a crucial
(central) part of application

Python, MySQL: from mysql, import
mysql

Java, MySQL.: import java.sql,
com.mysql.jdbc.Driver

Expert system

Avrchitecture style assumes
usage of any expert system
frameworks and libraries as a
part of the considered
software.

Python, Experta: from experta, import
experta

Java, Apache Jena: import
org.apache.jena

Cloud-service-based

Architecture style implies
usage of frameworks and
libraries, which let usage of
cloud based delivery and
inter-cloud network.

Python, Apache Libcloud: from libcloud,
import libcloud
Java, Google Cloud: com.google.cloud

Software with
containerization

Avrchitecture style assumes
usage of frameworks and
libraries which let usage of
virtual machines.

Python, VMWare: from vmware, import
vmware
Java, VMWare: com.vmware

Aspect-oriented software

Architecture style aims to
increase modularity by
allowing separation of cross-
cutting concerns.

Python, AspectLib: import aspectlib, from
aspectlib

Java, AspectJ:
org.aspectj

@Aspect, import

Reactive-based software

Architecture style pays
attention to data streams and
propagation of change.

Python, ReactiveX: from rx, import rx
Java, ReactiveX: import io.reactivex

Investigating Popularity of Particular Styles in Open-source Software (RQ3)}

5. Investigating Popularity of Particular Styles in Open-source Software

(RQ3)

5.1 Dataset Description

Our web crawlers gathered a dataset that we used to answer RQ3. This dataset consists of JSON
files. Each file in the dataset is related to a triple: (programming\ language;
company\ name; software\ architecture\ style). In total, the 3057 repositories
were processed. 1682 of them are repositories with source code in Java, whereas 1375 contain
Python source code. Each repository can contain code in other programming languages as well. The
results of mining contain 172 JSON files. These files contain data on features identified for a
particular triple. Each file includes a set of pairs (repository [found features]),
where [found features] is a list of features of the particular architecture style which were
found in the repository.

Here is the example of such a pair: ... "EmbeddedSocial-Android-SDK":
"getName\ feature", "getClass\ feature"],

["NONE" ,

16

Mmook A A., Kamrapsa H.A. Kakue cTian apxuTeKTyphl porpaMMHOro obecnederus nomyasipust? Tpyost UCIT PAH, Tom 33, Bbim. 3,
2021 r., ctp. 7-26

Every string includes a constant indicating if the related repository's processing was finished. It was
used for repository processing and did not have any special meaning. Some of the lines may contain
constant indicating that the mining process was stopped. This happened when a repository weighted
too much to be processed by 10 000 requests of the crawler. In these cases, a GitHub API token
reaches its' limit. This case was not frequent. In particular, 2162 pairs out of a total 27107 contain
these stops.

The full dataset is available on the project web page.

5.2 Data Analysis and Discussion

Summarized results derived from the dataset are presented in this section. The following tables show
these results. Let us consider and discuss the popularity of particular styles. Note that open
repositories of Apple company contain no source code in Java.

5.2.1 Model-View-Controller (MVC) architecture

In Table 2 one can see that MV C is used in approximately 25% of Microsoft, IBM, and Apache Java
repositories. In Java repositories, the MV C style is mostly represented by the usage of the Spring
framework that is very popular, especially in Apache Foundation projects.

Table 2. MVC style usage frequency (Java repositories)

Microsoft | IBM Google | Awslabs | Aws Apache | Amzn | Adobe | 18F

Processed | 118 135 205 75 28 1044 18 53 6
MVC 29 28 4 7 6 274 0
Spring 29 27 4 1 4 237 0
Free 0 1 0 0 4 48 0 0 0
Marker

Apache 0 0 1 1 0 29 0 0 0
Struts

MVC is used in slightly less than 10% of Microsoft, IBM, Google, AWSIabs Python repositories
(see Table 3). In Python repositories, MV C style is mostly represented by Django framework. Thus,
web development is responsible for a significant fraction of usage cases in Python community. It is
also interesting that Python is relatively more popular in open projects of commercial companies,
whereas Apache Foundation is the leader in the development of Java projects.

Table 2. MVC style usage frequency (Pithon repositories)

Microsoft | IBM | Google | Awslabs | Aws | Apple | Apache | Amzn | Adobe | 18F
Processed | 295 279 337 159 51 20 68 15 26 127
MVC 29 28 4 7 6 274 0 4 0
Django 19 10 20 4 2 1 5 1 1 42
Giotto 7 4 12 9 6 1 4 1 2 8
CherryPy 1 0 0 2 0 0 1
Turbo 0 0 0 0 1 0 3 0 1 0
Gears

This style is the second most popular} from all styles in our style set. It is a significantly more
popular style than others. This conclusion agrees with the survey results shown in fig. 6.

5.2.2 Main and sub-programs

Let us consider fig. 7 and 8. Each of these two figures shows two intersecting disks. The left one
shows the number of repositories with «main» function. The right one shows a number of

17

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

repositories without the usage of constructors. Thus, repositories that satisfy our criteria lie in the
intersection.

It is easy to see no more than 1 repository of such type in Java. It is not unexpected because Java is
a pure object-oriented language. So, any Java program contains objects or classes.

On the other hand, there are about 7% of all Python repositories (59) in which this procedural style
was applied.

In general, we can conclude that this style is not very popular among open-source repositories from
our dataset.

Java repositories. Main style
Repositories: 1682

Without constructor

Main

Fig. 7. Main and sub-programs style (Java repositories)

Python repositories. Main style
Repositories: 1375

Without constructor
Main

Fig. 7. Main and sub-programs style (Python repositories)

5.2.3 Event-driven software architecture

According to Tables 4 and 5 Event-driven architecture style is used in approximately 9% of IBM
and Apache Java repositories. Curiously, event-driven style is applied in more than 50% of AWS
Python repositories and approximately 20% of Apache Python repositories. Such applications are
related to distributed and asynchronous software for web applications. Other companies tend to
apply event-driven style in less than 1% of their Java and Python repositories. Event-driven
architectures are mostly represented by the usage of Kafka framework and Amazon Active MQ
framework in both Java and Python repositories.

Table 4. Event-driven style usage frequency (Java repositories)

Microsoft | IBM | Google | Awslabs | Aws | Apache | Amzn | Adobe | 18F |

18

Mmook A A., Kamrapsa H.A. Kakue cTian apxuTeKTyphl porpaMMHOro obecnederus nomyasipust? Tpyost UCIT PAH, Tom 33, Bbim. 3,
2021 r., ctp. 7-26

Processed | 118 135 205 75 28 1044 18 53

Event- 3 10 0 0 0 88 0 2

driven

Kafka 3 9 0 0 0 41

Apache 1 0 0 0 0 10

Qpid

RabbitMQ | 0 1 0 0 0 6

Amazon 0 0 0 0 0 41 0 0 0

ActiveMQ

Apache 0 0 0 0 0 7 0 0 0

RocketMQ

Zero MQ 0 0 0 0 0 2 0 0 0
Table 5. Event-driven style usage frequency (Python repositories)

Microsoft | IBM | Google | Awslabs | Aws | Apple | Apache | Amzn | Adobe | 18F

Processed | 295 279 | 337 159 51 20 68 15 26 127

Event- 9 11 5 0 32 9 13 1 3 6

driven

Kafka 0 5

Apache 0 0 0 0 0 0 3 0 0 0

Qpid

RabbitMQ | 0 1 0 0 0

Amazon 8 5 5 0 32 0 6 1 3 6

ActiveMQ

Apache 0 0 0 0 0 0 1 0 0 0

RocketMQ

Zero MQ 1 0 0 0 0 0 1 0 0 0

We can conclude that usage of event-driven architectures hugely variates from company to company
and relatively popular in projects of AWS and Apache whose business is mostly web-based and
large-scale oriented. Thus, these companies invest in scalable web applications and infrastructure
code. Other companies concentrate more on desktop, mobile, and web applications without such
need in scaling and asynchronous code.

5.2.4 Machine-learning-based software

The first general finding is that Java is not used commonly to develop machine-learning-based
software. According to Table 6 we found smells of machine-learning-based style only in 16 Java
repositories. On the other hand (see Table 7), this style is often used in Python repositories by various
companies: Microsoft (61%), IBM (52%), Google (38%). ML source code is mostly represented by
the usage of Numpy, Pandas, Matplotlib, and libraries for neural networks.

Table 6. Other architecture styles usage frequency (Java repositories)

Microsoft | IBM | Google | Awslabs | Aws | Apache | Amzn Adobe | 18F
Processed 118 135 | 205 75 28 1044 18 53 6
ML-based 1 1 0 3 0 11 0 0 0
Data-centric 21 20 34 15 9 228 1 3 1
Cloud-based 0 0 0 0 25 |0 0 0 0
Container 0 0 0 0 0 0 0 0 0
Aspect-oriented | 0 0 0 0 0 0 0 0 0

19

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

Reactive-based | 0 0 0 0 1 0 0 0 0
Expert system 0 0 0 0 1 13 0 0 0

We can conclude that machine-learning applications are very popular in Python ecosystem. Most
Python repositories of companies contain smells of ML. Moreover, we can conclude that machine-
learning software is the most popular software style (with respect to a total number of repositories
with this style) according to our data.

Table 7. Other architecture styles usage frequency (Python repositories)

Microsoft | IBM | Google | Awslabs | Aws | Apple | Apache | Amzn | Adobe | 18F
Processed 295 279 | 337 159 51 20 68 15 26 127
ML-based 180 146 | 129 45 24 13 13 8 12 25
Data-centric | 47 25 29 10 3 2 22 0 2 24
Cloud-based | 3 1 42 0 0 0 1 2
Container 1 0 0 0 0 1 0 0 0
Aspect- 0 0 0 0 0 0 0 0 0
oriented
Reactive- 0 0 0 0 0 0 0 0 0 0
based
Expert 0 0 0 0 0 0 0 0 0 0
system

5.2.5 Data-centric software architecture

We found smells of data-centric style in 15%-25% of Java repositories (Microsoft, IBM, Google,
Apache, see Table 6) and in 8%—-20% of Python repositories (Microsoft, IBM, Google, 18F, see
Table 7). In Java repositories, data-centric software style is mostly represented by PostgreSQL and
MySQL libraries' usage. This style is represented by the usage of the SQLAIchemy library in Python
repositories.

We can conclude that this style is the third most popular of all styles thanks to Apache Foundation
with more than two hundred such projects. Other companies apply the style as well.

5.2.6 Reflection-using software

This style was detected using several language features that indicate reflection appliances in a source
code. Many repositories contain at least one of the features of a reflective code. However, we believe
that the code with such an ephemeral smell can be called reflection-using. However, what should be
the number of reflective features in code to call it reflection-using software. It is not that easy to
define the concrete number. Thus, we decided to show the summarized data in this paper. A better
definition of this architecture style will be a subject for future work.

20

Mumtok A.A., Xamrapsa H.A. Kakue cTHiIn apXuTEKTypbl IPOrpaMMHOro obecnedennus nonyasapust? Tpyost UCIT PAH, Tom 33, BbimL. 3,
2021 r., ctp. 7-26

Distribution of java repositories
with Reflection features

351
306
300
268
250
200
11 0 112
78 79
IIE‘1 44 46 43
14
" Illlii-lﬂi -

012 34567 8 291011121314151617
Features amount in a repository

-
%)
[=]

Amount of repositories

[y
[=]
[=]

%
(=]

Fig. 9. Reflective code features in Java repositories

Fig. 9 shows the results for Java repositories, whereas fig. 10 considers Python repositories. In both
cases, one can see that about 20% of repositories contain no reflective code smells. So, we can
conclude that about 80% of Java and Python repositories have at least one feature of Reflection-
using software.

Distribution of python repositories
with Reflection features

=]
o
(=]

—
un
(=]

108 145

250
156 154
I 98

269
203
172
63
I 50
0 l
0 1 2 3 4 5] 3 8 9

Features amount in a repository

Amount of repositories
=
o
(=]

u
(=]

Fig. 9. Reflective code features in Python repositories

Our conclusion is that most of the open-source software in our dataset contains some reflective code
features. Our definition for this style is too vague and has to be refined.

5.2.7 All other styles: cloud-service-based, aspect-oriented, reactive-based
software, expert systems, software with containerization

It is clearly seen in tables 6 and 7 that smells of all other software architecture styles are very
uncommon in our dataset.

Cloud-service-based style tends to appear in AWS Java repositories. This can be explained by the
usage of AWS's own library for cloud development. Also, the Cloud-service-based style was found
in Google Python repositories. It can be explained by the usage of Google's library for cloud
development. These two cases are outliers, and overall we did not find out Cloud-service-based style
as a popular one.

21

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

The same is true for other styles. We did not find almost any usage of these styles with the proposed
features. Thus, we can conclude all these software architecture styles are unpopular in open-source
repositories of our dataset.

This can be due to at least two reasons:; either these styles are uncommon in open-source software,
or we use flawed features. Both reasons are possible. The future work will be to elaborate on this
issue.

5.3 Additional Results Validation

To verify the proposed feature model, we decided to ask developers of repositories, which we have
processed, about the usage of the 11 architecture styles in their repositories. We extracted developers'
emails from each repository we have processed. There were about 10 thousand repositories. Then
we used Python code to send every one of them a letter with a link to the particular survey based on
Google Forms. This form asked developers to specify what of our 11 software architecture styles
they used in their repository. We got 69 replies to our Google Form. Out of these replies we extracted
information on 78 repositories that we have previously processed.

One can easily see that we have no significant number of answers here. Thus, the following can not
be considered as an extensive validation. However, we believe these results still can be of interest
to the reader.

On every architecture style out of 11 we counted 4 metrics: accuracy, precision, recall, and F1-score.
We considered developers' answers from the form as correct data and our answers as predictions.
Among the repositories that authors answered our survey, there was no that used the following
styles: Main and sub-programs, Expert system, or software with containerization.

Table 8 shows the results. According to the table, the best F1-score was reached for Reflection-using
software (0.58) and Data-centric software (0.45). Recall overall was less than 30\% with such
exceptions as Reflection-using software (0.64), Model-View-Controller (0.39), and Data-centric
software (0.39). The highest precision was achieved for Event-driven software (0.75).

Table 8. Additional results validation

MVC Main ML-based Event | Reflect. | DB-
-driv. centr.
Accuracy | 0.65 0.92 0.79 0.51 0.58 0.72
Precision | 0.41 — 0.44 0.75 0.53 0.53
Recall 0.39 0 0.27 0.14 0.64 0.39
F1 0.4 — 0.33 0.24 0.58 0.45
Expert | Cloud- Container Aspec | React.-
Sys. based t based
Accuracy | 0.88 0.56 0.62 0.76 0.68
Precision | — 0.5 — 1 0.67
Recall 0 0.09 0 0.14 0.08
F1 — 0.15 — 0.25 0.14

The results are different for various architectural styles. We can conclude the following.

Features for Main and sub-programs style and Expert systems could not be validated because among
the repositories from the validation survey, there was no use of these two styles. Features for
software with containerization style are not full. Using our features, we did not find it in any of the
repositories in which the style was used according to their developers. Features for Reflection-using
software and Data-centric software styles have not been enough for perfect identification, but they
showed appropriate F1-score results. Features for Model-View-Controller, Machine-learning-based,
Event-driven, Cloud-service-based, Aspect-based, and Reactive-based software styles show bad

22

Mmook A A., Kamrapsa H.A. Kakue cTian apxuTeKTyphl porpaMMHOro obecnederus nomyasipust? Tpyost UCIT PAH, Tom 33, Bbim. 3,
2021 r., ctp. 7-26

performance, mostly because of low recall. This means that our features have not fully covered the
usage of these styles, and further investigation is needed.

5.4 Conclusions

Most of the results obtained by our automatic crawlers agree with the survey results, which are
shown in fig. 6. Less-known styles are less common in open-source repositories; well-known styles
can be found in many more repositories.

An outlier here is software with containerization style. Feature for this style seems ill-designed
because many people are accounted for it, whereas we can not detect it in source code.

Both an automated analysis and a survey indicate aspect-based software and expert systems as the
least popular architecture styles.

However, the additional validating survey (with a small number of answers) indicated that our
features for some architecture styles show lousy performance. Thus, additional work is needed to
improve the style and feature sets.

6. Related Work

We consider two large fields as related to our research. These fields are software architecture
research and software repository mining. Whereas the former field is relatively old in terms of
software engineering time scale, the latter is relatively young and fast-growing. We will try to
observe both fields in this section.

Sharma, Kumar, and Agarwal [8] listed 23 software architecture styles in 6 categories due to the
application type. This paper can be considered as a starting point to discuss architecture styles. The
authors have chosen some styles (what styles?) out of all mentioned and gave short descriptions to
them. However, there cannot be observed any code features of any style which can be used to
identify it in a real project. The paper also leaves without attention statistical aspects of architecture
style popularity in practice.

Automated software architecture recovery is related as well. Researchers in this field aim at
constructing models of architecture decisions of existing software using data analysis and other
automated techniques [9].

In software repository mining papers on code smell detection are close related to our project. Fontana
et al. [10] concentrated on code smells and a machine learning-based approach to code smells
detection. The authors collected a dataset of heterogeneous systems and a set of tools for detecting
code smells and trained different machine learning algorithms with default parameters. Boussaa et
al. [11] introduced code smell detection based on genetic algorithms that are called the competitive-
co-evolution-based method. The method's idea is to generate two data samples: a sample of code
smells and a sample of solutions. The aim of code smells generation is to escape from search
methods, and the solution aims to cover more code smells. These works do not pay attention to
software architecture styles, but their general approach seems attractive.

A repository mining method has been applied to reveal how software architecture evolves with time
[12]. Code mining can help to evaluate software architecture as well [13]. Kouroshfar et al. \[14]
applied automated architecture recovery techniques to show how the erosion of software architecture
decisions influences software evolution.

There is a massive corpus of literature on software architectural smells and their automated
detection. Architectural smells are signs of bad practices in the software design process, similar to
code smells. The difference is that architectural smells are related to the level of general design
decisions, whereas code smells are related to anti-patterns and bad practices on the level of software
code. Fontana et al. [15] investigated how these two types of smell are interrelated. Previously, many
automated tools have been developed to detect or predict architectural smells [16-20]. Azadi et al.
[21] even proposed a catalog of such smells which different tools can detect. Features of software

23

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

architecture styles that we consider in this paper are similar to smells. However, our features do not
sign bad practices or anti-patterns. Contrariwise, our features indicate the presence of an
architectural style.

Note that surveys are considered a good research tool in empirical software engineering. For
example, Palomba et al. [22] used surveying to understand how developers feel a relationship
between code and community smells. In our research, we apply surveys as well.

Recently, repository mining has been used to explore software in an empirical study on what
software project artifacts are [23]. Not surprisingly, software projects consist of code but also of
documentation, data, and many more different artifacts. Our research is similar in the sense of
intentions. We seek for better understanding of the current field of software development.

6. Conclusions and Further work

In this paper, we measured industrial software developers' attitudes to the concept of software
architecture style. We also investigated the popularity of eleven concrete architecture styles.

We found that the notion of software architecture style is not just a concept of academics at
universities. Programmers apply this concept in their work. Moreover, industrial software
developers consider the concept as improving their professional skill-set.

We formulated features for eleven concrete software architecture styles and developed crawlers
based on these features. The results of repository mining using the features show that the most
popular styles among developers of open-source projects are machine-learning-based software,
Model-View-Controller architecture, and Data-centric software architecture.

We additionally validated the results obtained by crawlers using a special developer survey.

This validation shows that features for some architecture styles are ill-defined and have to be
improved.

This paper presents up-to-date results of our research project. We plan to continue the project to
understand the concept of software architecture style better. Updates can be found at the project web
page: https://pais.hse.ru/en/research/projects/softarchstyles.

The set of software architecture styles we used in the paper is not comprehensive. It is possible to
modify and extend it based on this work'’s results. This will be one of the directions of our future
work.

Besides, the dataset gathered by our crawlers is related to a limited set of open-source repositories
related to large software communities and companies. It is possible that our results are somehow
biased and overfitted to this particular dataset. So, additional research is needed based on wider
datasets.

Particular software architecture styles are still not sufficiently well-defined. Some of them — like
reflection-using software --- need better and clearer definitions to deal with them in a less vague
manner. We believe it is possible to construct concise and rigorous definitions based on more
profound empirical research results.

References

[1] P. C. Clements and M. Shaw. “The Golden Age of Software Architecture” revisited. IEEE Software, vol.
26, no. 4, 2009, pp. 70-72.

[2] M. Shaw and D. Garlan. Software architecture - perspectives on an emerging discipline. Prentice Hall,
1996, 264 p.

[3] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture - Foundations, Theory, and
Practice. Wiley, 2010, 750 p.

[4] M. Richards and N. Ford. Fundamentals of Software Architecture: An Engineering Approach. O’Reilly,
2020, 432 p.

[5] M. Richards. Software architecture patterns. O’Reilly Media, 2015, 47 p.

24

Mmook A A., Kamrapsa H.A. Kakue cTian apxuTeKTyphl porpaMMHOro obecnederus nomyasipust? Tpyost UCIT PAH, Tom 33, Bbim. 3,
2021 r., ctp. 7-26

[6] M. Kleppmann. Designing data-intensive applications: The big ideas behind reliable, scalable, and
maintainable systems. O’Reilly Media, 2017, 616 p.

[7]1 L. Atchison. Architecting for Scale: High Availability for Your Growing Applications. O’Reilly Media,
2016, 230 p.

[8] A. Sharma, M. Kumar, and S. Agarwal. A complete survey on software architectural styles and patterns.
Procedia Computer Science, vol. 70, 2015, pp. 16-28.

[9] A. Shahbazian, Y. K. Lee et al. Recovering Architectural Design Decisions. In Proc. of the 2018 IEEE
International Conference on Software Architecture (ICSA), 2018, pp. 95-104.

[10] F. A. Fontana, M. Zanoni et al. Code smell detection: Towards a machine learning-based approach. In
Proc. of the 2013 IEEE International Conference on Software Maintenance, 2013, pp. 396-399.

[11] M. Boussaa, W. Kessentini et al. Competitive coevolutionary code-smells detection. Lecture Notes in
Computer Science, vol. 8084, 2013, pp. 50-65.

[12] D. M. Le, P. Behnamghader et al. An empirical study of architectural change in open source software
systems. In Proc. of the 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 235-245.

[13] L. Zhu, M. A. Babar, and D. R. Jeffery. Mining patterns to support software architecture evaluation. in
WICSA. In Proc. of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA 2004),
2004, pp. 25-36.

[14] E. Kouroshfar, M. Mirakhorliet al. A study on the role of software architecture in the evolution and quality
of software. In Proc. of the 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 246-257.

[15] F.A. Fontana, V. Lenarduzzi et al. Are architectural smells independent from code smells? An empirical
study. Journal of Systems and Software, vol. 154, 2019, pp. 139-156.

[16] F.A. Fontana, I. Pigazzini et al. Automatic detection of instability architectural smells. In Proc. of the 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME), 2016, pp. 433—437.

[17] F.A. Fontana, I. Pigazzini et al. Arcan: A tool for architectural smells detection. In Proc. of the 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW), 2017, pp. 282-285.

[18] A. Biaggi, F. A. Fontana, and R. Roveda. An architectural smells detection tool for C and C++ projects. In
Proc. of the 2018 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), 2018, pp. 417-420.

[19] U. Azadi, F. A. Fontana, and M. Zanoni. Machine learning based code smell detection through WekaNose.
In Proc. of the 40th International Conference on Software Engineering: Companion Proceeedings, 2018,
pp. 288-289.

[20] F. A. Fontana, P. Avgeriou et al. A study on architectural smells prediction. In Proc. of the 2019 45th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 2019, pp. 333-337.

[21] U. Azadi, F. A. Fontana, and D. Taibi. Architectural smells detected by tools: a catalogue proposal. In Proc.
of the 2019 IEEE/ACM International Conference on Technical Debt (TechDebt), 2019, pp. 88-97.

[22] F. Palomba, D. A. Tamburri et al. How do community smells influence code smells? In Proc. of the 40th
International Conference on Software Engineering: Companion Proceeedings, 2018, pp. 240-241.

[23] R. Pfeiffer. What constitutes software? An empirical, descriptive study of artifacts. In Proc. of the 17th
International Conference on Mining Software Repositories, 2020, pp. 481-491.

MHdopmauma o6 aBTopax / Information about authors

Anexcerr Anekcanaposnd MUILIOK, kanangaT KOMIBIOTEPHBIX HAYK, AOICHT, CTAPIINH HAYIHBIH
coTpyaHuK. HaydHble MHTEpECH: U3BJICUCHNE M aHAJIN3 IIPOIIECCOB, HH)OPMAIIMOHHBIE CHCTEMBI,
apXHUTeKTypa MporpaMMHOTro odecriedeHus, cetu [lerpu

Alexey Alexandrovich MITSYUK, PhD in Computer Science, Associate Professor, Senior Research
Fellow. Research interests: process mining, information systems, software architecture, Petri nets.

Huxonait Apcenosuu JKAMI'APSIH, 6akanaBp nporpammuoi umxeHepun, HUY BIID, crynent
MarucTpatypsl, yausepcureT Muuunrana, UT ayqurop, KIIMI' CHI'. Hay4ynsle nHTEpecsl: Hayka o
JaHHBIX, 00pab0TKa €CTECTBEHHOTO s3bIKa, MAIIMHHOE 3pEHHE, MAIIMHHOE 0OydeHue, riryookoe
oOyucHuHe.

25

Mitsyuk A.A., Jamgaryan N.A. What Software Architecture Styles are Popular? Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 7-
26

Nikolay Arsenovich JAMGARYAN, Bachelor of Software Engineering, HSE, Master's student,
University of Michigan, IT auditor, KPMG CIS. Research interests: data science, natural language
processing, computer vision, machine learning, deep learning.

26

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-2 tocl%

Review of Static Analyzer Service Models

M.A. Menshikov, ORCID: 0000-0002-7169-7402 <info@menshikov.org>
Saint Petershurg State University,
7/9 Universitetskaya Emb., St Petersburg, 199034, Russia

Abstract. The static program analysis is gradually adopting advanced use cases, and integration with
programming tools becomes more necessary than ever. However, each integration requires a different kind of
functionality implemented within an analyzer. For example, continuous integration tools typically analyze
projects from scratch, while doing the same for code querying is not efficient performance-wise. The code
behind such use cases makes «service models», and it tends to differ significantly between them. In this paper,
we analyze the models which might be used by the static analyzer to provide its services based on aspects of
security, performance, long-term storage. All models are assigned to one of the groups: logical presence (where
the actual computation is performed), resource acquisition, input/output, change accounting and historic data
tracking. The usage recommendations, advantages and disadvantages are listed for each reviewed model.
Input/output models are tested for actual network throughput. We also describe the model which might
aggregate all these use cases. The model is partially evaluated within the work-in-progress static analyzer
Equid, and the observations are presented.

Keywords: static analysis; integration; service model; review; classification

For citation: Menshikov M.A. Review of Static Analyzer Service Models. Trudy ISP RAN/Proc. ISP RAS,
vol. 33, issue 3, 2021, pp. 27-40. DOI: 10.15514/ISPRAS-2021-33(3)-2

O630p Mmogenen paboTbl CTaTUYECKMX aHANM3aTopoB

M.A. Menvuurxos, ORCID: 0000-0002-7169-7402 <info@menshikov.org>
Canxm-IlemepOypackuii 20cyoapcmeenHulil yhusepcumen,
Poccus, 199034, Canxm-Ilemepoype, Ynuusepcumemckas nab., 0. 7-9

AnHoTammsi. CTaTHYeCKUH aHAIN3 TPOTPaMM MTOCTEIIEHHO OCBaUBAET MPOJBUHYTHIEC CITy4ad UCIIOIb30BaHUS,
Y IUIOTHAS! MHTETPaIUs C THCTPYMEHTaMH IIPOTPaMMHUPOBaHHUs CTAHOBUTCS Bce Oontee HeoOxoaumoit. OHaxo,
Kak/iasi MHTerpanys TpebyeT peaan3anin 0COOCHHOH apXUTEKTYpPbI HIIH ONPEAENICHHOH () yHKIIMOHAIBHOCTH B
ananuzarope. Hampumep, uacTpymenTs! a1 Continuous Integration o6bI4HO aHANIH3UPYIOT HPOESKTHI C HYIIS,
B TO BpeMs, KaK TOT K€ CaMblii aHaIIM3 C HyJIs Majtod(QdeKTHBEH /Uil BBIIOJIHEHHS 3apocoB 1o koxy. Koz,
KOTOPBIi pealtu3yeT apXUTEKTYPY IS pa3HbIX HHTErPaLHil, COCTABIAET pa3IMIHbIe MOJeIM paboThl. B naHHOI
CTaThe AHAIU3UPYIOTCS MOJEIH, KOTOPbIE MOTYT MCIIOJIB30BAThCS CTAaTHYECKHMMH aHAJIM3aTOPaMHU, C TOUKH
3peHust 6e30MacHOCTH, TPOU3BOUTEIBHOCTH, AOJITOBPEMEHHOT0 XpaHeHHs JaHHbIX. Bce Moenu oTHeCeHbI K
OﬂHOﬁ U3 TPYIIl Ha OCHOBE HAHHBIX O JIOTMYECKOM PAaCHOJIOKEHUU BBIYUCINUTEIIA, cnocoGax NOJTyYCHU
pecypcoB, MeTO/aX OpraHH3allMM BBOJA-BBIBOAA, a TaKXKEe BO3MOXKHOCTEH MO YYeTy H3MEHEHHH W
HCTOPHYECKUX JaHHBIX. OIICaHbI MPENMYIIECTBA M HEOCTATKH MOJENEH, TPHBEAEHBI PeKOMEHAUH 110 UX
ucnonp3oBaHuio. JlIs Mojeseil BBOJa-BHIBOAA TAKKe MPOTECTUPOBAHA MPOIYCKHAs CHOCOOHOCTH CETH.
IIpuBoanTcss Monenb, oObeAMHSAIOMAS BCE JaHHBIE CIydaW Hcnoms3oBaHms. OHA MPOTECTHpPOBaHA B
pa3pabaTsiBaeMOM CTaTHYeCKOM aHanu3aTope EqQuid, u B craTthe mpuBeieHb! HAOMIOACHUS 00 0COOEHHOCTIX
e€ paboThI M peann3aliy.

KnioueBble cjioBa: craTHyeckuil aHaNW3; HHTETpaLus, MOJENb paboThl; 0030p; KnaccupuKanms

27

Menshikov M.A. Review of static analyzer service models. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 27-40

Jas uutupoBanus:. MenbmkoB M.A. O630p Mozerneil paboThl cTaTiHueckux aHanmu3aropoB. Tpymsr UCIT
PAH, Tom 33, BbIm. 3, 2021 r., ctp. 27-40 (Ha anrmiickom si3bike). DOIL: 10.15514/ISPRAS-2021-33(3)-2.

1. Introduction

Static analyzers are widely used in the industry for different purposes: defect search, verification,
linting, quality assurance, code refactoring [1]. Most of these use cases can be implemented via a
standard sequential model. The more projects are created the more efforts are put into developing
lifelong support tools. One example is clangd [2], the tool acting as a language server [3] providing
syntax highlighting, code inspections and refactoring. We believe that analysis tools have the
potential to be used by a larger audience comprising not only engineers but also architects, technical
management, quality assurance staff. Partially this extended audience uses analyzers nowadays, but
mostly to understand code quality, while analyzers may provide more kinds of information.
Currently, static analyzers are either isolated or are running locally. That limits the possibilities of
the analyzer. To become agnostic to the way the analyzer is called, tools have to adopt more user
scenarios and service models.

One way to approach this issue is to research how are analyzers used and in which circumstances.
Combined with the technical review, classification of these service models would show the positive
and negative aspects of each model. The paradox is that each model is so interconnected with the
underlying architecture that it is hard to judge which entity is primary and which is secondary. By
reviewing service models, we review the analysis architectures as well. Working out a way to
support all models contributes to developing a more unified analyzer structure, improving user
experience [4], and, ultimately, may lead to wider adoption of static analysis tools.

The goal of this paper is to classify service models that can be used by static analyzers and analyze
their positive and negative networking, performance and other aspects. The novelty is that these
models are analyzed towards application to analysis tools concerning an extended set of parameters
and are combined in one model.

This paper is organized as follows. In section 2, the literature is examined. In section [3], we review
all models, including logical presence models (subsection 3.1), resource acquisition (subsection 3.2),
input/output (subsection 3.3), change accounting (subsection 3.4) and historic data tracking models
(subsection 3.5). The most widespread models are wrapped in section 4. Then, in section 5, we
define what's required for service model agnostic static analyzers. Our model-agnostic static
analyzer, as well as some of the models, are tested and discussed in section 6.

2. Related work

Most works in the static analysis field explore improvements that can be applied to the analysis
algorithms. The effects of service models are not typically reviewed. Common software architectural
patterns [5] and patterns for data-intensive applications [6] still apply to static analyzers.

As for classification, [7] bases taxonomy on rules, technology, supported languages, configurability,
etc. This separation is developer-centric, while our research is focused on the technical effects of
implementation. A different approach is explored in [8], in which authors introduce a notion of
development context comprising local programming, continuous integration and code review
contexts. We expand further on it by exploring the service model from an analyzer's point of view,
such as when handling incremental input, performing time-limited operations for IDE, etc.

The research [4] focuses on finding an answer to the question why static analysis tools are not widely
adopted. One of the concerns presented by authors is that tools don't integrate into existing
development processes, which intersects with our implicit thesis that industry needs more
sophisticated service models. The mentioned research [8] also confirms that developers tend to avoid
using the same tools for different development contexts, which means that a single analysis tool
might benefit from employing more service models.

28

MenbumkoB M.A. O630p Mojeneii paboThl cTaTHYECKHX aHaIn3aTopoB. Tpyost UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 27-40

3. Models

Any software may be used via different service models. In this research, we review models based
on the influence on software cooperation. Namely, the physical location influences the distance
between the analysis requester and the analysis executor. In modern networking [9], such a distance
is logical rather than physical since server and client might reside in the same host, so we define
such models as logical presence models.

The second question is how are resources needed for analysis, such as input sources, headers and
libraries, are retrieved. These models form a group of resource acquisition models.

The third problem is the propagation of input parameters from the requester to the server and the
delivery of results back. This is about input/output models.

The fourth question is the attitude of the model to incremental analysis: change accounting models.
The fifth issue is similar to incremental analysis: the handling of historic data, such as revisions in
version control systems.

In the next subsections, all these model groups are reviewed.

3.1 Logical presence models

The first theoretical model is based on where the actual computation is done. As mentioned, the
location of the analysis executor is mostly logical rather than physical in presence of network
namespaces (containers) and virtual machines. All reviewed models are summarized in Table 1.

Table 1. Logical presence models & their properties

Model Security | Data Stable Network | Environment | Performance | Score
leak connection | load
risk
Local Low (1) | High (1) | Unneeded None (3) | Preserved (3) | Low (1) 12
computation 3)
Isolated High (3) | Low (3) | Unneeded High (1) | Not preserved | High (3) 14
computation (3) (1)
Remote High (3) | Medium | Required Medium | Manageable High (3) 13
computation (2) (1) 2))

3.1.1 Local computation

The model is widely used in static analyzer projects. In that case, the static analyzer is located on
the machine requesting the analysis. The examples are LLVM and Clang [10, Svace [11], cppcheck
[12] and other tools.

e Security: by default, the analyzer has access to all the sources and has an access to the Internet,
which lowers the security in general. Moreover, access to the most data located on the host is
possible. Research like [13] also stresses that the employees of companies fail to comply with
security regulations. In security-critical cases, it is important to limit available file system
locations by tools such as AppArmor and SELinux [14], disable internet access for the
application.

e Networking: unused except for loopback communication or inter-process communication,
which imply no use of networking hardware.

e Performance: developer work stations tend to have limited resources, so performance &
concurrent work is limited. The solution involving the use of server-grade performant work
stations is not economically effective.

e Long-term storage: storing artifacts for a long time is not feasible on developer work stations,
except for the case when network file systems, such as NFS [15] or SSHFS [16], are involved.

29

Menshikov M.A. Review of static analyzer service models. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 27-40

3.1.2 Isolated computation

The schema is used by modern Continuous Integration (CI) tools, such as Jenkins [17], SonarQube
[18], Coverity [19]. The computation is moved to a designated server that has access to committed
input sources.

e Security: Cl has all the data required to constrain allowed file system locations, for example, via
SELinux, AppArmor [14]. This schema can be achieved using containerization platforms like
LXC [20[, Docker [21]. Even though containers have several weak points [22, 23] and setting
them up correctly requires an understanding of parameters and a modern kernel, exploiting such
errors is not easy. Going forward, a designated virtual machine without direct Internet access,
built solely for the static analysis of one project, is the most secure solution.

o Networking: such systems typically create workspaces by downloading repositories from
scratch, causing significant traffic flows. However, this operation mode is usually network
hardware-friendly since, as a rule of thumb, such servers have good network adapters and are
connected to central switches by wire, so they are close to the repository server.

o Performance: the raw power needed for computations is offloaded to a server, reducing the load
on developer stations to zero. Incremental operation is usually impossible due to the way
workspaces are prepared and discarded.

e Long-term storage: storing analysis artifacts is mandatory because users might need to check
results later. This shouldn't have a significant influence on disk space (since such servers have
designated storage, in general) and analysis runs sporadically.

3.1.3 Remote computation with resource acquisition

The model implies that the computation is done on a separate server, but resources are acquired from
developer machines via various communication channels. Clangd [2] and other language servers [3]
present tools that are not technically recognizable from static analyzers but provide a similar set of
services. We present the model in [24], but in this research the model is evaluated from a non-
architectural perspective.

The following characteristics are seen in this model:

e Security: derived from isolated computation model, but data leaks are possible on the way from
a local machine to a server [13]. This can be solved by using secure communication with
certificate pinning.

o Networking: the model in which the workspace is obtained from the user directly is inefficient
in the case of large projects. For example, Linux 5.10.26% is 1GB (174MB in tar.gz format),
which would take 80 seconds (14 seconds for compressed format) on a perfect 100 Mbps link.
In the case of compressed format, it takes 6 seconds to unpack on Intel Core i7-7700HQ based
laptop with Samsung 980 Pro SSD, Ubuntu 20.04. Compressing to this format takes 30 seconds
on the same host. That means that, if the workspace is obtained from the user, the complete
transmission time is 80 seconds or 30 + 14 = 44 seconds (considering the receiver a more
advanced host with higher unpack performance). The link is, however, usually not perfect: for
example, WiFi links are ailing from network congestion [25], decreasing available bandwidth
even further. The viable option is collecting changes from the revision known to the static
analysis host (this option is discussed in subsection 3.4).

e Performance: the computation is offloaded to the high performant server, with no load to
developer stations. The incremental operation is possible in case snapshots of the internal state
are stored by the static analysis host.

e Long-term storage: storing analysis artifacts is also mandatory, the influence on sparse runs is
the same as for isolated computation, however, significant disk space might be consumed by

L https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.26.tar.gz
30

MenbumkoB M.A. O630p Mojeneii paboThl cTaTHYECKHX aHaIn3aTopoB. Tpyost UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 27-40

per-developer incremental runs. As a result, the recommendation is to prepare a mechanism for
discarding old per-developer analysis results.

3.2 Resource acquisition models
All resource acquisition models are reviewed in Table 2.

Table 2. Resource acquisition models & their properties

Model Input R&D Preparatory Stable Compiler Score
length efforts work connection compatibility

Local Optimal (3) | Low (3) None (3) Unneeded (3) | Full (3) 15

resources

Shared Moderate Low (3) None (3) Unneeded (3) | Full (3) 14

repository 2)

Preprocessing | Large (1) Low (3) High (1) Unneeded (3) | Absent (1) 9

Pre-tracing Moderate Moderate | High (1) Unneeded (3) | Full (3) 11
@)

Virtual ~ file | Optimal (3) | High (1) Low (3) Required (1) Full (3) 11

system

3.2.1 Local resources. Shared repository

These two models just define the typical schemas used in software engineering. The local resource
model is used in all tools running locally, such as compilers, static analyzers. The shared repository
model is enforced by continuous integration environments.

3.2.2 Preprocessing

In this schema, the input is preprocessed locally and the analyzer gets a preprocessed version for
further analysis.

o Input size: preprocessed definitions are very large. The file with only \path{<iostream>} header
included and an empty main() is 49 bytes long, while the preprocessed version is 751954 bytes
long (GCC 9.3.0 on Ubuntu 20.04).

e Analysis: the problem might be the preprocessor's output is not compatible between the requester
and analyzer hosts. This is better seen if source and target hosts have different operating systems
and toolchains.

If it is clear that the compiler used on both localhost and analysis host matches or at least is

compatible, and the analysis runs on one input file at most, then this schema might be a simple and

cost-effective solution for the implementation of remote analysis.

3.2.3 Pre-tracing of dependencies

The core idea is to perform tracing of all needed files before sending an analysis request. This process
can be not straightforward. Tools like Build EAR [26] intercept commands passed to compilers, but
don't provide lists of all needed files. This tool can be used in conjunction with utilities tracing
system calls to get this information (such as strace?).

e Input size: reasonable since it includes only needed files.

e Analysis: requires integration of virtual file system with pre-downloaded files into parsing stage.
This model is similar to preprocessing, however, files are packed into request individually. This
schema is less problematic than preprocessing because files are not present in the request twice or
more times, reducing the cost of networking transfer.

2 https://github.com/strace/strace
31

Menshikov M.A. Review of static analyzer service models. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 27-40

3.2.4 Virtual network file system

A virtual network file system is a technique that can be used to acquire resources from a source host
on-demand. It can be used through the well-known implementation such as NFS [15] and SSHFS
[16], or via a custom protocol. This schema has the following properties:

Input size: optimal because taken on demand (in case files are cached on a server).

Analysis: requires integration with the parsing stage. This model reduces the cost of analysis in
case of early termination which may occur if an input has obvious syntax defects.

Networking: needs a stable connection between a local host and an analysis host. It can be
problematic considering that a significant part of hosts is behind Network Address Translation
(NAT) [9] gateways and thus doesn't have a fixed IP. In such systems, the hosts need to use
keep-alive techniques to avoid early preemption of entries in gateway NAT tables. Also, the use
of well-known implementation may exhibit the problem of passing traffic through in case the
static analysis client is behind NAT or a firewall and the implementation uses the pipe in the
direction from server to client.

3.3 Input/output models
All input/output models are reviewed in Table 3.

Table 3. Input/output models & their properties

Model R&D efforts | Stable Network | Notifications | Score
connection load

CLI Trivial (3) Unneeded (3) | None (3) Unneeded (3) | 12

Stateless Trivial (3) Unneeded (3) | High (1) Impossible (1) | 8

client/server

Stateful Moderate (2) Required (1) Low (3) Possible (3) 9

client/server

Streaming High (1) Required (1) Low (3) Possible (3) 7

model

3.3.1 Command line interface model

This model is widespread in the industry. The input is provided with input arguments and input
stream, the output — with the result code and stdout/stderr stream.

3.3.2 A stateless client/server model
The input is the request to the server, the output is a response to the request.

32

Networking: this model implies that after the request is sent, the response must follow after
analysis is done, not necessarily to the same request (might be a status request).

The problem with this model is that notifications need a side-by-side implementation (i.e. a
communication channel directed towards the client). Without notifications, the status polling is
redundant, but not harmful due to small absolute packet sizes.

A significant performance issue in real conditions may occur if a large amount of input data is
sent over short-living TCP sessions. The reason is that most home-grade gateways accelerate
network traffic only if the session reaches a specific number of packets (e.g., 5). Shorter sessions
may appear unaccelerated and may be processed via CPU, not reaching a maximum practically
performance (in the author's experiments with 1gbit links, the accelerated performance tops at
940 Mbps, while unaccelerated traffic reaches 50 Mbps, at most).

Practical aspects: the approach can be implemented within the REST paradigm, which has
many available implementations for any platform.

MenbumkoB M.A. O630p Mojeneii paboThl cTaTHYECKHX aHaIn3aTopoB. Tpyost UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 27-40

Practically, this limits the usage of the model to short requests. That's the reason the model is used
within Continuous Integration systems, data management cases (such as the configuration of
services like Jenkins, GitLab; manipulation of objects in bug trackers, etc). In other cases (e.g.
compiler support case), this paradigm is not efficient.

3.3.3 A stateful client/server model with or without notifications
The input is a series of requests to the server, the output is a series of responses from the server.

e Networking: this model is efficient regarding networking hardware in the case of long-term TCP
sessions. Most traffic will be accelerated, so the maximum performance will be demonstrated.

e Practical aspects: the model requires a custom state machine, notification system. The
development cost is higher.

3.3.4 A streaming model

This is a variation of the client/server model, so the throughput is nearly the same. The input seen
on the server is dynamically formed by requests, the computation is performed for currently known
data.

3.4 Change accounting models

3.4.1 Fixed revision

The analyzer pulls the specific version of a source. If it is needed to re-analyze some part of the
code, the complete analysis is performed.

e Time: complete execution every time.

e Analysis: requires no special handling from the analyzer's side.

¢ Networking: download of the complete repository might take significant time, however, this
process is unconditionally networking hardware-friendly.

This schema is suitable for Continuous Integration processes, but long analysis time blocks the

interactive use cases.

3.4.2 Incremental updates

The analyzer builds the model of a program on the first run. If the user decides to reanalyze a file or
two, changes are obtained incrementally.

e Time: slow once, fast on incremental updates. However, in the case of global changes, the
analysis time might increase dramatically, reaching the complete time or even overcoming it
due to preliminary dependency graph analysis.

e Analysis: puts additional requirements, such as discardable state that is trivial to invalidate when
a part of dependency graph changes. Dependent parts of the state should be rewritable.

e Networking: the difference between projects typically has negligible size compared to complete
repository, so the process of obtaining differences is networking hardware-friendly, especially
in the case of one TCP session or the same UDP source/destination addresses and ports.

3.4.3 Daily updated global revision with incremental user-defined changes

A typical use case would be that the analyzer runs every night on the latest revision, but if the user
requests the analysis of a diverging source, the «latest» revision is forked and only differences are
reanalyzed.

e Time: this schema improves analysis performance for developers running the analysis on a large
codebase with minor differences.

33

Menshikov M.A. Review of static analyzer service models. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 27-40

e Analysis: the incremental schema requirements plus scheduling of daily updates, temporary
storage of analysis artifacts.

o Networking: developers typically don't change the large codebase significantly. Because of that,
the difference is ought to be minor, and the network load is the same as for the incremental
schema.

If the analysis state is transferrable, the developers might cache the state and run the analysis locally.
This is possible for some analysis kinds, such as code queries, dependency analysis.

3.5 Historic data tracking models

Some analyzers might take advantage of historic data. In addition to the usual code metrics changing
over time, the practically useful case would be to narrow down a revision with a specific defect not
tracked by analyzers (i.e. logical mistake)

3.5.1 A model without tracking of historic data
e Analysis: trivial to implement compared to a model with tracking.
o Data storage: only needs one specific revision, no extra data is needed.

3.5.2 A model with complete snapshots of historic analysis data

e Analysis: requires meta run of analysis over two or more revisions, which complicates the
structure of analysis.

o Data storage: the analysis data for all revisions in question should be collected.

3.5.3 A model with differential snapshots of historic data

e Analysis: more complicated compared to the model with complete snapshots, additional
invalidation of data is needed. That also requires maintenance of algorithms for propagating
analysis data differences, which may make the complete task difficult.

o Data storage: analysis can be done once, and then only analysis database differences can be
stored.

Model without tracking is trivial to implement. Models with snapshots may support use cases in
which historic data is important, but it comes with a cost of extra time, data storage (high in the
model with complete snapshots) and development complexity (high in the model with differential
snapshots).

4. Combination shortcuts

After review of basic models, it is obvious that their combinations are already used worldwide:

1) Local (incremental) model — local computation, local resources, command line or server model
with a fixed revision (incremental updates) and no tracking of historic data.

2) Continuous Integration model — remote computation, source repository, stateless client/server
model with custom notifications, fixed revision, no tracking of historic data.

5. Considerations for service model agnostic static analyzers
Considering suggested use cases, it is possible to form suggestions on what should be done in a static
analyzer to support more these models (fig. 1)

Logical presence models and input/output models are tightly coupled. A service model agnostic
analyzer should have an abstraction layer for the complete execution — the job subsystem.
Resource acquisition methods imply that there must a separate abstraction layer for retrieving file
data from different hosts.

34

MenbumkoB M.A. O630p Mojeneii paboThl cTaTHYECKHX aHaIn3aTopoB. Tpyost UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 27-40

Incremental change support implies that objects must be addressable in a unified and interchangeable
manner, so that older object versions might be discarded, while new versions added as-is. This
should be done right after retrieving data and remote resources.

hEEEEEE CLI
Input abstraction (i i i iiiiiiii Stateless]
layer PR communication client
: i
Existing RN Shtell
resources Resource acquisition L] Source preparation & H communicationclient
abstraction layer parsing H
Remote H
resources ¢ I Streaming
Madal iFvalidatish » | communication client
»
based on incremental
. diffs
Internal job
subsystem ¢
i
Analysis —
Historic data analysis
OQutput abstraction +| Data storage for job ::
layer i subsystem e

Periodic job result
removal

Fig. 1. Possible schema for model agnostic static analyzer
To facilitate status polling, incremental change handling and historic data tracking, the output should
be saved to data storage, accessible for extended periods. Historic data tracking also implies having
a subsystem of meta-analysis, which allows reviewing deltas between revisions.

6. Testing and discussion

6.1 Characteristic-based evaluation

The characteristic-based evaluation of models was performed in tables 1, 2 and 3. For each
characteristic, a numeric value ranging from 1 (worst) to 3 (best) had been chosen. The total score
for each model is written in the column «Scorex. This evaluation is partially subjective but had been
discussed with a few experts in relevant domains.

The results are as follows. The best model among logical presence models is an isolated
computation, which is confirmed by its popularity in the software engineering industry. The second
model is a remote computation with resource acquisition. It combines the high performance of
isolated computation with manageable customization to comply with the environment and use cases.
The third model is a local computation. The problems of this model lie in practically low
performance and high data leak risk (the developer machine is likely to be insecure). However, if
this risk is diminished by using a secure operating system and working firewall rules, this model
would share the score with remote computation.

Among resource acquisition models, classical local and shared repository models are the best. When
considering models for non-classical use cases, pre-tracing of dependencies and virtual file system
are better choices than preprocessing method. But, in practice, preparatory work for tracing might

35

Menshikov M.A. Review of static analyzer service models. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 27-40

be time-consuming, making the provision of thin clients hard. So, in the author's opinion, the virtual
file system is the preferred choice for non-classical use cases.

For input/output models, the choice is related to the use case even more than for previous models.
However, when choosing among networking models, stateful client/server communication is
preferred as it reduces network load, provides notifications (reducing polling) while keeping R\&D
efforts moderate.

The preference between change accounting models is unambiguous. The incremental model
supports more use cases, and at the same time, the daily updated revision enhances it with much
better performance in common developer routines.

Historic data tracking stays a little apart from this comparison. The more data is processed, the more
time is taken and the more useful data is carved, therefore it is hard to name the preferred model.

6.2 Evaluation in static analyzer project

The considerations for service model agnostic analyzers were used as a basis for our project — Equid
static analyzer [27]. We emphasize that the project is not following the schema in all ways since
there is a lag between design and actual implementation. Our implementation includes a frontend
library — the part that manages jobs for a specific workspace. The frontend library is used by the
command line interface and server binary, both of them construct the workspace and fill it with job
types, paths and environment information. The job types define the semantic visitors that are invoked
at the end of analysis stages, during meta run, and have an impact on the selection of verification
rules. The frontend library starts the analysis and provides an interface to get the current status or
stop execution if needed. After finishing all jobs related to a specific run, the user might obtain the
result of the analysis in all requested forms. The supported forms are defects, dependency analysis,
call graphs, language identification.

The incremental analysis model lags behind the design. The support of incremental analysis is built
into an object database, and it is possible to discard old objects and then drop new objects in. There
is a saved dependency graph that can be used to invalidate parts of the analysis run. However, the
incremental analysis support is not finished yet and we can only experiment with it. In our testing,
if the incrementally changed file makes 10\% of input size, then the time to recompute it will match
20.07% (on average) of time taken for the whole input due to the need to invalidate the map. In case
of excessive dependencies between updated and untouched files, the computation might take up to
40% of the original analysis time, although it is possible to design a case that will invalidate the
complete program model.

The supported mediums are JSONRPC? and binary streaming over TCP with TLS enabled. These
mechanisms are implemented in a straightforward manner and are adequate considering networking
and security requirements.

During the evaluation, we have found that the optimal model effectively falls back to trivial software
architecture if some functionality is not needed. When they are needed, extra stages get enabled and
start adding expected diagnostic data to reports. That is the reason why it is possible to experiment
with unfinished functionality in Equid's architecture. This is an advantage of the model.

The other advantage is a clear decomposition between the core and the service. The analysis
functionality is a black box for the service. The service part provides input arguments, takes
notifications provided by the core, passes streaming data to the analyzer and reuses the output as
many times as needed, however, those are only extension points available. As seen in the schema,
the main part remains sequential, therefore, still simple for development.

There are certain problems. While the simple design matches the complex architecture, imminent
conditional jumps still make performance penalties. Also, it is harder to maintain the support of
these service models, though this issue may be neglected by keeping the core as minimal as possible.

3 https://www.jsonrpc.org
36

MenbumkoB M.A. O630p Mojeneii paboThl cTaTHYECKHX aHaIn3aTopoB. Tpyost UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 27-40

6.3 Network performance
As for network performance numbers, we performed testing of:

Stateless polling versus notification model. In the case of using exponential backoff variation
(5, 10, 20, 40, 80, 160 seconds at most), there are around 294 bytes per request and 210 bytes
per response (Table 4). In the case of notifications (Table 5), a response is around 140 bytes and
keepalive packets are around 70 bytes (Analysis start/destroy is not considered for the case of
polling, TCP session instantiation/finalization is not considered for notifications). The time
difference is large between polling and keepalive models, but in absolute numbers, these
differences don't impact allocated bandwidth significantly and thus might be ignored.

Table 4. Data transfers with polling

Total Start (sec) End (sec) | Steps | Delta (sec) Data Data
time (sec) transmitted | received
(bytes) (bytes)
630 5 160 8 5 2352 1680
95 5 160 5 60 1460 1046
13080 5 160 86 35 25542 18232
Table 5. Continuous data transfers
Total time | Keepalive Data Data
(sec) packets (pkts) transmitted received
(bytes) (bytes)
634 10 700 140
92 1 70 140
13189 219 15330 140

Data transfers over WiFi (Table 6). A dual-band home gateway based on MediaTek platform
with IEEE802.11n and IEEE802.11ac bands was used for testing. The test server is connected
to the gateway over the 2.4GHz band (actual frequency is 2.412GHz), the client is connected to
the gateway over the 5GHz band (actual frequency is 5.3GHz). For single-thread TCP
performance, the data has been sent in the biggest possible packets according to MTU/MRU in
the network. For SSHFS, the data has been sent file by file. The actual performance numbers
demonstrate that the preprocessing schema is, indeed, slower due to higher input size. The
difference between single-thread TCP with raw input is around 18.57 Mbps (21.6% of raw TCP
performance), however, this difference may be either judged by the simpler implementation of
SSHFS. On the other hand, a possible reduction of input based on the existence of files on the
server not only in one user's sandbox might have a positive impact on the performance of custom
protocols based on TCP. At the same time, the local model has zero penalties on file transfers
and this result cannot be surpassed.

Table 6. Source code transfers

Approach Total time (sec) | Inputlength | Links Throughput
(MB) (Mbps)

Single-thread TCP | 9.85 101 5.3GHz — Gateway — 82

(raw input) 2.412GHz

Single-thread TCP | 48.75 470.66 5.3GHz - Gateway — 77.2

(preprocessed 2.412GHz

input)

SSHFS (raw input) | 12.054 101 5.3GHz — Gateway — 67.03
2.412GHz

6.4 Limitations of the approaches and further development

The proposed schema of the service model agnostic analyzer aggregates models in a straightforward
manner. The problem with it is that it is not optimized as there was no research on the most optimal

37

Menshikov M.A. Review of static analyzer service models. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 27-40

model. In our view, an improvement can be achieved if some numerical quality measure for service
model combinations is proposed.

The problem with the comparison of models is that it is biased towards implementation. The most
widespread cases were carefully chosen, such as source code transfer evaluation or polling versus
continuous data transfer testing, however, actual implementation may work around negative aspects
shown in the paper. That may happen since analyzers cannot be seen as pure implementations of
these discrete models. Combining models for reaching the best quality of output model is
encouraged, even if complete aggregation is not in question.

Also, as the research's goal is to study common models and their generalizations, it is often the case
that a widespread example of the specific model does not exist, and we have no resources to
implement all of them in the analyzer with sufficient detail level. That limits model reviewing
possibilities. A further improvement would be achieved after developing such examples (toy
analyzers) and verifying them on many samples.

6.5 Suggested use cases

These models may work on different occasions. Based on the review of models, we propose the
following mapping from use cases:

e Complete project and inter-project analysis: based on the advantages of isolation, the
continuous integration model seems a better choice.

e Basic reference search, refactoring: since these use cases don't imply deep project inspection
[28], a local (incremental) model should be optimal.

e Code queries [29]. Depends on the size of a project: small projects might be analyzed locally
in a separate instance of the analyzer. Big projects with a distributed team mostly sharing the
same source may take advantage of remote computation with a virtual file system, a stateful
client/server model, a daily updated global revision with incremental changes model and historic
data tracking.

e Project import & dependency analysis. Depending on the requirements such as the location
of the project and its size, the preferred model might range from a simple local model to a remote
computation (with or without a virtual file system), source repository and a fixed revision model.

e Debugger support — analyzer supports debugger with code insights (e.g., similar model is seen
in [29]). The local model is sufficient for small projects, but large projects should be analyzed
within the remote computation, virtual file system, daily updated global revision and
incremental updates model.

e Compiler supporting model. In that case, the compiler does code generation, but the analyzer
supports it with additional inferred contract checks, the information about clearly unsatisfied
assertions, et cetera. Local computation, local resources, streaming model, fixed revision.

e Static/dynamic analysis cooperation. Such cooperation is suggested by FSTEC [30] «Protection
against unauthorized access to information» certification. For example, a dynamic analyzer
might trace the execution to let the static analyzer verify that all traces are valid. It might be
done in a remote execution model with a virtual file system, daily updated global revision with
incremental updates.

e Technical documentation preparation. Also a part of FSTEC [30]. Usually, the process is
done once at the end of a release cycle. Considering the importance of precision, Continuous
Integration is the most efficient model.

6. Conclusion

The service models that can be used by static analyzers were described. This list includes logical
presence, resource acquisition, input/output, change accounting and historic data handling models.
An aggregate model enabling significantly diverging use cases is presented. It was tested in a real-

38

MenbumkoB M.A. O630p Mojeneii paboThl cTaTHYECKHX aHaIn3aTopoB. Tpyost UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 27-40

world static analyzer and demonstrated technical advantages and disadvantages. Part of the models
was compared directly by characteristics, and recommendations for model selection were provided.

Cnucok nutepatypbl / References

[1] D. Binkley. Source code analysis: A road map. In Proc. of the Symposium on Future of Software
Engineering (FOSE ’07), 2007, pp. 104-119.

[2] What is clangd? Available at https://clangd:llvm:org, accessed 15.03.2021.

[3] Langserver.org - A community-driven source of knowledge for Language Server Protocol
implementations. Available at: https://langserver:org, accessed 15.03.2021.

[4] B.Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t software developers use static
analysis tools to find bugs? In Proc. of the 2013 International Conference on Software Engineering, ,
2013, p. 672-681.

[5] M. Richards. Software architecture patterns. O’Reilly Media, 2015, 47 p.

[6] M. Kleppmann. Designing data-intensive applications: The big ideas behind reliable, scalable, and
maintainable systems. O’Reilly Media, 2017, 616 p.

[7]1 J. Novak, A. Krajnc et al. Taxonomy of static code analysis tools. In Proc. of the 33rd International
Convention MIPRO, 2010, pp. 418-422.

[8] C. Vassallo, S. Panichella et al. How developers engage with static analysis tools in different contexts.
Empirical Software Engineering, vol. 25, no. 2, 2020, pp. 1419-1457.

[9] A.S Tanenbaum and D.J Wetherall. Computer networks. Pearson, 5th edition, 2010, 960 p.

[10] C. Lattner and V. Adve. LIvm: A compilation framework for lifelong program analysis & transformation.
In Proc. of the International Symposium on Code Generation and Optimization, 2004, pp. 75-86.

[11] B.II. WBanuukoB, A.A. BeneBanues u ap. CraTuueckuil aHaM3aTop SVACE I MOUCKa A(EKTOB B
ucxomHoM kone mporpamm. Tpymer UCIT PAH, Tom 26, Bem. 1, 2014 1, ctp. 231-250. DOI:
10.15514/ISPRAS-2014-26(1)-7 / V.P. Ivannikov, A.A. Belevantsev et al. Static analyzer Svace for
finding defects in a source program code. Programming and Computer Software, vol. 40, no. 5, 2014, pp.
265-275.

[12] Cppcheck - a tool for static C/C++ code analysis. Available at http://cppcheck:sourceforge:net, accessed
15.03.2021.

[13] F. Bélanger, S. Collignon at al. Determinants of early conformance with information security policies.
Information & Management, vol. 54, no. 7, 2017, pp. 887-901.

[14] Z.C. Schreuders, T. McGill, and C. Payne. Empowering end users to confine their own applications: The
results of a usability study comparing SELinux, AppArmor, and FBAC-LSM. ACM Transactions on
Information and System Security, vol. 14, no. 2, 2011, pp. 1-28.

[15] S. Shepler, B. Callaghan et al. Rfc3530: Network file system (nfs) version 4 protocol, 2003. Available at
https://www.rfc-editor.org/info/rfc3530, accessed 15.03.2021.

[16] M.E. Hoskins. SSHFS: super easy file access over SSH. Linux Journal, no. 146, 2006, pp. 1-4.

[17] J.F. Smart. Jenkins: The Definitive Guide: Continuous Integration for the Masses. O’Reilly Media, 2011,
404 p.

[18] G.A. Campbell and P.P. Papapetrou. SonarQube in action. Manning Publications, 2013, 392 p.

[19] A. Bessey, K. Block et al. A few billion lines of code later: using static analysis to find bugs in the real
world. Communications of the ACM, vol. 53, no. 2, 2010, pp. 66-75.

[20] K. Ivanov. Containerization with LXC. Packt Publishing, 2017, 352 p.

[21] D. Merkel. Docker: lightweight Linux containers for consistent development and deployment. Linux
journal, no. 239, 2014, pp. 1-2.

[22] J. Wenhao and L. Zheng. Vulnerability analysis and security research of Docker container. In Proc. of the
IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE),
2020, pp. 354-357.

[23] T. Combe, A. Martin, and R. Di Pietro. To Docker or not to Docker: A security perspective. IEEE Cloud
Computing, vol. 3, no. 5, pp. 54-62, 2016.

[24] M. Menshikov. Towards a resident static analysis. Lecture Notes in Computer Science, vol. 11620, 2019,
pp. 62-71.

[25] Z. Hays, G. Richter et al. Alleviating airport WiFi congestion: An comparison of 2.4 ghz and 5 ghz wifi
usage and capabilities. In Proc. of the Texas Symposium on Wireless and Microwave Circuits and
Systems, 2014, pp. 1-4.

[26] rizsotto/bear: Bear is a tool that generates a compilation database for clang tooling. Available at
https://github:com/rizsotto/Bear, accessed 15.03.2021.

39

Menshikov M.A. Review of static analyzer service models. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 27-40

[27] M. Menshikov. Equid — a static analysis framework for industrial applications. Lecture Notes in Computer
Science, vol. 11620, 2019, pp. 677-692.

[28] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley Professional, 2nd edition,
2018, 448 p.

[29] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security flaws using PQL: A
program query language. in Proc. of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2005, pp. 365-383.

[30] Federal Service for Technical and Export Control. Available at https://fstec:ru, accessed 15.03.2021.

MHdopmauusa o6 aBTope / Information about the author

Maxkcum Anekcanaposndy MEHBIIIMKOB, acnmpant kadepsl CHCTEMHOTO TPOTPaMMHUPOBAHUS.
Hayunple wmHTEpech: cTaTWYecKWid aHamW3, oOpaTHas pa3padoTKa, MHCTPYMEHTHI Pa3padOTKH,
BBICOKOTIPON3BOUTENbHBIE BEIUMCICHHS, BUPTYaIH3a1HL.

Maxim Aleksandrovich MENSHIKOV, PhD student. Research interests: static analysis, reverse
engineering, development tools, high-performance computing, virtualization.

40

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-3 tocl%

An Automated Framework for Testing Source Code
Static Analysis Tools

12 D.M. Gimatdinov, ORCID: 0000-0002-1329-4541 <damir.gimatdinov@huawei.com>
2AY. Gerasimov, ORCID: 0000-0001-9964-5850 <gerasimov.alexander@huawei.com>
2P.A. Privalov, ORCID: 0000-0002-8939-5824 <petr.privalov@huawei.com>
2V/.N. Butkevich, ORCID: 0000-0001-9376-9051 <butkevich.veronika.nikolaevna@huawei.com=>
2N.A. Chernova, ORCID: 0000-0001-8678-9193 <chernova.natalya@huawei.com>
2A.A. Gorelova, ORCID: 0000-0001-7974-7913 <gorelova. anna @huawei.com>

I Higher School of Economics,
11, Pokrovsky boulevard, Moscow, 109028, Russia
2 Huawei Technologies Co., Ltd.,
7b9, Derbenevskaya naberezhnaya, Moscow, 115114, Russia

Abstract. Automated testing frameworks are widely used for assuring quality of modern software in secure
software development lifecycle. Sometimes it is needed to assure quality of specific software and, hence
specific approach should be applied. In this paper, we present an approach and implementation details of
automated testing framework suitable for acceptance testing of static source code analysis tools. The presented
framework is used for continuous testing of static source code analyzers for C, C++ and Python programs.

Keywords: automated testing; quality assurance; source code static analysis

For citation: Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova
A.A. An Automated Framework for Testing Source Code Static Analysis Tools. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 41-50. DOI: 10.15514/ISPRAS-2021-33(3)-3

ABTOMaTM3MpOBaHHaH cuctema TeCtTMpoBaHuUA MHCTPYMEHTOB
CTaTU4eCcKoro aHanu3a Kkoga

L2 .M. Tumamournos, ORCID: 0000-0002-1329-4541 <damir.gimatdinov@huawei.com>
2 4.10. I'epacumos, ORCID: 0000-0001-9964-5850 <gerasimov.alexander@huawei.com=>
2 [1.4. Ipusanos, ORCID: 0000-0002-8939-5824 <petr.privalov@huawei.com>
2 B.H. Bymxesuu, ORCID: 0000-0001-9376-9051 <butkevich.veronika.nikolaesvna@huawei.com>
2 H.A. Yepnosa, ORCID: 0000-0001-8678-9193 <chernova.natalya@huawei.com>
2 4.A. I'openosa, ORCID: 0000-0001-7974-7913 <gorelova. anna @huawei.com>

! Hayuonanonwii uccnedosamenvckuii yuueepcumen Bulcuias wkona sKoHOMUKU,
109028, Poccus, Mocksa, Ilokposckuii 6yrveap 11
2 Texxomnanust Xyaeoii,
115114, Poccus, Mocksa, /lepbenesckas nabepeoicnast, 1¢c9

AnHoramus. Cpenpl aBTOMaTH3UPOBAHHOTO TECTHPOBAHHS IHPOKO HCIIONB3YIOTCS OIS OOecTieueHust
Ka4ecTBa COBPEMEHHOTO IIPOTPAaMMHOTO oOecHedeHus B JKM3HCHHOM LHUKJIE pa3paboTKH Oe30I1acHOro
nporpaMMHOro obecredenusi. VHorma TpeOyercs mIpoBepka KadecTBa CHEHH(HUYSCKOTO IPOrPaMMHOTO
obecriedeHHs1 ¥ MOITOMY TpeOyeTcsl IPUMEeHEHNe CHe(UIecKoro moaxoaa Uil pelleHus 3Toi 3axaun. B
3TOH cTaTbe MBI IMPEACTABIAEM IOAXOM M JAETaNU pealu3aldd CPeabl aBTOMAaTHYECKOTO TECTHPOBAHHUS,

41

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

MpeHa3HAuYeHHOH A7 MPUEMOYHOI0 TECTUPOBAHHS MHCTPYMEHTOB CTAaTHUECKOTO aHAIM3a MCXOMTHOTO KOJa
nporpamm. IIpencTaBieHHass cpela HCHONB3yeTCs IUIsl HEMPEPBIBHOTO TECTUPOBAHMS WHCTPYMEHTOB
CTaTHYECKOT0 aHaIN3a HCXOTHOTO Koja mporpamm Ha s3bikax C, C++ u Python.

KiaroueBble ciioBa: ABTOMATU3HPOBAHHOC TCCTHUPOBAHHUC; obecrieueHue Ka4decTBa, CTaTUYCCKUN aHAIU3
HUCXOOHOI'0 Kozaa.

Jast uutupoBanus: 'nmmatannos JI.M., epacumos A.1O., ITpusanos I1.A., Byrkesuu B.H., Yeprosa H.A.,
TlopenoBa A.A. ABTOMAaTH3HpOBAaHHAs! CHCTEMa TECTHPOBAHMS WHCTPYMEHTOB CTAaTHYECKOTO aHAIM3a KOAa.
Tpynst UCIT PAH, Tom 33, Bbim. 3, 2021 r., ctp. 41-50 (Ha anriumiickom si3bike). DOI: 10.15514/ISPRAS—
2021-33(3)-3.

1. Introduction

Acceptance testing is a very common approach to make sure required software functionality is
satisfying needs of end user in an automatic way. Wide usage of continuous integration systems with
automatic tests run allows to automate testing process to make sure the functionality is not broken
by separate change in a program code. That is why it is important to build suitable testing framework
to satisfy needs in continuous testing of specific software.

A source code static analysis tools are become an industrial standard for software quality assurance
at early stages in secure software development lifecycle. They are commonly used for detection of
program issues and logical errors. Being quality assurance tools by nature they need to satisfy
specific requirements such as an analysis precision, completeness and performance. A possibility to
introduce bug warnings of a safe code, also known as false positive warnings, set a target for a
testing framework to control as true positive warning, as false positive warnings. An acceptance
testing of such tools controls behavior of a tool on specific code snippets, which represent as buggy
code, as code which has no bugs and issues.

At the same time, such tools are very complex in implementation details, because consist of general
analysis framework, frequently called engine, which propose general analysis techniques such as
reaching definitions, live variables, taint analysis and others, and a number of specific wrong
program behavior checkers build on top of an engine. Any small change to the engine can broke
checkers behavior. That’s why it is important to have testing framework which can check and state
sanity of the tool during development lifecycle.

In our previous talk®, we have described a generalized approach for testing static source code
analysis tools, which includes Acceptance Testing Framework and Regression Testing System
called Report History Server.

In this paper, we introduce requirements, implementation details, evaluation and limitations of
Acceptance Testing Framework for static source code analysis tools based on our experience of
development and daily usage of such a framework in industrial development of static source code
analysis tools. This paper is organized as follows. Section 2 describes in detail requirements to such
kind of framework, Section 3 provides overview of existing approaches, Section 4 provides an
overview of proposed approach. Section 5 describes in detail implementation of proposed approach,
Section 6 contains evaluation results of proposed approach, Section 7 concludes proposed approach
and future directions of development.

2. Requirements to acceptance testing framework

Source code static analysis tools have to check conditions of source code of programs from the point
of view of very different rules, which can be applied as industrial or companywide coding standard.
Despite of focus for modern static source code analyzers on code security, lack of logical errors and

1 Alexander Gerasimov, Petr Privalov, Sergey Vladimirov, Veronica Butkevich, Natalya Chernova, Anna
Gorelova. An approach to assuring quality of automatic program analysis tools. lvannikov Ispras Open
Conference (ISPRAS), 2020

42

T'umaraunos JI.M., I'epacumoB A.1O., ITpusanos I1.A., byrkesuu B.H., Ueprosa H.A., 'openoBa A.A. ABTOMaTH3HpOBaHHAs CHCTEMA
TECTHPOBAHHS HHCTPYMEHTOB CTATHYECKOro aHanu3a koxa. Tpyowt MCII PAH, Tom 33, Beim. 3, 2021 1., cTp. 41-50

performance, some kind of coding rules applied in companies or industry can contain such
requirements to the code as style of indentation, naming conventions, etc. For example, if we take a
look to Python programs then source code can contain commentaries of the specific look, such as
Shebang [1], encoding of the file [2], company code ownership statement and version or license
notes. That’s why trying to satisfy needs of testing industrial static source code analyzers such a
framework cannot rely on specific comments and code formatting, such as used in most known test
cases database Juliet of National Institute for Standardization and Technology of USA [3].

Instead of that we have to have a database of error code snippet describers. Such kind of describers
provide all necessary information on test case in a file or set of files with directories structure,
separated and independent of language for a source code of target analyzer and target language of
analyzed programs. We use specific JSON [4] formatted descriptions of test cases which describe
every test case as for erroneous examples, as for clean code examples.

On the other hand, we have set a goal to compare tested static source code analyzer with competing
ones. That’s why we put as a requirement ability to run competing static source code analyzers in
one bundle to compare precision, completeness and performance of such tools. That is second
requirement.

Next, we need to have solution for different environments such as operating systems and hardware
platforms. That’s why we set it as one of requirements to the framework.

And, last, but not least, we want to make out Acceptance Testing Framework independent of target
language of analyzed programs. It should be suitable for testing analyzers for programming
languages C, C++, Java, C#, Python and other languages.

To summarize:

¢ Independence of target environment, such as hardware and operating system.
e Independence of analyzed programming languages.

e Possibility to check source code snippets without modification of original code even in
comments part.

e Possibility to check as erroneous, as clean code examples (true positive and false positive
warnings checks).

e Support pretty unlimited number of checkers for coding rules, including, but not limited to
formatting and comment styles.

e Possibility to compare different static source code analysis tools.

e Possibility to represent results of analysis in different formats: machine readable (JSON, XML
and others), output formatted to represent result on the screen, HTML format, etc. with
possibility to extend list of reporting formats on demand.

3. Existing approaches

There are a lot of research papers dedicated to evaluation of static code analysis tools [5, 6, 7]. These
works observe behavior of static code analysis tools on selected subset of NIST SAMATE test cases
for selected OWASP [8] Top 10 vulnerabilities. But these papers a dedicated to manual evaluation
of static code analysis tools and does not solve the problem of automated frameworks
implementation.

The work [9] attempts to solve the problem of creating automated test suite to evaluate static analysis
tools by designing test cases as small code snippets, which automatically in-lined into template
program to specific placeholder.

The work [10] describes an approach of detecting minimal original test cases from real-world found
errors and tries to add code to the original test code snippet to check sensitivity of analysis to paths
and call context. The difference of our approach is in common automation of acceptance testing and

43

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

evaluation system for static source code analysis tools. In this paper, we describe technical details
and evaluation of proposed approach.

4. Overview

Acceptance Testing Framework solves problem of evaluating the quality of automatic program
analysis tools. The quality is measured by parameters such as: performance, scalability, precision,
completeness.

Performance — how fast an analysis tool can provide an analysis result and how much resources it
consumes.

Scalability — how analysis time reduces if we providing additional computational resources.
Precision — how precise an analysis result is (small number of false positive warnings or noise).
Completeness — how many true positive warnings issued by a tool in comparison to errors exist in
the test suite (number of false negatives — errors has been missed).

To compute such parameters Acceptance Testing Framework allows to run program analysis tool
against a limited, manually crafted set of test cases combined in one test suite. Test suite represents
behavior of defective and similar to defective programs. The defective one gives rate of true positive
warnings should be found and similar to defective gives rate of false positive warnings, which
absence is expected. So far the resulting precision and completeness are calculated and evaluated.
As far as precision and completeness are evaluated by Acceptance Testing Framework for program
analysis tool, decision about quality could be made. In theory perfect tool has 100% completeness
of test suite (all defects detected) and 100% precision (no noise and no defect detected on similar to
defective code snippets), but such values cannot be achieved at current stage of engineering and
have the theoretical limitation of Rice’s theorem [11].

There are no strict generally accepted values for performance and scalability as far as these
parameters depend on depth, complexity and target of analysis and vary greatly among analysis
tools. Moreover, the exact conclusion about the quality of analysis tools directly depends on the test
suite. Acceptance Testing Framework doesn't contain built-in features to get performance and
scalability on its own for now. Despite this Acceptance Testing Framework could be used in the
computation process of these parameters by running program analysis tool against set of different
complexity (from low to high) test suites and observe how performance dynamic depends on
complexity of test suite or scalability dynamic in the case of additional computational resources
involved in computation process.

Test suite could follow company or industrial standards, contain code snippets with security
vulnerabilities, code style or leading to crash errors. In our case test suite follows company standard
and together with Acceptance Testing Framework has deployed in continuous integration processes
of static analysis tool development in Huawei Russian Research Institute.

5. Design and implementation
In this section, we describe the design and implementation of our framework. We describe it from
requirements perspective.

5.1 Independence of target environment

To satisfy requirement of an independence of target environment such as hardware and operating
system we managed to implement our framework in Python programming language as far as it has
Python source code interpreters for most of industrial operating systems and for most popular
hardware platforms.

44

T'umaraunos JI.M., I'epacumoB A.1O., ITpusanos I1.A., byrkesuu B.H., Ueprosa H.A., 'openoBa A.A. ABTOMaTH3HpOBaHHAs CHCTEMA
TECTHPOBAHHS HHCTPYMEHTOB CTATHYECKOro aHanu3a koxa. Tpyowt MCII PAH, Tom 33, Beim. 3, 2021 1., cTp. 41-50

5.2 Independence of analyzed programming language

The framework does not rely somehow on code snippets content by using JSON formatted test case
annotations.

5.3 Possibility to check code snippets without modification of original code,
even in comments. Possibility to check as erroneous, as clean code snippets
without modification

We use test case annotation files in JSON format. Test case for Acceptance Testing Framework is a
tuple of annotation file and source code snippet. JSON annotation file contains following
information:

e Kind of a snippet: does it contains a defect (True Positive) or it is not expected in this code
snippet (True Negative).

¢ Kind of a defect expected to be reported or not reported.
e Description of a test case.

e Skip flag for marking test cases which are not supported, but planned to be supported in
future.

e Defect location: filename, line and offset in the line for expected defect.

e Additional service information. For example, if test case designed for specific version of
language, to configure analyzer appropriately, or additional field describing the goal of test
case to QA engineer or developer.

Such decision allows to keep all this information independent of test cases and needed by

Acceptance Testing Framework to configure analysis tools appropriately, and do not rely somehow

on number of test cases, because it is enough to just point the location of file system directory with

test suite formatted to be used with Acceptance Testing Framework while running framework and
all work related to running analysis tools on the test suite handled by framework itself via traversing
directories structure.

5.4 Possibility to compare different analysis tools

Acceptance Testing Framework satisfy this requirement by introducing abstract interface Tool to
run external analysis tool as executable program and get results of analysis in Acceptance Testing
Framework internal representation. Having such kind of interface to support of new analysis tool
ones need to implement interface Tool to convert test case settings from test case annotations to
expected arguments of analysis tool and run this tool as external process. We have developed a
number of interface implementations for tools, such as PyLint [12], JetBrains PyCharm [13] and
eight more tools, which have different paradigm of analysis. For example, PyLint accepts analysis
of single file and can be run on every test case separately. PyCharm expects a file system directory
and treats it as one project to analyze.

On the other hand, analysis results representation of different tools can vary significantly. An
implementation of Tool interface also responsible for interpretation of external analysis tool results
and converting it to Acceptance Testing Framework internal representation. This representation is a
kind of map for every test case to analysis result in term of Passed or Failed state.

Thus all logic of working with analysis tool is encapsulated inside of Tool interface implementation.

5.5 Possibility to represent results of analysis in different formats

Acceptance Testing Framework provides universal interface Reporter which provides one public
method report accepting internal representation of analysis tool run results. A responsibility of

45

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

implementation of interface is to issue report in specific format. We have implemented three
reporters supported out of the box:

e Output reporter. Represents test suite run results in human readable text format.
e JUnit reporter. Represents test suite run results in JUnit format.

e HTML reporter. Represents test suite run results in format of static web-site with possibility to
represent result in different view up to source code snippet of test case.

Architecture diagram of Acceptance Testing Framework is shown on fig. 1. It consists of following

blocks (classes):

e Driver. It is entry point of framework. It allows to configure test suite, reporter and tools
accordingly to parameters passed to framework on the run.

e TestSuite is a collection of TestCases which constructed using provided path to test suite
directory, where every test case has its annotation in JSON format and test case source code
files directory structure.

(© Driver ;
© Tool Contains Contains @TestSuﬂe
0 ERRORS_MAP 0 m
0 TOOL NAME [== ===-sereresmsmmmsemseeeeeees D> | @ report)y oo S
D i) <| :_cunl;gusa_luu!s;lz(o
T weay B NTTTTTTTTTTTT ‘I _ctonligure_report() @ Is_empty()
1 Extends @ anayze() Extends H B _configure_test_suite() @ TeStCase
i : A A o description
| Extends ' Contains 7 ! Contains |2 :\f:é—‘d
' ' ' N ‘ o ling
©HPATWrapper| |©PylintWrapper| @€ Flake8Wrapper| |©Reporter, B 8 positie
o skip
o path
Reicgoit) [} g;{hon_\'elsion
P e o T PR \ 0 entire_file
; b A < .
Extends Extends 7 Extends : 0 parse_file(file_path)
©OutReporter| |©HtmlReporter| |@© JunitXMLReporter

Fig. 1. Acceptance Testing Framework architecture diagram
e Tool. It is an interface representing a tool runner. Instantiations of this interface depends on
settings of the framework passed as command line arguments.

e Reporter. Itis an interface allowing to represent analysis results using unified internal test suite
run results representation.

In general, Acceptance Testing Framework is a Driver, which responsible for:

¢ Instantiation of supported analysis tool wrappers, which are implementations of Tool interface,
accordingly to parameters passed to the Driver by user.

e Instantiation of the Reporter which will be used to output result of analysis by every tool.

e Running the analysis process to collect analysis result in internal representation form and pass
received result to Reporter.

6. Results & evaluation

This section aims to obtain a classification of tools according to the metrics applied to the results
obtained from the execution of the tools against our test suite.

Tested static analysis tools:

e Huawei Python Analysis Tool (HPAT) is a PyCharm plugin with the set of inspections
requested by Huawei Python Code Style Guide and Huawei Secure Coding Style Guide.

o Flake8 [14] is an open source tool that glues together pep8 [15], pyflakes [16], mccabe [17],
46

T'umaraunos JI.M., I'epacumoB A.1O., ITpusanos I1.A., byrkesuu B.H., Ueprosa H.A., 'openoBa A.A. ABTOMaTH3HpOBaHHAs CHCTEMA
TECTHPOBAHUS HHCTPYMEHTOB CTATHUECKOT0 aHanu3a kojaa. Ipyost MCI1 PAH, Tom 33, Beim. 3, 2021 r., ctp. 41-50

and third-party plugins to check the style and quality of some python code.

e PyLintis an open source tool that checks for errors in Python code, tries to enforce a coding
standard and looks for code smells.

The summary of metrics used is:
e True positives rate — TP (correct detections).
e False positive — FP (reporting false error warning).
e Number of vulnerability categories for which the tool was tested.
e Precision (1). Proportion of the total TP detections:
TP /(TP + FP))

e Recall (2). Ratio of detected vulnerabilities to the number that really exists in the code. Recall
is also referred to as the True Positive Rate:

TP /(TP + FN) 2
Table 1. Number of vulnerability categories
Tool Metric HPAT Pylint Flake8
NVC 68 32 15

NUMBER OF VULNERABILITY CATEGORIES

100

) I
: H -

HPAT Pylint Flake8

Fig. 2. Number of checked defect types
Table 2. Vulnerabilities detection. Numbers of true/false positive, true/false negative test case detection

Tool Metric HPAT Pylint Flake8
TP 695 91 102
FN 0 324 368
FP 0 0 0
TN 591 121 184
Total 1286 536 654

Tools test cases ratio

1500
1000

500 I I
0
TP FN FP ™ Total

B HPAT m Pylint Flake8

Fig 3. Test cases ratio obtained by the tools comparison

47

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

Table 1 and fig. 2 show a number of vulnerability categories (NVC) for which the tool is tested.
HPAT has the biggest value because test suite is developed exactly for satisfying needs of Huawei
coding standards.

Table 2 and fig. 3 show a result of running tools on test suite in terms of true/false positive, true/false
negative.

Tab. 3 and Fig. 4 show metrics results of all tools included in this analysis.

Table 3. Assessment results computing and ranking the selected metrics by TP ratio

Metric Tool | TP ratio FP ratio Precision | Recall
HPAT 1 0 1 1
Pylint 0.219 0 1 0.219
Flake8 0.217 0 1 0.217

Tools metrics comparison

1,5

1
0
TP ratio FP ratio Precision Recall

B HPAT Flake8 Pylint

Fig 4. Metrics obtained by the tools comparison

Implemented framework allows to assess tools on the same testing code base and present relative
results

7. Conclusion

In this paper, we focused on checking quality of static source code analysis tools with help of an
automated framework for running such tools against a number of test cases combined in one suite.
This approach allows us to control quality of the tool in terms of created erroneous and error free
test cases as code snippets on target for analysis programming language. The framework allows to
use any kind of test suites if configured well within a profile or manifest in expected format.

This approach to testing static source code analysis tools has applied in development process of
static source code analysis tools for Python and C/C++ in Huawei Russian Research institute. In
future we plan to extend functionality of Acceptance Testing Framework to check non-functional
requirements for tools such as time of running, memory consumption and CPU utilization.

References

[1] M. Cooper. Advanced Bash Scripting Guide — Volume 1: An in-depth exploration of the art of shell
scripting. (Revision 10). Independently published, 2019, 589 p.

[2] M.-A. Lemburg, M. von Lowis. PEP-263 — Defining Python Source Code Encodings. 2001. URL:
https://www.python.org/dev/peps/pep-0263/.

[3] NIST SAMATE Juliet Test Suite. URL: https://samate.nist.gov/SRD/testsuite.php.

[4] RFC-8259. The JavaScript Object Notation (JSON) Data Interchange Format, 2017. URL:
https://datatracker.ietf.org/doc/html/rfc8259.

