Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Development of iceFoam solver for modeling ice accretion

https://doi.org/10.15514/ISPRAS-2020-32(4)-16

Abstract

Currently, RF is actively developing the Northern territories. Questions of studying the physical processes of icing are relevant, since climate conditions affect the surface of the objects under study (power lines, residential buildings, power plants, aircraft), human safety and ecology. In clouds, the appearance and movement of liquid droplets-particles is possible. When studying two-phase flows containing a suspension of aerosol particles (dispersed phase) in the carrier medium (dispersion medium) in the atmosphere, it is important to correctly evaluate the main parameters that define the system, and adequately describe the real process using a formulated mathematical model. This article is devoted to the development of a new iceFoam solver as part of the OpenFOAM v1912 package for modeling the icing process at a typical particle size of about 40 microns, which corresponds to Annex C of the AP-25 Aviation rules. The Euler-Lagrangian approach and finite volume method are used to describe the dynamics of liquid droplets. A modified liquid film model based on the shallow water theory is used as a thermodynamic model. The results of calculation for the case of flow around the cylinder and airfoil NACA 0012 using the URANS method and Spalart-Allmaras turbulence model are presented. In the calculation domain, two variants of grids are constructed: for an external gas-drop flow and for a liquid thin film with a thickness of one cell in height. Patterns of ice thickness distribution are given. When developing the source code using C++ language, the technology of inheritance was used, i.e. creating base and derived classes. As a result, a parallel iceFoam solver was developed for simulating the motion of liquid particles and the formation of ice on the bodies’ surface. For the calculation of one test case 8-32 computing cores were used on the ISP RAS HPC.

About the Authors

Konstantin Borisovich KOSHELEV
Institute for Water and Environmental Problems SB RAS
Russian Federation
candidate of physical and mathematical sciences, associate professor, senior researcher


Valeriia Gennadievna MELNIKOVA
Ivannikov Institute for System Programming of the Russian Academy of Sciences, Bauman Moscow State Technical University
Russian Federation
PhD student of Bauman Moscow State Technical University, «Aerospace systems» department, researcher at ISP RAS


Sergei Vladimirovich STRIJHAK
Ivannikov Institute for System Programming of the Russian Academy of Sciences
Russian Federation
candidate of technical sciences, leading engineer


References

1. Крапошин М.В., Стрижак С.В. Проблемно-ориентированная библиотека SOWFA для решения прикладных задач ветроэнергетики. Труды ИСП РАН, том 30, вып. 6, 2018 г., стр. 259-274. DOI: 10.15514/ISPRAS-2018-30(6)-14 / Kraposhin M.V., StrijhakS.V. The problem-oriented library SOWFA for solving the applied tasks of wind energy. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 6, 2018, pp. 259-274 (in Russian).

2. Кошелев К.Б., Стрижак С.В. Моделирование динамики частиц в планетарном пограничном слое и в модельном ветропарке. Труды ИСП РАН, том 31, вып. 6, 2019 г., стр. 177-186. DOI: 10.15514/ISPRAS–2019–31(6)–10. / Koshelev K.B., Sttrijhak S.V. Simulation of particle dynamics in planetary boundary layer and in a model wind farm. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 6, 2019. pp. 177-186 (in Russian).

3. Kraposhin M, Bovtrikova A, Strijhak S. Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of Mach numbers. Procedia Computer Science, vol. 66, 2015, pp. 43-52.

4. Shin J., Bond T.H. Result of an Icing Test on a NACA 0012 Airfoil in the NASA Lewis Icing Research Tunnel. In Proc. of the 30th Aerospace Sciences Meeting & Exhibit, 1992. 20 p.

5. Andreson D.N. Rime-, Mixed-, and Glaze-Ice Evaluations on Three Scaling Laws. NASA Technical Memorandum 106461. AIAA-94-0718, 1994. 14 p.

6. Papadakis M. et al. Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings, and an S-duct Engine Inlet. NASA/TM-2002-211700, 2002. 435 p.

7. Алексеенко С.В., Приходько А.А. Численное моделирование обледенения цилиндра и профиля. Обзор моделей и результаты расчетов. Ученые записки ЦАГИ, том XLIV, № 6, 2013 г., стр. 25-57 / Alekseenko S.V., Prikhodko A.A. Numerical modeling of cylinder and profile icing. Review of models and calculation results. TsAGI Scientific Notes, vol. XLIV, № 6, 2013, pp. 25-57 (in Russian).

8. Wright W.B. User’s manual for the improved NASA Lewis ice accretion code LEWICE 1.6. Technical report, NASA TR-198355, 1995. 95 p.

9. Bourgault Y., Boutanios Z., Habashi W.G. Three-dimensional Eulerian approach to droplet impingement simulation using FENSAP-ICE, Part 1: Model, Algorithm, and Validation. Journal of Aircraft, vol. 37, no. 1, 2000, pp. 95-103.

10. Pena D, Hoarau Y, Laurendeau E. Development of a three-dimensional icing simulation code in the NSMB flow solver. International Journal of Engineering Systems Modelling and Simulation, vol. 8, № 2, 2016, pp. 86-98.