[5] H.H. AlBreiki, Q.H. Mahmoud. Evaluation of static analysis tools for software security. In Proc. of the
IEEE 2014 10th International Conference on Innovations in Information Technology, 2014, pp. 93-98,

48

T'umaraunos JI.M., I'epacumoB A.1O., ITpusanos I1.A., byrkesuu B.H., Ueprosa H.A., 'openoBa A.A. ABTOMaTH3HpOBaHHAs CHCTEMA
TECTHPOBAHHS HHCTPYMEHTOB CTATHYECKOro aHanu3a koxa. Tpyowt MCII PAH, Tom 33, Beim. 3, 2021 1., cTp. 41-50

[6] R. Mamood, Q.H. Mahmoud. Evaluation of static analysis tools for finding vulnerabilitites in Java and
C/C++ source code. arXiv:1805.09040, 2018, 7 p.

[7] T. Hofer. Evaluating static source code analysis tools. Master’s thesis. Ecole Polytechnique Fédérale de
Lausanne, 2010, pp. 1-74.

[8] OWASP - Open web application security project. URL: https://owasp.org

[91 M. Johns, M. Jodeit. Scanstud: a methodology for systematic, fine-grained, evaluation of static analysis
tools. 4th International conference on software testing, verification and validation workshops. In Proc. of
the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation
Workshops, 2011, pp. 523-530.

[10] G. Hao, F. Li et al. Constructing benchmarks for supporting explainable evaluations of static application
security testing tools. In Proc. of the 2019 International symposium on Theoretical Aspects of Software
Engineering, 2019, pp. 66-72.

[11] H.G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems. Transactions of the
American Mathematical Society, vol. 74, no. 2, 1953, pp. 358-366.

[12] Pylint. URL: https://pypi.org/project/pylint/.

[13] JetBrains PyCharm. URL.: https://www.jetbrains.com/pycharm/.

[14] Flake8. URL.: https://pypi.org/project/flake8/.

[15] Pep8 — Python style guide checker. URL: https://pypi.org/project/pep8!/.

[16] Pyflakes. URL.: https://github.com/PyCQA/pyflakes.

[17] McCabe complexity checker. URL: https://github.com/PyCQA/mccabe.

MUHdopmauma o6 aBTopax / Information about authors

Hamup Mapatopuu [TMUMAT/IMHOB, Beimyckauk BIID, wmaructp, Miaaammii WHXEHEp B
Texxomnanuu Xyapaid. HayuHble HHTEpEChl: CTATUYECKUI aHAIIU3 UCXOQHOI0 KOJA IIPOrpaMM.

Damir Maratovich GIMATDINOV, HSE graduate, master, Junior engineer in Huawei
Technologies. Research interests: Source code static analysis.

Anexcarnp IOpresnu [EPACUMOB, xannuaat Gpu3nko-MaTeMaTHIecKuX HayK, CTApIIAN SKCIEPT
B o0JacTH aBTOMAaTHYECKOTO W ABTOMATH3MPOBAHHOTO aHajiM3a MPOTPaMM 3JIEKTPOHHBIX
BBIYHMCIINTEIbHBIX MaluH. HaydHble MHTEpECH: CTaTHYECKUH aHAIN3 MpOrpaMM, AMHAMHYECKUN
aHaJIM3 IpOrpaMM, oOecriedeHre KauecTBa MporpaMM, oOHapyKeHHE OIHOOK B IpOrpamMMax.

Alexander Yurievich GERASIMOV, Doctor of Philosophy in Computer Sciences, Senior Expert in
the field of automatic and automated analysis of electronic computer programs in Huawei
Technologies. Research interests: static program analysis, dynamic program analysis, quality
assurance, program defects detection.

[Térp Anexceesnu [IPUBAJIOB, maructp, Bexyuuii HH>keHep-TiporpaMMuct. HayuHslie HHTepecCH:
CTaTHYECKUH U IMHAMUYECKHI aHAJIN3 IPOrpaMm, (ha33uHr.

Petr Alekseevich PRIVALOV, master, Senior software engineer. Research interests: static and
dynamic program analysis, fuzzing.

Beponnka Huxomaesna BYTKEBWY, wmaructp, crapmmii uHxeHep. HayuHble uHTepechl:
CTaTHYECKUH aHaJIM3 MCXOJHOI0 Koja IporpaMm, oOHapy)XeHHE YsA3BUMOCTEH B NPOrpaMMHOM
KoJe.

Veronika Nikolaevna BUTKEVICH, master, developer. Research interests: static analysis, security
vulnerabilities in software

Haranss Angpeesna YHEPHOBA, maructp, mnagummii nnxeHnep. Hayunsle nHTepechl: cTaTHUECKHH
aHaIu3 IPOrpaMM, aHAJIN3 MOTOKA JAHHBIX.

Natalya Andreevna CHERNOVA, master, junior developer. Research interests: static analysis of
programs, data-flow analysis.
49

https://owasp.org/
https://pypi.org/project/pylint/
https://www.jetbrains.com/pycharm/
https://pypi.org/project/flake8/
https://pypi.org/project/pep8/
https://github.com/PyCQA/pyflakes
https://github.com/PyCQA/mccabe

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

Anna AntonoBHa I'OPEJIOBA, wmmammwuii WH)XeHEp. HaydHbIe WHTEPECH: HCKYCCTBEHHBIN
MHTEIJICKT, MAIIMHHOE 00yUYeHHE.

Anna Antonovna GORELOVA, Junior Developer. Research interests: artificial intelligence,
machine learning.

50

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-4 M

Data Layout Optimization for the LCC Compiler

12y E. Shamparov, ORCID: 0000-0002-0938-3824 <Victor.E.Shamparov@mcst.ru>
2M.I. Neiman-zade, ORCID: 0000-0002-4250-9724 <Murad.l.Neiman-zade@mcst.ru>
IMCST,
24 Vavilova str., Moscow, 119334, Russia
2 Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

Abstract. In this research-in-progress report, we propose a novel approach to unified cache usage analysis for
implementing data layout optimizations in the LCC compiler for the Elbrus and SPARC architectures. The
approach consists of three parts. The first part is generalizing two methods of estimating cache miss amount
and choosing more applicable one in the compiler. The second part is finding an applicable solution for the
problem of cache miss amount minimization. The third part is implementing this analysis in the compiler and
using analysis results for data layout transformations.

Keywords: Compilers; Compiler Optimization; Cache Analysis; Data Layout Transformation

For citation: Shamparov V.E., Neiman-zade M.I. Data Layout Optimization for the LCC Compiler. Trudy ISP
RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 51-60. DOI: 10.15514/ISPRAS-2021-33(3)-4.

OnTuMM3aumm pacnonoxeHusl gaHHbIX ans komnunatopa LCC ansa
apXuUTEKTYypbl ANbbpycC

12 B E. lllamnapos, ORCID: 0000-0002-0938-3824 <Victor.E.Shamparov@mcst.ru>
2 M.U. Hetiman-3ade, ORCID: 0000-0002-4250-9724 <Murad.l.Neiman-zade@mcst.ru>
Y40 «MLCT»
Poccus, 119701, Mocksa, ya. Basunosa, 0. 24
2 Mockosckuil (pusuKo-mexnuueckuii uHCmumyn,
Poccus, 141701, Mockosckas obnaCms, 2. [Jonconpyonviii, Hncmumymckuii nep., 9

AnHoTanms. B naHHO cTaThe 0 IPOBOAMMOM HCCIECJOBAaHWM MBI IIPEJIaracM HOBBIM MOAXOJ K €IUHOMY
AHANM3y WCIMOJNB30BaHMs KAII-NAMATH Ui pa3pabOTKH ONTHMHU3ALMH PACIONOKEHUsS JaHHBIX B COCTaBe
xommisitopa LCC mms apxurextyp Ome0pyc nu SPARC. IMoxxon cocrout u3 Tpéx gacteit. [lepsas gacts -
000011eHIe IBYX METOJOB OLIEHKH KOJMYECTBAa K3II-MIPOMAXOB U BBHIOOP M3 HUX Oojiee MOAXOSIIETO IS
peanm3alii B KOMIIMJIATOPE METOAA. BTOpaﬂ 4acTb - MOUCK NMPUMEHUMOT'0 B KOMITMJIATOPE PCLICHUA 3aJa4U
MUHHMH3ALHH KOJMYECTBA MPOMAxXOB KiIua. TpeThs 4acTh - peanu3alys BHIOPaHHOTO METO/a aHain3a B
KOMITWJIATOPE 1 UCIIOJIB30BAHUE PE3YJIbTATOB aHaJIU3a JUId OHTHMH3aLlHI>’l PaCoIOKEHUSA TaHHBIX.

KiroueBble ciioBa: KOMITUJIATOPBI; ONITUMHU3ALIUU KOMITWJIATOPA, aHAJIM3 KoIlla;, ONTUMU3AalUN PACIIOJIOKEHUSA
JAHHBIX.

Jdas uutupoBanus: lammapos B.E., Heiiman-zage M.W. Ontummusamum pacrioioKEHUS TAHHBIX IS
xommuisitopa LCC s apxutektypsl Dnsopyc. Tpyast UCIT PAH, Tom 33, Bein. 3, 2021 1., ctp. 51-60 (Ha
anrnuiickom si3pike). DOI: 10.15514/ISPRAS-2021-33(3)—-4.

51

Shamparov V.E., Neiman-zade M.I. Data Layout Optimization for the LCC Compiler. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021,
pp. 51-60.

1. Introduction

Improving computer resources usage efficiency by a program is one of the main tasks for optimizing
compilers. Particularly, improving memory usage is especially important because hardware
developers have introduced multi-level intermediate memory, called cache memory, due to the
growing performance difference between memory and CPU. Cache memory capabilities must be
used efficiently.

Cache memory is structured for using the following program properties effectively temporal locality
and spatial locality. Temporal locality means that the program often works with the same data in
memory. Spatial locality means that the program is likely to work with adjacent data. Thus, to make
compiled program use cache memory efficiently, the compiler must improve these two programs'
properties.

Nowadays, compilers optimize the programs' temporal locality well by loop optimizations, but
optimizing spatial locality is more complicated since it requires choosing the correct data structures
for the program. Therefore, optimizing spatial locality is often entrusted to the programmer, although
data location optimizations are implemented for some relatively simple cases.

In this article, we describe the ongoing research on cache memory usage for the further development
of a high-quality automatic cache usage analysis in the compiler for applying an optimal set of data
layout optimizations.

The article is organized as follows. In section 2, we substantiate the potential effect of optimizing
data layout. In section 3, we state the problem. In section 4, we analyze papers on this topic and
related ones. In section~5, we propose further research approach. In section 6, we describe current
progress. Finally, in section 7, we provide a conclusion.

2. Motivation

It is known that part of program execution time is spent waiting for data from memory. This is
especially evident for processors with in-order execution. They have fewer opportunities to mask
this wasted time by executing other instructions than processors with out-of-order execution.

To illustrate this problem and determine the potential effect of optimization, we measured the
percentage of test execution time from SPEC~CPU benchmark packages that the processor spends
waiting for data from memory. This data is shown in Table 1. We used a computer with an Elbrus-
4C processor for measurement. It has VLIW ISA, in-order execution and two-level cache memory.
Benchmarks were compiled with peak options.

Table 1. Number of benchmark launches from SPEC~CPU packages that use more than 10% of time to wait
for data

Set Part of time | Number of | Set Part of time Number of
launches launches

10...15% 12 10...15% 6
15...20% 4 15...20% 6
20...25% 0 20...25% 6

1995 | 25..30% 1 2000 | 25, 30% 1
> 30% 0 > 30% 6
Total in set 37 Total in set 44
10...15% 4 10...15% 3
15...20% 1 15...20%
20...25% 1) 20...25%

f2006 o8 3% |1 12006 o 30%
> 30% 2 > 30% 12

52

llamnapos B.E., Heiiman-3age M.W. Ontumun3anun pacmnoioxkeHus JaHHbIX a1 kommmwistopa LCC s apxutektypsl Dmsbpyc. Tpyosi
UCII PAH, tom 33, Beim. 3, 2021 1., ctp. 51-60.

Total inset | 20 Total in set 35
10...15% 1 10...15% 1
15...20% 2 15...20% 2
20...25% 3 . 20...25% 0
2017 1555 30% | o0 12007 o5 30% 3
> 30% 1 > 30% 6
Total inset | 16 Total in set 20
10...15% 27
15...20% 16
20...25% 13
Al 25...30% 9
> 30% 27
Total inset | 172

The table shows that more than 10% of the execution time is spent waiting for data from memory in
92 from 172 launches, which is more than a half.

Some of this spent time is due to inefficient use of cache memory. Mainly, these inefficiencies are:
1) loading unnecessary for further work data into the cache, which fact is a violation of spatial
locality;

2) conflicts between different data chunks due to hitting the same cache set.

For example, it was found during our previous work that it is possible to reduce the number of cache
misses with the help of optimization called Structure Splitting [1]. This optimization improves the
spatial locality of the program in some cases. Such CPU pipeline stalls number decrease and
consequent execution speeding up are shown in the Table 2.

Table 2. CPU pipeline stalls number decrease and following program execution speeding up

Benchmark | SPEC CPU CPU pipeline stalls | Speed-
package number decrease up

181.mcf 2000 27% 26%

429.mcf 2006 19% 13%

From this example, it can be seen that at least some of the losses due to waiting for data can be
removed by data layout transformations improving spatial locality. These transformations require
unified analysis for an effective combination.

3. Problem statement
Thus, we need to:

1) Theoretically analyze cache memory usage by programs and develop a method of solving the
problem of minimizing time losses based on this theoretical analysis.

2) Based on theoretical results, make applicable automatic analysis in the LCC compiler for the
Elbrus and SPARC ISA.

3) Implement in the same compiler a set of data layout transformations, which transform data
layout of a program based on the analysis results.

In this case, it is necessary to take into account some restrictions arising from the fact that the
implementation is planned in the form of compiler optimizations:

1) Various data structures need to be handled correctly. Particularly, they are:
a) Arrays, structures and their combinations.

53

Shamparov V.E., Neiman-zade M.I. Data Layout Optimization for the LCC Compiler. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021,
pp. 51-60.

b) Various data structures that use pointers to other elements internally and allocate memory
for new elements via malloc and similar memory allocation functions. For example, lists
and trees.

4) We need to handle data structures altogether, as their transformations may conflict with each
other. Therefore, it is necessary to analytically process not only regular access to memory but
also random access.

5) Analysis and transformations must be static (in the compiler) but can be supported with runtime
libraries and special profiling, but not memory access trace.

6) Developed analysis and transformations must correctly work in modular build mode.

4. Related work

Several works on related topics have already been written, but each of them does not solve assigned
tasks entirely due to different reasons.

Chris Lattner proposed automatic Data Structure Analysis to detect data structures whose elements
are allocated on the heap in his thesis «Macroscopic Data Structure Analysis and Optimization» [2].
Using the results of this analysis, he proposed a compiler optimization called Automatic Pool
Allocation with runtime support, designed to group the elements of such data structures in specific
regions of the heap, which improves the spatial and, in some cases, temporal locality of the program.
In addition, he offered several optimizations for code already optimized in this way.

Unfortunately, there is no explicit cache memory usage analysis in Lattner's work.

Christopher Haine in his thesis «Kernel optimization by layout restructuringy» [3] offered an
analyzer, which detects accessing memory regularly simple data structures like structures and arrays
and proposes layout transformations using heuristics data. This analysis is separated from the
compiler. In addition, this analyzer provides user with information about the complexities of code
vectorization. For our purposes, this work is not suitable since there is no explicit cache memory
usage analysis.

Mostafa Hagog and Caroline Tice in their article «Cache Aware Data Layout Reorganization
Optimization in GCC» [4] proposed several improving spatial locality optimizations of structures
and arrays of structures: Structure Peeling, Structure Splitting, and Field Reordering. These
optimizations were later implemented in the GCC compiler. Although the authors limited
themselves to working with structures, they implemented an analysis handling every structure
access, not just regular access. During optimization, particular Field Reference Graphs are built for
each analyzed structure for each procedure. Field Reference Graph (FRG) is an analogue of a
control-flow graph, where nodes contain operations accessing fields of the analyzed structure and
arcs contain information about the amount of data loaded into the cache between nodes. In fact, this
is an implicit analysis of cache memory usage. Further, after processing, this information is used in
heuristics to apply the specified optimizations and reduce the computational complexity of further
algorithms.

This approach can potentially be used for explicit cache memory usage analysis, provided it is
generalized for working on all program data in all procedures.

Ghosh et al. [5] and Fraguela et al. [6] suggested more explicit techniques for cache memory usage
analysis for regular access cases.

Ghosh et al. [5] proposed to compose and solve systems of linear Diophantine equations to estimate
the number of cache misses for each cycle. They implemented this algorithm in the SUIF compiler
and implemented the choice of padding size in the Array Padding optimization as an example.
However, they did not implement an automatic solution of systems in parametric form - only a
particular solution for Array Padding. In addition, this approach was created only for regular
memory access.

54

llamnapos B.E., Heiiman-3age M.W. Ontumun3anun pacmnoioxkeHus JaHHbIX a1 kommmwistopa LCC s apxutektypsl Dmsbpyc. Tpyosi
UCII PAH, tom 33, Beim. 3, 2021 1., ctp. 51-60.

An alternative approach was suggested by Fraguela et al. [6] for regular memory access. It was

improved by Andrade in [7] thesis for some cases of irregular memory access: regular access under

condition and access to an array, where the indices are read from another array. This approach is

based on estimating the probability of cache misses in each analyzable cycle using Probabilistic

Miss Equations (PME) generated from regular access characteristics and cache memory

characteristics. To do this, for each processed access in the loop, a partial Probabilistic Miss

Equation is built, and then they are combined into a complete equation for the loop or loop nest.

This complete equation gives an estimation of cache misses amount. In addition, they did not offer

any solution to the problem of minimizing cache misses amount and did not handle random memory

access. Thus, the PME approach can potentially be applied for explicit cache memory usage analysis,

provided the analysis is generalized for working for all irregular memory access.

Data layout transformations were described in many papers. Particularly, a small catalogue of such

transformations was created in the article [8]. Following transformations are listed in this article:

1) Array Padding — adding padding between arrays to reduce number of conflicts between arrays;

2) Array Merging — element-wise arrays merging;

3) Array Transpose — changing dimensions’ order of an array by analogy with transposing a
matrix.

In addition to these, in the above-mentioned article [4] and thesis [2] some other transformations

were described:

1) Structure Peeling — splitting an array of structures element by element into several arrays;

2) Structure Splitting — splitting an array of structures element by element into several arrays and
addition of links between the elements corresponding to the initial element;

3) Field Reordering — changing order of fields inside the structure;

4) Automatic Pool Allocation — replacing memory allocation for data structure elements in the
heap with memory allocation in a specific pool.

5. Proposal

Firstly, it is proposed to investigate and compare following methods for cache memory usage

analysis:

1) the method described in [4] using FRG graphs, generalized for working with all program data
in all procedures;

2) the method described in [6, 7] using the Probabilistic Miss Equations, generalized for the case
of random access.

We propose to choose one method for cache memory usage analysis that is more suitable for

implementation in the compiler. The selection criterion is the accuracy of the estimation of cache

misses amount. Another selection criterion is analysis time.

Further, we propose to develop an analytical or another compiler-applicable method for solving the

problem of minimizing the obtained estimation of the cache misses amount using data layout

transformations. This problem is a discrete optimization problem, in which the objective function is

the dependence of the cache misses amount on the applied data layout transformations, and a

countable set of feasible solutions is the data layout transformations.

Finally, based on the developed analysis method and the method for solving the problem of

minimizing the cache misses amount, it is proposed to implement automatic analysis in the compiler

that controls a set of data layout transformations. Also, we will need to implement missing

transformations.

5.1 Generalizing FRG analysis

This method should be generalized for working on all program data in all procedures and provide
an estimation of cache misses amount. To do this, based on the FRG graph for structures, we need
55

Shamparov V.E., Neiman-zade M.I. Data Layout Optimization for the LCC Compiler. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021,
pp. 51-60.

to make a generalized graph for structures, arrays, their combinations and other data structures. Such
graphs need to be created for each program object. Let us call such graphs Object Reference Graph
— ORG. In addition, we need to build a general RGP (Reference Graph in Procedure) graph
consisting of all memory accesses in the procedure and including profile information. So any ORG
graph in a procedure contains a subset of RGP nodes; therefore, using RGP, one can estimate the
probabilities of transitions through various ORG arcs and cache memory usage characteristics
between ORG nodes. In addition, RGP is required to analyze conflicts between different data
structures.

It is required to determine the probability of a particular cache line being evicted from the cache
memory to estimate the probability of a cache miss in each ORG node. Since the probability of
preempting a particular cache line depends on the amount of memory loaded into the cache in the
general case in a complex way, it is better to store on the arcs of ORG graphs, not the amount of
memory loaded into the cache, but the probability of preempting a particular cache line.

To estimate the probabilities, one must know in which memory regions the memory addressed by
each pointer is located and the size of these memory regions. To obtain this information, we need to
use pointer analysis and a particular version of the profile, which collects data on the size of the
allocated memory.

5.2 Generalizing PME analysis

To use this method, we need to generalize it for processing irregular memory access.

For this, we need to:

1) Create a way to calculate cache misses’ probability for random access.

2) Generalize PME to those cases of near-regular access where it is possible to estimate cache
misses amount more accurately than using a random access model.

3) Combine PME for regular access and ones for random access.

4) Use the developed techniques for estimating cache misses amount for the entire code, not just
for loops.

To estimate the probabilities, one must know in which memory regions the memory addressed by

each pointer is located and the size of these memory regions. To obtain this information, we need to

use pointer analysis and a particular version of the profile, which collects data on the size of the

allocated memory.

6. Current progress

In the work [1] we described the particular version of data layout transformation called Structure
Splitting, which we had implemented in the LCC compiler for the Elbrus and SPARC architectures.
In addition, in this compiler Structure Peeling, Array Transpose, Array Linearization, and Array
Padding have already been implemented.

6.1 Cache miss probability for random access

To generalize the PME-based analysis, a method was created for calculating the cache misses
probability for random access. It is supposed that the memory region is known for this access, but
the address of the region beginning is unknown. PME will be merged with this method.

The method is based on determining cache state transformations for each memory access operation.
For this, the operations are traversed sequentially in the basic blocks of the procedure, and the
transformations on the code blocks are combined according to the probabilities in the profiled
control-flow graph. Any operation of the procedure is traversed once for random access case. For
any other case number of single operation traversals must be 0 (1) due to the analysis applicability
requirement.

56

llamnapos B.E., Heiiman-3age M.W. Ontumun3anun pacmnoioxkeHus JaHHbIX a1 kommmwistopa LCC s apxutektypsl Dmsbpyc. Tpyosi
UCII PAH, tom 33, Beim. 3, 2021 1., ctp. 51-60.

The cache state notation for the general case of regular and random access has not been determined
yet, but the following notation has been chosen for the random access model: matrix P composed of
N vectors P; corresponding to N memory regions. Each vector has S + 1 size, where S is the
number of cache lines in the cache. The element of the matrix Py; is the probability that exactly
Jj lines corresponding to the area i are stored in the cache memory at the moment.
An example of the chosen cache state notation for three memory regions called a;, where i = 1..3,
is shown in Table 3. In the shown state it is implied that region a, has no lines in cache with 100%
probability. Also, probability of a, taking all lines of cache is 90% and probability of a5 taking one
line and a, taking all other lines is 10%.
Table 3. Chosen cache state notation example Py; for three memory regions called a;, i = 1..3
j ag az az
S 0% 90% 0%
s—-1 0% 10% 0%

1 0% 0% 10%
0 0% 100% 90%
Let us introduce for each operation or code section c an operator for changing the state T¢. If there

was state PP before executing c, then state P¢ after executing c is: P* = T°P?. We require the
following properties for the operator:

1) For a code section c, consisting of K consecutive code sections or operations c,..., Ck, the
operator is a composition of operators for parts of the section: T¢ = Tk ... Tt,

2) For a code section consisting of K alternative code sections or operations c,,...,cx with
probabilities of passing through them p,, ..., px (for example, i £ block and e1se block), with

j-‘: 1p; = 1, the operator is a linear combination of operators for parts of the section: T® =

Zf: 19T,

3) Similarly, if during the execution of one operation op of the K different state changes T;" ... To"
may occur with probabilities py, ..., pg, and Zj& 1p; = 1,the operator is a linear combination
of their operators: T = YX_, p;T;".

For the chosen matrix cache state notation, we also introduce an element-wise product o of the

operator and coefficients.

Let us consider one memory access operation. It can cause three different outcomes:

1) Cache hit. In this case, cache state in the selected notation is not changed.

2) Cache miss with a conflict in the memory region. In this case, cache state in the selected notation
does not change since it only stores the probabilities of having a certain amount.

3) Cache miss with a conflict with another memaory region. A new line is loaded into the cache for
the memory region the operation is working with. For one of the other memory regions, the line
is evicted from the cache.

Thus, change in cache state for a single operation for a specific memory region can consist only in

loading a new cache line for memory region, deleting cache line from the cache for memory region,

or no changes for memory region. For such changes we introduce operators for the movement of
cache state in selected notation:

1) M™ —moves the matrix values up by 1: if P4 = M*P?, then
P =Pyj_4y,j=05—-1
ViEl..Nw P§ = P% + Pl y
2) M~ —moves the matrix values down by 1: if P4 = M~P?, then

57

Shamparov V.E., Neiman-zade M.I. Data Layout Optimization for the LCC Compiler. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021,
pp. 51-60.

Pﬁ' = Pilzj+1)'j =0,5-1
VieEl..Nw— i%=Pilc)>+PiIi
s =0
3) MO —does not move matrix values.
Writing down cache state change operator T°P for operation, working with the memory region i, we
get:
TP = pjy o M* + pjo o M® + p;_ o M~

where:
1) p;; — matrix of coefficients for loading a new line of i into the cache; this matrix consists of a

nonzero column for the i -th vector, other coefficients are equal to zero;
2) pio — Matrix of coefficients for saving cache state as it is;
3) p;_ — matrix of coefficients for evicting a line from the cache when loading a new line of the i

area into the cache; this matrix consists of nonzero columns for all vectors except the i -th.

An example of applying operator T°P to cache state example above is shown in Table 4. Operation
op accesses memory region a, so one line of a, is loaded into cache and one line of a, or a5 is evicted
from the cache.

Table 3. Result of applying operator T°P to cache state from Table 3 when op works with memory region

a (i=1)

J a4 a a3

S 0% 0% 0%
s-1 0% | 90%+10%-+ 0%

s
§-2 0% 10%-3=2 0%
s
1 100% 0% 10%.%
0 0% 0% 90%+10%-

7. Conclusion

Publications analysis showed that there is no unified solution to the problem of improving cache
usage of compiled programs. In this paper, we propose a research approach, which can lead to a
solution to this problem in compilers.

Cnucok nutepatypbl / References

[1] B.E.IHammapos, A.JI. Mapkun. Mexann3m ontumusanuu Structure Splitting B cocraBe kommussitopa 1st
MHUKpOTpoIieccopoB Dnbbpyc. [Iporpammuas uH:xeHepusi, Tom 12, no. 2, 2021 r., crp. 82-88 / V. E.
Shamparov and A. L. Markin. Structure splitting for elbrus processor compiler. Software Engineering, vol.
12, no. 2, 2021, pp. 82-88 (in Russian).

[2] C. Lattner. Macroscopic Data Structure Analysis and Optimization. Ph.D. dissertation, Computer Science
Dept., University of Illinois at Urbana-Champaign, 2005, 225 p.

[3] C.Haine. Estimation d'efficacité et restructuration automatisées de noyaux de calcul. (Kernel optimization
by layout restructuring). Ph.D. dissertation, University of Bordeaux, France, 2017, 114 p.

[4] M. Hagog and C. Tice. Cache aware data layout reorganization optimization in gcc. In Proc. of the GCC
Developers” Summit, 2005, pp. 69-92.

[5] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: A compiler framework for analyzing and
tuning memory behavior. ACM Transactions on Programming Languages and Systems, vol. 21, no. 4,
1999, pp. 703-746.

[6] B.B. Fraguela, R. Doallo, and E.L. Zapata. Probabilistic miss equations: Evaluating memory hierarchy
performance. IEEE Transactions on Computers, vol. 52, no. 3, 2003, pp. 321-336

58

llamnapos B.E., Heiiman-3age M.W. Ontumun3anun pacmnoioxkeHus JaHHbIX a1 kommmwistopa LCC s apxutektypsl Dmsbpyc. Tpyosi
UCII PAH, tom 33, Beim. 3, 2021 1., ctp. 51-60.

[7] D. Andrade. Systematic analysis of the cache behavior of irregular codes. Ph.D. dissertation, Department
of Electronics and Systems, University of A Corufia, Spain, 2007, 165 p.

[8] M. Kowarschik and C. Weil. An Overview of Cache Optimization Techniques and Cache-Aware
Numerical Algorithms. Lecture Notes in Computer Science, vol, 2625, 2003, pp. 213-232.

MHdopmaumna o6 aBTopax / Information about authors

Buxtop Eprenpesnu LIITAMITAPOB, actmpantr MO®TH, nporpammuct AO «MLICT». Hayunsie
MHTEPECHl: KOMIUIISTOPBL, oNTUMU3auusa koga, VLIW -apxurekrypa.

Viktor SHAMPAROV, PhD student at MIPT, software engineer at MCST. Research interests:
compilers, code optimization, VLIW architecture.

Mypan Uckenaep-orisl HEﬂMAH-BAﬂE, K.(b.-M.H., notieHT. Hay4uHble MHTEPEChl: KOMITUAISTOPHIL,
onrtuMusanys koga, VLIW-apxurekrypa.

Murad NEIMAN-ZADE, PhD in mathematics, associated professor. Research interests: compilers,
code optimization, VLIW architecture.

59

Shamparov V.E., Neiman-zade M.I. Data Layout Optimization for the LCC Compiler. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021,
pp. 51-60.

60

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-5 toclﬁu

Localized Lama Gradual Typing

V.S. Kryshtapovich, ORCID: 0000-0002-3941-6201 <kry127@yandex.ru>
ITMO University,
Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russia

Abstract. Gradual typing is a modern approach for combining benefits of static typing and dynamic typing.
Although scientific research aim for soundness of type systems, many of languages intentionally make their
type system unsound for speeding up performance. This paper describes an implementation of a dialect for
Lama programming language that supports gradual typing with explicit annotation of dangerous parts of code.
The target of current implementation is to grant type safety to programs while keeping their power of untyped
expressiveness. This paper covers implementation issues and properties of created type system. Finally, some
perspectives on improving precision and soundness of type system are discussed.

Keywords: programming languages; gradual typing; type safety; cast calculus

For citation: Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 61-76. DOI: 10.15514/ISPRAS-2021-33(3)-5.

JlokanusoBaHHOe npuMmeHeHue YaCTUYHOMN TUNM3aALUN

B.C. Kpvuumanosuu, ORCID: 0000-0002-3941-6201 <kry127@yandex.ru>
Yuusepcumem UTMO
197101, . Cankm-Ilemepbype, Kponsepkckuii npocnekm, 0.49

AHHoTanus. YacTndHas THITH3AIIS — 9TO COBPEMEHHBIN ITOIX0] /UISl COUETaHUS ITPEHMMYIIECTB CTAaTHIECKOH
¥ JUHAMUYecKol Tunm3anuy. Ho HecMoTps Ha TO, 4TO HaydHBIE HCCIIEJOBAHUS HAPaBICHBI HA KOPPEKTHOCTH
CHCTEM THUIIOB, MHOTHE S3BIKH HAMEPEHHO JEeNaloT CHCTeMYy HEKOPPEeKTHOW Uil YCKOPEHHS
NpPOU3BOJMTENBHOCTH. JlaHHAs paboTa TMOCBsIEHA pealu3aluM Jauajekra s3blka Jlama, KOTOpBIH
MOJ/IEPKUBAET YaCTUUHYIO TUIM3ALMIO IS SBHO yKa3aHHBIX y4acTKoB Koja. Llenbro peanusanuu spisercs
coyeTaHMe JIBYX MOJIX0/I0B: oOecredeHre TUI00e30acCHOCTH B O/IHUX Y4acTKax KOJia U IPOU3BOIUTEIBHOCTD
sI3bIKa B JIPYTUX ydacTkax kKoja. CTaTbs pacKpblBaeT AETall pealn3allii U CBONCTBA MOJyYEeHHOH CUCTEMBI
THnoB. Takke paccMaTpUBAIOTCA CHOCOOBI YITyUIIEHHS MOJTHOTHI M KOPPEKTHOCTH MONYyYEHHOH CHCTEMBI
THIIOB.

KitoueBble cjI0Ba: S3BIKH TPOTPAMMUPOBAHHS; YaCTUYHAS TUIW3ALMs; CHCTEMbl THIIOB;, HCYHCICHUE
npeoOpa3oBaHUit

Jas murtuposanus: Kpeiuranosuy B.C. JlokanuzoBanHoe npuMeHeHne yacTuaHoi Tunuzanuu. Tpyast UCII
PAH, tom 33, Bbim. 3, 2021 1., ctp. 61-76 (na anrmmiickom s3eike). DOI: 10.15514/ISPRAS-2021-33(3)-5.

1. Introduction

There are different approaches of type system implementation. Static type systems are well-known
for preventing many undesired behaviors of the program at compile time by reasoning about possible
values that expression may or may not take (e.g., Java, Haskell, ...). On the opposite side, dynamic
type systems are well-known to be the most flexible type systems — low compilation prerequisites
and delegation type safety to runtime allows rapid development and prototyping (e.g., Python,
Racket, ...).

61

Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 61-76.

There is a combination of both mentioned approaches named «Gradual Typing». This technique of

program typing drained a lot of attention since the article of Siek and Taha [1] was published. Article

presents sound type system for Lisp dialect which represents partially typed functional language.

The presence of sound system for this model language gave rise to lots of research in this field.

But practical application of sound gradual systems is still questionable because of the performance

issues [2]. The key purpose of this article is to see how gradual typing and explicit unsafe code

annotations can be integrated with each other as native language syntax. The desired result is to

acquire language that allows programmer to control trade-off between performance and type safety.

The Lama [3] version 1.00 will be used as our target language of research.

Let us imagine typical Python code, and most probably it would be some untyped piece of code.

Surprisingly or not, only 3. 8% of repositories have type annotations by 2020 year [4]. But the idea

of gradual typing is powerful: let programmers add static type information expression by expression

in the code. Thus, we can step-by-step convert untyped code into fully statically typed code with

corresponding static guarantees.

This is so called gradual typing: on the one hand we have power of static annotations preventing us

from misusing functions, modules and preserving contracts. On the other hand, we shut down static

type system whenever we choke down with abyss of static type errors.

The most important result of original article [1] was soundness of gradual type system. This was

reached by exploiting cast calculus and rewriting original program with casts. The cast can be

imagined as the bridge that value surpass during runtime from untyped part of code to typed part of

code. This kind of “bridge” is annotated with static type and value should conform to it while moving

from less typed part of code to more typed part of code. So, the main idea is to correctly insert casts

and yield a program with soundness property.

1) If program does not typecheck, the program execution path may stuck with static type error
emerged at runtime. (If there is a possibility to launch untyped programms at all)

2) If program typechecks, it can produce only dynamic type error or cast errors. No errors involving
incompatibility of static types may occur at runtime.

In other words, if program is accepted by sound typechecker it can never fail contracts that was

given to expression by the programmers in the form of types. For instance, you cannot acquire string

value in variable statically typed as integer.

Gradual typing has been presented in several languages and in various forms, such as:

1) Python [5, 6] (MyPy [7] and PyType [8] projects);

2) Typed Racket [9];

3) JavaScript: TypeScript;

4) C#4.0 with dynamic keyword.

Although they are all have gradual typing property (in the sense, that not all objects have known

type at compile time), their implementation of gradual type system has strong differences. Some of

them are compiled into dynamic target language, such as TypeScript program is converted to pure

JavaScript after compilation. Some of them are static by the nature as C# and then bring up a

«dynamic» keyword which marks that object has unknown type until runtime. Some of them

incorporate optional typing annotations and leave them alone for documentation and external tools

(linters, typecheckers, IDE) as Python do.

The most noticeable state-of-the-art of gradual typing: every industrial-level language doesn’t care

much about soundness of the type system. This is because of the performance issues. Some real

programs exhibit slowdown over 20 X, likely rendering them unusable for their actual purpose. To

increase performance many of them reduce number of dynamic casts or remove them at all. This

leads to trade-off between soundness and performance of gradually typed language.

To sum up, gradual typing provides mechanism to check program correctness having this pros and

cons:

e Types can be added ad hoc by the programmers.
62

Kpsruranosud B.C. Jlokann3osaHHOe IPHMEHEHNE YacTHYHOM THIM3auu. Ipyowr UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 61-76.

e Gradual type system can be sound in certain languages (more frequently academic ones).

e Dynamic typechecks is giving significant overhead at runtime.

No doubt: looking at the diversity of implementation and approaches it is interesting to look at the
result of implementation of gradual typing in the language with different model of computation and
semantics. We will test some new syntax conceptions experimenting with Lama programming
language.

A% M“ is a programming language developed by JetBrains Research for educational purposes as an
exemplary language to introduce the domain of programming languages, compilers and tools [3].
The most noticeable property of this language that it is fundamentally untyped. The reference manual
says that the lack of a type system is an intentional decision which allows to show the unchained
diversity of runtime behaviors. But at the same time manual says that the language can be used in
future as a raw substrate to apply various ways of software verification (including type systems) on
[10]. So why wouldn’t we try to implement some kind of type system upon it?

In our work we will test new approach of combining parts of code where different rules of static
verification are applied: some parts of code will be gradually typed, and some parts of code will be
left untyped. The expected result is programming language that can mix two types of code:

¢ with semantics that respects type safety in necessary parts of the code (e.g., sound);

e with original semantics without overheads.

This should allow programmer to choose what parts of program should be gradually typed, and what
parts of program should not be typed.

Another expected result is producing a program with decreasing speed of execution of gradually
typed code. The slowdown may be arbitrary, but we will try to reproduce results from article (at
least x 2 slowdown).

2. Examples

To give reader a proof of concept we should consider concrete syntax and pragmatics of the pieces
of code written in Lama and describe how to introduce types into our language and what they
expected to do. Normally, code in Lama looks as follows. No types, just anarchy of undefined
behaviors:
fun closure(x) {
fun (y) |
2*%x*y
}
}
In this example we see function that takes x as an argument and returns function that multiplies input
argumentby 2 * x. One expects it to be used upon integers, but Lama won’t restrict to call function
like closure ("Hello, ") ("world!"™) and pray for runtime not to fall. We can use type
annotations to designate our intentions about the code like so:
fun closure(x :: Int) :: Int -> Int {
fun (y :: Int) :: Int {
2*%x*y
}
}

What do we expect from introduced type annotations?

e Backward compatibility with existing untyped source code;
e Static compile-time checks;

e Dynamic runtime checks.

Moreover, we would like something like type inference.

fun closure(x :: Int) {
fun (y :: Int) {

63

Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 61-76.

2* x*y
}
}

If x and y have known at compile time types, then type of the functions can be inferred: inner
function has type Int -> Int,and outer function hastype Int -> Int -> Int.

Moreover, Lama nowadays supports operations only with integer constants (Int). If we take a
closer look to the untyped example, it can be inferred that x should have type Int, y should have
type Int, because they are used in expression like 2 * x * v, and further infer function types,
which makes this concrete piece of code fully typed.
At first glance type inference seems to be contradictory with backward compatibility. That is because
some of the untyped expressions become implicitly typed, as first example do. Thus, runtime
typechecks are inserted in parts of code that were initially untyped, which affects their semantics.
Thankfully, the developers of Lama left regression tests that check backward compatibility. So we
can bring up type inference features with awareness on backward compatibility.
Another example of typing Lama programs is pattern matching
fun processA(a) {

case a of

A (0) -> "1

| A (x) -> "2"

esac

}
The A (0) notation is so called S-expression [11]. Quick Lama-specific introduction: you can
consider S-expression as labeled array of arbitrary values. Name should be capitalized, number of
values is not bounded. Two S-expression labels are considered equal in Lama if their five first letters
are the same, so Branch (Leaf, Leaf, 3) and Branc (Leaf, Leaf, 3) are equal S-
expressions. By the way, Leaf is nested S-expression with zero values in it, so brackets are optional
for zero-arity S-expressions.

Side note: S-exprs like Int and Str has type Int :: Int() and Str :: Str() to
distinguish them from integers (3 :: Int) andstrings ("smoothie" :: Str) type.

Back to our processa function, we can see, that if a matches 2 (0), then “1” produced, for other
value A (smth) where smth is not 0 we would get “2” produced by the function. If we call
processA (B (0)) we would get runtime error from pattern matching. So, other things that we
would like from our type system are:

e Check that all branches cover matching expressions. E.g. no runtime error would occur in pattern

matching.

e Check branches that would never succeed: either covered by previous branch or just don’t

conform to matching expression.

For example, type system should reject this Lama program:
local foo = fun (x :: A(Int)) {
case x of

A (0) -> "1
| A (x, y) => "3" anything

esac
}i
Here type system can check two things. Firstof all, x = A (1) won’t meet any branch, so not whole
possible values of x are covered. And the second: A (x, vy) would never match values with type x

A(Int).
Also note, that functions in Lama has beautiful sugar that combines pattern matching, that can be
used to check input arguments:

public fun id2 (Abc (x, y)) :: 2 {

X

64

Kpsruranosud B.C. Jlokann3osaHHOe IPHMEHEHNE YacTHYHOM THIM3auu. Ipyowr UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 61-76.

}
write (1d2 (Abc (6, 8)));

write (id2 (Xyz (6, 8))); -- static fail
The last example that we should consider relates to runtime checks. Let’s look at this simple piece
of code:
fun intStringer(x :: Int) {
X.string

}
local dyn :: ? = "Can be anything";
dyn := intStringer; -- forget type
dyn ("input") -- should it fail?
At first glance it is unclear, where is the problem, because dyn ("input™) would reduce to
"input".stringandthento "input". Do we actually care about function, that originally takes
Int and store it at runtime? The answer is yes:
fun intStringer(x :: Int) {

(x + 1) .string
}
Of course, if we try to reduce dyn ("input") we get "input" + 1, and then we will now end
up with runtime error of casting "input" to Int. But what is the real cause of this error, whom to
blame [12] [13] [14] for this mess — a plus operator, or input to the intStringer? That is why
we should check function arguments wrapping them with appropriate dynamic casts. So, if follow
blame ideology in both implementations dyn ("input™) would fail with the same reason:
function expected Int, but given Str. But this solution could lead to extra checks and execution
speed decrease.
After seeing quite a bit of examples we conclude that these features would be handful in untyped
Lama language. Typechecker would decrease number of errors in code made by programmers and
runtime casts would inform programmer when untyped code does not conform contracts of the typed
code. In next section we will define syntax of gradual types and their semantics.

3. Type Annotations Definition and Semantics

Gradual typing assumes that user annotates parts of the program with certain type. So, we should
provide this feature in Lama compiler. Syntax rules have been described in Lama specification. We
will fix them a little bit, because we only change variable definition (global and scope), function
definition and their input parameters, look at p. 10 [10] for more detailed language syntax
specification.

We slightly modified this nonterminals on the fig. 1: just put static type annotations to variable
definition and function definition. Also, nonterminal functionArguments was slightly changed in
comparison to specification to respect pattern matching sugar. This sugar is not included in concrete
syntax definition for some reason. Other nonterminals assumed taken from section “Concrete syntax
and semantics” of specification [10].

The definition of type annotations typeExpression is presented on the fig. 2. It semantic (see t in fig.
3) is almost straightforward: syntax rule typeAny corresponds to dynamic type TAny, which can
hold arbitrary value. Syntax rule typeArray corresponds to the array TArr of certain type. Syntax
rule typeSexp corresponds to TSexp with parsed UIDENT as the name of S-expression and list of
types forming type of S-expression. Syntax rule typeArrow corresponds to arrow TLambda. Note
that input arguments can vary from zero to arbitrary amount. Syntax rule typeUnion corresponds to
TUnion and lists all types that value can conform.

65

Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 61-76.

variableDefinitionltem : LIDENT [1 rypeExpression |
[= basicExpression |
functionDefinition : | public | fun LIDENT

(functionArguments)
SfunctionBody

[= typeExpression |
SunctionArguwments = | funArgltem (, funArgltem)* |
funArgltem : simplePatiern | i typeExpression |

Fig. 1. Syntax extension: scope expressions with type annotations

rypeExpression . typeUnion
typeArrow [
rypeSexp |
typeArray \
typeAny \
(typeParser)
typeAny : ?
typeArray @ | typeExpression |
typeSexp : UIDENT| (typelList0,) |
typeArrow : typeExpression — typeExpression

(typeListO,) —+ typeExpression

typeUnion : Union [fypeListO;]
typeList0, : [typeExpression(, rypeExpression)*|
typeListO; : |typeExpression(; typeExpression)”|

Fig. 2. Typing expression syntax

7:= TAny | TConst | TString(s)
| TArz(7) | TRef(r) | TLambda(T, 7)
| TSexp(s,7) | TUnion(7) | TVoid

Fig. 3. Typing expression semantics
Only typeSexp rule with zero arity has non straightforward semantics. If type parameters of S-
expression type are not presented, and UIDENT is one of the
e Int —correspondsto integers t = TInteger;
e Str —correspondstostrings T = TString;
e Void - corresponds to empty set of values t = Tvoid;
e otherwise, it corresponds to S-expression with specified name and no arguments.
If typeSexp is specified with brackets, it has straightforward semantics of S-expression. So, for
example, Cons and Cons () has the same semantics of TSexp ("Cons™), but semantics of Int

and Int () are different as integer and S-expression types: TConst and TSexp ("Int")
correspondingly.

4. Typechecking Rules

The typechecking is inserted in the compilation pipeline directly after AST (Abstract Syntax Tree)
representation of the program has been built (see “src/Language.ml” and “src/Driver.ml” in Lama
source code [3]). The typechecking simultaneously performs the following procedures with AST:
type checking, type inference and cast insertion.

For detailed description of this three type system problems we need to describe such classes as
expressions, values, patterns and types of the language.

e tisclass of type expressions (see fig. 3);
e e isclass of expressions (see fig. 4);

66

Kpsruranosud B.C. Jlokann3osaHHOe IPHMEHEHNE YacTHYHOM THIM3auu. Ipyowr UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 61-76.

e wisclass of values (see fig. 5);
e pisclass of patterns (see fig. 6).

e =

Const(i) | Arr(e) | String(s) | Sexp(s,®)
|"v"al.'['s-;j | Ref(s) | Cast(e,7) | Binop(s,e.e)

| Elem(e,e) | ELlemRef(e,€e) | Lengthie)

| stringVal(e) | call(e,€) | Assign(e,e)
| Seqle.€) | Skip | If(e.e,e) | While(e,e)
| Repeat(e,e) | Casele, (p,e)) | Return(e)

| Ignore(e) | Scope((s,e).e) | Lambda((s, 7)€, 7)

Fig. 4. Lama expression class

e
VVar(s) | vElem(v,i) | VInt(i) | vString(s)
| VArray(v) | VSexp(s,©) | VClosure(s, e o)

| VFunRef(s, 5, e,1) | VBuiltin(s) | vCast(v,T)

Fig. 5. Lama value class

p:= PWildecard | PConst(i) | PString(s)

| PRrray(p) | PSexp(s.p) | Named(s, p)
| PRoxed | PUnBoxed | PStringTag

| PSexpTaqg | PArrayTag | PClosureTag

Fig. 6. Lama pattern class
There is also additional classes that are built-in of implementation language (OCaml). They can be
considered as value class:
e i—integer;
e s -string.
Let us denote set of variables by V, which represented by OCaml string s, and set of types T. We
should think about T wider, that types induced by type constructors of fig. 3. In other words, some
type y € T may not be expressed with type constructors.
If we simplify process of compilation a little bit and ignore external symbol resolvance, Lama parser
generates expression of e class without Cast constructors, i.e. pure untyped Lama expression.
Notice, that expression can also contain patterns p due to pattern matching in Case expression.
Then, we have some options how to deal with generated AST. The trivial option is to left expression
untouched and get the semantics of classic Lama language. The first option is trying to statically
typecheck expression. If we succeed to acquire static type of program represented as whole
expression, we can conclude that there is no static misuse of typed expressions. The second option
is to transform AST to insert casts where values are passing from untyped parts of code to typed
one. We will build up an algorithm that makes static typechecking and dynamic cast insertion
simultaneously. For type checking we need to answer a question: does some type 7_1 € T conforms
to other type 7.2 € T? That answer is given by ~ relationship named “conforms” which is
constructed by axioms presented at fig. 7.
We should put additional attention to TUnion type and its rules. It denotes type that holds all
possible values which can hold its constituent types. It is naturally coming from such language
expressions as If, Case and Return. We have chosen set-theoretic approach on typing such
expressions. Although there is an algorithm for union contraction, set-theoretic approach for type
combination may lead to certain drawback in correctness and decreased performance during compile
time.
Speaking about correctness: rules ConfTUnion1 and ConfTUnion2 generally cannot proof that
two type representation conform to each other if they really do. Thus, the lack of completeness is

67

Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 61-76.

reflected in false positives generated by static typechecker. That means correct type-annotated Lama
expressions can be rejected by typechecker with such relationship definition ~. This is a common
illness of every static typechecker because we would like to check nontrivial property of the code:
to be statically correct [15].

— ConftTA 7
T~ Thny [ConfTAny]

TAny ~ T [ConfTAny2]
— ,’_]_r
—————— [ConfTArr]
.El‘r[r] ~ TArr(7r’)
e T.’
— o _ .- [ConfTRef]
TRef(r) ~ TRef(7')

5= .~;" M [,‘\”_ P Ti ™~ T;

[ConfTSexp]
TSexp(s, Ty ...Tw) ~ TSexp(s’, 7] ... 7))

[ConfTLambda]
Tr o Th A [Ny 7 ~ i)

TLambda(Ty ... Tn, T+) ~ TLambda(r) ... T,,T;)

[ConfTUnionl]

ph 4
T

[ConfTUniond]
7~ TUnion(r] ... 7})

¢ po—

!
r} [ConfTGround]

T~T

Fig. 7. Rules of conformance to the other type
But the good news is that no type intersections TIntersection or type subtractions
TSubstraction are coming — we try to avoid them when building type system for Lama.
Now we can make an analogy of ~ relation for expression e and type . But instead we will be
inferring type of expression. To start with something simple let’s define type inference for patterns
(see fig. 8).
Notice, that we infer both lower and upper bound for pattern type. This interval style inference of
patterns is crucial for analyzing case expressions. Let's denote z;(p) € T for lower bound inferred
type for pattern and ,.(p) € T for upper bound inferred type for pattern. Notation (p) means
theoretic set of all possible values that are captured by pattern p. With the chosen type constructors
and their semantics we can conclude:
e T, isrepresenting type that covers all possible values captured by pattern (upper bound);
e T, isrepresenting type that is covered by all possible values captured by pattern (lower bound).
For example, value Suc (1) has type TSexp (”Suc”, TConst), but this value alone covers
almost nothing, so Tvoid = {Suc(l)} £ TSexp (”Suc”, TConst).
Now we are ready to describe our main part of algorithm: type inference and cast insertion for Lama
expressions. We will use such notation: e — e’: . That means that expression e has type t, and cast
insertion into that expression produces expression e’, which has the same type . In addition, we
have two types of contexts: I': V — T for typing context of variables (which assigns types to variable
typenames) and set of types A c T for collecting information about function return type. Then,
typechecker by given context and collected return types produce another collection of return types
(probably, bigger than the original), expression rewritten with casts and it’s type. So, the full notation
of this algorithm should be:

NAre— A +e':T.

68

Kpsruranosud B.C. Jlokann3osaHHOe IPHMEHEHNE YacTHYHOM THIM3auu. Ipyowr UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 61-76.

[InferPWildcard]

TAny C 7(PWildcard) C TAny
nC7(p) C
- = = [InferPNamed]
Tt C 7v(PNamed (s, p))LC 7r
- e - InferPCanst]
IVoid C 7(PConst(f)) C TCanst !
[InferP5tring]
TWolid C 7(PString(s)) C TString 7t)
> [InferPUnboxed]
TConst C T(PUnboxed) C TConst
= . — [InferPStrTag]
TString C 7(PStringTag) C IString = 4
- [InferPSexpTag]
TVoid C 7(PSexpTag) C TAny
" [InferPClasureTag]
IVoid C 7(PClosureTag) C TAny
[InferPBEoxed]
Ur n (TS ng, TArr(TAny)) C v(PRoxed)

[InferPArrTag]

Thrr (TAny) C 7(PStringTag)C T

[InferPSexp]

- — f
s Cr(pi) C 7l

TSexp(s,M ...Tn) C

T(PSexp(s, p1...pn)) C TSexp(s, .—I g T_.J,)

Fig. 8. Rules of lower and upper bound type inference for patterns
Fig. 9 and 10 presenting all set of rules for type inference of Lama expression with T,A - e —» A’
e': T notation used. Let us highlight some features about presented algorithm.
The set of return types for expression A is initialized with @. Note, that initial context I' maps every
variable occurrence to type TAny. The typechecker does not check, is symbol is defined in upper
scopes or correctly imported, but context is called to provide correct surrounding type information
for expressions.
Notation T € (TSexp,TString,...) in rule [InferLength] means that T’s top level
constructor should be one of the listed in angle brackets.
Inrule InferCall cast to TAny is optional. It is used in inference rules to be consistent with
InferCall3 rule which process call of the union type object.
Many of the rules can be simplified by removing A because they do not change it, such as
InferArrand InferSexp, et cetera. That is because they recompute A for expressions that never
change A in correct Lama expressions. There are a few places where A is useful: it is
InferLambda, InferReturnl and InferReturn? rules. Notice, that we are inferring return
type of the function just to acknowledge that it fits type declared by the user, the declared interface
is not changing. But if the type is not specified by user, the inferred type for variable will be used
implicitly.
Also notice rules in InferCase. First, we collect return types from the branches while dragging A
through the computation pipeline. The second one, look at notation I' U T (p_i) — it fulfills typing
context with mapping of PNamed named pattern to its types. The T can be defined via t,. as follows:

69

Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 61-76.

(@)U {s:7,(p)} p=PNamed(s,p’)

U Tr (pi) p = PArr(py, ., Pn)

r(p) =t
U Tr (Pi) p = PSexp(s,p1, -, Pn)
i=1
) otherwise

[InferConst
I AFConst(i) = AL Const(i) : TConst rere !

T : - [Infers
I Al String(s)— AF String(s): TString

A= LA Fer Aheiin
P AFare(er...en) = Ay b Ar(e]) : TArr(TUnion(77))
Agi=A T Akes Akeiy

T.A F 5expls, e ...e0) = Ay, F Sexp(s, o) : TSexp(s.7)

[Inferhrr]

[InferSexp]

I{s)=7

I AFvar(s)- Ak var(s): 7
I(s)=7

I, & FRef(s) — Al Ref(s): TRef(r)

FAFe = A el 7 ~ TConst Ay kg Apbehim T ~ TConst

[Infervar]

[InferBef]

I', A+ Binopls, e;, es) — Ao - Binop(s, Cast(e}, TConst),Cast(ey, TConst)): TConst

I'Arep A&y Fel: TAny C.A e+ Ao behime T2 ~ TConst

5 [InferElam]
IVAFElem{e;,ea) — Ag - Elem(e},Cast(eh, TConst)) : TAny

T AFe — A ke :TStr T A Fers Aabelim ™ ~ TConst

= [InferElemDfstr]
Ak Elem(e;, ez) — Az F Elem(e}, Cast(eh, TConst)) : TConst

Ta T3 ~ TConst

T,Al ey — A kel TArr(n) [, A F e Aab el

, . n =3 i [InferElemDfArr]
I',AFElem(e;, es) = Az - Elem{e],Cast(eh, TConst }) : 7y

I'Akle— Ajke':T 7€ {TAny, TArr, TString, TSexp)
[, AF Lengthle) = A; F Lengthie’) : TConst

C,AFes Dy cr

o, [Inferstringvall
I'NAFstringval(e) = &y F Stringvalle’) : TString

C,AFf—= Qg ff:Tany Codigbem+ dyelim
A Call(f.ey...eq) —+ &y FCast(Call(f e]), TAny) : TAny

[InferCall)

I AFfeAg bk f o Thambdaly. .. Y. T) m=mn I A ke Ayelrm T~
T A call(fe;...en) = A, Fcast{call(f.cast{e wiht):r

[Tnfercall2)

CLARfeAak o TUniooly .. %) Cudr v} diaa b Call{.:r:.?:’f 1) Ay Cast(cal l[.‘r’,ﬁ'_j"],r,] T

[AFcall(f,e]...ed) = A, - cast(Call(f’ &™), TUnion(7)) : TUnion(%)

IAFrer Ay Fp': TAny IAjFe Az kelr

= = [InferAssignl]
I' Al assign{r.e) —+ &y - Assign{r’. e’} : TAny =

CoAFre &y et TReE(p) FAy ke Apke i r TP
A Fassign(re) =& Fassign(r,e):p

[InferAssigni]

[InferCall3]

Fig. 9. Rules of type inference and cast insertion

The third one about InferCase is that there is a check that all branches cover target type: w ~

TUnion(t;(p;)). And the fourth: notice that each pattern is checked for code execution availability
7,.(p;) ~ w, and at the same time we check that branch is not hidden by earlier branch z,.(p;) +

7,(pj)- According to inequalities
T.(pi) ~ T(p;) = t(Pi) © 7.(P) & T (p)) = (P))-

70

Kpsiurranosuy B.C. JIokann3oBaHHOE MPUMEHEHHE YacTUYHOM Tunu3auuu. Tpyost UCIT PAH, tom 33, Beim. 3, 2021 r., ctp. 61-76.

FAFei—» A e, :

T,AFSeq(en,e

I".A. ez >

Askeh:r
- = [InferSeq]

[Inferskip]

[LAF skip =+ A Skip: Tvoid

CFAFe— Ak 0 ~TConset FA Fe—Askeimn [Az b ey Azt r.”f LT

- n = Inferlf)
P,AP—"f&:ﬁhpj}—~ﬁn}-LE(CaS:LH.TConstLP“P}}:TUnlcn(n,rH Lrate
lAkFe— A Fd o~ TConst IFAjFe— Aslke':r CraEesinTlEl
= 3 = T : [InferWhile
I[LAF wWhile(e,e) —+ Ay - While(Cast(c, TConsat),e’) : TVoid
CLAFe—s A e o ~TConat A kFe— Aglesr o
~ = T 7 e [InferRepeat]
[, A b Repeat(e,c) — Ay I Repeat (¢/, Cast (¢, TConst)) : TVoid
FAFme Agbm w =
F'Urp(pi) Dici Fep = A el Tr(pi) ~w w~ Tonien(m(p)) Wi <i.m(p) e nlpg)

x - s e - k. —~ - — - |_T11'-r"l"qr'.“-:-"]
I, A case(m, (m,e1). .. (n,en)) = An - Case(m!, (pr,e}) ... (pn,e})) : TUnLon(T) I '

[InferReturnl]
I'' A+ Return — AU {TVoid} F Return: TVoid

DAFe— Albe i r el 45
= " LinTerketurns
I'AFReturn(e) = A" U{r} F Return(e’) : TVoid - "

PAFe— AFRe T
I'At tgnore(e)—= A’ b Ignore(e’) ; TVoid

[InferIgnore]
£

Api=A ru {f-*f.-'i)i:ll}-ﬁ;q e Ailkel T I'U { (84, r'u};_f__.|}-‘-\m Fem A'b e iw

[TnferScope]

73 5 - — i = i N . .
I, A Scope((si€i),q.¢) = A’ - Scope((si,el),_y:¢) s w

ru {E;E):l_, LL@kers Alve' 16 Tunion(A'U{6}) ~7
[InferLambda]

I'y A Lambda((s;, r!.}:r:| e, 7) = A Lambda((s;, 0, }:rzl ,e'. 7). TLambda(d;, 7)

Fig. 10. Rules of type inference and cast insertion (part I1).
In other words, when expression holds, it is certain that pattern p; was covered by more recent cover
p;j. In that way we eliminated the need of introduction of intersection or difference types in our type
system. But it doesn’t mean we cannot deal with intersection and difference types, see [17] or [18]
for example of polymorphic type system that handles that.
The most complex is [InferScope] rule. It is intentionally simplified, because it’s
implementations is more subtle. Here it simply overwrites variable or function definition and updates
context I'. But implementation also checks that previous usage is corresponding with current typing
when no expression is provided to variable. But to describe that strictly we would need to introduce
a class for declarations and this rule would get even more complex.
So, this rule lead to new language feature — type usage of expression inside the scope:

{
f Int -> Str;

g :: Int -> Int;
f(g(0)); -- ok
f(g(D(0))) -- error
}r

f D(Int) -> Str;
g :: D(Int) -> D(Int);
f(g(0)); -- error

71

Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 61-76.

f(g(D(0))); -- ok
{
f [Int] -> Int;
g :: Str -> [Int];
f(g("hello, world"))
}
bi

Other type checking rules either trivial or common in corresponding field of study [16], so we
wouldn’t dive too deep into them. In next chapter we will discuss performance issues of our
typechecking algorithm.

5. Cast Performance Analyzing

It is obvious that rules presented at fig.9 introduce new kind of expression Cast (e, t) . It’s runtime
semantics is simple: when expression e evaluates to value v, we should check that value v
corresponds to type 7. If v conforms to e, the result of evaluation of Cast (e, T) is v, otherwise cast
error L produced as the result.
Runtime check that value corresponds to some type may be time consumptive, especially when type
and expression are complex and have big nestings. Thus, we can introduce and explicit syntax for
parts of code where we wish not to insert casts like this:
fun mod(x :: 2?2, m :: ?) :: ? {
#NoTypecheck {
(if x < 0 then 0-x else x fi) % m
}
}

Typechecker will see this annotation and completely ignore annotated part of code. The
implementation of gradual typing for Lama offers us three options to maintain typechecking
procedure:

e #NoTypecheck —drops AST from typechecking at all;
e #StaticTypecheck —disables cast insertion into AST, but static checks are still enabled;
e #GradualTyping —enables cast insertion into AST.

You can nest #StaticTypecheck and #GradualTyping annotations in order to enable or
disable cast insertion while typechecking. But there is no point to nest type related information into
#NoTypecheck annotation, because they would be completely ignored by typechecker.

Having all power of gradual types and unchained diversity of undefined behaviour, let’s user
interpretation mode of Lama compiler to see the slowdown in the code execution. We will use

sample code:
fun fibonacci (k) {
if k == 0 then return O
elif k == then return 1

elif k < O then return -1
else return fibonacci (k-1)
+ fibonacci (k-2) fi
}
write (fibonacci (read()))
It is not obvious where are the casts in this example, but in section 2 we have noticed that + operator
coerces both its arguments to Const at runtime, so appropriate casts to TConst types from
unknown type are inserted. Hence, this code is modeling situation of frequent value passage from
untyped part of code to typed part of code.

72

Kpsruranosud B.C. Jlokann3osaHHOe IPHMEHEHNE YacTHYHOM THIM3auu. Ipyowr UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 61-76.

We will compare this code wrapped in #GradualTyping which is the default, and
#NoTypecheck annotations. The time measurement is performed with Unix time utility, thus
compile time included in both measures.

R R Fommmmm +
| n | Untyped | Typed |
R Fommmmm +
106	em 0,119s	om 0,092s
11	em 0,097s	om 0,079s
12	em 0,088s	om 0,087s
13	em 0,094s	om 0,093s
14	em 0,091s	om 0,095s
15	om @,086s	om ©,090s
16	om @,092s	om ©,094s
17	om @,095s	om ©,088s
18	em 0,093s	om 0,100s
19	em @,102s	om ©,105s
20	em 0,106s	@m 0,125s
21	em 0,124s	om 0,124s
22	em 0,132s	@m 0,154s
23	em 0,162s	@m 0,192s
24	em 0,208s	em 0,279s
25	em 0,284s	em 0,389s
26	em @,416s	om 0,581s
27	em ©,593s	om ©,878s
28	em @,909s	om 1,363s
29	em 1,467s	em 2,179s
36	em 2,326s	@m 3,561s
31	em 3,659s	@m 5,796s
32	em 5,977s	oem 9,469s
33	em 9,477s	om14,108s
34	em15,981s	@m24,799s
35	em26,933s	om43,855s
36	em42,236s	1m 7,766s
37	1m12,161s	1m49,319s
38	1m53,534s	3m 0,748s
39	3m18,046s	4m54,461s
40	5m17,664s	7m54,811s
et ST TR e il +
Typed
The average of slowdown sd,, = tmwmﬂmnmemmuﬁmwmﬁwmmmwwwwmdn 21is:
1 yped
52?12213‘1 Zn 21 Unyped ~ 1.45.

As we can see, section of code with active gradual typlng runtime type checking exhibit almost x
1.5 slowdown. Thus, we have reproduced the result of an article [2] but in the case Lama semantics
using this artificially small example.

6. Conclusion

We introduced type system with following properties:

e Monomorphic;

e Gradual.

It would be nice to introduce such features in type system as:
e Polymorphism;

73

Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 61-76.

e Recursive types.

In the future work it is desired to use type equations and Hindley-Milner style inference with
unification algorithm as presented in [17] and [19].

It is worth to mention the reproduction of the result of a recent article about industrial-level
languages that use gradual types unsoundly [2]. We have modeled the situation of values constantly
transiting from untyped part to typed parts of program and expectedly acquired slowdown of
execution.

In addition, we have provided a simple and powerful, yet dangerous, method of maintaining trade-
off between type safety and execution performance: let programmer choose areas of code where he
needs extra performance and where he needs static and runtime type safety guaranties, either with
#NoTypecheck, or better with #StaticTypecheck and #Gradual Typing annotations.

The idea goes further. It would be nice to introduce some other sections of static verification that
programmers can apply at their taste. For instance, live variable analysis #LiveVarAnalysis, or
memory access safety. Thus, programmer acquire framework with bunch of static verifiers and the
ability to choose what guaranties is the most important at applied piece of code. To sum up,
programmer maintains compilation time and acquires code with the needed guarantees unified in
one syntax.

Even though the type system soundness is still questionable and should be proved or improved,
several tests are added to codebase to check type system, including not compiling tests, runtime error
tests and positive example tests. Introduced type system enhances coding experience and points out
at least silly and obvious errors that programmers are frequently making. Moreover, Lama’s facility
has been extended by logger to generate warning messages, mostly for case expression coverage.

The implementation of gradual typing for Lama language resides in personal repository within
branch named “GraduLama” [20].

References

[1] Jeremy G. Siek and Walid Taha. Gradual Typing for Functional Languages. In Proc. of the Seventh
Workshop on Scheme and Functional Programming, 2006, pp. 81-92.

[2] Cameron Moy, Phuc C. Nguyén et al. Corpse reviver: sound and efficient gradual typing via contract
verification. Proceedings of the ACM on Programming Languages, vil. 5, issue POPL, 2021, Article 53, 28

[3] D. Boulytchev. JetBrains-Research/Lama source code. Available at https://github.com/JetBrains-
Research/Lama, accessed 27/03/2021.

[4] Ingkarat Rak-amnouykit, Daniel McCrevan et al. Python 3 types in the wild: a tale of two type systems.
In Proc of the 16th ACM SIGPLAN International Symposium on Dynamic Languages (DLS 2020), 2020,
pp. 57-70.

[5] Guido van Rossum, lvan Levkivskyi. PEP 483 — The Theory of Type Hints. Available at
https://www.python.org/dev/peps/pep-0483/ Request timestamp: 27/03/2021.

[6] Guido van Rossum, Jukka Lehtosalo, Lukasz Langa. “PEP 484 — Type Hints. Available at
https://www.python.org/dev/peps/pep-0484/, , accessed 27/03/2021.

[7] Jukka Lehtosalo et al. Mypy: Optional Static Typing for Python. Available at
https://github.com/python/mypy, accessed 27/03/2021.

[8] Pytype: A static type analyzer for Python code. Available at https://github.com/google/pytype, accessed
27/03/2021.

[9] Sam Tobin-Hochstadt, Vincent St-Amour et al. The Typed Racket Guide. Available at https://docs.racket-
lang.org/tsguide/index.html, accessed 27/03/2021.

[10] D. Boulytchev. Lama language specification v. 1.10. Available at https://github.com/JetBrains-
Research/Lama/blob/1.10/lama-spec.pdf, accessed 27/03/2021.

[11] R. Rivest. S-Expressions., 4/05/1997. Available at http://people.csail.mit.edu/rivest/Sexp.txt, accessed
29/03/2021.

[12] Amal Ahmed, Dustin Jamneret al. Theorems for free for free: parametricity, with and without types.
Proceedings of the ACM on Programming Languages, vol. 1, issue ICFP, 2017, Article 39, 28 p.

74

Kpsruranosud B.C. Jlokann3osaHHOe IPHMEHEHNE YacTHYHOM THIM3auu. Ipyowr UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 61-76.

[13] Jack Williams, J. Garrett Morris, and Philip Wadler. The root cause of blame: contracts for intersection
and union types. Proceedings of the ACM on Programming Languages, vol. 2, issue OOPSLA, 2018,
Article 134, 29 pages.

[14] P. Wadler. A Complement to Blame. In Proc. of the 1st Summit on Advances in Programming Languages
(SNAPL 2015), 2015, pp. 309-320.

[15] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems. Transactions of
the American Mathematical Society, vol. 74, no. 2. 1953, pp. 358- 366.

[16] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002, 648 p.

[17] Giuseppe Castagna, Victor Lanvin et al. 2019. Gradual typing: a new perspective. Proceedings of the ACM
on Programming Languages, vol. 3, issue POPL, 2019, Article 16, 32 p.

[18] Karla Ramirez Pulido, Jorge Luis Ortega-Arjona et al. Gradual Typing Using Union Typing with Records.
Electronic Notes in Theoretical Computer Science, vol.354, 2020, pp. 171-186.

[19] Yusuke Miyazaki, Taro Sekiyama, and Atsushi lIgarashi. 2019. Dynamic type inference for gradual
Hindley—Milner typing. Proceedings of the ACM on Programming Languages, vol. 3, issue POPL, 2019,
Article 18, 29 pp.

[20] V. Kryshtapovich. GraduLama source code Available at https://github.com/kry127/Lama/tree/gradulama,
accessed 27/03/2021.

MHdopmaumna o6 aBTopax / Information about authors

Buxrtop Cepreesuu KPBILIITAIIOBUY, cryaeHT MaructpaTypsl BTOporo Kkypca. Hayunbie
MHTEPECHI: CHCTEMBI THIIOB, 0a3bl JaHHBIX.

Viktor Sergeevich KRYSHTAPOVICH, second year master's student. Research interests: type
systems, databases.

75

Kryshtapovich V.S. Localized Lama Gradual Typing. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 61-76.

76

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-6 tocl%

HTTP-Request Classification in Automatic Web
Application Crawling

A.V. Lapkina, ORCID: 0000-0002-7249-7672 <amiriya@seclab.cs.msu.ru>
A.A. Petukhov, ORCID: 0000-0002-1427-2440 <petand@seclab.cs.msu.su>
Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. The problem of automatic requests classification, as well as the problem of determining the routing
rules for the requests on the server side, is directly connected with analysis of the user interface of dynamic
web pages. This problem can be solved at the browser level, since it contains complete information about
possible requests arising from interaction interaction between the user and the web application. In this paper,
in order to extract the classification features, using data from the request execution context in the web client is
suggested. A request context or a request trace is a collection of additional identification data that can be
obtained by observing the web page JavaScript code execution or the user interface elements changes as a result
of the interface elements activation. Such data, for example, include the position and the style of the element
that caused the client request, the JavaScript function call stack, and the changes in the page's DOM tree after
the request was initialized. In this study the implementation of the Chrome Developer Tools Protocol is used
to solve the problem at the browser level and to automate the request trace selection.

Keywords: request classification; application crawling; dynamic web application; Chrome DevTools

For citation: Lapkina A.V., Petukhov A.A. HTTP-Request Classification in Automatic Web Application
Crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 77-86. DOI: 10.15514/ISPRAS-2021-
33(3)-6.

Knaccudumkauma HTTP-3anpocoB K cepBepy B 3agaye
aBTOMaTU4yecKoro obxona coBpeMeHHbIX BEO-NpuUoXxeHum

A.B. Jlankuna, ORCID: 0000-0002-7249-7672 <amiriya@seclab.cs.msu.ru>
A.A. Ilemyxog, ORCID: 0000-0002-1427-2440 <petand@seclab.cs.msu.su>
Mockogckuii 2ocydapcmeennulii yHugepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mockea, Jlenunckue eopul, 0. 1

AHHoOTanus. 3ajada aBTOMaTHIECKON KJIacCH(PUKAUK 3aIIPOCOB MPIIIOKEHHS, a TAKOKE 331a4a OTPEIeTeHHs
TpaBHJ MapUIpyTH3alliM 3alpoCcOB HAa CEpBEpe HANpsSMYIO CBs3aHA C AaHAJIM30M II0Jb30BATEIHCKOTO
nHTepQeiica IMHAMHYIECKNX BeO-CTPAHUI M MOXET OBITh pelleHa Ha ypoBHe Opaysepa, MOCKONBKY OH
COZICPIKUT MOJHYI0 HH(OPMALIHMIO O BO3MOXKHBIX 3aIPOCax, BO3HUKAIOILIMX MPU B3aUMO/ICHCTBHH ITOJIb30BaTEIIs
C Ka)XIO0H 13 CTpaHuLl BeO-NpuiiokeHns. B nanHO# paboTe 11t pelieHns MOCTaBISHHOM 3a1a4u MpeiaraeTcs
UCIIONB30BaTh JlaHHblE W3 KOHTEKCTa BBINOJHEHUS 3ampoca B BeO-KIMEHTE C IEJbI0 BBLACICHU
JIOTIOJTHUTEIIBHBIX IPU3HAKOB [T Kiaccudukannu 3arpocoB. [Ipi 3ToM B KauecTBe KOHTEKCTa BOSHUKHOBEHHUS
WM TPAcChl 3alpoca PacCMaTPHUBAETCS COBOKYIHOCTH JOMOTHUTENBHBIX HICHTH(HUKAMOHHBIX JAHHBIX,
KOTOpBIE MOKHO ITOJy4HTh, HaOII0/1ast 32 BBIMOJIHEHHEM JavaSCript-ko/ia Ha BeO-CTpaHHUIIE HITH 38 H3MCHEHHEM
9JIEMEHTOB TOJIL30BATENBCKOT0 HHTEpdelica B pe3ysbTaTe akTHBalUK MHTepEHCHBIX dieMeHToB. K Takum
JITAaHHBIM, HallpUMep, MOKHO OTHECTH IIOJ0KEHHE U CTUJIb JIEMEHTA, BBI3BABIIEIO KIMEHTCKUN 3aIIpoC, CTEK

77

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

BbI30BOB (yHKImi JavaScript u usmenernne 8 DOM-zmepeBe cTpaHuibl mocie 3ampoca. B pamkax maHHOI
paboTHI U1 aBTOMATU3ALMHU BBIIEJICHHUS TPACC 3allPOCOB U MX HOCIIEAYIONIei KiIacCUu(pUKaLU UCTIOIb3yeTCs
peanuzanust npotokoia Chrome DevTools.

KuoueBble ciioBa: kiaccH(UKalUs 3alpocoB; JUHAMUYECKHE BEO-IPUIOKCHHS; aBTOMATHYECKU 00X0[
npritoxeHuit; mporokos Chrome DevTools.

Jas nurupoBanus: Jlankuna A.B., [leryxoB A.A. Knaccuduranus HTTP-3anpocoB k cepBepy B 3ajaue
aBTOMaTH4ecKoro oo6xoxa coBpeMeHHbIX BeO-mpunoxxkenuid. Tpyast UCIT PAH, Tom 33, Bem. 3, 2021 1., c1p.
77-86 (na anrmiickoM s3bike). DOI: 10.15514/ISPRAS-2021-33(3)-6.

1. Introduction

The problem of classifying the requests from a web application client to a server and correlating
them with application functions most often arises while analyzing applications using the black box
method [1]. In the case of automated web application testing, the first step is collecting information
about it. The structure of the application, its functions, input parameters, and types of requests are
investigated. To collect this information, it is required to solve the problem of navigating the web
application interface [2] — to find control elements automatically and activate them in order to cause
client-server interaction.

To make sensible decisions in the navigation process, it is necessary to determine the results of
triggering an action in the web interface: what HTTP request will be sent to the server, which
function of the application will be executed, and how the state of the web application will change.
Since modern web interfaces are built with HTML and JavaScript technologies, the problem of
navigating the application is reduced to analyzing the web interface (DOM and its visual
presentation) and Javascript code. The latter implements the logic for the user and the server
interaction: it processes user actions in the web interface, sends requests to the server and displays
the results of their execution.

A particular problem in the process of navigating a web application is connected with correlating
outgoing requests with the server-side actions of the web application. In traditional web applications,
functions were uniquely addressed by URLS, so the problem of matching a request to an action on
the server-side was trivial. In modern web applications, especially in single-page applications that
implement the RPC concept (JSON RPC, XML RPC), URL can be the same for all server-side
actions and the name of the function can be passed in the request parameters (see fig. 1). In order to
correlate outgoing requests with the functions of the web application, it is necessary to extract a set
of features from outgoing requests that uniquely identify functions of the web application.

"action": "create",
"entity": "post",

"params"

 wfield: "blogpost",
"title": ""wWeb Crawling”",
"author": ""userl2345"",
~ ""created”": "01-12-2020"
.
}
Fig.1 Example of a POST-request with JSON in the body.
The called function is passed in the action field of the JSON structure.
Modern web applications use the concept of incoming requests routing [3]. To associate an incoming
HTTP-request with a specific function or class in the application code, the developer defines the
request routing rules: a table with predicates for HTTP-requests and function names. To process the
next incoming request, the predicate for functions are calculated and the one that returns true will be
called (the table is looked up from the top to the bottom until the first routing rule is triggered). The

78

Jlankuna A.B., TletyxoB A.A. Knaccuukamus HTTP-3anpocoB k cepBepy B 3aJaue aBTOMaTHIECKOT0 00X01a COBPEMEHHBIX BEO-
npunoxenuit. Tpyost UCI1 PAH, Tom 33, Beim. 3, 2021 1., cp. 77-86.

minimum set of request parameters, which values make the predicate true, will be called the
discriminant for this request.

The set of specific values of the discriminant's parameters, that allow us to classify the request
explicitly, is considered as the request key. In example presented on fig. 3 “action”: “create” pair is
the request key.

For requests with body-parameters in the JSON format, we will consider the ones with Content-
Type: application/x-www-form-urlencoded and take into account not only the name of the
significant parameters, but also the nesting objects degree.

In the paper, sites that use ReactJS library and implement a web interface in accordance with the
framework rules specified in the documentation [4, 5] are investigated. This decision was made as
ReactJS is one of the most popular framework among sites written with JavaScript.

2. Related work

The problem of classifying web application requests consists of two main subproblems. The first
one is connected with a strategy for obtaining a set of outgoing requests of the web application. The
second one is connected with determining a strategy for the inductive extraction of classification
features.

The strategy of building a set of outgoing requests determines the order the application interfaces
would be processed, and the order controls (links, buttons, tabs, scrolling, etc.) implemented in the
graphical interface will be activated. The problem of automatic construction of the outgoing requests
set can be solved with web crawlers using such methods as depth-first crawling, breadth-first
crawling, or random crawling [6]. However, these strategies are ineffective for modern dynamic web
applications [7, 8].

In modern surveys, the use of dynamic analysis of the web applications [8, 9], as well as additional
properties of the web pages is used to solve this problem and to improve the quality of crawling. For
example, they consider using the analysis of the structure of the web page elements and their relative
position, as well as the history of elements crawling [10] or the user interface segmentation [11].
Traditionally, such request data elements as a method, target URL, path and GET- or POST-
parameters are used as features for classifying outgoing requests. However, in order to facilitate the
requests classification, some studies consider additional indicators related to the state of the web
application at the moment the request was initialized. For example, the state of a hierarchical finite
state machine built in the process of navigating the application [12] or the state of the DOM model
of the page [13] is used as such additional features.

3. General design

In this research, the problem of constructing a classifier of outgoing HTTP requests from a web
client to a web application, that allows us to restore the routing model on the server-side of the
application as part of automatic website crawling is solved by developing the algorithm of
classification. The classifier receives a site to crawl as an input. The result of the tool's operation is
a set of discriminants. Their combined values are the key to identify the action on the server-side for
each request.

Automatic forms filling [14] and navigating the internal zone of a web application are not considered
in this paper. The lattest means that if the access to the internal zone of the web application requires
authentication [15] is not considered in this paper.

It was assumed that the context of outgoing requests may contain parameters that can be used as
identification keys of the actions on the server side. If such parameters are found, it is suggested to
use them as additional features for identifying the requests. It was also assumed that it is possible to
build an iterative algorithm for classifying outgoing requests based on the found key parameters
from the context. Since the URL is provided as an input, elements are activated gradually and the

79

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

set of requests is formed iteratively. That is the reason it was decided to select the request features
gradually.

In the next sections a description of the approach, implementation and results of experiments
evaluating the validity of the assumption and the applicability of the approach are situated.

The task of selecting additional features requires a preliminary analytical study of the relations
between user actions and the parameters of the request context. The research is performed for
applications built on the basis of the ReactJS library [16]. The unified concept of programs that use
this framework allows extrapolating the results obtained on the experimental set of sites to other
sites based on this technology.

To establish the dependency between the context and the outgoing requests parameters, it is
necessary to mark up some data manually and analyze the frequency of occurrence of significant
context parameters types. If it turns out that there are such sets of parameters in the context that will
have the same set of values (key), when two identical actions from the web interface are triggered,
and which values would be different, when different actions are triggered, then we assume that there
is a dependency between context parameters and classes of outgoing application requests.

In this paper, such context elements as the DOM state before the request was sent, the DOM state
after the request was sent, the identifier of the DOM element node to which the called event handler
belongs, the style of this element and the call frames array (the stack trace or the list of called
functions with script identifiers and function positions) are examined.

The preliminary experimental reseach consists of several steps. As a first step the same action A is
triggered via two different interface elements on the selected site performing interactions A and A..
Their traces Ty and T, with the sets of parameters DOM_before;, DOM_after;, node_ids, €sss,
callframes; and DOM_before,, DOM_after,, node_id,, css,, callframes; are obtained. Then action
B with trace T3, different from actions A is triggered. After that, the values of the traces Ti, T2 and
T3 are compared. The next step is to determine which parameters from the traces T1 and T, have
coinciding values and which parameters in pairs T1, Tz and T2, T3 have different values. After that
the same comparison is made for other actions on the selected site and on other sites from the sites
list. If results of the experiment show that there is a set of context parameters where with a high
probability the same values are used for the same actions and where different actions result in
different values, then they will be used as additional classification features.

Site list for experimental research was obtained from the Built With list [17] and the top sites of
Coder Academy [18]. To select significant parameters,sites with different user interface complexity
were used: from very complex (airbnb.com, facebook.com) to simpler ones (bbc.com,
bleacherreport.com). The list also included sites with different routing schemes, such as routing by
URL, routing based on query-parameters or routing based on body-parameters of the POST-
requests. These requirements were intended to provide better coverage of various site types used on
the Internet.

The experiment of analyzing dependency between significant context parameters and user actions
was carried out on 20 target sites. The results are presented in Table 1 and Table 2.

Table 1. Percentage of coincidence between actions and context parameters for identical actions

DOM before action DOM after action | nodeid | css | callframes
58% 54% 80% 65% | 96%
Table2. Percentage of difference between actions and context parameters for different actions
DOM before action DOM after action | nodeid | css | callframes
81% 92% 99% 73% | 100%

The experiment results show that the strongest dependency corresponds to the callframes parameter.
In this regard, it was decided to use the callframes array from the request context to classify requests

to the server in addition to such request's attributes as its method, URL, path, query-parameters and
body-parameters for POST-requests.

80

Jlankuna A.B., TletyxoB A.A. Knaccuukamus HTTP-3anpocoB k cepBepy B 3aJaue aBTOMaTHIECKOT0 00X01a COBPEMEHHBIX BEO-
npunoxenuit. Tpyost UCI1 PAH, Tom 33, Beim. 3, 2021 1., cp. 77-86.

To validate the suggested approach, a classification algorithm was composed and tested. It receives
a site for processing as an input, and produces a set of request’s discriminants as an output.

4. Classification Algorithm

The request classification algorithm implements the idea of inductive constructing a set of significant
features. An example of the basic algorithm processing two user events A and B is presented below.
Data structures used:

VP (valuable parameters): a set of significant request parameters. Consists of elements in the
form (param_name: [vall,val2,val3,...]. Initially VP = @.

HP (hint parameters): a set of possibly significant parameters. HP = @.

NVP (not valuable parameters): a set of non-significant query parameters. Initially NVP = @.
AP (all parameters): set of all request parameters. Consists of elements in the form
(param_name: (val_1: counter_1,val_2: counter_2), where param_name is the hame of the
parameter, val_i is the i-th value of this parameter, counter_i is the number of times that the value
of the param_name parameter has been encountered with the value val_i }. Initially AP = @.

RS (request schemes): A set of application request schemes. Each request scheme is a structure
with fields containing the method, hostname, path, callframes, and the names of the get and post
parameters. RS = @.

trace, trace2: the trace of the request. Consists of hostname, path, callframes, query-parameters (if
any) and body-parameters (if any).

P, P2 (parameters): variable to store the parameters of the current request.

counter: requests counter. Initially counter = 0.

Used procedures:

CheckScheme (S): Checks the presence of Scheme S in the RS set. Returns true if schema S is
present in RS, false otherwise (see Algorithm 1).

Data: scheme S, set of all schemes RS
Result: boolean value that indicates if S is present in RS
1 for scheme in RS do

2 if ((hostname in S = hostname 1in scheme) and
(path in S = path in scheme) and (method in S = method in scheme)
then

3 return true;

4 end

5 if (callframes in S = callframes 1in scheme)
then

6 return true;

7 end

8 if ((query-params in S = query-params in scheme)
and (body-params in S = body-params in scheme))
then

9 return true;

10 end

11 return false;

12 end

Algorithm 1: CheckScheme

Technical aspects such as extracting custom events from the web pages for crawling, navigating
between application pages, and triggering custom event handlers, are discussed in the section
Implementation.

The basic logic of the algorithm is presented in Algorithm 2.
81

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86

Data: two custom event handlers A, B received from a given site
for crawling

Result: a set of discriminants for custom events A, B

1 trigger event listener A;

intercept trace;

counter+ = 1;

VP < hostname, path (where hostname, path € trace);

g W N

P « query-params; body-params (where query-params,
body-params € trace);
for param in P do

[e))

7 if ((param in AP) and (param.value = AP.param name.val 1))
then
8 counter i+ = 1
9 else
10 AP « {param:value : 1}
11 end
12 if param in NVP
then
13 remove param from P;
14 end
15 end
16 AP « P;

17 S « hostname, path, callframes, query-params, body-params

18 (where hostname, path, callframes, query-params, body-params € trace);
19 if checkScheme (S) = true

then
20 trigger event listener B;
21 counter+ = 1;

22 repeat steps 4-41;

23 HP < P;

24 trigger event listener A;

25 intercept trace2;

26 else

27 end

28 P2 « query-params; body-params
(where query-params, body-params € trace2);

29 VP « PP2;

30 NVP « (PP2)/(PP2);

31 for param in NVP do

32 remove param from VP;

33 remove param from S;

34 for scheme in RS do

35 remove param from scheme;
36 end

37 end

38 RS « S;

39 trigger event listener B;
40 counter+ = 1;

41 repeat steps 4 -41;
Algorithm 2. Basic classification algorithm

In a general case, the algorithm sequentially processes all activated user events for a given site.
When the work is complete, the number of parameters and their values are recalculated from the set
of all application parameters. In this case, the parameters that had the same value for all processed
requests are moved from the list of significant parameters (if they were there) to the list of
insignificant ones, and are also removed from the request schemes (see Algorithm 3).

82

Jlankuna A.B., TletyxoB A.A. Knaccuukamus HTTP-3anpocoB k cepBepy B 3aJaue aBTOMaTHIECKOT0 00X01a COBPEMEHHBIX BEO-
npunoxenuit. Tpyost UCI1 PAH, Tom 33, Beim. 3, 2021 1., cp. 77-86.

Data: sets AP, VP, NVP, SR and counter variable
Result: a set VP for application requests
1 for param in AP do

2 if (length(param) = 1) and (counter = param.counter)
then

3 remove param from VP

4 remove param from SR

5 NVP <« param

6 end

7 end

Algorithm 3: Algorithm for recalculating the significance of parameters

The output of the algorithm is a set of significant request parameters. In this case, the key from the
values of these discriminants allows the outgoing application request to be uniquely identified.

To validate that the constructed algorithm is applicable, a tool was developed that implements the
suggested classifier. It iteratively constructs the set of outgoing requests for the application and
extracts the classification features.

5. Implementation

The constructed tool automatically performs the following actions in the process of building a set of
outgoing requests in automatic mode:

e collects custom event handlers used on the page;

e activates the handlers obtained in step 1, thus initiating the HTTP request from the client to the
server;

e determines the content of emerging HTTP requests;
o defines the context of emerging requests;
e monitors dynamic changes in the DOM of a web page;

e extracts the discriminants of request taking into account the requests’ context according to the
basic algorithm.

From an architectural point of view, the classifier can be divided into the following logical

components (see fig. 2).

Core
Uses Chrome DevTools
Activates user events
Tradks DOM state

T
Reguest Initialzation

v

Debugger Interceptor
Gets request context Intercepts HT TP-requests and responses

L J

Gat i:arti?E,ati{:-r data

Solwver

Compares traces
Gets diseriminants
Gets insignificant parameters

Fig. 2. Tool components
The core of the classifier is responsible for interacting with the browser and using the Chrome
DevTools protocol. This protocol is a programmable version of the developer's toolkit for Chromium
83

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

browsers. In the study it is used to navigate a web application by automatically activating user events
on a web page, as well as to track the state of the browser context at the time when HTTP-requests
are performed.

Debugger is used to get the context of the HTTP request and extract the callframes for further
processing.

An interceptor is used to intercept requests from the client side of the application, as well as to
obtain request elements such as URL, path, and parameters.

Solver represents the classifier itself. It compares the request traces received from the debugger
and the interceptor. This part is also responsible for making decisions about the significance of the
received features for the classification. It selects discriminants of requests and forms a list of
parameters that are not significant for subsequent classification.

Possible complexity of the parameters' structure must be considered while examining request
elements and their contexts.

For a more convenient representation of data transmitted in JSON format in the current study the
DeepDiff library was used. It allows users to represent data as a set of fields and values, taking

into account nested elements (see fig. 3 and fig. 4).

json_example = {
"name” : "my_usermame",
“first-name” = "My",
"last-name” : "Username”,
"display-name" : "My Username”,
"email” : "user@example.test”,
"password" : {

"value" : "my password"

}

}

Fig. 3. Data in JSON format
"root['display-name’]": 'My Username’
"root['active’": True
"root[last-name’]": "Username’
"root[first-name’": "My’
"root['password’]['value’l" : 'my_password'
"root['email’]”: 'user@example test’
"root['name’]": 'my_username’

ctive” : True,

Fig. 4. Same JSON data after DeepDiff processing

6. Experiments

The implemented classifier was firstly tested manually on 10 sites built with ReactJS. For this
experiment the activation of user events was performed manually through interaction with the web
interface of the application. The requests interception, their contexts selection and subsequent
classification were performed automatically. The analysis of the discriminants extracted during the
classification showed their 100\% completeness. In other words, there were no parameters that have
been mistakenly marked as insignificant based on the classification results. The results of this
experiment support the suggested method of solving the problem and allow proceeding to an
automatic experiment.

To test the classifier in automatic mode, from the constructed set of 100 sites built with ReactJS,
sites using Captcha were excluded. As a result, the final set consisted of 96 sites. The subsequent
analysis of the received discriminants of requests also showed their completeness and confirmed the
possibility of classifying the requests of the web application using their context. Moreover, usage of
callframes helped to classify requests for 73\% of the sites crawled. Therefore, the experiment was

84

Jlankuna A.B., [leryxoB A.A. Knaccudpukauns HTTP-3anpocoB k cepBepy B 3a1aue aBTOMaTHYECKOTO 00X0/1a COBPEMEHHBIX BeO-
npunoxenuit. Tpyost UCI1 PAH, Tom 33, Beim. 3, 2021 1., cp. 77-86.

considered as successful and the suggested approach was verified and showed its applicability in
case of sites, written with React. Nevertheless, to expand the research results to the sites built with
other frameworks, additional experiments are required.

In addition, due to the approach of activating custom events twice, using their context and removing
insignificant request elements, it was possible to reduce the number of distinguished request
discriminants for 52% in comparison with the total number of parameters received. This means that
the number of parameters for fuzzing decreased and therefore the process of the subsequent black
box testing may become more efficient.

This notwithstanding, in the left 48% of parameters that were marked as valuable, there may be
some that were falsely recognized as significant. Nevertheless, the task of identifying was not
considered in this study.

Based on the results of the experiments, the influence of request parts on routing was also calculated.
Their frequency of occurrence is presented on fig. 5.

50
40
30
20
10

hostname query-params

+ gquery-params body-params +
path bhody-params

Fig. 5. Influence of request elements on routing in percents

7. Conclusion

The paper suggests a method for classifying requests of web applications with a dynamic interface.
The experiments show that the suggested method, based on the usage of request context as a source
for additional classification features solves the problem of classifying requests with the same level
of completeness as the naive method that takes into account only the request content. The
constructed classifier helps to reduce the number of insignificant parameters among the
discriminants of the request, which is a positive achievement in the case of using a tool for
determining the parameters of application requests for subsequent black box testing.

Cnucok nutepartypsbl / References

[1] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated black-box web application
vulnerability testing. In Proc. of IEEE Symposium on Security and Privacy, 2010, pp. 332-345.

[2] A.M. Reina-Quintero. Surveying navigation modelling approaches. International Journal of Computer
Applications in Technology, vol. 33, no. 4, 2008, pp. 327-336.

[3] P. Himschoot. Single Page Applications and Routing. In Blazor Revealed. Building Web Applications in
.NET. Apress, 2019, pp. 187-212.

[4] ReactJS official web page. Available at http://www.ReactJs.org, accessed 10.03.2021.

[5] A. Fedosejev. React.js Essentials. A fast-paced guide to designing and building scalable and
maintainable web apps with React.js. Packt Publishing, 2015, 208 p.

85

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

[6] C. Olston and M. Najork. Web crawling. Foundations and Trends in Information Retrieval, vol. 4, no. 3,
2010, pp. 175-246.

[7]1 S.Khalid, S. Khusro, and I. Ullah. Crawling ajax-based web applications: Evolution and state-of-the-art.
Malaysian Journal of Computer-Science, vol. 31, no. 1, 2018, pp. 35-47.

[8] T.'M. HoceeBuu, A.A. IleryxoB. ITouck BXOIHBIX TOYEK [BEO-NPUIIOKCHHH C JIMHAMHYCCKHUM
MOJIb30BaTEILCKUM HHTEepQeiicoM. be3omacHOCTh MH)OPMAMOHHBIX TEXHOJOTHIA, ToM 6, N0.1, 2013 .,
crp. 13-20 / G.M. Noseevich, A.A. Petuhov. Determining Data Entry Points for Javascript-rich Web
applications. IT Security (Russia), vol. 6, no. 1, 2013, pp. 13-20 (in Russian).

[9] T. Pandikumar, Tseday Eshetu. Detecting Web Application Vulnerability using Dynamic Analysis with
Penetration Testing. International Research Journal of Engineering and Technology, vol. 03, no. 10, 2016,
pp. 430-433.

[10] A.A. TleryxoB, H.b. MarioHHH. ABTOMaTHYECKHI 00X0J BEO-NPUIOKCHUH C JIHHAMHYCCKHUM
NoNb30BaTebcKuM HHTepdeiicom. Ilpobmemsl wmHopManmoHHOH Oe3omacHoCcTH. KoMmbroTepHbIe
cucremsl, NO. 3, 2014 r., ctp. 43-49 / A.A. Petuhov, N.B. Matjunin. Automatic crawling of web
applications with dynamic user interface. Information Security Problems. Computer Systems, no. 3, 2014,
pp 43-49 (in Russian).

[11] .C. ToBopkoB. Onrumu3anust 00X0Ja CTPAHHUI[JHHAMHYECKHX BEO-NPHIIOKEHUHM, MOCTPOCHHBIX C
ucnonp3oBanreM 6ubmrorekn React]S. Tesuckr koHdepenunu «Jlomorocos-2018», 2018 r., crp. 1-3 /
1.S. Govorkov. Optimization of crawling pages of dynamic web applications built using the ReactS
library. Abstracts of the conference «Lomonosov-2018», 2018, pp. 1-3 (in Russian).

[12] C. H. Liu, C. J. Wu, and H. M. Chen. Testing of AJAX-based Web applications using hierarchical state
model. In Proc. of the IEEE 13th International Conference on e-Business Engineering (ICEBE), 2016, pp.
250-256.

[13] X. Zhang and H. Wang. AJAX Crawling Scheme Based on Document Object Model. In Proc. of the Fourth
International Conference on Computational and Information Sciences (ICCIS), 2012, pp. 1198-1201.

[14] W.-K. Chen, C.-H. Liu, and K.-M. Chen. A web crawler supporting interactive and incremental user
directives. Lecture Notes in Electrical Engineering, vol. 464, 2017, pp. 64-73

[15] H.Z.U. Khan. Comparative Study of Authentication Techniques. International Journal of Video Image
Processing and Network Security, vol. 10, no. 04, 2010, pp. 9-13.

[16]S. Aggarwal. Modern Web-Development Using React]S. International Journal of Recent Research
Aspects, vol. 5, no. 1, 2018, pp.133-137

[17] Websites using React. Available at https://trends.builtwith.com/websitelist/React, accessed 10.03.2021.

[18] Top 32 Sites Built with ReactJS. Available at https://medium.com/@coderacademy/32-sites-built-with-
reactjs-172e3a4bed81, accessed 10.03.2021.

[19] Thends in JavaScript frameworks. Available at
https://trends.google.com/trends/explore?q=vue.js,react,angular, accessed 10.03.2021

MHcopmauusa o6 aBTopax / Information about authors

Anna BagumoBna JIAIIKWMHA, maructp BMK MI'Y, Beimyck 2021. HayuHbele uHTEpechHI:
6e3011acHOCTh BEO-TIPMIIOKEHNT, OOHApyKEHNE YSI3BUMOCTEH, aBTOMaTHIeCcKast HaBUTaIust 1o BeO-
MPUI0KEHUSAM.

Anna Vadimovna LAPKINA, master's graduate in 2021, CS department, MSU. Research interests:
application security, vulnerability analysis, automatic application navigaton.

Anpapert Anekcanmpoud [IETYXOB. Mmagmmii Hay4dHbIH cocTpyaHUK B JlaGoparopum
HMHTEJUIEKTYalIbHBIX cucTeM KubepoOesomacHocT BMK MI'Y. HayuHble HHTEpECHI: TECTHPOBAHHE
BEO-TPUIIOKEHUI METOI0M YEPHOTO SIUKa, OOHAPY)KEHHE YSI3BUMOCTEH, aHAIHM3 MPOTPaMM.

Andrew Alexandrovitch PETUKHOV, researcher in Cybersecurity Lab, CS department, MSU.
Research interests: black-box testing of web applications, vulnerability analysis, program analysis.

86

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-7 M

High Performance Distributed Web-Scraper

D.S. Eyzenakh, ORCID: 0000-0003-1584-1745 <eisenachdenis@gmail.com>
A.S. Rameykov, ORCID: 0000-0001-7989-6732 <arcane561@gmail.com>
I.V. Nikiforov, ORCID: 0000-0003-0198-1886 <igor.nikiforovwv@gmail.com>
Peter the Great St.Petersburg Polytechnic University
29, Polytechnicheskaya, St.Petersburg, 195251, Russia

Abstract. Over the past decade, the Internet has become the gigantic and richest source of data. The data is
used for the extraction of knowledge by performing machine leaning analysis. In order to perform data mining
of the web-information, the data should be extracted from the source and placed on analytical storage. This is
the ETL-process. Different web-sources have different ways to access their data: either APl over HTTP
protocol or HTML source code parsing. The article is devoted to the approach of high-performance data
extraction from sources that do not provide an API to access the data. Distinctive features of the proposed
approach are: load balancing, two levels of data storage, and separating the process of downloading files from
the process of scraping. The approach is implemented in the solution with the following technologies: Docker,
Kubernetes, Scrapy, Python, MongoDB, Redis Cluster, and CephFS. The results of solution testing are
described in this article as well.

Keywords: web-scraping; web-crawling; distributed data collection; distributed data analysis

For citation: Eyzenakh D.S., Rameykov A.S., Nikiforov 1.V. High Performance Distributed Web-Scraper.
Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 87-100. DOI: 10.15514/ISPRAS-2021-33(3)-7

BbicokonpousBoauTenbHbIN pacnpeaesnieHHbIN Be6-ckpanep

A.C. Diisenax, ORCID: 0000-0003-1584-1745 <eisenachdenis@gmail.com>
A.C. Pametixos, ORCID:\ 0000-0001-7989-6732 <arcane561@gmail.com>
U.B. Huxughopos, ORCID: 0000-0003-0198-1886 <igor.nikiforovw@gmail.com>
Canxm-Ilemepoypeckuii Ilonumexuuueckuii ynueepcumem Ilempa Benuxoeo,
Poccus, Cankm-Ilemepoype, 195251, ya. [lonumexnuueckas, 0. 29

AHHoTanus. 3a mocienHee aecaTuieTHe VIHTEpHET CTal THTaHTCKAM M OOTaTeHIIMM UCTOYHUKOM JAHHBIX.
JlaHHBIE UCTIONB3YIOTCS IS M3BJICUCHUS] 3HAHUH ITyTEM BBIITOTHEHNS MAIINHHOTO aHAT3a. YTOOB! BBIOIHATH
HMHTEJUICKTYaJ bHBIN aHalIW3 JaHHBIX BeO-MH(OPMAINY, NaHHBIE JOJDKHEI OBITH M3BIEYEHBI M3 NCTOYHMKA U
NIOMEIICHbI B aHanuThyeckoe xpaHwiuine. 910 ETL-mpouecc. Pa3Hbie BeO-UCTOYHMKM HMEIOT pa3HbIC
CIOCOOBI IocTyIa K cBOMM AaHHbIM: 1100 API o nporoxony HTTP, nubo napcunr ucxoanoro koqa HTML.
CraTbd NOCBSIEHA NOAXOLY K BBICOKOIIPOM3BOAUTEIFHOMY H3BJICUEHHIO IAHHBIX W3 HMCTOYHHUKOB, HE
umeromux APl mis moctyma k maHHBIM. OTIMYUTENBHBIMH OCOOCHHOCTSMHU IIpEIaraeMoro IOAXOAa
SBJIAIOTCS: OAlaHCHPOBKA HAarpy3KH, IBYXYPOBHEBasl IOJCHCTEMA JAaHHBIX U OTJEIEHHE IpoIlecca 3arpy3Ku
(aitmoB ot mpomecca napcurra. [logxon peann3oBaH B PEMICHHAH CO CIERyIOINMH TexHomorusmu: Docker,
Kubernetes, Scrapy, Python, MongoDB, Redis Cluster u CephFS. Pe3ynbrarhl TECTUPOBaHHS PEIICHHUS TAKKeE
OIIHCAHEI B 3TOI CTaThe.

KiioueBble ci10Ba: BeO-CKpanuHT; BeO-KpayIHHT; PaclpeeieHHbIH cO0p AaHHBIX; PAacIpeAeICHHBII aHaIN3
JaHHBIX

87

mailto:igor.nikiforovv@gmail.com
mailto:igor.nikiforovv@gmail.com

Eyzenakh D.S., Rameykov A.S., Nikiforov I.V. High performance distributed web-scraper. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 87-100

Jdaa uurupoBanms: Diizenax [.C., PameiikoB A.C., Hukudopos W.B. BbICOKOIPOU3BOIUTENBHBIN
pacnpenenenubiii Be6-ckpanep. Tpyast UCIT PAH, tom 33, Beim. 3, 2021 r., ctp. 87-100 (na anriumiickom
si3eike). DOI: 10.15514/ISPRAS-2021-33(3)-7.

1. Introduction

Due to the rapid development of the network, the World Wide Web has become a carrier of a large
amount of information. The data extraction and use of information has become a huge challenge
nowadays. Traditional access to the information through browsers like Chrome, Firefox, etc. can
provide a comfortable user experience with web pages. Web sites have a lot of information and
sometimes haven’t got any instruments to access over the API and preserve it in analytical storage.
The manual collection of data for further analysis can take a lot of time and in the case of semi-
structured or unstructured data types the collection and analyzing of data can become even more
difficult and time-consuming. The person who manually collects data can make mistakes
(duplication, typos in the text, etc.) as far as the process is error-prone.

Web-scraping is the technique which is focused on solving the issue of the manual data processing
approach [1]. Web scraping is the part of ETL-process and is broadly used in web-indexing, web-
mining, web data integration and data mining. However, many existing solutions do not support
parallel computing on multiple machines. This significantly reduces performance, limiting the
system's ability to collect large amounts of data. A distributed approach allows you to create a
horizontally scalable system performance of which can be increased depending on the user's needs.
The article proposes an approach to organize distributed, horizontally scalable scraping and
distributed data storage. Using an orchestration system greatly simplifies the interaction with the
system, and the support of automatic load balancing avoids overloading individual nodes.

2. Existing Web Scraping Techniques

Typically, web scraping applications imitate a regular web user. They follow the links and search
for the information they need. The classic web scraper can be classified into two types: web-crawlers
and data extractors (fig. 1).

Web Data
Crawler Extractor

Fig. 1 Web-scraper structure

A web-crawler (or called a spider, spiderbot) is the first type of data web-scraping. The crawler is a
web robot also known as an Internet bot that scans the World Wide Web typically operated by search
engines for the purpose of Web indexing [2]. The crawling procedure starts with the list of seed
URLs. The program identifies all the links that exist on seed pages and stores them. After that, the
list of all links is recursively visited. This process continues until all URLs will be visited. There are
several types of web-crawlers, but all of them can be divided into a common crawler and focused
crawler.

Focused crawler searches for the most suitable pages according to the topic that is defined by the
user. This goal is achieved by using algorithms of intelligent text analysis. It ensures that web pages
can only be crawled for information related to the specific topic. In the server’s perspective, there
are single machine crawlers or distribution crawlers. The information crawling can be achieved by
dividing into several nodes and their cooperation, which improves the efficiency and performance
of the crawler.

88

Dinzenax [1.C., PameiikoB A.C., Hukudopos U.B. Bricokonpon3BoauTenbHsIil pactpeaeneHHblil BeO-ckpanep. Tpyost UCI1 PAH, Tom 33,
Boim. 3, 2021 r., ctp. 87-100.

The second type of web scraper is a data extractor [3]. The website contains a large amount of
information and the analyst cannot spend a lot of time manually collecting and converting this data
into the desired format. Besides that, a web page can contain a lot of unstructured data that means it
can contain noise or redundant data. Data extractors can easily extract large and unstructured data
and convert them into a comprehensive and structured format. The extraction process starts with
indexing or crawling. In the crawling process, the crawler finds a list of the relevant URLS that the
data extractor will process. In these web pages a lot of junk and useful data is mixed. The data
extractor extracts the needed information from the web-pages. Data extractor contains a lot of
techniques [4] for extraction data from HTML pages.

3. Comparison Analysis of Systems

Here is an overview and comparison of web scraping frameworks for fast scanning any kind of data,
distributed scraping systems for increasing the performance, and orchestration systems.

3.1 Scraping tools

There are various tools for working with web scrapers. They can be divided into three categories:
libraries, frameworks, and desktop or web-based environments.

3.1.1 Libraries

Modern web resources may contain various information. Due to this circumstance, certain flexibility
is required for configuring and implementing web scraping tools. The libraries guarantee access to
the web resource. Most of the library implement the client side of the http protocol, then the resulting
web page is parsed and the data is retrieved using string functions such as regular expressions,
splitting and trimming, etc. [5]. Also, third-party libraries can help with implementing more complex
analysis, for example, building an html-tree and XPATH mappings.

One of the most popular site access libraries is libcurl. It supports the major features of the HTTP
protocol, including SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form-based
upload, proxies, cookies and HTTP authentication. Moreover, it can work with many programming
languages. In Java, the Apache HttpClient package emulates HTTP main features, i.e., all request
methods, cookies, SSL and HTTP authentication, and can be combined with HTML parsing
libraries. Java also supports XPath and provides several HTML cleaning libraries, such as jsoup.
Programs like curl (libcurl) and wget implement the HTTP client layer, while utilities such as grep,
awk, sed, cut and paste can be used to parse and transform contents conveniently.

3.1.2

Desktop applications are implementations of web scrapers that are designed for noncoding
professionals. This kind of web scraper contains a graphical shell that makes it easier to create and
support web robots. Typically, these applications include an embedded web browser, where the user
can navigate to a target web resource and interactively select page elements to extract them, avoiding
any kind of regex, XPath queries, or other technical details. In addition, modules are capable of
generating several kinds of outputs, such as CSV, Excel and XML files, and queries that are inserted
into databases. The main disadvantages of desktop solutions are commercial distribution and limited
API access, which make it difficult to embed these web scrapers into other programs.
Table 1. Comparison of scraping frameworks

Desktop or web application

Feature/

Framework Scrapy PySpider NodeCralwer Apify SDK Selenium
Builtin Data | Customizable CSV, JSON CSV, JSON, | JSON, CSV, | Customizable
Storage XML XML, HTML
Supports

89

Eyzenakh D.S., Rameykov A.S., Nikiforov I.V. High performance distributed web-scraper. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 87-100

Suitable for Yes No Yes Yes No
Broad

Crawling

Builtin Yes Yes No Yes No
Scaling

Support AJAX No Yes No Yes Yes
Available CSS, CSS, CSS, CSS CSS,
Selectors Xpath Xpath Xpath Xpath
Builtin No Yes No Yes No

Interface for
Periodic Jobs

Speed (Fast, Fast Medium Medium Medium Very slow

Medium,

Slow)

CPU Usage Medium Medium Medium Medium High

(Fast,

Medium,

Slow)

Memory Medium Medium Medium High Medium

Usage (High,

Medium, Low)

Github Forks 9000 3600 852 182 6200

Github Stars 39600 14800 5800 2700 19800

License BSD Apache MIT Apache Apache
License License License License

2.0 2.0 2.0

3.1.3 Frameworks

Programming libraries have their limitations. For example, you need to use one library for accessing
a web page, another for analyzing and extracting data from HTML pages. The architecture designing
and the compatibility of the library's checking process can take a significant amount of time.
Frameworks are a complete solution for developing web scrapers. Comparison results of popular
frameworks for implementing web scrapers are presented in the article as well (Table 1).
Comparison is made according to the following criteria. Built-in Data Storage Supports - supporting
types of files or other storage.

Suitable for Broad Crawling — this type of crawler covers a large (potentially unlimited) number of
domains, and is only limited by time or another arbitrary constraint, rather than stopping when the
domain has already been crawled to completion or when there are no more requests to perform.
These are called broad crawls, which are the typical crawlers used by search engines. Speed, CPU
usage, and memory usage can represent system performance. GitHub Forks, GitHub Starts, Last
Update can inform the state of the framework, support and community activity.

3.2 Orchestration and containerization systems

Since our system should support horizontal and vertical scaling, it must support the orchestration
system. The orchestration system will monitor the status of services, distribute the load among the
nodes in the cluster, taking into account the resources of each of these nodes. An orchestration
system is a support for the compatibility of software products that communicate with each other
through remote procedure calls (RPC). There are many solutions on the market today, but some of
them are bound to specific companies. Such systems can impose many different restrictions such as:
territorial limitations, bounded choice of cloud computing service, the chance to be left without data

90

Dinzenax [1.C., PameiikoB A.C., Hukudopos U.B. Bricokonpon3BoauTenbHsIil pactpeaeneHHblil BeO-ckpanep. Tpyost UCI1 PAH, Tom 33,
Boim. 3, 2021 r., ctp. 87-100.

due to any external factors. And so, at the moment, there are the following tools: Kubernetes, Docker
Swarm, Apache Mesos.

Based on the paper [6], we can conclude that the Kubernetes orchestration system has a large
coverage of the required technologies. It is also the de facto standard today, as evidenced by the fact
that it is the only orchestration system that has been accepted into the Cloud Native Computing
Foundation [7]. It is also used by such large companies as Amazon, Google, Intel, etc.

We were also faced with the choice of virtualization or containerization system. Referring to the fact
that Kubernetes can work with virtual machines, we chose containerization, due to it consuming less
resources, which was confirmed by research [8]. Also, Kubernetes in its delivery recommends to
work with containers. Thus, our web scraper will be delivered as a container running Docker.

3.3 Distributed scraping system review

3.3.1 Research

Scrapy does not provide any built-in facility for running spiders in a distributed (multi-server)
manner. However, there are several ways to organize work. Some of the popular solutions are
Frontera, Scrapy Redis, Scrapy Cluster, and Scrapyd.

Frontera is a distributed crawler [9] [10] system. Based on the description of the project, we can say

that the system is a separately distributed web crawler. It is designed to collect a large number of

URLSs as data sources. The system does not have a built-in data extractor and it is not known whether

it is possible to add one. Hence, we can say that the system is intended for other tasks.

Scrapy Redis [11] [12] is a system architecture that supports distributed web-scraping. In the process

of crawling, the Redis database can mark the links that have been already crawled and add to the

queue links that haven't crawled yet, avoiding the repeated crawling problem in the distributed
process. From the Scrapy Redis description follows that Redis database is used as main storage.

Redis, as the main storage, does not satisfy the ACID theorem, namely CD, which carries the

consequences of losing part of the tasks, if the cluster is in an emergency state, the consequences of

the loss of tasks can carry different types of damage, from re-scanning the page, which entails a

decrease in production.

Scrapy Cluster [13] was taken after Scrapy Redis, which offloads Requests to a Redis instance. It

has the same problem with the Redis database. Based on the project description we can find out that

the system does not imply the usage of an orchestration system, this opportunity is provided to the
user. It is a big disadvantage due to the reason that it is not clear how the system will behave when
the basic functions of maintaining the cluster will be launched by the orchestrator. For instance,
operation “liveness check™ could not behave correctly and conflict with internal monitoring of the

system or doesn’t work at all. Scrapy Cluster also uses the Apache Kafka message broker as a

connection between the system components. The parallelism of Kafka lies in the number of sections

in the topic [14]. All data that falls into the topic is balanced between sections. From one section,
following the documentation, only one instance of the application can read data. Several
disadvantages can be distinguished from this:

e Adding new topics will semantically separate the data, which means that the data that has been
already stored in Kafka is not rebalanced internally [15]. This means that if you try to add a new
instance, the spider will slow down the system until all new jobs will be balanced against the
new partitions.

e In the case of Scrapy Cluster, the spiders are bound to the partition, and according to the scrapy
cluster documentation, control signals for the spider can be sent to the partition (stop the
scraping job) [16]. This makes it impossible to add new partitions until the end of the complete
scraping session. Since concerning to the balancing formula in Kafka:

e hash(key) % number _of partition

91

Eyzenakh D.S., Rameykov A.S., Nikiforov I.V. High performance distributed web-scraper. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 87-100

the control signal can be sent to the wrong spider.

e Removing topics from the Kafka is impossible, which can lead to a situation when several dozen
spiders stop in the cluster, the producer (sending the task) cannot rebalance the queue between
the remaining spiders. This can lead to imbalance — overloading one spider and no load on
others.

One of the most popular distributed scraping solutions using the Scrapy framework is Scrapyd [17].

Scrapyd allows you to deploy and manage multiple Scrapy projects using the json API. The wrapper

provides the ability to store a queue in a database, and also allows you to manage several machines

at once. With all the visible advantages, the system has not been without drawbacks. The lack of a

balancing system does not allow the use of a larger number of nodes. When sending a request for

scraping, you must specify the ip address of a specific node and before that make sure that it is not

100% loaded.

3.3.1 Conclusion

After conducting research and analysis of various web scraping tools, it was decided to use the
Scrapy framework. It does not restrict the developer by its license or capabilities and is also used in
many companies [18]. At the same time, it has a convenient architecture for building any web
scraper. A convenient mechanism for adding additional software easily compensates drawbacks of
the framework. Such as support of JavaScript, etc

Considering all of the above, we decided to develop a system that would solve the problems of
existing solutions, allowing programs written in the Scrapy framework to work, and also use the
Kubernetes orchestration system.

4. Methodology

4.1 Overall architecture of our distributed scraping system
Distributed scraper architecture presents 3 functional layers (fig. 2):

User interface layer;

Web scraping layer;

Data storage layer.

(User Interface

| System
Infarmation

Jobs
Assignment

Crawler Mode N| |Crawler Node N| |Crawler Node N

Crawler Crawler Crawler
| Process N | Process N | Process N
T T s == e N =
Storage Storage Storage Storage
Nede N Node N Node N Node N

Fig. 2 Distributed approach for data extraction

92

Dinzenax [1.C., PameiikoB A.C., Hukudopos U.B. Bricokonpon3BoauTenbHsIil pactpeaeneHHblil BeO-ckpanep. Tpyost UCI1 PAH, Tom 33,
Boim. 3, 2021 r., ctp. 87-100.

The user interface layer is responsible for interacting with the end-user, the user can send control
commands to the cluster, receive a response and see the scraping statistics at a given point of time.
The web scraping layer is a layer of distributed web spiders that do not store state by themselves,
that is to say, they receive it from the user interface layer, so they can be multiplied, so this layer is
responsible for all the scraping logic of sites. The data storage layer is responsible for storing all
collected information, which includes texts and media content.

4.2 System design
Fig. 3 shows a detailed diagram of the system operation.

O @9
@@@ @0- @0

Redis

Redis Pod 1

Kubernetes

Fig. 3. System design

4.2.1 Ingress Controller

An ingress controller is an element of the orchestrator infrastructure, the main task of which is to
proxy external traffic to services within the cluster. It also performs other tasks such as SSL
termination and balancing and routing of traffic based on names and URLSs.
Insert reference to the figure, the ingress controller is the entry point to the cluster for the end-user
and, based on the hostnames, redirects requests to a particular environment.

4.2.2 Services

There are three services in our system: Scrapy Coordinator Service, Spider Service, Redis Service.
Pods in the cluster are not permanent, they can be stopped, they can change the IP address, they can
be moved to another element of the cluster (node). Because of this, we faced the problem of
controlled access to pods. Service solves this problem by acting as an abstraction that provides
access to pods, has access sharing mechanisms, and also has mechanisms for discovering all services
that match the conditions. The end-user or program does not need to know the IP address of a
particular pod, he can refer to the domain name (for example crawler.company 1, where crawler is
the generic pod name, and company 1 is the namespace name) and gain access to one of the pods.
Service also balances traffic using the Round-robin method. This algorithm is already built into the
standard delivery of Service Kubernetes and allows you to evenly distribute tasks across all working
nodes.

4.2.3 Scraping Coordinator and Workers

As we saw in fig. 3, the scraping coordinator and workers run in separate containers. Scraping
coordinator working with PostgreSQL [19] database. PostgreSQL works in Master Slave mode,
namely with asynchronous replication, asynchronous replication allows you not to wait for a

93

Eyzenakh D.S., Rameykov A.S., Nikiforov I.V. High performance distributed web-scraper. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 87-100

response from the master, thereby not slowing down its work, and replication will not stop if the

slave is disabled, this solution is quite simple and reliable in the sense that this replication mode is

shipped with the database distribution and solves most fault tolerance problems. It works as a storage
of the queue of requests and processed links.

Worker consists of scrapy spiders written in scrapy and HTTP-wrapper. The wrapper is a web server

written in Python with micro-framework Klein. Klein framework based on Twisted — the most

powerful Python asynchronous framework, provides easy integration with Scrapy that uses Twisted
for all HTTP traffic.

The following is the sequence followed by the system when initiating a scraping request from the

perspective of the scraping coordinators and workers.

1) Each scraping coordinator receives a list of URLSs to crawl and the number of workers instances
a user would like to use. The scraping coordinator checks in the PostgreSQL database if the seed
URL has already been processed. If not, the coordinator creates a job that includes the seed URL
and custom settings for the spider. After that, it adds those jobs to a queue along with a user
scrape endpoint of the worker based on the number of received from the user.

2) The scraping coordinator pops jobs from the queue and passes them to the scraper’s URLS.

3) HTTP-wrapper takes a job, takes settings, and starts Scrapy spider. If a worker is free and
accepts the URL, it sends back an acceptance message. If it is busy and has no free threads to
handle the request, it replies with a rejected message. The scraping coordinator adds those URLS
for which it received a rejection message, back into the queue.

4) Spider scrape data and send it to the Redis cluster. If the user has enabled the deep scraping
function, extracts all the child URLs (HREF elements in the web page) and passes them to the
scraping coordinator.

4.2.4 Scrapy Spider

It is a standalone spider program using the Scrapy framework. Has ample opportunities, such as:
JavaScript processing. Since most pages have dynamically generated content these days, it is no
longer enough to just browse static pages. If this factor is not taken into account, a large amount of
data can be lost during screening. Scrapy in the standard delivery cannot work with dynamic content.
But there is a possibility of connecting additional modules — headless web browsers

Supports processing web pages with pagination. Unlike traditional search engines, which write every
next page to the seed URL queue. This can lead to high code interfacing, poor readability, and spider
startup costs. Using Scrapy’s system call-back mechanism as a bridge, URL queue creation and
content crawling operation are performed separately, which solves the shortcomings of traditional
crawlers [20].

The system also can use middleware to dynamically change IP proxy, as well as the User-Agent
value. All this significantly reduces the chance of blocking by a web resource.

4.2.5 Redis-Cluster

A memory database is needed to quickly save results, thereby blocking save operation minimizes
waiting on the part of the scraper, increasing its performance. Redis Cluster acts as an intermediate
caching layer, it provides fast storage of information, since all data is stored in RAM. Spiders do not
stand idle waiting for information to be saved, this is important because the write speed in distributed
file systems is rather low [21]. Redis stores information primarily as a dictionary, that is, on a key-
value basis. The key is the site URL, and the value is the result of scraping in the form of a JSON
file.

94

Dinzenax [1.C., PameiikoB A.C., Hukudopos U.B. Bricokonpon3BoauTenbHsIil pactpeaeneHHblil BeO-ckpanep. Tpyost UCI1 PAH, Tom 33,
Boim. 3, 2021 r., ctp. 87-100.

4.2.6 Save Worker

Save Worker performs the task of post-processing information. It scans keys in Redis at a certain
frequency. After the information reaches the desired size (recommended 4+ Gb [21]) or is not
updated, it starts downloading information to itself and simultaneously deleting data from Redis.
After that, it starts scanning the scraping result, looking for certain marks in it in order to load the
missing files into a distributed file storage. Thus, the spiders unload the waiting time for
downloading large files with an indefinite download time. After that SaveWorker saves all results
to the database with one request.

4.2.7 MongoDB

MongoDB [22] is well adapted to our problem. It is a document-oriented database management
system and does not require a description of the schema and tables.

MongoDB has the ability to scale horizontally.

4.2.8 CephFS

Itis a software-defined distributed file system that can scale flexibly to store petabytes of data. Ceph
is able to replicate data between nodes, as well as balance the load between them. When a node fails,
Ceph can self-heal without downtime, thereby improving system availability. Ceph offers 3 types
of interface for interacting with storage, a POSIX compatible [23] file system, an S3 storage and a
block device, thus providing higher compatibility with already written software.

4.2.9 Sharing resources between users

To restrict manual cluster management, unique user environment settings are specified. After that,
they are automatically added to the declarative description of the cluster configuration file. This file
is stored alongside the project output in YML format in the Git [24] repository.

The system supports resource sharing using the tools provided by the orchestration system, namely
namespace and ingress controller. Ingress controller redirects the user to a particular namespace,
according to the URL. The software located in one namespace does not have direct access to the
resources of another namespace, just as each namespace can be allocated quotas for processor time
and the amount of RAM.

5. Approbation and Testing

In order to verify the effect of distributed crawlers builds an experimental stand. The three servers
use the 64-bit Debian 9 operating system.

5.1 Scalability

Scrapers do not have an internal state, this is confirmed by the fact that the coordinator transfers the
state to each individual scraper and does not store the subsequent state, but writes it to the in-memory
database and to the coordinator, therefore such a system scale well horizontally.

5.2 Chaos monkey testing

Chaos monkey is a set of software tools that allows you to simulate crashes on a live system. It analyzes
the system for all its critical components and disables them in different sequences. This allows you to
observe the actions of the system during emergency operation, as well as identify critical points of the
system. During testing, a situation occurred when, in aggressive mode, the testing software disabled both
the Master and Slave PostgreSQL servers.

95

Eyzenakh D.S., Rameykov A.S., Nikiforov I.V. High performance distributed web-scraper. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 87-100

5.3 System speed test

The first experiment examines the overall speed of the system. For this, the Scrapy project was developed
and deployed in the system, data collection takes place within a single website. The main database for
storing data is the MongoDB database management system based on CephFS distributed file storage.
Text data is stored as JSON files, images and other data are downloaded directly to file storage.

Testing was carried out for 5 hours, the same number of seed-URLs were chosen as input parameters,
which makes it possible to ensure that the web crawler will follow the same route from the links. The
performance test results are presented in the table. Each node ran 5 instances of Scrapy. This value was
chosen empirically based on the load on the systems, and also on the network.

Table 2. Result of performance test

Time/h One Three Five
(Single node) Pages 6650 19267 31920
Elements 77200 223 880 370 560
(Two-node) Pages 11970 34114 58 653
Elements 131500 368 200 631 200
(Tree-node) Pages 15960 46 922 76 927
Elements 257000 724 740 1259 300

It can be seen by reproducing the above experiments (table 2) that the data acquisition experiment results
of the distributed scraping shows that the efficiency of a node crawling is lower than that of two nodes
crawling at the same time. Compared with the stand-alone spider, it can get more pages and run more
efficiently.

5.4 Balancing test

Since the system contains several fail-safe elements and has the ability to distribute the load, its stability
should be checked.

At first, the work of the system for distributing the load on the nodes was checked. The launch was carried
out on 100 seed URLs, which contain tabular data, text, as well as data stored in various types of files.

During the scanning process, the crawler worked in a limited wide scan mode, that is, it could click
additional links within the same domain.

Loading node 1

- MMM AN

precent

[1me in minutes

Fig. 4. Loading node Nel

Testing was carried out within 5 hours. During testing, there were no emergencies.

On the graphs of the load of nodes (fig. 4-6), we can see that the balancer copes well with its task; the
system is working quite stably, there are no strong drawdowns and spikes in performance.

96

Dinzenax [1.C., PameiikoB A.C., Hukudopos U.B. Bricokonpon3BoauTenbHsIil pactpeaeneHHblil BeO-ckpanep. Tpyost UCI1 PAH, Tom 33,
Boim. 3, 2021 r., ctp. 87-100.

Loading node 2

Loading in precent
»

20

Time in minutes

Fig. 5 Loading node No2

Loading node 3

AN A T

precent

Loading in

I'ime 1n minutes

Fig. 6 Loading node Ne3

Table 3. Sability test

Time/h One Two Three Four Five
Pages 15343 14903 16013 14850 15025

On the table 3, we can see that the number of collected items for each hour is almost the same. This

fact shows the stability of the system. This is facilitated by the work of the balancing algorithm,
which allows not to overload the system nodes and the optimal load.

6. Conclusion

As part of the work, the following work has been done:

e Classification of information extraction solutions has been introduced,;

e Areview of existing distributed web scrapers implementations has been conducted,;
e A comparative analysis of the considered solutions is carried out.

In the course of the comparative analysis, deficiencies were found in existing solutions, namely, the
lack of an orchestration system, problems with horizontal scalability implementations, and
deployment of applications.

An architecture has been proposed, which is headed by the Kubernetes orchestration system, which
monitors the health of each element of the cluster and shares access to resources.

97

Eyzenakh D.S., Rameykov A.S., Nikiforov I.V. High performance distributed web-scraper. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 87-100

During the analysis of the work of the resulting system, it showed its viability. Reducing the time
required to retrieve data from web resources, connecting additional work nodes to work. And so, the
increased stability of the system due to replication of the data storage, the use of a load balancer,
and an intermediate storage layer in the Redis Cluster.

References

[1] Deepak Kumar Mahto, Lisha Singh. A dive into Web Scraper world. In Proc. of the 3rd International
Conference on Computing for Sustainable Global Development (INDIACom), 2016, pp. 689-693.

[2] Web Cralwer. Available at: https://webbrowsersintrodu ction.com/.

[3] Momin Saniya Parvez, Khan Shaista Agah Tasneem, Shivankar Sneha Rajendra, Kalpana R. Bodke.
Analysis of Different Web Data Extraction Techniques. In Proc. of the International Conference on Smart
City and Emerging Technology (ICSCET), 2018, pp. 1-7.

[4] Anand V. Saurkar, Kedar G. Pathare, Shweta A. Gode. An Overview On Web Scraping Techniques and
Tools. International Journal on Future Revolution in Computer Science & Communication Engineering,
vol. 4, no. 4, 2018, pp. 363-367.

[5] Rohmat Gunawan, Alam Rahmatulloh, Irfan Darmawan, Firman Firdaus. Comparison of Web Scraping
Techniques: Regular Expression, HTML DOM and Xpath. In Proc. of the International Conference on
Industrial Enterprise and System Engineering, 2018, pp. 283-287.

[6] Isam Mashhour Al Jawarneh, Paolo Bellavista et al. Container Orchestration Engines: A Thorough
Functional and Performance Comparison. In Proc. of the 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1-6.

[7] CNCEF certificate. Available at: https://www.cncf.io/certification/software-conformance/.

[8] S. Vestman. Cloud application platform - Virtualization vs Containerization. Student Thesis. Blekinge
Institute of Technology, Sweden, 2017, 45 p.

[9] Distributed Frontera: Web crawling at scale. Available at: https://www.zyte.com/blog/distributed-
frontera-web-crawling-at-large-scale/.

[10] Frontera documentation. Available: at https://frontera.r eadthedocs.io/en/latest/.

[11] Scrapy-Redis documentation. Available at: https://scrapy-redis.readthedocs.io/en/v0.6.x/readme.html#.

[12] Fulian Yin, Xiating He, Zhixin Liu. Research on Scrapy-Based Distributed Crawler System for Crawling
Semi-structure Information at High Speed. In Proc. of the 2018 IEEE 4th International Conference on
Computer and Communications (ICCC), 2018, pp. 1356-1359.

[13] Scrapy-Cluster documentation. Available at: https://scrapy-cluster.readthedocs.io/en/latest/.

[14] Kafka documentation. Intro. Available at: https://kafka.apache.org/documentation/#introduction.

[15] Kafka official documentation. Basic_ops_modify_topic. Available: at
https://kafka.apache.org/documentation.html #basic_ops_modify_topic.

[16] Scrapy-Cluster documentation. Core Concepts. Available at: https://scrapy-
cluster.readthedocs.io/en/latest/topics/introduction/overview.html.

[17] Scrapyd documentation. Available at: https://scrapyd.re adthedocs.io/en/stable/.

[18] Official Scrapy framework web-site. List of companies wusing Scrapy. Available at:
https://scrapy.org/companies/.

[19] Regina O. Obe, Leo S. Hsu. PostgreSQL: Up and Running: A Practical Guide to the Advanced Open
Source Database. 3rd Edition, O'Reilly Media, Inc., 2017, 314 p.

[20] Deng Kaiying, Chen Senpeng, Deng Jingwei. On optimisation of web crawler system on Scrapy
framework. International Journal of Wireless and Mobile Computing, vol. 18, no. 4, 2020, pp. 332-338.

[21] Jia-Yow Weng, Chao-Tung Yang. Chih-Hung Chang. The Integration of Shared Storages with the
CephFS. In Proc. of the 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), 2019. pp. 93-98

[22] Shannon Bradshaw, Eoin Brazil, Kristina Chodorow. Customers who viewed MongoDB: The Definitive
Guide: Powerful and Scalable Data Storage. 3rd edition, O'Reilly Media, Inc., 2019, 514 p.

[23] Abutalib Aghayev, Sage Weil et al. File systems unfit as distributed storage backends: lessons from 10
years of Ceph evolution. In Proc. of the 27th ACM Symposium on Operating Systems, 2019. pp. 353-369

98

Dinzenax [1.C., PameiikoB A.C., Hukudopos U.B. Bricokonpon3BoauTenbHsIil pactpeaeneHHblil BeO-ckpanep. Tpyost UCI1 PAH, Tom 33,
Boim. 3, 2021 r., ctp. 87-100.

[24] N. Voinov, K. Rodriguez Garzon et al. Big data processing system for analysis of GitHub events. In Proc.
of the 22nd International Conference on Soft Computing and Measurements, 2019, pp. 187-190.

MHdopmauma 06 aBTopax / Information about authors

Henuc Cepreesuy DU3EHAX, crynent. OOnacTb MHTEpPECOB: TEXHOJOIMH KOHTEHHEpU3aluy,
pacripeiesieHHbIe CHCTEMBI, TapajuiesbHas 00padoTKa JaHHBIX.

Denis EYZENAKH, student. Research interests: containerization technologies, distributed systems,
parallel data processing.

Anton Cepreesuu PAMENKOB, crynent. O0nacTb MHTEPECOB: TEXHOJOTUH cOOpa JaHHBIX,
napajuiesibHas 00paboTKa JaHHBIX, CHCTEMBI PACIIPEEICHHBIX BEIYUCICHHH.

Anton RAMEYKOV, student. Research interests: data collection technologies, parallel data
processing, distributed computing systems.

HUrops Banepresna HUKU®OPOB, x.1.H., noueHT. O01acTh HHTEPECOB: MapajuieinbHas 0opadoTka
JaHHBIX, CHCTEMBI DPACHPENEICHHOTO XpaHEHHsS [aHHBIX, OONbBIINE JAaHHBIEC, BEPHU(PHUKAIMA
MPOTPaMMHOT0 00€CTIEYEHHs, aBTOMATH3AIHSI TECTHPOBAHMSI.

Igor NIKIFORQV, PhD (Computer Science), Assistant Professor. Research interests: parallel data
processing, distributed storage systems, big data, software verification, test automation.

99

Eyzenakh D.S., Rameykov A.S., Nikiforov I.V. High performance distributed web-scraper. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 87-100

100

Tpyowr UCIT PAH, mom 33, evin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-8 tocl%

Power Fx: Low-code Language for Collaboration
Tools

I.A. Voronkov, ORCID: 0000-0001-5620-1002<iliaftk@outlook.com>
S.E. Saradgishvili, ORCID: 0000-0002-1291-1675 <ssarad@ya.ru=>

Peter the Great St.Petersburg Polytechnic University
29, Polytechnicheskaya, St.Petersburg, 195251, Russia

Abstract. The paper provides an overview of the first impression of the language for implementation low code
of approach. About a month has passed since the release date.

Keywords: low-code; collaboration; power platform

For citation: Voronkov I.A., Saradgishvili S.E. Power Fx: Low-code Language for Lollaboration Tools. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 101-108. DOI: 10.15514/ISPRAS-2021-33(3)-8

Power Fx: Low-code fi3blK A4nsi UHCTPYMEHTOB COBMECTHOM paboThbl

HU.A. Boponxog, ORCID: 0000-0001-5620-1002<iliaftk@outlook.com>
C.D. Capaoocuwsuru, ORCID: 0000-0002-1291-1675 <ssarad@ya.ru>

Canxm-Ilemep6ypeckuii Ionumexuuueckuu ynugepcumem Ilempa Benuxoeo,
Poccus, Cankm-Ilemepoype, 195251, ya. Illonumexuuueckas, 0. 29

AHHoTanms. B cratee mpezacTaBieH 0630p MepBOro BIICYATICHUS OT s3bIKa JUTs peanu3anuu moaxona low
code. Co ams pesn3a MPOILIO OKOJIO OJHOTO MECSIIA.

KiroueBble cjI0Ba: aBTOMAaTH3UPOBAHHOE TECTUPOBAHWE, OOECIIeYeHHE KAdecTBa; CTATHUCCKUN aHAIN3
HMCXOIHOIO KOJIA.

Jas uutupoBanus: Bopounkos U.A., Capamxumsuan C.3. Power FX: LOw-code sA3bIK 1711 HHCTPYMEHTOB
coBmectHOM paboTel. Tpyast UCIT PAH, tom 33, Bein. 3, 2021 r., ctp. 101-108 (na anrnuiickom sizeike). DOI:
10.15514/ISPRAS-2021-33(3)-8.

1. Introduction

The IT market is now experiencing a new round of its rapid development. The demand for specialists
in this area remains at least high [1].

According to the rules of the market, the cost of projects and services is growing following demand.
Numerous platforms operating on the principles of low-code and zero-code have become one of the
options for solving problems for automation and digitalization [2]. The general approach in such
solutions is that most of the processes can be represented in the form of a graphical designer that
works in accordance with UML/BPMN. The main feature is that the developer does not need to
think about how interactions occur at the level of data structures, what algorithms are used for
selection, sorting, and how computations are parallelized. Main objective: Implementation of the
business requirement by creating a process state diagram. From a business point of view, this

101

Voronkov |.A., Saradgishvili S.E. Power Fx: Low-code language for collaboration tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 101-108

paradigm is the most effective way to solve a problem, since business users are accustomed to
thinking precisely by the tasks that a particular system must solve.

Unfortunately, at this stage of technology development, we are not able to completely switch to such
technological solutions. The reasons may be different: the inability to completely solve the problem
using only design tools, the lack of specialists with modeling, programming and business experience,
the presence of a large layer of legacy code. Nevertheless, it is worth noting the growth of such
decisions not only in business, but also in the scientific community [3, 4]. Along with the
development of technologies, the question of the place of these solutions in the future is becoming
more acute.

Many owners of large IT companies are promoting the idea that programming and software
development should cease to be a highly specialized area [5]. The main idea is that in the future,
people will use software tools to solve their personalized tasks. To do this, you do not have to get
an education, take special courses. All you need to know is what you want to achieve with the
program and how it can make your life easier. Of course, such ideas may seem utopian and
unrealizable on the horizon of the next 10-20 years but looking back at the history of the
development of the IT industry, we begin to think that all this may happen in the near future [6].

In this article, we provide an overview of an intermediate: a language that can empower people who
are familiar with Excel syntax to develop software.

2. Description

At the beginning, we emphasize that this language is part of the Power platform. This is a relatively
new vision of Microsoft corporation about the business data warehouse as a single point of
connection and storage of data and tools. Together with the Power platform, the Power automate
product demonstrates its development - a workflow designer, partly the successor to SSIS,
SharePoint workflow engine. Together, these tools are able to close most of the tasks of automating
enterprise activities.

To enhance the ability to develop using third-party technologies and programming languages,

Microsoft introduced the Microsoft Graph API [7]. Microsoft Graph is the gateway to data and

intelligence in Microsoft 365. It provides a unified programmability model that you can use to access

the tremendous amount of data in Microsoft 365, Windows 10, and Enterprise Mobility + Security.

Use the wealth of data in Microsoft Graph to build apps for organizations and consumers that interact

with millions of wusers. The Microsoft Graph APl offers a single endpoint,

https://graph.microsoft.com, to provide access to rich, people-centric data and insights in the

Microsoft cloud, including Microsoft 365, Windows 10, and Enterprise Mobility + Security. You

can use REST APIs or SDKs to access the endpoint and build apps that support Microsoft 365

scenarios, spanning across productivity, collaboration, education, people and workplace

intelligence, and much more.

Microsoft Graph also includes a powerful set of services that manage user and device identity,

access, compliance, security, and help protect organizations from data leakage or loss. Microsoft

Graph connectors (preview) work in the incoming direction, delivering data external to the Microsoft

cloud into Microsoft Graph services and applications, to enhance Microsoft 365 experiences such

as Microsoft Search. Connectors exist for many commonly used data sources such as Box, Google

Drive, Jira, and Salesforce. Microsoft Graph data connect provides a set of tools to streamline secure

and scalable delivery of Microsoft Graph data to popular Azure data stores. The cached data serves

as data sources for Azure development tools that you can use to build intelligent applications.

Three key traits of Power Fx:

o The future of programming is open. Microsoft has embraced the pace of open innovation that has
accelerated the adoption of languages like C# and Typescript. With Power Fx. Microsoft will
open-source Power Fx, making the language available for open contribution by the broader
community on GitHub.

102

Boponxos M. A., Capamkumsuau C.D. Power FX: Low-code s3bIK [U1st HHCTPYMEHTOB COBMECTHOM paboTsl. Tpyowt MCII PAH, Tom 33, BbImL.
3,2021 r., ctp. 101-108

e Power Fx is based on Microsoft Excel. Using formulas that are already familiar to hundreds of
millions of users, Power Fx allows a broad range of people to bring skills they already know to
low code solutions. Power Fx becomes a common ground for business users and professional
developers alike to express logic and solve problems.

e Power Fx is built for low code. Power Fx is already the foundation of the Microsoft Power Apps
canvas.

2.1 Data types [8]:

e Boolean. A true or false value. Can be used directly in If, Filter and other functions.Example:
false

e Color. A color specification, including an alpha channel. Example: ColorValue("#102031")

e Currency. A currency value that's stored in a floating-point number. Example: 333

e Date. A date without a time, in the time zone of the app's user. Example: Date(2021, 5, 16)

o DateTime. A date with a time, in the time zone of the app's user. Example: DateTimeValue("May
21,2019 11:00:09 PM™)

e GUID. A Glaobally Unique Identifier. Example: GUID()
e Hyperlink. A text string that holds a hyperlink. Example: make.powerapps.com

¢ Image. A Universal Resource Identifier (URI) text string to an image in .jpeg, .png, .svg, .gif, or
other common web-image format.

e Media. A URI text string to a video or audio recording.

¢ Number. A floating-point number. Example: 8.903e121

e Option set. A choice from a set of options, backed by a number. This data type combines a
localizable text label with a numeric value. The label appears in the app, and the numeric value
is stored and used for comparisons. Example: Thisltem.OrderStatus

e Record. A record of data values. This compound data type contains instances of other data types
that are listed in this topic. More information: Working with tables.

e Record reference. A reference to a record in an entity. Such references are often used with
polymorphic lookups.

e Table. A table of records. All of the records must have the same names for their fields with the
same data types, and omitted fields are treated as blank. This compound data type contains
instances of other data types that are listed in this topic. More information: Working with tables.

e Text. A Unicode text string. Example: "Hello, World"

e Time. A time without a date, in the time zone of the app's user. Example: Example: Time(12,
13,35)

e Two option. A choice from a set of two options, backed by a boolean value. This data type
combines a localizable text label with a boolean value. The label appears in the app, and the
boolean value is stored and used for comparisons.

This set of types allows you to store business information of any complexity. Expansion of

primitives is planned to support translation of types from one to another.

2.2 Working with datasets

Power Fx supports the If / else construct, but first-time users of this tool may be confused by the
lack of a For loop. We tend to attribute this semantic idea to the fast-paced idea of promoting LINQ
expressions [9]. Working with sets is based on the following commands:

e Clear. The Clear function deletes all the records of a collection. The columns of the collection
will remain.Note that Clear only operates on collections and not other data sources. You can use
Removelf(DataSource, true) for this purpose. Use caution as this will remove all records from
the data source's storage and can affect other users. You can use the Remove function to

103

Voronkov |.A., Saradgishvili S.E. Power Fx: Low-code language for collaboration tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 101-108
selectively remove records.Clear has no return value. It can only be used in a behavior formula.
Example: Clear(DataSource).

o ClearCollect. The ClearCollect function deletes all the records from a collection. And then adds
a different set of records to the same collection. With a single function, ClearCollect offers the
combination of Clear and then Collect.

e Delegation. When used with a data source, these functions can't be delegated. Only the first
portion of the data source will be retrieved and then the function applied. The result may not
represent the complete story. A warning may appear at authoring time to remind you of this
limitation and to suggest switching to delegable alternatives where possible. Nevertheless, if it is
necessary to organize a For loop to iterate over the data, we can use the extension mechanism. .
The most common use case for this mechanism can be represented in the form of interaction with
the Microsoft Teams component, where the message acts as a triggering event. Fig. 1
demonstrates a step for triggering an event with receiving/ sending a message to a special channel.

W ©

& =
Fost message in a chat or channel 35

I IMPUTS Show raw inputs

Posl as

Flow bot

Postin

Chat with Flow bot

I QUTFUTS Show raw eutputs >

Message id
1617895619558

Message Link

https://teams.microsoft. con/l /message/19:ceTdacle-2cal-4dfl-bedi
L] F

Fig. 1. Send teams message
In this example (listing 1), we can observe the possibility of traversing the collection with a search
by values from another source. The key feature here is the fact that the data types in collections can
differ in both type and number of values. One of the most common examples is searching on columns
with multiple values (User () AAD) [10].

CountRows (
Filter (
ForAll (

'TestArea.Value,

If(
Value in TAreal.SelectedItems.Value,
{t: 13},
{t: 0}

104

Boponxos M. A., Capamkumsuau C.D. Power FX: Low-code s3bIK [U1st HHCTPYMEHTOB COBMECTHOM paboTsl. Tpyowt MCII PAH, Tom 33, BbImL.
3,2021 r., ctp. 101-108

)y
t =1
)
) >= CountRows (TAreal.SelectedItems.Value),
CountRows (

Filter (
ForAll (
Product.Value,
If(
Value in ProductFilterChoice.SelectedItems.Value,
{x: 1},
{x: 0}

)
x =1
)
) >= CountRows (ProductFilterChoice.SelectedItems.Value)
Tf(
!TsBlank (CommentInput),
Patch (
TEST Comments,
Defaults (TEST Comments),
{
TEST Comments ID BP: displayItem.ID,
TEST Comments Comment: CommentInput.Text,
Title: CommentInput.Text,
TEST Comments User: {
'@odata.type':
"#Microsoft.Azure.Connectors.SharePoint.SPListExpandedUser",
Claims: "1:0#.f|membership|" & Lower (User () .Email),
Department: "",
DisplayName: User () .FullName,
Email: User () .Email,
JobTitle: ".",
Picture: "."

)i
Collect (
Comments,
{
Title: CommentInput.Text,
Created: Now(),
TEST Comments User: {
'@odata.type':
"#Microsoft.Azure.Connectors.SharePoint.SPListExpandedUser",
Claims: "1i:0#.f|membership|" & Lower (User () .Email),
Department: "",
DisplayName: User () .FullName,
Email: User () .Email,

JobTitle: ".",
Picture: "."
}
}
) ;UpdateIf (
TestSPCollection,

ID = displayItem.ID,
{

105

Voronkov |.A., Saradgishvili S.E. Power Fx: Low-code language for collaboration tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 101-108

Number of Comments: CountRows (Comments)

}
)

Reset (CommentInput) ;

)

collection originalStatuses = ["New", "Pending", "Complete"]

ForAll (

// loop through the original collection

collection originalStatuses,

// copy each one to a new collection

Collect (

collection indexedStatuses,

// create an object with the value (or other props) and an index
{

Value: Value,

// the index starts at 0 and increments as each item is copied
Index: CountRows (collection indexedStatuses)

}

)

)

collection indexedStatuses = [

{Value: "New", Index: 0},

{value: "Pending", Index: 1},

{Value: "Complete", Index: 2}

]

Listing 1. Traversing a collection

3. Interim results of the research

In this paper, we have described the main features of the language and ways to expand the
functionality. To automate tasks in enterprises, this language is well used, and there is also a practice
of reusing components: connectors, XML code. To compare the speed of delivery development, we
plan to implement an experiment on the implementation of typical tasks using this language. On a
specific example of updating the structure of a multiple field with users and their profiles, the
language, as well as the low-code approach, showed excellent results.

References

[1] Rezaee Jordehi. Dynamic environmental-economic load dispatch in grid-connected microgrids with
demand response programs considering the uncertainties of demand, renewable generation and market
price. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 34, no.
1, 2021, 17 p.

[2] R. Sanchis, O. Garcia-Perales, F. Fraile, R. Poler. Low-Code as Enabler of Digital Transformation in
Manufacturing Industry. Applied Science, vol. 10, no. 1, 2019, 12 p.

[3] M.-L. How. Artificial Intelligence for Social Good in Responsible Global Citizenship Education: An
Inclusive Democratized Low-Code Approach. In Proc. of the 3rd World Conference on Teaching and
Education, 2021, pp. 81-89.

[4] N. Rauschmayr et al. Amazon SageMaker debugger: a system for real-time insights into machine learning
model training. In Proc. of the 4th MLSys Conference, 2021, 13 p.

[5] E. Straschnov. You Shouldn’t Have to Learn How to Code. Available at
https://www.huffpost.com/entry/you-shouldnt-have-to-lear_b_6111914, accessed Apr. 08, 2021.

[6] L. Floridi and M. Chiriatti. GPT-3: Its Nature, Scope, Limits, and Consequences. Minds and Machines,
vol. 30, no. 4, 2020, pp. 681-694.

106

Boponxos M. A., Capamkumsuau C.D. Power FX: Low-code s3bIK [U1st HHCTPYMEHTOB COBMECTHOM paboTsl. Tpyowt MCII PAH, Tom 33, BbImL.
3,2021 r., ctp. 101-108

[7] Overview of Microsoft Graph. Available at https://docs.microsoft.com/en-us/graph/overview, accessed
Apr. 08, 2021.

[8] Microsoft Power Fx. Data types. Available at https://github.com/microsoft/Power-
Fx/blob/main/docs/data-types.md, accessed Apr. 08, 2021.

[9] Y. Bai. Introduction to Language Integrated Query (LINQ). In SQL Server Database Programming with
Visual Basic.NET, Wiley, 2020, pp. 123-213.

[10] T. Shimayoshi, Y. Kasahara, and N. Fujimura. Challenge for Consolidation of Individual Email Services
into a Cloud Service. In Proc. of the ACM SIGUCCS Annual Conference, Mar. 2021, pp. 26-29.

MHdopmauma 06 aBTopax / Information about authors

Wnbs Anexcangposny BOPOHKOB, acniupant. HayuHble uaTepech!: miat$opMbl 17151 COBMECTHOM
padotsr, ETL.

Ilia Alexandrovich VORONKOV, PhD Student. Research Interests: collaboration platforms, ETL.

Cepreii OpukoBuy CAPAJDKUIIBWIIM, xanaunaT TEXHUYECKUX HayK, AOUEHT. Hayunble
HHTEpeChl: 00paboTka MHOTOMEPHBIX CHTHAJIOB, KOMIIEKCHBIC CHCTEMBI.

Sergey Erikovich SARADGISHVILI, Candidate of Technical Sciences, Associate Professor.
Research interests: multidimensional signal processing, complex systems.

107

Voronkov |.A., Saradgishvili S.E. Power Fx: Low-code language for collaboration tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 101-108

108

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-9 tocl%

Method of Performance Analysis of Time-Critical
Applications Using DB-Nets

A.M. Rigin, ORCID: 0000-0003-4081-9144 <amrigin@edu.hse.ru>
S.A. Shershakov, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>

HSE University,
20, Myasnitskaya st., Moscow, 101000, Russia

Abstract. These days, most of time-critical business processes are performed using computer technologies. As
an example, one can consider financial processes including trading on stock exchanges powered by electronic
communication protocols such as the Financial Information eXchange (FIX) Protocol. One of the main
challenges emerging with such processes concerns maintaining the best possible performance since any
unspecified delay may cause a large financial loss or other damage. Therefore, performance analysis of time-
critical systems and applications is required. In the current work, we develop a novel method for a performance
analysis of time-critical applications based on the db-net formalism, which combines the ability of colored Petri
nets to model a system control flow with the ability to model relational database states. This method allows to
conduct a performance analysis for time-critical applications that work as transactional systems and have log
messages which can be represented in the form of table records in a relational database. One of such applications
is a FIX protocol-based trading communication system. This system is used in the work to demonstrate
applicability of the proposed method for time-critical systems performance analysis. However, there are plenty
of similar systems existing for different domains, and the method can also be applied for a performance analysis
of these systems. The software prototype is developed for testing and demonstrating abilities of the method.
This software prototype is based on an extension of Renew software tool, which is a reference net simulator.
The testing input for the software prototype includes a test log with FIX messages, provided by a software
developer of testing solutions for one of the global stock exchanges. An application of the method for
quantitative analysis of maximum acceptable delay violations is presented. The developed method allows to
conduct a performance analysis as a part of conformance checking of a considered system. The method can be
used in further research in this domain as well as in testing the performance of real time-critical software
systems.

Keywords: performance analysis; time-critical applications; db-nets; FIX protocol; software modeling;
software testing

For citation: Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications
Using DB-Nets. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 109-122. DOI: 10.15514/ISPRAS-
2021-33(3)-9

Acknowledgements. This work is supported by the Basic Research Program at the HSE University.

109

mailto:amrigin@edu.hse.ru
mailto:sshershakov@hse.ru

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

MeToa aHanu3a Nnpou3BOAUTENBHOCTU KPUTUYHbIX MO BPEMEHU
npunoxeHun ¢ nomouwbio DB-Nets

A.M. Puzun, ORCID: 0000-0003-4081-9144 <amrigin@edu.hse.ru>
C.A. llepwaros, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>

Hayuonansuwiil uccnedosamensvckuil ynusepcumem « Bvicwias wikona skxoHomukuy ,
101000, Poccus, . Mockea, yn. Macuuykas, 0. 20.

AHHoTanus. B HacTosIee BpeMs OONBIIMHCTBO KPUTHYHBIX 110 BPEMEHN OM3HEC-IIPOLIECCOB BBIOIHSIOTCS C
HCIIOJIb30BAHUEM KOMIIBIOTEPHBIX TEXHOJIOTHH. B KauecTBe mpumepa MOMKHO PacCMOTPETh (PUHAHCOBBHIC
[POLIECCHI, BKIIOYas TOPrOBIO Ha (OHAOBBIX OHpKax, HCIOJB3YIOIIHE TaKHE MPOTOKOJBI Iepenadyn
unpopmaruu, kak Financial Information eXchange (FIX) Protocol. OmuH 13 OCHOBHBIX BBI3OBOB,
BO3HHKAOIINX OTHOCHTEIBFHO TaKHX IIPOLIECCOB, — 3TO MOACPIKKA HAMITYYIICH TPOU3BOAUTEIBHOCTH, TaK KaK
nmo0as 3a/iepiKKa, He YCTAHOBIICHHAS CrienuduKaIel, MoXeT PUBECTH K 00IbIINM (DMHAHCOBBIM IOTEPSIM U
uHoMy ymiepOy. CrenoBarenbHO, HEOOXOIMMO MPOBOAUTH AHAIM3 IPOM3BOAMTENBHOCTH KPHUTHYHBIX IO
BpEMEHH CHCTEM U TpHWIOXKeHui. B maHHOW paboTe TMpemIoKeH HOBBIM METOJ [UId aHaiuu3a
MPOM3BOIUTENBHOCTH KPUTUYHBIX [0 BPEMEHM MPHIOKEHHH, OCHOBaHHBIN Ha (opmammsme db-net. Dtor
(bopMani3M MO3BOJSIET MOJCIHPOBATH MOTOK YIPABJICHHS CHCTEMOW C HCIOJNB30BAHHEM LIBETHBIX CeTel
IMetpw, a TakKe MOJICIMPOBATh COCTOSHUS PEISILHOHHO#M 6a3bl JaHHBIX. METO/] O3BOJISIET IPOBOANTH aHAIH3
[POU3BOUTEIFHOCTH KPUTHYHBIX [0 BPEMEHH MPUIIOXKEHUH, KOTOpbIe paboTar0T KaK TpaH3aKIHOHHbBIC
CHCTEMBI M CO3JAIOT JIOTH C COOOIICHHSAMH, PEACTABUMBIME B (hOpMe 3amuceil B Tabiuie pessuOHHON 6a3bl
JaHHBIX. [IpIMEpOM TaKMX MPUIIOKEHHUHT SBISETCS KOMMYHHKAIIMOHHAs CUCTEMa JUTsl TOPTOBIM Ha GOHIOBOI
Oouprke, paboTaromias Ha ocHOBe mporokoma FIX. Dta cucrema paccMaTpuBaeTcss B JaHHOW pabore mis
JIEMOHCTPALUH IPHMEHHUMOCTH IIPEIUIOKEHHOTO MeTo1a. B TO e BpeMs CYIECTBYeT MHOXKECTBO MOJOOHBIX
CHCTEM B PA3JIMYHBIX NPEIMETHBIX 00JIACTAX, ¥ MPEUIOKCHHbBIH METO/ MOXKET OBITh TAKXKE MPUMEHEH U IS
aHa/M3a MPOM3BOAUTEIIBHOCTH TakKWX cHCTeM. JIisi TECTUPOBaHHS M anpoOHpOBaHMS METOJa pa3paboTaH
nporpamMMHsIit pototui. OH OCHOBAaH Ha PACIIMPEHHH MPOrPaMMHOI0 HHCTpyMeHTa Renew — cumysistopa
ccputouHbIX cereit [etpu. [IpoToTHN mpoTecTHpOBaH HA Jiore, CoAepKalieM cooOieHus mpotokoia FIX,
NPEOCTABICHHOM pa3pa0OTUYMKOM PEIICHHH [UIsi TECTUPOBAHHS MPOrPAMMHOTO OOECICUCHHsT OJHOW M3
MHpPOBBIX (hOHIOBBIX Oupxk. ITokazaHO MPHUMEHEHHWE METOJa IS KOJIMYECTBEHHOTO aHAllM3a IMPEBBIICHUN
MaKCHMAJIBHO JIOMYCTHMBIX 3aJIepXKEK MEXIy COOOIEHHAMU. Pa3paboTaHHBIl METO/] MO3BOJISCT BHIIOJHATD
AQHAJIM3 TPOU3BOJUTEIFHOCTH KaK YacTh IIPOBEPKH COOTBETCTBHSI CBOMCTB CHCTEMBI 33/laHHOW MOJenH
(conformance checking). Metox MoxeT ObITh HCIIOIB30BAH KaK [UIS HAYIHO-HUCCIIEA0BATEIbCKUX LENeH, TaK 1
IUTSL QHATIM3a IPOU3BO/IUTENFHOCTH PEATbHBIX HH)OPMAIHOHHBIX CHCTEM.

KiwueBble ci10Ba: aHaIU3 MPOU3BOIUTEILHOCTH; KPUTHYHBIC IO BPEMEHH MpHIoxeHus; db-nets; mpoToKoI
FIX; monenuposanue [10; Tectuposanue I10.

Jasi uurupoBanusi: Purun A.M., lllepmakoB C.A. Meron aHanu3a NpOU3BOAUTENLHOCTH KPUTHUYHBIX IO
BpeMeHH npuioxkenuii ¢ momompsio DB-Nets. Tpyast UICIT PAH, Tom 33, Beim. 3, 2021 r., ctp. 109-122 (na
anrmuiickom si3pike). DOL: 10.15514/ISPRAS-2021-33(3)-9.

BaarogapnocTn. Pa6ora BrmonHeHa B pamkax [Iporpamms!l GpyrnamenTansHbix uecnenoBannii HUY BIID.

1. Introduction

Nowadays, most of time-critical business processes are performed using computer technologies.
Nuclear reactor control, medical equipment control, spaceship control are some obvious examples
of such processes. However, different financial processes including trading on stock exchanges also
can demand strict performance requirements.

In the previous century, trading on stock exchanges was primarily performed through phone calls
and with use of paper-based order books [1]. Working this way did not allow traders to compete for
the best price that is generally offered during very short period. This was the reason of beginning of
automatization of trading on stock exchanges. In order to guarantee compatibility of software
systems of different traders, brokers, and exchanges, there were financial protocols for electronic
communication between trading participants created. Financial Information eXchange (FIX)
110

mailto:amrigin@edu.hse.ru
mailto:sshershakov@hse.ru

Purun A.M., lllepurakoB C.A. Mertox aHanu3a MpoU3BOAUTEIBHOCTH KPUTHYHBIX TI0 BPEMEHH MPUIOKeHHH ¢ oMotsio DB-Nets. Tpyos:
UCII PAH, tom 33, Beim. 3, 2021 r., ctp. 109-122.

Protocol maintained by the FIX Trading Community [2] is one of the most known and widely used
protocols of such type. There exist different approaches to encode messages transferring with the
FIX protocol. In this paper we focus on the FIX TagValue Encoding, which is the main standard of
encoding FIX messages [2].

The FIX protocol allows traders, brokers, and exchanges to create and fill (execute) orders for buying
or selling securities in several milliseconds using electronic communication channels such as
Internet [2]. It is a great driver for competence in the global stock markets, however it creates new
challenges for financial software vendors. One of such challenges is maintaining the best possible
performance. Any unspecified delay may cause a large financial loss for a trader due to the best
price is missed. Such delays may create unequal and unfair conditions for different participants, lead
to local or global economic problems as well as public scandals and reputational problems for the
exchange or some traders or brokers.

Financial protocol-based communication systems are considered in this work to demonstrate
applicability of the proposed method for time-critical systems performance analysis. However, there
are plenty of similar systems existing for different domains, and the method can also be applied for
a performance analysis of these systems.

Any FIX message consists of a set of tag-value pairs [3]. In fact, it means that we can represent these
messages in the form of records of a table in some relational database. Therefore, some methods of
system modeling, which rely on relational database states, can be considered here. The same is valid
not only for messages of the FIX protocol, but for any messages of transactional systems that are
represented as sets of tag-value pairs.

In 2020, we developed a software simulator for the db-net formalism [4] introduced by Montali and
Rivkin in 2017. This formalism is represented by the layer with modified colored Petri net modeling
a control flow of a process system, and two inner layers for working with an attached relational
database modeling a persistent storage [5] as shown in Fig. 1. This simulator is developed as a plugin
for Renew (Reference Net Workshop) software tool which is a Java-based reference net simulator

[6].

control layer |

data logic layer

persistence layer

Fig. 1. The db-net structure [5].

Generally, the lowest layer of the db-net (the persistence layer) is represented by an ordinary
relational database [5]. However, it can be replaced with any other information storage, which is
accessible through a custom relational DML interface that is to be implemented.

One can model a tag-value message sending by using the “insert” database operation, where tags
are represented as attributes of a relational table and values are represented as attributes of a record
in the table. A tag-value message receiving can be modeled similarly using the “select” database
operation.

In the current time, there are some performance analysis research works focused on distributed
software systems such as [7, 8], however performance analysis using db-nets has its advantages for
transactional systems which send and receive messages that are representable in the form of records
in relational tables.

111

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

Firstly, it allows to integrate performance analysis into conformance checking of a system. A

performance property can be considered together with other checked properties of the system to

check all of them simultaneously. Therefore, it allows to abstract away from the performance and to

combine performance analysis of transactional systems with other methods for their verification and

validation, based on Petri nets and their modifications, especially db-nets (e.g., checking safety,

liveness, fairness, and similar properties). Moreover, colored Petri net models, that are automatically

generated from event logs using process discovery algorithms, may be extended with db-net

elements and time constraints, and used for performance analysis.

Secondly, this method allows to apply well-known approaches used in the relational database

domain to the wide set of transactional systems supporting time-critical applications.

All the above provides the motivation for the research.

The purpose of the research is development of a method of performance analysis of time-critical

applications using db-nets.

The objectives of the research are as follows.

1) Developing a method for performance analysis of time-critical applications using db-nets.

2) Developing a software prototype for performance analysis of time-critical application logs using
db-net models.

3) Checking the method by testing the developed software prototype on a test log of FIX messages
provided by a software developer of testing solutions for one of the global stock exchanges.
The rest of the paper is organized as follows. The Section 2 presents the theoretical foundations and
concepts of the work and the developed method. In the Section 3, the developed software prototype
and its testing are described. After this, the main points of the paper are summarized in the

conclusion.

2. Performance Analysis Using DB-Nets

2.1 DB-Nets

The db-net formalism is a modification of the colored Petri net, which allows to model a system
control flow together with relational database states. The db-net consists of three layers: (1) the
control layer, (2) the data logic layer which connects the control layer and the persistence layer
together, and (3) the persistence layer [5]. The scheme of db-net structure is shown in Fig. 1.

The persistence layer allows to store the persistent data and is formally defined by a relational

database schema and constraints that declare the data consistency rules [5].

The data logic layer is defined by two sets: (1) set of queries for retrieving records from a database

in the persistence layer and (2) set of actions for insertion and deletion of records in the persistence

layer database. Each action includes sets of added and deleted facts (records in relational tables) [5].

The control layer allows to model a system control flow and is defined by a colored Petri net with

the following modifications [5].

1) Queries defined in the data logic layer are assigned to places of a colored Petri net in the control
layer. Such places are called view places. View places cannot contain tokens (resources modeled
in a Petri net) such as other places, but they produce new tokens by retrieving data from the
persistence layer through assigned queries.

2) Actions defined in the data logic layer are assigned to transitions of the net in the control layer.
When a transition with the assigned action is fired (executed), the action is performed on a
database in the persistence layer.

3) In addition to traditional Petri net arcs, there exist read arcs and rollback arcs in the db-net
control layer. The former is used for connecting view places with transitions and the latter is
used for defining a flow for a case of rollback of an action due to violation of the data
consistency rules in a database of the persistence layer after performing the action.

112

Purun A.M., lllepurakoB C.A. Mertox aHanu3a MpoU3BOAUTEIBHOCTH KPUTHYHBIX TI0 BPEMEHH MPUIOKeHHH ¢ oMotsio DB-Nets. Tpyos:
UCII PAH, tom 33, Beim. 3, 2021 r., ctp. 109-122.

The db-net control layer’s net and persistence layer’s database schema example for the taxi booking
software system is shown in Fig. 2.

TAXI BOOKING PHONE

1 r
:ll‘.._mi mt | PhooelD)] Ll',,;
| e
PICKUP_ DATA

1

|
’ 8 |

Fig. 2. The control layer’s net and persistence layer’s database schema example for the taxi booking software
system [5].

2.2 Conformance Checking

Conformance checking allows to verify that a considered system satisfies desirable properties
through ensuring that an event log produced by the system fits a designed model [9]. These
properties include safety, liveness, fairness, and similar ones. For example, safety properties
guarantee that the system does not achieve certain undesirable states.

The method proposed in this paper allows to check performance simultaneously with checking other
properties of a system. A performance property is considered in this work as a safety property for
satisfying that a system should not achieve the state where a delay between two messages exceeds a
maximum acceptable one. Therefore, performance can be checked in a process model designed for
checking other properties by extending the model with information about time constraints [9].
Since the db-net formalism extends colored Petri net, it is possible to check all properties using a
db-net if these properties can be checked using a traditional colored Petri net. The performance in
the proposed method is checked using db-net elements.

The set of properties S = {s;, S5, ..., S, }, Where s;, i = 1, n is the i-th checked property, is considered
as an example. Some of these properties may be performance properties. The set of performance
properties is P ={py,ps -, Pm}, Where P CcS. Each performance property
pjj = 1, m contains time constraints in the form of a maximum acceptable delay for pairs of
messages of particular types as specified in the proposed method (the subsection 2.3). Each property
pjj = 1, m such that p; € P is checked by the proposed method using db-nets. Other properties
s;,i = 1,n such that s; € S\ P are checked by other methods utilizing colored Petri nets and db-
nets.

As a result, performance analysis can be conducted as a part of conformance checking of a system,
where performance properties are among of all checked properties. This allows to abstract away
from the performance properties and check all properties simultaneously.

2.3 Method of Performance Analysis Using DB-Nets

The developed method implies analyzing messages sent or received by the application or its modeled
part (request and response messages, respectively) and stored in a log of the application. We analyze

113

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

those messages for which a maximum delay between sent message and received response is
restricted. The method utilizes the db-net formalism.

The method consists of two parts: (1) set of requirements for implementing the method in a software
tool and (2) sequence of stages and steps for using the method after being implemented.

2.3.1 Implementing the Method in a Software Tool

The following set of requirements specifies how the method of performance analysis using db-nets
is to be implemented as a software tool. These requirements extend general principles of the db-net
behavior, which are described in [5].

1) When a request message is inserted in an action assigned to a db-net transition, it should be
stored in the memory (RAM or persistent storage) for further retrieving when the corresponding
response message is retrieved.

2) When a response message is retrieved by a "select" query assigned to a db-net view place and
the connected by a read arc db-net transition contains parameters for performance analysis as
specified in the step 6 of the stage 1 of the method (the Section 2.3.2), the following sequence
of steps is to be executed:

a) The corresponding request message (with the same id attribute value) is to be retrieved
through the specified query from the memory/storage (as specified in the item 1 of the
current set of requirements).

b) If there is no stored corresponding request message, then this sequence is to be stopped and
the token with the response message is to be moved to the places connected by output arcs.

c) The sending timestamps of the request and response messages are to be parsed using a
specified pattern or a regular expression.

d) Adelay that is a difference (in milliseconds) between these two sending timestamps is to be
calculated. If it exceeds the specified maximum acceptable value of a delay, then the
validation is to be considered as failed — information about the id and message type of the
problematic messages is to be displayed or stored in the report (depending on the
requirements and implementation), for the first violation or for each violation (also
depending on the requirements and implementation).

3) If there are several response messages for one request message, only the first response message
is considered.

4) If the simulation is finished (no transitions can be fired — executed) and the validation did not
fail, then such validation is considered as succeeded.

2.3.2 Use of the Method

After implementing the software tool, the method is to be used by following the sequence of steps

divided into three stages, as follows.

Stage 1. Modeling a DB-Net. A db-net that matches a system/a modeled part of a system is to be

modeled using the following steps.

1) A scope of the modeled system is to be defined. It should include considered components of the
system which send request messages (messages sent by the system or its considered component)
and get responses to them (response messages), and considered types of request messages and
corresponding types of response messages. From now on, we will call a modeled system/part
of the system a time-critical application (or just an application).

2) It is necessary to make sure that the application works as a transactional system and satisfies
the ACID (atomicity, consistency, isolation, durability) properties [10], and a log with its
request and response messages can be represented in the form of tables in a relational database.
It means that each message includes a set of tags (attributes) together with their values. Tags
are represented as attributes of a relational table, messages are represented as records of the

114

Purun A.M., lllepurakoB C.A. Mertox aHanu3a MpoU3BOAUTEIBHOCTH KPUTHYHBIX TI0 BPEMEHH MPUIOKeHHH ¢ oMotsio DB-Nets. Tpyos:
UCII PAH, tom 33, Beim. 3, 2021 r., ctp. 109-122.

table, and values are represented as attributes of a record in the table. Types of messages and

parts of the application which do not satisfy these properties, if any, are to be removed from the

scope.

3) A persistence layer of the modeled db-net is to be defined. To do this, a relational database
schema is to be created and populated with necessary tables. The table attributes reflect the tags
of considered request and response messages.

4) A data logic layer of the modeled db-net is to be defined. The «insert» queries, which model
insertion of the request messages into the modeled relational database, are to be specified. The
«select» queries, which model retrieving the request and response messages from the modeled
relational database, should similarly be specified.

5) A model of a system control flow (a control layer of the modeled db-net) is to be defined. After
that, «insert» and «select» queries from the modeled data logic layer are assigned to transitions
and view places, respectively.

6) For each db-net transition connected by a read arc with a view place that is assigned with a
«select» query for retrieving the response messages, the following parameters for conducting a
performance analysis are to be specified:

a) The name of a variable in the control layer that stores a value of the id attribute of a response
message, which allows to find a corresponding request message by the same value of the
same id attribute.

b) The name of a variable in the control layer that stores a value of the sending timestamp
attribute of a response message.

¢) An ordering number of the sending timestamp attribute of a message in results of a "select”
query for retrieving the corresponding request message, that is mentioned in the item “f” of
the current list.

d) A pattern or a regular expression for parsing the sending timestamp string in a message.

e) Anordering number of the message type attribute of a message in results of a "select” query
for retrieving the corresponding request message, that is mentioned in the item “f” of the
current list.

f) The name of a declared "select" query for retrieving the corresponding request message.

g) The maximum acceptable value of a delay between sending timestamps of corresponding
request and response messages (in milliseconds).

Stage 2. Preprocessing the Log. Preparing a log of the application includes the following steps.

1) It is necessary to make sure that the messages in a log are represented in a form satisfying
properties described in the step 2 of the stage 1. Any messages that are not represented in a valid
form as well as broken messages are to be removed.

2) The log should be prepared in a format compatible with a software tool implementing the
method.

Stage 3. Conducting a Performance Analysis Using DB-Nets. A simulation of the modeled db-

net is to be run in the software tool implementing the method.

2.4 Example of Performance Analysis Using DB-Nets for the FIX Protocol

The developed method is illustrated by an example modeling a trading order creation with use of
the FIX protocol. The example includes the analysis of two types of FIX messages: (1)
create_order_single (msg type = “D”) which is used for request messages sent from a trader or a
broker to the exchange, to create an order for buying or selling securities, and (2) execution_report
(msg_type = “8”) which is used for response messages sent from the exchange to the trader or the
broker as a confirmation of the order creation (or information about the order rejection with
clarification of a reason). For each message, the attributes msg_type, cl_ord_id and sending_time
are considered in the model. The msg_type attribute defines a type of the message. The

115

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

corresponding request/response messages are connected by a key (id), whose role is played by the
cl_ord_id attribute. The sending_time attribute is a sending timestamp of the message.