11. Pena D., Hoarau Y., Laurendeau E. A single step ice accretion model using Level-Set method. Journal of Fluids and Structures, vol. 65, 2016, pp. 278–294.

12. Gori G., Zocca M., Garabelli M., Guardone A., Quaranta G. PoliMIce: A simulation framework for three-dimensional ice accretion. Applied Mathematics and Computation, vol. 15, 2015, pp. 96-107.

13. Zocca M., Gori G., and Guardone A. Blockage and Three-Dimensional Effects in Wind-Tunnel Testing of Ice Accretion over Wings. Journal of Aircraft, vol. 54, no. 2, 2017, pp. 759-767.

14. Trontin P., Blanchard G., Kontogiannis A., Villedieu P. Description, assessment of the new ONERA 2D icing suite IGLOO2D. In Proc. of the 9th AIAA Atmospheric and Space Environments Conference, 2017. 28 p.

15. Волков А.В., Зыонг Д.Т. Применение метода Галеркина с разрывными функциями к решению системы уравнений динамики водяной взвеси в воздушном потоке. Ученые записки ЦАГИ, том XLVIII, № 5, 2017 г., стр. 1-18 / Volkov A.V., Zyong D.T. Application of the Galerkin method with discontinuous functions to the solution of the system of equations for the dynamics of a water suspension in an air flow. TsAGI Scientific Notes, vol. XLVIII, № 5, 2017, pp. 1-18 (in Russian).

16. Spalart P. R., Allmaras S. R. A One-Equation Turbulence Model for Aerodynamic Flows. In Proc. of the 30th Aerospace Sciences Meeting and Exhibit, 1992, AIAA Paper 1992-0439.

17. Aupoix B. Modelling of boundary layers over rough surfaces. Fluid Mechanics and Its Applications, vol. 24, 1994, pp. 16-20.

18. Spalart P. Trends in turbulence treatments. In Proc, of the Fluids 2000 Conference and Exhibit, 2000, AIAA Paper 2000-2306.

19. Aupoix B., Spalart P.R. Extensions of the Spalart–Allmaras turbulence model to account for wall roughness // International Journal of Heat and Fluid Flow, vol. 24, issue 4, 2003, pp. 454-462.

20. Messinger B. Equilibrium temperature of an unheated icing surface as a function of airspeed. Journal of the Aeronautical Sciences, vol. 1, no. 20, 1953, pp. 29-42.

21. Myers T.G. Extension to the Messinger model for aircraft icing. AIAA Journal, vol. 39, no. 2, 2001, pp. 211–218.

22. Bourgault Y., Beaugendre H., Habashi W. Development of a shallow-water icing model in FENSAP-ICE. Journal of Aircraft, vol. 37, no. 4, 2000, pp. 640–646.

23. Кашеваров А.В., Стасенко А.Л. Гидротермодинамика жидкой пленки с кристаллами на поверхности тела в потоке воздуха, содержащем частицы льда. Прикладная математика и техническая физика, № 2, 2017 г., стр. 103–114 / Kashevarov A.V., Stasenko A.L. Hydro-Thermodynamics of a Liquid Film with CRystals on the Body Surface in an Air Flow Containing Ice Particles. Journal of Applied Mechanics and Technical Physics, № 2, 2017, pp. 103–114 (in Russian).

24. Jungskog E. Description of reactingParcelFilmFoam. CFD with OpenSource software. A course at Chalmers University of Technology Taught by Hakan Nilsson. 2014. 31 p.

25. Beld E. J. Droplet impingement and film layer modeling as a basis for aircraft icing simulations in OpenFOAM. Master thesis. TU Twente, 2013, 49 p.

26. Bourgault-Côté S., Hasanzadeh K., Lavoie P., Laurendeau E. Multi-Layer Icing Methodologies for Conservative Ice Growth. In Proc. of the 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS), 2017, 15 p.

27. Ципенко В.Г., Шевяков В.И. Обеспечение безопасности полета транспортных воздушных судов с учетом новых сертификационных требований к условиям обледенения. Научный вестник МГТУ ГА, том 22, no. 3, 2019 г., стр. 45–56 / Tsipenko V.G., Shevyakov V.I. Promotion of transport airсraft flight safety taking into account updated certification requirements for icing conditions. Civil Aviation High Technologies (Nauchnyi Vestnik MGTU GA), vol. 22, no. 3, 2019, pp. 45–56 (in Russian).

28. Смирнов Е.М., Гарбарук А.В. Конспекты лекций дисциплины. Течения вязкой жидкости и модели турбулентности: методы расчета турбулентных течений. СПбГПУ, 2010 г., 127 стр. / Smirnov E.M., Garbaruk A.V. Discipline lecture notes. Viscous fluid flows and turbulence models: methods for calculating turbulent flows. SPbPU, 2010, 127 p. (in Russian).


Review

For citations:


KOSHELEV K.B., MELNIKOVA V.G., STRIJHAK S.V. Development of iceFoam solver for modeling ice accretion. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(4):217-234. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(4)-16



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)