The db-net modeling this example is shown in Fig. 3. A schema of a relational database in the db-
net persistence layer includes a msg relational table for storing FIX messages. The table contains
msg_type, cl_ord id and sending_time attributes. The create_order_single action models the
“insert” DML query for insertion of the msg_type, cl_ord_id and sending_time attributes of the
create_order_single FIX message. The create_order_single and execution_report queries model the
“select” SQL query for retrieving the same attributes of the create_order_single and
execution_report FIX messages, respectively. The create_order_single_corr_req query models the
“select” SQL query for retrieving the same attributes of the create_order_single FIX message by
the given cl_ord_id. It is used for retrieving the corresponding request message for a previously
retrieved response message.

schema = { CREATE TABLE IF NOT EXISTS msg (msg_type TEXT NOT NULL, cl_ord_id TEXT NOT NULL
sending_time TEXT NOT NULL, PRIMARY KEY (msg_type, ¢l_ord_id)),)
action create_order_single = { params = < ¢l_ord_id, sending_time >
add = { msg (cl_ord_id, sending_time) }, del ={}}
query create_order_single = { SELECT msg_type, ¢l_ord_id, sending_time FROM msg WHERE msg_type ="D"; }
query execution_report = { SELECT msg_type, ci_ord_id, sending_time FROM msg WHERE msg_type = “8"; }
query create_order_single_corr_req = { SELECT msg_type, ¢l_ord_id, sending_time FROM msg
WHERE msg_type = "D" AND ci_ord_id = ${cl_ord_id}; }

query create_order_single

(msg_type,
¢i_ord_id
] - -
C!ea!ve_osd:el_sng.e sending_time
(msg_iype -
. ¢l_ord_id
msg_iype, sending_time)
cl_ord_id
sending_time
9. Processed
messages
(msg_type
ci_ord_id
sending_time
(msg_type;
ci_ord_id
performance_analysis { sending_time)

quany:sxecition_repoit id_name = “cl_ord_id"
sending_time_name = “sending_time
sending_time_num = 2
sending_time_pattern = “yyyyMMdd-HH -mm:ss. SSSSSS
message_type_num =0
request_message_query = “create_order_single_corr_req”
max_delay = 100

Fig. 3. Example of a db-net model for a performance analysis of a FIX protocol-based system.

The view place assigned with create_order_single query (fig. 3) is responsible for retrieving
messages of create_order_single type. The following transition executes the create_order_single
action, modeling insertion of the messages into the msg table. Then the transition transfers the
messages to the Processed messages place.

The view place assigned with execution_report query (fig. 3) is responsible for retrieving messages
of execution_report type. After retrieving an execution_report message, the following transition
retrieves the corresponding create_order_single message (with msg type = “D” and the same
cl_ord_id) using the create_order_single_corr_req query and calculates a delay between these two
messages as a difference between their sending timestamps (the sending_time attribute). If the
calculated delay exceeds max_delay (it is 100 ms in the example), then the validation fails.
Otherwise, the execution_report message is transferred to the Processed messages place. After all
messages are retrieved from the log, and validation did not fail, the validation of the log is considered
succeeded.

116

Purun A.M., lllepurakoB C.A. Mertox aHanu3a MpoU3BOAUTEIBHOCTH KPUTHYHBIX TI0 BPEMEHH MPUIOKeHHH ¢ oMotsio DB-Nets. Tpyos:
UCII PAH, tom 33, Beim. 3, 2021 r., ctp. 109-122.

We consider two following FIX messages (these messages are presented below in the human-
readable form, not in the original FIX tag-value form): (1) create_order single (msg_type = “D”,
cl ord id = “12345”, sending_time = “20190218-02:14:45.490000”) and (2) execution_report
(msg_type = “8”, cl_ord_id = “12345”, sending time = “20190218-02:14:45.492787"). Firstly,
the create_order_single message is retrieved by the view place assigned with the
create_order_single query. The following transition performs the create_order_single action with
the “insert” DML query for this message and transfers the message to the Processed messages place.
Secondly, the execution_report message is retrieved by the view place assigned with the
execution_report query. By the ¢/ _ord id = “12345” attribute value of the message, the following
transition retrieves the corresponding create_order_single message (with msg_type = “D” and the
same ¢/ ord_id = “12345”) using the create_order_single_corr_req query and calculates a delay
between these two messages as a difference between their sending timestamps (the sending_time
attribute). This delay equals 3 ms (rounding up). A maximum acceptable delay linked with the
transition is defined to 100 ms. The delay does not exceed the maximum acceptable delay, so the
validation does not fail, and the execution_report message is transferred to the Processed messages
place. However, if the sending_time attribute value of the execution_report message was, for
example, “20190218-02:14:45.592787”, then the delay would be equal to 103 ms (rounding up)
and the maximum acceptable delay would be exceeded which would lead the validation to fail.

3. Software Prototype

3.1 Software Prototype Features and Implementation

For testing and illustrating abilities of the method, the latter is implemented in the form of a software
prototype. For doing this, we developed the db-net software simulator (Renew DB-Nets Plugin) in
2020 [4] and then extended it with features for conducting a performance analysis of time-critical
applications using the proposed method. The simulator has a form of a plugin for Renew software
tool which is a Java-based reference net simulator [6]. The simulator has a graphical user interface
as shown in the screenshot in fig. 4.

e 9]

LTS RPR RSN S —
e — Frecion e Ol Stoeke el Mevsan Prncens Crier huas € anc ol Fageert Florosss Maassge. —

— - =
4 N A
| £ N
(el] ! [
o R T e TR — A AL ST T A M oy A B
\ 4 AT \ 4
- gl -
|
Nisosil RN
S - iy e
y < 5 b
4 “z e o | b
) -]
\ y
S 7 \\ >
< = . =

Fig. 4. Screenshot of a graphical user interface of the developed software prototype.

The prototype allows to (1) model a db-net for a considered system, (2) specify parameters for
conducting a performance analysis of time-critical applications, as described in the step 6 of the
stage 1 of the described method (the Section 2.3.2), (3) conduct a performance analysis of an

117

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

application in parallel with a db-net model simulation using the proposed method and (4) work with
a FIX log (raw binary data of the FIX protocol packages captured as a Wireshark PCAP file [11]
with further filtering) through a relational DML interface.

An implementation of the developed db-net simulator is described in [4]. This implementation is
based on an implementation of Renew software tool, a reference Petri net simulator. The Renew
code which was suitable for the db-net behavior is reused. Other code is overridden by a custom db-
net implementation. Classes representing elements of the db-net control layer are inherited from
Renew classes representing similar elements of traditional colored Petri nets and necessary methods
are overridden. The prototype is implemented as a pure plugin for Renew tool, without modifying
existing Renew source code [4]. The plugin code, UML class diagram and documentation are
available in the project GitHub repository?®.

For working with a FIX log through a relational DML interface, the alternative implementation of
the database connection interface is created. It is used if the JDBC URL in a db-net model starts
from the “fixpcap:” prefix. All messages that are read from file through this connection are stored
in RAM (in the java.util.HashMap container, where keys, which are pairs of message type and id,
are stored in a hashtable). When the message is being retrieved through this connection, it is firstly
searched in RAM. If it is found in RAM, it is returned and removed from RAM. If it is not found in
RAM, then the file is scanned until finding this message (and all scanned messages are stored in
RAM). This approach allows to scan each line of the file only once and to minimize the RAM usage.
For goals of a performance analysis, the prototype follows the set of requirements described in the
subsection 2.3.1. When the first maximum acceptable delay violation is detected while simulating a
db-net model, the dialog window with an information message describing this violation is shown
and the corresponding CSV report is created. All maximum acceptable delay violations that are
detected during the current simulation are written into the created CSV report. The format of a CSV
report is presented in Table. 1.

Table. 1. Columns of the CSV Report

Column Name Description Type Example
Order number of the row in
the CSV report (starting from | Integer 1
1)
Request Message Type of the request message String D?
Type
Message ID ID of the request and response String 15504

message pair

Difference (in milliseconds)
Delay between request and response | Integer 493
message sending timestamps

Max Delay Maximum acceptable delay Integer 100

Difference between detected
Diff delay and maximum Integer 393
acceptable delay

! Link: https://github.com/Glost/db_nets_renew_plugin
2 In the FIX Protocol, the D message type is used for the New Order Single messages.
118

https://github.com/Glost/db_nets_renew_plugin

Purun A.M., lllepurakoB C.A. Mertox aHanu3a MpoU3BOAUTEIBHOCTH KPUTHYHBIX TI0 BPEMEHH MPUIOKeHHH ¢ oMotsio DB-Nets. Tpyos:

UCII PAH, tom 33, Beim. 3, 2021 r., ctp. 109-122.

3.2 Testing the Prototype on the FIX Log and Quantitative Analysis of
Maximum Acceptable Delay Violations

The developed software prototype is tested on a log with FIX protocol messages, which is
represented by the raw binary data extracted from a Wireshark PCAP file with some FIX protocol
messages captured in the testing environment. The file is provided by a software developer of testing
solutions for one of the global stock exchanges.

The screenshot in fig. 4 shows the db-net model for performance analysis applied to the FIX protocol
messages for the New Order Single scenario (request message: New Order Single, message type:
"D"; response message: Execution Report, message type: "8") and the Order Mass Cancel Request
scenario (request message: Order Mass Cancel Request, message type: "q"; response message:
Order Mass Cancel Report, message type: "r"). The total number of processed messages in this
model equals 321671.

Hax deliy wislitand Sount for max Sela from 1000 5 000 Max delvy vislatiand count Bercertage for mas deliyt fram 1000 Bo SO0

Far rwipeand swikad Hier T
Tor P PG S W

Fig. 5. Quantitative analysis of maximum acceptable delay violations for maximum acceptable delay values
from 1000 ms to 9000 ms.

HMax deliy wviolationt count o mae delayi from 3100 to 3900 Maa deliyy wolabond count parcantags ‘o maa delayt from 1100 o 3900

P rdpanil Smiade fren T Fim o | Freingm Lepe O
Py repard L e L
o L

Fig. 6. Quantitative analysis of maximum acceptable delay violations for maximum acceptable delay values
from 3100 ms to 3900 ms.

119

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

Using this model, the quantitative analysis of maximum acceptable delay violations is conducted
based on the CSV reports with information about violations. The plots in Fig. 5 show (1) counts of
maximum acceptable delay violations and (2) percentages (ratios) of message pairs with maximum
acceptable delay violations (where 100 % is all processed message pairs), in the db-net model
described above, with a breakdown to the request message types (D" is used for the New Order

Single messages and "q" is used for the Order Mass Cancel Request messages) for maximum
acceptable delay values from 1000 ms to 9000 ms.

The significant decrease in count of violations between maximum acceptable delay values 3000 ms
and 4000 ms is notable. The plots in Fig. 6 show the same metrics for maximum acceptable delay
values from 3100 ms to 3900 ms. We can conclude that the most of delays larger than 1 second are
between 3 and 4 seconds.

Such quantitative analysis is an example of possible applications of the developed method. For
instance, requirements and service level agreements (SLAS) can be specified and adjusted basing on
some statistics on ratio of message pairs violating each maximum acceptable delay. This information
with a breakdown to the request message types allows to focus on improving the speed of the most
critical scenarios.

4. Conclusion

In the current work, a novel method of performance analysis of time-critical applications based on
the db-net formalism is developed. This method allows to integrate performance analysis into
conformance checking of a system. Therefore, it allows to abstract away from performance and to
combine performance analysis of transactional systems with other methods for their verification and
validation, based on Petri nets and their modifications, especially db-nets (e.g., checking safety,
liveness, fairness, and similar properties). Colored Petri net models, that are automatically generated
from event logs using process discovery algorithms, may be extended with db-net elements and time
constraints, and used for performance analysis. Moreover, the method allows to apply well-known
approaches used in the relational database domain to a wide set of transactional systems supporting
time-critical applications.

A software prototype implementing the method is developed. The prototype is checked on a test log
with FIX messages provided by a software developer of testing solutions for one of the global stock
exchanges. A quantitative analysis of maximum acceptable delay violations is conducted based on
this log. This demonstrates how the method can be applied for similar analysis.

The developed method can be used in research in this domain as well as in testing performance of
real time-critical software systems. Further steps include extending the method for use with
hierarchical Petri nets and more complex variants of performance analysis of transactional systems.
Approbation of the method for integrating performance analysis into conformance checking of a real
software system is planned.

The developed software prototype is to be improved for being more usable. This will make the
prototype a new software tool in the pool of open-source solutions for conformance checking and
performance analysis.

References

[1]. Harris L. Back Office Operations. Trading and Exchanges: Market Microstructure for PractitionersOxford
Univyversity Press, 2003, chapter 7, section 7.2.2, pp. 148-149.

[2]. Introduction, FIX Trading Community, Available at: https://www.fixtrading.org/online-
specification/introduction/, accessed 28.03.2021.

[3]. FIX TagValue Encoding, FIX Trading Community, Available at:
https://www.fixtrading.org/standards/tagvalue-online/, accessed 28.03.2021.

[4]. Rigin A., Shershakov S. Data and Reference Semantic-Based Simulator of DB-Nets with the Use of
Renew Tool. Lecture Notes in Computer Science, vol. 12602, 2021, pp. 453-465, DOI: 10.1007/978-3-
030-72610-2_34.

120

https://www.fixtrading.org/online-specification/introduction/
https://www.fixtrading.org/online-specification/introduction/
https://www.fixtrading.org/standards/tagvalue-online/

Purun A.M., lllepurakoB C.A. Mertox aHanu3a MpoU3BOAUTEIBHOCTH KPUTHYHBIX TI0 BPEMEHH MPUIOKeHHH ¢ oMotsio DB-Nets. Tpyos:
UCII PAH, tom 33, Beim. 3, 2021 r., ctp. 109-122.

[5]. Montali M., Rivkin A. DB-Nets: On the Marriage of Colored Petri Nets and Relational Databases. Lecture
Notes in Computer Science, vol. 10470, 2017, pp. 91-118.
[6]. Renew — The Reference Net Workshop. Renew.de, Available at: http://www.renew.de/, accessed
28.03.2021.
[7]. Vetter J. Performance analysis of distributed applications using automatic classification of communication
inefficiencies. In Proc. of the 14th international conference on Supercomputing (ICS '00), 2000, pp. 245-
254,
[8]. Marsan M. A., Bianco A. et al. A LOTOS extension for the performance analysis of distributed systems.
IEEE/ACM Transactions on Networking, vol. 2, no. 2, 1994, pp. 151-165.
[9]. van der Aalst W., Adriansyah A., van Dongen B. Replaying history on process models for conformance
checking and performance analysis. WIREs Data Mining and Knowledge Discovery, vol. 2, no. 2, 2012,
pp. 182-192.
[10]. Haerder T., Reuter A. Principles of transaction-oriented database recovery. ACM Computing Surveys,
vol. 15, no. 4, 1983, pp. 287-317.
[11]. 5.2. Open Capture Files, Wireshark.org, Available at:
https://www.wireshark.org/docs/wsug_html_chunked/ChlOOpenSection.html, accessed 28.03.2021.

UHgpopmayusi 06 aemopax / Information about authors

AnToH Muxaitnosuu PUI'MH nomy4usn cTeneHs MarucTpa B 06JacTH CHCTEMHON U IIPOTPaMMHOM
nmxkenepuu B 2021 r. B HanmoHansHOM HcClIeIOBaTeNIbCKOM YHUBepcUTeTe «Bpicmiasi mikomna
skoHoMHKH» (MockBa, Poccus). Ero uccriemoBaTenbCkue MHTEPECH! BKIIOYAIOT MPOTPAMMHYIO
WHKCHEPUIO, M3BIICUCHUE W aHAIM3 NPOLECCOB (process mining), Bepu(UKALUIO MPOrPaMMHOTO
oOecreyeHus1, aJlTOPUTMBI U CTPYKTYPhI JaHHBIX U UX IPUMEHEHHUE B 3a/la4aX WHAECKCUPOBAHUA U
XpaHeHHs JaHHBIX B CUCTEMax YIpaBJCHUs 0a3aMu JJaHHBIX.

Anton Mikhailovich RIGIN received his master’s degree in System and Software Engineering from
the National Research University Higher School of Economics (Moscow, Russia) in 2021. His
research interests include software engineering, process mining, software verification, algorithms
and data structures and their usage in problems of data indexing and storage in database management
systems.

Cepreit Angpeesnu [IEPIIIAKOB momy4ymn cTeneHb KaHAWAATa KOMIIBIOTEPHBIX HayK
HaunoHansHOTro HCCIleIoBaTeNbCKOro yHHBepcuTeTa «Bbicmias mmikosia 3koHoMuKH» (Mocksa,
Poccus) 8 2020 roxy. B HacTosuii MOMEHT OH SIBJIICTCSI IOLIEHTOM JeMapTaMeHTa OOJIBIINX
JAHHBIX U MH(OPMAIMOHHOTO MOUCKA U HAYYHBIM COTPYAHHKOM Hay4dyHO-Y4eOHOMW J1abopaTopuu
MPOLIECCHO-OPUEHTUPOBAaHHBIX MH(opMannoHHbIX cucteM (Jlabopatopun ITOUC) dakynbrera
KOMITBIOTEPHBIX HAyK Bplcmield IKOIBI AKOHOMHKH. B 4YHCIIO Hay4HBIX HMHTEPECOB BXOMAT
W3BJICUCHIE W aHAIM3 TPOIECCOB (process mining), Bepu(GUKAIUsI IPOTPAMMHOTO OOECIIeYeHHS,
ApXUTEKTYpBl HHPOPMAIIOHHBIX CUCTEM U MPETOJIaBaHie POrpaMMHON HH)KEHEPHH.

Sergey Andreevich SHERSHAKOV received his PhD degree in Computer Science from the
National Research University Higher School of Economics (Moscow, Russia) in 2020. He is
currently an Associate Professor at the Big Data and Information Retrieval School and a research
fellow at the Laboratory of Process-Aware Information Systems (PAIS Lab) of the Faculty of
Computer Science at the HSE University. His research interests include process mining, software
verification, information system architectures and teaching software engineering.

121

http://www.renew.de/
https://www.wireshark.org/docs/wsug_html_chunked/ChIOOpenSection.html

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

122

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-10 tocl%

Historical Civil Registration Record Transcription
Using an eXtreme Model Driven Approach

L R. Khan, ORCID: 0000-0001-9006-6748 <Rafflesia.Khan@ul.ieg>
IA. Schieweck, ORCID: 0000-0002-5008-9168 <Alexander.Schieweck@ul.ieg>
12 C. Breathnach, ORCID: 0000-0002-4065-0660 <Ciara.Breathnach@ul.ieg>
12T, Margaria, ORCID: 0000-0002-5547-9739 <Tiziana.Margaria@ul.ieg >
L University of Limerick,
Limerick, V94 T9PX, Ireland
2Lero: The Irish Software Research Centre
Tierney Building, University of Limerick, Ireland

Abstract. Modelling is considered as a universal approach to define and simplify real-world applications
through appropriate abstraction. Model-driven system engineering identifies and integrates appropriate
concepts, techniques, and tools which provide important artefacts for interdisciplinary activities. In this paper,
we show how we used a model-driven approach to design and improve a Digital Humanities dynamic web
application within an interdisciplinary project that enables history students and volunteers of history
associations to transcribe a large corpus of image-based data from the General Register Office (GRO) records.
Our model-driven approach generates the software application from data, workflow and GUI abstract models,
ready for deployment.

Keywords: Software and System Engineering; Model-Driven Development; Web Application; Historical Civil
Record; Digital Humanities; XMDD; DIME

For citation: Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record
Transcription Using an eXtreme Model Driven Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 123-142. DOI: 10.15514/ISPRAS-2021-33(3)-10

Acknowledgments. We are grateful for the full cooperation of the Registrar General of Ireland for permission
to use these data for research purposes. This research is funded by the Irish Research Council Laureate Award
2017/32 and by Science Foundation Ireland through the grants 13/RC/2094 to Lero - the Irish Software
Research Centre (www.lero.ie).

“Death and Burial Data: Ireland 1864-1922” is a project funded by Irish Research Council Laureate Award
IRCLA/2017/32 to Dr. Ciara Breathnach (Department of History — DH), in cooperation with Prof. Tiziana
Margaria (Software Systems, Dept of Computer Science and Information Systems — CSIS) at the University of
Limerick.

123

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

TpaHCKpUNLUMA NCTOPUUYECKUX 3anncein akToB rpaxgaHCKoro
COCTOSIHUSAl C UCMOSIb30BaHUEM 3KCTPEeManbHOro MmoaenbHo-
ynpasnsiemoro nogxopa

1 P. Xan, ORCID: 0000-0001-9006-6748 <Rafflesia.Khan@ul.ieg>
Y A. IIueex, ORCID: 0000-0002-5008-9168 <Alexander.Schieweck@ul.ieg>
12 C. Bpemnax, ORCID: 0000-0002-4065-0660 <Ciara.Breathnach@ul.ieg>
12 T. Mapeapus, ORCID: 0000-0002-5547-9739 <Tiziana.Margaria@ul.ieg >
! Vuusepcumem Jlumepuxa,
HUpnanous, V94 TOPX, JTumepux
2 Lero: Hpnanockuil yenmp ucciedo8anuti npo2pammno2o obecneyenus
Upnanous, Jlumepuxckui ynueepcumem, 30anue Tupru

AHHOTanus. MoJenupoBaHUE CUUTAETCS YHUBEPCAIBHBIM MOAXOJOM K OIPENEICHUIO M YNPOLICHUIO
pCaNbHBIX HPHIIOKEHHUIT ¢ TOMOIIBI0 COOTBETCTBYIOMIEH abcTpakimy. CUCTEMHas WHKEHEpHs, ynpasisieMas
MOJIEIISIMH, ONPENENsAeT U OOBECINHACT COOTBETCTBYIOIIME KOHLETIMH, METOABl U MHCTPYMEHTHI, KOTOpbIE
o0ecreynBalOT BaKHbIE apTedaKThl Ul MEKAUCLHUIUIMHAPHOM ASSATENBHOCTH. B 3TOil cTaThe MBI MOKaXKeM,
KaK MBI HCIIOIb30BAJIN MTOAXO0/, OCHOBAHHBIH Ha MOJIEIISIX, JUISI pa3pabOTKH 1 yIydIIeHHs] IMHAMIYECKOTO BeO-
TIPWIIOKEHHS IU(PPOBBIX T'yMaHUTAPHBIX HAYK B paMKaX MEXIMCIUILTMHAPHOTO IIPOEKTa, KOTOPBIH MO3BOJISIET
CTYICHTaM-HCTOPUKAaM M BOJIOHTEPaM HCTOPUYECKUX ACCOLMAIMH TPAaHCKPUOMPOBATH OOJIBIIONH KOPITYC
N300paKEHUH JOKYMEHTOB YIIPaBIEHHS 3alUChI0 aKTOB TPAXTAHCKOTO cocTostHWs. Ham moxpxon,
OCHOBaHHBIH Ha MOJIENISX, TEHEPUPYET MIPOrPaMMHOE IIPUIIOKEHUE Ha OCHOBE a0CTPAKTHBIX MOJIeNeH JaHHBIX,
pabouero mporecca 1 rpadpUuecKOro HHTepdeiica Moap30BaTeNs, TOTOBBIX K Pa3BEPTHIBAHHIO.

KuiroueBble c€J10Ba: mporpaMMHas W CHCTEMHasi HEYKSHEPHs; MOACIbHO-yIpaBisieMast pa3paborka; Web-
MIPUIIOKEHNE; MCTOPUYECKHE 3allUCU aKTOB T'PAKAAHCKOTO COCTOSIHUSI, LU(POBBIE T'yMaHHTapHBIE HAYKH;
XMDD; DIME

Jast uutupoBanus: Xau P., usek A., Bpernax C., Maprapust T. TpaHCKPHUIIIHUS HCTOPHYECKUX 3aITHCEH
AKTOB TPAXKIAAHCKOTO COCTOSHHUS C HCIOJIb30BAaHHEM SKCTPEMAIbHOTO MOJIENIBHO-YIPABISIEMOTO MOIXO0AA.
Tpynst UCIT PAH, Tom 33, Beim. 3, 2021 ., ctp. 123-142 (na anrnuiickom si3eike). DOI: 10.15514/ISPRAS—
2021-33(3)-10.

Baarogapuoctu. Mbl 6iaronapHsl ['eHepansHOMy peructparopy Mpnananu 3a paspelieHue HCHOIb30BaTh
JIAHHBIE B UCCJICJOBATENbCKUX LIENAX. DTO HCCe0BaHie (pUHAaHCHpYyeTcs MpIaHICKUM HCCIen0BaTeIbCKUM
coBeToM 10 JaypearckuMm npemusiMm 2017/32 u Hayuneim ¢ornom Wpnanaum uepe3 rpantsl 13/RC/2094,
npenocraBieHHble Lero — HpraHACKOMY HCCIIEJOBAaTENbCKOMY IIEHTPY IPOTPAMMHOT0 oOecreueH s
(www.lero.ie).

1. Introduction

Historical data concerning individual life events, combined with wider socio-economic records
provide excellent sources for analysis and reflection. Accordingly, the digitalisation of corpora of
historical data concerning various aspects of the life and activities of individuals and communities
is an essential precondition for the ease of analysis, for example using modern data analytics and Al
techniques. The Digital Humanities Manifesto 2.0 (DH) [1] presents DH as a discipline which
studies the intersection of the disciplines of computing and humanities. DH currently combines
methods, tools, and technologies provided by the computing sciences (such as data visualization,
information retrieval, text mining etc.) with the perspectives and methodologies stemming from the
humanities disciplines (such as history, trend analysis etc).

One of the increasingly popular means of using digitally available data foots on the concept of a
Digital Twin (DT) [2]. A Digital Twin is a virtual and abstract model of a physical entity (an engine,
a patient, a student, a plant or a city) that serves as the enabler means for simulation, analysis,
prediction, and real-time analysis of the system it represents. It has gained enormous relevance and
popularity in recent years as it provides a handy virtual model of a physical process or service. In

124

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEeMATBLHOTO MOAEIBHO-YMpaBisieMoro noaxona. Ipyost UCIT PAH, Tom 33, Bem. 3, 2021 r., ctp. 123-142.

the Industry 4.0 context, it often leverages technologies such as the Internet of Things (loT),
Artificial Intelligence (Al), Cyber-Physical Systems (CPS) and Big Data for digitization. By
definition, digital twins refer to a «live» model that continuously updates and changes as its physical
counterpart changes [3]. In the Humanities, the DT concept unfold a massive potential to transform
the landscape of how DH methods can assist in the representation, analysis and understanding of
our past, which in turn can provide useful learnings for the present and future. It promises a
tremendous innovation potential, and most of the current research on digital twins is focusing on
specific implementations for concrete use cases and the generalization towards reusable abstract
models [4]. Developing a mirror of a traditional Digital Humanities record system through the digital
twin lens is time-consuming, complicated and requires deep interdisciplinary knowledge in the
humanities domain and model creation and software development. Too often, this induces a
knowledge gap, giving rise to fundamental research questions on how to connect the two disciplines
in such a way that a «lingua franca» can bridge the concepts and the means of expression and
analysis of both disciplines.

We use a specific kind of Model-Driven Design, called XMDD for (eXtreme Model-Driven Design)
[5] to bridge this gap. Model-Driven Development (MDD) specifically focuses on supporting the
collaborative (software) development process by using abstract representations of data and
processes. Using these models, we combine computing knowledge with the formal descriptions of
the historian’s knowledge, and this way succeed in reducing complexity and improve productivity,
as described by [6].

To reduce the discipline-specific knowledge gap between humanities and technology, the project
«DBDIrl* - Death and Burial Data: Ireland 1864-1922 [7] adopts a data-driven public-history and
digital-humanities research methodology which uses advanced MDD for application development.
DBDiIrl is an interdisciplinary project that combines historians' understanding of Big old data with
computer analysts' tools and methodologies. Its objective is to build an extensible and reusable Big
Data interoperability and analysis framework that supports flexible Big Data integration between
different historical data sources and provides a web-based platform for the analysis of its underlying
corpora. The corpora stem from various sources of national records, like the civil registration records
of the General Register Office, the individual level census returns of 1901 and 1911, and various
coroner's court records within the period 1864 to 1922, i.e., from the introduction of civil registration
records in 1864 to 1922, when the Irish Free State was established. This Digital Humanities platform
needs to be robust and easily evolvable, able to integrate different data and interpreted terms, able
to manage and analyze various data representations and enrichments, all in a transparent and FAIR
(i.e., Findability, Accessibility, Interoperability, and Reuse of digital assets) [8] data context.

This paper focuses on developing an efficient and flexible data access mechanism to make the
heterogeneous sources of historical data available to a wider range of researchers through adequate
user interfaces.

DBDIrl applies the eXtreme Model-Driven Approach for complete design, development and
execution of a Big Data interoperability framework. The first component of that framework is a Web
application that supports efficient and correct data entry. We refer to it as the Historian DIME app
or Historian app in short, and it is completely developed following a model-driven approach.

Key contributions of this work are:

e A model-driven Web application for input and storage of Irish Civil Registration data,
specifically death registration data, from 1864 t01922, introducing a database for subsequent
digital data analysis.

e Producing a systematic and clean data source for (relevant subsets of) the death records. Massive
information regarding the death records was previously collected as images of the original
registers stored as TIFF files, plus an excel index summary. The page-by-page images of the

! https://www.dbdirl.com/
125

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

handwritten records were digital, but it was impossible to analyze them. The database of
systematic and clean data can now be processed for further research, concerning the discovery
of information, its evolution, trends over time, and finding insightful patterns about individuals
and families.

e lllustrating the impact of the MDD approach on the adaptation and evolution of the Historian
App, from its first version to the current one, including the re-usability of components and the
refinement of its organization, to support increasing levels of error prevention and embedded
error checking. It is essential if we want to gradually build a platform, where such applications
and data analytics applications can be quickly and correctly assembled from a service-oriented
Domain Specific Language that covers the functionalities and the data occurring in a history
research context.

e Showcasing the use of DIME [9], a specific low-code application design framework, where
stakeholders can develop their specific application without any coding knowledge.

To our knowledge, this is the first attempt to work with Historians as customers using a model-
driven approach.

The paper is organized as follows: Section 2 presents the project background and motivation. Section
3 describes related work in the fields of MDD and Big data analysis. Section 4 discusses the co-
development methodology and its life-cycle along with an explanation of the abstract architecture
and workflow of the proposed XMDD based application. Section 5 illustrates the model types of the
XMDD technology and the concrete design of the Historian App. Section 6 describes some major
challenges with corresponding proposed solutions. Finally, Section 7 concludes the paper and
highlights some future work.

2. DBDIrl Project Background

The General Register Office (GRO) is responsible for recording Irish civil information of birth,
marriage and death. In 2016 it placed historical data online for free on irishgenealogy.ie. To initiate
a search at the site, some basic personal information is required, but it has limited functionalities.
This site holds civil data sets regarding individuals, but for the fundamental objectives of DBDIrl, a
centralized data storage containing complete and correct data is needed for future research and
exploration.

04501783
['Iunnhun-l E
Firat Page. MMUNMMNMIT! foat.}

Superintendent Fngistrar's Districi_ Mh.tﬁm{é,_l_xqm \Mdlé,,_@g{_l__—]

m.l]_nmmnwmmmmm[ﬁ;f [thnlhnn-({a @!‘éé
6 in tho County 54D Wl L

ol Bt =l T Gt | -n.H-—-km
o - i °"1='-"1’f: Oy taar ‘rﬂ_*—nqm‘lw
il =

1 -> Superintendent Registrar's District Union, 2 -> Registrar's District, 3 -> Registrar's City, 4 ->
Registrar’s Union, 5 -> Registrar's County, 8 -> Required Properties for a Legitimate Death
Registration, 7 -> Properties for an Individual Death Registrafion, 8 -> Full name of Registrar, 9 ->
Regisirar's Signature.

Fig. 1: Death record of Irish civil registration: the GRO original register page (TIFF file available at
irishgenealogy.ie) with properties highlighted

126

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEeMATBLHOTO MOAEIBHO-YMpaBisieMoro noaxona. Ipyost UCIT PAH, Tom 33, Bem. 3, 2021 r., ctp. 123-142.

As the primary data, DBDIrl uses the Death Registration Data (DRD) from 1864 to 1922 directly
shared by from the GRO. We received approximately 4.3 million individual Civil Register records
of death registration in two different formats. Over 1 TB were images produced through high-
resolution scans of the original register pages and provided as .TIFF files. We also received .csv
files with group id, name, age, superintendent's district and .TIFF file path of all individual death
records. Fig. 1 shows a page from the death register. Each scan captures a full register page,
including up to 10 individual records, each recording an individual death.

In the absence of complete metadata and a fully digital version of the image's contents, the .TIFF
file is de facto just a picture, i.e., an unstructured analog image of the page, and useless for the
purpose of automatic analysis of the contained information. A human eye sees easily that every
record has 11 index properties (identified and humbered in fig. [1] describing the death event and
its circumstances. This set of complex properties collectively represents the individual's death event
along with its essential information. Their complete digitization, meaning the transformation of the
TIFF images into a curated repository of clean and faithful data that is fully automatically searchable
and analyzable, is the aim of the current phase of DBDIrl.

For essential quality guarantee, the historical digital data collection must maintain with certainty the
overall integrity of the original historical data. Additionally, the technology needs to enable domain
experts, like historians and archivists, to handle the maintenance of the data collection and the
evolution of the applications. These experts are mostly not programmers, and most certainly not
experienced in all of web development, databases, software architectures, Ul design and
development, privacy and security, testing and deployment. So we adopted a programming-less low
code approach based on an Integrated Modelling Environment (IME) that subsumes most of these
characteristics in the development platform of choice.

The goal consists of three main tasks:

o transform the TIFF files into a digital curated repository;

e achieve this transformation in a low-code environment that is easily maintainable and evolvable,
effectively building a new generation data entry, storage and management platform for digital
humanities;

e make historical data from heterogeneous sources available to a wider range of researchers
through adequate user interfaces and easy-to-use analysis tools.

Currently we are working on tasks 1 and 2.

2.1 Automated Digitization Attempt

DBDIrl started with attempts to transcribe the .TIFF files to an operable, structured data format. A
widespread approach would use OCR or Natural Language Processing (NLP) tools to extract the
text from each .TIFF file. While the state of the art tools work quite well for printed texts, they
severely failed in our case. In fact well-known language processing tools could not produce any
useful results. There are many reasons for this failure: (1) death records are handwritten texts, which
is a difficult problem; (2) they were written by different registrars and their superintendents, with
considerable variation of handwriting pattern; (3) tools have difficulty handling the data variety, (4)
for some writers the corpus of records is very small and insufficient for a good training set; (5) very
few existing tools extract the text as individual properties, thus even in case of success a significant
manual post-processing would be needed; (6) accurate text extraction needs a well-trained model
with a huge and precisely labelled data sets for training, which is not available here; (7) there should
be reliable methods to combine all the individual property texts into correct death record entries,
which is difficult when most properties are not correctly recognized; and (8) there is a scalability
issue when uploading millions of records into a server.

127

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

2.2 Supported Digitization

As a consequence, we abandoned an automated recognition approach for the time being, in favour
of a manual, but highly assisted and supported data enrichment through a web based application. In
this sense, the first and second task now align much more closely: We have now an XMDD based
web application for the historians' data entry, where application developers and historians work side
by side in application design and development within a model-driven, low-code environment. This
application development approach helps the historians to further develop and maintain their own
application at the model level, without the need of any programming knowledge.

3. Related Work

Since the emergence of UML and its predecessors, several MDD approaches have been proposed in
the literature to address the generation of code from models representing various aspects of the
system [10], including for telecommunications [11], web and client applications [12-15]. MDD
techniques are mainly used for decreasing the effort needed for application development and
maintenance and increase the portability to new platforms. The eXtreme Model-Driven
Development (XMDD) [5] approach is a low-code approach that combines several software designs
and programming paradigms such as agility, model-driven development, service orientation,
domain-specific languages, data management, data flow and control flow design, Formal models
and methods, generative programming, eXtreme programming, aspect orientation and full code
generation [5], [16]. According to [17],
«Models allow sharing a common vision and knowledge among technical and non-technical
stakeholders, facilitating and promoting the communication among them.»
In terms of specific MDD approaches and applications, [18] proposed automated extraction,
analysis, and visualization of data and metrics on model-driven artifacts. In cyber-physical systems,
[19], and [20] demonstrate the use of MDD in robotics. [21] proposed a DSL for service
customization for telecommunications sytems. [22] proposed a Domain-Specific Modelling
Language for smart home applications with two transformation templates that generate code from
instances of SmartHomeML for SmartThings and Alexa. They designed the transformation using an
MDD approach in a platform-specific model-to-code implementation artefact.
In e-learning, [23] propose a course management system that stores a course model as machine-
readable components that generates a final course in different platform-specific target models.
In web applications, modern Single-Page Applications (SPA) use MDE to connect between client
and server of a web application, and [24] present a model-driven approach for the consumption of
RESTful Web services in SPA.
Ref [25] defines a Machine Learning based MDE approach that analyzes Big Data for probabilistic
modelling by defining a domain-specific modelling language. In Big Data, [26] introduced SkyViz,
a model-driven approach for automating the translation of user objectives to visualize the Big Data
Analytics' results into a set of most suitable and concrete visualizations. [27] proposed a design
method to specify, deploy, and monitor Big Data Analytics solutions using MDD.
While all this shows that MDD is applied in a variety of relevant areas for the DBDIrl project, as
per our study there are no MDD based context-aware web applications that work with real-world
big data archiving, management and analysis.

4. The Historian App as a MDD Application

The Historian App we developed and evolved in a number of iterations is the DBDIrl solution to
data entry, storage and management for the historical civil registration (i.e., death) data of Ireland
from 1864 to 1922. We adopt the eXtreme Model-Driven Development (XMDD) [28], which
provides a fast turnaround of easily modifiable prototypes understandable to the non-IT experts. In

128

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEeMATBLHOTO MOAEIBHO-YMpaBisieMoro noaxona. Ipyost UCIT PAH, Tom 33, Bem. 3, 2021 r., ctp. 123-142.

this way, a more collaborative approach between domain experts (here the historians as central
stakeholders) and developers establishes itself along the entire project life cycle.

The agile model-based approach helps repeat the feedback and co-design cycles with the historians
in a continuous refinement process. In addition, using models also helped the developer team when
reflecting, presenting and explaining the work progress to the historians and the historians when
understanding and monitoring the development.

We chose the DIME Integrated Modelling Environment [9, 29], based on Domain-Specific Libraries
(DSLs), as the XMDD framework for our project. DIME provides reusable features, and
functionalities [20, 30] where developers can develop web applications within a low-code
environment without having any programming knowledge. DIME supports model types for
processes, services, data, and the Ul that are integrated and kept consistent to a reasonable extent by
the platform. Many domain-specific libraries (DSLs) are already available, for example, for the GUI
design of the web applications. New services as well as entire new DSLs can be introduced in an
easy way. These characteristics help the IT specialists and the domain specialists to better understand
and monitor the development throughout the project life cycle on the basis of the domain knowledge.

4.1 he IME-based co-development lifecycle
The application development life cycle of the Historian App is illustrated in fig. 2.

Fa
! |
Rt

T,

Historian as Appscation 5 a5 Appiicaion
Taster and Varifiar Aralyst

Applinaton Execuion & Tesing

L
[e ==—=] #i~

g‘:
Olployed Contast Auars Wab Appbeation
k

Appheatinn Modelln
Wiooal Gompletaton and Comgliaton

e
A

History Racord Understanding Workfhow, Data, Look & Fesl

Code

T e ||

Davalcping SIB and Process Mocels Genarating Coda in DME

f

S a5 Agplcaton Desiguer

! i]
| e
€5 oz Aoplicaton Cosfiguraor Fstarian a5 Coman Expert

Fig. 2: Collaborative development lifecycle in an IME: agile iterative phases, roles of Historians and
Computer Scientists (CS).

The project development life cycle involves in each phase both the computer scientists and
historians, in different roles. The historians become successively more skilled in dealing with the
models and application design. At project completion the historians may be able to modify and
evolve, or even design and implement, their own web applications on the basis of the existing
DSLs, without any coding knowledge.

129

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

4.1.1 Phase 1 — Application Modelling

As illustrated in fig. 2, the project life cycle starts by collecting and collaboratively analyzing the
historians' requirements. They are materialized as abstract workflow models with the corresponding
(unique and coherent) data model. Data and processes go hand in hand in DIME, so they are typically
co-developed and co-evolved in an XMDD approach. In this phase, the historians used their expert
knowledge about handling historical data and the correctness of the data and the records. The
historians collected the data and analysed their characteristics. While historians were finalizing the
data properties that they need for their further analysis, the computer scientists started designing the
data models including entities, attributes and relations. Then the historians specified how they want
the data to be stored, explaining what is already there and usable, what else needs to be added, and
how. Next, the CS team designed the corresponding data and workflow models, expressing the high-
level application logic and the elementary operations required for application development.
Gathering this expert knowledge in terms of workflows and properties or conditions (on the
individual data item, the record, the workflows) corresponds to gathering the historian data entry
application's static and behavioral requirements. At this phase, the historians also validated the
models and helped in finalizing them.

/

Fig. 3. Create Entry process of Historian DIME app including all other processes that successfully stores a
death record with all its attributes and event listeners.

4.1.2 Phase 2 — Model Completion and Compilation

The second phase includes all the XMDD: model refinement, followed by DSL extension and
implementation of new functionalities. Here the historians participated as stakeholders for detailed
questions, the CS team as fine granular designers and developers. The CS team extended the DSLs
where functionalities were missing, implemented them in a reusable, service-oriented way and
modelled the Web application GUI. A growing hierarchy of nested workflows structure the

130

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEMATBHOTO MOJIEIBHO-YIpaBIsieMoro noaxoza. 7pyos: UCI PAH, Tom 33, Beim. 3, 2021 r., ctp. 123-142.

application logic in behavioural features. For the business logic they acted as application
configurators on the basis of these models and services. We reuse existing DIME process models
such as RetrieveEnumLiteralSIB that gets a field status (illustrated in fig. 3) but also designed new
processes for further required operations such as GetPrePopulated to load in the application a
predefined set of data from a file. This phase also includes the models-to-code generation phase
from the collection of validated models, and the deployment on a standard web stack. It produces a
deployed, running application, that is further examined, updated, recompiled and redeployed.

4.1.3 Phase 3 — Application Execution and Testing

In this phase, the Historians and other end users (like history students and volunteers in the
transcribathons for the data entry) test and use the application, as shown in fig. 4. Small adjustments
and optimizations may be carried out as a consequence of live testing. This is the validation and use
phase of the current version of the application. It includes live debugging, error handling and fixing,
as well as the definition of new features and changes for the next development phase.

il |
i el - Logle
W wPrEesss s
IsSaperrisniGusm 1
Sugenieor
' ' | | | :
L . <ilbs <z <l <<l efill> il
Swiw | 1 4
REENIn} AoprovedEnTy SutmisdEnry WEwy | Maragelsir InparEspanDal
T L T l
<P sfinse: whrcesgs wPrumey
il
i} . SEAIEnEY GethpsrovedEnd | GetSuiminecEs GetyEnlry
il I I eetTanh
Eplabe | OctEnties] geMopowedEwres) getfubmmesEnmies| geikbyErre]) 1 MT
1 _ - = o
11 ImpartEringData
| o Pr-T) i P I
Hetar: =
" : wfritices eellbe
AdiHswErlry ll.l._m] Aelawliear Alllear | ToREEss = |
iz . = —f . Exporrtry GelEnindets
= o ' — =
GetPraFogualic adilbs P el -
Sl e) i ety Sakcler Suscasy l
o & Edyfom = I = _— 00 0 | X = =
™, w3 Ahn U’elﬂm i 1 e] <<3lbn | faius =Pmgams
e Sioeig, | EhowErardessage =<l hsdan 1
e Erinusls | ————— Erdd §| | it
B:mngmmn e S g e I ; - | ¥ Userdelats g — [
e | il Foeme | T T st !
JRpgp-—_— pcrinPropeies] Enty I N e o et i
SErPIS i L Ervaieienr ucilsePoeiis] e Il
vs’mwz / E * d _
L1 L
amum u:u :suu: r- S e T L . 3 S
Aelioes Earalizer | 151
= ="u= mPerisoFaled
-x.-wya] 1’
—t . z . ¥
CreateTereDureid J— -lqiu‘SmE'u', | aaa 920'3"1 | Mzton lj:ILI.w fowon I:ee'LI!’i!' |) ot
e 11 wilea) ShaEmiesmae
"“E‘"" | mnt’aa’m‘mmml st v
iy «cProsstess | Burcesr
Sicre oy T
Removellaer
Remanvelniry

Fig. 4: Model-driven abstract architecture of DBDIrl’s data entry web application — Feature level
The whole cycle follows an agile software development procedure.

4.2 Modeling the Historian Web Application: The Full Workflow

We describe now the application workflow along with the explanation of the main processes and
GUI models developed for the application. The Model-Driven Development (MDD) of DBDIrl
starts with listing and developing process models, the data model and identifying user roles. Fig. 4
illustrates the feature-level abstract architecture of DBDIrl's data entry web application in terms of
Processes, GUIs, Actions and Event Handlers (as indicated by the respective stereotypes
<<Process>>, <<Action>> etc.) along with the connections among them.

131

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

The application homepage? is a GUI model where users can login. Its action Login calls the process
IsSupervisorGuard, that checks the login credentials and establishes the user role: Supervisor or
Student.

In the Student role, a successful login directly links to the EntryTable page, a GUI model where the
student sees all the entries recorded by him/her. Action AddNewEntry leads the user to the
EntryForm page, a GUI model which calls the CreateEntry process shown in Fig. 3.

On the EntryForm page, users enter the data of all the records from the . TIFF file of the death record
register page, by filling up field by field the record's properties in the corresponding fields on the
web page.

CreateEntry is a big process: it receives the data entered by the user and to do so in an error-free
way it calls other processes that provide support functions. For example, it uses the
GetPrePopulation process for reading pre-populated data from a file, GetSuggestions to provide
pre-populated options in the Web form as drop-down menu for certain data attributes, CreateAddress
to create a new (complex) address object with the individual attributes city, county, district and
street.

Similarly, CreateTimeDuration creates a duration object from various time properties. The
GetPrePopulation process receives the group id of a death record provided by the user, and it reads
name, age, superintendent's district and .TIFF file path from the .csv files we received from the
GRO. It also auto-fills the corresponding fields of the EntryForm.

The GetSuggestions process reads large lists of pre-populated, validated values for a number of
properties. It displays those options as a drop-down menu in the form, to ease the input of attributes
like cause of death, registrar name, assistant name, rank profession and street names of Ireland from
1864 to 1922. These data collections are pre-validated, as the Historians collected them from 18's
Ireland records.

CreateEntry performs all the individual operations needed to successfully save an entry with all its
values entered by the user (either by hand or by selecting pre-populated fields), property by property.
Event listeners on CreateEntry process help check data validity and show alert messages in case of
a wrong entry (incorrect value or format).

Entry Table Webpage from the Historlan App " Corresponding GUI mosel of the Entry Table from DIME

© P— 'f I", it B > s i i = =
(R sfi 3 e i B 2

£3 080

Fig. 5. The Entry Table of the Historian App: Web page (Left) and its corresponding GUI model (Right)

2 The Historian App is available at https://civilreg.dbdirl.com/home, it is accessible to predefined, verified
users.
132

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEMATBHOTO MOJIEIBHO-YIpaBIsieMoro noaxoza. 7pyos: UCI PAH, Tom 33, Beim. 3, 2021 r., ctp. 123-142.

Finally, the action SaveEntry from the EntryForm successfully saves an entry and sends the user
back to the EntryTable, to process the next record.

Fig. 5 shows the entry table as it is displayed on the Historian App web page, with the corresponding
GUI model in DIME. We see here that the structure and look and feel are very recognizable. The
data flow is explicitly modelled, and we recognize buttons (like the CreateEntry button) and other
elements like fields filled from the database and status indicators that are color coded (orange, green
and blue).

From the EntryTable, selecting an entry leads the users to the EntryDetails GUI: there they can
(re)view the entered entry details and choose to edit the entry (this brings them back to the
EntryForm, filled with all the previously entered data), or submit the entry for review. The Entry
Delete option is only available to the Supervisor role, who can delete an entry from the database.

In the Supervisor role, a successful login directly links to the EntryTable GUI. The supervisor is
displayed the user’s entries and also has other options, like seeing all submitted and approved entries
individually. The Supervisors have a validation and approval function: they can see the details of all
the entries stored by Student users, and have actions to perform edits, approve, as well as remove
each entry.

S e |

(e Cvnim +)

uuuuuuuuuuu

SIITLILLLLTELIALELLY

Fig. 6: Entry table management process of Historian app, with flows for the Approve, Submit for Review,
Edit, Remove, Close entry operations

Fig. 6 shows the ShowEntry process, with flows for the Approve, Submit for Review, Edit, Remove,
Close entry operations. Selecting ManageUser leads the supervisor to a UserTable page that

133

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

includes the AllUser GUI (displaying all the users) and the AddNewUser action. AddNewUser calls
the UserForm GUI, containing all the fields required to creating an user.

Similar to CreateEntry, the CreateUser process performs all the operations necessary to create a
user. It also includes an event listener that alerts the supervisor in case wrong or ill-formatted
information is provided. After saving a user, the action EditUser calls the UserForm again with the
previously provided data to edit, while DeleteUser calls the RemoveUser process to delete the user.
Supervisor can also import and export data to and from the application. An event listener is used to
check issues regarding import/export operations, together with the processes ExportEntry and
ImportData that export and import data, respectively.

Altogether, Fig. 4 presents an overview of how the Historian App is organized, and shows the

interplay among all the Processes, GUIs, (GUI)Actions and Event Handlers.

5. Model Types and Concrete Models
We describe now the main model types, model elements and models of the Historian App.

r r N
@ Comestotssar Q@ ey @ tvoren)
H Address
s S [fgen [
P —— 3 wrvove Conavininer BoA Py ———
2 cminc Eam) DR —— SR PR R ——

Pafdar Tew
e Fhe
sFivLage. Bucken

St Bockan

® etaemiorn sk Fsttuna
B AN ComeDANH

e Bockesn
oot Tesmtarg
3 vy, Conmline

aeODear Tt

wehare e @ iesstorthiame # ANROTE v Frbtieria
— th
e = et dstePaghervior: Test
7
e T . st sz
L = = © Fodstatus
8 OreaAADMN Curetn 1PiceOtesidznce p
5 . s Feusiann ® Methesr
| (@ MasaDan B SmndN Sy O 9 Mwoent
xceaunTonTast Triamy P e
by Test (T
s B SAMATARINAOMNAT Duraion
* SecesvmreicrCtimsz Cursion districstatin
- m . siwax A
wptmdiame dateRegieration._siatus
(3 Reozebame i R e W
= cermre » dxermEucfevaore Ao monmadégeNDesin saivs |
s - B Swermnsiurirss drin Mineh ke
durasontinazs1_sieius
r 3 arcmpacFormare a1 =
(3 CrummDash duraticnOtiness2 status
- S D0 SrenSdmens Tes w
AT Tt dutict:Toat macelCuath.statux 7
R e I
i SRR T K ualifCINOnOANIGmant S1sus
(@ RarkPidtassicn rakPrelession - i A
T R S : veAna TS
pre— o 5 ot : = 1
= £ TegiraOTe_ZATUS
foaiend 3% Tewatang k =
” 2 vt Te A
e - Va0t varTace Test stDlstrictAnsa satus »
(@ CouseDoatt counaCusthl a7 Tem
whereRssident stats y
TR emmarFucNeadce: Addu
¥ orrer Py T O P D \aerairaimdeczagn 2
[@ crston | i
redSiane | .
e i o |
@ Suner & raOtsteTan sives Faestng SMSOMNRIE M >
® e —— | & e rosdectOtivformare. siatus A
® e 4 SaCOn svis Tecmna GaseQDesn statis y
@ Urkoown eMcaarres A T
@ Vidoved | B qaakr i vans Pk Sousacirebl sabe ~
(S — 0
loimanNes e A TIneCeOuath ok Tem G AgeFwidStans
r 1 8 corkSrchson RenkProlson —
"
(3 ProsentATimeODeath g @ WPt
ook e FeEan
® Nt renen * agaurkan: Regrarins o
P e
® Pt r S —— ST
s Whrowe
® L gbstanDuls Tiresare hd
© 11 Amincs | » vtervhmas_sn FrhsSen s E;
5 % ¥ seae Sa P e N ¢]
Qs s ece T | YT
e SRR ronmsedSunamn_statis
@ roven . ® Poune
wtested st Tirawary
® hee @ Uesigte
saraCerta e
8 Ui ® Urkoom
Wb Yot
@ Urraned

ot bempw

- ;ﬂ.m,..m

» datsetipe Duveilyse

ety Teet

o Toa
- X # BONET, Casaluan] oayuce: T
() Bosher e ol
S CewOTweh]_smbse MekiStre vt Text
T a——————— eoater
@ oncwalee [Crcwvelse] ® CrwOTemtd_wats FokiStis oot Text

ancearnclurationOf Fness 1
¥ asadPacrOt Dl

B hireRet_ s e

Fig. 7: Data model of Irish civil registration in DIME

134

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEeMATBLHOTO MOAEIBHO-YMpaBisieMoro noaxona. Ipyost UCIT PAH, Tom 33, Bem. 3, 2021 r., ctp. 123-142.

5.1 Data Model

Fig. 7 shows the data model of the application, representing both the concrete and abstract data. It
contains both unidirectional and bidirectional relations such as association and inheritance. In our
finer granular representation of a record, every Entry has 27 individual properties. Some properties
like Sex, Address, Age include sub properties, which are at the elementary granularity needed for
data analysis. The decision of moving to these 27 properties from the original 11 properties of fig.
1 is an example of the design choices for the Historian App stemming from the co-design practice.
As shown in fig. 7, every concrete user can have base user who as act as creator (only students) or
approver of an entry. The Entry itself is a concrete type data at DIME (green data objects at fig. 7).
Most of the attributes of entry are stored as text or number i.e. primitive attributes of DIME (small
yellow components at fig. 7). Some are Enum type attributes e.g. Civil Status with some optional
values (brown data objects at fig. 7). Some properties may not be present in the original record: the
corresponding cases are captured by the FieldStatus. Some attributes e.g. Registrar Name are created
as concrete type object so that they can receive list of data options and presented as drop-down menu
to the application and user can choose the correct information from provides options. Duration and
Address are also concrete type objects with required values.

5.2 Graphical User Interface Models

In DIME, the GUI model type represents the structure (layout and contents) of the Historian app’s
individual web pages. A collection of GUI models defined, therefore the abstract and concrete
«look» of the presentation layer of a DIME application. We see in fig. 4 that the created GUI models
connect the GUI and Process Models. Every GUI models of Historian DIME app is created using
components from DIME palette. The GUI models call process models to execute an operation. These
GUI models are also reusable, for example we use EntryForm at fig. 4 for both create and update
operation of each entry.

5.3 Native DSLs

In DIME, the actions and services are collected in domain specific palettes that are basically a service
or component oriented DSL. The DSL elements correspond to (calls to) individual functionalities
that are either directly implemented or provided by an external service provider, like e.g. the
database. The individual functionalities are modelled as special native types called SIBs, for service-
independent building blocks, where service-independent means that they are widely reusable across
applications. These Native SIBs enable interoperability on a structural level. Within the Historian
app, besides the pre-existing DIME SIBs we create Native SIBs for different operations such as data
pre-population, CSV file import and export and to get field suggestions etc.

5.4 Data-flow

In DIME data flow is explicitly modelled within the process models. The input/output ports of SIBs
can either be connected directly with each other or used to read and write from/to variables placed
in a dedicated container representing the data context [9]. Fig. 4 shows the data flow connections of
the proposed application using arrows. All other figures of the Historian DIME app shows data flow
connection.

5.4 Process models

Process models express the business logic in a fashion roughly similar to Activity Diagrams, but
with a clean formal semantics. There are several process types: basic, interactable and interaction
processes. Each process type follows certain rules regarding which kind of SIBs they contain and
the kind of tasks they express. The graphical syntax and general handling are the same for all the

135

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

types of SIBs and processes. Fig. 4 shows the process models that are created for the Historian

application. The collection of process models together with the connected GUI, actions and data

flow expresses the behaviour of the application in terms of its operation. Fig. 3 shows the actual
process model CreateEntry of Historian app (also presented in fig. 4) that performs all necessary
operations and successfully stores an entry to the database.

Process models can also be of different type such as

a) Basic Processes: Basic Processes consist of native SIBs and built-in SIBs, and express the
smallest processes of the application's business logic. In the Historian app, basic processes
models are the CRUD (i.e., create, read, update, and delete) operations and data operations. In
fig. 4 CreateUser and RemoveEntry are two examples of basic processes.

b) Interactable Processes: Interactable Processes work as interfaces between the front-end layer
and the backend of the application. They are similar to Basic processes, but are restricted to non-
native type. The StartUp process is the only interactable process in the Historian app. This
process includes operation of successful login of user with different role.

c) Interaction Processes: Interaction Processes are used to define the immediate interaction
between user and application, accordingly they can be seen as a sitemap [9]. Where interactable
SIBs communicate with the backend, interaction SIBs establish a new hierarchy level with the
frontend. As the Historian app is essentially a sophisticated daTa entry app, most of its processes
are developed as interaction process, like GetPrePopulation, GetSuggestions, CreateAddress
etc.

d) Security Processes: Security Processes realize the (role based) access control with a predefined
interface. The IsSupervisorGuard and ExportFileGuard processes are two examples of security
processes in the Historian application. In IsSupervisorGuard the start node must include the
currently signed-in user (i.e., the Supervisor) as an input, and all following nodes are restricted
to be labelled with «granted.

6. Challenges and Solutions

6.1 Defining the major context parameters

In a context-dependent application, a DSL should enable modelling the different context situations
that may occur during user interface usage. This DSL will eventually help developers to separately
specify context-specific services to monitor various parameters and react accordingly. For example,
the application's abstract GUI rules cover various adaptation dimensions: layout, navigation,
reusability. Accordingly, modelling, adaptation, transformation and execution of processes and
GUIs take into consideration the context management and the corresponding adaptation. In
particular, the processes and functionalities are associated with responsive GUIs.

6.2 User interface adaptation at runtime

To achieve a responsive web application, the integrated execution environment must be equipped to
generate adaptation services in dependence of the context. For this, the generated adaptation
processes need to be coupled with generated code that enables an automatic dynamic reaction of the
runtime Ul to the context-of-use. In the Historian App, the data entered by the user is the
predominant part of the dynamic context to which the app reacts. The reaction manifests itself in a
validation of the entry or an error message if problems are detected. To address various run-time
errors, we introduced ‘Alert” models with the event handler. To this aim, we introduced native SIBs
for several condition checks, detecting e.g., whether an unintentional special character is entered, or
a date entered in an incorrect format, a required field is left unattended, the ID not unique etc. Process
events are connected with those detections, and respective event-listeners are introduced at the
corresponding GUI models, enabling this was a run time error handling. Fig. 8(a) shows an event
and corresponding event listener model connected with respective alert that warns the user that
136

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEMATBHOTO MOJIEIBHO-YIpaBIsieMoro noaxoza. 7pyos: UCI PAH, Tom 33, Beim. 3, 2021 r., ctp. 123-142.

‘Name can't have special character’ (fig. 8(b)). We also proposed a rule-based classifier [31] for
overall data monitoring and error detection. The integration of the classifier with the DIME
application is currently ongoing.

bl =R

e
TEXlConTainsSpacias EnCryFarm

awh Ly

| Epacialc Error
ralse g L

@ i

(a) Detection: Event Listener in the CreateEntry Process

Enlty Pz

Ty EEENIE

I

o T A o e

(b) Handling: Event with corresponding alert in the EntryForm GUI
Fig. 8. Handling a run-time error in DIME: unexpected special character in the name field

6.2 Data Entry with minimum error

In 2020 we conducted a pilot Transcribathon using the Historian application version 1, which was
not a responsive application with built-in data checks. Examining the resulting data entry, it emerged
that most of the wrong entries occurred at the fields Cause of death, Address, Age/Duration and at
the Registrar names. The date format also posed problems.

As a solution, we worked together to create drop-down lists of cause of death, registrar name and
street name which can be used to provide a predefined list of suggestions, thereby eliminating the
free text entry, and reducing error rate. For registrar name prediction, it is possible to create a
registrar names list for the period and location of interest. Using the method employed by 18 we
ordered the geographical data like street, city and county names of Ireland, which occur in various
address fields. All these lists are added to the application, by augmenting it with native SIBs and
adequate GUI and process elements. Fig. 9 shows an example. The Web page screenshot of fig. 9b
shows the Registrar data entry page, and in particular the pre-populated data field for the registrar
name of a death record. This drop-down menu or combo-box lists all the registrar names collected
from the early 1900s Dublin Street Directory. Once the historians found and verified the names of
the registrars who registered the death records relevant to this specific time and place, the IT
specialists created the GetSuggestion process shown in fig. 9(a). This process shows the list as a
drop-down menu in the right location of the application page. Thus, instead of inputting a free string

137

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

that needs to be validated, in version 2 for this field users can select the correct option from this
menu, avoiding errors instead of repairing them.

oA

Servousiro s, m

@ | -

—
\l Creont Bnprtotioms

ret

3 serart e

- e
a5 Mgtz
18 Dt 21 Megrabeatun bs Prawent? Cute ot Pegratratars
[esp—
In Harew of Regigivar la Braaart?
T o Pty At 1 e
1 Wares o Anssmtant is Breasrut
ot
Tattiad
M Sk i £ | arp e s iE
Pressn pypppyy Pl C—
S GLLBCOR e

(b) Registrar name field with suggestions
Fig. 9. Data entry error handling in the Historian App by providing suggestions

6. Conclusions

In this paper, we presented the first MDD based application developed in the DBDIrl project to
support the correct and reliable data entry of Civil registration records. As this project deals with a
large dataset, we need a reliable application that prevents as much as possible errors. To this aim,
we co-developed with the Historians a model-driven application using XMDD as an agile version

138

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEeMATBLHOTO MOAEIBHO-YMpaBisieMoro noaxona. Ipyost UCIT PAH, Tom 33, Bem. 3, 2021 r., ctp. 123-142.

of MDD and the DIME integrated modelling environment. We briefly introduced the various model
types and showed how they are used in conjunction to create a coherent data, process, GUI and role-
based access model. The main advantage of these choices is the ability to quickly react to the
findings, exemplified here by the evolution from the V1 to V2 of the App. In particular, the V2
greatly improves the achieved data quality by making the Application reactive to context-specific
events, and equipping most of the data entry fields with pre-populated lists of plausible options, as
for addresses causes of death and registrar names, and with context-specific rule checks, as for date
and age formats. The main lesson learned is that such an application is necessarily long lived, due
to the sheer enormous amount of data to be digitized over time, by many groups of volunteers, and
never really «finished». In such a context of continuous improvement, the ability to collaborate with
the Historians on the basis of models rather than code is an essential asset, producing successive
versions of the app that improve or customise specific aspects of the functionality and the
presentation.

The work currently in progress concerns on the one side the inclusion of rule-based classifiers in the
application, and on the other side the development in the same paradigm of a data analytics
application. The Analysis App needs to be as flexible and customizable as this one, because it will
serve the certainly diverse and specialized analysis needs of a growing community of researchers
working on big data archival systems in the digital humanities.

References

[1] J. Schnapp, L. Peter, and T. Presner. Digital humanities manifesto, 2008. Available at
https://tcp.hypotheses.org/category/manifeste.

[2] M. Grieves and J. Vickers. Digital twin: Mitigating unpredictable, undesirable emergent behavior. In
Transdisciplinary perspectives on complex systems, Springer, 2017, pp. 85-113.

[3] Y.Lu,C. Liu et al. Digital twin driven smart manufacturing: Connotation, reference model, applications
and research issues. Robotics and Computer-Integrated Manufacturing, vol. 61, 2020, article 101837.

[4] M. Dalibor, J. Michael et al. Towards a model-driven architecture for interactive digital twin cockpits.
Lecture Notes in Computer Science, vol. 12400, 2020, pp. 377-387.

[5] T. Margaria and B. Steffen. Extreme model-driven development (xmdd) technologies as a hands-on
approach to software development without coding. Encyclopedia of Education and Information
echnologies, 2020, pp. 732-750.

[6] R. France and B. Rumpe. Model-driven development of complex software: A research roadmap. In Proc.
of the Conference on Future of Software Engineering (FOSE’07), 2007, pp. 37-54.

[7] C. Breathnach, N. M. Ibrahim et al. Towards model checking product lines in the digital humanities: An
application to historical data. Lecture Notes in Computer Science, vol. 11865, 2019, pp. 338-364.

[8] M.D. Wilkinson, M. Dumontier et al. Addendum: The fair guiding principles for scientific data
management and stewardship. Scientific data, vol. 6, no. 1, 2019, pp. 1-2.

[9] S. BoBelmann, M. Frohme et al. DIME: A Programming-Less Modeling Environment for Web
Applications. Lecture Notes in Computer Science, vol. 9953, 2016, pp. 809-832.

[10] B. Steffen, T. Margaria et al. The metaframe’95 environment. Lecture Notes in Computer Science, vol.
1102, 1996, pp. 450-453.

[11] B. Steffen, T. Margaria et al. An environment for the creation of intelligent network services. In IN/AIN
Technologies, Operations, Services, and Applications — A Comprehensive Report, International
Engineering Consortium, 1996, pp. 287-300.

[12] P. Fraternali, S. Comai et al. Engineering rich internet applications with a model-driven approach. ACM
Transactions on the Web (TWEB), vol. 4, no. 2, 2010, pp. 1-47.

[13] T. Margaria. Web services-based tool-integration in the eti platform. Software & Systems Modeling, vol.
4, no. 2, 2005, pp. 141-156.

[14] T. Margaria, C. Kubczak et al. Model-based design of distributed collaborative bioinformatics processes
in the jabc. In Proc. of the 11th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS'06), 2006, 8 p.

[15] A.-L. Lamprecht, T. Margaria et al. Genefisher-p: variations of genefisher as processes in bio-jeti. BMC
bioinformatics, vol. 9, no. 4, 2008, pp. 1-15.

[16] D. Withers, E. Kawas et al. Semantically-guided workflow construction in Taverna: the SADI and

139

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

BioMoby plug-ins. Lecture Notes in Computer Science, vol. 6416, 2010, pp. 301-312.

[17] AR. da Silva. Model-driven engineering: A survey supported by the unified conceptual model. Computer
Languages, Systems & Structures, vol. 43, 2015, pp. 139-155.

[18] J.G. Mengerink, A. Serebrenik et al. Automated analyses of model-driven artifacts: obtaining insights into
industrial application of mde. 27th International Workshop on Software Measurement and 12th
International Conference on Software Process and Product Measurement, 2017, pp. 116—121.

[19] S. J orges, C. Kubczak et al. Model Driven Design of Reliable Robot Control Programs Using the jJABC.
In Proc. of the Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous
Systems (EASe'07, 2007), pp. 137-148.

[20] T. Margaria and A. Schieweck. The digital thread in industry 4.0. Lecture Notes in Computer Science, vol.
11918, 2019, pp. 3-24.

[21] B. Steffen, T. Margaria et al. A constraint-oriented service creation environment. Lecture Notes in
Computer Science, vol. 1055, 1996, pp. 418-421.

[22] P. Mikulecky. Formal models for ambient intelligence. In Proc. of the 2010 Sixth International Conference
on Intelligent Environments, 2010, pp. 370-371.

[23] G. Savié¢, M. Segedinac et al. A model-driven approach to e-course management. Australasian Journal of
Educational Technology, vol. 34, no. 1, 2018, pp. 14-29.

[24] A. Hernandez-Mendez, N. Scholz, and F. Matthes. A model-driven approach for generating restful web
services in single-page applications. In Proc. of the 6th International Conference on Model-Driven
Engineering and Software Development, 2018, pp. 480-487.

[25] D. Breuker. Towards model-driven engineering for big data analytics — an exploratory analysis of domain-
specific languages for machine learning. In Proc. of the 47th Hawaii International Conference on System
Sciences, 2014, pp. 758-767.

[26] M. Golfarelli and S. Rizzi. A model-driven approach to automate data visualization in big data analytics.
Information Visualization, vol. 19, no. 1, 2020, pp. 24-47.

[27] C. Castellanos, B. Pérez et al. A model-driven architectural design method for big data analytics
applications. In Proc. of the 2020 IEEE International Conference on Software Architecture Companion
(ICSA-C), 2020), pp. 89-94.

[28] T. Margaria and B. Steffen. Agile IT: Thinking in User-Centric Models. Communications in Computer and
Information Science, vol. 17, 2009, pp. 490-502.

[29] S. BoBelmann, D. Kiihn, and T. Margaria. A fully model-based approach to the design of the secube
community web app. In Proc. of the 12th International Conference on Design & Technology of Integrated
Systems In Nanoscale Era (DTIS), 2017, pp. 1-7.

[30] S. Jorges, A.-L. Lamprecht et al. A Constraint-based Variability Modeling Framework. International
Journal on Software Tools for Technology Transfer (STTT), vol. 14, no. 5, 2012, pp. 511-530.

[31] E. O’Shea, R. Khan et al. Towards automatic data cleansing and classification of valid historical data an
incremental approach based on mdd. In 2020 IEEE International Conference on Big Data (Big Data), 2020,
pp- 1914-1923.

MHcopmauusa o6 aBTopax / Information about authors

Rafflesia KHAN, MSc in Computer Science and Engineering from Khulna University, Khulna,
Bangladesh, currently Research PhD Student at Computer Science and Information System
Department. Her research interests are Big Data, Model-Driven Development, Digital Humanities,
Historical Data Analysis, Pattern Recognition, Image classification, Object detection & recognition,
Facial behaviour analysis, Image and Video Processing, Internet of Things, Security of IoT, Machine
learning, Computer Graphics and Artificial Intelligence.

Paddnesust XAH, maructp KoMIbIOTEpHBIX HayK U HHDKeHeprH u3 YHuBepcureta Kxymna, KxynHa,
Banrnmazmemni, B HacTosimee BpeMsl aCIHPaHT-HCCIEN0BAaTeNb (haKyIbTeTa KOMIBIOTEPHBIX HAYK H
nH(popmannoHHbIX cucTeM. Ee ncciaenoBaTenbckue HHTEPECH: OOJbIINE AaHHBIE, pa3paboTka Ha
OCHOBE Mofemnel, IHu(poBEIe TyMaHHUTAPHBIE HAYKH, AaHAIN3 HCTOPHYECKUX JaHHBIX,
pacrio3HaBaHHWEe 00pa3oB, KiaccupUKanus H300pakeHuil, OOHapy)kKeHHEe W paclo3HaBaHUE
00bEKTOB, aHalM3 MOBEAEHMS I, 00paboTKa W300pakeHMH W BHAeo, VHTepHeT Berei,
6e3onacHocTs MHTEpHETa Benlel, MalllnHHOE 00y4deHue, FOMITbIOTepHas IpaduKa U NCKYCCTBEHHBIH
HHTEJLICKT.

140

Xan P., llusek A., bpetnax C., Maprapus T. TpaHCKpHUIIINS HCTOPHYECKHX 3aMHCEH aKTOB IPa)kJAHCKOTO COCTOSHUS C MCTIOIB30BAaHHEM
9KCTPEeMATBLHOTO MOAEIBHO-YMpaBisieMoro noaxona. Ipyost UCIT PAH, Tom 33, Bem. 3, 2021 r., ctp. 123-142.

Alexander SCHIEWECK, Master in Computer Science form the TU Dortmund University,
Germany, currently Research PhD Student at Computer Science and Information System
Department. Research Interests: Low-Code and Formal Methods for Software Verification as part
of the Software Engineering process.

Anexcanap IIIMBEK, mMaructp KoMIbIOTEpHBIX Hayk TexHHdyeckoro yHuBepcurera JlopTMmyHna,
I'epmanusi, B HacTosilee BpeMs aclMpaHT-UcCIeNoBaTenb (akyabTeTa KOMIBIOTEPHBIX HAayK H
MH(QOpPMAaLMOHHBIX cHcTeM. HaydHbple HWHTEpechl: MaJlOKOJOBbIE M (opMalibHBIE METO/BI
BepU(HKAIUM TIPOrPaMMHOI0 oOecleueHns] Kak 4acTh Ipolecca pa3paboTKu MpOrpaMMHOTO
obecreueHus.

Ciara BREATHNACH, PhD in History, University College Cork (UCC), Associate Professor in
History at the University of Limerick, Ireland. Research Interest: modern Ireland, social history,
gender, medicalization, death, migration, health-history; social determinants of health in nineteenth
and early twentieth Irish history; infant and maternal mortality; social history of medicalisation; the
social function of modern medicine in acculturating Irish immigrants in New York and Boston,
1860- 1912.

Cuapa BPETHAX, xauHmumaT MCTOPUYECKMX Hayk, YHuBepcureTckuii kosuemk Kopka (UCC),
JOUeHT Kadeapbl ucropud. OOJacTh HCCIEIOBAHHS: COBpeMeHHas WprnaHmus, coluanbHast
UCTOpHS, TMOJ, MeOWKaau3allksi, CMEPTh, MHIPAlUs, HUCTOPHS 3J0POBbS; COLHAJbHbIE
JIETEPMHUHAHTBI 370pPOBbsS B HCTOpHHM MpnaHauu IEBSATHAAIATOTO M Hadaja JBAAIATOTO BEKa;
MJIAJIEHYECKass U MAaTEPUHCKAs CMEPTHOCTh; COIMANbHBIA aHAMHE3 MEIUKaIU3alluK; COIUaIbHAsS
(YHKIMS COBPEMEHHONH MEMIMHBI B BOCIHTAHHH MPIAHICKHX MMMHIpaHToB B Hbio-Mopke n
Bocrone, 1860-1912 rT.

Tiziana MARGARIA, PhD in Computer and Systems Engineering, Politecnico di Torino, Italy,
Professor at Computer Science and Information System Department at the University of Limerick,
Ireland. Research Interest: eXtreme Model Driven Design, lightweight formal methods, automatic
program synthesis, system correctness, in particular compliance and security, future education in SE
and IT.

Tumnana MAPTAPUA, xaHInaaT KOMOBIOTEPHBIX HayK M CHCTEMHOW MHXEHEpHH, TypHHCKHHA
NOJIMTEXHUYECKUi yHuBepcuteT, Mranms, npodeccop kadeapbl KOMIBIOTEPHBIX HAyK H
MHQOPMALMOHHBIX cucTeM. OOJacTe HAy4YHBIX HHTEPECOB: IPOCKTHPOBAHHE HA OCHOBE
OKCTpEMANbHBIX MOJEJIEH, YNpOIIeHHBIe (OpMalbHBIE METOABI, ABTOMATHYECKHUN CHHTE3
MpoTpaMM, MPaBUIBHOCTh CHUCTEMBI, B YaCTHOCTH COOTBETCTBHE M O€30MacHOCTh, Oymayiiee
o0pazoBaHue B 001aCTH NPOTrPaMMHON MH)KEHEPUH ¥ HHPOPMAIIMOHHOMN TEXHOJIOTHH.

141

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model Driven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

142

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-11 toclﬁu

Mechanized Theory of Event Structures:
A Case of Parallel Register Machine

1V.P. Gladstein, ORCID: 0000-0001-9233-3133 <vovagladOO@gmail.com>
1D.V. Mikhailovskii, ORCID: 0000-0002-1026-1170 <mikhaylovskiy.dmitriy@gmail.com>
12E.A. Moiseenko, ORCID: 0000-0003-2715-1143 <e.moiseenko@2012.spbu.ru>
3 AA. Trunov, ORCID: 0000-0003-0719-4744 <anton@zilliga.com>

! Saint Petersburg State University,
14 line of V.0O., 29B, St. Petersburg, 199178, Russia
2 JetBrains Research,
Kantemirovskaya st. 2, room 422, Saint Petersburg, 197342, Russia
3 Zilliga Research
12 Marina View, Asia Square Tower 2, #11-01, 018961, Singapore

Abstract. The true concurrency models, and in particular event structures, have been introduced in the 1980s
as an alternative to operational interleaving semantics of concurrency, and nowadays they are regaining
popularity. Event structures represent the causal dependency and conflict between the individual atomic actions
of the system directly. This property leads to a more compact and concise representation of semantics. In this
work-in-progress report, we present a theory of event structures mechanized in the COQ proof assistant and
demonstrate how it can be applied to define certified executable semantics of a simple parallel register machine
with shared memory.

Keywords: semantics; event structures; interactive theorem proving; Coq

For citation: Gladstein V.P., Mikhailovskii D.V., Moiseenko E.A., Trunov A.A. Mechanized Theory of Event
Structures: A Case of Parallel Register Machine. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp.
143-154. DOI: 10.15514/ISPRAS-2021-33(3)-11

Acknowledgements. Evgenii Moiseenko was supported by RFBR according to the research project
Ne 20-31-90088

143

https://orcid.org/0000-0001-9233-3133
https://orcid.org/0000-0002-1026-1170
https://orcid.org/0000-0003-0719-4744

Gladstein V.P., Mikhailovskii D.V., Moiseenko E.A., Trunov A.A. Mechanized Theory of Event Structures: A Case of Parallel Register
Machine. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 143-154

MexaHu3smpoBaHHas TeOpuUA CTPYKTYpP COOLITUM: criyyaun
napannenbHOW perMcTpoBOW MaLlUHbI

LB.I1. I'naowmeiin, ORCID: 0000-0001-9233-3133 <vovagladoO@gmail.com>
L 1.B. Muxaiinoscxuii, ORCID: 0000-0002-1026-1170 <mikhaylovskiy.dmitriy@gmail.com>
12 E.A. Mouceenxo, ORCID: 0000-0003-2715-1143 <e.moiseenko@2012.spbu.ru=>
3 4.A. Tpynos, ORCID: 0000-0003-0719-4744 <anton@zilliga.com>

! Canxm-Ilemepbypeckuil 2ocydapcmeennbvlil ynusepcumen,
Poccus, 199178, 14 aunua B.O., Canxkm-Ilemepbype, 290
2 JetBrains Research,
Poccus, 197342, Cankm-Ilemepoype, Kanmemuposckas yu. 2, ka6. 422
3Zilliga Research
Cuneanyp, 018961

AnHoTanusi. Mozienu HCTHHHON KOHKYPEHTHOCTH U, B YaCTHOCTH, CTPYKTYPHI COOBITHH OBLIN NPEACTaBICHBI
B 1980-pIX KaKk aJpTepHATHBA ONEPALMOHHBIM CEMAHTHKaM C YepeJOBaHHEM, M HA CETOAHAIIHUI E€Hb TH
MOJIET BHOBBH OOPETAIOT MOMyJSpHOCTh. CTPYKTYpBI COOBITHH IMO3BOJIAIOT SIBHO BBIPA3UTh OTHOIICHHUS
MIPUYHHHO-CIEICTBEHHON CBSI3M M KOH(DIMKTAa MEKIY aTOMAapPHBIMU COOBITHSMH CHCTEMBI, YTO NMPHBOAMT K
0ojiee KOMITAKTHOMY M JJAKOHUYHOMY TIPEICTABICHUIO CEMaHTHKH. B maHHOI oT4eTe 0 Tekymiei paboTe MbI
MIPE/ICTABIISIEM TEOPHIO CTPYKTYP COOBITHH, MEXaHU3UPOBAHHYIO B CHCTEME HHTEPAKTUBHOTO J0Ka3aTeIbCTBA
teopeM COQ u 1eMOHCTpHpYyeM IpHMep IPHUMEHEHHUS 3TOH TEOPHH K IpobiieMe 3a1aHus CepTH(GUIMPOBAHHOM
HCTIOJIHAEMOM CeMaHTUKU IPOCTON MapajuiesIbHOM perucTpOBOM MAIMHBI C pa3liesiieMOil MaMsThIO.

KnroueBble c10Ba: CeMaHTHKa; CTPYKTYpbI COOBITHI; HHTEPaKTHBHOE JJOKa3aTelnbcTBa TeopeM; Coq

Jas uumrupoanmsi: [nmammreitn B.IL, Muxaitmosekuit [I.B., Mouceenko E.A., Tpyno A.A.
MexaHn3UpOBaHHAs TEOPHUS CTPYKTYP COOBITHI: CITydail mapaieabHoi peructpoBoid Mammabl. Tpynsr UCIT
PAH, towm 33, Bein. 3, 2021 r., crp. 143-154 (na anrmiickom s3eike). DOIL: 10.15514/ISPRAS-2021-33(3)—
11.

Baarogapuoctu: EBrenunii MOHCEEHKO BBIMONHAI [JaHHOE HCCIICIOBaHHE HPH (UHAHCOBOM MOMIEPIKKE
POO®U B pamkax HayuHoro npoekta Ne 20-31-90088.

1. Introduction

Event structures is a mathematical formalism introduced by Winskel [1] as a semantic domain of
concurrent programs. In recent years there has been renewed interest in event structures, with the
applications of the theory ranging from relaxed memory models [2-4] to model-based mutation
testing [5]. The main advantage of event structures compared to traditional interleaving semantics
is that they give a more compact and concise representation of programs’ behaviors. For example,
consider the following code snippet of a simple parallel program.

:I:::1||.-I:::2Hm:=3

ri=x

Wiz, 1) Wiz, 1) W(z,2) Wz, 2) Wz, 3) W(z,3)
| | v v

W(z,2) W(z, 3) Wiz, 1) W(z, 3) Wiz, 1) W(z,2)
' ¥ l i v ¥

Wr,3) Wiz, 2) Wiz, 3) Wiz, 1) Wiz, 2) Wiz, 1)
4 ' { ¥ v X

R(z,3) R(x,2) R(z, 3) R{x, 1) R{wz,2) R{x,1)

Fig. 1. Example of program traces

Under the interleaving semantics, it has 3! = 6 traces with each trace consisting of 4 events, as
depicted in fig.1. Events themselves represent atomic side-effects produced by instruction

144

https://orcid.org/0000-0001-9233-3133
mailto:0000-0002-1026-1170
https://orcid.org/0000-0003-0719-4744

T'nagurreiin B.I1., Muxaiinosckuii [I.B., Mouceenko E.A., TpyHoB A.A. MexaHn3upoBaHHas TEOPUS CTPYKTYp COOBITHIL: Cydait
TapasuIeNbHOM perucTpoBoit MautuHel. Tpyost MCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 143-154

executions. In our case, an event is either a write of a value a to a shared variable x denoted as
W(x,a),oraread of avalue a from a shared variable x denoted as R (x, a) . The same information
can be encoded in a single event structure containing 6 events in total (see fig.2). In the event
structure, there are two types of edges between the events. The grey arrows represent the causality
relation, a partial order reflecting the causal relationship between the atomic events of computation.
The red edges represent the conflict relation which is a symmetric and irreflexive relation encoding
mutually exclusive events. Each particular trace can be extracted from the event structure as a
linearization of some configuration, that is a causally-closed and conflict-free subset of events,
which additionally should satisfy the constraint that each read is preceded by a matching write.
The programming languages theory and formal semantics research communities are moving to
increase the usage of proof assistants like COQ [6], AGDA [7], ISABELLE/HOL [8], AREND [9],
and others, to complement theoretical studies with their mechanization, as this process increases the
reliability and reproducibility of scientific results. Yet, to the best of our knowledge, there is little
work on mechanization of the theory of event structures. The present report aims to close the gap.
We have chosen COQ as the proof assistant because it’s a mature formal proof management tool
with a rich ecosystem of libraries, plugins, documentation, and existing applications including the
certification of properties of programming languages: the verified C compiler CompCert [10], the
Verified Software Toolchain [11] for verification of C programs, and the Iris framework [12] for
concurrent separation logic, to name a few.
Wiz, 1) Wz, 2) W(z,3)

R(xz,2)

Fig. 2. Example of program event structure

Our end goal is to develop a COQ library containing a comprehensive set of common definitions,
lemmas, and tactics that would allow researchers to utilize the theory of event structures for the
needs of their domain. In this work-in-progress report, we sketch the common design principles
behind our library and give a concrete example of its usage by developing a formal mechanized
semantics of a simple register machine with shared memory. Our library together with the examples
of its usage is available online at https://github.com/event-structures/event-struct.

2. Related Work

Event structures were introduced by Winskel to study the semantics of the calculus of
communicating systems [1], [13]. Several modifications of event structures [14], [15] were later
proposed to tackle similar problems. More recently, event structures were applied in the context of
relaxed memory models [2-4], [16].

Among this line of work, we are aware of only one paper [16] that was accompanied by a
mechanization in a proof assistant. The authors formalized the WEAKESTMO [4] memory model
in COQ. However, this memory model uses a custom variant of event structures, that does not obey
the axioms of any conventional class of event structures [13—15]. This fact makes it harder to reuse
and adapt it to other applications of the theory.

3. Background

There exist several modifications of event structures. Currently, we have implemented only the
prime event structures [1] in our library. We give some background on this class of event structures
below.

Definition 3.1: A prime event structure (PES) is a triple (E, <, #) where
145

Gladstein V.P., Mikhailovskii D.V., Moiseenko E.A., Trunov A.A. Mechanized Theory of Event Structures: A Case of Parallel Register
Machine. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 143-154

e [Eisasetofevents
e < isacausality relation on E such that
o (E,<)isapartial order
o forevery e € E its causality prefix [e] & {e':e’ < e } is finite, i.e., every event is caused
by a finite set of events.
e #isaconflict relation on E such that
o #isirreflexive and symmetric
o it satisfies hereditary condition: e, #e, and e, < e; implies e, # e;. That is, if two events
are in conflict, then all their causal successors are necessarily in conflict.
A single prime event structure can encode multiple runs of a program. Each individual run can be
extracted as a configuration. In other words, configurations are used to model a history of
computation up to a certain point.
Definition 3.2: A configuration of PES (E, <, #) is a set of events X € E such that
e itiscausally closed: e; < e, ande, € X thene; € X
e and conflict-free: if e;, e, € X then e, # e, is false

4. Overview of Our Library

In this section, we sketch the design principles of our library. We build our mechanization on top of
the MATHCOMP [17] library which is an extensive and coherent repository of formalized
mathematical theories, whose implementation is based on the SSREFLECT [18] extension of the
COQ system. By using MATHCOMP, we draw on the large corpus of already formalized algorithms
and mathematical results: its core mod-ules feature support for a range of useful data structures, e.g.
numbers, sequences, finite graphs, and also interfaces: types with decidable equality, subtypes, finite
types, and so on. We also use the small-scale reflection methodology [18], [19], a key ingredient of
SSREFLECT. The small-scale reflection approach is based on the pervasive use of symbolic
representations intermixed with logical ones within the confines of the same proof goal, as opposed
to large-scale reflection which does not allow such mixing. Symbolic representations are connected
to the corresponding logical ones via user-defined reflect predicates. The symbolic representation
can be manipulated by the computational engine of the language, allowing the user to automate low-
level routine proof management by using various decision and simplification procedures. Whenever
the user needs to guide the proof they can switch to the logical representation and perform some
proof steps manually. To achieve better automation and e.g. get proof irrelevance for free, one is
encouraged to use decision procedures whenever possible. For example, in the context of our library,
we encode the binary relations of the event structures as decidable bool-valued relations, i.e., <, # :
E — E — bool , as opposed to propositional relations of type <,#: E — E — Prop. Encoding
computable relations in COQ, especially their (computable) transitive closures, can be quite
challenging since COQ is a total language and its termination checker only understands termination
patterns going slightly beyond simple structural recursion. To make it easier, we employ the
EQUATIONS function definition plugin [20] which provides both notations for writing programs
by dependent pattern-matching and good support for well-founded recursion. In fact, binary relations
are omnipresent in our formalization. This quickly manifested in a substantial amount of proof
overhead and we sought for tools to automate our proofs. Since binary relations form a Kleene
Algebra with Tests (KAT) [21] ,we have chosen to use the RELATION-ALGEBRA [22] package
which provides a number of tactics to solve goals using decision procedures for a number of theories,
such as partially ordered monoids, lattices, residuated Kleene allegories and KATSs.

We also favor the computational encoding of semantics. Similar to the recent related works on
mechanization of operational semantics [23-25], we encode the semantics as monadic interpreters.
This allows us to extract [26] the semantics as a functional program and run it. We believe that the

146

T'nagurreiin B.I1., Muxaiinosckuii [I.B., Mouceenko E.A., TpyHoB A.A. MexaHn3upoBaHHas TEOPUS CTPYKTYp COOBITHIL: Cydait
TapasuIeNbHOM perucTpoBoit MautuHel. Tpyost MCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 143-154

possibility to run the semantics is a very useful feature, as it allows to debug the formal semantics
and helps to develop better intuition about it.

To facilitate computable semantics, we define a subclass of finitely supported event structures as a
finite sequence of events combined with a finitely supported function which enhances events with
additional information, such as their labels, causality predecessors, etc. Encoding finitely supported
functions is not a trivial endeavor in a proof assistant and for this task we use the FINMAP library
which is an extension of MATHCOMP providing finite sets and finite maps on types with a choice
operator (rather than on finite types).

Finally, to encode the algebraic hierarchy of various classes of event structures we use yet another
feature of MATHCOMP—packed classes [27], which is a design pattern providing multiple
inheritance, maximal sharing of notations and theories, and automated structure inference.

5. Case Study

In this section, we provide a case study demonstrating an application of our mechanized theory of
event structures. We show how it can be used to encode the semantics of a parallel register machine
equipped with shared memory.

5.1 Register Machine

For our case study, we use a simple idealized model of a register machine, which consists of a finite
sequence of instructions, an instruction pointer, and an infinite set of registers. The syntax of the
machine’s language is shown in fig. 3.

P & Prog 8= Wit program
I & Instr = instruction
Ti=v assign to register

T i=rg @y apply binary operation
if r jump ¢ conditional jump
exit exit
ri= I'L!E.l({ [IOIII memnory
v write to memaory

xI =

r € Reg thread-local register
x € Loc shared memory
location
v € A& value
@ € BinOp binary operation
i N instruction label

Fig. 3. Syntax of the register machine

We first present the semantics of a single-threaded program. Under this semantics, memory access
instructions do not operate on shared memory but rather produce a label denoting the side-effect of
the operation (see fig. 4). This encoding allows us to decouple the semantics of the register machine
from a memory model.

{ € Lab u=
| R(r,v) read of value v from location r
| W(z, v) write of value v to location =

Fig. 4. Syntax of labels

ThrdState = ({i,o)
it instruction pointer
Reg — Z register mapping

Ay

=
€
€

Fig. 5. Thread state of the register machine

The semantics is given in the form of a labelled transition system: P + s —; s', where P is a
program, [is a label, s and s’ are states of the machine. The state of the machine itself consists of

147

Gladstein V.P., Mikhailovskii D.V., Moiseenko E.A., Trunov A.A. Mechanized Theory of Event Structures: A Case of Parallel Register
Machine. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 143-154

an instruction pointer i and a map from registers to their values o, as shown in fig. 5. The rules of
the semantics are standard (see fig. 6). As we have mentioned, in our COQ development we actually
use the monadic encoding of the operational semantics. The labelled transition system can be derived
from this encoding.

- Plil=n : f_w v»r r3 v=0c(rz) @a(rs) Binop
Plil= r:=v K Pr{i,o) = (i+1olri—v])
L _ ssign
PrEli,o) = (i+1lor—=uw : ;
(i,0) = (i + Lofr o o)) Pli] = exit len(P)=mn .
- z . Exit
Pli] 1: -.r..']:z v Store Pl {i,o) = (n,a)
Pt {i,o) —= {i+1,0) Plij= if rjumpj a(r)=0
. = - Clump
Plil= ri=z PE{o) = i+ 1,0}
YRS Load
Pt (i,o) = (i +1,0]r — v]) Pli| = if r jump j o(r) #0
(i, @) £ olr — v]) |] J P_.t? (7) 7 C b
P U r,r:} —* (:.If-' ﬁ}

Fig. 6. Thread semantics of the register machine

5.2 Event Structure of Register Machine
In this section we present operational semantics which constructs a prime event structure encoding
a set of possible behaviors of the register machine. The event structure is constructed incrementally
in a step-by-step fashion by adding a single event on each step. In order to generate a new event on
each step, we require that events behave as identifiers.
Definition 5.1: We say that a set E together with strict partial order < form an identifier set if
o there exists a distinguished initial identifier e, € E
e there exists a function fresh: E — E which generates a new fresh identifier, such that
e < fresh(e)

We will encode the event structure as a tuple (€, lab, fy,, frr) and explain below the meaning of
each component, and how they together form a prime event structure.
The first component € is a sequence of eventse; > ... > e, inreverse order w.r.t the order in which
events get added to the structure. The second component is a labelling functionlab: E — L,
assigning a label to each event.
Next, following the theory of axiomatic weak memory models [28], we define the causality relation
of the register machine’s event structure as the reflexive transitive closure of the union of two
relations —program order and reads-from, denoted as po and rf correspondingly.

< (pouUrf)”
The program order relation tracks precedence of events within a single thread. The reads-from
relation captures the flow of values from write events to read events and ensures that values do not
appear out of thin air [28], [29].
In order to construct po and rf incrementally we represent them via their inverse covering functions
fpo and frr.
Definition 5.2 (Covering): Let < be a partial order. Then < is covering relation w.r.t. < whenever
x < y is true if and only if x < y and there is no z, s.t. x < z and z < y. A (non-deterministic)
function f from A to the set of finite subsets of A4 is a covering function if its corresponding relation,
ie., f1¢ {(x,y)| y € f(x)}, is a covering relation.
We use the inverse covering function because it is more convenient in our setting. Indeed, the
semantics adds a new event at each step. Then it is convenient to require that, in addition, the small-

step relation is provided with the po and rf predecessors of a new event.
-1
<po™ fro po €<,

148

T'nagurreiin B.I1., Muxaiinosckuii [I.B., Mouceenko E.A., TpyHoB A.A. MexaHn3upoBaHHas TEOPUS CTPYKTYp COOBITHIL: Cydait
TapasuIeNbHOM perucTpoBoit MautuHel. Tpyost MCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 143-154

< fl rf g<t
We define the conflict relation in two steps. First, we define the primitive conflict relation ~, which
is generated by the f,, function. The two events are considered to be in primitive conflict if they are
not equal and have a common po predecessor. For this definition to work properly, we also need to
assume that each thread has a special initial event labelled by a distinguished thread start label Ts.

ej~ye; Eeg F ey N froler) = fpolez)

Second, we extend the primitive conflict along the causality relation:

ei#e, @ 3e',e', EE.ej~ye;Nef < e Ney < e
We also need a way to reconcile the event structure with the states of the machine’s threads. To do
so, we use a function X : E —» ThrdState which maps an event to a thread state obtained as the
result of the execution of the event’s side-effect.
Let us consider an example. Given the program below, our semantics builds the corresponding event
structure as shown in fig. 7.

TS TS TS
(1,1) 12,1} i3, 1}
TS T8 s
{1,1) (2,1} {3, 1)
Wix, 1)
(4, 1
TS TS T8
(1) {2, L} {3, L}
LW 1) Wiz, 2)
Co4,) 4,1y
TS Ts TS
(1,1) (2,1} (3,1}
| W(x 1)« -R(z, 1) W, 2)
(4, 1) {4 1) {4, 1}
TS TS TS
(1,.1) (o Ly {3, 1}
1 2N 4
© Wi, 1)« Rz, 1) Rz, 2)- =Wz, 2)
{4, 1) {4,701} (d,re2y (4,1}

Fig. 7. Example of the event structure construction
The construction starts from an initial event structure containing, for each thread, an event labelled
by TS. We depict the corresponding thread state below each label. Initially, each event is mapped to
an initial thread state consisting of an instruction pointer pointing to the first instruction to be
executed and an initial mapping of registers denoted as L. The first step executes the store instruction
from the leftmost thread and exits the program, since the execution of this thread terminates (we
omit the exit instructions at the end of each thread for brevity). Next, the store from the rightmost
thread is executed and the corresponding write event gets added to the structure. After that, the load

149

Gladstein V.P., Mikhailovskii D.V., Moiseenko E.A., Trunov A.A. Mechanized Theory of Event Structures: A Case of Parallel Register
Machine. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 143-154

instruction from the middle thread is executed. Since there are two matching write events in the
event structure, two conflicting reads are conjoined to the event structure. Note that the events can
be added non-deterministically in any order respecting causality. We could have first executed the
rightmost thread and added write W (x, 2) before W (x, 1), or we could have added the read with
label R (x, 2) before another read R (x, 1) .

e = fresh(first(£)) €po EE Crs

£

m

(Add Event)

{e.8.epar005)

(€,1ab, fro, fee) ——— (e = £, 1able =+ £, frole — €po], frzle —+ ex¢])

=€ 8.€ s =%(e PrsS s
‘ Eie) "5 (Idle)
P (S.2) = (S Zlers s)
) ¢ ek eps, L)
8 = E(eps) Prs— s A i o I =W(z.v)
- =" - (Store)
P+ (S‘_. E} ;\.‘_ {S’,E{(: i H’]}
{ =R(z,v)
{efiepnaere)
s = (eps) Prshs Se——>9 ~(e#eps) lable,:) = Wlav)

(el epg eer)

Pt (8, x) ==K (57, Sle s o'])

2 {ed,en, L)
e

s=%(ep) PrsHs 38 I=R(z, 1)

(Load-Bottom)

P (3,5) 2btmrld (g1 e s o))

Fig. 8. Semantics of register machine’s event structure construction

The rules of operational semantics constructing the event structure are presented in fig. 8. The first
auxiliary rule (Add Event) adds a new event, sets its label, po and rf predecessors. The (ldle) handles
the case when a thread of the register machine performs an internal step without anyside effect. It
chooses an event e together with the thread state s corresponding to it and performs one step
reduction to a new state s'. It then updates the mapping of events to thread states. The last three rules
(Store), (Load), and (Load-Bottom) correspond to store and load performed by some thread.
Similarly to (Idle), an event e, is selected and one reduction is performed from the corresponding
thread state s. Unlike the (ldle) case, however, a new event e is also generated. In the case of (Load),
additionally, an event e, is selected, such that it has a write label matching the read label of the new
event. The rule (Load-Bottom) corresponds to a case when load is performed “too early”, before any
write to the given location is available.

The following theorem asserts that the event structure built this way indeed satisfies the axioms of
the prime event structure.

Theorem 1: The tuple (E, <,#), where < and # are defined as described above, forms prime event
structure.

We sketch the proof below (one can also find mechanized proof in our COQ development).

First, we need to show that <% (po U rf)” is a partial order. Reflexivity and transitivity follows
immediately from the definition of the reflexive-transitive closure. To show antisymmetry note that
<poS < and <, < by construction. Therefore < is a subset of the reflexive closure of <. Since
< isapartial order, it is antisymmetric, and thus < should also be antisymmetric. The axiom of finite
cause, i.e., [e] is finite for every event e, follows from the fact that at each step of the construction
the set of possible predecessors of the new event can be over-approximated by the finite sequence
€.

150

T'nagurreiin B.I1., Muxaiinosckuii [I.B., Mouceenko E.A., TpyHoB A.A. MexaHn3upoBaHHas TEOPUS CTPYKTYp COOBITHIL: Cydait
TapasuIeNbHOM perucTpoBoit MautuHel. Tpyost MCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 143-154

Second, we need to show that the conflict relation # defined as described above obeys the laws of
the conflict relation. Trivially, this relation is symmetric, and obeys the hereditary property. The side
condition — (e # e,f) of the rule (Load) ensures that the conflict relation is irreflexive.

In fig. 9 one can see the prime event structure obtained as a result of the incremental construction
depicted in fig. 7.

TS TS TS
(1, 1) (2,1) (3,1)
| N\ !

W(x, 1) —> R(z, 1) ~wwew Rz, 2) «— Wz, 2)
4, 1) (43 re 1) {4r— 2) |:4.~ J—)

Fig. 9. Example of prime event structure

Once the event structure is constructed, one can extract the configurations corresponding to the
particular runs of the parallel register machine, and further filter them via the consistency predicate
defining the memory consistency model.

Our construction of event structures allows to encode a wide class of so-called po U rf acyclic
relaxed memory models [28].

For example, a predicate corresponding to sequential consistency [30] requires that the causality
order can be extended to a total order on all events of the configuration, such that for each read event
the last preceding write event to the same location has the same value as the read.

6. Future Work
There are several directions for future work.

First, we plan to apply our library to a wider range of problems. We are going to develop a
mechanized semantics of some long-established languages used to model concurrency, in particular
the calculus of communicating systems (CCS) [31] and n-calculus [32].

We also plan to continue our work on expressing various relaxed models of shared memory [28],
[33], [34] in terms of event structures. Second, we want to cover other classes of event structures in
our library, in particular bundle [14], flow [15], and stable [1], [13] event structures. We plan to use
them to develop mechanized denotational semantics of concurrent languages and relaxed shared
memory models [35].

Finally, we plan to mechanize in COQ classical results that connect various classes of event
structures [15], [36]. It would allow us to easily establish the connection between operational and
denotational semantics of concurrent languages.

References

[1]. G. Winskel. Event structures. Lecture Notes in Computer Science, vol. 255, 1986, pp. 325-392.

[2]. A. Jeffrey and J. Riely. On thin air reads: Towards an event structures model of relaxed memory. In Proc.
of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, 2016, pp. 759-767.

[3]. J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics that permits optimisation
and avoids thin-air executions. ACM SIGPLAN Notices, vol. 51, issue 1, 2016, pp. 622-633.

[4]. S. Chakraborty and V. Vafeiadis. Grounding thin-air reads with event structures. Proceedings of the ACM
on Programming Languages, vol. 3, issue POPL, 2019, pp. 1-28.

[5]. A. Fellner, T. Tarrach, and G. Weissenbacher. Language inclusion for finite prime event structures.
Lecture Notes in Computer Science, vol. 11990, 2020, pp. 314-336.

[6]. The Coq Development Team. The Coq Proof Assistant, 2021. Available at https://coq.inria.fr/, accessed
7-May-2021.

[7]. Agda language reference. Available at https://agda.readthedocs.io/, accessed 7-May-2021.

[8]. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL.: a proof assistant for higher-order logic. Lecture
Notes in Computer Science, vol. 2283, 2002, 240 p.

[9]. Arend theorem prover. Available at https://arend-lang.github.io/, accessed 7-May-2021.

151

Gladstein V.P., Mikhailovskii D.V., Moiseenko E.A., Trunov A.A. Mechanized Theory of Event Structures: A Case of Parallel Register
Machine. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 143-154

[10].

[11].
[12].

[13].

[14].

[15].
[16].
[17].
[18].
[19].
[20].
[21].
[22].
[23].

[24].

[25].
[26].
[27].
[28].
[29].
[30].
[31].
[32].
[33].

[34].

[35].

[36].

152

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, vol. 52, no. 7, 2009,
pp. 107-115.

A.W. Appel. Verified software toolchain. Lecture Notes in Computer Science, vol. 6602, 2011, pp. 1-17.
R. Jung, R. Krebbers et al. Iris from the ground up: A modular foundation for higher-order concurrent
separation logic. Journal of Functional Programming, vol. 28, 2018, article e 20.

G. Winskel. Event structure semantics for CCS and related languages. Lecture Notes in Computer Science,
vol. 140, 1982, pp. 561-576.

R. Langerak. Bundle event structures: a non-interleaving semantics for LOTOS. In Proc. of the 5th
International Conference on Formal Description Techniques for Distributed Systems and Communications
Protocols, 1992, pp. 331-346.

G. Boudol and I. Castellani. Flow models of distributed computations: event structures and nets. Research
Report RR-1482, INRIA, 1991, 40 p.

E. Moiseenko, A. Podkopaev et al. Reconciling event structures with modern multiprocessors. In Proc. of
the 34th European Conference on Object-Oriented Programming, 2020, 26 p.

A. Mahboubi and E. Tassi. Mathematical components, 2017. Available at
http://doi.org/10.5281/zenod0.4457887, accessed 7-May-2021.

G. Gonthier, A. Mahboubi, and E. Tassi. A small scale reflection extension for the Coq system. Research
Report RR-6455, Inria Saclay lle de France, 2016, 69 p.

G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coqg. Journal of formalized
reasoning, vol. 3, no. 2, 2010, pp. 95-152.

M. Sozeauand, C. Mangin. Equations reloaded: High-level dependently-typed functional programming
and proving in Cog. Proceedings of the ACM on Programming Languages, vol. 3, 2019, article no. 86.
D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 19, no. 3,1997, pp. 427-443.

D. Pous. Kleene algebra with tests and Coq tools for while programs. Lecture Notes in Computer Science,
vol. 7998, 2013, pp. 180-196.

L.-y. Xia, Y. Zakowski et al. Interaction trees: representing recursive and impureprograms in Coq.
Proceedings of the ACM on Programming Languages, vol. 4, issue POPL, 2019, pp. 1-32.

T. Letan and Y. R'egis Gianas. Freespec: specifying, verifying, and executing impure computations in
Coqg. In Proc. of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs,
2020, pp. 32-46.

R. Affeldt, D. Nowak, and T. Saikawa. A hierarchy of monadic effects for program verification using
equational reasoning. Lecture Notes in Computer Science, vol. 11825, 2019, pp. 226-254.

P. Letouzey. Extraction in Coq: An overview. Lecture Notes in Computer Science, vol. 5028, 2008, pp.
359-369.

F. Garillot, G. Gonthier et al. Packaging mathematical structures. Lecture Notes in Computer Science, vol.
5674, 2009, pp. 327-342.

O. Lahav, V. Vafeiadis et al. Repairing sequential consistency in C/C++11. In Proc. of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2017, pp. 618-632.

H.-J. Boehm and B. Demsky. Outlawing ghosts: Avoiding out-of-thin-air results. In Proc. of the Workshop
on Memory Systems Performance and Correctness, 2014, article no. 7.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Transactions on Computers, vol. 28, no. 9, 1979, pp. 690-691.

R. Milner. A calculus of communicating systems. Springer-Verlag, 1980, 260 p.

R. Milner. Communicating and mobile systems: the pi calculus. Cambridge university press, 1999, 176 p.
O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire consistency. ACM SIGPLAN
Notices, vol. 51, no. 1, 2016, pp. 649-662

A. Podkopaev, O. Lahav, and V. Vafeiadis. Bridging the gap between programming languages and
hardware weak memory models. Proceedings of the ACM on Programming Languages, vol. 3, no. POPL,
2019, pp. 1-31.

M. Dodds, M. Batty, and A. Gotsman. Compositional verification of compiler optimizations on relaxed
memory. Lecture Notes in Computer Science, vol. 10801, 2018, pp. 1027-1055.

M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains, part I. Theoretical
Computer Science, vol. 13, no. 1, 1981, pp. 85-108.

T'nagurreiin B.I1., Muxaiinosckuii [I.B., Mouceenko E.A., TpyHoB A.A. MexaHn3upoBaHHas TEOPUS CTPYKTYp COOBITHIL: Cydait
TapasuIeNbHOM perucTpoBoit MautuHel. Tpyost MCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 143-154

UHdopmaumsa 06 aBTopax / Information about authors

Bmagumup IletpoBnma TJIAJIITEMH - crymenr OakamaBpuata Cankr-IlerepOyprckoro
Tlocynmapcteennoro VYumBepcurera. Cdepa HaydHBIX HWHTEPECOB: METONBI (HOPMAaIBHON
BepH(UKALMN IPOrPaMM, CHCTEMbl HHTEPAaKTHBHOTO JJOKAa3aTeIbCTBA TEOPEM, TEOPHS 3aBHCHMBIX
THIIOB.

Vladimir GLADSTEIN — bachelor student at Saint Petersburg State University. Research interests:
formal verification of programs, interactive theorem proving, dependent types theory.

Jmvutpuii Bnagumuposny MUXAWIIOBCKUU — crynent 6akanaBpuara Cankr-IlerepOyprekoro
locynapctBenHoro YuuBepcurera. Cdepa HaydyHBIX HHTEPECOB: METOABI (OPMAIIBHOM
BepU(HKAIIUH TTPOTPAMM, CUCTEMbI HHTEPAKTHBHOTO J0Ka3aTeNbCTBA TEOPEM, TEOPHS 3aBUCUMBIX
THUIIOB.

Dmitrii MIKHAILOVSKII — bachelor student at Saint Petersburg State University. Research
interests: formal verification of programs, interactive theorem proving, dependent types theory.

Esrennit Anexcarnposrma MOVCEEHKO — acimpanT Cankt-IletepOyprekoro ['ocynapctBeHHOTO
VYHuBepcureTa, ucciepopatens B JetBrains Research. Cdepa HaydHBIX HHTEPECOB: METOIBI
(opmanpHOH BepH(UKAIMU TPOTPAMM, CEMAHTHKa KOHKYPEHTHBIX IIPOTPaMM.

Evgenii MOISEENKO - PhD student at Saint Petersburg State University, Researcher at JetBrains
Research. Research interests: formal verification of programs, semantics of concurrency.

Awnrton Anekcaunposud TPYHOB — unkenep-uccnenosarens B Zilliga Research. Cdepa Haydrbix
HHTEPECOB: METOIbl (popManpHOW Bepu(DHKALMKM TMPOTPaMM, CHCTEMBI HHTEPAKTHBHOTO
JI0Ka3aTeIbCTBA TEOPEM.

Anton TRUNOV - research engineer at Zilliga Research. Research interests: formal verification of
programs, interactive theorem proving.

153

Gladstein V.P., Mikhailovskii D.V., Moiseenko E.A., Trunov A.A. Mechanized Theory of Event Structures: A Case of Parallel Register
Machine. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 143-154

154

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-12 tocl%

Generation of Petri Nets Using Structural Property-
Preserving Transformations

12R.A. Nesterov, ORCID: 0000-0002-4162-9070 <rnesterov@hse.ru>
1S.Yu. Savelyev, ORCID: 0000-0003-1660-2615 <syusavelev@edu.hse.ru>
1HSE University,
11, Pokrovsky boulevard, Moscow, 109028, Russia
2 Univerist™a degli Studi di Milano-Bicocca,
1 Piazza dell’Ateneo Nuovo, 20126 Milan, Italy

Abstract. In this paper, we present an approach to the generation of Petri nets exhibiting desired structural and
behavioral properties. Given a reference Petri net, we apply a collection of local refinement transformations,
which extends the internal structure of the reference model. The correctness of applying these transformations
is justified via Petri net morphisms and by the fact that transformations do not add new deadlocks to Petri nets.
We have designed two Petri net refinement algorithms supporting the randomized and fixed generation of
models. These algorithms have been implemented and evaluated within the environment of the Carassius Petri
net editor. The proposed approach can be applied to evaluate and conduct experiments for algorithms operating
with Petri nets.

Keywords: Petri nets; morphisms; property-preserving transformations; generation of models

For citation: Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving
Transformations. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 155-170. DOI: 10.15514/ISPRAS-
2021-33(3)-12

Acknowledgments. This work is supported by the Basic Research Program at the National Research University
Higher School of Economics (HSE University), Russia.

FeHepauuna ceten MNeTpu ¢ NOMOLWLIO CTPYKTYPHbIX
TpaHccopmauun, coxpaHAaoLWMX NnoBeaeH4YeCKue CBOUCTBA

12 P A. Hecmepos, ORCID: 0000-0002-4162-9070 <rnesterov@hse.ru=
LC.IO. Casenves, ORCID: 0000-0003-1660-2615 <syusavelev@edu.hse.ru>
! Hayuonanvhuiii uccredosamensckuii yuueepcument Boicuids wkona s5K0HOMUKY,
109028, Poccusi, Mocksa, Ilokposckuii 6yrveap 11
2 Munanckuii ynueepcumem-buxokka
20126, Umanus, e. Munan, ni. Ameneo Hyoso, 1

AnHorammsi. B pabore mpemnmoxkeH mnoxxon k reHepanuu cered Ilerpm, oOmagalomux »KeTaeMbIMU
CTPYKTYPHBIMH W TIOBEAEHUECKUMH cBoiictBamu. Ha BXox momaercst sTanoHHas ceTh IleTpw, K KOTOpoit
IPUMEHSETCs] HabOop JIOKAIbHBIX TPaHCHOPMALIHiA, PACHIMPSIOIINX €€ BHYTPEHHIO CTPYKTYpy. KoppekTHOCTH
IPUMEHEHUs 9THX TpaHchOopManuii 00ycIaBIuBaeTCs TEM, YTO OHH MOPOXKAAIT MOpGU3MEI Ha ceTsix [leTpu,
a TakkKe He J00aBISAIOT HOBBIX TYNHKOB INPHU pacIIMpeHUM STanoHHBIX ceTed Ilerpu. Taxum obpasowm,
COXPAaHSIOTCS MOBEACHYECKHE U CTPYKTYPHBIE CBOMCTBA, KOTOPBIMU 00anaeT TajgoHHas ceTh Iletpu. beum
pa3paboTaHBl aNrOpUTMBI (DUKCHPOBAaHHOW M CiydaifHONH reHepamuu cereid I[lerpu. OTH anropuTMbI
peanu3oBaHbl B BHIE pacuIMpeHust s penakropa cereit Ilerpu Carassius. Kpome Ttoro, mposeneHa
SKCIIepUMEHTAIIbHAS OLIEHKA pa3pabOTaHHbBIX anropuT™MoB. [IpeuraraeMelii moaxox K renepanun cered [lerpu

155

Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving Transformations. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 155-170

U pa3pabOTaHHbIE ANTOPUTMBI MOTYT TPHMEHATHCS UIS MPOBEAEHUS KOMIUIEKCHON SKCIEPUMEHTANbHOM
OLIEHKH M HAarpy304HOTO TECTHPOBAHMS AJTOPUTMOB, HAa BXOJ, KOTOPBHIM MOAAIOTCS MOJEIH MOBEICHUS
mpoleccoB B Buje cerei [lerpu.

Kurouesblie ciioBa: cetu [letpu; Mopdusmsl; TpaHchHOpMAIMK; COXPAHEHHE CBOMCTB; FeHEepaIus Moieeit

Jast uutupoBanms: Hecrepos P.A., CasenbeB C.10. I'eneparmst cereit Iletpy ¢ IOMOLIBIO CTPYKTYPHBIX
TpaHc(hopManuii, COXpaHsIIoNMX moBeneHdeckue cpoiicrea. Tpyasr VICII PAH, tom 33, Bemm. 3, 2021 ., cTp.
155-170 (ua anrmuiickom sizsike). DOI: 10.15514/ISPRAS-2021-33(3)-12.

Baaromapuocrn. Pabora momnepkana IIporpammoii ¢yHmaMeHTaIbHBIX HccienoBaHuii HammoHambsHOTO
HCCIIeI0BaTeIbCKOTO YHUBepcuTeTa «Bricimas mkoia skonomukn» (HUY BIID), Poccns.

1. Introduction

Petri nets are widely used to formally represent the behavior of distributed systems for their precise
semantics, which helps to prove many crucial behavioral properties, including boundedness,
deadlock-freeness, covering by place invariants, and others [1]. The automated verification of these
properties is supported by different algorithms. For instance, covering by place invariants can be
decided using linear algebraic techniques [2].

The software implementation of algorithms operating with Petri nets naturally requires the
preparation of model sets that exhibit the specific structural and behavioral properties. Such sets of
models are then used for the thorough evaluation of algorithms under development. Firstly, the
manual generation of Petri nets with specific properties is a time-consuming activity. Moreover, if
one has to prepare a particularly large-scale model, then there arises an additional task to verify the
necessary properties of this model. The computational cost of such a verification can grow too fast
due to the well-known state-explosion problem of distributed systems, when the number of reachable
states grows exponentially compared to the size of a system model.

In our paper, we propose an approach to the generation of Petri nets based on structural
transformations. Firstly, a reference Petri net is constructed. This model has all the target structural
and behavioral properties. Secondly, applying a collection of local transformations that extend the
internal structure of a reference Petri net, we obtain a refinement exhibiting the same properties as
an initial reference model. The general scheme of this approach is schematically shown in fig. 1,
where a refinement is a result of applying k local transformations to a reference Petri net. Note that
a refinement has the more sophisticated structure than a reference model. Transformations,
considered in our study, are called local, since they change only the specific part of a model, while
the rest of the model remains untouched. The mathematical framework of these transformations is
responsible for preserving the structural and behavioral properties of a reference Petri net. In
addition, the application of transformations requires only the local checks of structural constraints.

Reference transform Refi
LN ol * elinement
Petri net_|Step1 Step2 Stepk

Fig. 1. Step-wise generation of a Petri net
We consider two generation schemes: fixed and randomized. Within the fixed generation of Petri
nets, a specific sequence of transformations is applied to an initial reference model. Conversely, the
randomized generation is a based on a non-deterministic choice of transformations.

Thus, the main results of our paper are as follows:

the algorithms for the fixed and randomized generation of Petri nets from a given reference model;
the software implementation and evaluation of these algorithms within the environment of the
Carassius Petri net editor [3].

The remainder of this paper is structured as follows. The next section discusses the related research.
In Section 3, we define a class of Petri nets considered in our paper. Section 4 describes the
mathematical framework behind a collection of structural transformations that are used to refine

156

Hectepos P.A., Casenses C.10. I'enepanus ceteii [leTpu ¢ TOMOIIBIO CTPYKTYPHBIX TpaHC(HOpPMALHiA, COXPAHSIONIMX TTOBEACHIECCKHE
cBoiictBa. Tpyowst UCII PAH, Tom 33, Beim. 3, 2021 1., cp. 155-170

Petri nets. The algorithms for the fixed and randomized Petri net generation are presented in Section
5. In Section 6, we describe a software implementation as well as evaluation of these algorithms,
and Section 7 concludes the paper.

2. Related Work

Process Log Generator PLG2 [4] is a well-known software used for the random generation of
process models. It supports different notations, including Petri nets and Business Process Model and
Notation (BPMN). As shown in [5], the specific classes of BPMN models correspond to Petri nets
and vice versa. PLG2 generates process models based on randomly generated context-free grammars
and parameters such as the maximum model size, the frequencies of standard behavioral patterns,
and others. Compared to our approach, PLG2 offers only the fully randomized model generation
and guarantees the behavioral correctness of constructed models. However, within our approach, a
reference model may have, for instance, deadlocks, which will be preserved in its refinement.

The generation of BPMN process models has also been considered in [6]. The authors of this
approach allow specifying the parameters such as the size of models, the frequencies of behavioral
patterns, the types of activities. Similar to our approach, they have also used a collection of initial
BPMN models to generate a set of synthetic models.

PTandLogGenerator [7] is another tool supporting the randomized generation of process models. It
produces so-called process trees, which specify relations among process activities, for example,
sequential, alternative, or concurrent. Process trees can be converted to Petri nets. The prime
objective of PTandLogGenerator and the previously mentioned PLG2 is to simulate the behavior of
randomly generated process models.

An approach to the generation of benchmarks, using random step-wise Petri net refinements, has
been presented in [8]. Within this approach, the authors have also defined a set of refinement
transformations similar to those used in our study. Based on the proposed transformations, different
Petri net classes have been identified and studied. It has been shown what transformations can be
used to generate all Petri nets representing a given class.

Structural transformations of Petri nets have been first studied in the works [9-11], describing simple
yet powerful reduction and extension transformations, s.t. liveness, boundedness, home states, and
other behavioral properties are preserved.

Morphisms on Petri nets provide a formal and natural framework to express structural property-
preserving relations between Petri nets [12-14]. Using morphisms, one can consider more
sophisticated problems of property preservation, including, for instance, bisimulations between Petri
nets, as discussed in [13]. For elementary net systems [15] — a fundamental class of Petri nets also
considered in our paper — a-morphisms have been introduced in [16]. They help to formalize
structural relations between abstract models and their refinements. Concerning our approach to the
Petri net generation, a reference Petri net represents an abstract model. In addition, a-morphisms
preserve the behavioral properties (reachable markings) as well as reflect them under the specific
local requirements.

Since the direct application of a-morphisms is rather difficult for the sophisticated constraints to be
checked, a collection of local transformations proposed in [17] can be used to define a-morphisms
systematically in a step-by-step way. These transformations are used in our study to generate Petri
nets, which preserve the properties of an initial reference model. Correspondingly, the mathematical
framework behind transformations, which provide the property preservation, is based on a-
morphisms.

The existing open-source Petri net editors, among the others, include Platform Independent Petri
Net Editor [18, 19], PNEditor [20], WoPeD [21, 22], Wolfgang [23], Carassius [3]. They allow
modeling, simulating and analyzing the behavior of Petri nets. The problem of the model generation
has not been considered within these editors. In our study, we will extend the functionality of the

157

Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving Transformations. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 155-170

Carassius Petri net editor to provide the generation of Petri nets with the desired structural and
behavioral properties.

3. Elementary Net Systems

In our study, we consider the generation of elementary net systems (EN-systems). They form the
fundamental class of Petri nets used to model the control-flow of distributed systems, while other
aspects such as data and time are not considered. The structure of EN-systems is modeled using
bipartite graphs with two kinds of nodes: places and transitions. Places in an EN-system can carry
at most a single token. Thus, they can be interpreted as boolean conditions, truth values of those are
changed by transition firings. Below we provide the formal definitions based on [15] concerning the
structural and behavioral aspects of EN-systems.

Let S be a set. The set of all finite non-empty sequences over S is denoted by S*, and S* = S+ U
{e}, where ¢ is the empty sequence.

Definition 1 (Net): Anetisatriple N = (P, T, F), where P and T are two disjoint sets of places and
transitions,and F € (P X T) U (T x P) is flow relation. Foranynode x € P U T:

1) ex = {y € X|(y,x) € F}isthe preset of x.

2) xe={y € X|(x,y) € F}isthe postset of x.

3) exe=-exUx eisthe neighborhood of x € X.

The standard graphical notation is adopted: places are shown with circles, and transitions are shown
with boxes.

In our work, we consider nets without self-loops, i.e., Vx € PU T: ex N x = @ and isolated
transitions, i.e.,Vt € T:|et| >1and|te| =>1.

The e-notation can also be extended to subsets of nodes. N = (P,T,F)beanet,andY <€ (P U
T).TheneY = Uyey*y, Yo= Uyeyyeand oY e=eY UY o N(Y) denotes the subnet of N
generated by Y,ie, N(Y¥) = (P n Y, T nY,F n (Y X Y)).

A marking (state) min a net N = (P,T,F) is a subset of its places, i.e., m < P. Pictorially,
markings are depicted by placing black dots inside corresponding places. Amarkingm inanet N =
(P,T,F) hasacontactif3t € T: emandm Nte =+ @.

Definition 2 (EN-system): An elementary net system (EN-system) is a couple (N, m,), where N =
(P,T,F)isanet,and m, < P is the initial marking.

The behavior of EN-system is defined by the firing rule. A markingminanetN = (P, T,F)
enables transition t € T, denoted m[t), iffet S mand m Nt e = @. Enabled transitions may fire.
Firing t at m evolves N to anew markingm’ = (m\ te) U t e, denoted m[tym'.

A sequence w € T* is a firing sequence in an EN-system N = (P,T,F,m,) if w = t,t,...t, and
Mg [t)my[t)... my_q[tp)m,. Then we write m{w)m,, . The set of all firing sequence in N is
denoted by FS(N).

A markingmin N = (P,T,F,m,) is reachable exists 3w € FS(N): my[w)m. The set of all
markings reachable from m will be denoted [m).

A reachable marking m € [my) in N = (P,T,F,mg) is a deadlock iff it does not enable any
transitions. An EN-system is deadlock-free iff there are no reachable deadlocks.

A state machine is a connected net N = (P,T,F), where vt € T: |et| = |te|] = 1. A subnet
of an EN-system N = (P,T,F,m,) generated by YCS P and eY e, ie, N(Y UeYe) is a
sequential component of N if it it is a state machine and has a single token in the initial marking. N
is covered by sequential components if every place belongs to at least one sequential component. In
this case, N is state machine decomposable (SMD). Reachable markings in SMD-EN systems are
free from contacts.

State machine decomposability is a basic feature bridging the structural and behavioral properties of
EN-systems [15]. The example shown in fig. 2 provides an SMD-EN system with three sequential

158

Hectepos P.A., Casenses C.10. I'enepanus ceteii [leTpu ¢ TOMOIIBIO CTPYKTYPHBIX TpaHC(HOpPMALHiA, COXPAHSIONIMX TTOBEACHIECCKHE
cBoiictBa. Tpyowst UCII PAH, Tom 33, Beim. 3, 2021 1., cp. 155-170

components: A (dotted line), B (dashed line), and C (dash-dotted line). Sequential components A, B,
C have independent parts (concurrent behavior) and synchronous transitions, e.g., transition t,,
which will be executed by A and B simultaneously. Each token of a reachable marking in an SMD-
EN system can be characterized by sequential components. For instance, a token in p,, shown in fig.
2, belongs to two of three sequential components: A and B.

Fig. 2. SMD-EN system with three sequential components
Further, we work with SMD-EN-systems unless otherwise stated explicitly. Thus, we omit the SMD
abbreviation in their descriptions.

4. Refinement of EN-systems

In this section, we discuss the mathematical framework behind our approach to the generation of
EN-systems using refinement transformations. Firstly, we consider a-morphisms formalizing
relations between abstract and refined EN-systems [16]. Secondly, we describe a set of local EN-
system transformations that induce corresponding a-morphisms and define them in a step-wise
manner [17].

4.1 Morphisms

A class of a-morphisms has been introduced in [16] to formalize relations between an abstract EN-
system and its refinement, where subnets in a refined model can substitute places in an abstract
model. Using the example shown in fig. 3, we briefly discuss the main intuition behind a-
morphisms.

5o

Abstract EN-system

Refinement

Fig. 3. The a=morphism ¢: N; — N,

159

Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving Transformations. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 155-170

An a-morphism ¢: N, — N, is a total surjective map from the set of nodes of a refined EN-system
N; on the set of nodes of an abstract EN-system N,. Places in an abstract EN-system can be refined
with \emph{acyclic} subnets in its refinement. For example, subnet N; (¢ ~1(p,)) refines place p,
in N, shown in fig. 3. The refinement of places can also result in a split of transitions, e.g., transition
t,in N, is split into two transitions, t,, and t,,, in Ny, as shown in fig. 3.

An a-morphism ¢: N; — N, is defined in terms of how transitions in N; are mapped to nodes in N,.
If the image of transition in N; is also a transition in N,, then their neighborhoods should correspond
as well. For instance, since the image of transition ¢, in N; shown in fig. 3 is transition t, in N;, the
image of e t,, e is e t; e. If the image of transition in N, is a place in N,, then the image of its
neighborhood is this place as well. For instance, transitions in subnet N; (¢~1(p,)) are mapped to
place p,; inN, as well as their neighborhoods.

These constraints combined with several other structural restrictions imposed on subnets in a refined
EN-system, discussed in detail in [16], assure the main motivation behind a-morphisms: a
refinement should behave «in a similar way» as an abstract model does. Whenever there is a token
in a place in abstract EN-system, there exists the possibility to fire a transition that puts a token into
a corresponding subnet in a refined EN-system, s.t. the other input transitions remain disabled
afterwards (see Lemma 1 in [16]).

The direct application of e-morphisms is rather difficult for their sophisticated structural constraints.
An approach based on the subsequent application of local structural transformations [17] comes to
the aid of this problem. It is discussed in the following section, where we redefine the refinement
notion through these transformations.

4.2 Refinement Transformations

The main idea of structural transformations, defined in [17], lies in a step-by-step construction of a
refined model from an abstract one. These transformations are called local because they change only
a specific subnet in an initial model, while the rest of the model remains untouched.

As shown in [17], every step of applying a transformation to an EN-system induces a corresponding
a-morphism from a transformed model to an initial one. Moreover, after a series of transformations
is applied to an EN-system, there will be an a-morphism from a result EN-system towards an initial
EN-system. Fig. 4 shows the main idea of this approach, where R is a refinement obtained from A
by a sequential application of k transformations, s.t. there is an a-morphism ¢: R — A, and R
preserves the behavioral properties of A, especially the presence or absence of deadlocks.

A ¥ { o R
Abstract transform %
C ==rr——---——>{ Refinement
EMN-system |Step 1 Step2 Stepk

Fig. 4. Refinement based on transformations and α-morphisms
Structural transformations help us to reconsider the notion of a refinement without referring to the
formal definition of a-morphisms. In addition, within the framework of our approach to the Petri
net generation, transformations play a crucial role. A reference model (see fig. 1) is an abstract EN-
system, and its refinement is a result of applying transformations.

We next briefly consider the key aspects of refinement transformations, described in [17].
A transformation isatuple p = (L, R, c;, cg), wWhere:

1) L is the left part — a subnet to be transformed.

2) R isthe right part —a subnet replacing L.

3) ¢, — constraints imposed on L.

4) cg — constraints imposed on R.

160

Hectepos P.A., Casenses C.10. I'enepanus ceteii [leTpu ¢ TOMOIIBIO CTPYKTYPHBIX TpaHC(HOpPMALHiA, COXPAHSIONIMX TTOBEACHIECCKHE
cBoiictBa. Tpyowst UCII PAH, Tom 33, Beim. 3, 2021 1., cp. 155-170

Constraints ¢, and cg are structural and marking restrictions. They are responsible for
corresponding a-morphisms.

The application of a transformation p to an EN-system N involves (1) finding a match for L in N
according to ¢, i.e., subnet N(X;) withX; < P U T and (2) replacing N (X;) with R according
to cg. The result of applying p to N is denoted by p(N, X;). We write N ENifN = p(N,X,)
and the specification of an affected subnet is not important.

The set of four refinement transformations RT = {p,, p2, p3, p4} is described in Table 1, where we
provide their constraints as well. Intuitively, p; adds concurrency, p, and p, introduce and extend
choices, while p;adds a new transition into an initial model.

Table 1. Refinement transformations

Transformation Constraints

p1: Place duplication

L*p ="p="pz
s i i ;
Y (p1 € mgand p2 € wmnyg) iff
hY
\Pr —> @ ’@ p € maq.
:

—

L

-
u

p2: Transition duplication
f) 1 %t =*t="13;
A Tl e v Ll

& J(_H(_@)

— l\ /l
L: R\P
pg Transition introduction
Py Tl L 'f— m} t* = {pﬂ}

“p1=' P. P2 —P

\Ijj —> g_ 4p1€m0¢rpcmﬂ

p4: Place split
L] L*miC*p*mCp
/ 2 *pyU®py ="p

= 3 ®p1N®ps = @;
kp) b @ 3 p1®. p2* are two complete
copies of p*:
4. @)\ {m:} ="(0"):
IE L R EI 5. if p € mg, then p1 € my iff

p € mo;

Then we can define a refinement as an EN-system that is obtained by applying a sequence m € RT*
of refinement transformations to another EN-system, as formally given below.
Definition 3 (Refinement): Let N; = (P, T;, F;,m}) be an EN-system with i = 1,2. N; is a

. . . . p p
refinement of N, iff there is a sequence of transformations (p; . p, ... p) € RT*,s.t. N, = N', 3

Pk
- Nj.

Let us consider the example of applying transformation p; to place pg in the EN-system shown in
fig. 2. According to Table 1, there are no specific restrictions imposed on a place in the left part of
ps. Then, we can replace place p, with a subnet, corresponding to the right part of p5, as shown in
fig. 5. Since p, is not marked, added places are also not marked.

As proven in [17], refinement transformations do not introduce new deadlocks, unless they are
already present in an initial EN-system, i.e., the deadlocks in a transformed EN-system are the

161

Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving Transformations. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 155-170

inverse images of the deadlocks, present in an initial EN system (under the corresponding a-
morphism).

Fig. 5. Application of _3 to the EN-system from fig. 2
Thus, the following proposition holds.

Proposition 1: Let N; = (P, T;, F;, mb) be an EN-system with i = 1,2 s.t. N; is a refinement of
N,. If N, is deadlock-free, then N; is deadlock-free as well.

Now we can proceed to the design and implementation of algorithms, which use the set of refinement
transformations to generate EN-systems.

5. Generation Algorithms

In this section, we discuss two algorithms that support the automated generation of EN-systems,
using the structural transformations, described in Table 1, according to Definition 3. The first
algorithm corresponds to the generation of an EN-system by applying a fixed sequence of the
refinement transformations to an initial model. The second algorithm corresponds to the randomized
EN-system generation, parameterized with the probability of applying each transformation.

5.1 Fixed Generation of an EN-system

Algorithm 1 corresponds to a direct implementation of Definition 3. There is a fixed finite sequence,
T ={py.Pz .. Pn) € RT*, of refinement transformation to be applied to an EN-system N =
(P,T,F,my).

Algorithm 1: Fixed generation
Input: EN-system N = (P, T, F,mq)
Transformations RT = {p1, p2, p3, pa}
Sequence ™ = (p1, p2, ..., pn) € RT*
Output: EN-system R = (P, T, F'.m}) —a

refinement of NV

R+ N
i+ 1
foreach p; € m do
if 3X; € P'UT" and p; is applicable to subnet
R(X7) in R then
| RCpi(RXY)
end
i+—1i+1
end

If a current transformation p; can be applied to some subnet generated by X, € P’ U T’, then we
replace R with a result of applying p to R. If a current transformation p; can be applied to different
subnets, the choice is made non-deterministically (it may be determined by the specific

162

Hectepos P.A., Casenses C.10. I'enepanus ceteii [leTpu ¢ TOMOIIBIO CTPYKTYPHBIX TpaHC(HOpPMALHiA, COXPAHSIONIMX TTOBEACHIECCKHE
cBoiictBa. Tpyowst UCII PAH, Tom 33, Beim. 3, 2021 1., cp. 155-170

implementation of Algorithm 1). Otherwise, if a current transformation p; cannot be applied to a
subnet in R, we skip it and pass on to the next transformation in a sequence 7.

The correctness of the fixed generation algorithms follows from (a) the finitness of 7 (the algorithm
always terminates) and (b) Proposition 1, i.e., an obtained refinement R preserves the deadlock-
freeness of N.

5.2 Randomized Generation of an EN-system

Within the randomized generation algorithm, presented in this paragraph (see Algorithm 2), a
sequence of refinement transformations is not known in advance, as opposed to the fixed generation.
A specific sequence of refinement transformations is constructed with respect to the parameters
defined by a user.

Algorithm 2: Randomized generation

Input: EN-system N = (P, T, F, mg)
Transformations RT" = {p1, p2, p3,p4}
Probabilities prob: RT — [0,1], s.t.
Vpe RT: } freq(p) =1
Maximum mumber of nodes mazSize
Maximum number of steps maxSteps

Output: EN-system R = (P'.T' F' m{)—a

refinement of N

R+ N

totalSteps « 0

while | P’ UT'| < maxSize OR

total Steps < maxSteps do
AT + FINDAPPLICABLE(R, RT)
sumProb + Z-Y-PEJJ_T prab(p)
foreach p € AT do

prob(p)

B (p) =
pratrini sumProb

end

order AT in the descending order of prob’;

r + RANDOMNUMBER(O, 1)

cumul Prob + 0

i1

while cumul Prob < r do
cumul Prob + cumulProb + prob’(p;)
it

end

R+ pi(R,X7})

total Steps + total Steps + 1

end

The randomized generation parameters include:

1) The maximum size of a refinement — the number of places and transitions;

2) The maximum number of steps — the number of applied transformations;

3) The probability of choosing a specific refinement transformation — the value in the interval [0,
1].

Probabilities are set for the four refinement transformations, s.t. the sum of all four probabilities is

equal to 1. Below we describe how the specific refinement transformation is chosen at each step of

Algorithm 2.

163

Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving Transformations. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 155-170

Firstly, we find a set of refinement transformations AT that can be applied to a given EN-system
(function findApplicable(R, RT)), according to constraints given in Table 1. Secondly, we
normalize the probabilities of the applicable transformations in AT and obtain the values of prob’
function. Then, by generating a random number r, we choose the specific refinement transformation
p; . Intuitively, we divide the interval [0, 1] into sub-intervals, according to the normalized
probabilities of applicable refinement transformations, and check where the value of r is. We
assume to use the uniform distribution for the random number generation.

The correctness of Algorithm 2 follows from the fact that (a) the total number of steps (the actual
length of an applied transformation sequence) is bounded by the maximum size of a refinement and
by the maximum number of steps that can be done; and from (b) Proposition 1, i.e., a constructed
refinement preserves the deadlock-freeness of N.

5.3 Example: the Fixed Refinement of an EN-System with a Deadlock

Here we consider an example of applying the fixed generation algorithm to the EN-system that has
a deadlock (see fig. 6, where N has the deadlock {p,} reachable from its initial marking {p, p,}).

Let T = (p4 P3p1P3P4P4 P2) € RT™ be a sequence of refinement transformation to be applied to N.

p|@ @p:

A

P o Wl
& @

Fig. 6. EN-system with a deadlock

A possible result of applying m to N is provided in fig. 7, where we show transformations affecting
disjoint subnets as a single step. It can be seen that none of the p,-elements in = have been applied
to N, since there are no places with two or more input transitions. That is why they have been skipped
in this example.

s; (@)

(4]

p:@ (® p P (s6)

o (| ¥ ¥
JONNOLZ 2 o]

(N
bl oo @ 'i’f‘ ©'® P &Y @3\}\&9

ooy \
® @ ®
)

22 \52/

Fig. 7. A result of applying 7 to the EN-system from Fig. 6

What is more important is that the reachable deadlock {p,} have not been lost in the transformed
EN-system. The inverse image of {p,} (under the corresponding a-morphism, refer to fig. 4) in the
transformed EN-system is also the reachable deadlock {s¢}, as formally proven in [17]. New
deadlocks have not been introduced into the transformed EN-system.

164

Hectepos P.A., Casenses C.10. I'enepanus ceteii [leTpu ¢ TOMOIIBIO CTPYKTYPHBIX TpaHC(HOpPMALHiA, COXPAHSIONIMX TTOBEACHIECCKHE
cBoiictBa. Tpyowst UCII PAH, Tom 33, Beim. 3, 2021 1., cp. 155-170

5.4 Example: a Step in the Randomized Refinement of a Deadlock-Free EN-
System

In this paragraph, we consider a step of Algorithm 2 in more detail. Given the EN-system N shown
in fig. 8 and the following probabilities: prob(p;) = 0.15, prob(p,) = 0.10, prob(p;) =
0.05, prob(p,) = 0.7, we will show how the choice of a refinement transformation is performed.
We start with finding the applicable transformations. Here we have that only p,, p,, and p; can be
applied to the EN-system from fig. 8. Their normalized probabilities are: prob(p;) = 0.50,
prob(p;) = 0.33,and prob(p;) = 0.17.

P
L] L]
\\x Fooy
e

Fig. 8. Deadlock-free EN-system

Then we generate a random number r. Let r = 0.73. We check where the value of r is in the

interval [0,1$ concerning the cumulative normalized probabilities (see fig. 9).
!.] i]:? |”'}.H Ii
I ™ L
0.73

[T

Fig. 9. Checking the placement of the random number r
The value of r is in the interval [0.5, 0.83], corresponding to the refinement transformation p,. Thus,
we apply this transformation to the EN-system from fig. 8, and a possible result is shown in fig. 10,
if we choose transition t, to be transformed.

p

(T
—
~e—" e

Fig. 10. Applying the chosen transformation to the EN-system from fig. 8

Then, according to Algorithm 2, we continue choosing refinement transformations, according to
their probabilities, until we reach either the limit of the size or the limit of the total number of applied
transformations.

6. Software Implementation and Evaluation

In this section, we describe details concerning the implementation of the two generation algorithms
discussed in the previous section. We have evaluated the randomized generation algorithm using
Petri net models for interaction patterns described in [24] as reference models. They provide a highly
abstract view of typical asynchronous agent interactions, whereas a refinement of an interface
pattern can be seen as the model of a specific system implementing this pattern.

6.1 Carassius Petri Net Editor

The Carassius software tool has been presented in [3]. It supports various modeling notations,
including (communicating) finite state machines and Petri nets. The Carassius allows one to simulate
Petri nets according to the transition firing rule, import and export files in different formats, visualize
process behavior. Apart from that, the Carassius has a modular architecture, and it can be easily

165

Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving Transformations. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 155-170

extended with new features. For example, in [25], the authors have described an extension to the
Carassius that supports the simulation of Petri nets with two special types of arcs: reset and inhibitor.
The main window of the editor is shown in fig. 11.

We have introduced the following features into the Carassius Petri net editor:

1) the internal storage of refinement transformations;

2) the choice and application of a single transformation to a given EN-system;

3) the generation of an EN-system by applying a fixed transformation sequence (Algorithm 1);

4) the generation of an EN-system by applying a randomly constructed transformation sequence
(Algorithm 2).

A — rara wetze ma Lo 0T v A

B e e i e . whig g, et
., *_I } 1 i
. N‘H e
=) e) '_b"lr Y
U g 4] =

Fig. 11. Carassius process model editor
The implementation of the generation algorithms has also been enriched with the possibility to «roll
back» following a transformation sequence to check intermediate results.
The parameters necessary for the fixed and randomized generation are configured in the top panel.
A fixed transformation sequence (Algorithm 1 is constructed using a drop-down menu, where one
may choose a transformation and assign the corresponding number of occurrences to it (see fig. 12).
The configuration of probabilities and other parameters of Algorithm 2 is shown in fig. 13.

Enter sequence
15 v| P75/ 757 A:312
Add | Place Duplication Update net size
3 Transition Duplication

Local Tr. Introduction

Place Split

Fig. 12. Constructing a sequence of transformations

Random rule. Enter prob. Iter. Limit Size Limit
Pl. Duplication: 0,11 Tr. Dublication: 10 11 1000 300

Local Tr. Intro: | 0,11 Place split: 0,67 [Perform

Fig. 13. Parameters of the randomized generation

As described in the following paragraph, we have considered the application of Algorithm 2 to
construct refinements of so-called interface patterns.

6.2 Evaluation: Randomized Refinement of Interaction Patterns

Modeling complex information systems is a rather difficult task due to the coordination of several
interacting components. Service interaction patterns, introduced in the Business Process

166

Hectepos P.A., Casenses C.10. I'enepanus ceteii [leTpu ¢ TOMOIIBIO CTPYKTYPHBIX TpaHC(HOpPMALHiA, COXPAHSIONIMX TTOBEACHIECCKHE
cBoiictBa. Tpyowst UCII PAH, Tom 33, Beim. 3, 2021 1., cp. 155-170

Management (BPM) community [26], provide generic solutions for designing composite systems
with several interacting entities. The patterns give a highly abstract view of component interactions.
The identification of the typical interface patterns and their modeling using Petri nets have been
considered in [24], where the seven asynchronous interaction patterns have been discussed. The
models of these patterns are shown in fig. 14. For instance, IP-4 describes the simple message
exchange, when the first component sends a message to the second one, and the latter sends back an
acknowledgment.

® @ : 2
: 2
: 5]
N1 {_1 _.:I Nz N A \C\/’NZ
(a) IP-1 (c) IP-3
® @ O] D
54 ?
O OO .00

EFk
Dl

Ny W L._-_f

=
F
-
s
L
=
)

(d) 1P-4 () IP-6

N O

(g) TP7

Fig. 14. Interaction patterns: reference models

We have used these interaction patterns to evaluate the randomized generation algorithm. Given an
interface pattern, we apply Algorithm 2 and obtain a possible refinement of this pattern. A
refinement of an interface pattern inherits its structural and behavioral properties. Intuitively, such
a refinement represents a possible system model implementing an interaction pattern.

The results of applying the randomized refinement to the interaction patterns with different
parameters are provided in Table 2, where we show the number of places and transitions in the
reference model and the obtained refinements. Correspondingly, we have considered five different
cases:

e the randomized refinement with equal probabilities for each transformation (p; = 0.25);

167

Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving Transformations. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 155-170

o the four cases when the probability of one transformation (0,67) outweighs the equal
probabilities of the other three transformations (0,11).
Table 2. Randomized refinement of interaction patterns

Randomized generation (mazSize=300, mazSteps = 1000)

Reference | p, =0,25 | p1 =0,67 | po =0,67 | ps =0,67 | pa =0,67

PLTE e T ee e e iee T er T
IP-1 5 2 134 166 | 234 66 To 224 | 156 144 | 141 166
P2 | 12 6 147 153 | 216 84 66 256 | 155 145 | 146 154
IP.3 6 - 154 149 | 212 88 85 215 | 154 147 | 156 144
P-4 8 - 132 168 | 217 83 71 220 | 152 148 | 144 156
IP.5 | 18 10 | 139 163 [207 94 78 222 | 156 145 | 157 143
IP-6 | 12 8 107 193 | 218 83 72 232 | 158 142 | 158 143
IP-7 | 11 8 140 161 | 190 110 | 39 256 | 143 158 | 85 215

As it can be seen from Table 2, the number of places and transitions in the constructed refinements
is consistent with transformation application probabilities. Within all transformations being equally
probable, we do not observe notable differences in the number of places and transitions in the
obtained refinements. However, when the place (transition) duplication has the highest probability,
we have that the number of places (transitions) significantly outweighs the number of transitions
(places) in the refinement. The predominance of the transition introduction (p3) and place split (p,)
also does not lead to substantial differences in the number of places and transitions. The application
of p, requires places with two more input transitions, which may not be present in the reference
model.

In addition, fig. 15 provides a possible result of applying ten refinement transformations to the
interface pattern IP-1, where the transformations have equal probabilities.

Fig. 15. Refinement of IP-1: 10 steps, equal probabilities

6. Conclusions

In this paper, we have presented an approach to the generation of Petri nets using structural property-
preserving transformations. We have considered the generation of elementary net systems, which
form the basic class of Petri nets. Elementary net systems reflect the control-flow of a process, while
data and time aspects are ignored. Given a reference model, we apply a sequence of refinement
transformations to obtain a Petri net with similar structural and behavioral properties valid for the
reference Petri net. Refinement transformations extend a reference model by adding new places and
transitions, i.e., make the structure of a reference model more sophisticated. The proposed approach

168

Hectepos P.A., Casenses C.10. I'enepanus ceteii [leTpu ¢ TOMOIIBIO CTPYKTYPHBIX TpaHC(HOpPMALHiA, COXPAHSIONIMX TTOBEACHIECCKHE
cBoiictBa. Tpyowst UCII PAH, Tom 33, Beim. 3, 2021 1., cp. 155-170

can be applied for a complex evaluation of algorithms operating with Petri nets requiring the
preparation of model sets containing Petri nets with the specific structural and behavioral properties.

The correctness of applying these transformations is based on two observations. Firstly, the
transformations induce morphisms between reference and transformed Petri nets. Secondly, the
transformations do not introduce new deadlocks, unless they are already present in reference models.

We have designed two algorithms supporting the automated generation of Petri nets with the help
of structural property-preserving transformations. The fixed generation corresponds to the direct
application of a fixed sequence of refinement transformations. Within the randomized generation, a
user chooses the maximum size of a target model and sets the probability of applying each
transformation. We have conducted a series of experiments to evaluate the developed algorithms
using Petri net models of service interaction patterns. The experimental results confirm the
consistency of the randomized generation algorithm, according to changes in the number of places
and transitions with respect to probability values. These algorithms have also been implemented in
the existing Carassius Petri net editor.

The main limitation to the proposed approach, based on transformations, is that it is impossible to
generate a cyclic Petri net from a reference model without cycles. In the future, we plan to relax
these constraints and to extend the collection of property-preserving transformations
correspondingly. In this light, we also plan to develop a «designer» of structural Petri net
transformations that will allow us to construct new transformations. Another direction for the future
research is the development of property-preserving transformations for different extensions of Petri
nets, including, e.g., colored Petri nets, where tokens can carry data, or timed Petri nets, where
transitions are assigned firing time intervals. Note that certain extensions of Petri nets can also be
«unfolded» to elementary net systems.

References

[1] W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies. Springer,
2013,257 p.

[2] 7. Desel. Basic linear algebraic techniques for place/transition nets. Lecture Notes in Computer Science,
vol. 1491. Springer, 1998, pp. 257-308.

[3] N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN/Proc. ISP RAS, vol.
27, issue 3, 2015, pp.219-236. DOI: 10.15514/ISPRAS-2015-27(3)-15.

[4] A. Burattin. Multiperspective process randomization with online and offline simulations. In Proc. of the
BPM Demo Track 2016, CEUR Workshop Proceedings, vol. 1789, 2016, pp. 1-6.

[5] A.Kalenkova, W. van der Aalst, I. Lomazova, and V. Rubin. Process mining using BPMN: relating event
logs and process models. Software & Systems Modeling, vol. 16,2017, pp. 1019-1048.

[6] Z.Yan, R. Dijkman, and P. Grefen. Generating process model collections. Software & System Modeling,
vol. 16,2017, pp. 979-995.

[7] T. Jouck and B. Depaire. PTandLogGenerator: A generator for artificial event data. In Proc. of the BPM
Demo Track 2016, CEUR Workshop Proceedings, vol. 1789, 2016, pp. 23-27.

[8] K. van Hee and Z. Liu. Generating benchmarks by random stepwise refinement of petri nets. In Proc. of
the Workshops of the 31st International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency (PETRI NETS 2010) and of the 10th International Conference on Application of
Concurrency to System Design (ACSD 2010), CEUR Workshop Proceedings, vol. 827, 2010, pp. 403-
417.

[9] G. Berthelor. Checking properties of nets using transformations. Lecture Notes in Computer Science, vol.
222, 1986, pp. 19-40.

[10] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, vol. 77, no. 4, 1989,
pp- 541-580.

[11] T. Murata and I. Suzuki. A method for stepwise refinement and abstraction of Petri nets. Journal of
Computer and System Sciences, vol. 27, issue 1, 1983, pp. 51-76.

[12] [12] G. Winskel. Petri nets, algebras, morphisms, and compositionality. Information and Computation,
vol. 72, no. 3, 1987, pp. 197-238.

[13] G. Winskel and M. Nielsen. Petri nets and bisimulations. Theoretical Computer Science, vol. 153, pp. 211-

169

Nesterov R.A., Savelyev S.Yu. Generation of Petri Nets Using Structural Property-Preserving Transformations. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 155-170

244, 1996.

[14] J. Desel and A. Merceron. Vicinity respecting homomorphisms for abstracting system requirements.
Lecture Notes in Computer, vol. 6550, 2010, pp. 1-20.

[15] L. Bernardinello and F. De Cindio. A survey of basic net models and modular net classes. Lecture Notes
in Computer Science, vol. 609, 1992, pp. 304-351.

[16] L. Bernardinello, E. Mangioni, and L. Pomello. Local state refinement and composition of elementary net
systems: An approach based on morphisms, Lecture Notes in Computer Science, vol. 8100, 2013, pp. 48-
70.

[17] L. Bernardinello, 1. Lomazova, R. Nesterov, and L. Pomello. Property preserving transformations of
elementary net systems based on morphisms. In Proc. of the International Workshop on Petri Nets and
Software Engineering, CEUR Workshop Proceedings, vol. 2651, 2020, pp. 49-67.

[18] N. Dingle, W. Knottenbelt, and T. Suto. PIPE2: A tool for the performance evaluation of generalised
stochastic petri nets. ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 4, 2009, pp. 34-
39.

[19] Platform Independent Petri Net Editor. Available at https:/github.com/sarahtattersall/PIPE, accessed:
2021-03-20.

[20] PNEditor (Petri Net Editor). Available at https://github.com/matmas/pneditor, accessed: 2021-03-20.

[21] T. Freytag and M. Sdnger. WoPeD - An Educational Tool for Workflow Nets. in Proc. of the BPM Demo
Sessions, ser. CEUR Workshop Proceedings, vol. 1295. CEUR-WS.org, 2014, pp. 31-36.

[22] WoPeD (Workflow Petri Net Designer. Available at https://woped.dhbwkarlsruhe.de/, accessed: 2021-03-
20.

[23] WOLFGANG - Petri Net Editor. Available at https://github.com/iig-unifreiburg/WOLFGANG, accessed:
2021-03-20.

[24] R. Nesterov and 1. lomazova. Asynchronous interaction patterns for mining multi-agent system models
from event logs. Proceedings of the MACSPro Workshop 2019, CEUR Workshop Proceedings, vol. 2478,
2019, pp. 62-73.

[25] P.A. Pertsukhov, A.A. Mitsyuk. Simulating Petri Nets with Inhibitor and Reset Arcs. Trudy ISP RAN/Proc.
ISP RAS, vol. 31, issue 4, 2019. pp. 151-162. DOI: 10.15514/ISPRAS-2019-31(4)-1.

[26] A. Barros, M. Dumas, and A. ter Hofstede. Service interaction patterns. Lecture Notes in Computer
Science, vol. 3649, 2005, pp. 302-318.

MHcopmauusa o6 aBTopax / Information about authors

Poman Anekcanaposna HECTEPOB — acnimpanT ¢dakynsTeTa KomnbloTepHbIXx Hayk HUY BILD u
JernapraMeHTa HMHGOPMAaTHKH, CHCTEMHOW WH)KEHEPMM M KOMMYHHKalud MuiaHCKOTo
yauBepcurera bukokka (UNIMIB), mmagmmii HaydHbIid cOTpynHUK Jadopatopuu [TIOVC HUY
BIIID. OO6nacte ero Hay4YHBIX WHTEPECOB COCTABIIOT TEOpHUs IMapamenu3ma, cetu [letpw,
(opManbHbIe METOBI TSI MOJETTMPOBAHNS MYJIbTHATEHTHBIX HH()OPMAIMOHHBIX CHCTEM.

Roman NESTEROQV is a postgraduate student at the Faculty of computer science, HSE University
and at the Department of Informatics, System Engineering and Communications, University of
Milano-Bicocca, Italy (UNIMIB), a junior research fellow at the Laboratory of Process-Aware
Information Systems (PAIS Lab), HSE University. His research interests are the theory of
concurrency, Petri nets and formal methods for modeling multi-agent information systems.

Cemen IOppeBnu CABEJIBEB - crymeHT derBeproro Kypca OakanmaBpuaTa (hakymnbTeTa
KommbloTepHbIXx Hayk HWY BIID, craxep-uccienosarens nadoparopun [IOMC HUY BIID.
OO0nacTb HAay4YHBIX HMHTEPECOB COCTABISIOT: OOBEKTHO-OPHEHTHPOBAHHOE IPOTrPaMMHPOBAHHE,
apXHUTEKTypa HMH(GOPMAIMOHHBIX CHUCTEM, MOJICIMPOBAaHHE W aHAJIU3 IIOBEJICHHS IPOLECCOB C
nomouipto cereif [lerpu u apyrux popmaan3MoB.

Semyon SAVELYEYV is a fourth-year undergraduate student at the Faculty of computer science,
HSE University, a research assistant at the PAIS Lab, HSE University. His research interests include
object-oriented programming, architecture of information systems, modeling and analyzing process
behavior using Petri nets and other formalisms.

170

https://www.researchgate.net/scientific-contributions/Martin-Saenger-2081802419?_sg%5B0%5D=drrGQNIHoWqKOexW8B5pGF7WoI5N44Jbkz6teeaWuKTBt_UJmRfmKt_qDfJOVQlmqt3APNM.6yGhOb4cuq71IeaGb6zQ5u7WdTEUNk98h1rTUCGUsx_StEXLmaOd958fG1Mh-hRnb55sx3dvZfVVTJzTuN2a1A&_sg%5B1%5D=OBWBNuPYd4D47SU0LiwLQUYJWOYktRhoODFb3yDS3jgET0JxLHGR7oZo8TLoYyCzr9pHcdE.QOjBgqWRHAuCcI2vTO9myP18MBy3RZH1HvR5jylAerSx_Jdfend_wTGdr0Wgad3LPdyuzckZnA1sAtTurIMzrQ

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-13 tocl%

AHannTuka B peanbHOM BpeMeHU, rmbpumagHas

TpaH3aKuMOHHasf/aHanMTn4YeckKasa oopabdboTka,

ynpaBfieHMe AaHHbIMU B OCHOBHOM NaMATU U
3HeproHesaBucuMas NamMAaTb

12345 C 1. Kysueyos, ORCID: 0000-0002-8257-028X <kuzloc@ispras.ru=
6 [1.E. Benuxos, ORCID: 0000-0002-0644-8047 <pavel.velikhov@huawei.com>
6 1]. @y, ORCID: 0000-0003-0244-1718 <fgiang.fugiang@huawei.com>

Y Unemumym cucmemnozo npoepammuposanus um. B.I1. Heannuxosa PAH,
109004, Poccusa, Mocksa, yn. A. Condxcenuywina, 0. 25
2 Mockoeckuii 2ocyoapcmeennuiii ynusepcumem umeny M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue eopul, 0. 1
3 Mockosckuii pusuxo-mexnuueckuii uncmumym,
141700, Poccus, Mockosckas obnacme, 2. [Joneonpyoustii, Hncmumymcekuil nep., 9
4 HIY «Bulcuias wkona SJKOHOMUKUY,
101978, Poccus, Mocksa, yn. Macuuykas, o. 20
5 Poccutickuti axonomuueckuti ynusepcumem umenu I’ B. [Inexanoea,
117997, Mocksea, Cmpemsannvlii nep., 36
6 Texxomnanus Xyaesil.
121614, Poccus, Mocksa, ya. Kpvinamckas, 0. 17, k. 2

AHHOTanMs. B Hamm THNM aHaNWTHKA B PeaJlbHOM BPEMEHH — OJHO M3 HamOoJiee 9acTO HCIIOIb3YEeMBIX
TIOHATHI B MHpe 06a3 JaHHBIX. B MMPOKOM CMBICIIE 3TOT TEPMHUH O3HAYaeT OUeHb OBICTPYIO AHATUTHKY OUCHb
cBexnX JaHHBIX. OOBIYHO 3TOT TEPMHH HCHONB3yeTCs BMECTE C JPYIHMH IIONMYJSIPHBIMH T€PMHHAMH —
2UOPUOHOT MpaH3aKyuoHHou / anarumuyeckou odpabomrou (HTAP) m 0bpabomkoil OauHbIX 6 OCHOBHOU
namsmu. TIpuuuHa B TOM, Y4TO CaMBI MPOCTOIl CIOCOO MPENOCTaBUTh CBEXHE ONEPAaTHBHBIC NaHHBIC IUIS
aHanm3a — 3To 00BEIMHUTE B OJTHOM CHCTEME KaK TPaH3aKIIMOHHYIO, TaK H aHATUTHYECKYI0 00paboTKy. CaMsbIit
3¢ ekTHBHBIH crocob odecreynTs OBICTPYIO TPAH3aKIIMOHHYIO U aHAJIMTHYECKYI0 00paboTKy — XpaHHUTh BCIO
0a3y TaHHBIX B OCHOBHOH mamsTu. VTak, ¢ OTHOI CTOPOHEI, 3TH TPU TEPMUHA CBSI3aHBI, HO C IPYTOH CTOPOHBI,
Kbl U3 HUX MMeeT cOOCTBEHHOE NPaBO Ha XM3Hb. B 3T0# cTaTthe MBI JaeM 0030p HECKOJIBKHX CHCTEM
YIIpaBJICHHS! TAaHHBIMH B TaMSITH, KOTOpBIe He ABistioTcs cuctreMamun HTAP. HexoTopsle n3 HHUX SBISIOTCS
YHCTO TPAH3aKINOHHBIMH, HEKOTOPHIE — YUCTO AaHAIUTUIECKUMH, @ HEKOTOPBIE TOAEPKHUBAIOT AaHAIUTUKY B
peanbHOM BpeMeHH. 3ateM MblI paccMoTpuM neBsith HTAP-CYB]l ¢ xpaHeHHeMm 0a3 AaHHBIX B OCHOBHOM
MaMsITH, HEKOTOPBIE M3 KOTOPBIX HE MOACPKUBAIOT aHAJUTHKY B peanbHoM Bpemenu. CymectByrorne HTAP-
CVYB/]] peanbHOrO BPEeMEHH C XpaHEHHEM 0a3 JaHHBIX B OCHOBHOW MaMATH UMEIOT OYeHb Pa3sHOOOpa3HyIo U
MHTEPECHYIO apXUTEKTYpPY, XOTS OHH HCIOJB3YIOT Psii OOIIMX MOJXOJOB: MHOTOBEPCHOHHOE YHpaBICHHE
TapaJuIeNI3MOM, MHOTOSIIEpHOE pacliapalIeIMBaHNe, pacIIUpeHHas ONTUMHA3AINS 3aIIPOCOB, CBOEBPEMEHHAs
KOMITHJISIIIS 3aITPOCOB | T.J. KpoMe Toro, Hac MHTepecyeT, HCHOIB3YIOT JI 3TH CHCTEMBI SHEPTOHE3aBICHMYTO
TIaMsATh, ¥ €CIHU /13, TO KaKUM 00pa3oM. MBI IIPHUIILTH K BEIBOAY, UTO MOSIBIIEHHE HOBOTO MokoyieHust NVM Oyner
3HAUUTENHHO CTHMYJIMPOBATh HCIIOIb30BaHUE YHEPrOHE3aBHCHMON OCHOBHOW mamsTé B cucremax HTAP ¢
XpaHeHHeM 0a3 JaHHBIX B OCHOBHOMW MaMsTH.

KioueBble cjI0Ba: aHAIWTHKA B peaJbHOM BPEMEHHW; TMOpHIHAS TpaH3aKLUMOHHAs/aHAJINTHYECKAs
00paboTka; 06paboTKa JaHHBIX B OCHOBHOH MaMSTH; YHEPTrOHE3aBHCUMAs TaMSATh.

171

mailto:0000-0002-8257-028X

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

Jns muruposanus: Kysnenos C.J., Benuxos ILE., @y L. AnanuTuka B peaqbHOM BpeMeHH, TMOpHAHAS
TpaH3aKLMOHHAs/aHAINTHYECKass 00paboTKa, yNpaBleHHE JaHHBIMM B OCHOBHOIl ~HaMiATH U
sHepronezaBucumast mamsaTe. Tpymet MCIT PAH, tom 33, Bem. 3, 2021 1., crp. 171-198. DOI:
10.15514/ISPRAS-2021-33(3)-13

Real-Time Analytics, Hybrid Transactional/Analytical Processing,
In-Memory Data Management, and Non-Volatile Memory

123455 D, Kuznetsov, ORCID: 0000-0002-8257-028X <kuzloc@ispras.ru>
8 P.E. Velikhov, ORCID: 0000-0002-0644-8047 <pavel.velikhnov@huawei.com>
Q. Fu, ORCID: 0000-0003-0244-1718 <fgiang.fugiang@huawei.com>

I lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
¥ Moscow Institute of Physics and Technology (State University),
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
4 National Research University, Higher School of Economics
20, Myasnitskaya Ulitsa, Moscow, 101978, Russia
5 Plekhanov Russian University of Economics,
36, Stremyanny lane, Moscow, 117997, Russia
® Huawei Technologies Co., Ltd.,
17, building 2, st. Krylatskaya, Moscow, 121614, Russia

Abstract. These days, real-time analytics is one of the most often used notions in the world of databases.
Broadly, this term means very fast analytics over very fresh data. Usually the term comes together with other
popular terms, hybrid transactional/analytical processing (HTAP) and in-memory data processing. The reason
is that the simplest way to provide fresh operational data for analysis is to combine in one system both
transactional and analytical processing. The most effective way to provide fast transactional and analytical
processing is to store an entire database in memory. So on the one hand, these three terms are related but on the
other hand, each of them has its own right to life. In this paper, we provide an overview of several in-memory
data management systems that are not HTAP systems. Some of them are purely transactional, some are purely
analytical, and some support real-time analytics. Then we overview nine in-memory HTAP DBMSs, some of
which don't support real-time analytics. Existing real-time in-memory HTAP DBMSs have very diverse and
interesting architectures although they use a number of common approaches: multiversion concurrency control,
multicore parallelization, advanced query optimization, just in time compilation, etc. Additionally, we are
interested whether these systems use non-volatile memory, and, if yes, in what manner. We conclude that an
emergence of new generation of NVM will greatly stimulate its use in in-memory HTAP systems.

Keywords: real-time analytics; hybrid transactional/analytical processing; in-memory data processing; non-
volatile memory

For citation: Kuznetsov S.D., Velikhov P.E., Fu Q. Real-Time Analytics, Hybrid Transactional/Analytical
Processing, In-Memory Data Management, and Non-Volatile Memory. Trudy ISP RAN/Proc. ISP RAS, vol.
33, issue 3, 2021, pp. 171-198 (in Russian). DOI: 10.15514/ISPRAS-2021-33(3)-13

1. BeedeHue

TepMHHBI M KOHIETIMH B 00JAaCTH YIIPaBJIEHHUS AaHHBIMH IIOCTOSIHHO MEHSIOTCS,, M aHAJINTHKA B
peaJbHOM BPEMEHHM B HACTOSIEE BPEMs SIBIISIETCSl OAHOW M3 CaMBbIX IOIMYJIAPHBIX KOHIENIi. B
LIEJIOM, aHAJIMTHKA B PEAIbHOM BPEMEHH INPEIIONIAraeT ObiCmpylo aHAIUTHUECKYI0 00paboTKy
ceexcux npaHHbIX. O0a KIIOYEBBIX CIIOBA B TPHUBEACHHOM BBINIE NPEIOKEHUHU, Oblcmpas
obpabomka W ceexcue Oanuvle, HE UMEIOT aOCOJIOTHOTO CMbICTa. AHaIMTHYecKas oOpaboTKa B
peXuMe peabHOr0 BPEMEHH J0JDKHA IIPOMCXOJUTD HACTOJIBKO OBICTPO, HACKOJIIBKO 3TOTO TPEOYIOT

172

mailto:0000-0002-8257-028X

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

KIIMEHTHI (TIPEANPHUATHSI), a JAHHBIE MOTYT OBITh HACTOJIBKO CBEKUMHM, HACKOJIBKO OHU MOTYT OBITH
IpeocTaBiIeHbl 0a30BOM CUCTEMOH yIpaBICHUs JaHHBIMH.

B mo0oMm ciyqae, Hamboiee €CTECTBEHHBIM HCTOYHHKOM CBEXHX KOPIOPAaTHBHBIX [TaHHBIX
ABJISIIOTCSL IaHHBIE, TEHEPHPYEMbIe TpPaH3aKIMAMH TOro ke mpeanpuarus. OOBYHO Bce
KOpPIOpaTHBHBIC TpaH3aKuu oOpabaTeiBaroTcsi HekoTopbiMH CVYBJl, OpHeHTHpOBaHHBIMH Ha
OLTP, a xopmopaTHBHas aHATUTHKA MoaaepkuBaeTcs HekoTopbiMu CYB/l, opueHTHpOBaHHBIMH
Ha OLAP. Takum o06pa3zom, 1y1s oOecrieueHNs aHATMTUKU B peajlbHOM BpEMEHH HE00X0IMMO OYeHb
ObICTpO TepeiaBaTh JaHHBIE U3 XpaHWIWIA TPAaH3aKIHMOHHOW CHCTEMBI B XPaHMWIHIIE
AQHAJIMTHYECKOH cucTeMbl. Jlpyrumm cinoBamu, 4YTOObI 0OECIIEUUTh aHAIUTHKY CBEXHX
TPaH3aKIIMOHHBIX JIaHHBIX, HEOOXOJMMO IIPENOCTaBUTh OYEHb OBICTpHIH MexaHumsm ETL
(u3BneuyeHue-npeoOpa3zoBaHue-3arpy3ka). Ho HUKTO He 3HaeT, KaK peayM30BaTh TAaKOW OBICTPBIH
ETL, u qust Toro, 4ToObl chenaTh aHAJUTUKY B peajlbHOM BPEMEHH BO3MOXHOMW, Oblla BBe/IEHA
KOHIICTIIIHSI 2ubpuonol MPAH3AKYUOHHOU/ AHATUMUYCCKOTL obpabomku (hybrid
transactional/analytical processing, HTAP).

B mupoxom cMeiciie HTAP o3HadaeT, 4To MbI JOCTaBIIsIeM CBEXKHE TPAaH3aKI[MOHHBIC JAHHBIE IS
aHanmuTH4Yeckoi o0paboTrkm ©Oe3 kakoro-mmbo ETL mocpemcTBOM TecHOH WHTETpariui
TPaH3aKIIMOHHBIX M AHAINTHYCCKUX XPAaHWIWII AaHHBIX. UTOOBI MOOMTHCS TakoH WHTErpaLliy
MarasuHOB, HEOOXOANMO TaKkKe MHTETPUPOBATH TPAH3AKLIMOHHbBIC U aHAJTUTHYECKHUE TIOJACHCTEMBI.
Jlerko BuAETh, YTO TaKash MHTETpalys ObLIa €CTECTBEHHOH 10 Hadama 3pbl «OAWH pa3Mep He
noAXoauT i Beex» [1], moromy uto yHuBepcaiabHble CY B/l MoJHOCTBIO TOAIEP/KUBATIN CTAHAAPT
SQL u TeopeTnuecKy MOTJIH MOJIEPKHUBATh CMelIanHble paboune Harpy3ku OLTP / OLAP.
OCHOBHBIM TIpeHMYIIECTBOM crennanusupoBaHHelx CYBJl Obuto MCronb30BaHWE CTPYKTYD
JaHHBIX U aJTOPUTMOB, HANOOJIEE MOAXOISIINX I COOTBETCTBYIOIINX BHIOB pabouei HarpysKHu.
Hampumep, cneumanusupoBanubie aHanutuueckne CYBJ], Takue kak Vertica [2], ucroiab3yroT
pa3JielieHHbIE XPaHWININA AaHHBIX ¢ OKOJIOHOYHBIM XpaHEHHEM TaOJuUI] ¥ ONTUMH3UPOBAHbI JIJIs
00pabOTKU CIIOKHBIX AHATUTUYECKHX 3alIPOCOB C HECKOJIBKUMH COCIMHEHHUSAMH, B TO BpeMs Kak
crieaiu3upoBanHble Tpan3akuumonHele CVYBJl, Takme kak VoltDB [3], noanepxwuBatoT
XpaHWIHUILE JaHHBIX B TTAMATH Ha OCHOBE CTPOK U SIBJISIOTCS] ONTUMU3UPOBAHHBIMHU JJI1 00pabOTKH
KOPOTKHMX M TIPOCTBIX TpaH3akIui. be3ycioBHO, creruanusupoBaHHas TpaH3akuuoHHas CYBJ]
BEIMTpEIBaeT y yHHBepcanbHOH CYBJ/I, korma pa®ouast Harpy3ka sBISICTCS TpaH3aKIMOHHOU, W
crienuanusnpoBanHas ananutuueckas CYB/] BemrpsiBaer, Korjga pabodas Harpyska SBISETCS
AHAJIUTUYECKOM.

[ostomy «uneanmucTrdeckas nenb noaxona HTAP — ogHOBpeMeHHO 00ecnednTh B paMKaX OTHON
CUCTEMBI (DYHKIIMOHAIBHOCTh W TPOU3BOAUTENHHOCTS crernuaim3upoBaHHeix OLTP- uw OLAP-
CYBJ — kaxercs HenocTwxkuMo. IIparmarudeckasl Leiab 3TOro MOAX0Aa — CO3/1aHUE CHUCTEMBI,
KOTOpast oOecreunBaeT pa3yMHYIO INPOMYCKHYIO CIIOCOOHOCTH il TPAaH3aKIMOHHBIX pabodmx
Harpy3oK M OJZHOBPEMEHHO AHAJIUTHKY B PEATbHOM BPEMEHH II0 JIOCTATOYHO CBEXHMM JAHHBIM -
HECOMHEHHO JJOCTIDKMMa (KaK MBI IOKaXXeM B ATOI CTaThe).

OueBHHO, 4TO TPeOOBaHUS Pa3yMHOHN MPOITYCKHOW CIIOCOOHOCTH /ISl TPaH3AKIIMOHHBIX Pabounx
Harpy3oK ¥ CBE)XECTH JAHHBIX JUISl aHAINTHYECKUX 3aIlPOCOB MPOTHUBOPEYAT JIPYT Apyry. YToObI
00ecTeunTh MaKCHUMAaJIbHYI0 AaKTYaJbHOCTh JTaHHBIX, HEOOXOIMMO CIeNnaTh IOCTYIMHBIMH I
aHaM3a BCE JaHHBIC, TeHEpHUpyeMble TEKyIIHMH oOpabaThiBaeMBIMU TpaH3akIumsiMu. OmHAKO B
STOM CiIydae TpaH3aKIUH OyIyT KOHKypHUpPOBAaTh C aHAIMTHYECKHMH 3ampocamMu, u obpaboTka
TpaH3akUMi craHeT MejsieHHee. Bce u3BectHhie cuctemMbl HTAP ucnonbs3yroT TOT wiau WMHOU
KOMIIPOMHUCC JJISI Pa3yMHOTO (B HEKOTOPOIl CTENEHM) yIOBJIETBOPEHHS ITHX IMPOTHBOPEUUBBIX
TpeOOBaHU TyTeM pas3ielieHUus] aHANUTUYSCKOW W TPaH3aKIMOHHOW dYacTei 0asbl JaHHBIX H,
BO3MOJKHO, NPE0Opa3oBaHuUsl NAHHBIX M3 NPEJCTaBJICHHS, XOPOLIO ITOIXOJSIIEro At 00paboTKH
TpaH3akIMi (0OBIYHO TAOJIMIIBI C XpaHEHHEM II0 CTPOKaM) B Oosiee MOXOsIee sl aHATUTHKA
npezcTaBiaeHue (OOBIYHO ITOKOJIOHOYHOE mpencraBieHue Tadmun). (Ecim xorure, 3TO0 MOXHO
Ha3BaTh obneryeHHsIM ETL.)

173

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

Jlpyroe uaMepeHre — 3TO HOCUTEIH JJIsl XpaHEHHUsS JaHHbIX. bonpmuHCTBO coBpeMeHHBIX CYBJ]
kareropuu HT AP onTuMH3UpOBaHBI IS XpaHEHUs TAHHBIX B OCHOBHOM MaMATH. DTO 03HAYAET, YTO
BCE CTPYKTYpHl JAHHBIX WM aJITOPUTMBI, HCHONB3yEMble B TaKHX CHCTEMaX, pa3paboTaHbl B
COOTBETCTBHUHM C MPEAIOI0KEHHEM, YTO BCI 00pabOTKa JaHHBIX OYAET BBHINOJIHATHCS B OCHOBHOM
naMsaTH 0e3 BBOJA-BHIBOJIA C HCIIOJIb30BAaHWEM BHEIIHUX 3allOMHHAIOIIUX YCTPOWCTB. BooOmie
rosopst, kouuenuus CYB]] ¢ xpanenuem 6a3 qaHHBIX B OCHOBHOM mamsitu (in-memory CYBJT) ue
HoBa. CoriacHo [4], mepBasi MOMbITKa peaqu30BaTh cUcTeMy 0a3bl JaHHBIX, KOTOPas XPaHUT BCeE
JaHHbIe B TaMsITH, Obuta npeanpunsata IBM B 1976 roxy (IMS Fast Path). Hosast BostHa in-memory
CVYB/] ¢ oneparuBHOi1 namsiTeio Habmoaanack B 1990-x ronax. Torna u nmo3xe (B Havane 2000-x)
takrne CYBJ/] B OCHOBHOM CHeNHaIM3UPOBAIHNCh Ha 00paboTke TpaH3zakumii. Celfdac 1modtu Bce
cymectBytomne HTAP-CYB/] B Toif wiIi HHOHM CTETIIEHN OTHOCSTCS K KJIACCy CHCTEM in-memory.
XpaHeHWe BceX JMaHHBIX (WIM, TO KpaifHeW Mepe, copAyux NAaHHBIX) B OCHOBHOM NaMATH
obecrnieunBaeT 0oiee BBICOKYIO CKOPOCTH OOpaOOTKHM TpaH3aKL|i, YTO YAaCTUYHO CIIIa)KUBACT
HeraTuBHbIE 3 PEKTH OJJHOBPEMEHHO BBINOJIHIEMBIX aHAJTUTHYECKHUX 3aIIPOCOB.
Taxum o0pazom, TIOHSTHUS QHAIUTHKK B pEaIbHOM BpPEMEHH, THOpUIHOMN
TpaH3aKIMOHHON/aHATNTHIECKOH OOpaOOTKM ¥ YNpaBICHHUs AAHHBIMH B OCHOBHOHM HaMATH
SIBIISTFOTCS. B3aMMOCBSI3aHHBIMH MTOHATHAMH, XOTS KQXKJ0€ U3 HUX UMEET CBOI COOCTBEHHBINH CMBICIT
U TIPaBO Ha >KN3Hb. MBI 00cyamuM Oosiee TOAPOOHO UX MPOUCXOXKICHNE, COOCTBEHHOE 3HAUCHHUE H
B3aMMOCBSI3b B pa3. 2.
Eme onHa KOHIENIWs, MOCIENHsSS, HO HE MEHee BaKHas IS LeNeH 3TOM CTaThb, — 3TO
9HepeoHesasucumas ocHosHas namsams (non-volatile main, NVM), kotopas Takke Ha3bIBaeTCS
nocmosunot namamoto (persistent memory), namsamoio xaacca xpanenus dannvix (Storage-class
memory) u T.1. NVM Ha camoM Jene siBisieTcsi OObIYHON MaMsThio ¢ OalTOBOW aapecarueil (kak
TpaaunuoHHass RAM), HO coxpaHseT CBO€ COCTOSHHUE TOCIE€ OTKIIOYEHUS MUTaHUs. OTH
ocobenHocT NVM 103BOJISIOT HCHOIB30BATh €€ KaK 0JJHOYPOBHEBYIO CpEAy XPaHEHUS NaHHBIX B
cHCTeMax yIpaBJIeHHs JaHHBIMH.
NVM HnHaubosiee XOpomio MOAXOAUT IS 4YUCTO TpaH3aknuoHHBIXx CYBJl, pabortatomux Ha
MHOTOSAJIEpPHBIX KOMIbIOTepax [5]. B 3ToM ciydae OCHOBHBIM IPEUMYIIECTBOM HCIIONB30BAHU
NVM sBnsieTcs TO, 4TO BakHasi pYHKIIMS JTOITOBEYHOCTH TpaH3aKIuii OyieT obecrnieunBaThes 06e3
KakoW-1m00 >KypHaJIM3allid BO BHENIHEH maMsaTH. TakuM oOpa3oM, TpaH3aKIHH, OOHOBIISIOIINC
6a3y maHHBIX, OyayT 00pabaThIBATHCS C TOH K€ CKOPOCTBIO, YTO U TPAH3aKIMU TOJBKO JUIs YTCHUS,
a 001as MPOMyCKHAst CHOCOOHOCT IS TPAH3aKIMOHHBIX paboulX Harpy30K OyeT HAMHOTO BBILIIE,
4YeM y TPaAULMOHHBIX TPaH3aKIMOHHEIX iN-memory CYB/I (3Tu cicTeMbl 0JKHBI KYPHAIU30BaTh
BCE Olepanud OOHOBJICHHS B OHEPrOHE3aBUCHMOW BHEIIHEH mNaMATH, 4ToObl oOecrednTh
JIOJITOBEYHOCTDH TPAH3aKIIUH).
OpHako B HacTosiee BpeMst HaOmojaeTcst TeHACHIMA K 00beIMHEHHUIO B OJJHOM U TOM ke cucreme
6a3 naHHBIX (QYHKIUH 00paOOTKM TpaH3aKIMH M aHAJIUTUKA B pealbHOM BPEMEHH, TO €CTb K
ucnons3oBanuo noaxona HTAP. Ilostomy mpencTaBisieTcss HHTEPECHBIM M IOJIE3HBIM
MIPOaHATIM3NPOBATH, MCIIONB3YIOT U Pa3pabOTIMKKN MMEIOMIMXCS B HACTOsIIEE BpeMs in-memory
CYB/I xareropun HTAP (wu cobuparotcest in OHU UCToNb30BaTh) NVM, U, eciu Aa, TO KaKk OHU
€ro UCTIOJNIB3YIOT (WJIN IUTAHUPYIOT UCIIOJIb30BATh).
OCHOBHOM BKJIaJl CTaTbU 3TON CTaThU COCTOUT B CIEAYIOILEM:!
® TPEAOCTABIAIOTCS Oolee WM MEHEe TOYHBIE ONpEAETICHHS W OOBSICHEHHS CBS3aHHBIX, HO
pa3MYHBIX TOHSATHH AHAJIWTHKH B pEaJbHOM BpPEMEHH, T'MOPUIHON TpaH3aKIMOHHOH /
aHATTUTHYIECKOH 00pabOTKM 1 yIIpaBIeHNUS JAaHHBIMH B OCHOBHOW MaMSITH;
e 000CHOBaHA NPUHIMIIHANBHAS Ba)XKHOCTh HEProHe3aBUCHMMON mamsaté B Oymymux CYB]]
kareropuu HTAP;
® KpaTKoO OMHCaH OOl TaHAIIAa(T CYIIECTBYIONINX CHCTEM YIPABICHHUS TaHHBIMHA B OCHOBHOM
aMsTH;
e 5an 0630p HoBeimux in-memory HTAP-CVYB]] u ucronp3oBanus B HUX NVM.

174

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

OcraBmasics 4acTh CTaTbU HMEET CIEAYIONIYI0 CTPYKTYpy. B pasn. 2 mpemmaraercs HexkoTopas
HPEABICTOPHUS, BKIIOYAs OMPENCNICHNUS W OOBACHEHHS TEPMHHOB M IIOHSATHH, HCIOIBb3YEMBIX B
cratbe. B pasm. 3 Mbl mpHBOIMM OOIIyI0 KiacCH(UKANUIO coBpeMeHHBIX IN-memory CYB]l u
KpaTKO XapaKTepH3yeM HEKOTOpbIE CHCTEMBI, He NpuHaekamue Kk kateropud HTAP. B pazn. 4
GoJiee MOIPOOHO ONMCAHBI APXUTEKTYPHBIE M OCHOBHBIE (PYHKIIMOHAIBHBIE 0COOEHHOCTH OCHOBHBIX
KOMMEPYECKHUX U aKkajeMuyeckux pazpaborok in-memory HTAP-CYB/I. st Ka0i CHCTEMBI MBI
yKa3bIBaeM, Ucroib3yercs i B Heil NVM, u, ecnu na, To kKakuMm obpasom. Pasn. 5 comeprkur
HEKOTOPBIE 3aKJIFOUNTEIBHBIE COOOPaKEHNS aBTOPOB U 3aBEPIIACT CTATHIO.

2. Mpednocsbinku: onpedeneHusi, 06 bSICHEeHUs1 U 06¢cyx0eHue

VmeroTcss TpH KOHLEILIUH M COOTBETCTBYIOLIHME TEPMHUHBI, KOTOPbIE OOBIYHO OOBEAMHSIOTCS B
obiacTu 0a3 MaHHBIX, HO KaX/I0€ U3 HUX UMEeT COOCTBEHHOE 3HaUeHNE U (pyHIaMeHTaIbHOE MIPaBO
Ha OTAEJIBHYIO)XNU3Hb. JTH TEPMHUHBI TAKOBBI:

* AHAINTHKA B PEaJbHOM BPEMEHH;

e THOpWIHASA TpaH3aKIMOHHAs / aHanmuTHdeckas oopadoTka (HTAP); a Takxke

* yIpaBJIeHHE JAHHBIMH B TIAMSITH.

MpbI HaYHEM € PaCCMOTPEHHSI CMBICIIA Ka)K/I0TO U3 3TUX TEPMHHOB, a 3aTeM 00CYI1M, II0YeMY OHH
B HacTodllee BpeMs oO0beauHsAoTCs. HakoHer, B 3TOM pasjiesie Mbl TakKe KpaTKO pacCMOTPUM
MOHATHE SHEPrOHEe3aBUCHMOI MaMATH, TEKyIlee COCTOSHHE COOTBETCTBYIOIIEH TEXHOJOTMU U ee
CBSI3b C YIOMSHYTBIMHU CBS3aHHBIMU KOHIEIIIIHSAMH.

2.1 AHanuTuka B peanibHOM BpeMeHU

CornacHo I'moccaputo Gartner [6], «AHaIMTHKa B peaJbHOM BpPEMEHHM — 3TO AUCIUIUINHA, K
KOTOpOﬁ MMPUMCEHACTCA JIOTUKAa U MaTeéMaTHUKa K JaHHBIM, ‘-ITO6I)I O6eCHeqHTb HUX INOHUMAHUC IJIsA
OBICTPOrO TPHHATHS JIYUIIMX pEHIeHHH. B HEKOTOpBIX CllyyasX HCIHOJb30BaHUE PEATBHOTO
BPEMCHHU IIPOCTO O3HAYACT, YTO aHAJIUTHKA 3aBEPHIACTCA B TCUCHUEC HECKOJIBKUX CCKYH/] WJIKM MUHYT
MOCJIE MOCTYIUICHHUST HOBBIX JIAHHBIXY.

Ilepast (0Ormmas)) wacTth 3TOr0 oOmpeacicHus (PAKTUYSCKH O3HAYACT, YTO AHAIUTHUYCCKUEC
HHCTPYMEHTEI B p€aJIbHOM BPEMEHHN JOJIKHBI YIOBJICTBOPATH HOTpe6HOCTI/I JIMl, TPpUHUMAromunux
OousHec-perieHus. Kaxercs, 3T0 o00mias menb JI000r0 IMOCTABIIMKA, MPEIOCTABIISIOIIETO
AHAJIMTHYECKHE PellieHns. B 4acTHOCTH, JUTsS JOCTHIKEHHS ATOH LIENTU MOMOTAI0T XpaHeHHE Ta0IHII
no croiabuaM ¥ pa3IMYHbIE BBl pa3jieneHus 0a3bl JaHHBIX, HCIOJIb3yeMble B
cnenuanu3upoBanHbix aHamuTnyeckux CYB/I, Takux kak, Hanpumep, Teradata [7] wim Vertica [2].
Bropoe yTBepiKeHHEe B IPUBEICHHON BBIIIE [IUTATE AaeT Oojee OJIU3KYIO K HAIIEMY HOHHUMAHHIO,
0osiee KOHKPETHYI0 M CJIerKa MPOTHBOPEUYMBYIO HHTEPIPETAIUIO KOHIEMIUA AHAIUTUKA B
peanbHOM BpemeHH. Ha camoM jiene 9T0 03Hayaer, 4To:

® JlaHHBIC JIOJDKHBI OBITh JOCTYIIHBI JIJIsl aHAJIM3a TIOCIIE UX CO3JAHUS KaK MOJICHO CKopee, N

* aHAJIN3 JIAHHBIX JIOJDKEH OBITh 3aBEPIIECH KAK MONCHO Oblcmpee.

Bo-nepBriX, 00paTuTe BHHMaHWE HA HAJMYUE JBYX JK3EMIUIAPOB 000pOTa «KaK MOXKHO». Jlis
3aBEpIICHHUS AHAIUTUKU CYIIECTBYET OONBIION pa3pblB MEKAY HECKOIBKHIMH CEKYHIAMH H
HECKOJIBKUMH MHHYTaMHU. MTak, MBI BHIVM COBEPIICHHO OCOOYHO HMHTEPIPETAIHIO CMBICIA
PeaIbHOTO BpEMEHH: BpEMsi, MOTPAUYCHHOE HA aHAIHUTHUKY, JOJDKHO OBITh HACTONBKO pPEabHBIM,
HACKOJIbKO 3TO BO3MOXKHO.

Bo-BTOpBIX, s 0OOecreueHUs] CBEXKECTH JaHHBIX, BEPOSATHO, HYXXKHO OTKa3aTbCsi OT BCel
npeBapUTEIHHON OATOTOBKHU TAHHBIX K aHAMH3y. TakuM 00pa3oM, aHAIIN3 JOJDKEH MPOBOAUTHCS
HaJl JaHHBIMHU, MPEJCTABICHHBIMA B WX IEPBOHAYAIBHOM IPEICTABICHUH (BO3MOXHO, C
HEOOJNBIIMM JIEKCHYECKAM TIPeoOpa3OBaHUEM, HAIpUMEp, W3 CTPOKOBOH (opMbel B dopmy,
OCHOBaHHYI0 Ha cTonbmax). Hempocto obecrnednth OBICTpOE BBITIOJHEHHE CIIOKHBIX
AHATUTHYCCKUX 3aIPOCOB K HEMOITOTOBJICHHBIM JaHHBIM.

175

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

W, B-TpeThUX, IPUBEAECHHOE BBIIIE OTNPEICICHNE HUYETO HE TOBOPHT O CIIOCO0aX TOCTIXCHUS LETH
MPEJOCTAaBIICHNS AHAINTHKA B PEAIBHOM BPEMEHH W HE YKa3blBAeT KAKHX-THMOO TOYHBIX
XapaKTEPUCTUK «pealbHOTo BpeMeHM». C 0HOH CTOPOHBI, TAKOE HEONPEIEIICHHOE «OIPEACICHIE)
oOneryaer pa3pabOTKy CHCTEMBI, YIOBJIETBODSIOIICH «TpeOOBaHHMSM» AHAIUTHKH B pEaJbHOM
BpeMenu. Ho ¢ npyroii cTOpoHbI, OHO JieNiaeT NpakTHYECKH HEBO3MOXKHBIM CPaBHEHHE JIIOOBIX JBYX
CHUCTEM 3TOH KaTeropuu.

2.2 'mbpunaHan TpaH3aKuMoHHaA/aHanuTn4Yeckasa obpaboTka

Kak rosoputcs B Bukumenuu co ccbuikoit Ha Gartner [8], «rubOpugHas TpaH3akIUOHHAs /

aHanmutuyeckas oopadorka (HTAP) — aTo HOBas apXuTekTypa NpPWIOKEHUH, KoTopas ‘“IoMaeT

cTeHy” Mexny oOpaboTKOH TpaH3akUMi M aHAJUTUKOW. DTO IO3BOJISIET NPUHHMMATH Ooliee
nH(QOPMHUPOBAaHHBIE DELICHUs] B PEXHUME peajJbHOr0 BpeMeHW». B COOTBETCTBHM C 3THUM

ONPEJEIICHUEM CTOUT CAENIAaTh HECKOJIbKO KOMMEHTAPHEB.

(@) JTrobas yuusepcanbHas pemsiuonHas CYBJI, koppekTHO momaepxuBaromias cranaapt SQL,
otHOcuTcs k kKateropuu HTAP B cMbIcie nepBoif gacTu 3Toro onpeneneHus. [leficTBuTensHo,
cragaapt SQL mpeanuckiBaeT nonaepxky Tpanzakiuii ACID co BcemMu OOBIYHBIMU
rapantusmu. CrenoBaTtensHo, modas CYB/], nognepxxusaromas ctangapT SQL, nomkHa OBITh
crocobHa 00pabaTbBaTh OOy TpaH3aKIHOHHYIO pabouyro Harpysky. Crammaptr SQL
IIpeAyCMaTpUBaeT NONIEPKKY MPOU3BOJIBHO CIOXHBIX AHAJUTHUUECKHUX 3alPOCOB, a TAKXKE
HaJIMYHE JOCTaTOYHO OOraToro W pacIIupseMoro Habopa aHANMTHYSCKUX omeparwid. Takum
obpazoMm, mobas CYB]l, moanmepxuBaromas craHaapt SQL, moTeHmuanbHO MODKHA OBITH
crocoOHa 00pabaTHIBaTh OO0 aHAIUTHYECKYIO pabodyro Harpy3Kky. B onpeneneHnn HUIero
HE TOBOPHTCSI O MPOU3BOAUTEIBHOCTH TaKOi 00pabOTKH.

(b) ®akTrveckas «crera» mexay OLTP u OLAP nosiBUIach TOIBKO MOCTIE TOSBICHUS KOHIICTIIINA
Maiikna CtoyHOpeikepa «OOWH pa3Mep HE MOAXOAWT it Bcex» [1]. CrernumanmsupoBaHHBIC
TpaH3akiuoHHeie u aHanmuTHyeckue CYB/] nmubo He moamepkuBaroT Bech ctanaapt SQL, aubo
MOJICP’KUBAIOT ~ TPAH3AaKIMOHHBIE W aHamuTHueckue ¢yHkmun SQL ¢ HepaBHOH
MIPOU3BOJIUTENILHOCTBIO.

(c) Hoaxox HTAP MoxHO paccMaTpHBaTh Kak Iar Hasal OT CHEI[HaTn3HPOBAHHBIX CHCTeM 0a3
JaHHbIX. OJJHUM M3 OCHOBHBIX ITyHKTOB KpUTHKH CTOyHOpelkepa yHuBepcansHeix CYB/] Obina
ux cnoxHocTh. CrnienuanusupoBanHsie DMBS, ecTecTBEHHO, HAMHOT'O IPOILIE YHUBEPCAIbHBIX,
MMOCKOJIBKY OHH TPEIOCTABIISIIOT JUINb OTPAHUYCHHYIO (YHKIIMOHAIHHOCTH. BONBIIMHCTBO
YCHJIHMIA COCPEI0TOYCHO Ha oOecrieueHny npousBoauteibuoct. [Ipu paspaborke HTAP-CYB]]
HaM HEOOXOIUMO OJTHOBPEMEHHO 00ecrednTh TMOpPHIHYI0 (DYHKIMOHAJIBHOCTh U COXPAHUThH
(v XOTs OBI HOTIBITATHCSI COXPAHUTH) TIPOU3BOAUTEIBHOCTD CIICIIHATIM3HPOBAHHEIX CHCTEM 0a3
JTAaHHBIX.

(d) oxxox HTAP B cMBbICIIE TPUBEICHHOTO BBIIIE ONPEAEIEHUS MOXKET MOMOYb PELIUTH TOJIBKO
MIEpBYIO YacTh MPOOJIEMBl AHAJUTHKH B PEaJbHOM BPEMEHH — IPEIOCTaBHTh aHAIUTHYECKUH
JIOCTYIH K CBEXHM JaHHBIM. BpICOKasi MpON3BOIUTEIEHOCTD aHATMTHIECKOH 00pabOTKH MOKeET
OBITH JOCTUTHYTA 3a CUET MCIIOJIF30BAHNS ONITUMHU3HPOBaHHON apxuTekTypsl CYB /] kaTteropun
HTAP, MeronoB B3aMMOJEHCTBUS TpPaH3aKUUMOHHBIX M aHAIUTHUYECKUX JBUXKKOB BHYTpHU
CUCTEMBI, a TAaKXe ONTUMU3ALNN aHATTUTUIECKHUX 3aIIPOCOB.

B 3aBepuienue 3Toro noapaszena NpUBEAEM elie OJHy HUTaTy [9], KoTopas 0Tpa)aeT TOUKY 3pEeHUs
Xacco [Tnartrepa (Hasso Plattner), coyupenurens SAP, ocHoBarenst uncTuTyTa Xacco IlnartHepa
(Hasso-Plattner-Institut fiir Digital Engineering, HPI) u rnaBHoro unuimaropa HTAP-CYB]]
HANA B SAP. ABrtopsr [9] mucamm, uro «/cnonp3oBaHue oOImIed mMojenu 0as3bl NAaHHBIX LIS
KOPHOPAaTHBHBIX CHCTEM MOJKET 3HAUUTEIBHO YIIyUYIIUTh IKCIUTyaTallMOHHbBIC KaueCTBA U CHU3UTH
CJIO’KHOCTB UCTIONIb30BAaHHS CHCTEM, 00ECTICUNBast TPX ATOM JOCTYII K JaHHBIM B PEAJIbHOM BPEMEHH

176

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

W COBEPILIEHHO HOBBIE BO3MOXXHOCTHY». KaskeTcs, 9To ritaBHast MBICHb 3/I€Ch — 9KCHIYAMAYUOHHbIE
kauecmea. OUEBUIHO, YTO E€CIU MPEATIPHATHAE MOXKET HCIIOIB30BATh OAHY THOPUIHYTO 0623y JaHHBIX
BMECTO KaK MUHAMYM JIBYX OT/ICIBbHBIX TPAH3aKIIMOHHBIX U aHATUTHYECKUX 0a3 TaHHBIX, 3TO OyaeT
HAMHOTO IPOIIE U JeIIeBIIE.

2.3 YnpaBneHune gaHHbIMU B NaMATU

B rmoccapun Gartner copepxutcs ciieaytomee yreepxaeane o HTAP u ynpaBneHHN TaHHBIMU B
MaMSTH: «APXUTEKTypa THOPUIHON TpaH3aKIuK/aHanuTnaeckoi oopadotku (HTAP) mrydrre Bcero
obecrieynBaeTCss METOJaMH M TEXHOJOTHMSMH BBIYHMCICHHH B OCHOBHOW mamstu (in-memory
computing, IMC), NO3BOJSIOUIMMH BHINOJHATh AHATUTHYECKYIO 00pabOTKYy HaJx TeM e
XpaHWINILEM JTaHHBIX (B OCHOBHOH MMaMSTH), KOTOPOE HCIONB3YeTCs Al 00pabOTKH TpaH3aKIHi».
BepostHo, 3T0 mpaBna, U B pa3a. 4 Mbl YBUAMM HECKOJIBKO NPHUMEPOB, MOATBEPKIAIOIUX 3TO
yrBepxkaenne. Onnako koHnenuu in-memory 1 HTAP — ato He oxHO 1 TO)e. In-memory-CYB/]
MOSBUIIMCH HAMHOTO paHnblue, 4yeM nousatue HTAP, u ObuiM OpHEeHTHPOBaHbI HA OYEHb OBICTPYIO
00paboTKy TpaH3akiuid. O4eHb XOPOIIHii 0030p UCTOPUH M TEKYIIETO COCTOSHUS TEXHOJIOTHUHU 0a3
JTaHHBIX B OCHOBHOI MaMsATH Npe/ICTaBIIeH B cTaThe [4], HaNMMCaHHON PYKOBOIUTEIIMU HECKOJIBKHUX
npoekToB in-memory CYB/I.

Jaxe ceiiuac CymiecTByeT HECKOJBbKO 4ncTO TpaH3akuuoHHBIX CYBJ] B omepaTuBHOU mamsTH.
HekoTopbie 13 HUX SIBISIOTCS YCIICIIHBIME KOMMEPYECKUMH IPOYKTaMu, TakKMMH Kak VoltDB [3]
u SolidDB [10], a apyrue npeactaBisroT co0oif akageMuIecKre IpOTOTHITEL, Harpumep, Silo [11].
Cpenu in-memory CYB/] ecTh 1 4HCTO aHATMTHYECKIE CUCTEMBI YIIPABJICHHS JaHHBIMH, HAIIpUMep,
TpagWIMOHHAs MacCcHBHO-TIapauienbHas aHaimutudeckas CYBJl Exasol [12], mHOrOMepHBIE
cnenuanmupoBandbie cucteMbl Cognos TM1 [13] u Essbase [14], a Takxke ymydleHHast BepCHS
Spark-PMoF [15] pacnpenenenHoii anamutudeckoit cpeabl Spark. Mbl KpaTko 0OCYyAUM 3TH
CHCTEMBI B CIICAYIOIIEM pa3fele.

Kak Mpl ynmoMuHamu BO BBEICHHH, XpaHEHHE 0a3bl NaHHBIX IIOJIHOCTHIO B OCHOBHOW IaMSTH B
MPUHIHIIE TT03BOJIsIET cucTteMe 0a3 nanHbIX HTAP cokpaTuth Bpemst BBIIOIHEHHMS KaK TPaH3aKLUH,
TaK W aHAJUTHYECKHX 3ampocoB. OJHako A obecredeHus! ObICTPOH aHAIUTHKU Ha/l CBEXXKHMH
JAaHHBIMM HEOOXOIMUMO TaKKe COKPAaTHUTh 3alepXKKy, C KOTOpPOH TpaH3aKI[MOHHBIC aHHbIE
CTaHOBSITCA JOCTYIHBIMH JUISI aHAJIUTHYECKOW O0OpabOTKHM. DTO MOXKHO CcienaTh, HalpHMep,
UCTIONB3Ys Ul 00pabOTKM TpaH3aKIMK HE TPaJULMOHHOE IPEACTaBICHUE TAOIMIBI HA OCHOBE
CTPOK, a TpeACTaBIeHHE TAaONMIBI B BUAE CTOJOIOB, KOTOPOE JIy4Ile BCEro MOAXOIWUT JUIA
AHATUTHYECKOH 00pabOTKM TaHHBIX.

Ot0 Obla 0JTHA U3 OCHOBHBIX Hel Xacco [InmattHepa mpu pazpadorke HANA. Kak on nucan B [16],
«Pannune tectel B SAP u HPI ¢ 6a3zamu naHHBIX B OCHOBHON MaMSITH PENSIIMOHHOTO THIIA,
OCHOBaHHBIMH Ha XpaHEHHUH TAOJIHMI] [10 CTPOKAM, He MOKa3aly 3HAYUTENbHBIX IPEUMYILECTB Mepe/
BeaymumMu CYB/I ¢ SKBUBaJIEHTHOM aMSITBIO ISl KILIMPOBaHUs. 31€Ch POAUIIACH aJIbTepHATUBHAS
uzresi — W3Y4YHTh IpeuMyllecTBa ucrosb3oBaHus aius OLTP 6a3 paHHBIX € ITOKOJIOHOYHBIM
XpaHEHHEM.

Onu cpenanu 310, 1 HANA B cBoeM 0ObIYHOM, HanOoJjee ONTHMHU3UPOBAHHOM PEXHUME MOXKET
BBITIOJIHATH MapajlieNIbHyI0 00paboTKy 000X BHJIOB pabodell Harpy3KH B in-memory XpaHHIIHIIE
MOKOJIOHOYHBIX Ta0yun. OfHaKO CTOMT OTMETHTh, 4YTO Io4YTH Bce cymectByomue CYB/]
kateropuu HTAP (Bximrouass HANA) monaep:kuBarOT XpaHWIHIIA TaOJHII IO CTOJIO0NAM H CTPOKaM
B 0JHOI Oa3e maHHBIX. [ToX0XKe, YTO XpaHMIIMIIE 1O CTPOKAaM MO-IPEKHEMY HEOOXOIMMO, €CITH
TpeOyeTcst MaKCHMaJIbHas! IPOITyCKHASI CTIOCOOHOCTD [T TPAH3aKIMOHHBIX paboduX Harpy3oK.
Hakomnen, 3ametum, yto Bee cymectBytomue CYB/ B mamsitu, noaaepxkusatoimne SQL, uMeroT psiz
00IIMX, OYEHb BAXHBIX TEXHHYECKHX XapaKTEPHCTHK, TAaKMX KaK CBOEBPEMEHHAs KOMITHIISIIMS
3allpOCOB B ONTHMH3HUPOBAHHBI MAaIIWHHBIA KOJ, arpecCHBHOE CXAaTHE IAHHBIX, AKTHBHOE
HCcTIoNb30BaHne HHCTpYKIit SIMD mporieccopa, HCIOJIb30BaHHE CTPYKTYP JAHHBIX U aITOPUTMOB
6e3 OIOKMPOBOK U 3alIe]IOK, MHOTOBEPCHOHHOE YIPaBJICHUE Mapauienn3MoM H T.1. OZHAKO MBI

177

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

HOYTH He OyIeM KacaThCs TUX BOIPOCOB JaJiee B 3TOM CTAaThe, IOTOMY YTO 3/1eCh Hac O0JIbIIe BCETO
MHTEPECYIOT 00IIMe apXUTEKTYPhl M MPUHIUIIBI XpaHEeH!st AaHHbIX B in-memory HTAP-CYB/I.

2.4 DHeproHesaBucUMas NamMATb U ee NpaBUIIbHOe MeCTO B TeXHONorum 6as
OaHHbIX

OTKpOBEHHO TOBOpPS, OCHOBHOM HHTEpec aBTOPOB 3TOM CTaTbU — BO3MOXHOE BKIIIOYECHUE
MOJIAEP>KKY HOBOM HHeproHe3asucumMoi namsatu (NVM) (Takke Ha3pIBaeMOI NOCTOSHHON MaMSThIO
(PMEM) u namsiteio kiacca xpanenust (SCM)) B apXUTEKTYpbl COBPEMEHHBIX (B OCHOBHOM Ki1acca
in-memory) CYB/Il. Msl He OyaeM NPHUBOIMTH 37€Ch 0030p TEKYLIErO COCTOSHUS TEXHOJIOTHH
NVM, KoTOopbIil MOXKHO HalTH rae-nuoo eule (Hanpumep, B [5]). OTMETUM TOJIBKO CO CCBUIKOM Ha
[5], uto B HacTosIee BpeMs MPAaKTUUECKH JIOCTYNEH TOJbKO oxuH BuJ NVM B dopm-dakrope
DIMM - Intel Optane DIMM. O0mue XxapakTepHUCTUKH 3TOTO IPOIyKTa — OONbIIast 3a1epKKa (Ha
HECKOJIBKO ABOMYHBIX MOPSAKOB BhIIe, 4eM Y DRAM), Gopias 3aaepxka onepamnnii 3amucu, 9em
YTeHUs, U Oonbmast eMKocTh (1o 512 I'6 Ha Momynb). DIeKTpOHHAS MPOMBIIIICHHOCTh O0emaeT
IIpefoCTaBUTh (HazeeMcsi, B Ommkaiimee Bpems) ciemyromue mokoneanss NVM, kotopsie OymayT
HUMETh XapaKTEPUCTUKH 3aJEP>KKH M EMKOCTH HE XYK€, 4eM y TeKymux DRAM, u xapakTepUCTHKH
BBIHOCIIUBOCTH HE XYyXe, ueM y cymecTtBytomux HDD (unu, no xpaiiseit mepe, SSD).

Kak yxe ynommHamock, mydmee Mecto mamsi NVM B 00macTH TEXHONOTHHA 0a3 JaHHBIX — 3TO
TpaH3aKIHOHHAs in-memory (dakrtudecku, in-NVM) CVYB]l, pabotatomas Ha MHOTOSICPHOM
cepBepe. JHeproHe3aBUCUMOCT NVM MO3BOJISET HCHONB30BaTh OAHOYPOBHEBYIO apXHUTEKTypy
XpaHEeHHs1 JaHHBIX BOOOIIEe 0€3 UCTIOIb30BaHHS KaKMX-JIMOO BHEITHUX 3aIIOMHHAIONIUX YCTPOICTB.
HamnpotuB, Tekymue Tpan3akiuonnsie in-memory CYB/l BEIHYKAEHBI UCIIOJIB30BATh MOCTOSHHOE
BHEIIHEE XpaHWIMIIEe, 4YTOObl O0ECHEeYHTh BAXKHYIO XapaKTEPUCTHKY JIOJITOBEYHOCTH
3a()UKCHPOBaHHBIX ~TpaH3akiuid. Kpome Toro, oJHOypOBHEBas apXUTEKTypa IO3BOJISET
3HAYUTENBHO YIPOCTUTh CTPYKTYPhI AAHHBIX M QJITOPUTMBI, HCIONb3YyeMbIC IS YNpaBJICHUS
6azamu JaHHBIX. B Takoil cucreme mobas TpaH3aKOWs MOJHOCTHIO OOpabaThIBaeTcs B OJHOM
MIOTOKE, CTPOTO COOTBETCTBYIOLIEM spy mporeccopa. CenoBaTelbHO, €CM KOHKYPEHIHS 3a
00BeKTHl 0a3bl TAaHHBIX MEXKAY TPAH3aKIMSAMH pabouei Harpy3kd HE OYCHb BBICOKA (TPaH3aKIUH
KOH(JIMKTYIOT PEIKO), TPOU3BOAMTENLHOCTh CHCTEMBI MOXET pPAacTH IOYTH JIMHEHHO C
yBEJIMYEHHEM KOJINYECTBA sSILep.

Onnako oueBUIHON TeKyIeH TeHaennueil spistercst moaxoq HTAP ¢ ynpasienuem 6a3aMu JaHHBIX
B OCHOBHOH mamsTH. COOTBETCTBYIOIIHME CHCTEMHBIE apXUTEKTYphl HAMHOTO CIIOXHEE II0
CPaBHEHHIO C YHCTO TPaH3aKIMOHHBIMH cucteMaMu. OJHOYPOBHEBOE XPaHWIUILE MOXXET UMETh
HEJI0CTaTOYHBIH pa3mep. [ToaToMy 1ienh TaHHOM cTaThi — IPOAHAIN3UPOBATH OCHOBHBIE TIPUHIIUIIE]
apxutekTypHoi opranuzanuu coBpeMeHHbIX HTAP-CYB/I, TOHATH, MOXET JIN OBITh MOJIE3HON IS
HUX HEProHE3aBHCHUMas OCHOBHAs MaMATh W, €CIH Ja, TO KaK €€ JIydIlle BCero HCIOJIb30BaTh.
[Mocnennuii MyHKT 0COOCHHO HETIOHSATEH B OTHOLICHUH aHAJMTHKH B PEalbHOM BPEMEHH.

Ho mpexxae deM MpHUCTYNMUTH K 3TOMY aHAIN3y, MBI KPaTKO OMHINEM OOmHi JaHgmadpT CHCTEM
yIpaBJIeHUs JaHHBIMH C XpaHEHUEM 0a3 TaHHBIX B OCHOBHOM MaMsITH.

3. lMelizax cucmem ynpaesieHusi 0aHHbIMU 8 namsimu

Ha puc. 1 npesncraiena penpe3eHTaTHBHAS BHIOOPKA CHCTEM YIPABJICHHS JaHHBIMH C XpaHEHUEM
0a3 JaHHBIX B OCHOBHOM mamsTH. TOYHEe, MOYTH BCE CHCTEMBI B 3TOH TaOimme, KpoMe OJHOM
(Spark-PMoF), na camom nene sisitotess CYB/] pasubix kiaccoB. Tpu kiacca 37€Ch BKITIOYAOT
npuMepsl uucTo TpaH3akuuoHHbIX CYB/] (cuauii cexrop), ruopunubix CYB/, monnepxuBarommx
KaK TpPaH3aKIMOHHYIO, TaK M aHAJIMTHUYECKYI0 pabouylo Harpys3Ky (TE€MHO-KpacHbBIH IBOWHOMN
CEKTOP) M YUCTO AHATUTHUYECKUX CHUCTEM YIIPABIICHHS JAHHBIMU (KPACHBIA CEKTOP).

OcHOBHOE BHHMMaHWE B JaHHOH craTtbe ynensercsi apxurekrypam HTAP, u Mbl nagum Oonee
NOJPOOHBIN aHAIM3 PELICHUH ITOTO «CPEIHErO» Kilacca B cieaytomeM paszaeie. Celiuac Mbl KpaTko

178

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

paccMOTpUM TPEICTABHUTENICH «KpPaHWX» KIacCOB — YHCTO TPAaH3aKIHMOHHBIE M YHCTO
AQHATTUTHYECKIE CHCTEMBI.

In-Memory DBMSs

SAP Munich TU SingleStore Inc.
HANA HyPer singleStore
NIV

Brown Univ.

CMU, MIT i
AN, | TR £ Cognos TM1
VoltDB =

IIII
oLTP
UNICOM || Intel
SolidDB — ¥ Spark-PMoF
\ NVM
MIT, Harvard Univ, Exasol GmbH
Silo Exasol
Microsoft IBM | Oracle Altibase Corp.
SQL server DE2 with BLU | Database South Corea
Hekaton Acceleration In-Memaory Altibase
i i NVM
CMU Dresden TU
Pelaton SOFORT
NVM NV

Puc. 1. Cucmemvl ynpagnenuss 0aHHbIMU ¢ XpaHeHueM 06a3 OGHHbIX 8 OCHOBHOU NAMAMU
Fig. 1. In-memory data management systems

3.1 TpaH3akuMoHHbIe in-memory CYB[

3.1.1 H-Store/VoltDB

Kax MBI y)ke ynoMuHai M, camasi U3BeCTHasl CUCTeMa MepBoro kiacca — 3to VoltDB [3]. VoltDB
ABIISIETCS KOMMEpUYecKnM mnpeeMHuKoM H-Store, akageMndeckoro npoekTa, WHHIHHPOBAHHOTO
Maiixknom CtoyHOpEeHKepoM 1 pealn30BaHHOTO KOHCOPITTYMOM YETHIPEX KPYITHBIX YHUBEPCUTETOB
CIIA (Bpayn, Kaprern-Meimton, MaccadyCeTCKuil TEXHOTOTHUYECKHI WHCTHTYT M MeabCKuit
yHuBepcuret). OcHoBHbIe uien H-Store n3HavansHO ObIIM OITyOsIMKOBaHbI B [17].

Kopotko roBopsi, H-Store/VoltDB - 310 MaccuBHO-TIapayuteNibHAs, MHOTOpa3/elbHas,
TpaH3akuuoHHas in-memory CYBJ] ¢ xpaHunmiem TaOiuil Ha OCHOBE CTPOK. YHUKaJbHBIC
0COOEHHOCTH ATOH CHCTEMBI BKITIOYAIOT OTKA3 OT BeICHUS XKypHaja TpaH3zakuuii. Cucrema Booomie
HE HCHOJB3YeT BHENIHee XpaHwuaumie. VM Haqe)KHOCTh TpaH3aKLUH, U HaJAeXKHOCTh 0a3bl JaHHBIX
MOJICP’KUBAIOTCSI MEXaHU3MOM PETIMKAIINH.

Kaxmpril y3em cucTeMbl BBIIOIHSET JOKAIBHBIE TPAaH3aKIUHU ITOCIIEA0BATENIHHO, OHY 3a APYTOH,
YTOOBI MCKIIOYUTH JI00YI0 ()OPMY KOHKYPEHIMH JIOKAJIbHBIX TPaH3aKIHUH M, CIIEJ0BATEIbHO,
n30exarh UX JIOKAIBHBIX OTKaToB. Paznenenue 0a3pl JaHHBIX OCHOBAHO HAa CTATHYECKOM aHAIIU3e

179

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

TpaH3aKIHUH, y4acTBYIOIINX B paboyell Harpy3ke (KOJ BCEX TPaH3aKUUIl JOJDKEH OBITH JOCTYIICH
3apanee). llemp oToro aHaimsa (a 3aTeM pasfelieHus) — MHHAMH3UPOBATh KOJIMYECTBO
pactpeneneHHBIX TPaH3aKIHiH, 1151 00pabOTKH KOTOPHIX TPeOyIOTCS JaHHBIE U3 00Jee YeM OJHOTO
paszena.

B nelCTBUTENIBHOCTH CHCTEMa MO3BOJSCT BBINOJHATH paclpeleeHHBIC TPaH3aKIMH, KOTOPHIE
(GUKCHUpPYIOTCI TO TpamWIMOHHOMY AByX(asHomMy mpotokony. OmHako mpu o00paboTke
pacrpeieeHHbIX TpPaH3aKUUH IPOMYCKHAs CHOCOOHOCTh CHCTEMBI €CTECTBEHHBIM 00pa3zoM
CHH)KACTCHL.

3.1.2 SolidDB

SolidDB [10, 18] — 310 mpoayKT, KOTOPEIii pa3padaTeiBaics GpuHcKoit koMmmanueit Solid Information
Technology ¢ 1992 roxa. 3arem on Obu1 mpuobperen IBM B 2007 roay u mpoaaH KOMIaHUH
UNICOM Global B 2014 rony. B nacrosmee Bpemst SolidDB B ocHOBHOM HCHONb3yeTcs s
MOJJICPKKH TEIEKOMMYHUKAIIMOHHBIX U CETEBBIX MTPHUIIOKCHHH.

CucrteMa OZHOBPEMEHHO NOJAJECPKUBACT ABAa CTPOKOBBIX XPaHWIMIIA JAHHBIX: Ha JHCKaX U B
naMsTH. JIuCKOBOE XpaHHIIMIIE MOJTHOCTBHIO TPAJUIIMOHHOE — JTAaHHBIE XPAHATCS B OJIOKaX JTMCKOB;
MHJIICKCHI OCHOBaHbI Ha B + -mepeBbsx. i XpaHWIWIIA B OCHOBHOW ITaMATH HCIIOJB3YIOTCS
crenuanbHble, ONTHMU3UPOBAHHBIC I OCHOBHOM MaMATH CTPYKTYpHl JaHHBIX. B wacTHOCTH,
MHJICKCHI IS TaOJIUI, PE3UJCHTHBIX B OCHOBHOM ITaMsITH, OCHOBaHBI Ha KomMOuHanmu B-nepesa u
Patricia-trie. Pemenne o pa3merieHnn Tabauibl (B HAMSATH WU HA JUCKE) JOJDKHO MPUHUMATHCS
IIPU CO3JaHMH 3TOH Tabmuuel. Kaxnas onepanus 3ampoca Wi OOHOBIEHHUS MOXKET OTHOCHTBCS K
TabJIMLAM KaK B IAMSITH, TaK U Ha TUCKE C MMOJHBIMU TPAH3aKI[MOHHBIMU I'apaHTHSIMHU.
Homomautensroit ocoderHocteio CYBJ SolidDB sBuseTcss BO3MOXXHOCTH BCTpaumBaTh €€ B
npwiokeHus. B atom pexume sx3emmrip CYB/] Haxogurcs B aqpecHOM NPOCTPAHCTBE KaXKI0TO
TaKOTO MPHJIOKEHHs, a 4aCTh 0a3bl JaHHBIX B OCHOBHOM MaMsATH HAXOAMUTCS B CETMEHTE COBMECTHO
HCIOJIb3YEMOM NaMATH, KOTOPBIN IPUCOEANHEH K 3TOM BUPTYyalbHOU NaMsTu. Jletanu peanuzanuu
(HampuMep, Kak B 9TOM Cliydae MOJJIEP)KUBACTCS 3alura 0as3bl JAaHHBIX OT MNPUKIAJIHOTO
IIPOrpaMMHOT0 obecriedeHust (1 NOAep >KUBAETCS JIM OHA)) HE NMPEIOCTABISIOTCS.

3.1.3 Silo

IMpoexkr Silo [11] 61 peanuzoBan B ['apBapackom yHuBepcurere B Havane 2010-x ronos. PadoToit
pykoBommiu JaypeaT npemun TwiopuHra bap6apa JluckoB (Barbara Liskov) wm wm3BecTHBII
nccnenoBaTesib 0a3 maHHBIX Comroan Mboanmen (Samuel Madden). /IuzaiiH cHUCTEMBI KajkeTcs
IIPe/IeNbHO COBPEMEHHBIM M MHTEpeCHBIM. K corkasleHHIo, TPOEKT MEPTB, XOTS MCXOIHBIN KoJ Silo
Bce emre moctyneH Ha GitHub [19].

CYB/ Silo opueHTHpOBaHAa Ha TPAaH3aKIIMOHHOE YIPABIICHHE NAHHBIMA B OCHOBHOHM MaMSITH Ha
COBPEMEHHBIX MHOTOSJIEPHBIX KOMIIbIOTEpax. XpaHeHHe TaOJIHIl OPraHU30BaHO C MCIIOIb30BaHUEM
MEpBUYHBIX M BTOPHYHBIX HHJIEKCOB Ha OCHOBE ONTHMH3MPOBAHHOHN MJJIsI OCHOBHOM NaMsTH
pasHoBHAHOCTH B-mepeBa (¢ amemeHTamMm mpedUKCHOro jepeBa). I[lepBUYHBIN HHIEKC
o0ecrieunBaeT MOMCK KOPTEXa MO €ro IEPBHYHOMY KIIIOYY; BTOPHYHBIN IIO3BOJSIET HAWTH
MepBUYHBIEC KIJIFOYHM BCEX KOPTEXEHl C 3aJaHHBIM BTOPUYHBIM KIIFOUOM.

Kaxknast TpaH3aKIys MOJIHOCTEI0 00pabaThIBAETCsl B OJJHOM ITOTOKE, BHIIIOJIHIEMOM Ha OTJIEILHOM
Aape mporeccopa. Bee mOTOKH MMEIOT 0OIIHIA TOCTYTI KO BCeH MaMATH, 3aHUMaeMoi 0a30i JTaHHBIX.
JlonroBedyHOCTh TpaH3aKIMK OOECTIeYMBaeTCsl C TOMOIIBI0 JKypHajla TpaH3aKIHUH, KOTOPBIA
XpaHUTCS BO BHENIHEM IIOCTOSHHOM XpaHWwiHme. YToObl 00ecneunTh CepHann3yeMOCTh
TpaH3aknui, Silo uCHONB3yeT CBOero poja ONTHMHUCTHYHBIA KOHTPOJH MapajuieNin3Ma,
pasgensromuii BpeMs Ha DJIOXM W HCIONB3YIOMHMH OJOKMPOBKM BMeECTe C OapbepHOU
CHUHXPOHH3aLHUeH BO BpeMsl (pruKcanuy TpaH3aKIHK.

180

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

3.2 AHanuTn4Yeckme cucTeMbl C XpaHeHnem 6a3 AaHHbIX B OCHOBHOW NaMATU

3.2.1 Exasol
Exasol [12] sBasieTcss OCHOBHBIM IPOIYKTOM Hemenkoi kommannu Exasol GmbH, ocHOBaHHO# B
2000 roxmy. Bkpatme, Exasol — »T0 wMmaccuBHOo-mapaniensHas CVYBJ[©0e3 coBMecTHOTO

WCIIONB30BAaHUS PECypcoB (HO C BO3MOXHOCTBIO DEIUIMKAMK) C XpaHeHHeM O0a3 JaHHBIX B
OCHOBHOH mamsTH. Bce aHanmTHdeckue 3ampochl OOBIYHO 00padaThIBAIOTCA pacHpeieiICHHBIM
00pa3oM Ha OCHOBE JIOKAJIbHBIX ITOKOJOHOYHBIX XPaHWIWII TaOaum Kaxzaoro ysnma. Jlms
obecrieueHnst OBICTPOH BCTABKM HOBBIX JIAHHBIX CHCTEMa IIOJJEPKUBACT JIOTIOJHUTEIHHOE
XpaHWIMIIE TaONUIl MO CTpokaM. HOBBIE CTPOKM CIMBAIOTCS C OCHOBHBIM ITOKOJIOHOYHBIM
XPaHWIAIIEM B (JOHOBOM PEXHME.

Exasol ucnions3yer ETL miis moGaBneHnst HOBBIX AaHHBIX B 0a3y MaHHBIX. VICTOUHMKAaMU JaHHBIX
MOTyT OBITh BHEUIHHWE TpaH3aKUMOHHBIE cucteMbl, Hadoop, BeO-kypHassl M T.1. Bo Bpewms
JIOKJILHOH (BHYTpH y311a) 00paboTKH 3ampoca (MM 4acTu 3alpoca) CUCTEMa aKTUBHO HCIIOJIb3YeT
CUMMETPUYHBII Mapauienu3M M HHCTpyKiuu mporeccopa SIMD. Kpome Toro, cucrema
00pabaThIBaET JOKAIBHBIC 3aITPOCHI C AKTUBHBIM HCIIOJIb30BaHUEM KEIINPOBAHUSL.

Crout otmeruth, uTo Exasol memoHctpupyer nyumine pesynabratel B Oenumapke TPC-H npwu
MacIITaOUPOBAaHUH IO COTEH TepabaiT faHHbIX. OAHAKO IS CIIPaBeUINBOCTH CIIEAYeT CKa3aTh, YTO
at0 enuHcTBeHHass CYB/] ¢ xpaHeHneM 0a3 JaHHBIX B OCHOBHOM HaMsITH, KOTOpast y9aCTBYET B 9TOM
COPEBHOBAHHHU.

3.2.2 MHoromepHble aHanuTu4yeckue in-memory CYB[4

B ananutuyeckux npoxykrax IBM um Oracle ucnonb3yroTcsi 1Be XOPOIIO HW3BECTHBIE CHCTEMBI
MHOTOMEpHBIX 0a3 IaHHBIX B onepartuBHoi mamsatd, Cognos TM1 u Essbase. Otu CYB/] kaxyrcs
OYEHb MMOX0XKUMH TI0 BCEM XapaKTepHUCTUKAM — OHH TIO/IJICPKUBAIOT MHOTOMEPHBIE KYObl JaHHBIX B
OCHOBHOH MNaMsTH C TpPeIBapUTENBbHO BBIYHCICHHBIMHM arperataMi, TECHO HMHTETPHPOBAHBI C
JJIEKTPOHHBIMH TaOmuIaMu, TakuMu kKak Excel, u t.1. Koreuno, o6e cuctemsl ucrons3yror ETL
JUISL 3aTPY3KN HOBBIX JIaHHBIX B 0a3y maHHbIX. Eme ogHa obmias yepTra — OTCYTCTBHE KaKOTO-THO0
OIMCaHMs BHYTPEHHEH apXUTEKTYPbl CHCTEMBI, CTPYKTYP AaHHBIX W alNropuTMoB. [loaToMy HIke
MBI IPUBOJIUM JIUIIb KPATKYIO HCTOPHIO 3THUX IPOTYKTOB.

Kak rimacut ucropus [13], TM1 Oputa BriepBEIe BEITyIICHA B Hadane 1983 roma kommaHue# Sinper
Corporation, kotopas Obuta nprodbperena Applix Inc. B 1996 romy. 3atem Applix Obuta KyrmieHa
kaHasckoi kommanueir Cognos B 2007 rony, u, Hakonen, Cognos O0buta mprodpereHa IBM mo3zxe
B TOM Jke roay. B Hacrosimee Bpems aHamutideckuii cepsep TM1 ncmons3yercs B 6osiee o0meM
nporpamMmHOM obecniedenun IBM Planning Analytic.

[lepsas Bepcus Essbase Obiia pazpaborana B 1992 rony xommanueit Arbor Software. B 1998 roxy
Arbor oO0bennHunace ¢ kommanuedn Hyperion Software, n Essbase Hauama mcmonb3oBaThbes B
cocraBe IBM DB2 OLAP Server, cymectBoBanmiero a0 2005 rona. Kommanus Hyperion, B cBoro
ouepenpb, Obita mpuobpereHa Oracle B 2007 roxy. B Hactosimee Bpemsi Essbase [14] sBnsieTcst
OJIHUM W3 KIFoueBbix KommoneHToB Oracle Exalytics In-Memory Machine, criennanu3npoBaHHOR
AQHAIMTHYECKOH KOMOMHAIIMY aIllapaTHOTo U IporpaMMHoro obecneuenus [20].

3.2.3 Spark PmoF

[NomynsipHast cpena pacnpezneneHHoii 00paboTku naHHbIX Spark [21] Ha camom nene sBistieTcs
ONTUMM3MpPOBaHHOW Bepcueld MapReduce, KOTOpyl0o MOXHO TpybO paccMarpuBaTh Kak
AQHATUTHYECKYIO CHCTEMY B ONepaTHBHOM mamsaTH. OnHaKo mpu 00paboTKe CIO0XKHBIX 3aIPOCOB C
HeCKOJNbKMMH (pazamMm map-reduce Spark IEeMOHCTPHUPYET 3HAUWTEIBHOE CHIDKEHHE
MPOM3BOUTEIHHOCTH, TIOCKOJIBKY TIepepacipeielieHHe TaHHbIX (TIepeMelInBaHNe) BBITOIHICTCS C
ucnonb3oBanueM HDFS (B peanuzanuu Apache), To ecTh yepe3 yiaJleHHOE BHELIHEE XPaHMIIUILE.

181

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

WNmxeneps! Intel mpemoxxunu (1 peasu30oBajin) elie oOJAHy BaxHyro onTuMmu3amuio Spark, Spark-
PMOoF [15], ucrione3ys Persistent Memory over Fabrics (PMoF), kotopas (onsTh sxe Tpy0o roBopsi)
SIBIISICTCA YHEPrOHE3aBUCHMON MaMATHIO ¢ OaliToBOW ampecanuei, JOCTYITHOW depe3 MeXaHH3M
RDMA (ymaneHHsI# npsiMoil nocTyn k naMatu). biaronapst 3Toi onTUMHU3alMK IPU BHIIOIHEHUH
KOHKPETHOTO 3a/aHusi Spark He HMCIOJIb3yeT BHEIIHEEe XPaHWIUILE I10Ce HayalbHOM 3arpy3KH
JIAaHHBIX W BBITJISIIUT KaK HACTOSIIIAs CHCTEMa YNpaBiIeHUs W 00pabOTKM JaHHBIX B OCHOBHOM
namsaTd. HaBepHoe, CTOUT OTMETHTB, YTO 3TO MPOEKT C OTKPHITHIM HUCXOAHBIM KOJIOM, a KOX U
HEKOTOpasi TOKyMeHTanus noctymHsl Ha GitHub [22].

[TpuBeneHHBIE B 3TOM pasziene MPUMEPbl OYEHb PAa3HBIX CHUCTEM IIOKa3bIBAIOT, YTO JIaHAIIA(T
CHCTEM YINpaBJCHUS JaHHBIMU B IaMsTH 4Ype3BbIUAiHO pa3HOOOpa3eH, M MOAKIacc in-memory
HTAP-CYB/] siBiseTcs nUib 4acThio 3TOro sanamadTa. OfHaKO HMEHHO 3TOT HOAKIIACC B TAHHOU
CTaTbe IpeACTaBiIsIeT AN HaC OCHOBHOM MHTepec, U B CIEAYIOIIEM pasfesie Mbl IEepexoauM K
obcyxnenuto cuctem kareropun HTAP ¢ xpanennem 0a3 JaHHBIX OCHOBHOMU ITAMSITH.

4. In-memory HTAP-CYB/[]

OcHoBHast koHuenuus mnoaxoma HTAP — oOpenuHeHne B OmHOM cucTeMe 0a3 JaHHBIX

BO3MOXKHOCTEH Kak o0OpaOOTKM TpaH3aKLUUil, TaKk W aHauUTUKU. [loMMMO 3TOil oOIei

xapaktepuctuku, CYBJ] HTAP nomkHa omHOBpEMEHHO 00eCTICUUBATh:

® OucHb OBICTPYIO 00PAOOTKY TPAH3AKIIHA;

* O4YeHb OBICTPOE MPETOCTABICHNE CBEKNX JIAHHBIX, TEHEPHPYEMbBIX TPAH3AKIMSIMH, IJIS
aHaJM3a JaHHBIX; a TAaKXKe

* O4YeHb OBICTPYIO 00PAOOTKY aHATTMTUYECKHUX 3aIIPOCOB MMPOU3BOIBLHOMN CI0KHOCTH.

OOHOBpEMEHHO OCTUYB 3TUX MPETCHIINO3HBIX Iejel Helerko. OTHAKO eCTh HECKOIBKO IIPUMEPOB
CYB/l, koTOpble IEMOHCTPHPYIOT JKEIaeMble XapaKTEPUCTHKH C WCIIOJIF30BAaHHEM Pa3THIHBIX
APXUTEKTYPHBIX U aJITOPUTMUYCCKHUX TTOAXO0JI0OB, XOTS BCE OHH UCTIOIB3YIOT XPAHWJIHIIE TaHHBIX B
OCHOBHOM TTaMSITH.

B 3tom pazgene Mbl KpaTko 00CYIUM IPOUCXOKICHUE U OCHOBHBIC apXUTEKTYypHBIC 0COOCHHOCTH
3TUX CUCTEM. MBI HAUMHAEM C YETBIpEX CUCTEM OCHOBHBIX nocrtaBuinkoB CYB/I, a umenHo SAP,
Microsoft, Oracle u IBM. 3areM MBI paccMaTpuBaeM Iapy MEHEe MAaCIITAOHBIX KOMMEPYECKHX
CYB/l u, HaKOHeI, MpeACTaBIsIeM HECKOIBKO MPOTOTHIIOB aKaJeMHUYECKHX CHCTEM. B Kaxmom
ciydae Mbl OTMEYaeM, UCTIONB3YET JIM COOTBETCTBYIONIASI CUCTEMA SHEPTOHE3aBUCUMYIO MaMSTh.

4.1 SAP HANA

HANA, a66peBuatypa ot High-Performance Analytic Appliance, sBIsieTcS OCHOBHBIM IIPOIYKTOM
ynpasieHus 6azamu nanabix kommaHun SAP SE. Ilpexae Bcero, cucrema ucmonb3yercs B ERP-
pemenmsx camorr SAP. Onnako HANA mpuoGpeTaeT Bce O0IBIIYIO OMYIIPHOCTD KaK OTACIBHBII
WHCTPYMEHT IS pa3pabOTKH WM MOAACPKKHU MPHIIOKEHUH 0a3 TaHHBIX, KOTOPBIM TpeOyeTcs Kak
TpaH3aKIMOHHAS, TaK M aHAJIUTHYecKas oOpaboTka maHHbIX. CHCTeMa JOCTYIHAa B Pa3IHYHBIX
BOTUIOLICHUAX, HAIIPUMeEp, B KIACTEPHON MM 00auHO# Bepcuu. OIHAKO 374€Ch MBI OTPaHUIUMCS
ocHOBHOH KoH(uryparmeir HANA 11 0JHOH ManuHsI.

4.1.1 MNMpoucxoxaeHne 1 npeabICTOPUA

SAP SE 6sl1a mepBoi KOMITIaHHEH B ICTOPUH HOBEHIIIETO BPEMEHH, KOTOpask Periia 00beJHHUTD
TPaH3aKIMOHHYI0O W AHAIMTUYECKYI0 00pabOTKy B OJHOW cucTeMe, W Xacco IlmarTHep, Kak
KaKeTcs1, ObIIT OTIIOM-OCHOBaTeNIeM 3Toro noaxosa. Emte B 2008 rogy Buman Cukka (Vishal Sikka),
KOTOPBIi ObUT TexHHIeckuM nupekropoM SAP ¢ 2007 mo 2014 rox, Hamucan B cBoeM Oiore: «...
Xacco IInarTHep BIOXHOBWII MEHS Ha IIPOBEJECHUE HKCIEPUMEHTa, KOTOPbI Mbl Ha3Baiu Hana...
[KOTOPBIII] MPOAEMOHCTPUPOBA, YTO BO3MOXKHA COBEPIIEHHO HOBAsl ApXUTEKTYPa MPUIOKEHHUS,

182

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

obecreunBaronasl KOMILDIEKCHYIO aHAJIMTUKY M arperamyio B PealbHOM BPEMEHHU aKTyalbHBIX
TpaH3aKLUMOHHBIX JAHHBIX...» [23].

[Tyb6mmkanum, nocesmenasle HANA, OKa3bIBarOT, 9YTO TIIaBHBIM apXUTEKTOpOM cucTteMsl ¢ 2009

1o 2019 rox 6w Opann Daepbep (Franz Faerber). AKTHBHBIME y4aCTHMKaMH MPOEKTa ObUTH (1
ocratorcst) Bonbgranr Jlenep (Wolfgang Lehner) n unenst Bo3riiaBisieMoit UM rpyniisl 0a3 JaHHBIX
Jlpe3aeHCKOT0 TEXHUIECKOTO YHIBEPCUTETA.

HANA He co3naBanach ¢ Hynsl. Ha MexaHu3M XpaHeHHs! TaOJIHIl IO CTOJI0IaM B OCHOBHOM HMaMsATH
TOBIUSUT cOOCTBEHHBIC pa3paboTku SAP -- mexanusm TexcToBoro moucka TREX (2001) [24] u
SAP Business Warehouse Accelerator (BWA, 2005) [25]. Mexanu3M xpaHeHHs TaOJIHII IO CTPOKAM
B OCHOBHOW mamsTH ocHOBaH Ha pemieanu P*TIME [26], paspaboTanHoM kommnanueii Transact in
Memory, Inc., kotopas 6suto mpuodpereHo SAP B 2005 roxy. Mexanmsm MaxDB [27], koTopbrit
os11 iprobpeter SAP B 1997 ronmy y Software AG (Torna on HazpiBasicst Adabas D), ncnonp3oBaics
UL oOecTieueH s YpOBHS MTOCTOSTHHOTO XpaHeHUs HaHHbIX. [lepBrriit penms HANA Obin BeITyIIeH
SAP B xon1e 2010 roxa.

4.1.2 ApXUTEKTYpHble 0COGEHHOCTU

Puc. 2 nemonctpupyer oburyto apxurektypy HANA [28]. Mbl oOcyxaaeM TOJBKO 4acTbh ITOM
apXUTEKTYpHI, oTHOCSIIyIoCs K pyHKImsiM HTAP B ocHOBHOI maMsTH.

‘ Business Applications ‘

| Connection and Session Management ‘
soL | [saiscript | [Mbx | | |
AR E | ‘ Calculation Engine |
Manager
Optimizer and Plan Generator | Transaction
| Execution Engine | Manager
Metadata c - -
Manager In-Memory Processing Engines
|Cmumnmow Enginel | Graph Engine | ‘ Text Engine ‘
Persistence | Logging and Recovery | | Data Storage I

Puc. 2. Apxumexmypa HANA [28]
Fig. 2. HANA architecture [28]

HANA mo3BoJisIeT UCTIONB30BaTh AJIsl OJJHOW M TOH ke 0a3bl JAaHHBIX XpaHWIMINA TaOIHIl KaK 10
cTosibLam, Tak U 1o crpokam. [Ipu co3aHuu HOBO# TaOIHIBI [TOJIH30BATEIb MOXKET BBIOPATh, KaK
€e XpaHuTh, MO0 CTpOKaM WM 1Mo cTojdmaM. CorjiacHO MmepBOHAYaIbHBIM MPOEKTHBIM PEHICHHUSIM
[16] mpeamouTuTenpHEE UCIOIB30BATh XpaHMIHINE o cTosbnaM, 1 HANA ontuMu3upoBaHa ais
TAKOW OpraHu3anuu TaOmum. BeposTHO, XpaHWIHINE CTOJOIOB HE TMO3BOJSIET CHCTEME
MPOJIEMOHCTPUPOBATh BHICOYANIIYIO MPOU3BOMUTEIHFHOCTh 00pabOTKH TpaH3aKIHiA, IIOTOMY YTO
OOHOBJICHHE XPaHMJIHIIA CTOJIOIOB — 3TO Omepanys, TpeOyromas MHOro BpeMeHH. OJHaKO B3aMeH
9TOr0 MOKOJOHOYHEIH CIIOCO0 XpaHeHUs TaOuI| 0a3bl JaHHBIX CHIDKACT 3aTPaThl HA MaMsATh U3-3a
arpecCUBHOTO CXKATHSI JAHHBIX. YTOOBI TOCTHYH OOJIee BRICOKOH CKOPOCTH 00paOOTKH TPaH3aKIIUH,
MO>KHO HCTIOJIB30BaTh JOPOTOCTOSIIIEE XPAHWIHIIE CTPOK.

BooOrie roBopsi, KaXKAbIi CTOIO0CI] TAOIUIIBI XPAHUTCS B XPAHIITUILE CTOJIOIOB C HCIOJIh30BAHUEM
JIByX CTPYKTYp IaHHBIX — CJIOBaps U MHJEKCHOTO BekTopa. ClloBapb COJIEPXKUT BCE Pa3iMyHbIC
3HAUEHUs, HAXOMSAIIUECS B JaHHBIA MOMEHT B CTOJIOIE, a BEKTOP HMHJIEKCA CBS3BIBAET KAKIYIO
CTPOKY TaOJIHIIBI C COOTBETCTBYIOMIEH 3aHChI0 ciioBapsl. [OAIepKKH 3aIPOCOB 10 THAMTA30HY
3HauYeHUH cTONOIa, KOTOPBIE pacpocTpaHeHbl B aHanmuTuke, HANA coxpaHseT OTCOPTHPOBAHHBIN
MOPSIIOK JIEMEHTOB cioBaps. OIHAKO 3TO JeNaeT ONepariy OOHOBIICHHS, YaCTO MCIIOJIB3YeMbIe
npu 00paboTKe TpaH3aKIHid, OYeHb MOPOTUMHU. [10ATOMY IS Ka)KAOTO CTOJOIA MOKOJOHOYHOMH

183

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

TaOMUIBI WIMEIOTCS [IBE YacTH XpaHCHHWS: OCHOBHAas YacTh XPaHUT CJIOBaph CToiOma B
OTCOPTHPOBAHHOM TOPSZIKE, a B JeNbTa-4aCTH TaKOH MOPAIOK He moaaepxuBaercs. Bee omepannn
HajJ TaONMMIed WCHONB3YIOT KaK OCHOBHBIC JaHHBIE KaXKIOTO CTOJONA, TaK W €ro ICIbTY.
OCHOBBIBasICh Ha HHPOPMALIUHU O pa3Mepe ACIbThI U TEKYIIeH paboueit Harpy3Kke, CUCTeMa Pellacr,
KOTJIa BBIMOJIHATH CIIMSHUEC OCHOBHOM YacTH JJaHHBIX CTOJIOIA C e¢ AeTbTOM. Bo BpeMs BBIMOTHEHUS
9TOH OmepaIiy UCTIONB3YeTCS HOBAs ACTbTa.

SAP pekoMeHIyeT HUCIOJIb30BATh XPAHWIHUINE 1O CTPOKAM JJisi HEOONBIINX TaOJHIl, B KOTOPBIX
CTPOKH YacTO OOHOBIISIOTCS WU yJANAIOTCS. TaOMuIlbl, KOTOPhIe XPaHATCS MO CTPOKaM, BCeraa
COXPAaHSIOTCS B OCHOBHOM naMsiTu. OTHAKO TaOJIUIIbI, KOTOPBIC XPAHSATCS MO CTOJIOIAaM, MOTYT OBITh
OYCHb OONBIIMMHU, U OHH MOTYT OBITh Pa30MTHI HA J[Ba pa3/ieia, OJAWH U3 KOTOPBIX XPAHWUTCS B
maMsITH, a APYyrod — Ha auckaX. SAP Ha3wpIBaeT pasnes TaOJHUIBI B OCHOBHON MaMSATH TEKYIIHM
(current), a Ha mucke — ucropuueckuM (historical) (qpyrue MOCTaBIIUKUA HCIOIB3YHOT TCPMUHEI
ropstauii (hot) i xomonusii (cold) cooTBeTcTBeHHO). MIMeeTcs B BHIY, 9TO TEKyIIas 9aCTh TaOIHIIBI
JIOJIKHA COAepXkKaTh JaHHbIE, KOTOPBIE B HACTOSALIEE BpeMsl aKTUBHO UCHOb3ytoTcs. HANA moxer
pactpenenaTs NaHHBIE MEXIY STUMH pa3[elaMHd aBTOMAaTHYECKH B 3aBUCHMOCTH OT BpPEMEHHU
KU3HH ONPEACICHHBIX CTPOK TaONWIBI FJIM C HCIOJIh30BAHHMEM SBHBIX IOJICKA30K,
MIPEJOCTABIIEMBIX TIPHIOKCHUAMHU. TEeKyIHe W HNCTOPUICCKUE pa3[eslbl UMCIOT Pa3HbIC CXEMBI
XpaHEeHHs, HO MOT'YT OBITb JIOCTYITHBI C TIOMOIIBIO O/IHOTO 3aIpoca.

HmeeTtcst HECKOIIBKO JOTTOTHUTENBHBIX aPXUTEKTYPHBIX PEIICHHUH, TO3BOJIOIINX OJHOBPEMEHHO H
3¢ deKTHBHO 00padaTHIBATh TPaH3AKINHN U aHATUTHYECKUE 3aIIPOCH B OTHON cucTeMe. Bo-mepBhIX,
KaXIbIi aHATUTUYICCKUN 3aMPOC KOMITHIIUPYETCSA U ONTHMUZHPYETCS C YUYETOM CaMOM MOCICIHEH
CTaTUCTUKHM 0a3bl JaHHBIX. 3alpOChl, UCIOJIB3yEeMble B MOBTOPSIOMINXCS (MapaMeTpU30BaHHBIX)
TpaH3aKIMAX, MOATOTABIUBAIOTCS 3apaHee; Mpu 00padOTKe TpaH3aKIMU HCIOJIb3YIHOTCS TOTOBBIC
HCTIOTHSIEMBIE TUTaHBI 3aIIPOCOB.

Bo-BTOpBIX, aHATUTHUCCKUE 3aMPOCHl 00PA0ATHIBAIOTCS C BHICOKOM CTEIICHBIO pacrapauieIuBaHusL
C HUCIIOJIb30BAHUEM HECKOJIbKHUX IIOTOKOB, BBIINTIOJIHACMbIX Ha Ppa3HbIX sapax I_IH
PacnapaiieniBanue TpaH3aKIHOHHBIX 3alIPOCOB CUUTACTCS BPEIHBIM: MEPEKIIOYCHUE KOHTEKCTA
00XO0IUTCS CITUIIKOM J0oporo. [103ToMy KakKIbIi TpaH3aKIIMOHHBIN (ITPOCTOM) 3aMpOC MOJTHOCTH IO
BEITIOJTHSACTCS B OJTHOM TIOTOKE.

HaxkoHen, 4TOObI MUHMMH3MPOBaTh HeraTHBHbIE 3((HEKThl KOHKYPEHIMH MEXIY OlepaiusMu
TpaH3aKIMi ¥ aHAJUTHYECKUMH 3alPOCAMH, KOTOPbIe MOTYT 3aMeUIUTh 00pabOTKy TpaH3aKIuUi,
TpaH3aKIIMOHHEIE OTIEPalliy BCET/Ia UMEIOT OoJiee BBICOKHA IPUOPUTET, ueM 3anpockl OLAP.

4.1.3 HANA n sHeproHe3aBuMcrMMasi OCHOBHasi NaMsATb

SAP HANA — nepras kommepueckas CYB/I, aktuHo ucmob3yromas NVM (Intel Optane PMem)

[29-30]. YuursiBas ocobennoctn Optane NVM (Bbicokas 3ajepkkKa u OObIas €MKOCTB),

pazpabotunkn HANA pemuian HCHONB30BaTh ATy NaMsATh ISl 3aMEeHbl OCHOBHBIX YacTei

TIOKOJIOHOYHBIX XPaHHWJIMIII. OCHOBHBIMH MNpEeMyHIICCTBAMM J3TOTO MOAXOJa SABJIAIOTCA OYCHB

OBICTPBIH TIepe3amyCK CHCTEMBI TIOCJIe OTKIIOYEHHS IUTaHHSA (SHEPrOHE3aBHCHMOCTH) W

BO3MOXKHOCTH PAaCIIMPEHHUS TEKYLIUX Pa3JIeNIOB CTONOYATHIX TabnuIy (OobmIas eMKOcTh). MUHYC —

OYEHb BEPOSITHOE 3aMe/IJICHUE aHATTUTUKH (OOJIbIIast 3aepKKa).

Astopsl [29] oTMeuatoT, uto 3amMmeHa DRAM na NVM moxer:

® CHWIBHO YIPOCTHThH M YCKOPHUTH ITOAAEPKKY JOJTOBEYHOCTH TPAH3AKIMH;

® CYIIECTBEHHO YBEIHYUTH O0OBEM MAaMSITH HA OJIUH MPOIIECCOP MO Pa3yMHOMU IIeHE;

* IIPEeJOCTaBJIATH JOCTYH K JaHHBIM HerocpeacTBeHHOo B NVRAM nocie nepesarmycka, 6e3
HEOOXOIMMOCTH TIepe3arpyxaTth ux ¢ aucka B DRAM.

Bropas u TpeTes BO3MOXKHOCTH YK€ pEaTu30BaHBI C HCIIOJB30BAaHMEM CYNIECTBYIOIIECTO B

Hacrosmee Bpems Optane PMem. [l peann3anyu nepBoi (09€Hb BaXKHOW) BO3MOYKHOCTH HY KHBI

HOBbIE Bepcd NVM C JTyqlInMHU XapaKTepUCTHKAMH 3a/ICPKKH.

184

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

4.2 AHanuTuKa peanbHOro BpeMeHu B ocHoBHoM namaTtu B Microsoft

IToxoxe, aTo Microsoft BHeIpmIa aHATUTHKY B peaidbHOM BpeMeHH B SQL Server B Tpu dTama.
Bo-nepBbiX, OHM pa3paboTany MOKOJIOHOYHOE XpaHWIHUINEG TaOnuiy Ha auckax [31]. 3atem ObLI
paspabotan u peanuszoBan MexanusM OLTP B ocHoBroit mamstu Hekaton [32]. U, HakoHel, oHl
paspaboTann aHAIUTUYECKUH MEXaHW3M [UIi CBOETO XpaHWIHMIIA TaOuul MO crojaduaM |
MHTETrpUpoBai Bce 3T KoMnoHeHTHl B SQL Server 2014 (u ymyummmu B SQL Server 2016), a
TaKXKe MPEJOCTABIIIN aHAIUTHKY B peaJbHOM BpemeHu [33].

Cyns 1o my6mnukanusm, Ilep-Oxke Jlapcon (Per-Ake Larson) ObUT pykoBOAHTENEM MPOEKTOB Kak
XpaHWIUIL JaHHBIX B OCHOBHOM MaMSTH, TaK M CHCTEM Ul aHAJUTHKU B peasbHOM BpeMeHu. OH
ymen u3 Microsoft B 2015 roxy.

4.2.1 ApXUTEKTYpHbIe pelueHusi
Ynpomennas apxurekrypa SQL Server 2014 nzo6pakeHa Ha puc. 3.

SQL Server

Common frontend
Client communications, T-5QL, parser, query optimizer,
access control, metadats, ...

Apollo engine Classical sQL Hekaton engine
for OLAP Server engine for OLTP
Column store Disk-based row In-memory
store row store

Common backend
Storage, lopging, high availability (AlwaysOn), ...

Puc. 3. Ynpowennas apxumexmypa SQL Server [33]
Fig. 3. A simplified architecture of SQL Server [33]

AHauTHKa B peaJbHOM BpeMEHH obecrieunBaeTcs kommoHeHTamu Hekaton u Apollo. Hekaton —
9TO CHENHAIN3UPOBAHHBIN MEXaHU3M TPaH3aKIIMOHHON 0a3bl NAaHHBIX B MAMSTH, HCIOIB3YIOITHA
XpaHWIuIe cTpok. Apollo — 3To cnenmanu3upoBaHHAs aHAIUTHYECKAs JUCKOBAsl IOJICHUCTEMA,
UCTIONB3YIOMIas XpaHmwuiie 1mo cronomaM. CooctBeHHO, Apollo — 3TO He Ha3BaHME KAaKOTO-IIHOO
MPOAYKTa, 3TO BCETO IHWIIb KOJOBOE Ha3BaHHWE MpoekTa. Pabodnme HaHHBIE OYEHB OBICTPO
nepenarorcst u3 Hekaton B Apollo u npeoOpasyrorcss M3 NpEACTaBIEHHS HAa OCHOBE CTPOK B
npesicTaBiIeHue Ha ocHoBe cToJ01oB. ([TocieHI0 onepanyo MOKHO PacCMaTPUBATh KaK CBOETO
pona obneruennsiit ETL.)
OcHoBHble apxuTekTypHbIe naen Hekaton saxmouarorcst B cnemyromniem. MHIEKCHI (X311 H CBOETO
pona B-Tree) pa3paboTaHbl W ONTUMHU3UPOBAHBI i paOOTHI C JAHHBIMH, HAXOIAINIUMHCS B
OCHOBHOM nmamstu. Onepanuy ¢ UHIEKCaMH He KYPHAITU3YIOTCS, U BCE HHICKCHI IIePEeCTPaBaIOTCS
BO BPEMS BOCCTAHOBIICHHsI 0a3bl JaHHBIX. BCe BHYTPEHHUE CTPYKTYPBI JAHHBIX — PACTIPEICTUTEIIN
MaMSITH, XCII-WHACKCHl M JHAma30Hbl, a TAK)KEe KapTa TPaH3aKIHi — MOJHOCTHIO CBOOOIHBI OT
omokupoBok. Onepatopsl SQL M XpaHHUMBIC POLUEAYPHl KOMIMJIMPYIOTCS B HACTPAUBACMBIMA
BBICOK03()(DEeKTUBHBIN MAITMHHBIA KOJI.
Cucrema onpesiensieT copsiuue U X0100Hble NAHHBIE U COXPAHSET B IAMSTH TOJIBKO rOpsvre JaHHbIe
[34]. OcHoBHast e COCTOUT B TOM, YTO HE BCE JIaHHBIC TPAH3aKIIMOHHON 0a3bl JAHHBIX JTOJDKHBI
OBITH ITOCTYITHBI OJWHAKOBO OBICTPO; HEKOTOPBIE W3 HUX MOTYT OBITH ITOMEIICHHI BO BHEIIHEE
XpaHwnuine 60e3 3ame/uieHus o0paboTku Tpamszakimit. Hekaton wcmonp3yer LRU-momoOHBIM
AITOPUTM TSI OTIPEIIEJICHUS] TOTO, KaKUe JTaHHBIC HE WCIIONB3YIOTCS aKTUBHO TpPAH3aKIUSAMH, H
MEPEMEIACT COOTBETCTBYIOIINE YaCTH TAaOJUIl B JUCKOBOE XpaHwiuiie. KoHeuHo, B maMsTH U Ha
JIUCKaX HCIONB3YIOTCS pPa3HbIC (PU3UYECKUE CXEMBI PACIOJIOKEHHsI CTPOK. [lokoroHOYHOE
MPEICTaBICHNE TS AaHATNTHYECKUX IIeTIeH MoIAepKUBaeTCs Uil 00enX yacTel TaOmuil.

185

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

4.2.2 SQL-cepBep U aHeproHesaBucMmasi OCHOoBHas NamMATb

IMepBrie maru mo ucnoib3oBanuio NVM 6butn cienanbl 10 Beimycka SQL Server 2014 mst Linux.
B T0 Bpems Microsoft ucnone3oBana HeOodbmIOW 00beM NVM C OpsSMBIM JTOCTYIIOM, YTOOBI
momecTuth B NVM Oydepr3oBaHHBIN KOHEI KypHalia, KOTOPHIA emle He cOpOIIeH BO BHEITHEE
xpanmmume [35]. Iloteps XBocTa XypHajla W3-3a OTKJIIOYEHHS IHTAHMS — XOPOIIO H3BECTHAsS
npobnema nuckoBbix CYB]]. Ota mpobieMa BEIHYKJaeT HCIIOIB30BATH OUEHB CIIOKHBIE aTOPHTMBI
BOCCTaHOBJIeHHsI Oa3bl maHHBIX. Mcmomp3oBannme NVM rapaHTHpyeT, YTO BeCh JKypHal Oyner
OCTYTIEH TIIOCTIe OTKIIIOYCHHWS NHTAaHUA. OTO paIiKalbHO YIPOIIAeT KaK MOIACPKKY
JIOJTOBEYHOCTH TPAH3aKLUH, TaK U ITPOIIECC BOCCTAHOBJICHUS 0a3bl JaHHBIX.

IMozxe monnepxkka NVM B SQL Server Opmia 3HaumtensHO pacmupeHa. SQL Server 2019 mis
Linux [36] mpenocTaBisieT BO3SMOXHOCTD Pa3MECTHTH JIFOOYI0 0a3y MaHHBIX WIH (Daili kypHaya B
NVM. Uro eme 6onee Baxuo, SQL Server Temeps monnep>KUBaeT Tak HAa3BIBAEMBIN THOPHUIHBIN
OydepHBIi IyJ1, B KOTOPOM BCE OUHIIIEHHBIE CTPAHUIIBI (yKe COpOIIEHHbIE Ha BHEIITHEE XPAHUIIUILIE)
nepemematorcss B NVM. Ilocnie 3TOro 3T CTpaHUIBl OCTAIOTCS TOCTYIMHBIMU 0€3 BBIOJIHEHUS
orepanuii BBOJa-BBIBOIA.

4.3 Oracle database in memory

Pemenne Oracle mist ynpaBieHust JAHHBIMH B OCHOBHO MaMSTH OCHOBaHO Ha in-memory CYB]]
TimesTen [37]. [Ipoekt TimesTen Opu1 ocHoBan B Hewlett-Packard Labs Mapu-Arn Heiimat
(Marie-Anne Neimat). B To Bpems cuctema HasbiBanack SmallDB [38] u npeanasnauanace mmis
ucnonb30BaHus Bo BHyTpeHHUX uensix HP. B 1996 rony Heiimar ocroBana crapran TimesTen Inc.
C ororo Bpemenn TimesTen akTMBHO wHcHONB30Bajlach B KauecTBe TpaH3akiuoHHoW CYBJ]
peaIbHOrO BpEMEHH BO MHOTHX HPHIIOKEHHUIX, 0COOCHHO B 00JIACTH TENEKOMMYHHUKAIIIH.

B 2005 rogy TimesTen 0Obuta nmpuoOperena Oracle, nHTerpupoBana ¢ oouell HHPPaCTPyKTypoit
Oracle u Hauasa UCTOIB30BaThCS B KauecTBe Keni-mamsitu ocHoBHO#M CYB]] Oracle. Oxoo aecsatu
net Heiimar npomomkana pykoBoauth mpoektoM TimeTen, Ho 3aTem ymuia u3 Oracle.
Wurerpuposannas onmus Oracle Database In-Memory, momaepsxkuBaromasi GpyHKIMOHATBHOCTD
HTAP, Bnepseie nosiBunack B Oracle 12¢ B 2013 roay [39]. B Hactosiiee Bpems: TupTxaHkap
Jlaxupu (Tirthankar Lahiri) u Illacank Yaan (Shasank Chavan) (oba sBustoTcsi BuIle-
npesunentamu Oracle), Kak KaxeTcs, pyKoBOAAT BceM HanpasieHneM Oracle in-memory.

4.3.1 ApX1TEKTYypHble OCOGEHHOCTH

CucteMa Moep>KUBAET IBa BUJIa XPAHUIIHIL JAHHBIX: XPaHUJIHUINE CTPOK HAXOJAUTCS Ha JUCKaX, a
XPaHUJIMIIE CTOJIOIOB — B OCHOBHOM MaMsITH. MOKHO BHIOOPOYHO OOBSIBHUTH BaXKHBIEC TAOIHUITHI TN
WX pa3/ienbl Pe3UJICHTHBIMUA B XpaHWIUIIE CTOJOIIOB MPU UCHOJIL30BaHUU OydepHOro Kemma asis
OCTaIbHOM YacTu Tabnuisl. TakuM 00pa3oM, eCTh UMEIOTCS JBE 00JaCTH OCHOBHOM MaMsTH IS
pasMemeHusl 4acted 0as3bl JaHHBIX: TPATUIIMOHHBIN Keml i OJOKOB BHENIHEW MaAMSITH H
XPAHIIUILE CTOJIOIIOB.

Yactu ogHOW W TOW >Ke TaOJMIBI, XpaHIIMIHUECS B PAa3HBIX MPEICTaBICHHUAX (M B Pa3HBIX
XpaHWINIIAX), OOHOBIAIOTCA CHHXPOHHO. XpaHWJIHIIE CTPOK obOecnednBaeT OBICTpPHINA
TPaH3aKIIMOHHBIA JIOCTYNl K JAaHHBIM C TOMOIIBIO TIIATEIFHO pa3pabOTaHHBIX WHACKCOB U
KOIIMPOBaHUS OJIOKOB B MaMATH. XPaHWIHINE CTOJOLOB ONTHMHU3HUPOBAHO JUII OOpPaOOTKH
AHATMTHYECKUX 3anpocoB. CBEKECTh NAHHBIX JUUIsI AaHAJMUTUKHA OOECICYMBACTCS aBTOMATHYCCKOM
CHHXPOHM3AIMEH CONEPKUMOTO XPAHIIHUIL CTOJOIOB M CTPOK IPU BCTaBKE, YAAJICHUU WIH
OOHOBIICHHH CTPOK. MHOTOBEPCHOHHOCTb, HCITONIb3yeMasl B YIIPABICHHH TPAH3AKIIUIMU, TIO3BOJIICT
CHU3HUTH KOHKYPEHIIMIO 32 JAaHHBIE MEXTy TPAH3aKIMIMH U aHATUTHISCKUMH 3aIPOCaMH.

Oracle Database In-Memory moxet GbITh pa3BepHyTa B uHMpactpykrype Oracle Real Application
Cluster (RAC) [40]. O6mias apxurekTypa IpeacTaBjieHa Ha puc. 4.

186

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

DATABASE DATABASE DATABASE DATABASE
INSTANCE INSTANCE INSTANCE INSTANCE

SHARED STORMAGE SHARED STORAGE SHARED STORAGE

DISTRIBUTION saL oML
EXECUTION EXECUTION

SHARED
IN-MEMORY TRANSACTION BUFFER CACHE
COLUMMN STORE. MANAGER

DATABASE INSTANCE

Puc. 4. Apxumexmypa Database In-Memory on Oracle RAC [40]

Fig. 4. Architecture of Database In-Memory on Oracle RAC [40]
B 3ToM cityuae OJI0KH JaHHBIX, COACPIKAIINE YACTA XPAHWIUIINA CTPOK, TOCTYIHBI U U3MCHSIOTCS
gepe3 o0mmii OydepHbIil kemr 0a3bl JaHHBIX. KpoMe TOro, /i KaKI0ro OTACIBHOTO dK3eMIUIIpa
0a3bl JAaHHBIX MOYKHO 00pa30BaTh HHIUBUIYATLHOE XPAHIIHUIIE CTOJIOIOB B OCHOBHOM maMsTH. Bee
TaOIUIIBI TOPU30HTAIFHO PA3MIEIAIOTCS 10 BCEM y3JIaM KilacTepa.
Ecmu cucrema paboraer B pexume in-memory, Exadata Database Machine aBTOMaTHuYecKu
nepehopMaTUPYET BCE NAaHHBIC, K KOTOPBIM OCYIICCTBISCTCS JOCTYII, B MOKOJOHOYHBIN (hopmar B
OCHOBHOM ITaMSTH U COXPaHsIET UX B TAK Ha3bIBACMOM ()IdIII-Kellie (BHEIITHEE XPAHUIIHIIE O0JIBIIOT0
ob6bema Ha ocHoBe ¢udm-niamsith) [41]. [Tocne aToro Bce yactu 3anpocos, BeIrpyxkaembie B Exadata,
BBINOJIHAIOTCS TaK e, Kak ecyii Obl OHM 00pabaThIBAIMCh B OCHOBHOW mamsTH Ha y3i1e RAC. B
YaCTHOCTH, U1 00pabOTKH cTonOnoB Tabmmisl Exadata ucrons3yer uacTpyKImu SIMD.

4.3.2 Oracle n aHeproHe3aBucumMasi OCHOBHasl NnaMATb

Oracle mpenocrasiser ommto Persistent Memory Database B cBoeii 6a3e manubix Database 20c
[42]. ®akTrvecku, STOT BAPHAHT JaET BO3MOXHOCTh Pa3MECTHTh BCIO 0a3y MaHHBIX WIIH €€ 4acTh B
NVM. Tounee, onu mnpepocraisitoT cpencrBo PMEM Filestore, kotopoe Ha camom Jene
obecreunBaeT (GpalIoOBYIO CHCTEMY B SHEPIrOHE3aBUCHMOI OCHOBHOHM MaMSTH, TOAICPKUBAIONIYIO
aToMapHbIe OOHOBJICHUS OJIOKOB JIAaHHBIX 0a3bl JAHHBIX.

PMEM Filestore mpemoctaBnsieT BHemHWN wuHTepdeiic ams moctyna k 0aze maHHbix Oracle
HETOCPEACTBEHHO B MOCTOSHHOM mamsatu. CYBJ] BeIMONHSET BBOA-BBIBOJ B Xpanmwinime PMEM
IyTeM KOIMPOBAaHMS MaMsATH HAMHOTO ObICTpee, YeM BBOA-BHIBOJ Y€PE3 TPaJUIMOHHBIE BHI3OBBI
orepanoHHON cucteMbl. Koneuno, moctynm k PMEM Filestore mnpenocraBnsiercs 6e3
TPaTUIIMOHHOTO OJIOYHOTO KIIIMPOBAHUS.

4.4 DB2 c yckoputenem BLU

B IBM DB2 yckopeHue aHaJIMTHKH OCYIIECTBIISIETCS C IOMOIIBI0 XPAaHWIMIIA CTOJIONOB (B
MaMSITH), MHOTOSICPHOTO paclapajuIeIMBaHuUs U alllapaTHOH BEKTOpHOH 00paboTku. Pabora Hax
COOCTBEHHOW MOKOJOHOYHOM MOACKUCTEMO# B 0cHOBHOM mamsit B IBM Hauanace B 2006 roxay. Jo

187

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

2016 roga MeHEIKEPOM M TEXHIHYECKIM PYKOBOIHUTEIEM 3TOT0 HanpasieHus 0501 ait Jloman (Guy
Lohman) (3aTtem OH y1es Ha HEHCHIO).

[lepBBIM TIPOIYKTOM B TaMATH, pa3paboTaHHEIM KoMaHIo# Jlomana, Opm1 Blink [43]. OT0 uncTserii
MEXaHM3M XpaHEeHHs CTOJOIOB B OCHOBHOH maMsaTH. OH YCICIIHO HCIIOJB3yeTcs U ceiuac,
HarpuMmep, kak Informix Warehouse Accelerator [44].

BLU [45] — a0 BTOpOE TIOKONTEeHHe TipoaykTa. Obmast apxutektypa DB2 ¢ BLU mnokasana Ha puc.
5 [46].

DB2 with BLU Acceleration

DB2 Engine
Bufferpool

Automatic Storage
BLU and Hon-BLU 1shies

Storage

classic row compressed,
structuredtable encoded columnar

e ﬁi'ﬂi‘ﬂﬁ"ﬁﬂ

Puc. 5. Apxumexmypa DB2 ¢ BLU [46]
Fig. 5. The architecture of DB2 with BLU [46]

B 6a3ze mannHbIX, ynpasmssemoir DB2 ¢ momomsio BLU, kaxxmast Tabmnmia MOXKET XpaHUThCS OO0 B
TPaTUIIMOHHOM XPaHWIHIIE CTPOK, JIMO00 B XpaHmwiuile ctononoB BLU. BaxxHolt 0coOeHHOCTBIO
BLU sBnseTcs TO, 94TO TaONUIBI B XPaHWIWIIE CTOJOIOB MOTYT OBITh OOJBIIE, YeM pa3Mep
JIOCTYITHOW OCHOBHOHU maMsiTu. @aKkTH4ecKH, BCe TAONHIBI XpaHATCS B OJOKaX BHEITHEH MaMATH U
JIOCTYTIHBI Yepe3 00bIaHbIN 050uHbIH K1l OxHako BLU mbITaeTcs MOTHOCTEIO 00paboTaTh KK b
3aMpoc B OCHOBHOW MamsiTd (XOTS TEXHUYECKH B 3TOM HET HEOOXOIMMOCTH) U OOECIICUHBACT
COOTBETCTBYIOIICE YIpaBicHUE paboueit Harpy3koi. UToObl 00€CHednuTh JAOCTYIHOCTH BCEX
HEOOXOIMUMBIX HaHHBIX B maMsTH, BLU ncnosnp3yeT arpecCHBHYIO MOJUTHKY IpeIBapUTEIbHON
BBIOOPKH.

Jpyrue xapakrepuctuku DB2 ¢ BLU kaxyTcsi TpaJWUIMOHHBIMH JJI COBPEMEHHBIX in-Memory
CYB/J, xots pazpadotunki BLU nogyepkiBaroT oueHb BBICOKYIO 3 (GEKTUBHOCTD MX PEean3aluy.
CucteMa mMOAAEPKMBAET BO3MOXXHOCTh CKAHUPOBAHUS M CpPaBHEHUS CXKATHIX JAHHBIX.
Pa3paboTunku n30eraroT OJOKHMPOBOK, YTOOBI 00OECHEUUTh MaKCHMalbHOE pachapajulelIiBaHue.
Bce cTpykTyphl JaHHBIX ONTHUMHU3UPOBAHBI JUIsi MUHUMH3ALUU NPOMAaxoB B K3IIE JaHHBIX U
HHCTPYKIHHA. AKTHBHO HCTIOIB3YIOTCS BEKTOPHBIE KOMAHIHI.

Mbl He CMOTJIM HaWTH B MyONHWKAIMsIX W AOKyMeHTanmu 1mo DB2 HHMKakuX yHmoMHUHaHWUH 00
ucronb3oBaHud NVM (wny, o kpaiiHed Mmepe, 0 IulaHaxX HMCHosib3oBaHus). ExnHcTBeHHOE, YTO
kacaercss NVM, — 3To Bo3MokHOe Hctob3oBanre SSD Ha 6a3e Optane.

4.5 Altibase

Altibase Corporation — ro>xxHOKOpeiicKast KoMIauusi, ocHoBaHHas B 1999 roxy. Mx in-memory CYB/]
Obuta iprobperena y KO)kHOKOpEHCKOro HayqHO-HCCIIEJ0BATENbCKOTO HHCTUTYTA MICKTPOHUKH U
tenekommyHukanuii (South Korean Electronics and Telecommunications Research Institute). C
2005 roga xoMnaHus npejaraetT ruopunHyto in-memory u on-disk CYB/1 Altibase. C 2018 rona
Altibase sBIsIeTCSA IPOTYKTOM C OTKPBITBIM UCXOTHBIM KoJoM [47].

188

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

Altibase — sto rubpumnas CYBJ] B TOM CMBICIE, YTO OHA MOYKET YIPABIATH IaHHBIMH,

XpaHAMIAMUCS B TaMSITH, WIN AaHHBIMHU, XPAHSIIUMHUCS Ha IUCKAX, UM OOOMMH BUIAMH JaHHBIX

OJTHOBpeMEHHO. B 000uXx ciydasx cucTteMa XpaHHUT TaOJIMIBI TOJIBKO MO cTpokam [48].

CucteMy MOXKHO paccMaTpuBaTh kak pasHoBuaHocTe CYBJl HTAP, notomy uto:

e OHa o0ecreynBaeT 0UeHb BBICOKYIO CKOPOCTh 00pabOTKU TpaH3aKIHi P paboTe B pEIKUME
OCHOBHOMH IMaMATH, 1

® J1acT BO3MOKHOCTh AHAJIM3MPOBATH CBEKUE ONEPAIIMOHHBIC JAaHHBIC (B OCHOBHOM MaMSITH)
BMECTE C HCTOPUYECKUMH JIAHHBIMU (Ha ANUCKaX) Npu paboTe B CMELIAHHOM PEXHME.

Onnako Altibase, 6e3yclOBHO, He SIBISETCS aHAIUTHYECKOW CHUCTEMOH B peajlbHOM BpPEMEHH,
MOCKOJIbKY OHa He MMEET XPaHWIUINA CTOJIOI0OB B OCHOBHOM MaMsITH H, CJIEI0BATEIBHO, HE MOXKET
obecrieunBaTh OBICTPYIO aHANUTHKY. KpoMe Toro, cucrema, BEpOsiTHO, HCHONIB3YET TPa UIMOHHbIH
MEXaHU3M OJIOKMPOBKH, IIOCKOJbKY B JOKyMEHTallMM YNOMHHAEeTCs OOHapy»XeHHUE
CHHXPOHH3ALMOHHBIX TYITHKOB.

4.6 MemSQL (SingleStore)

CYB MemSQL [49], nepeumenoBanHas B SingleStore ocennto 2020 r., pa3paboTaHa cTapTarioM
MemSQL Software, ochoBanubiM B 2011 rogy Opuxom ®Dpenkunem (Eric Frenkiel) u Hukuroii
IamrynoeiM (Nikita Shamgunov) (panee oHu oba pabortanu B Facebook). IlepBeiii BBITYCK
cucteMsl ObUT aHoHcHpoBaH B 2013 rogy. MemSQL coBMecTHMa CO CTaHIAPTHBIM MPOTOKOJIOM
coenuHeHns 6a3 maHHBIX MySQL (MySQL Wire Protocol). 310 o3Hauaer, 4T0 OONBIIMHCTBO
npaiiBepoB u mpoayktoB MySQL u MariaDB pa6otaror ¢ MemSQL.

Ha puc. 6 wuzoOpaxena apxutekTypa MemSQL, koTopasi KaKeTcsi OJHOBPEMEHHO OY€Hb
MIPUBJICKATEIBHON M pa3paOOTINKOB COBPEMECHHBIX MPUIOKEHHH U HEMHOTO TMEeperpyKeHHOM.
311ech HaC MHTEPECYET TOJBLKO OCHOBHAS YacCTh 3TOH apXUTCKTYPHI.

ANALYTICS APPLICATIONS
| | |
Dashboards Ad Hoc Queries Machine Leaming Feal Time Decisions 1T Dyranic Experiences
& Q
| Stroaming Relaticnal Geospatiol Ful Yext
Data Scarch
FAST INGEST STORED
Tiva e & CDC DATATYPES
it inMosory = W] Bt Kay Vol I1SON Tine Serles
Bits Rowsore |) conmmtane — <> L)

On-Promises Managed DEss Self-Heetod Cloud Contahers

HELIOS '

RUNS EVERYWHERE

Puc. 6. Apxumexmypa SingleStore [49]
Fig. 6. SingleStore architecture [49]

Cucrema mojiepKUBaeT XpaHeHHe TAOJIMIl O CTPOKaM B OCHOBHOHM IaMSTH W MO CTOJIOIAM Ha
JMCKaxX. XpaHWJIMIIE CTPOK MCIONb3yeTCs [l 00padOTKH TpaH3aKIMA. AHAIMTHYECKHE 3aIPOCHI
MOT'YT JAOTIOJIHUTEJILHO CChIIATHCS Ha MOKOJOHOHBIE TaOJIMIIbI, XpaHAIIMECS Ha UCKaX (OHU MOTYT
coJiepkaTh, HalpUMep, HCTOpUYECKHE AaHHbIe). Pa3paboTdmky 3asBisIOT, YTO WX CHUCTEMa
apnsercs HTAP u ananutiueckoil B peanbHoM BpeMeHH. Jla, oueBunHo, 3to CYBJ] HTAP. Onnako

189

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

MBI HE YBEpPEHBI, YTO CHUCTEMa ACHCTBHUTEIBHO MOXKET IPENOCTaBIATh AHAJIUTHKY B PEaJbHOM
BPEMEHH N3-3a €€ OCHOBHOI OpHEHTaIMU Ha 00paboTKy TpaH3aKLUH (XpaHWINILE CTPOK B IAMSITH).
Taxxe ctouT oTMeTHTH, 9To MemSQL mno3ummoHmpyeTcs Kak paclpefelieHHas cucreMa 0e3
COBMECTHOT'O HCIIOJIb30BaHUS pecypcoB. Ha Ham B3ruisiz, 3TO XOPOLIO Ul MaCIITaOHOMH aHAJIUTHKH,
HNOAJCPKHUBAGMON TPaJAUIMOHHBIM crocoboM. OpHaKO B Takod apXUTEKType CIOXKHO
OJTHOBPEMEHHO TIOAJICPKUBATE OYEHb OBICTPYIO OOpabOTKy TpaH3aKIMA W OYEHB OBICTPYIO
00paboTKy aHaNMTHYECKHX 3ampocoB. B nokymentarmun MemSQL Hudero He roBopuTCS O
pacIpeeeHHbIX TpaH3aKuusIX, AByX(ha3HbIX Qukcanusix u T.1. A yrBepkaeHus [50] o6 oueHb
OBICTPBIX PACIpPEENICHHBIX COSIUHEHHSX W arperalid He KaxyTcs yOeauTelIbHBIMHU (BCE 3TO
MOXeET OBITh 04eHb OBICTPBIM A1t pacnpenaeneHHoi CYB/], HO clIUIIKOM MeUIEeHHBIM /ISl aHaJIM3a
JaHHBIX B PEaJbHOM BPEMEHH).

PazpaboTunkn MemSQL aymaroT 00 HCIIOJIb30BaHUU MOCTOSHHOW MaMSTH, HO HE COOMpPAIOTCS
HUKakuM 00pa3oM MepenuchiBaTh CBOW KOJ; OHHM IIpe[jiararoT ucnonb3oBatk Optane s
YBEJNWYCHUSI €MKOCTH OCHOBHOH mamsTH [S51].

4.7 HyPer
Ms!l 3aKkaHUMBaeM STOT pasfenl paccMoTpeHueM Tpex akaaemuueckux HTAP-CYB]l, oxmna u3
KoTopblX, HyPer, sBisgeTcs A0CTaTOYHO 3peEyIO CUCTEMOH, a JBE€ JpYyrue — TOJBKO

HCCIIeAOBATEILCKUMU NPOTOTUIIAMH, HO OHU OYCHb MHTepecHbI. HauHeM ¢ KpaTKoro o0CyXIeHHs
HyPer.

[Mpoekt HyPer peanusyercsi komannoii 6a3 naHHbIX MIOHXEHCKOTO TEXHHYECKOTO YHHBEPCUTETa
noJ pyxoBoacTBoM Asbonca Kemnepa (Alfons Kemper) u Tomaca Hoiimana (Thomas Neumann).
XOTsl 3TO YHMBEPCUTETCKHUII NMPOEKT, OH HE SIBIAETCS OTKPBITBIM. MCXOOHBIE TEKCTBI CHCTEMBI
HUKOT/a He MyOIuKoBauch. bonee Toro, B 2015 r. OBUT CO37aH OKOJIOYHUBEPCUTETCKHNA CTapTam
HyPer, a 8 2016 . on 0b11 morsommeH kommnanuen Tableau Software, kotopas coit Bapuant CYB/]
HaspiBaeT Hyper. JleTanu 3Toil cAelnKd HaM HEM3BECTHBI, HO Tak WiM MHade passutue HyPer B
MIOHXEHCKOM YHHBEPCHTETE TNPOJOIIKaeTcs. [lepBbIid M3BECTHBI OTYET MO MpOeKTy [52] Obun
ony6mmkoBad B 2010 romy.

HyPer — Hactosmas in-memory CYB /] 1i1st MHOTOSII€pHBIX KOMITBIOTEpOB. CHCTEMA ITOAICPIKIBACT
XpaHWININA TAOJHUI] KaK 10 CTPOKaM, TaK 1 Mo cToidmam. Mecxomuslii popMaT TabIHIBI MOKET OBITH
BBIOpAaH MpPU CO3MAaHUM TAOIHUIBI, U (U3NYecKas CTPYKTypa 3TOW TaOIHMIBI MOXKET MEHATHCS B
3aBUCHMOCTH OT pabodel Harpy3Ku.

[epBas Bepcus apxurexTypsl HyPer Obl1a 04eHb IPOCTOI 1 37IETaHTHOM, XOTSI M UMella HEKOTOphIE
orpannueHusi. OCHOBHBIE HJIEW 3aKITIOYAINCH B cienytomeM [53].

[Tpearnonaranock, 94T0 GONBIIMHCTBO TPAH3aKIMKA MOTYT OBITH MOATOTOBJIEHBI 3apaHee, CONEPKATh
TOJIBKO HECKOJIBKO MPOCTBIX 3allPOCOB U MPOU3BOJUTH AOCTYI TOJNBKO K HECKOIBKHM KOPTEXKAM.
Takme TpaH3aKIMM HAa3BIBAIOTCS KOPOTKMMH. Bce KOPOTKHE TPaH3aKIHWH BBITOIHSIIOTCS
mocienoBaTenbHo B ocHOBHOM mporiecce OLTP. Best o0GmacTe OCHOBHOW HaMsaTH, B KOTOPOH
HaxoAMTCs 0a3a JaHHBIX, 0TOOPAXKAETCS] B BUPTYAIBHYIO IIaMSITH 3TOTO IpoIiecca.

IIportecc OLTP mepuoamuecku (pa3 B HECKOJBKO CeKyHA) mopoxkaaeT mporecc OLAP mocie
(uKcanu HEKOTOPOH TOJNBKO YTO 3aBeplIeHHOW Tpan3akiuu. [locie atoro mpomecc OLTP
BKITIOYAaeT MEXaHNU3M KOITHUPOBAHMS TIPH 3aIUCH (COpy-ON-write), KOTOPBIA MPEI0CTABISIET HOBYIO
CTpaHHILy OCHOBHOH MaMATH IPpH 000 IepBOii ONEpaIiiy 3aIiCH B COOTBETCTBYIONIYIO CTPAHHILY
BHPTyaJbHONH maMsATH. Takum o0pa3oM, BHOBb co3fmaHHbIA mpormecc OLAP BuanT B cBoei
BHPTYaJbHON TNaMSTH COTJIACOBAaHHBIN 00pa3 0a3bl JaHHBIX (COTIACOBAHHBIM MOMEHTAJIbHBIHA
CHMMOK, consistent snapshot). IIponiecc OLAP BbINOJIHSET aHAIMTHYECKHE 3alpOChl HAJl STHM
MOMEHTAJIbHBIM CHUMKOM, CBEXKECTb JAHHBIX KOTOPOTO COOTBETCTBYET NEPUOJUYHOCTH CO3JaHUS
HOBBIX IporieccoB OLAP.

Tpan3zakuusi, KoTOpas BBIIOJHSET CIMIIKOM MHOTO 3allpOCOB WIM oOpamaercss K CIUIIKOM
OOJIBIIOMY KOJIMYECTBY KOPTEXKEH, CUMTaeTcsl JIMHHOH. BrlmonmHsemast JUIMHHAs TpaH3aKIus

190

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

OTKaTBIBAE€TCS W TepeHampaBisieTcss B Tekymmid mporecc OLAP, KoTOpblii mMHTHpYET ee
BBITIOJIHEHHE HA OCHOBE TEKYIIETO COTIIACOBAHHOTO MOMEHTAIILHOTO CHUMKA. 3aTeM 3Ta (YJaCTUIHO
M3MEHCHHAs) TPaH3aKIMs CHOBA MEpEHANpaBIIeTCs B OOIIYI0 O4epenb TPaH3aKIHii KaK KOPOTKas
TpaH3akuusa. Korna oHa BBIMIONHSIETCS, CHCTEMa CHaudaja MpPOBEPseT BCEe CMOJAETHUPOBAHHBIC
OOHOBJICHHS MO (haKTHYSCKOMY COCTOSHHIO 0a3bl JaHHBIX, a 3aTE€M, CCIIH 3Ta MPOBEpPKa MPOILIa
YCIICIITHO, BEITIOJHAET BCE 3TH OOHOBJICHUS.

AHanUTHYeCKHEe 3ampOoChl pacrapajuieIuBalOTCs 10 BCEM JOCTYMHBIM paM C HCIOJb30BaHUEM
MaCCHBHO-TIAPaJUICIbHOW BEPCUU XOPOIIIO U3BECTHOTO aJiTOPUTMA COPTUPOBKH CO CIUSTHHEM (sort-
merge join) [54].

Iozxe paspaboTunku HyPer m3MeHMIHM 3Ty MPOCTYIO apXHTEKTypy, 4ToOBI 0OecneuuTh Oojee
BBICOKYIO MPOIYCKHYIO CIIOCOOHOCTb JIJIsl TPAH3aKIIMOHHBIX pabouuX HArpy3o0K. B 4acTHOCTH, OHU
BKIIIOYMJIM B CHCTEMY CBOIO COOCTBEHHYIO BEPCHIO BEPCHOHHOTO QITOPUTMA YIPAaBICHUS
napajuienu3MoM [55], KoTopas 3HAYUTENbHO YCIOXKHSIET CUCTeMY, HO yIydllaeT ee
TpaH3aKIHOHHBIC XapAKTEPUCTUKH.

4.8 Peloton

[TpoekT BBINONHSIICS TPYNIOH 0a3 NaHHBIX yHHBepcuTeTa KapHern-MeiioH mox pyKoBOJICTBOM
Buapro ITaBno (Andrew Pavlo). Peloton — ato in-memory HTAP-CVYB/I, kotopast moiepKuBaeT
XPaHWIHIIA CTPOK U CTONONOB (cM. pHc. 7) 1 0becneunBaeT caMOyIpaBieHHEe BCEX KOMITOHEHTOB
CHCTEMBI HAa OCHOBE MANIMHHOTO OOYUYEHHs W APYTHX TEXHOJOTHH MUCKYCCTBEHHOTO MHTEIIEKTA

[56].

o | macem | wame | emce | para |

10 2 TEMA01 0 DATATD])

102 202 ITEM.102 20 DATA-102]

103 203 ITEM.103 30 DATA-103 :
— m— P—— —

104 204 ITEM.104 40 DATA- 104

(a) OLTP-oricnted N-ary Storage Model (NSM)

[o [mvacem | wame | erace | para |
101 2 TEM-01 10 DATA-101
102 22 ITEM-102 20 DATA-102
103 203 ITEM-103 EN) DATA-103
104 4 ITEM-104 40 DATA-104

(b) OLAP-oriented Decomposition Storage Model (DSM)

| m | macem | wame pRICE | nDATA |
101 201 TEM-101 10 DATE101
102 02 MEM-102 b1 DATA102
103 203 TEM-103 EN DATA-103
104 204 TTEM-104 4 DATA-104

(&) HTAP-oricnted Flexible Storage Model (FSM)

Puc. 7. Paznuunvie cxemvl xpanenus madauy 6 Peloton [57]
Fig. 7. Different table storage layouts in Peloton [57]

Eme omna Baxnass ocobOeHHOCTH Peloton — 3TO mpakTHYSCKH MONHOICHHAs mojjep:kka NVM

BMECTO (WM, BEpHEE, BMECTE C) SHEPro3aBUCHMOW OCHOBHOM IaMsITH (1N, BEpHEE, BMECTE C HEH).

Oty vacTh npoekra peanuzoBan kot Apynpamk (Joy Arulraj) (coBmectHo c I1aBino) [58]. 3a oty

pabory Apynpamk momyuwn B 2019 romy mpemmio /Dxuma I'pest 3a JIyqnrylo JOKTOPCKYIO

muccepraruio (Jim Gray Doctoral Dissertation Award).

Haubosee nHTEpECHBIME MTPEICTABIAIOTCS CIEIYIOIINE aCHEKTHl 3TOH PaOOTHI:

® apXUTEKTypa NOACHUCTEMBl XpPAaHEHHs HCIIOJIb3yeT CBOWCTBA JOJTOBEYHOCTH M OalTOBOM
aapecanuu NVM; obecnieunBaeTcs 5KOHOMIYHOE HCIIOIh30BaHUE SHEPTOHE3aBUCHUMOM TaMSITH
Y YBEIIMUYECHUE CPOKa €€ CITY>KObI 32 CUET YMEHBIICHHS KOJIMYECTBa ONEpallvii 3a1HCH;

191

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

®* B CHUCTEMC HCIOJB3YETCSI HOBBIA IMPOTOKOJ JKYypPHAJTHU3AI[MH M BOCCTAHOBIICHHS, KOTOPBIN
HA3bIBACTCS «OKYypHAIM3AIN C OTJIOKeHHOH 3ammchioy» (Write-Behind Logging, WBL), urto
MO3BOJISIET JOCTUYb BHICOKOTO YPOBHSI JIOCTYITHOCTH.

Iocnenuss Bepcus Peloton noctymHa amst 3arpy3ku u3 oomenoctynHoro pernosutopust Github [59].
OpHaKO OKOJIO JBYX JIET Ha3aJ KOMaHJa PElInia OTKa3aTbCs OT Pa3sBUTHS 3TOTO PEIO3HTOPHS H
nepeiita k co3manuio HoBoit CYBJI. Homwiii penosuropmii co3man [60], u Bemercs pabota Hax
npoekToM 1ox HazBaHueM NoisePage.

4.8 SOFORT

IIpoext SOFORT rutpunuoii cuctemsl NVM-DRAM ¢ xpanennem Tabmun mo criabam [61] 66t
BeimontHeH Memammom Yikuaowm (Ismail Oukid) B rpynme 6a3 naHHbIX Jpe3geHCKOT0 TEXHUIECKOTO
YHUBEPCHUTETA 101 pyKoBOACTBOM Bonbdranra Jlenepa.

B nemom SOFORT mpencraBnser co00i cHCTEMY ¢ TOKOJIOHOYHBIM XpaHEHHUEM TaOJIHIl KaTeTOPUH
HTAP (puc. 8). Cuctema moanepXuBaeT OJHOYPOBHEBYIO OJCUCTEMY XPaHEHHS, HCIIOIB3YIONTYTO
kak NVM, tak u tpaguuuonnyto DRAM. SOFORT — 310 He3aBepLIECHHBIH HCCIIEN0BATENbCKUMA
IIPOEKT (OH MEPTB).

| Transad ions |

SCM

Primary Data Secondary Data

Puc. 8. I'ubpuonas apxumexmypa NVM-DRAM SOFORT [61]
Fig. 8. Hybrid NVM-DRAM architecture of SOFORT [61]

Tem He MeHee, YKHA cenal HECKOJbKO HHTEPECHBIX BeIIEH, KOTOphIE, O€3ycIOoBHO, OymyT

OJIe3HbI TP pa3paborke Oyaymux in-NVM CYB/I:

* MOJeNb IPOrpaMMHUPOBaHUs ¢ ucnojinr3oBanueM NVM;

* yOpaBJIEHUE SHEPTOHE3aBUCHMOM MaMAThIO U ee pactipenenenue it Hyx1 CYB/;

* yIpaBlieHHE TPaH3aKIMIMHU U BOCCTAHOBIJICHHE 0a3bl TaHHBIX MOCIE cOOEB;

e (pelMBOpPK Ul TECTHPOBAHUS ITPOTPAMMHOTO 0OECIIeUeHNS, OPHEHTHPOBAHHOTO Ha
HCTIOb30BaHUE YHEPTOHE3aBUCUMOM MaMSTH.

5. O6¢cyx0eHue u 3aKroyeHue

Kak BUIHO W3 NpHBEAEHHOTO BbIIIE 0030pa, CYIIECTBYET MHOXKECTBO CHOCOOOB peali3alliy

¢yakunit HTAP m mpenmocraBieHHs aHaJWUTHKH B peanbHOM BpeMeHH. OOmIue NPUHINIIBI

3aKJII0YAI0TCA B CICAYIOLIEM:

® TPEAOCTABIATH CBEXKHE NAaHHBIC /IS aHATW3a IIyTeM OOBEIMHEHHS TPAaH3aKIMOHHOW W
aHaINTHYECKOH 00pabOTKM B O/THOM cucTeMe 0a3 JaHHBIX;

e cnenats 00pabOTKy TPaH3aKIHUH MaKCHUMAaJIbHO OBICTPOIl, YTOOBI YAOBIETBOPUTH MTOTPEOHOCTH
TPaH3aKIIMOHHBIX KIIMEHTOB U MOBBICUTH aKTyaJIbHOCTb JAHHBIX;

e cjelaTh ONEpaTHBHBIC NaHHBIE MOCTYHMHBIMH JJIS aHajh3a KaK MOXKHO ObICTpee, YTOOBI
YJIOBJIETBOPHTH IIEpPBOE TPeOOBAaHNE aHAINTHKY B PEabHOM BPEMEHHU — CBEXKECTh JaHHBIX;

* KaK MOXHO ObICTpee NPOU3BOJMTH OLEHKY aHAIUTHYECKHUX 3aIPOCOB IS yJIOBIETBOPEHHS
BTOPOTO TPEOOBAHUS aHATUTUKH B PEalbHOM BPEMEHHU — OBICTPOTO aHAIN3a JaHHBIX.

192

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

TpeboBanuss k HTAP-CYB/l u aHanuTHKe B pealbHOM BpPEMEHH HE BKIIOYAIOT HUKAKHX
aOCOIOTHBIX YHCEN, HO MMEIOT HEKOTOpble HEe(OPMAalIn30BAHHBIC Pa3yMHBIC KOJIHMYCCTBEHHBIC
orpaHn4eHUs. MBI HE 3HaeM TOYHO, CKOJIbKO TPaH3aKIMI (M KaKOro THINA) B CEKyHIY IOJDKHA
obpabateiBate HTAP-CYBJ] M KakoBO MaKCHMajJbHO JONMYCTHMOE BpEeMs MJsl BBITOJHEHHS
aHAJIMTHYECKOro 3ampoca. BorT modemMy 3TuM (110J1y) KadeCTBEHHBIM TPEOOBAaHMSM MOXKET
YIOBJIETBOPSTh MHOKECTBO PA3JIMUHBIX apXUTEKTYp: BCE OHU JENal0T BCE BO3MOXHOE B PaMKax
3THX He(hOpMaTbHBIX TPAHHIIL.

OOBIYHBIH OJX0/ K YOBJIETBOPEHHIO 3THX TPEOOBAaHHUI, HACKOJIBKO BO3MOKHO UX yJIOBJIETBOPHTD,
COCTOHMT B TOM, 4TOOBI XpaHHUTh BCIO 0a3y NaHHBIX B OCHOBHOHM MaMsTH. DTOT BHIOOP MO3BOJISET
noutd u30exarh J0O00T0 BBOJA-BBHIBOAA C BHEIIHMMHU YCTPOHCTBAMM XpaHEHHs (IIOCTOSHHOE
XPaHWIKIIE UCTIOJIB3YETCsI TOIBKO ISl 0OecTIeYeH s JOJITOBEYHOCTH TPAaH3aKIMI) ¥ UCTIOIb30BaTh
HpsIMBIE YKa3aTeIn Ha 00BEKTHI 0a3bl ITaHHBIX B 0a3e NaHHBIX. Bce BHyTpeHHME CTPYKTYPHI JaHHBIX
JIOJDKHBI pa3pabaTeIBaThCs C yUECTOM KEIIUPOBAHHUS.

s nanpHeHImero MOBBIMIEHHS IPOU3BOJUTEIBHOCTH HCIOJIB3YIOTCS IIEPENOBBIE METOJbI
ONTUMH3AIIMHU 3aIIPOCOB, CBOCBPEMEHHAs! KOMITIIIALNS 3alIPOCOB B MAIIMHHBIA KOJI, MHOTOSIIEPHOE
pacnapayuienuBanne, HHCTpyKiun SIMD u anmapaTHble yCcKOpHUTENH, Takue Kak rpaduueckue
nporeccopsl 1 FPGA.

OO6bryno onHa CYB/] monnepxuBaeT qBa XpaHWIMIIA JAHHBIX — CTPOKOBOE M CTOJIOLIOBOE. DTOT
MOAXOA TPEICTAaBIIET COOOH KOMIIPOMHCC MEXAY BO3MOXKHOCTBIO OBICTpOH 00paboTKH
TpaH3aKIWi (XpaHWINIIE CTPOK) M OBICTPOI aHATMTHKOW 3aIpOCOB (XpaHIIHUINE CTOJIOIOB), C
OJHOM CTOPOHBI, M HEOOXOIMMOCTBIO MpeoOpa3oBaHMA HAHHBIX W3 CTPOKOBOro (hopmara B
MOKOJIOHOYHBIH JI0 TOT0, KaK JJaHHbIE CTAHYT JOCTYIIHBI AJI aHATUTUKH, C APYTOi CTOPOHBI.
Urobbsl mM30ekaTh BBHICOKOTO YPOBHA KOHKYPEHLHH MEXIy OIHOBPEMEHHO BBINOIHIEMBIMH
TPaH3aKLUMsAMU, a TAK)KE MEXIy TPaH3AKIUAMHU U MapajlIeNbHO BBIMTOIHAEMBIMH aHATUTHYECKUMHU
3ampocamMy, OOBIYHO HCHOJB3YEeTCS KAaKOW-TO BHA MHOTOBEPCHOHHOTO YNPABJICHUS
HapajuIeIn3MOM, 4acTO ONTUMHCTHYECKUi. Bce BHyTpeHHHE OOBEKTHI 0a3bl JaHHBIX, TaKHE Kak
MHJIEKCHI, paclpe/eNuTeNId NaMsITH U T.A., IPOCKTUPYIOTCS TaK, 4TOOBl M30€XaTh BCEX BHJOB
OJIOKMPOBOK.

OnHako XpaHeHHEe 0a3bl JAHHBIX TTOJIHOCTBIO B NAMSTH TAaKKe SIBISETCS KOMIPOMHUCCOM MEXIY
BBICOKOW Tpou3BoAuTENsHOCTEI0O CYBJl M orpaHWdeHHBIM pa3MepoM 0a3bl JaHHBIX. YTOOBI
CMATYUTh 3TO OTpaHWYCHHE, OCHOBHBIE MPOM3BOIUTEIM MPEANOYUTAIOT KOMOMHHPOBAThH
XpaHWIWIIA B ONEPAaTHBHONW mNamsATH u Ha jaucke. OHH yTBEPXKIAIOT, YTO IIOCIE 3TOTO
npousBoguTensHocTh CYBJl He yxyamaercs (HEMOHSATHO TOYeMy), HO B JIOOOM ciydae
apXUTEKTypa CUCTEMBI CTAHOBUTCSI HAMHOT'O CIIOXKHEE.

Ectp HeckosbKO MONbITOK mpenoctaButh GyHkunu HTAP v aHaquTHKK B peaJbHOM BPEMEHH B
MaCCHBHO-TIapaJUICIbHBIX apXUTEKTypax 6e3 COBMECTHOTO HCIIOIb30BaHUA PecypcoB. MBI cunTaem,
YTO Takas LeJb TPYIHOAOCTH)KHMMA. Bo-mepBBIX, JaXKe €ClIM KaXIbld y3€]1 Takodl CHUCTEMBI
MOJTHOCTBIO XPAHHUT 0a3y JaHHBIX B IMaMATH, HEM30eKHOE CEeTeBOE B3aMMOACHCTBHE 3HAUUTEIHHO
CHM3HUT IPOU3BOJUTEIBHOCTb CUCTEMBI. BO-BTOPBIX, KaK TPaH3aKLMOHHBIE, TAK U aHAJIUTHUECKUE
CVYB]] 6e3 cOBMECTHOTO HCIOJIB30BaHUS PECYpCOB MOJAraloTCsi Ha IIOAXOAfIIEEe pas3jeieHHe
JAHHBIX MO y31aM cucTeMbl. OJHAKO LeNU pa3fedeHus IS TPaH3aKLUOHHBIX U aHATUTUYECKHUX
CVYB]] pasmnunbl. Tpanzakumonuas CYBJl mbiTaercs pasgenutb 0a3y IaHHBIX, YTOOBI
MUHMMU3UPOBaTh KOJIMUYECTBO pACHpeAeNeHHbIX TpaH3akuuil. Amnanutnueckas CYBJ mpu
pa3mencHMM 0a3pl JAHHBIX IIBITATCS MHHHMH3HUPOBATh KOJHYECTBO pacIpeleleHHBIX
o0beanHeHnit. COMHUTENBEHO, YTOOBI B OTHON CHCTEME MOXKHO OBUIO IOCTHYb 00enX Iesel.
Hakonen, 3nauutenbHoe uucio mnocraBuimkoB CYBJl HTAP B omneparuBHOM mnaMmsTH yxe
HCTIONB3YIOT B CBOMX MPOAYKTaX JOCTYITHYIO B HACTOSAIIEE BPeMsI SHEPTOHE3aBUCHMYIO OCHOBHYIO
MaMsTh WIN IDIAHUPYIOT MCIIONB30BaTh ee¢ B OyaymieM. Ham 0030p IeMOHCTpUpPYET JOCTAaTOYHO
LIMPOKHUH CIIEKTP BapUAHTOB UCIONIb30BaHUS NVM 0T MpoCTOro paciimpeHust naMsaTH ¢ MOMOIIbIO
NVM 1o Hambojee MHOTOOOCIIAIONUX OJHOYPOBHEBBIX apXUTEKTYp XpaHeHUs. OgHako

193

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

MOCTICTHII BapHaHT NCIIOIB30BaHU ceifuac (YaCTHYHO) pealn30BaH TOIBKO B HCCIIEIOBATEIbCKIX
MIPOEKTaXx.

[IpuunHa, BEpOSATHO, B TOM, YTO B HACTOSIIEE BPEMS Ha PBIHKE JOCTYIEH TOJBKO OIuH BUA NVM —
Intel Optane, ocHOBaHHBIH Ha TexHOJormn PCM. Ot Momymun DIMM Ha ocHOBe NVM nmerot
JIOBOJILHO BBICOKYIO 3aJ€pKKy M He MOryT 3aMeHuTh DRAM. Mpbl nonaraem, 4ro LIMPOKO
oxumaeMoe HOBoe mokomeHne NVM (Bo3mokHO, Ha ocHOBe STT) 3HAUMTENTHHO YCKOPHUT
BHeapeHue NVM B HT AP (u uncro Tpan3akuuonHsix) CYB/I.

JlaHHas cTaThs ABISAETCS PyCCKOA3BIYHBIM (ABTOPCKUM) BapUAHTOM pPaHEe OMyOINKOBAaHHON CTAThH
[62], B kOTOpO#i, KpOME CMEHBI A3bIKA, UCIIPABICHBI HEKOTOPHIC HE3HAYUTEIbHBIC HETOYHOCTH.

Cnucok nutepatypbl / References

[1] Michael Stonebraker, Ugur Cetintemel. "One Size Fits All": An ldea Whose Time Has Come and Gone.
Proceedings of the 21st International Conference on Data Engineering, 2005, pp. 2-11.

[2] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver, Lyric Doshi, Chuck Bea.
The Vertica Analytic Database: C-Store 7 Years Later. Proceedings of the VLDB Endowment, vol. 5, no.
12, 2012, pp. 1790-1801.

[3] Michael Stonebraker, Ariel Weisberg. The VoltDB Main Memory DBMS. Bulletin of the Technical
Committee on Data Engineering, vol. 36, no. 2, 2013, pp. 21-27.

[4] Franz Faerber, Alfons Kemper, Per-Ake Larson, Justin Levandoski, Thomas Neumann, Andrew Pavlo.
Main Memory Database Systems. Foundations and Trends in Databases, vol. 8, no. 1-2, 2016, pp. 1-130.

[5] C.A. Kysuenor. B oxunannu HatuBHbIX apxutekTyp CYBJl Ha OCHOBE SHEPrOHE3aBHCHMOW OCHOBHOM
namsiti. Tpyasr ICIT PAH, tom 32, Beimyck 1, 2020 r., ctp. 153-180. DOI: 10.15514/ISPRAS-2020-
32(1)-9 / Sergey Kuznetsov. Towards a Native Architecture of in-NVM DBMS. Proceedings of the 6th
International Conference on Actual Problems of Systems and Software Engineering (APSSE), 2019, pp.
77-89.

[6] Gartner Glossary: Real-time Analytics. URL: https://www.gartner.com/en/information-
technology/glossary/real-time-analytics, accessed 08-16-2020.

[71 Mohammed Al-Kateb, Paul Sinclair, Grace Kwan-On Au, Carrie Ballinger. Hybrid Row-Column
Partitioning in Teradata. Proceedings of the VLDB Endowment, vol. 9, no. 13, 2016, pp. 1353-1364.

[8] Hybrid transactional/analytical processing. From Wikipedia, the free encyclopedia. URL:
https://en.wikipedia.org/wiki/Hybrid_transactional/analytical_processing, accessed 08-17-2020.

[9] Gartner Glossary: HTAP-enabling In-memory Computing Technologies. URL:
https://www.gartner.com/en/information-technology/glossary/htap-enabling-memory-computing-
technologies, accessed 08-17-2020.

[10] Jan Lindstrém, Vilho Raatikka, Jarmo Ruuth, Petri Soini, Katriina Vakkila. IBM solidDB: In-Memory
Database Optimized for Extreme Speed and Availability. Bulletin of the Technical Committee on Data
Engineering, vol. 36, no. 2, 2013, pp. 14-20.

[11] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy Transactions in
Multicore In-Memory Databases. Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 2013, pp. 18-32.

[12] EXASOL: A Peek Under the Hood. White Paper. URL: https://www.dataviz.sk/wp-
content/uploads/2019/09/WP_Exasol_Technical_Peek_under_the_hood.pdf, accessed 08-17-2020.

[13] The Official History of TM1. URL: https://cubewise.com/history/, accessed 08-17-2020.

[14] Michael Schrader, Dan Vlamis, Mike Nader, Chris Claterbos, Dave Collins, Mitch Campbell, Floyd
Conrad. Oracle Esshase & Oracle OLAP: The Guide to Oracle's Multidimensional Solution. McGraw-Hill
Education, 2009, 524 p.

[15] Yuan Zhou, Haodong Tang, Jian Zhang. Spark-PMoF: Accelerating big data analytics with Persistent
Memory over Fabric. Strata Data Conference, 2019 .

[16] Hasso Plattner. A common database approach for OLTP and OLAP using an in-memory column database.
Proceedings of the ACM SIGMOD International Conference on Management of data, 2009, pp. 1-2.

[17] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem, Pat
Helland. The End of an Architectural Era (It's Time for a Complete Rewrite). Proceedings of VLDB, 2007,
pp. 1150-1160.

[18] solidDB in a Nutshell. URL: https://www.teamblue.unicomsi.com/index.php/download_file/499/660/,
accessed 08-19-2020.

194

https://conferences.oreilly.com/strata/strata-ca-2019/public/schedule/stype/1336
https://www.teamblue.unicomsi.com/index.php/download_file/499/660/

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

[19] gunaprsd/silo: Multicore in-memory storage engine. URL.: https://github.com/stephentu/silo, accessed
08-19-2020.

[20] Oracle Exalytics In-Memory Machine: A Brief Introduction. Oracle White Paper, 2013. URL:
https://www.oracle.com/technetwork/middleware/bi/overview/whitepaper-exalytics-x3-4-1973011.pdf,
accessed 08-19-2020.

[21] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica. Spark: Cluster
Computing with Working Sets. Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, 2010, pp. 1-7.

[22] Shuffle Remote PMem Extension for Apache Spark Guide. URL: https://github.com/Intel-
bigdata/OAP/tree/master/oap-shuffle/RPMem-shuffle, accessed 08-22-2020.

[23] Vishal Sikka. Timeless Software. URL: http://vishalsikka.blogspot.com/2008/10/timeless-software.html,
accessed 08-23-2020.

[24] Frederik Transier, Peter Sanders. Engineering basic algorithms of an in-memory text search engine. ACM
Transactions on Information Systems, 2010, Article No. 2.

[25] J. Andrew Ross. SAP NetWeaver Bl Accelerator. SAP PRESS, 2008, 260 p.

[26] Sang K. Cha and Changbin Song. P*TIME: Highly Scalable OLTP DBMS for Managing Update-Intensive
Stream Workload. Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004, pp. 1033-1044.

[27] André Bogelsack, Stephan Gradl, Manuel Mayer, Helmut Krcmar. SAP MaxDB Administration. SAP
PRESS, 2009, 326 p.

[28] Franz Faerber, Norman May, Wolfgang Lehner, Philipp Grofle, Ingo Miiller, Hannes Rauhe, Jonathan
Dees. The SAP HANA Database — An Architecture Overview. Bulletin of the Technical Committee on
Data Engineering, March 2012, vol. 35, no. 1, pp. 28-33.

[29] Mihnea Andrei, Christian Lemke, Giinter Radestock, Robert Schulze, Carsten Thiel, Rolando Blanco,
Akanksha Meghlan, Muhammad Sharique, Sebastian Seifert, Surendra Vishnoi, Daniel Booss, Thomas
Peh, Ivan Schreter, Werner Thesing, Mehul Wagle, Thomas Willhalm. SAP HANA Adoption of Non-
Volatile Memory. Proceedings of the VLDB Endowment, vol. 10, no. 12, 2017, pp. 1754-1765.

[30] Intel Optane Persistent Memory and SAP HANA Platform Configuration. Configuration Guide. 2019.
URL: https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/sap-
hana-and-intel-optane-configuration-guide.pdf, accessed 08-26-2020.

[31] Per-Ake Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Srikumar Rangarajan,
Aleksandras Surna, Qingging Zhou. SQL Server Column Store Indexes. Proceedings of the ACM
SIGMOD International Conference on Management of data, 2011, pp. 1177-1184.

[32] Per-Ake Larson, Mike Zwilling, Kevin Farlee. The Hekaton Memory-Optimized OLTP Engine. Bulletin
of the Technical Committee on Data Engineering, vol. 36, no. 2, 2013, pp. 34-40.

[33] Per-Ake Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal Nowakiewicz, Vassilis
Papadimos. Real-Time Analytical Processing with SQL Server. Proceedings of the VLDB Endowment,
vol. 8, no. 12, 2015, pp. 1740-1751.

[34] Ahmed Eldawy, Justin Levandoski, Per-Ake Larson. Trekking Through Siberia: Managing Cold Data in a
Memory-Optimized Database. Proceedings of the VLDB Endowment, vol. 7, no. 11, pp. 931-942.

[35] Bob Dorr. How It Works (It Just Runs Faster): Non-Volatile Memory SQL Server Tail of Log Caching on
NVDIMM. URL: https://docs.microsoft.com/ru-ru/archive/blogs/bobsql/how-it-works-it-just-runs-faster-
non-volatile-memory-sql-server-tail-of-log-caching-on-nvdimm, accessed 08-27-2020.

[36] Kellyn Gorman, Allan Hirt, Dave Noderer, Mitchell Pearson, James Rowland-Jones, Dustin Ryan, Arun
Sirpal, Buck Woody. Introducing Microsoft SQL Server 2019: Reliability, scalability, and security both
on premises and in the cloud. Packt Publishing, 2020, 488 p.

[37] Tirthankar Lahiri, Marie-Anne Neimat, Steve Folkman. Oracle TimesTen: An In-Memory Database for
Enterprise Applications. Bulletin of the Technical Committee on Data Engineering, vol. 36, no. 2, 2013,
pp. 6-13.

[38] Sherry Listgarten and Marie-Anne Neimat. Modelling Costs for a MM-DBMS. Proceedings of the
International Workshop on Real-Time Databases, Issues and Applications (RTDB), 1996, pages 72-78.

[39] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh, Mike Gleeson, Sanket Hase,
Allison Holloway, Jesse Kamp, Teck-Hua Lee, Juan Loaizal, Neil Macnaughton, Vineet Marwah, Niloy
Mukherjee, Atrayee Mullick, Sujatha Muthulingam, Vivekanandhan Raja, Marty Roth, Ekrem Soylemez,
Mohamed Zait. Oracle Database In-Memory: A dual format in-memory database. Proceedings of the IEEE
31st International Conference on Data Engineering, Seoul, 2015, pp. 1253-1258.

[40] Niloy Mukherjee, Shasank Chavan, Maria Colgan, Dinesh Das, Mike Gleeson, Sanket Hase, Allison
Holloway, Hui Jin, Jesse Kamp, Kartik Kulkarni, Tirthankar Lahiri, Juan Loaiza, Neil Macnaughton,
Vineet Marwah, Atrayee Mullick, Andy Witkowski, Jiagi Yan, Mohamed Zait. Distributed Architecture
of Oracle Database In-memory. Proceedings of the VLDB Endowment, vol. 8, no. 12, 2015, pp. 1630—
1641.

195

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

[41] Shasank Chavan, Gurmeet Goindi. Oracle Database In-Memory on Exadata: A Potent Combination.
Oracle OpenWorld 2018. URL: https://www.oracle.com/technetwork/database/exadata/pro4016-
exadataandinmemory-5187037.pdf, accessed 08-28-2020.

[42] Oracle Database 20c. Database Administrator’s Guide. Using Persistent Memory Database. URL:
https://docs.oracle.com/en/database/oracle/oracle-database/20/admin/index.html, accessed 08-28-2020.

[43] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick Ho, Namik Hrle, Stratos Idreos, Min-
Soo Kim, Oliver Koeth, Jae-Gil Lee, Tianchao Tim Li, Guy Lohman, Konstantinos Morfonios, Rene
Mueller, Keshava Murthy, Ippokratis Pandis, Lin Qiao, Vijayshankar Raman, Richard Sidle, Knut Stolze,
Sandor Szabo. Business Analytics in (a) Blink. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, vol. 35, no. 1, 2012, pp. 9-14.

[44] IBM Informix Warehouse Accelerator. Technical white paper. URL:
https://www.iiug.org/library/ids_12/IWA%20White%20Paper-2013-03-21.pdf, accessed 08-29-2020.

[45] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk, Vincent
KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu, Guy M. Lohman, Tim Malkemus, Rene
Mueller, Ippokratis Pandis, Berni Schiefer, David Sharpe, Richard Sidle, Adam Storm, Liping Zhang. DB2
with BLU Acceleration: So Much More than Just a Column Store. Proceedings of the VLDB Endowment,
Vol. 6, No. 11, 2013, pp. 1080-1091.

[46] Whei-Jen Chen, Brigitte Bldser. Marco Bonezzi, Polly Lau, Jean Cristie Pacanaro, Martin Schlegel,
Ayesha Zaka, Alexander Zietlow. Architecting and Deploying DB2 with BLU Acceleration. IBM
Redbooks, 2014, 420 p.

[47] Altibase. URL: https://github.com/ALTIBASE, accessed 08-30-2020.

[48] Altibase 7.1 Administrator's Manual. URL:
https://github.com/ALTIBASE/Documents/blob/master/Manuals/Altibase_7.1/eng/Administrator's%20M
anual%201.md, accessed 08-29-2020.

[49] MemSQL Software. The Cloud-Native Operational Database Built for Speed, Scale, and SQL. URL:
https://www.memsgl.com/resources/data_sheet-memsql_software/, accessed 08-30-2020.

[50] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, Michael Andrews. The
MemSQL Query Optimizer: A modern optimizer for real-time analytics in a distributed database.
Proceedings of the VLDB Endowment, Vol. 9, No. 13, 2016, pp. 1401-1412.

[51] Eric Hanson. How to Use MemSQL with Intel’s Optane Persistent Memory. URL:
https://www.memsgl.com/blog/how-to-use-memsql-with-intels-optane-persistent-memory/, accessed 08-
30-2020.

[52] Alfons Kemper and Thomas Neumann. HyPer - Hybrid OLTP&OLAP High Performance Database
System. Technical Report, TUM-11010, Munich Technical University, 2010, 29 p.

[53] Alfons Kemper, Thomas Neumann, Jan Finis, Florian Funke, Viktor Leis, Henrik Miihe, Tobias
Miihlbauer, Wolf Rodiger. Transaction Processing in the Hybrid OLTP&OLAP Main-Memory Database
System HyPer. Bulletin of the Technical Committee on Data Engineering, vol. 36, no. 2, 2013, pp. 41-47.

[54] Martina-Cezara Albutiu, Alfons Kemper, Thomas Neumann. Massively Parallel Sort-Merge Joins in Main
Memory Multi-Core Database Systems. Proceedings of the VLDB Endowment, vol. 5, no. 10, 2012, pp.
1064-1075.

[55] Thomas Neumann, Tobias Miihlbauer, Alfons Kemper. Fast Serializable Multi-Version Concurrency
Control for Main-Memory Database Systems. Proceedings of the ACM SIGMOD International
Conference on Management of data, 2015, pp. 677-689.

[56] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma, Prashanth Menon, Todd C.
Mowry, Matthew Perron, lan Quah, Siddharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken,
Zigi Wang, Yingjun WuF, Ran Xian, Tieying Zhang. Self-Driving Database Management Systems.
Proceedings of the 8th Biennial Conference on Innovative Data Systems Research, 2017, 6 p.

[57] Joy Arulraj. Andrew Pavlo. Prashanth Menon. Bridging the Archipelago between Row-Stores and
Column-Stores for Hybrid Workloads. Proceedings of the 2016 International Conference on Management
of Data, 2016, pp. 583-598.

[58] Joy Arulraj, Andrew Pavlo. Non-Volatile Memory Database Management Systems. Synthesis Lectures on
Data Management. Morgan & Claypool Publishers, 2019, 192 p.

[59] cmu-db / peloton. The Self-Driving Database Management System. URL.: https://github.com/cmu-
db/peloton, accessed 09-02-2020.

[60] cmu-db / terrier. URL: https://github.com/cmu-db/noisepage, accessed 05-06-2021.

[61] Ismail Oukid. Architectural Principles for Database Systems on Storage-Class Memory. Lecture Notes in
Informatics (LNI), Gesellschaft fiir Informatik, Bonn, 2019, pp. 477-486.

[62] S.D. Kuznetsov, P.E. Velikhov, and Q. Fu. Real-time analytics, hybrid transactional/analytical processing,
in-memory data management, and non-volatile memory. In Proc. of the Ivannikov ISPRAS Open
Conference, 2021, pp. 78-90. DOI: 10.1109/ISPRAS51486.2020.00019.

196

https://www.oracle.com/technetwork/database/exadata/pro4016-exadataandinmemory-5187037.pdf
https://www.iiug.org/library/ids_12/IWA%20White%20Paper-2013-03-21.pdf
https://github.com/cmu-db
https://github.com/cmu-db/terrier

Kysuenos C.J1., Benuxos ILE., ®y 1. Ananutrka B peanbHOM BpeMeHH, THOpUAHAS TPaH3aKIMOHHAs/aHaTUTHYeCKas 06paboTka,
yIpaBlIeHHE JaHHBIMK B OCHOBHOM MaMSTH U SHEProHe3aBUCcHMas namsth. Tpyost UCII PAH, tom 33, Bem. 3, 2021 r., ctp. 171-198

MHdopmaumsa 06 aBTopax / Information about authors

Cepreii ImutpueBnd KY3HEIIOB — nokrop TexHHYecKHX Hayk, npodeccop, INIaBHbIH HAyYHBIH
corpynuuk MCIT PAH, npodeccop kadenp cucremHoro nporpammupoBanus MI'Y, MOTU u
BIIID, crapmuit HayuHslit cotpyaauk POY um. I'.B. IInexanoBa. HayuHsle nHTEpecH: yIpaBieHue
JAHHBIMH, apXUTEKTypbl CHCTEM YINpPABJICHUS OAHHBIMU, MOJEIH W SI3BIKM JaHHBIX, YIPaBICHUE
TPaH3aKLIMsIMU, ONITUMU3ALHS 3alIPOCOB.

Sergey Dmitrievich KUZNETSOV - Doctor of Technical Sciences, Professor, Chief Researcher at
ISP RAS, Professor at the Departments of System Programming of MSU, MIPT, and HSE, Senior
Researcher at REU. Research interests: data management, architectures of data management
systems, data models and languages, transaction management, query optimization.

ITaBen ErrenseBuu BEJIMXOB, Beaymmii HHXEeHEp KIIIOUEBBIX NPOEKTOB. HayuyHble MHTEPECHI:
MaccuBHo-napasensHsie CYB/], onTuMu3anus 3ampocoB, METOAbI UCKYCCTBEHHOTO HHTENIEKTa
qutst ontumuzatu CYBJ], moiycTpykTypupoBaHHbIe MOJIETH AaHHbIX, in-memory CYB/I.

Pavel Evgenievich VELIKHOV, Principal Engineer of Key Projects. Research interests: massively
parallel DBMS, query optimization, artificial intelligence methods for DBMS optimization, semi-
structured data models, in-memory DBMS.

H?[H qDY, MNpeACTAaBUTCIIb 6I/I3HGC'HO,Z[paS,H€HeHI/IH. HaquLIe HUHTCPCChI: MACCUBHO-TIApaJJICJIbHBIC
CYB]I.

Qiang FU, Business Representative. Research interests: massively parallel DBMS

197

Kuznetsov S.D., Velikhov P.E., Fu Q. Real-time analytics, hybrid transactional/analytical processing, in-memory data management, and non-
volatile memory. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 171-198

198

Tpyowr UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-14 toclﬁu

MpumMeHeHMe A3LIKOBbLIX Mogenen B 3agaye
N3BfIeYeHUS OLLeHOUYHbIX OTHOLLUEHUN

H.JI. Pycnauenxo, ORCID: 0000-0002-9750-5499 <kolyarus@yandex.ru>
Mockosgckuii eocydapcmeennviil mexnuyeckui uncmumym um. H.D.Baymana,
105005, Poccus, . Mockea, yn. 2-a Baymanckas, 0. 5, cmp. 1

AnHoTanusi. O6beMHBIE TEKCTBI MOTYT COJEPKaTh NCTOYHUKH B3aHMMOCBSI3aHHOM MH(GOPMAINU PA3THIHBIX
THUIIOB, IEpelaBacMbIX IOCPEICTBOM OTHOLICHHWH, HEKOTOpHIE M3 KOTOPBIX MOTYT OBITH OLICHOYHBIMH.
IIpoBenenne aHamM3a TaKMX TEKCTOB TPeOyeT yCTaHOBJIEHHE MOTOOHBIX CBsI3eH, ONpeIeTIeHNH NX YYaCTHUKOB!
COOBITHH, CYIIIHOCTEH, U T.1. B 1aHHO# paboTe uccneayercs npuMeHeHue A3bIKOBIX Mojeneii BERT B 3amaue
W3BJICUCHUS] OICHOYHBIX OTHOLICHWH. JIJIs1 IPOM3BONBHOTO JOKyMEHTa M CHHCKa pPa3MEUYEHHBIX B HEM
HMMEHOBAHHBIX CYITHOCTEH, TaKas 3a/iaua IPEeANoNaraeT COCTaBIeHHE CITICKA OLEHOYHBIX OTHOIICHUH MEXITY
HUMH. D()HEeKTHBHOCTH MIPUMEHEHHS SI3BIKOBBIX MOJIETICH HAIIPSMYIO 3aBUCHT OT 00beMa 00yJaroniX JaHHbBIX.
Jnst yBenmmueHust 00beMa 00y4Jaromiero MHOJKECTBA IPUMEHSIETCS TIOXO0/1 OTIOCPEAOBaHHOTO 00ydeHus. Takoe
o0ydeHne Mmojpa3yMeBaeT MPUMEHEHHE alrOpUTMa aBTOMATHYECKOW Pa3METKH OICHOYHBIX OTHOIICHHI H3
CTOPOHHHX HCTOYHUKOB. [Ipe/yioKeHHBI TIOIXO0J pPa3METKH OIICHOYHBIX OTHOIICHWH OCHOBaH Ha
nyxatanHoM mnpumeHennn FRAME-BASED ¢aktopa B aHani3e HOBOCTHBIX JOKyMeHTOB, misi: (1)
cocraBiieHus criucka oreHouHsix map (PAIR-BASED), (2) pasmerku 10KyMeHTOB ¢ ucnonb3oBanueM PAIR-
BASED u FRAME-BASED ¢akropos. [loayueHHas Ha OCHOBE TAaKOTO JTOPHTMa KOJUICKIHS IOJIy4Hia
HazBaHue RuAttitudes2017. [{ns mpoBeneHNs: SKCIEPIMEHTOB € MOJEIISIMH HCIIOJIB30BAJICS KOPITYC HOBOCTHBIX
TEKCTOB Ha pycckoM si3bIk ¢ RuSentRel-1.0. [IpumeHeHne onocpeaoBaHHOTO OOYy4YEHHUS C MCIIOIH30BaHHEM
xomutekimu RuAttitudes2017 moBeicuio kauectBo mogeneit Ha 10-13% mo merpuxe F1, n Ha 25% mpum
CPaBHEHUU C HAWIYULIMMH pe3yabTaTaMu MOJIeJIel Ha OCHOBE HEHPOHHBIX ceTel.

KitioueBble ¢J10Ba: aHAIN3 TOHATBHOCTH; H3BJICYCHHE OTHOLICHH; OMOCPEI0BaHHOE 00yUeHH e; HelpOHHBIE
CETH; SI3bIKOBBIC MOJIEIN

Jost uutupoBanmsi: Pycnauenko H. JI. [IpuMeHeHue sI3bIKOBBIX MOJETICH B 3a/lau€ M3BJICUEHHS OLIEHOYHBIX
orHomennit. Tpyast UCIT PAH, tom 33, Boim. 3, 2021 ., crp. 199-222. DOI: 10.15514/ISPRAS-2021-33(3)—
14

Baaronapuoctu: /lannas pabota BBINOJIHEHA NPH ToAepxkKe rpanta PODU 20-07-01059

Language Models Application in Sentiment Attitude Extraction Task

N.L. Rusnachenko, ORCID: 0000-0002-9750-5499 <kolyarus@yandex.ru>
Bauman Moscow State Technical University,
5, Building 1, 2-nd Baumanskaya Str., Moscow, 105005, Russia.

Abstract. Large text can convey various forms of sentiment information including the author’s position,
positive or negative effects of some events, attitudes of mentioned entities towards to each other. In this paper,
we experiment with BERT based language models for extracting sentiment attitudes between named entities.
Given a mass media article and list of mentioned named entities, the task is to ex tract positive or negative
attitudes between them. Efficiency of language model methods depends on the amount of training data. To
enrich training data, we adopt distant supervision method, which provide automatic annotation of unlabeled
texts using an additional lexical resource. The proposed approach is subdivided into two stages FRAME-
BASED: (1) sentiment pairs list completion (PAIR-BASED), (2) document annotations using PAIR-BASED
and FRAME-BASED factors. Being applied towards a large news collection, the method generates

199

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

RuAttitudes2017 automatically annotated collection. We evaluate the approach on RuSentRel-1.0, consisted of
mass media articles written in Russian. Adopting RuAttitudes2017 in the training process results in 10-13%
quality improvement by F1-measure over supervised learning and by 25% over the top neural network based
model results.

Keywords: Sentiment Analysis; Relation Extraction; Distant Supervision; Neural Networks; Language Models

For citation: Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 199-222. DOI: 10.15514/ISPRAS-2021-33(3)-14

Acknowledgements. This work was supported by a grant from the RFBR 20-07-01059.

1. BeedeHue

AHanmu3 TOHaJIBHOCTH, T.€. BBIICJICHHE MHEHHUS aBTOPA O IIPEAMETE 0OCYKICHUS B TEKCTE, SBISICTCS
omHUM M3 Hamboliee BOCTPEOOBAaHHBIX NPHIOKEHHH aBTOMATHYECKOH OOpaOOTKH TEKCTOB 3a
nociennue ronasl. OmHOW W3 TMOA3ajad aHAIW3a TOHAIBHOCTH SIBISETCS 3a7ada HW3BJICUCHHS
OILIEHOYHBIX OTHOIIEHMH [1], KoTopas mpeanosnaraeT KiacCu(UKaU0 B3aNMOOTHOIICHHH MEXIY
YIIOMHHAEMBIMH B TEKCTE MMEHOBAaHHBIMHU CYIIHOCTSMH. VI3BlIeueHHE OLIEHOYHBIX OTHOIICHUI
CYIIECTBEHHO ISl aHajM3a TOHAJIBHOCTH HOBOCTHBIX M aHAJIMTHYECKUX TEKCTOB, IMOCKOJIBKY
CJIOKHBIM 00pa3oM BJIMSET Ha aHAIM3 aBTOPCKOM MO3MLMM B TeKcTe. B ciemyromem npumMepe
NPUBOAMTCST (PAarMEHT HOBOCTHOTO COOOIIEHHS, OIICHOYHBIE OTHOLICHUS BO3HUKAIOT MEXIy
cymaocTsMH «Poccusty u «HATO» (cymHocTH NOXYEpKHYTHI): ... Mockéae HeoOHOKpamHo
nOOYepKUBANa, 4mo ee akmueHocmy Ha banmukee ae1siemea omeemom umenno na deticmeus HATOe
U dcKanayuio 8paxdcoedHo2o nooxooa Kk Poccuule 861u3U ee 60CMOUHbIX SPAHUY ...

MHorue 3ajaud aHajJu3a TOHAJIBHOCTH DEIIAIOTCA Ha OCHOBE METOJOB MAIIMHHOTO OOYYeHHS,
KOTOpBIE, OJIHAKO, TPEOYIOT 3HAUNTEIbHOr0 00beMa o0y4aromux JaHHbIX. OJHUM W3 TOAXOOB,
HalpaBJCHHBIM Ha CHI)KEHHE O00beMa py4YyHOH pa3METKH [aHHBIX, SBISETCS IOAXOJ
onocpenoBanaoro obyuenus (Distant Supervision). OmocpemoBaHHOe OOYYEHHE IMpEaIOIaraet
BBINIOJTHEHNE AaBTOMAaTHYECKOW pa3METKH OOBEMHBIX TEKCTOBBIX KOJUIEKIMI [2] Ha OCHOBe
HEKOTOPBHIX JIOTIOJHUTENBHBIX PECypcoB, IIOMy4YeHHas pa3MeueHHas KOJUICKIMS Jajiee
UCTIONB3YeTCS B KaYEeCTBE JAHHBIX JUIS METOJIOB MAaIIMHHOTO oOyueHms. HecmoTpst Ha Gosnbloe
YHCIIO MTPOBEJCHHBIX UCCIIE0BAHNI 1TOJOOHOTO MOAX0a Pa3METKH JOKYMEHTOB [3, 4] st 3a1aun
aHaJ W32 TOHAIPHOCTH W W3BJECYCHMS OTHOMIICHWH, 0O0JacTb OCTaeTcs W3YYCHHOW JIMIIb
qacTUyHO [5].

B nanHoit pabore mccnemyercs MPUMEHEHHE SI3BIKOBBIX MOAENEH Ul M3BJICUYEHHS OLECHOYHBIX
OTHOIICHHUH, MpeNoOydeHHBIX Ha OCHOBE OOJBIIOTO aBTOMATHYECKOTO Pa3MEUEHHOTO Kopiryca
M3BJICYEHHBIX OI[CHOYHBIX OTHOILIEHUH 110 METOJy OIOCpe0BaHHOro 00yueHus. [loaxon ocHoBaH
Ha WCIOJb30BaHUU JiekcukoHa RuSentiFrames [6], KOTOpBI CONEPKUT ONMHCAHHE OLIEHOYHBIX
OTHOIICHUH MEXJY apryMeHTaMH CJIOB-TIPEIUKATOB PYCCKOro s3blka. Takum oOpazom, BKIaj
HACTOSIIEH pabOTHI CIIe Ty

o HUCCJICOAOBAaHbI MCTOJAbI MAIIMHHOTO O6quHI/IH JUIA HU3BJICUCHHUA OLICHOYHBIX OTHOIIICHUN M3
PYCCKOSA3bIYHBIX aHATUTUYCCKHX TEKCTOB HAa YPOBHE JOKYMCHTA,

e MpeUIOKEH TMOIXO0A K AaBTOMAaTHUYECKOMY MOPOXKICHHIO OOydJaromedl KOJUIEKIHUH Ui
M3BJICUEHUS OIICHOYHBIX OTHOIIEHHH, BKIoUatommii: (1) mpenBapuTenbHBINA 3Tall 00paboTKH
KOJIJIEKINH U1 aBTOMATHIECKOTO TOPOXKICHNS CIFICKA OIIEHOYHBIX Map, (2) aBTOMAaTHYECKYIO
pa3MeTKy HEHTpalbHbIX OTHOILLICHUH;

® MPOBEJCHBI HMCCIIEIOBAHMS M3BJICUCHHs] OTHOLICHUH Ha ocHoBe kopryca RuSentRel-1.0 mis
sa3p1k0BBIX Mogneneii BERT [7] ¢ mpuMeHeHMEM NpEeAsioKEHHOTO IOIXO0AA IMOPOXKACHUSI
o0ydJarommel KOJJIEKINH; COTJIACHO TOJYYEHHBIM Pe3ylbTaTaM HCCIEJOBaHMS, NMPUMCHEHHE
OIIOCPEIOBAHHOTO OOYYEHHs YJy4IllaeT KauecTBO M3BJICYEHHS OLEHOYHBIX OTHOLICHUH
SI3BIKOBBIMU MozersiMu Ha 10-13% (TpexknaccoBas kiaccudukanust) rmo F1-mepe u Ha 25% npu
CpPaBHEHUHU PE3YyIbTATOB PYCCKOS3BIYHBIX SI3BIKOBBIX MOJEIEH C aHATOTMYHBIMU Pe3yIbTaTaMU
JIPYTUX apXUTEKTYp HEHPOHHBIX ceTel (Kpocc-BaslMIAllMOHHOE TECTUPOBAHUE).

200

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

2. 513bIKkoeble modesiu 0551 u3esie4eHuUss OmHoweHul

IIpumenenue apxXuTeKTyphl mpancgopmepa [8], okazana OrpoMHOE BIUSHHE B PEIICHUH MHOTHX
33124 aBTOMaTHYECKOH 00pabOTKH eCTECTBEHHOIO A3bIKa. OCHOBAHA Ha HE3aBHCHMOM IIPHUMCHCHUH
KoaupoBImuKa [7] m nmexomupoBmuka [9] TpaHcpopmepa. IlpuMeHeHHe TakWX KOMIIOHCHTOB
MOJpa3yMeBaeT BHITONHEHHE 3TamoB: (1) mpemBapurenbHOTO OOydeHHS Ha OOJBIIOM OOBEME
HEepa3MEYEeHHBIX ITaHHBIX U (2) mooOydeHHWe Moja KOHKPETHYIO 3ajady oOpabOTKH TEKCTOB Ha
€CTECTBEHHOM s3bIKe. [10 3aBeplIeHHH IepBOTO 3Tama, MOJCIH Ha OCHOBE TaKUX KOMIIOHEHTOB
MOTYT OBITh MHTEPIPETUPOBAHBI KaK s3bIKOGble MOOeNU — BEPOSTHOCTHBIE PAcIpeesieHUs] Hajl
HOCTIeZI0BATEIBHOCTAMH CIIOB.

OcHoBomoNarawmieii MOJCIbl0 Ha OCHOBE OJexoduposwuxa ctana GPT [9]. AxryanbHoil Ha
HACTOSIIUI MOMEHT Bepcueil siBisiercss moaeinb GPT-3 [10]. looOyueHHast BepCUS TaKOW MOICITH
Ha PYCCKOA3BIYHBIX JaHHBIX MOJTyumna Ha3sanue FUGPT-31 B paGore [11] aBTOpBI NpeACTaBISIOT
MOJIETIb AJIsI W3BJICUEHHS OTHOIICHHWH, KOTOpas OCHOBBIBACTCS HA KIIACCUUECKOH apXHUTEKType
tpanchopmepa [8] u moobyuenun GPT [9], uto npuseno k Mozaenu noj HazBanueMm T RE [11].

B cnydae xoduposwuxos, ocHoBomomnaratomeir Mozaenvio crama BERT [7]. Takas mopens
MpearnosaraeT B KauecTBe BXOIHOM MH(pOPMAIMK NOCIIEI0BATELHOCTh, ONIUAIBHO pa3/eIeHHYI0
crieranbHbM cuMBoJioM [SEP] Ha nBe He3aBucuMBbIe nociienoBarenbHocTU: TextA u TextB. Yuer
BCEX CJIOB KOHTEKCTa JOCTUraeTcsa Onarofaps BBEICHUIO 3aJa4M npeocKa3aHnusi MACKUpOBAHHbIX
moxeros (ot anri. Masking Language Modeling): mpencka3zaHue cirydaifHOTO MacKHpPOBaHHOTO
CJIOBA BXOZHOW ITOCIE0BATEINbHOCTH. JlOTIOIHUTENFHOHM 3a1a4el, IPU3BAaHHON yCTAaHOBHUTH CBSI3b
mexxny TextA u TextB, crama Natural Language Inference (NLI), B koropoii Tpebyercs
onpez[enHTLZ, sBigercs 1 TextB mponomkenueM TextA. [Ipumenenue s3b1koBbIX Moaeneit BERT
B 3aja4ax KIAacCH()MKAINHU BBIOIHACTCS C BBEACHUEM KAACCUPUKAYUOHHO2O0 CI0s1, OTBEYAIOIIETO
332 COIIOCTABJIEHHE BXOJHON ITOCIEJOBAaTEIbHOCTH MHOXKECTBY BBIXOJHBIX KJIACCOB 3a1add. B
00J1acTH acTIeKTHO-OPHUEHTUPOBAHHOTO aHAJIN3a TOHAJIBHOCTH, aBTOPHI [12] mpeyiaraioT Moaxon
npumeneHus mojenu BERT B moctaHoBke BONPOCHO-0TBeTHBIN (Q/A, cocTaBieHHe BOIpoca B
TextB mns mocienosarensHoctu TextA), m NLI (ykasanue oxumaemoil madopmarun B TextB,
KOTOpast JOJDKHA OBITh BEIBeAieHa n3 TextA).

OpnuMm u3 HampasieHHd B pa3Butud BERT-TIpOM3BOAHBIX apXHTEKTyp cCTala ITyOIUKAIH
npenoOydeHHbIX Mojieneil. ICX0HO J0CTyNHbIH Habop NMpenoOydeHHbIX Mojenei’ nenurcs Ha:
OpPUEHTHUPOBAHHBIE O]l KOHKPETHBIE SI3BIKM (aHTNIMHACKUIM, KUTAHCKUM) M MYJIbTHUA3BIKOBBIE. U3
MHOKECTBA MYJIbTHA3BIKOBBIX Mojenell BbyieauM Mozeds MBERT?, koropas npenoOydena Ha
TEKCTOBBIX MaHHBIX 104 s3BIKOB M TMOJAEPX KON perncrpa OyKB B IPEICTaBICHHH BXOIHBIX
nocienoBatensHOcTel [7]. Monems mBERT nmoctymHa u pacipocTpareHa ToIbKo B hopmate base.
st pycckoro si3pika, aBTopamu npoekta DeepPavlov omy6nukoBana moxens RUBERT [13] —
noobydennast Bepcusi MBERT Ha pyccKOSI3pIYHBIX HOBOCTHBIX J@HHBIX M CTAThSIX SHIMKJIONICIUH
«Buxunenus». Mogens SentRUBERT?® asmserca noo6ydennoii sepcueii RUBERT KoIuteKIusamu:
(1) mepeBeeHHBIX HA PYCCKUIA s13bIK TekcTamMu Kopiyca SNLI [14] cepeucom Google-Translate; (2)
PYCCKOSI3BIYHBIX TEKCTOB Kopiryca XNLI [15].

Jpyrum HanpasnenueMm B pazsutuu BERT-apxurektyp crana Mmoaupukanys HCIONb3yeMBIX 33124
sTana npeaobydeHus. B momenm Electra [16] 3amaua npenckasaHusi MacKMpOBAHHOTO CIIOBa
MoTUGHUIMPOBaHA B 3a]]aUy BBISBJICHUS B KOHTEKCTE CIIEIATIFHO ogMeHeHHoro cioBa. ROBERTa
[17] mpencraBmisier coboit ymydinenne npeaoOdydeHus (3a1ad Ha 3Tare npenroOydeHnus Mozenei).

! https://github.com/sherbank-ai/ru-gpts

2 Nlns MPOBECHHS KiIacCH(DUKALUKY B MOJCIH MPETyCMOTPEH criennanbHbii TokeH [CLS] nepen Hauanom
BXOJIHOM MOCJIE10BATEIbHOCTH

3 https://github.com/google-research/bert

4 https://huggingface.co/bert-base-multilingual-cased

5 https://huggingface.co/DeepPavlov/rubert-base-cased-sentence

201

https://github.com/sberbank-ai/ru-gpts
https://github.com/google-research/bert
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/DeepPavlov/rubert-base-cased-sentence

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

IMocTpoeHre MozaeIn Kpocc-sI3bIKOBOTO KOAMPOBIKMKA MPEATIOKEHHH Ha OCHOBE Ha0Opa TEKCTOB
cTa pa3MmIHBIX A3bIKOB [18] crano omumMm u3 mpumeHeHui monenmn RoBERTa. Takas momens
MONyYHiia Ha3BaHUE XLM-R®, SpanBERT [19] npencrasisier coboir momudukanuo BERT,
OpUEHTHUPOBAHHYIO MOJ 3a1auy u3BieueHus otHomenuil (Relation Extraction) [20], mocpencTtBoM
M3MEHEHHs aITOPUTMA MAaCKHPOBAHMUS YaCcTe# TEKCTa MOCIE0BATEIbHOCTH.

ApXHTEKTypa KIACCU(PHUKAUOHHOTO CJIOSI MOXET OBbITh TaKkKe CHeHU(pHUYHA IS KOHKPETHOM
3amaun. Hampumep, mis 3amauu u3BjieucHus oTHomieHuit monens R-BERT [21] yuwuthiBacT
nHpOpMAannio 00 00beKTaX OTHOLICHUS BXOIHOH MOCIEI0BATEIEHOCTH.

3. Ucnonb3yembie pecypcbl

B mopapasnenax 3.1-3.2 paccMaTpHBaKOTCSA PECYPChI, KOTOPHIC HCIIONB30BAIUCH IS Pa3METKH
KOJUISKIIMH C LIEJbI0 MPOBEJEHUS OMOCPEIOBAaHHOTO 00yueHus mozeneil. OcHOBHas uaes Mmoaxoaa
coctouT B cieayronieM. JIekcukoH oreHouHo# nekcuku RuSentiFrames [6] ucmonb3yercs s
aBTOMAaTHYECKOM pPa3METKH OLICHOYHBIX OTHOILCHHWH B 3arojioBKax OOJBIION Hepa3MeueHHON
HOBOCTHOM KOJUIEKUMH. V3BleueHrne OTHOUIEHUN MPOU3BOJIUTCS U3 3ar0JIOBKOB, ITOCKOJBKY OHU
00BIYHO KOpPOUE, COMEPKAT MEHBIIIC HMCHOBAHHBIX CYIIHOCTEH. Jlanee pa3MeueHHBIC OTHOIICHUS B
3aroJoBKax (pUIBTPYIOTCS M UCHONB3YIOTCS IS pa3METKH OTHOIICHHUH BHYTPH TEKCTOB HOBOCTEH.

3.1 INlekcukoH chppennmoB RuSentiFrames

Jlekcukon RuSentiFrames-2.0 onuceiBaeT OLIEHKH M KOHHOTAIIMH, NEpeiaBacMble NPEINKATOM B
¢dopMe OTHAENBHOrO cjoBa (CYIIECTBHTENBHOTO, TIJaroyia) WM cioBocouyeTtanus. CTpyKTypa
¢peiiMoB BKIIOYaeT B ceds HAOOp CHeNU(UYHBIX IS NMPEJUKATOB poJied M HAOOp pa3IMYHBIX
n3MepeHnil (XapakTepUCTUK) Ut onucaHust ¢peiimoB. {11 00o3HaUeHHS poseil ceMaHTHYECKHe
apryMEHTHI IIPEIUKaTOB HyMEpYIOTCs, HaunHas ¢ HyJs. s KoHKpeTHoro npeaukara Arg0 — aro,
KakK TpaBMUJIO, apryMeHT (Agent), JEMOHCTPHPYIOIIMI CBOHCTBA areHTa (AaKTUBHOTO yYaCTHHKA)
curyanuu [22], B To Bpems kak Argl ato oobekT (Theme).

B 0CHOBHOI1 YacTH I€KCUKOHA MIPEACTABIICHBI CIEYIOLUINE USMEPEHUSL:

e OTHOIIEHHE aBTOPA TEKCTA K yKa3aHHbIM yuacTHuKam (Roles);

d polarity — MOJIOKUTENbHAS WM OTPULIATENIbHAS OLIEHKA MEXy YYaCTHUKaMHU OTHOIIEHUH;

e effect — monoXxuTENbHBIN WK OTPULIATENBHBIH d3PPEKT I yIACTHUKOB;

e state — mMOJOXKWUTENBHOE WIM OTPHULATENBHOE 3MOIMOHAIBHOE COCTOSHHE YYaCTHUKOB,
CBSI3aHHBIX C OTMIMCAHHOM CUTYyalHeH.

Bce yTBepklieHUs] BKIIIOUYAIOT JTOBEPUTEIbHYIO OLEHKY, KOTOpas B HACTOSIIEe BpeMsl UMEET J1Ba

3HaueHus:: 1 — yTBepXkAeHHWe NOoYTH Bceraa BepHo, unu 0.7 — pa3MeTka MO-yMOJYaHHUIO.

YTBepKIeHHUS 0 HEHTpabHOU OLEHKE, d(PPEKTEe WIH COCTOSHUN YYACTHUKOB HE YUUTHIBAIOTCS B

JIEKCHKOHE.

Tab6n. 1. Ilpumep onucanus ghpetina « O0o6pumvy 6 aexcuxone RuSentiFrames
Table 1. An example of the «Approvey frame description in the RuSentiFrames lexicon

H3mepenus ppeiima «Onodputs» | Onucanue
roles AO: TOT, KTO
onobpseT
Al: 10, 9uTO
omo00psieTcst
polarity AO0—ALl, pos, 1.0
Al1—AQ, pos, 0.7
effect Al, pos, 1.0
state AQ, pos, 1.0
Al, pos, 1.0

6 https://github.com/pytorch/fairseq/tree/master/examples/xImr
202

https://github.com/pytorch/fairseq/tree/master/examples/xlmr

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

Ta6n. 2. Pacnpedenenue exoxcdenuti omnouenuil 8 nexcuxone RuSentiFrames-2.0
Table 2. Distribution of occurrences of relations in the RuSentiFrames-2.0 lexicon

polarity Knace TonanabHocTH KonnuectBo

A0—AlL pos 2558
A0—AL neg 3289
author—A0 pos 170
author—A0 neg 1581
author—Al pos 92
author—A1l neg 249

Co3naHHBIC (PEHMBI CBA3aHBI TAKKE C «CEMEUCTBOMY CIIOB U BRIPAKCHHUH (JIEKCHYECKUX EIMHULY),
KOTOpBIE IMEIOT OANHAKOBBIE TOHATBHOCTH. JIEKCHUECKHE € ANHHLIBI, CBSI3aHHBIE C PPEHMOM, MOTYT
OBITH OT/EJIFHBIMH CJIOBAMH WIIM CJIOBOCOYECTAHUSIMH.

RuAttitudes-2.0 coxpansier o0mIyr0 CTPYKTYpy Jekcukona Bepcuu 1.0. B pecypce ommcano 311
(peiimMoB, cBs3aHHBIX ¢ 7034 JIEKCHUECKUMH EIWHUIIAMH, CPEeOu KOTOPHIX 6788 yHHKaIbHBIX.
Cpeau yHUKaNbHBIX BXOXIeHMH, 48% cocraBisitor rnaroisl, 14% — cyliecTBUTENbHBIE, U
ocrasmuecs: 38% — cinoBocoyeranusi. O61ee yrcno GppeiiMoB yBenuueHo Ha 12% npu cpaBHEHUH
¢ Bepcueit 1.0. TIpumep dopmara onucanus dpeiima «Omxodputh» npuseneH B Taon. 1. B Tabn. 2
MPEJICTABICHO paclpeae/icHHe BXOKICHUN pa3IHYHbIX THIIOB OTHOIIEeHUI B RuSentiFrames. J{is
NPOBEICHUs] aBTOMAaTHUECKOH pa3sMETKH B METOJE OIOCPENOBAHHOIO OOy4YEeHUs MoJelei
HCIIONIB3YETCS TOJIBKO OTHOIICHHS arcHTa CUTyanuu K 00bekTy (A0—Al).

3.2 HoBOCTHbI€ KONneKunu

Komnextmu NEW Sgase (2,8 MitH. HOBOCTHBIX TeKCTOB) U NEWSS| arge (8,8 MIIH. HOBOCTHBIX TEKCTOB),
WCTIONb3YEMBIC JJISl U3BJICUEHUS! OTHOLIEHWH, COCTOST U3 PYCCKOS3BIYHBIX CTaTe M HOBOCTEH
KPYIHBIX ~ HOBOCTHBIX HMCTOYHHKOB, CIIEIUAIM3UPOBAHHBIX ~ TOJUTHYECKUX CAKUTOB,
omyorkoBaHHBIX B 2017 romy. Kakmas ctaThs pa3zieneHa Ha 3aT0JIOBOK U COICpIKaHUE.

4. OnucaHue nodxoda

OCHOBHEIE MPEANOJIOKECHUA TOAX0Ja COCTOAT B CICAYIOIIEM:

L4 OTHOIICHUA MCEXKAY CYHIHOCTSAMH, YIOMHWHACEMbIMM B HOBOCTH, B OOJIBLINHCTBE CJIy4JacB
HanboJiee YeTKO U MPOCTO BBIPAXKAKOTCA B 3ar0JIOBKE HOBOCTH;,

e rmosBieHne npeamkara w3 RuSentiFrames (FRAME-BASED) B 3aroioBke MO3BOJSET
JIOCTaTOYHO HAaJIEKHO U3BJIEYbh OTHOIIEHUS MEXK/y UMEHOBAaHHBIMU CYIIHOCTSIMH;

e CYMMHpPOBAaHHE BBIAEICHHBIX OTHOUIEHMH IO OOJBIIONH KOJUICKIMH IO3BOJISICT BBIACIUTH
OCHOBHYIO TOHAJIFHOCTh OTHOIIEHIH Mex 1y cynrHocTsMu (PAIR-BASED dakrop);

e i1 (QopMHUPOBAHHS aBTOMATHYECKHA pPa3MEUCHHOH KOJUICKIMH BBIOMPAIOTCS 3arOJIOBKU
HOBOCTEH, B KOTOPBIX TOHAJIbHOCTh OTHOIIEHUH MEXKIY CYLIHOCTSIMH, BbIJIEJIEHHAsl HA OCHOBE
¢dpeiimoB (FRAME-BASED) coBmagaeT ¢ HaCUMTaHHOW TOHATBHOCTHIO MO KOJUICKITHH IS
atux cymHoctei (PAIR-BASED) — Tak Ha3sIBaeMbIe TOBEPEHHBIC OTHOIICHHS;

® B pPa3MEUYCHHYIO KOJUICKIIMIO TAKXKE BKIFOYAIOTCS MIPEUIOKEHUS U3 TeJIa HOBOCTHU C BRIOPAaHHBIM
3aroJ0BKOM, MOCKOJIBKY IPEAIONAracTcs, YTO B CPEAHEM TOHAIBHOCTh OTHOIICHHUS MEKIY
CYIIHOCTAMU BHYTPHU HOBOCTU COOTBETCTBYECT TOHAJIbHOCTU OTHOIIICHHWA B 3aIOJIOBKE. HpI/I 3TOM
MPEJIOKEHUS U3 TeJla HOBOCTH HMEIOT OoJice pa3sHOOOPa3HYIO CTPYKTYPY.

[omyuyeHHbI HAOOp MaHHBIX C ABTOMATHYCCKH PA3MEYCHHBIMHU OIICHOYHBIMU OTHOIICHUSIMH

noy4nn HasBanue RuAttitudes2017. Puc. 1 mumrocTpupyeT HpoLecce aBTOMATHUECKOH Pa3sMETKH

HOBOCTHOW KOJIJICKIIHU.

7 https://github.com/nicolay-r/RuAttitudes/tree/v2.0
203

https://github.com/nicolay-r/RuAttitudes/tree/v2.0

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

HosocTHas rpynnupoBKa Hosocthas
KONNEKLNS cyumocTer R —— RuWordNet KONAEKLMS
CHHOHUMBI
cyu.
HOBOCTHbIE
e e VMEHOBAHHDIE NPeANCXeHns
3aronoBkun —
TepMbI v
pas6op 3aronoBKka KONNEKUnsa duneTp 3arnoBoK C dunsTp
TEKTCTa CHHOHUMOB LD UERTE A fOBEPEHHBIMN MTPEANOKEH MR
34ronceoK C napamun
Pa3sMeYEHHbIMK
CYULHOCTSIMM
ID 3aroNOBOK Al0BEPEHHbIE
obnexTos AR naphi 3ar0n08kw | hunbTpoBaHHbIE
R (1A lal) HOBOCTH NpeasoXeHna
4
NEKCHKOH frame CUCOK nap Konnekuua
RuSentiFrames BXOKAEHUA ARt OTHOWEHUA RuAttitudes
chpeiimos 3aronoska

Puc. 1. Juacpamma pabouezo npoyecca uzgnedeHus OYeHOUHbIX OMHOUEHUTL; NPIMOY2OIbHUKYU — UCHIOYHUKU
UHGOpMayULL; KPYIHCKU — MOOYIU 0OPAOOMKU NOMOKA OAHHBIX, CIPEIKU — nepedaya UHMopMayuu Mexcoy
MOOYIAMU € YKazaHuem eé muna ¢ noonucu, 01s napwl q, |Aq| — abconromunas pasnuya eposimuocment
npunaonexlcHocmu nonodcumensHomy u ompuyamensvromy xiaccam (|Aq| € [0,1]), u |q| — uucno
COOMBEMCMBYIOWUX OMHOULEHUL
Fig. 1. Diagram of a workflow for extracting value relationships; rectangles - sources of information; circles
- data flow processing modules; arrows - transfer of information between modules with an indication of its
type in the signature; for a pair q, |4q]| is the absolute difference in the probabilities of belonging to the
positive and negative classes (| Aq | € [0,1]), and |q| - the number of relevant relationships

4.1 N3Bne4vyeHne oLEeHOYHbIX OTHOLUEHUW U3 HOBOCTHbIX CcTaTeun

[Iporecc w3BNeYEeHU OLECHOYHBIX OTHOIICHUI BKJIFOYACT BBHIMOJHEHUE IBYX IOCIEAOBATEIBHBIX

3TanoB 00pabOTKN HOBOCTHOM KOJIIEKLIMH

e oranm | — aBTOMAaTHMYECKOE COCTAaBICHHE CIHCKAa Map CYIIHOCTEH C MpeBaIHpYOIIEeH
TOHAJILHOCTBHIO OTHOILIEHUH U3 3ar0JIOBKOB HOBOCTEH U3 HEPa3MEUEHHOTO KOPITyca TEKCTOB;

e JTan 2 — NpUMEHEHHWE COOPaHHOro CHKCKa Hap CYLIHOCTEH C BBISBICHHOH TOHAJIBLHOCTBHIO
OTHOWICHUHA I OTOOpa JOCTOBEPHBIX OTHOIICHHI W3 HOBOCTHBIX 3arOJIOBKOB M TEKCTOB
HOBOCTE# 1711 POPMHUPOBAHUS aBTOMATHIECKH pa3MeueHHON Koyutekmu RUAttitudes.

PaccmoTpuM 001Iiie KOMITOHEHTHI MIOTOKa 00pabOTKH WH(POPMAUU 00EHX 3TANOB JJIS 3ar0jOBKa

HEKOTOPOTO JOKYMEHTa HOBOCTHOI KOJUICKIIUH.

Moayns pazbopa TekcTta IOApPa3yMeBaeT BBIINOJIHEHHWE IpeoOpa3oBaHMsi 3aroJioBKa

MIPE/ICTABICHHOTO MI0CIIEA0BATEIFHOCTEIO CHUMBOJIOB B TIOCJIEI0BATENLHOCTE TepMoB. ComepKkumMoe

3aroJIoBKa pa30HMBaeTCs Ha CJIOBA C BbIICIICHUEM 3HAKOB MPEIHHAHMS.

Moayne NER BeImonHsIeT 3a1a4y U3BJI€USHUS] MUMEHOBAHHBIX CYITHOCTEH M3 MOCIEI0BATEILHOCTH

TepmoB. [l 3Toro wmcmonp3yercs mpenoOydeHHas wmoxedb BERTmurt-ontonotes OMOIMOTEKH

DeepPavlov . Mozens o6ydena Ha koyutekuun OntoNotes [23], pasmeTka koTopoii BKmtodaer 19

TUIOB CyIIHOCTeH. Pe3ynbraroMm Takoro mMomyns obpaboTku siBisiercst cnucok CymHocred E =

[e1, ..., e|g|], KaX bl 57IEMEHT KOTOPOTO HPEJCTaBJIEH HOCIE10BATENbHOCTHI0 TEPMOB U TUTIOM.

Monyinb epynnuposku cywHocmeti UCTIONB3yeT MHOXKECTBO E ISt ITOTIOTHEHHS CITUCKa CHHOHMMOB.
[Mapa cymmocTedi e;,e; € E,i # j SBIAIOTCS CHHOHMMAaMH, €CIH COBNANAIOT MX HOPMAbHbIC
¢opmei.]I nomydeHnss HOpMaIbHOH (HOPMBI MIMEHOBAaHHOM CYIITHOCTH HCIIOIB3yeTC s

204

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

L JICMMAaTHU3NpOBaHHaA (bopMa 3HAUYCHUA (HOCJ’IGI{OB&TGJ’ILHOCTI/I TepMOB)s;

e pecypc RuWordNet [24] mist mostydeHHs Ha3BaHWsI CHHOHUMHYHOM TPYIITIBI
JIEMMAaTU3UPOBAHHOM (HhOPMBI (eCiIM 3HAYCHUE HANIICHO).

Tabn. 3. Cnucok 006epeHHbIX nap, U3eNeueHHuIX u3 Hogocmuou koanekyuu NEWSLarge, npu ocpanuuenusx

[Aq] = 0.8,]44] = 150, 20e q — npoussonvuas docmosepnas napa, cooepicumoe ynopsaoouero no Mg, napol

¢ oounakosvim snavenuem Mg ynopsodouenvt omnocumenvio |Aq|: no-yovieanuro (A > 0), no-eozpacmanuto

Table 3. The list of trusted pairs retrieved from the NEWSLarge News collection, subject to the constraints |A_q|

>0.8, | A_q | >150, where q is an arbitrary valid pair; content is ordered by A_q; pairs with the same value of

A_q are ordered relative to |A_q|: descending (A_g> 0), ascending

A0 Al |Aq| 144 |pos
MB/JI Poccun | Poccuiickas denepariust 1.00 256
Mytun MHuHHCTEPCTBO 0.91 150
BHYTPCHHHUX €T
Kanana VYkpanna 0.90 218
IMenTaron Vkpanna 0.90 147
[Topomenko HATO 0.88 244
IMoporieHko CoBeT HaLMOHAIBHOM 0.87 173
6€30MacHOCTH 1 000POHBI
[Mytnn Maxkpon 0.86 186
Adranucran Poccust 0.85 166
EBponelickuii | Ykpauna 0.84 273
[Tapnament
Ykpauna MB® 0.80 204
Tpamn Urni -0.79 24
Poccust WIrni -0.79 60
I'poitcman JHonbacc -0.82 23
Typuus NUrnji -0.83 14
Poccust Siemens -0.83 19
N3paunnp OOH -0.85 12
AzepOaitkan | ApMeHHS -0.93 14
Kapabax AzepOaiixaH -0.94 10
EC Siemens -1.00 0

B pesympTare MOXXHO aBTOMATHYECKH CrpyNIHPOBaTh Takue CHHOHUMBI, Kak: (CLIA,
Coenunennsle lItater), (Poccus, Poccuiickas @eneparust, PO).

Monyns FRAME-BASED BemmonHseT 3amady W3BICUCHHS JOCTOBEPHBIX OTHOIICHUH W3

HOBOCTHOTO 3arojIOBKa C MCITONIb30BaHueM JiekcnkoHa RuSentiFrames. 111 3Toro Ha mepBoM Iiare

U3 TOCTECIOBATEIEHOCTH TEPMOB H3BICKAIOTCS BXOXKICHHA (peiiMoB. J[lamee cocraBisieTcs

MHOXECTBO JOCTOBEPHBIX map cyirHocteid. [lapa (e;, ej), rae e;, e; € E cuuraercs 00cmosepHol,

€CJIM BBITIOJTHEHBI CJICYIOIIHE YCIOBUS:

® VMEHOBAaHHAs CYNIHOCTh €; YNOMAHYTa PaHbIIE €;;

® YYaCTHHKH €; U €; HE ABJISAIOTCS CHHOHUMAaMH,;

® YYACTHHKHM W BCE MMEHOBAHHBIC CYIIHOCTH MEXAYy HHUMH MPHHAMLICIKAT MHOKECTBY Opqiid,
kotopoe BritoyaeT: opranusauuu (ORG), moxeit (PER), reomonutudeckue cymnocta (GPE);

e JuIsi BceX (peiiMOB, BXOMSAIINX MEKAY YIaCTHUKAMH OTHOIICHUH, OTIPEIEICHA OISIPHOCTh
tuma AO—AL.

° OTCYTCTBYIOT npennomg «B» U «Ha» nepea ydaCTHUKaMHU OTHOIICHHH.

8 TIpumensiercs maker Yandex Mystem
® YcnoBue SBIAETCS Pe3yNbTaToM IPOBEIEHHUS TOTONHUTENBHOTO aHATM3a OIIMOOYHBIX PE3YIBTATOB.

205

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

KacaTenbHO ycnoBuS II. 5, HaJIM4He MPEAJIOTOB «B» U «Ha» B OOJIBIIMHCTBE CIIy4aeB CBA3AHO C
MECTOPACIIONOKEHHEM, KOTOPOe OOBIYHO HE SIBIACTCS CYOBEKTOM HJIM OOBEKTOM OTHOIICHUS:
Kpvive 6pocum w1306 Kuegye: «6» OOH. npedcmagam pe3onoyuio 0 npecmynjieHusix npomus
mooell «Hay YKpaunee, 6K104aowas youicmea u noXuujeHus.

Jran 1. 3anoaHenHe cnucka map. s HEKOTOPOro HOBOCTHOTO 3aroJIOBKA C MHOXKECTBOM
pa3ME4YeHHBIX B HEM OIIEHOYHBIX (pEiMOB, MycTh P — MHOXXECTBO HM3BJICYCHHBIX JOCTOBEPHBIX
oTHomIeHni (pe3ynbrar npuMeHenuss moayist FRAME-BASED, puc. 1). Tornma, xaxnas mapa
(e;,ej) € P OTHpaBIAETCA B ChUCOK Nap B CIEMYIOMEM popmare:

a = (d g9l 9u9; € G D

rie d € N —uMHEKC JIOKyMEHTa pacCMaTpPHBAEMOTO 3ar0JIOBKa B HOBOCTHOM KOJUIEKIMH, g;, g; €

N — HMHIOEKCHl CHHOHMMHYHBIX TPYII YYacTHUKOB B CHHCKE CHHOHHMMOB, a | — OLICHKa Iaphl,

KOTOpas Ha3HadaeTCs CIEAYIOINM 00pa3oM: pos (ECIH I BCeX BXOXKIECHUH (HpeiiMOB MEXIy €; U

ej onenka AO—Al omMHaKoBa, U paBHa pos), neg (HHAYE).

Takum 00pa3oM, pe3ylbTUPYIOIMHA cnucok nap (cM. puc. 1) mpencrapiseT co00i MHOMKECTBO

noctoBepHbIXx map A = {a;,a,,...qq}, H3BICYCHHBIX M3 BCEX 3aroJOBKOB JIOKYMEHTOB

HOBOCTHO KOJUIEKLIMH.

N3Baeuenne 1oBepeHHBIX map. 113 cocTaBieHHOro crnucka map (M. puc. 1), IpeACTaBICHHOTO

MHOKECTBOM A, MOXKHO BBIJICIUTH HAHOOJIEE MOJOKUTENFHO U OTPULIATEIbHO OPHEHTUPOBAHHBIC

napbl. Opuenmayusi HEKOTOPOH mapel ¢ = (g;, g;) K Kiaccy ¢ € {pos,neg} BbMUCIAETCA MO

dbopmyre:

[{{g, 9, |l = }]
4]

p(qlc) = (2)
rie Ag— NOJIMHOKECTBO MHOJKECTBA A, JIEMEHTBI KOTOPOTO COOTBETCTBYIOT mape q. Oyenounas
opuenmayusi apel g onpeaenseTcs 1o Gpopmyoie:

Aq = p(qlpos) — p(qlneg) 3)

PesysbTHpyommas oleHKa IS ¢ ONpPE/IEeNseTcs Ha OCHOBE 3HaKa BhIpaxeHus Gopmyiis 3. pos (A,>
0), neg (A;< 0). Takum oOpa3om, I U3BJICUEHHUS M COCTABJICHHS MHOKECTBA JJOBEPEHHBIX nap A’
HEOOXOIMMO 33/1aTh TOPOTrOBble 3HaYeHus 1A |A,| u |A,4|. Popmar npescTaBieHus 10BEPEHHOM
napel ¢ B MHOXKECTBE A’ CIle Iy FOIIMIA:

q =(9u9,,¢) (4)

B Tabn. 3 mpuBeneHHI MpUMeEpH! AOBEPEHHBIX Iap B pe3yibTaTe aHAIN3a HOBOCTHOW KOJUICKIMH
NEWSLarge iput [4,| > 0.8 1 |4, > 150.

Jran 2. U3BJeyeHne OLIeHOYHBIX OTHOIEHHUH. J[7151 HEKOTOPOTO HOBOCTHOTO 3ar0JIOBKA, MyCTh P
— MHOKECTBO M3BJICYEHHBIX IOCTOBEPHBIX OTHOIICHHUH (pe3yibTaT npuMeHeHus Moyt FRAME-
BASED, puc. 1). Moayns gurbmpayuu omuouwienuti BHITIONHIET 0TOOP OIEHOYHBIX OTHOIICHUH
Cpe MHOXeCTBa 1ocToBepHbIX map P. Ilapa (e;, e;) € P cuuraeTcs OLEHOYHBIM OTHOLIEHHEM,
eciu (g;, gj) COMEPKHUTCA BO MHOXKECTBE NOBEpeHHBIX map A’ M oueHKa (e;,e;) COBMAaeT C
OLICHOYHOM OpUEHTALMEN JOBEPEHHON Maphl.

OT0OpaHHbIE OIIGHOYHBIE OTHOIIEHMS Jajiee MepelaroTcsi Ha BXOA MOIYIIO @uibmpayuu
npeonodicenutl NI TOMCKA TaKUX K€ OTHOUICHHWH B NPEMIOKEHHAX HOBocTH. OIeHOYHOE
OTHOILIEHHE 3arojOBKa MPUCYTCTBYET B NPEIJIOKEHUHM HOBOCTH, €CIIU MPEATIOKEHHUE COIACPHKUT
yIoMuHaHue 00enx ydacTHUKOB. Ha puc. 2 paccMOTpeHO NpUMEHEHHE BTOPOro 3Tara Ipolecca
M3BJICUYEHUS OIICHOYHBIX OTHOIIEHWH Ui 3aronoBKa: « CLIAe He cHumym camkyuuneg ¢ PPe 00
so36paujenus Kpvimae».

206

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

3aro/oBoOK

TunnepcoHes CllIA.He CHUMYT CAHKIHH,=:C PP 10 BozEpamenna KprmMa.

l cma—poccuanes clua—KpeiMnes

Cnycok goeepeHHelx nap |4q| = 0.3,|4Aq| = 25

3anpoc PesyneTaT nomcka
CIIA—POCCH e napa HaiieHa, OlleHKH COBNAJAI0T: «cllay — «poccuay (pos: 329, neg: 68%)
CINA—KPBIMuy napa He HafigeHa

1 CIIA— PP neg

[pennoxeHue

Foccexperape CUIA: Pexc THIepCOH,, BEICTYNAA E Bploccene-Ha BcTpede riae MH/., BXxoZAIMX E COCTAE
HATOQg, 3asAB, 4T0 cAHKIWK ¢ Poccni: 6y 4y T CHATEI TONBKO NOC/e Bo3Bpaienus KpeiMas, coobmaet CNNa

Puc. 2. Ilpumenenue memooa PAIR-BASED 0na uzéneuenus 00CmosepHuIX nap u3 3a201068Ka ¢ NOCAe0VIOUWUM
8bINOIHEHUEM QUIbMPpaAyUL OMmHoueHutl u nouckom oosepernwvix nap (CLLIA— P®neg) 6 npednodicenusx
HO80CMU
Fig. 2. Application of the PAIR-BASED method to extract valid pairs from the header, followed by filtering
relations and searching for trusted pairs (USA — RFneg) iN NEWS sentences
Jnst kaxaoro JOKyMEHTa HOBOCTHOW KOJUIEKIMHM JOIOJIHUTENBHO MPOBOAUTCS pPa3METKa
HEUTpaJabHBIX OTHOWIEHUH. [l HEKOTOpOro [JOKyMEHTa € MHOXECTBOM pa3MEUEHHBIX
MMEHOBAHHBIX cymiHOCTel E, mapa (e, e,), €;,e, € E 3aroioBKa WM MPEJIOKEHUS CUATAETCS

HEUTpaJIbHOMN, €CIIN BBIIOJIHEHBI CIEAYIOIUE YCIOBUSL:

L4 CYIIHOCTB €1 YIIOMSHYTa B TEKCTEC NEPE €, U UMECT TUITI U3 MHOKECTBA Ovalid;
L4 CYIIHOCTB €, UMECT TUIT LOC u He HaxXOOUTCS B CITHCKE CTpaH/CTOJ'II/IL[;

® YYACTHHKH €, U e, He MPUHAYICKAT OTHON CHHOHUMHUYHOW TPYIIIE, & TAK)KE OTHOIICHHUS
(e1,e;) 1 (e,, e;) He comeprKaTcs B pa3MeTKe OIICHOYHBIX OTHOIICHHH.

4.2 ABTOMaTn4yeckas pasmeTKa OTHOLUEHUI U aHanuU3 pe3ynbTaToB

IlodTanHas oleHKa KOJHYECTBA W3BJICUEHHBIX MJAHHBIX B pe3yibTaTe NPHUMEHEHHS IOTOKa
00paboTku (cM. puc. 1) K HOBOCTHBIM KOJUIEKIMSM TMpHBeaeHa B Tabnume 4. Pesymprarom
NPUMEHEHUS TOAXO0Ja aBTOMAaTHYECKOW pa3MeTKH HOBOCTHBIX CTaTeil CTadM KOJUICKIIUH
RuAttitudes2017, co3maHHBIE B Pa3MUYHBIX BapHaHTaX HE3aBHCHUMO B pe3yinbTaTe 00paboOTKH
NEWSgase 1 NEW S| arge. PaccMoTpum moapoOHee Kaxaplii 3Tar 00padOTKH HOBOCTHBIX TEKCTOB.
Ha nepBoM sTame cmcOK map 3aloHSAETCS OTHOIIEHMSIMH, KOTOpPbIe OBUIM M3BJIEYEHBI METOJI0M
FRAME-BASED. Cpenu Bcex 3arojloBKOB OTOMPAIOTCSl OTHOIICHHSI, YYaCTHUKHA KOTOPBIX HMEIOT
THI U3 MHOXeCTBa 0,,4;;4. [laniee, IpPOIEHT OTBEPrHYTHIX OTHOIICHN OTHOCHTEIBHO TaKOTO YnCIIa
coctaBun 65%, rne: 38% oTHomeHWH Oe3 BXOXIEHHWH (peiiMOB MexIay cymHocTsMHu, 12%
OTHOIICHWH, JUI KOTOPBIX CYHIECTBYIOT BXOXICHUS (PEHMOB ¢ HEONPENCIICHHONW MOISIPHOCTHIO
A0—Al, n 15% c HammumeM npemyioroB «B» M «Ha». TakuMm oOpazom, 35% OTHOIIEHHH OT
HAYaIbHOTO KOJIMYECTBA OBLTH OTOOpAHBI KaK «IOCTOBEPHBIC» U MEPEHaHBI B CHUCOK NAp.

Ha Bropom srame mnpousBoanuTcs (GWIbTpalus OTHOLIEHWH W3 3arojOBKOB M IPEAJIONKEHUH
HOBocTed (cM. Tabm. 4). [l u3BiIeyeHns TOBEPEHHBIX Map ObUIM BBHIOpaHBI HapaMeTpsl: |Aq| =
0.3, |q| = 25. B pesyabrare, 22-24% MOCTOBEPHBIX OTHOLICHHN W3 3aroJIOBKOB OBLIH
COTIOCTABJICHHI C JIOBEPEHHBIMH MTApaMH, CPEAH KOTOPBIX 79% OTHOIICHUH COBMAAANN C OIICHOYHOM
OpHEHTAIled COOTBETCTBYIOIIMX map. HOBOCTHM C TakMMH OTHOWICHWSMH B 3aroJIOBKax
nepenaBajich Ha d3Tan QUIBTPAIlUM TMPEAJOKEHUH. JlOMONHUTEIBHBIA BBIOOP HOBOCTHBIX
NPe/UI0KEHHUH TTO3BOJIMI YBEIMYHUTH 00BbEM pa3MeTku Ha 89%.

O0beM HEUTpanbHO pa3MEUEHHBIX OTHONIEHWH COCTaBUI 5-6% OT oOIIero 4mucia OIEHOYHBIX
oTHOmeHNH Komekiid RuAttitudes2017. Pacumpernbie Bepcuy KOJUIEKIUH HOTYYHIN Ha3BaHUSA
2017-Base u 2017-Large anst NEW Sgase t NEW S arge cOoTBeTCTBeHHO. Cpe/ii 00bEKTOB TaKHX Map,

207

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

B OONBIIMHCTBE CitydaeB, kK cymHocTH Tura LOC oTHOCATCS: MOps, 03€pa, OCTPOBa, PEKH, U T.II.
(cM. Tabm. 5).

Tabn. 4. Konuuecmeennas OYeHKda OAHHBIX ABMOMAMUYECKOU pasmemxku mexkcmoes HO60CMHbIX KOJL’Z@KL[M?Z
NEWSsase u NEWSLarge, 6blO€ierHble 3eIeHbIM Y8eMOM PE3YIbMAambl COOMBENICMEYION KOIUYECNEEHHOU
OYeHKe pecypco8, NOPOACOCHHBIX 6 pe3yibmanie 00pabomKu HOBOCMHBIX KOLIeKYULl O8YMsL IManamu u
NnpuUMeHeHUs: pa3mMemKy HeumpaibHblX OMHOUWEHUL

Table 4. Quantification of the data of automatic marking of texts of news collections NEWSegase and
NEWSLarge; the results highlighted in green correspond to a quantitative estimate of the resources generated
as a result of processing news collections in two stages and applying the markup of neutral relations

Jran ITapamerp

Komnekmus THII HOBOCTHOM KOJUIEKLIMHA NEWSgase NEWSLarge
JTOKYMEHTBI 2.8 - 108 8.8 - 108
FRAME- OTHOIICHHH ¢ yYaCTHUKAMU MEXIY 00beKTaMH 867481 2481426
BASED OtHoIIeHHMI 6e3 ppeiiMOB MEXIY yIaCTHUKAMHU 38% 39%
OtHorennit 6e3 AO—A1L 12% 12%
OTHOIICHUI, ITepesl y4aCTHUKaMU KOTOPBIX 15% 15%

[PEIIOTH «B» U «HA»
OTHOIICHHUIT U3 3ar0JIOBKOB 302319 843799
Cnmcok map Yucino map 100329 247876
J/loBepeHHBIX 1ap 887 2372
(14¢] 2 03,]44] = 25) 1% 1%
OTHOIICHHH COMOCTABICHHBIX C JOBEPEHHBIMH 65588 200009
napamu 22% 24%
OunbTpars M3BnedeHo 65588 200009
OTHOILICHU - PasHas orenka 13583 42627
3aroJIoBKa - OMHAKOBAs OLICHKA 21% 21%
52005 157382
79% 79%
dunbTpanus 3BrieueHo npeioKeHun 39152 117791
RuAttitudes Bepcust 2017-Base | 2017-Large
HoBocreit 44017 134442
OTHOIIEHNIT HAa HOBOCTH 2.28 2.26
[IpemtoxxeHnii Ha HOBOCTH 0.89 0.88
Heiitpanshaele |Bepcus 2017-Base | 2017-Large
OTHOILLICHHA JToOaBIeHO OTHOIIEHHH 5428 17790
5.72% 6.23%
OTHOIICHHIT HA HOBOCTB 0.12 0.13
OTHOILICHUH Ha TIPEIIOKEHHE 0.03 0.03

Tabn. 5. [Ipumepuvl Hauboee HACTMOMHBIX, HEUMPATLHO PAZMEUEHHbIX OMHOULEHUL U3 KOPNYCd
RuAttitudes2017Large
Tab. 5. Examples of the most frequent, neutrally marked relations from the corpus RuAttitudes2017 Large

A0 AL Bxo:xnenmii [[IpoueHT
KH/P KOpEHCKHUil MOIyoCcTpOB 301 1.7%
Poccus OJIVKHUIA BOCTOK 232 1.3%
CIIA bapeH1eBo Mope 204 1.1%
Upan OJIVKHUIA BOCTOK 189 1.1%
Snonus [Kypubl 172 1.0%
CIIA OIIM>KHMIT BOCTOK 166 0.9%

208

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

PO Kypuiibt 163 0.9%
Bomnrorpan [peKa BoJTa 155 0.9%
TIpaBurensctBo PO Bousra 120 0.7%
Snonust FOsxubIit Kypusr 115 0.6%
KH/P Tuxuit Oxean 103 0.6%
Cupust Tusepuaznckuit O3epo 93 0.5%
HATO CeBepoaTiiaHTUYECKUI 92 0.5%
T'yam Tuxuit Oxean 79 0.4%
Wzpaunb Tusepuaznckuit O3epo 74 0.4%
Poccus IApKTHKa 73 0.4%

5. 9kcnepumeHmMbI

5.1 Kopnyc RuSentRel

Koprryc mpencrasnsger coboit 75 OOMBIINK aHATUTHYECKIX TEKCTOB IT0 MEXTyHAPOIHOM IMOTUTHKE
¢ nopraia MHOCMMUM (insomi.ru), pasmedeHHbIX ¢ BbigencHueMm mopsaka 2000 omeHOYHBIX
OTHOIICHUN MEXIY YIOMSHYTBIMH B TEKCTaX CYMIHOCTSMH. Ta0ia. 6 MPUBOAUT KOJIMICCTBCHHEIC
JMaHHBIE KOpITyca 10 (PUKCHPOBAHHBIM pa3[eleHUsIM JOKYMEHTOB Ha OOydYaroIlee W TECTOBOE
MHOecCTBa. B Tekcrax cTaTeil aBTOMaTH4eCKH pa3MedeHbl IMEHOBAHHBIE CYITHOCTHU IO YETHIPEM
kinaccam: nuuHoctu (PER), opranmszamuu (ORG), mecta (LOC), reomoiauthdeckue CYIIHOCTH
(GEO). Obmree gncio pa3Me4eHHBIX IMEHOBAaHHBIX CYITHOCTEH cocTaBisaeT 15.5 Thicsay.

Pa3zmMeTka oTHOIIEHHI NoieNieHa Ha fBa THMa: (1) oTHOLICHHE aBTOpa K YIOMSHYTOW HIMEHOBAaHHOM
cyurHocTH; (2) OTHOLICHHS CyOBEKTOB, IEPEIAHHOE OT OJJHUX UMECHOBAHHBIX CYITHOCTECH K APYTHM
UMCHOBAHHBIM CYITHOCTSIM. OTHOIICHHUS (DUKCUPYIOTCS TPOHKAMH, W PACCMATPUBAIOTCS HE IS
KOKIOTO TPEIJIOKEHHUs, a Juid JOKyMeHTa B 1eqoM. OIlleHKa OTHOIICHHUS MOXET OBbITh
oTpUIaTeNbHON (neg), mMubo MoJoXkuTeNbHOU (pos); Hampumep: (Astop, CIIA, neg), (CHIA,
Poccus, neg). HefitpanbHble, a TakKe OTCYTCTBYIOIINE OTHOIICHUS B KOPITyce HE 3a(PHKCHPOBAHBI.
Tabn. 6. Ilapamempor kopnyca RuSentRel-1.0 ¢ ¢huxcuposannvim pazbuenuem Ha 06yUaiowyIo u mecmosvie
KoJulekyuu

Table 6. Parameters of the RuSentRel-1.0 corpus with a fixed division into training and test collections

Kounexnus Oo0yuyaromas (TecroBas

JlokymMeHTOB 44 29

[pennoxenuit (cp./mok.) 74.5 137
Ynomsanayteix cymHocteit (NE) (cp./mox.) 194 300
CymrHocTei (cp. Ha JOKYMEHT) 333 59.9
[Tos10XHTEIBbHBIX Map CYHIHOCTEH (Cp./I0K.) 7.23 14.7
HeratuBHbIX map (cp./I0K.) 9.33 15.6
PaccrosHne mexny NE B mpeasioxeHu (B c1oBax) 10.2 10.2
HeiirpanpHbix map (cp./moK.) 120 276

5.2 OnucaHune aKkcnepmMmMmeHTa

IIycTs 3a7aHO IOJMHOKECTBO TOKYMEHTOB Koyutekunn RuSentRel, B KOTOpoM Kax b1 JOKYMEHT
npencranieH mapoit: (1) TexcT, (2) CIUCOK BBIEICHHBIX HIMEHOBAHHBIX cyntHocTel E. Micnomb3ys
METOBI MAIIMHHOTO 00yUEHMS, U KaXKI0T0 IOKYMEHTa TpeOyeTCsl COCTaBUTh CIIMCOK OIIEHOYHBIX
OTHOIICHUH MEXAy IapaMy CyIiHocTed MHokecTBa E. OIIGHKa OTHONICHHS MOXET OBITh
oTpunatensHor (neg), nubo monoxurenbHoU (pos) (cormacHo m. 5.1). CocraBiieHWE CHHCKa
BBITIOJTHACTCA B AIBYX HE3aBUCHMBIX SKCIIEPHAMEHTAX

209

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

o Osyknaccoeviil [5] — HEOGXOAMMO OINPEIETUTH OLIEHKH 3aBEI0MO H3BECTHBIX Iap;

° mpe)CKJlaCCOGblIZ - HCO6XOHI/IMO M3BJICYb OLICHOYHBIC OTHOLICHUA U3 JOKYMCHTA.

KoHTekcT

['OBOpPHTE 0 pazfieIeHMH KABKA3CKOTO PETMOHA W3-3a KOHGpoHTaUuH PoccHB oy 1 Typnmm.;; Moka He
IPHXOSUTCH, XOTH ONACHOCTE ECTh.

!

[IpefcTaBneHNe NocaeJOBATEALHOCTEH A7 A3BIKOBBIX MOJenei

TextA: ToBOPHUTE 0 pasaenenuH E 13-3a koHbpoHTAUMH Emp¥ EosHe-TIPHXOAUTCA , XOTA OMACHOCTE
ecTb <DOT=.

TextBoa: Esubjk EoljB KoHTeKCcTE & Eoty 11 B

TextByL: YTo BBl gyMaeTe no noeody oTHomeHUA Eqy K EoyB koHTeKeTe @ « Esupy 11 Eopin 7

Puc. 3. Ilpumep obpabomxu xonmexcma 6 nociredosamenvrocmu (TextA) u npeocmasnenuii
scnomozamenvrou ungopmayuu (TextB) 0na nooayu na 6x00 a3vikoevim mooenam BERT; ons TextB
ucnoavsytomes gpopmamut: 3adanue sonpoca (QA), 6v1600 no xonmexcmy (NLI)

Fig. 3. An example of processing context in sequence (TextA) and representations of auxiliary information
(TextB) for input to BERT language models; for TextB, the following formats are used: question asking (QA),
output by context (NLI)

Onucanue moaxona. OCHOBHOE MPENIOJIOKEHUE O HAJIWYUM OLEHOYHOI'O OTHOILEHUS MEXITY
Mapod CYIIHOCTEH B TEKCTe JOKYMEHTa — OTHOCHUTEIHHO KOPOTKOE PACCTOSIHHE MEXIY HHUMH.
Konumexcm — orpaHudeHHBIN M0 JUMHE (QPArMEHT MPEAJIOKCHUS, COACPKAIIUNA HE MEHEe IBYX
MMEHOBaHHBIX CYIIHOCTEH, B KOTOPOM BBIAEJIEHa Napa (€s, €,) CYIHOCTEH «CyObeKT—>00BEKT».
Takum o0Opa3oM, JJsl HEKOTOPOH Maphl CYNHOCTEH MOXKHO COCTABUTh MHOYKECTBO KOHTEKCTOB.
KonTeker paccMaTpuBaeTcst KaK OyeHOuHbll, €CII COOTBETCTBYIOMIAS Tapa (€, €,), s KOTOpOi

TaKoW KOHTEKCT ObLI COCTaBIIEH, MPUCYTCTBYET B pa3MeTKe TOKYMEHTA.

O0padoTka M u3BJIeYeHUE KOHTEeKCcTOB. [IprMep 06paboTKM KOHTEKCTOB I MOJaul Ha BXOJ
s3p1Kk0BBIM MoJensiM BERT npusenen na puc. 3. BxogHasi mocieoBaTeIbHOCTh MOXKET COCTOSITh
u3 onHol (TextA) mwm nByx mocnenosarensHocTel (TextA+TextB), coenqmHeHHBIX pa3aeanTeneM.
Ecmu ocHoBHas wacTh (TextA) ucnonp3yercs A GOpMaTHPOBAHHOTO MIPEACTABICHHUS HCXOIHOTO
KOHTEKCTa, TO JOMOJIHUTEIbHAs IOCIeIOBaTeIbHOCTh TextB MokeT OBITH MCHONB30BaHA LIS
mepefadydl BCIIOMOTaTeNlbHOW WHpopMmanuu. B pabore paccMOTpeHBI clieayromue (opMaThl
BXOJIHBIX TIOCTIeIoBaTenbHOCTEH [12]:

Takum 00pa3oM, MNpOLECC HW3BJICYCHUS OLCHOYHBIX OTHOILICHHH MOXeET OBITh CBEOCH K
KJIacCH(HMKAIIMOHHOW 3aJaye Ha YPOBHE KOHTEKCTOB C MOCICAYIOIMM OTOOpaKeHHEM
KOHTEKCTHBIX OTHOIICHUH Ha ypOBEeHb JOKyMeHTa. OIeHKa KOHTEKCTA C BBIICICHHBIM B HEM Mapoii
(€5, €,) MOXKET OBITh OTPHLIATEIBHON (Neg), MOIOXKUTENBbHOHN (Pos), Win Helmpansrot (new). s
0TOOpa)kKeHHsT KOHTEKCTHBIX OTHOIICHHWH Ha YpOBEHb JOKYMEHTOB HCIIOJIB3YETCS BBIYHCICHHE
CPEIHEero 3HAYeHMSI CpEeOM MOJYYEHHBIX OLIEHOK II0 BCEM KOHTEKCTaM pacCcMaTpHBacMOro
OTHOILCHUS MemoooM 0n0coeanus [25].

e C — ucronp30BaHKE TOCIEA0BaTeNFHOCTH Oe3 paszaenenus (TextA);
e QA — nononnenue TextA Bompocom B TextB;
o NLI — mommomaenne TextA BEIBOJJOM OTHOIICHHUS 110 KOHTEKCTY B TextB.

B ciydae HEHpOHHBIX ceTed HCIOJNB3yeTCsl KOHTEKCT Oe3 00aBIeHUS BCIIOMOTATEILHON
HH(bOpMaHI/II/I. 21.]'[5[KOHTCKCTa MPUMEHAKOTCA TOIOJIHUTCIIBHBIC Hpe06pa3013aHI/m: JIEeMMaTu3anusa
TEpPMOB, pa3MeTKa 3HAaKOB IIPENMHAHMS, pa3MeTKa BXoxaeHud ¢perimoB [26, 27]. B mnemsx
YCTpaHEHHUSI BO3MOXXHOCTH TPHHATHS PEHICHUS MOJCISIMH Ha OCHOBE CJIOB M CIIOBOCOYCTAHUH
CYIIHOCTEW M YYaCTHHUKOB OTHOILICHUS, IPUMEHSIETCS MacKuposaHue cywnocmel. VIcionb3yoTcs
CJIEIYIOLIHE THITBI MACOK: Esubj (CyOBEKT U €0 CHHOHHUMBI), Eobj (00BEKT 1 ero CHHOHUMBI), U E st

210

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

OCTaNBbHBIX cymrHocTed. Tabn. 7 TPHUBOAWT KOJWUYECTBEHHBIC IaHHBIC IS W3BJICUYCHHBIX
xontexkctoB’ m3 xommeknmii RuSentRel u RuAttitudes. B omocpenosanHOM 00y4eHHH
UCIIOJIB3YIOTCS JIBE BEpCHU pa3MedeHHbIX kKopiycos: 2017-Base, 2017-Large.

Tabn. 7. Yucio KoHmekcmos, u3eieueHHblX Ha dmane no020moeKu OaHHbIX u3 Koiekyuti RuAttitudes u
o6yqa10u4e20 MHOIHCecmea KoleKkyuu RuSentRel; MAKCUMATIbHO donycmumoe HYUCTIO MePMO6 6 KOHmeKcme
ozpanuyieHo 3Haveruem 50

Table 7. The number of contexts extracted at the stage of data preparation from the RuAttitudes collections
and the training set of the RuSentRel collection; the maximum number of terms in a context is limited to 50

Konnexuus pos neg neu
RuSentRel (06y4aroriee MHOKECTBO) 551 727 6530
RuAttitudes (2017-Base) 38809 55725 4723
RuAttitudes (2017-Large) 123281 | 161275 | 15429

Onenka kadecTBa pasMeTkH. [lIi HEKOTOPOTrO MOKyMEHTa KOJUIEKIIMH, OLIEHKa KauecTBa
pa3sMeTKH OCHOBaHa Ha MOACYETe METPUK TOYHOCTH (P), momHOTH! (R), u Fy-Mepsl A7 KakKIoro u3
OLICHOYHBIX KJIaCCOB B OTAEIBHOCTH. [/ OLIEHKU pe3ybTaTa Ha MHOKECTBE JOKYMEHTOB pa3Mepa
n duxcupyetcs nokasareib Ff, .., KOTOPBIA B CBOIO 04EPEIh OCHOBAH HA BBIYMCICHHH MAaKpPO-
ycpenHeHuH Fi _p, 400 HAJL JOKYMEHTAMHU 110 Ka)KJIOMY U3 OLIGHOYHBIX KJIACCOB B OT/ENBHOCTH:

n n
1 _ 1 _
Flp—oniacro = E z Flpos(l) Flrl—erglacro = E z Flneg (L) (5)
i=1 i=1
pos neg
F{nean = (i macre er FiZmacre) 109 (6)

®opmaTthl 00yueHus Moaeieii. O0ydeHre MOIETeH MIPOBOIMIOCH B CIICAYIOMINX PEKAMAX:

e obOyuenue ¢ yuumenem — OOyueHHE HA COCTABJICHHBIX KOHTEKCTaX OLICHOYHBIX OTHOIICHHN
py4HOI pa3meTkH KouteKiuu RuSentRel oOy4aroriero MHOKeCTBa JOKYMEHTOB (CM. TaOJIHILY
6);

® npuMeHeHue Onocpedo8anHo20 o00yueHusi — OOyUCHHE MOJIENeH Ha OCHOBE KOHTEKCTOB
OIICHOYHBIX OTHOIIEHWI Kommekiuii RuSentRel (oOyuarormmee MHOXKECTBO ITOKYMEHTOB) H
RuAttitudes.

OmnocpenoBaHHOE 00yUEHHE BBIIOJHAETCS B (hopMaTax:

® npedobyuenue ¢ nocieoyrOWUM 0000yueHUeM — MOJICITN H3HAYATEHO 00yJaInCh ¢
UCIIONIB30BAaHHUEM OIIOCpe0BaHHOrO 00y4yeHus RuAttitudes, mocne koToporo ciemyer
0oobyuenue KoHTeKcTamMu Koyuiekmu RuSentRel;

® 00veduHeHHOe 0byueHue — IPOIIeCC 00yUeHUs ¢ 00bETUHEHHBIM HAOOPOM JaHHBIX KOJUICKI[HIA
RuAttitudes u RuSentRel (Tonbko HelipoHHBIE CETH);

Ilepen oOydeHHeM MpUMEHSETCS OalaHCHPOBKA JAaHHBIX [0 YHCIYy KOHTEKCTOB KJIaCCOB
TOHAIILHOCTH Memodom oyonuposanus (Oversampling) s 1ocTHKeHUST 00beMa, paBHOTO YHCITY
KOHTEKCTOB HaMOOJIBIIETO Ki1accall,

Jnst 00beIMHEHHOTO O0YYEHMsI, aNTOPUTM OOBEIMHEHUS 3aBUCUT OT (popMaTa OIEHKHA MOJETEH.
IIpu xpocc-eanudayuonnom, B KaXIOM pa3dWeHMH oOBeAMHsETCS Koymekius RuAttitudes c
KaxapiM ooydaromum 610koM RuSentRel. Tpu ¢puxcuposannom, oGyqaroniuit Habop npeacTaBiseT

10 TTapameTp, OTBEYAION[MH 32 MAaKCHMAIBHO IOMYCTUMOE PACCTOSIHHE B TepMaxX MEXIy YyJaCTHHKAMU
OTHOIIICHUI KOHTeKcTa [26, 27] He paccMaTpUBAeTCs, TaK KaK TaKOe OrpaHWYEHHE OKa3bIBAaeT BIMSHHE HA
Pe3yJIBTUPYIONIYIO Pa3METKY U OTCYTCTBHE B HE HEKOTOPBIX KOHTEKCTOB.

1 B ciyyae o6benuHeHHOro obydenns Ha komtekuusax RuSentRel n RuAttitudes, GanaHcupoBka NpuMeHseTCs Iocie
00BEANHEHNUST U3BJICICHHBIX KOHTEKCTOB 00EHX KOJUICKIIHIA.

211

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

coboit komOuHarmio RuAttitudes ¢ ¢ukcupoBaHHBIM 0O0yYaIONIUM MHOXKECTBOM JTOKYMEHTOB
RuSentRel.

IMapamerpsl oOydeHusi mMogeseil. J[1s1 HEHPOHHBIX CETEH HM3MEPEHHUE CpPEIHUX 3HAUYCHUH
mounocmy IPOBOANIIOCH KaXkable 5 a1ox. OneHKa MoAenei Mpou3BOANTCS Ha OCHOBE PE3YJIbTATOB
nocieHel 3moxu o0yderus. [Iponecc oOydeHns 3aBepIIacTCs B CIydae MPEBBIICHHS JIMMHTA B
200 smox. s m3bexxkaHUS MpobieM mepeoOydeHHsT MoJeNel MpeIyCMOTPEHO HCIIONB30BaHHE
MmexaHu3Ma dropout. B kauecTBe mapaMeTpoB HEHPOHHBIX CETEH UCIIONB3YIOTCS HACTPOHKH pabOThI
[26]. Bribop xkoaddurmenra ckopoctn oOydeHuss 3aBucen oT Qopmara oOywenus: 0.1
(o0benHEHHOE M TpenBapuTeibHoe o0yueHue), 0.01 (nooOyuenue). [IpenBapurensHoe oOydeHme
SI3BIKOBBIX MOJIENIEH COCTaBisieT 5 omox. B kauecTBe HacTpoek OOydeHHs SI3BIKOBOI MOJENH
UCTIONB3YIOTCS MapaMeTphl I0-yMOJYaHHIo [7], 32 MCKIIOYEHHEM IapameTpa HporpeBa MOJEIH
(IpuMeHeHHe TIOBBIIIEHHOW CKOpPOCTH OOy4YeHWsl Ha HAdaJbHOM JTare). 3Ha4eHHUE TaKoro
kodpdunnenta paBHo | Ha drtame mpemobydenus moxenu, u 0.1 Ha 3Tame mooOydenus (Imo-
ymomganuoo). OrpaHudeHre 10 UIMHE BXOAHOM MOCIIeN0BAaTEIFHOCTH BEIOpaHO B 128 TOKEHOB.
Takoe orpaHn4eHHe MO3BOJISIET IMOKPBHITH x95% mpuMepoB 0e3 TPOBEACHHS YCEUCHHH UINMH
KOHTEKCTOB.

5.3 OnncaHne mopgenen v pesynbTaTbl UX NPUMEHEHUA
Crnincox Mojieneit HeHpOHHBIX CeTel, BRIOPaHHBIX AJIs SKCIIEPUMEHTOB:
e CNN, PCNN — mMozxenu cBepTOYHBIX HEHPOHHBIX ceTeit [28];

o AttCNN., AttPCNN. — mMomenn ¢ KOTUPOBIIMKAMH Ha OCHOBE MEXaHH3Ma BHHUMAaHHS, e
yKa3plBaeT HAa TPUMEHEHUS Yy4acTHHKOB OTHOWCHHS (Eop, Esupj) B KauecTBe acmekToB B
MeXaHu3Me BHUMaHus [26];

e LSTM, BILSTM, Att-BLSTM [26] — MozaeH ¢ KOAUPOBIIMKAMHU Ha OCHOBE PEKYPPEHTHBIX
HelpoHHbIX ceteir LSTM [29].

CIHUCOK HCTIONIB3yeMBbIX s3bIKOBBIX Mojieeii: MBERT [7], RUBERT, SentRuBERT.

OOyuenne c yuureneM M JooOydeHue Mopeneid uccienoBaiocs ¢opmatoB {C, NLI, QA},

paccMoTpeHHbIX B 1. 5.2, IlpenoOydeHnue Momenell BBIMOJHSIOCH TOJBKO HAa KOHTEKCTaX,

npezcTaBiaeHHbIX B popmare NLI (nanee o6o3Haueno kak NLIp).

Pesynbrarhl pukcupoBanacek B cleayromux Gopmarax:

e F1% —ycpennennwii nokasatens F{Y ... B pamkax 3-KpaTHOMN KpOCC-BalMIALMOHHOM
NIPOBEPKH; pa3OMeHMs] MPOBEJICHBI C TOYKM 3PEHUS COXPAHEHWs OJMHAKOBOTO 4YHCIA
MIPEATI0KEHUH B KaXIOM U3 HUX;

e F1,—mnoxka3atenb F;_;cqn, Ha TECTOBOM MHOXECTBE (CM. Tabmuiry 6).
Jna pe3ynpTaToB Mozeneil, o0y4eHHBIX C MPUMEHEHHEM OIocpenoBaHHOro obyueHus (Fls) u
obyuenus c¢ yuuteneMm (F1lp), OIeHKa TpUPOCTAa KadecTBa OIOCPEOBAHHOTO OOydYEHUS
M0JIpa3yMeBaeT BBIYKMCIEHUE NPOLEHTHOI'O COOTHOLIEHUS 10 (opMyJIe:

F1,

A(F1) = (- 1) -100 (6)

F1,
Pe3yabraTsl HeHpPOHHBIX ceTeii. B Tabn. 8 mpencraBieHbl pe3yibTaTbl AKCIIEPUMEHTOB IS
MoJienel HelpoHHbIX ceTeii'?. CpeHuii Pe3ysbTaT Mo BCeM MOJIENAM IPU 00yYEHUH C YUUTEIEM
NIPUBEJICH B TOCIEAHEM psany Tabmuusl. PesdynpraTel Ha (uKcHpoBaHHOM F1, Bbme, 4eMm IO
merpuke F1%, na 4% B ciaydae OBYKIacCOBOTO 3KCrepuMeHTa Ha 10% TpH TPEXKIacCOBOi
knaccudukanuu. [Ipn 1oo0ydeHnn MoJieneid, MpUPOCT KadecTBa BappUPyeTCs B Auanazone 2-5% u
x0.4-7% mis IByX M TPEX-KIacCOBBIX ()OPMATOB COOTBETCTBEHHO. [IpM COBMECTHOM OOydYCHHH
TaKoW TOKa3aTellb YBEIUYHUBAETCS JIBOE B CiIydae ABYKJIaccoBou kiaccuduranuu (5-9%) u 6onee

12 https://github.com/nicolay-r/neural-networks-for-attitude-extraction/tree/0.20.5
212

https://github.com/nicolay-r/neural-networks-for-attitude-extraction/tree/0.20.5
https://github.com/nicolay-r/neural-networks-for-attitude-extraction/tree/0.20.5

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021

r., cTp. 199-222

geM B 3 pasza mpu TpexkiaccoBol knaccudukarmmu: x10.5% mo Flo n 223% mo merpuke Fle.

HauGonbmmii mpupoct KauecTBa J0CcTUraeTcs npu ucrosbzoBanun RuAttitudes2017 arge.

Tabn. 8: Pesynomamol npumeHeHUs onocpeoo8anHozo obyuenus 0 mooenell ¢ KOOUPOSWUKAMU HA OCHO8e

CB8EePMOUYHbLX U PEKYPPEHMHbLX HeﬁpOHHle cemed, a makaice mMooeell ¢ MexaHuzMom BHUMAHUA,

pe3yIbmamyl 06YUEHUsL ¢ yUUmeneM ommeueHsl NPOYepKoM @ KoNoHKe «Bepcusi RA», Haunyuwuil pe3yivbmam
N0 Kaxcoou MoOeu 8blONEH JHCUPHBIM WPUDMOM, Pe3yTbmansvl ONOCPe008aAHHO20 00yUeHUs,

npeocxoosuue AHAN02U Hble NPU OOYYEHUU C YYumenem ommeyeHbl NoOYepKUSaHuem

Table 8. Results of the application of distant supervising for models with encoders based on convolutional
and recurrent neural networks, as well as models with an attention mechanism; supervised learning outcomes
are marked with a dash in the RA version column; the best result for each model is shown in bold; outcomes

of distant su

pervising that are superior to those in supervised learning are underlined

Joodyyenne O0benHeHHOe 00yUYeHne
JIByKj1accoBasi TpexkiaaccoBas JIByKj1accoBasi TpexkiaccoBas
Bepcus @ @ @ a
- RA F1¢%, F1, F1¢%, F1, F1¢, F1, F1¢, F1,
CNN 2017- 68.2 69.8 28.6 36.1 70.0 74.3 32.8 39.6
Large
CNN 2017- 67.0 66.8 29.8 331 62.8 67.2 311 40.3
Base
CNN — 63.6 65.9 28.7 31.4 63.6 65.9 28.7 31.4
PCNN 2017- 66.1 70.8 29.8 32.1 69.5 705 31.6 39.7
Large
PCNN 28017- 66.9 69.4 30.5 33.6 65.8 71.2 31.9 38.3
ase
PCNN — 64.4 63.3 29.6 325 64.4 63.3 29.6 325
LSTM 2017- 69.9 70.4 30.5 33.7 68.0 75.4 31.6 39.5
Large
LSTM | 2017 661 | 646 | 276 | 327 | 52 | 699 | 315 | 372
Base
LSTM — 61.9 65.3 27.9 31.6 61.9 65.3 27.9 31.6
BILSTM | 2017- 62.1 64.0 28.4 35.4 71.2 68.4 320 38.8
Large
BILSTM ZB(;Z 65.6 66.4 28.0 31.8 68.0 68.4 32.0 39.5
BiLSTM — 62.3 71.2 28.6 32.4 62.3 71.2 28.6 32.4
AUCNN, 2017- 65.9 67.5 28.0 35.0 66.8 72.7 30.9 39.9
Large
ACNN 25%1 62.6 65.7 28.4 335 68.0 69.2 313 376
AUCNN, | — 65.0 66.2 27.6 29.7 65.0 66.2 27.6 29.7
APCNN, | 2017- 66.8 69.6 27.9 325 70.2 67.8 322 39.9
Large
AUPCNN. | 2017 633 | 609 | 300 | 348 | 82 | 689 | 318 | 389
AttPCNN, | — 64.3 63.3 29.9 32.6 64.3 63.3 29.9 32.6
AN 2017- 64.5 65.7 285 30.7 69.1 726 30.7 36.7
Large
AN 2017- 64.5 66.9 27.5 335 69.8 70.6 30.7 36.7
Base
IAN, — 60.8 63.5 30.8 32.2 60.8 63.5 30.8 32.2
Att- 2017-
BLSTM Large 70.3 67.0 28.8 33.3 66.2 71.2 31.0 37.3
Att- 2017-
BLSTM Base 65.7 65.7 285 33.7 65.7 69.7 31.8 40.1
Att- —
BLSTM 65.7 68.2 27.5 32.3 65.7 68.2 27.5 32.3

213

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

Cpennee 2017- o o o o o o o o
AF1) Large +5.3% +4.1% +0.4% +6.5% +8.7% +8.9% +10.6% | +23.4%
Cpennee 2017-

+3.0% +1.8% +0.4% +6.0% +5.3% +5.5% +10.1% +22.2%
A(F1) Base
Cpennee — 63.5 65.9 28.8 31.8 63.5 65.9 28.8 31.8

S3bIKOBBIE MOJeAU. Pe3ynbTaThl SKCIIEPUMEHTOB TIPUBeIeHB! B Tabn. 9. CpenHUi pe3ynbTaT 1o
BCEM MOJICISIM TIPU OOYUCHHM C YYUTEJCM MPHUBEICH B MOCICAHEM psny Tadmuipl. CpaBHHUBAS
TaKye MMOKa3aTely C aHAJIOTHYHBIMH Pe3yIbTaTaMy Ta0l. 8, 3aMeHa HEHPOHHBIX ceTell Ha S3BIKOBBIC
MOJICTIH TIOBBIIIAET KauecTBO OleHku Ha 7.8% (F1%,) B mBykiaccoBoM, u Ha 9.7% (F1%,)) u 12%
(F1;) B tpexkmaccoBoM. CMmeHa (opmaTa 0OyUeHHS B SI3BIKOBBIX MOJEISX HA OTOCPEIOBAHHOE
OKa3bIBaeT MPUPOCT B #2-5% B AByKiIaccoBoM, U 10-13% B ciaydae TpeXKI1accOBOr0O IKCIIEPUMEHTA.
IIpeumyniecTBO B HCIOJIB30BAHUU PYCCKOSA3BIYHO-OPUEHTUPOBAHHBIX Mogened nepex mBERT
0COOCHHO HAOJIONAETCs B TPEXKIACCOBBIX OJKCIEpUMEHTax: nooOyueHHas Bepcust RuBERT
MTOKA3BIBACT HAWITYUIINN pe3ysIbTaT mpu uctons3oBaHun popmara NLI st TextB.

Tabn. 9. Pesynomamsl npumenenus onocpeoosannozo obyuenus onsa modenei BERT ¢ paznuunvimu
npeocmasnenus konmexcma TextB; cumeon «Py yxaszvieaem mun npedodyueHHoU MoOenu,; pe3yivmamnol
00yuYeHus ¢ yuumenem ommeyeHsbl nPpo4epKoM 6 KoioHKe «Bepcusi RA», Hauryuwiuil pe3yismam no Kaxcoou
MoOenu 8bl0eNeH HCUPHBIM WPUDMOM, Pe3VIbmamvl ONOCPe008aAHHO20 00YYeHUs, NPeBoCX0oauUe
aHajlocudHvle npu 06yqenuu C ydumeinem ommederol noduepkueaHueM

Tab. 9. Results of applying distant supervising for BERT models with different TextB context representations;
the "P" symbol indicates the type of pretrained model; supervised learning outcomes are marked with a dash
in the RA version column; the best result for each model is shown in bold; outcomes of distant supervising
that are superior to those in supervised learning are underlined

Joo0yuenue
JIByxknaccoBas |TpexkiiaccoBast
Monean f&’c“" F1%, | F1, | F1%, | F1,
MBERT (NLIp + C) 2017-Large 68.9 67.7 305 311
MBERT (NLIp+ C) 2017-Base 72.9 715 30.3 37.6
MBERT (C) — 67.0 68.9 26.9 30.0
MBERT (NLIp + QA) 2017-Large 69.6 65.2 30.1 355
MBERT (NLIp + QA) 2017-Base 74.4 714 29.5 324
MBERT (QA) — 66.5 65.4 28.6 33.8
MBERT (NLIp + NLI) 2017-Large 69.4 68.2 33.6 36.0
MBERT (NLIp + NLI) 2017-Base 69.2 69.6 311 375
MBERT (NLI) — 67.8 58.4 29.2 37.0
RUBERT (NLIp + C) 2017-Large 70.0 69.8 35.6 354
RUBERT (NLIp + C) 2017-Base 68.2 68.4 34.9 35.6
RUBERT (C) — 67.8 66.2 36.8 37.6
RUBERT (NLIr + QA) 2017-Large 69.6 68.2 34.8 37.0
RUBERT (NLIr + QA) 2017-Base 68.6 68.5 38.0 39.1
RUBERT (QA) — 69.5 66.2 32.0 35.3
RUBERT (NLIp + NLI) 2017-Large 71.0 68.6 36.8 39.9
RUBERT (NLIp + NLI) 2017-Base 67.0 66.9 36.1 394
RUBERT (NLI) — 68.9 66.4 294 39.6
SentRUBERT (NLIp + C) 2017-Large 70.0 69.8 37.9 39.8
SentRUBERT (NLIp + C) 2017-Base 70.3 68.1 38.5 39.0
SentRUBERT (C) — 69.3 65.5 340 35.2
SentRUBERT (NLIP + QA) 2017-Large 69.6 64.2 384 41.9
SentRUBERT (NLIp + QA) 2017-Base 68.6 67.5 355 33.6
SentRUBERT (QA) — 70.2 67.1 34.3 38.9

214

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

SentRUBERT (NLIp + NLI) 2017-Large 702 677 39.0 38.0
SentRUBERT (NLIp + NLI) 2017-Base 70.6 69.0 354 406
SentRUBERT (NLI) — 69.8 67.6 334 327
Cpennee-A(F1) 2017-Large | +1.8% | +3.7% |+13.5%]|+10.0%
Cpennee-A(F1) 2017-Base |+2.8% | +4.6% |+11.4%|+11.7%
Cpennee — 68.5 65.7 31.6 35.6

Monens SentRuBERT (NLIp+ NLI) o kauecTBy pa3sMeTKH CONOCTaBUMA C KaYeCTBOM HEMPOHHBIX
cereil 00beAnHEHHOTO (hopmaTa 00y4IEHUsI, TIPH 3TOM JIEMOHCTPUPYET COXpaHEHHE pe3ybTaTa IpH
nepexojae OT (QUKCHPOBAHHOTO Ha KPOCC-BaTMIAUHOHHBIN (opmar tectupoBanus (35.6-39.0).
Takue pesynbrarel Ha 25% BBIIIE aHAJOTMYHBIX PE3YJNbTATOB MOJEJed HEHPOHHBIX CeETei.
CoxpaHeHHe BBICOKHX OLIEHOK ITPU pa3HBIX (popMaTax pa3OMeHHs yKa3bIBalOT Ha 0oJiee BHICOKYIO
CTaOMIIBHOCTH B PE3yIBTUPYIOMIEM COCTOSHHAH B CITydae SI3bIKOBBIX MOJEIEH.

OneHka NPOU3BOAMTENBHOCTH SI3BIKOBBIX Mojeieii. OOydeHue Mopeneil MpOBOIMIOCH Ha
cepBepe ¢ aByms mporeccopamu Intel® Xeon® CPU E5-2670 v2 ¢ wactoroii 2.500 i, 80 I'6 O3Y
(DDR-3), ¢ aByms Buneoyckoputemsimu Nvidia GeForce GTX 1080 Ti (11.21°6); oneparmonHas
cucrema Ubuntu 18.0.4; o0yueHue Moieneil BBIMOIHIIOCH B KOHTeitHepax Docker Bepcun 19.03.5.
[IpumMensmch crnepyromue mapameTpsl oneHkH: (1) obmiee BpeMs oOydenus moneny; (2) obmree

uncyI0 310x. OlEHKa BHINOIHAIACH IPH (PUKCHPOBAaHHOM (popMate pasoueHus N0KyMeHTOB S,

Ta6n. 10. Oyenka eépemeHU 8 MPEXKIACCOBOM IKCNEPUMEHME C (DUKCUPOBAHHBIM HAOOPOM OOKYMEHMO8
obyuaiowei yacmu xoinexyuu RuSentRel npu paziuunvix opmamax obOyuenus mooeneil; 015 A3bIKOGbIX
MoOenell npusoOUmcst cpedHee 6pemsi OYeHKU NO PA3IUYHbIM hopmamam npedCmasienus 6X0OHbIX OaHHbIX
Table 10. Estimation of time in a three-class experiment with a fixed set of documents for the training part of
the RuSentRel collection with various training formats for models; for language models, the average evaluation
time is given for various formats of input data presentation

¢ y4uTesaeM npegodyyeHue n000yuenue
Mopne Bepenst RA Bpems|snox Bpemsi|snox Bpems|snox
Uucno ucnonb3yeMblx
GPU Y 1 2 1
KoHTekcToB B cexyHIY 31 62 31
mBERT 2017-Large — 8:40:14o4 00:10:32|14
mBERT 2017-Base — 2:59:45|04 00:10:32|14
mBERT — 00:10:32|35 — —
KoHTekcToB B cexyHIY 54 62 54
RUuBERT/SentRUBERT 2017-Large — 6:30:11Jos 00:06:10|7
RUBERT/SentRUBERT 2017-Base — 2:14:47)03 00:06:10}
RuBERT/SentRUBERT —1/1.0-Base 00:06:10]12 — —

B Ttabmn. 10 mpuBoauTCs cpelHss OLEHKAa BPEMEHH 110 KaXKIOMy n3 (OpPMaTOB IPE/CTABICHUS
BXOJHBIX JIaHHBIX SI3BIKOBBIX Mojened. Bo Bcex dQopmarax oOydeHHs Ha aJanTamnuio
PYCCKOSI3BIYHBIX MOJIeJIeH TpeOyeTcst MEHbIIIE 310X IPH OJJMHAKOBBIX HACTpOMKax oOydeHus: B 1.3
pa3a MeHbIIIE Ha 3Tare J000y4eHus, U B 2 paza MEHbIIE B OCTANBHBIX ciy4asxX. 3ameHna mBERT na
RuBERT wunu SentRuBERT cokparniaer Bpems o0y4derHus B 3.5 pasa.

5.5 AHanu3 BNusiHUA npepBapuTenbLHOro obyvyeHUss Ha pacnpegeneHuve
BEeCOB MeXaHU3Ma BHUMaHUS B A3bIKOBbIX MoAensx

Jns anamu3a BKaga pasiUyYHBIX DJIEMEHTOB KOHTEKCTa B IIOJNyYEHHBIH pe3ysbTaT dacTo
MPOU3BOJIUTCS CPABHEHHE BECOB MeXaHM3Ma BHUMaHus. J{iisi aHanmui3a ObUTH BHIOPAHBI CIIETYIOLINE
cocrostHus s3BIKOBBIX Mojeneii: mBERT, SentRuBERT u SentRuBERT-NLIP (npemnobyuennas
Bepcusi SentRuBERT kosekmueiit RUAttitudes2017Large). Cpean Bcero MHOXKECTBA KOHTEKCTOB

13 BpemeHHas oleHKa TIpH TIPOBENEHHH KPOCC-BATHIAIMOHHOTO TECTHPOBAHMS ObUIA OIYIIEHA BBHLY
CXO’KECTH OLICHOK I10 KaXJIOMY U3 Pa30HeHui.

215

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

paccMaTpuBalOTCs TOJIBKO TAKHE KOHTEKCTHI, KOTOPhIC OBUIH M3BJICYEHBI JOOOYYEHHOH MOMCIBIO
SentRUBERT (NLIP + NLI) u3 TectoBoro MHOXxecTBa Koyuiekuuu RuSentRel. Takum oGpaszom,
65uT0 IpoaHamu3upoBaHo 1032 koHTeKcTa. B KOHTEKCTaX JOMOIHUTEIEHO pa3MedeHbl BXOXKICHHS
JIEKCUKOHA OLIEHOYHBIX cJioB pycckoro sizeika RuSentiLex [30] (SENTIMENT) u BxoxkneHus
¢peiimos (FRAMES).

JIns KakJ0r0 BXOAHOTO KOHTEKCTA IMHON B S TOKEHOB, BEKTOP BECOB BHUMAHHA @ € RUXW*S*s
COJIIEPIKHUT 3HAYCHUS Ka)XKOTO CI0s, 1o Kaxkaoi romose monenud BERT (I — guciio cioeB sS3bIKOBO#
Monenu; h — uucno rosoB). Jns mpousBonmbHOTro cios ' w romossr h', Matpuma ap ,r € RS
OIMCHIBAET BECA CBSI3€H TOKEHOB BXOJIHBIX JAHHBIX CIIOs [C €ro BHIXOAHBIMH JAHHBIME (TOKCHAMHE
CIIEIYIOIIETO CII0s):

[CLS] — kiacca;

[SEP] — rpanui mocnenoBatenpHOCTEH;

[S/O] — yuacthukoB orHomenuit (Esubi/Eob));

rpynnsl FRAMES u BHIMaHuE K HUM OCTaJIBHBIX TOKEHOB KOHTEKCTA;

rpynnel SENTIMENT u BHUMaHHE K HUIM OCTaJIbHBIX TOKEHOB KOHTEKCTA.

Tabn. 11. Ycpeonennas oyenka 8eposmHoCcmu GHUMAHUA NO 207108AM A3b1K080uU Mooenu BERT no xkasxcoomy
u3 12 cnoeg 6 omoenvrocmu 01a: moxerog kaacca (CLS), pazoenumeneii (SEP), yuacmuukam omuowenus,
6cex cmopounux mokenos k FRAMES u SENTIMENT 6 omoenvrnocmu, Haubonvuiue 3Ha4eHus: 8 paoax
OMMeYeHbl HCUPHBIM WPUPmMom

Table 11. The average estimate of the probability of attention by the heads of the BERT language model for
each of the 12 layers separately for: class tokens (CLS), separators (SEP), relationship participants, all
third-party tokens to FRAMES and SENTIMENT separately; the highest values in the rows are marked in
bold

HOMEp CJI0s
['pynna TepmoB t[2[3]4]5]6 7 [8]9]10]11]1
mBERT
[CLS] 0.06 0.33 |0.36 [0.29 |0.31 [0.06 [0.04 |0.04 [0.05 |0.06 [0.07 |0.04
SEP 0.04 [0.07 0.06 [0.06 |0.07 [0.09 [0.09 [0.11 |0.12 [0.09 [0.09 [0.07
Esubj / Eobj 0.05 [0.04 |0.04 [0.06 |0.04 [0.06 [0.06 0.06 [0.06 |0.07 [0.07 |0.05
npoune—>FRAMES 0.07 |0.03 |0.03 [0.03 [0.03 [0.05 [0.04 |0.05 [0.04 [0.04 [0.03 |0.03
npoune—SENTIMENT 0.08 0.04 |0.03 [0.03 [0.04 [0.05 [0.04 |0.05 [0.05 |0.04 [0.03 |0.04
SentRUBERT
[CLS] 0.03 |0.27 {0.33 |0.30 [0.39 |0.09 [0.02 |0.03 |0.03 [0.05 |0.04 [0.02
SEP 0.05 |0.06 [0.03 [0.04 [0.04 [0.15 0.22 |0.39 |0.28 |0.29 [0.07 |0.04
Esubj / Eobj 0.10 [0.06 [0.07 [0.07 [0.05 [0.06 [0.08 [0.04 [0.06 [0.05 [0.11 [0.12
npoune—FRAMES 0.05 [0.03 |0.03 [0.03 [0.03 [0.04 |0.04 |0.03 |0.05 |0.05 [0.07 |0.06
npoune—SENTIMENT 0.06 |0.03 |0.03 [0.03 [0.03 [0.04 |0.04 [0.05 [0.06 |0.06 [0.08 [0.08
SentRUBERT-NLIp
[CLS] 0.03 [0.27 [0.36 |0.31 [0.34 [0.05 |0.01 [0.02 |0.01 [0.02 [0.02 [0.02
SEP 0.06 0.04 [0.03 |0.05 [0.04 0.20 [0.20 |0.28 [0.28 [0.28 0.04 [0.08
Esubj / Eobj 0.10 0.07 |0.08 [0.08 [0.07 [0.07 |0.09 |0.06 [0.07 [0.11 [0.28 |0.23
npoune—FRAMES 0.07 [0.04 |0.04 [0.04 [0.05 [0.06 [0.05 [0.07 [0.07 |0.05 [0.10 [0.08
npoune—SENTIMENT 0.08 |0.05 0.05 [0.04 [0.05 [0.07 |0.06 [0.09 [0.08 |0.07 [0.08 [0.09

216

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

mMBERT
0.40 = 0.25
0.35 e [CLS] « npoyue — FRAMES
) e [SEP] . 0.20 e npoyue — SENTIMENT
- 0.30 .
c
o =}
£ S8 = 0.15
£ 0.20 &
= g
© 0.15 o 0.10
=< >
0.10 =
0.05 0.05
0.00 0.00
SentRUBERT
0.40 0.25
0.35 « npo4ne - FRAMES
% 0.20 s npo4ue - SENTIMENT
0.30 ' "
5 3 .
8 2 °
£ 0.25 2 0.15 . »
£ 0.20 &
= = 0.10
o 0.15 o ¥
< 0.10 .
: 0.05
0.05
0.00 0.00
SentRUBERT-NLIp
0.40 0.25
0.35 « npoune - FRAMES -
2 0.20 e npoymne = SENTIMENT B
. 030 " - i
8 S ° g ¢
£ 025 £ 015 & :
@ @ .
£ 020 b= 510 s
o 0.15 e 0
= 0.10 o
’ 0.05
0.05
0.00 0.00
2 4 6 8 10 12
Layer Layer

Puc. 4. ITocroiinas oyenka pacnpedenenus sHUManus a3viko6vix mooeneti BERT k moxenam [CLS], [SEP],
o6wvexmam u cy6vexmam omuoutenus [SIO] (resasn xonronka) u petimos u oyenounvix cros (npasas
KOJIOHKQ); TUHUAMU COCOUHEHbI CPEOHUEe 3HAYEHUs 8€CO8 Kaxc0020 cios modenu [31]

Fig. 4. Layered assessment of the distribution of attention of the BERT language models to tokens [CLS],
[SEP], objects and subjects of the relationship [S/O] (left column) and frames and evaluative words (right
column); lines connect the average values of the weights of each layer of the model [31]

Puc. 4 unnmroctpupyer NocioiHy0 OLEHKY 3HAUCHUH BECOB BHUMAaHUs K IMPUBEICHHBIM TpyIHIaM
TokeHOB. Cpe/IHUE 3HAYEHUS 10 KKIOMY CIIOK0 yKa3aHbl'4 B Tad. 11.

14 s yepenuennsix onenok k rpynmam FRAMES u SENTIMENT yunThIBaroTCS TONBKO TAKME KOHTEKCTHI,
KOTOpBIE COZEp)KAaT XOTA Obl OAHO BXOXKACHHE TEpMa COOTBETCTBYoLIeil rpymmbl. B pesynbrate 68%
KOHTEKCTOB ~ YYUTBIBAJOCH IIPH COCTABJICHHMM OLCHKM BEPOATHOCTH BHUMAHUS I TOKCHOB
«apoune—FRAMES», u 75% mnsa «ripoune—SENTIMENT»

217

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

N

3 L L) (175 e
:) H

SentRuBERT
1.
SentRuBLRT-NLI,

fr e f=z i

v / ey f
/ s - 3 : =
! A 7, N

1 J .

\L '

Puc. 5. Ilpumep susyanuzayuu [31] secos conogwvr Ne2 (crou cnesa-nanpago: 2,4,8,11) xak ssonioyuu
sHumaruss mooeau MBERT 6 npoyecce doobyuenus na npumepax SentRUBERT u SentRUBERT-NLIp
Fig 5. An example of visualization [31] of head weights # 2 (layers from left to right: 2,4,8,11) as the
evolution of attention of the mBERT model in the process of additional training using the examples of
SentRUBERT and SentRuBERT-NLIP
CreyeT OTMETUTh BBICOKHE TOKa3aTel BHUMaHUs K TokeHy kiacca [CLS] Ha cmosix 2-5 go 35-
40%. Hna SentRuBERT wnaOmronmaeTcs moBwieHne BHUMaHUSA Ha TokeHax [SEP] (cmom 7-10) u
[S/O] (na xoneunsIx ciosix). Takke HaOJIOMAETCS MOBBINICHHE BHUMAHUS K TOKeHaM FRAMES u
SENTIMENT OT MPOYHMX TOKEHOB Ha KOHEUHBIX c0sX 110 7-10%.

218

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

IIpumenenne onocpemoBannoro ooyuenus (SentRuBERT-NLIp) moseicuno Bunmanue x [S/O] Ha
KOHEYHBIX CJIOSX: BECOBBIE 3HAYCHMs YBEIMYWINCH BABOe Tpu cpaBHeHHH ¢ SentRuBERT.
OTMedaeTcst TaK)Ke JTOIOIHUTEILHOE TTOBBIIIIEHNE BHUMAHUA K TOKEHaM SENTIMENT u FRAMES oT
MPOYNX TOKEHOB HA CPETHUX U KOHEUHBIX CJOSX.

B 1ensax HaraIsAHOM WILTIOCTPAIIAH BIUSHUS JOOOYUICHNUS Ha PHC. 5 IPUBEIeHA BU3yaIH3allii BECOB
rosoBbl Ne2 i kaxaoi anammsupyemoit mogenn BERT, no cnosim (cneBa-Hampaso) 2, 4, 8, 11
crienyroniero npumepa: Bedst maxyio uepy, Esusjokonuamenvno auwunaco 0osepusi Eobju cmpan E.
Esubj k Eobj 6 konmexcme «Esubj oxonuamenvho nuwunace 0osepus Eopp». B Momenun SentRuBERT-
NLIp, cpemm mnpoumx, Haumbojice BBIpAXEH (POKYC BHHMAHHUS KO BXOXKICHHAM (periMOB
«OKOHYATEJIFHO» U «IHIIUTHCS TOBEpHs» (CIoi §).

6. 3aknroyeHue

B manHO# paboTe IpeANiokKeH MOAX0] aBTOMATHYECKOTO IMOCTPOSHHS O0YJaromel KOJISKITNH B
3a4a4€ H3BJICUCHUA OIICHOYHBIX OTHOIlIeHI/Iﬁ N3 HOBOCTHBLIX TCKCTOB. Pa3MeT1<a OCHOBAaHa Ha
HpI/IMeHeHI/II/I }lByX paSJ'II/I‘IHI:IX TCXHUK BBIACICHUS OLUCHOYHBIX OTHOH_IeHI/Iﬁ JJIs1 B3aI/IMOHpOBepKI/I
pesynbratoB. IlepBas mompazymeBaeT aBTOMATHYECKOE IMOPOXKACHUE CIHCKA OICHOYHBIX Map
MOCPEACTBOM NPEBAPUTEIHLHOTO aHaJIN3a HOBOCTHON KOJUIEKIIMH. BTOpas TeXHHKa 3aK/II04aeTcs B
HU3BJICHCHUU OLUCHOYHBIX OTHOIHeHI/Iﬁ U3 HOBOCTHBIX 3aroJIOBKOB Ha OCHOBC JICKCUKOHA OLICHOYHbIX
(dpeiiMoB. B kauecTBe JOMOIHUTEIHLHOTO 3Tana MPEJIOKEH MOJX0A aBTOMATHYCCKON pa3METKH
HEUTpaIbHBIX OTHOLUEHUH.

3ajgaya W3BJICYEHMS ~ OLCHOYHBIX OTHOLICHWH paccMmarpuBajach Kak JIBYyKJIaccoBas
(MoNIOXKHUTENbHBIE M OTPHULIATEIbHBIC OTHOIIEHHMS) M TPEXKJIaccoBas (C BBEICHHEM HEHWTpalbHBIX
OTHOLICHMH) 3amaud kiaccupukanuu. [IpiMeHeHHe OIOCPEIOBAHHOTO OOY4YEeHHs II0Ka3aio
HanOOJIBIINI MPUPOCT KaYeCTBA B CIIy4ae TpeX KIaccoBoii knaccupukanuu. [IpupocT kagecTsa npu
o0yueHnn s3bIKOBBIX Moxeneit BERT cocraBun 10-13% mo merpuke F1 mpu cpaBHeHHH c
MOAXO0A0M 0€3 MCHOJB30BaHUS TAaKOW KOJUICKIMM B 0OydueHMHM W Ha 25% mpu CpaBHEHHH C
AQHAJIIOTHYHBIMUA HAMJIYYIIHUMHU Pe3yJIbTaTaMU MOJENECH CBEPTOYHBIX U PEKYPPEHTHBIX HEHPOHHBIX
ceTel.

Cnucok nutepatypbl / References

[1]. N. Loukachevitch and N. Rusnachenko. Extracting sentiment attitudes from analytical texts. In Proc. of
the International Conference on Computational Linguistics and Intellectual Technologies Dialogue-2018,
2018, pp. 459-468.

[2]. M. Mintz, S. Bills et al. Distant supervision for relation extraction without labeled data. In Proc. of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, vol. 2, 2009, pp. 1003-1011.

[3]. R. Hoffmann, C. Zhang et al. Knowledge-based weak supervision for information ex traction of
overlapping relations. In Proc. of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, 2011, pp. 541-550, 2011.

[4]. S. Vashishth, R. Joshi et al. RESIDE: improving distantly-supervised neural relation extraction using side
information. In Proc. of the Conference on Empirical Methods in Natural Language Processing, 2018, pp.
1257-1266.

[5]. N. Rusnachenko, N. Loukachevitch, and E. Tutubalina. Distant supervision for sentiment attitude
extraction. In Proc. of the International Conference on Recent Advances in Natural Language Processing
(RANLP 2019), 2019, pp. 1022-1030.

[6]. N. Loukachevitch and N. Rusnachenko. Sentiment frames for attitude extraction in russian. In Proc. of the
International Conference on Computational Linguistics and Intellectual Technologies Dialogue-2020,
2020, pp. 541-552.

[7]. J. Devlin, M.-W. Chang et al. Bert: pre-training of deep bidirectional transformers for language
understanding. arXiv preprint, arXiv:1810.04805, 2018.

[8]. A. Vaswani, N. Shazeer et al. Attention is all you need. In Proc. of the 1st Conference on Neural
Information Processing Systems (NIPS 2017), 2017, pp. 6000-6010.

219

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

[al.

[10].
[11].

[12].

[13].
[14].
[15].
[16].
[17].
[18].
[19].
[20].
[21].
[22].
[23].
[24].
[25].

[26].

[27].

[28].
[29].
[30].

[31].

A. Radford, K. Narasimhan et al. Improving language understanding by generative pre-training, 2018.
URL https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language_understanding_paper.pdf.

T. B. Brown, B. Mann et al. Language models are few-shot learners. arXiv preprint, arXiv:2005.1416 5,
2020.

C. Alt, M. Hubner and L. Hennig. Improving relation ex traction by pre-trained language representations.
arXiv preprint, arXiv:1906.03088, 2019.

C. Sun, L. Huang, and X. Qiu. Utilizing bert for aspect-based sentiment analysis via constructing auxiliary
sentence. In Proc. of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, vol. 1, 2019, pp. 380-385.

Y. Kuratov and M. Arkhipov. Adaptation of deep bidirectional multilingual transformers for russian
language. arXiv preprint arXiv:1905.07213, 2019.

S. R. Bowman, G. Angeli, C. Potts u C. D. Manning. A large annotated corpus for learning natural
language inference. arXiv preprint, arXiv:1508.05326, 2015.

A. Conneau, G. Lample et al. Xnli: evaluating cross-lingual sentence representations. arXiv preprint,
arXiv:1809.05053, 2018.

K. Clark, M.-T. Luong et al. Electra: pre-training text encoders as discriminators rather than generators.
arXiv preprint, arXiv:2003.10555, 2020.

Y. Liu, M. Ott et al. Roberta: a robustly optimized bert pretraining approach. arXiv preprint,
arXiv:1907.116 92, 2019.

A. Conneau, K. Khandelwal et al. Unsupervised cross-lingual representation learning at scale. arXiv
preprint, arXiv:1911.02116, 2019.

M. Joshi, D. Chen et al. Spanbert: improving pre-training by representing and predicting spans.
Transactions of the Association for Computational Linguistics, vol. 8, 2020, pp. 64-77.

I. Hendrickx, S. N. Kim et al. Semeval-2010 task 8: multi-way classification of semantic relations between
pairs of nominals. In Proc. of the Workshop on Semantic Evaluations: Recent Achievements and Future
Directions. 2009, pp. 94-99.

S. Wu and Y. He. Enriching pre-trained language model with entity information for relation classification.
In Proc. of the 28th ACM International Conference on Information and Knowledge Management, 2019,
pp. 2361-2364.

D. Dowty. Thematic proto-roles and argument selection. Language, vol. 67, no. 3, 1991, pp. 547-619.

R. Weischedel, M. Palmer et al. Ontonotes release 5.0. Linguistic Data Consortium, 2013. URL
https://catalog.ldc.upenn.edu/LDC2013T19.

N. Loukachevitch, G. Lashevich, and B. Dobrov. Comparing two thesaurus representations for russian. B
In Proc. of the Global WordNet Conference GWC, 2018, pp. 35-44.

N. Rusnachenko and N. Loukachevitch. Neural network approach for extracting aggregated opinions from
analytical articles. Communications in Computer and Information Science, vol. 1003, 2018, pp. 167-179.
N. Rusnachenko and N. Loukachevitch. Attention-based neural networks for sentiment attitude ex traction
using distant supervision. In Proc. of the 10th International Conference on Web Intelligence, Mining and
Semantics (WIMS 2020), 2020, pp. 159-168.

N. Rusnachenko and N. Loukachevitch. Studying attention models in sentiment attitude extraction task.
In Proc. of the 25th International Conference on Natural Language and Information Systems, 2020, pp.
157-169.

N. Rusnachenko and N. Loukachevitch. Using convolutional neural networks for sentiment attitude ex
traction from analytical texts. EPiC Series in Language and Linguistics, vol. 4, 2019, pp. 1-10.

S. Hochreiter u J. Schmidhuber. Long short-term memory. Neural computation, vol. 9, no. 8, 1997. pp.
1735-1780.

N. Loukachevitch and A. Levchik. Creating a general russian sentiment lexicon. In Proc. of the Tenth
International Conference on Language Resources and Evaluation (LREC’16), 2016, pp. 1171-1176.

K. Clark, U. Khandelwal et al. What does bert look at? an analysis of bert’s attention. arXiv preprint,
arXiv:1906.04341, 2019.

UHdopmaumsa ob aBTope / Information about the author

Huxomnait Jleonnnosny PYCHAYEHKO — acimpant xadenps! «Teoperudeckoir HHPOPMATHKH H
KOMITBIOTEPHBIX ~ TexHoorwmit» (MY-9) MOCKOBCKOTO TOCYIapCTBEHHOTO TEXHHUYECKOTO

220

Pycuauenko H.JI. [IpumeHenue S3bIKOBBIX MOJIENCH B 3aa4¢ U3BICUCHHS OLICHOYHBIX OTHOWeEHHH. Tpydsr UCIT PAH, Tom 33, Beim. 3, 2021
r., cTp. 199-222

yauBepcutera M. H.D baymana. O6iacTs HayqHBIX HHTEPECOB: 00pabOTKa €CTECTBEHHOTO S3bIKA,
aHaJIu3 TOHAJIbHOCTHU COOGIIIGHI/If/i, HM3BJICYECHHE OTHOIIICHHUM.

Nicolay Leonidovich RUSNACHENKO — PhD student of «Theoretical Informatics and Computer
Technologies» (IU-9), Bauman Moscow State Technical University (BMSTU) (Moscow, Russia).
Graduated from BMSTU in 2016 (master degree). Scientific interests: computational linguistics,
sentiment analysis, information retrieval.

221

Rusnachenko N.L. Language Models Application in Sentiment Attitude Extraction Task. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 199-222

222

