Fault Identification in Mobile Robot groups using Sliding Mode Observers
https://doi.org/10.15514/ISPRAS-2021-33(1)-10
Abstract
The paper studies the emerging trends in advanced computing and information technology for efficient solutions of fault identification problem for mobile robot groups under the unmatched disturbances. The sliding mode observers are considered for mentioned problem solution. It facilitates the concept of Smart everything inside the considered robotic group during its generalized control: smart surrounding sensing, communication, processing, and scanned data storing. The suggested novel approach to sliding mode observer design is based on obtaining the reduced order model of the initial system. This allows reduce the complexity of sliding mode observer and relax restrictions imposed on the initial system.
About the Authors
Oleg Yurievich SERGIYENKOMexico
Doctor of Technical Sciences, Head of Applied Physics Department of Instituto de Ingenieria
Alexey Nilovich ZHIRABOK
Russian Federation
Doctor of Technical Sciences, Professor, Professor of the Department of Automation and Control
References
1. L. Jaulin. Mobile Robotics, 1st Edition. ISTE Press-Elsevies, 2015, 314 p.
2. G. Klancar, A. Adezar, S. Blazic, and I. Skrjanc. Wheeled Mobile Robots: From Fundamentals Towards Autonomous Systems. Elsevier/Butterwoth-Heinemann, 2017, 502 p.
3. G. Klancar, D. Matko, and S. Blazic. Wheeled mobile robots control in a linear platoon. Journal of Intelligent and Robotic Systems, vol. 54, 2017, pp. 709-731.
4. М.В. Иванов, О.Ю. Сергиенко, В.В. Тырса и др. Интеграция беспроводной связи для оптимизации распознавания окружения и расчёта траектории движения группы роботов. Труды ИСПРАН, том 31, вып. 2, 2019 г., стр. 67-82. DOI: 10.15514/ISPRAS-2019-31(2)-6 M. Ivanov, O. Sergiyenko, V. Tyrsa et al. Software advances using n-agents wireless communication integration for optimization of surrounding recognition and robotic group dead reckoning. Programming and Computer Software, vol.45, issue 8, 2019, pp. 557-569.
5. В.Ю. Осипов. Автоматический синтез программ действий интеллектуальных роботов. Программирование, том 42, no. 3, 2016 г., стр. 47-54 / V. Osipov. Automatic synthesis of action programs for intelligent robots. Programming and Computer Software, Springer, vol. 42, no. 3, 2016, pp. 155–160.
6. А.Д. Жданов, Д.Д. Жданов, Н.Н. Богданов и др. Проблемы дискомфорта зрительного восприятия в системах виртуальной и смешанной реальностей. Программирование, том 45, no. 4, 2019 г., стр. 9-18 / A.D. Zhdanov, D.D. Zhdanov, N.N. Bogdanov et al. Discomfort of Visual Perception in Virtual and Mixed Reality Systems. Programming and Computer Software, vol. 45, no. 4, 2019, pp. 147-155.
7. А.С. Ярыгина. Методы выполнения и оптимизации приближенных запросов в неоднородных системах. Программирование, том 39, no. 6, 2013 г., стр. 33-44 / A. Yarygina. Execution and optimization techniques for approximate queries in heterogeneous systems. Programming and Computer Software, vol.39, 2013, pp. 309–317.
8. Г.В. Безмен, Н.В. Колесов. Использование программных моделей для диагностирования информационно-управляющих систем. Программирование, том 40, no. 5, 2014, стр. 56-67 / G. Bezmen and N. Kolesov. Program models for diagnosis of information control systems. Programming and Computer Software, vol. 40, no. 2014, pp. 250–258.
9. L. Lindner, O. Sergiyenko, M. Rivas-Lopez et al. Exact laser beam positioning for measurement of vegetation vitality. Industrial Robot: An International Journal, vol. 44, issue 4, 2017, pp. 532-541.
10. O.Yu. Sergiyenko. Optoelectronic system for mobile robot navigation. Optoelectronics, Instrumentation and Data Processing, vol. 46, no. 5, 2010, pp. 414-428.
11. O.Yu. Sergiyenko, M.V. Ivanov, V.V. Tyrsa et al. Data transferring model determination in robotic group. Robotics and Autonomous Systems, vol. 83, 2016, pp. 251-260.
12. M. Reyes-García, O. Sergiyenko, M. Ivanov et al. Defining the final angular position of DC motor shaft using a trapezoidal trajectory profile. In Proc. of the IEEE 28th International Symposium on Industrial Electronics (ISIE2019), 2019, pp. 1694-1699.
13. C.A. Sepúlveda-Valdez, O. Sergiyenko, D. Hernandez-Balbuena et al. Circular scanning resolution improvement by its velocity close loop control. In Proc. of the IEEE 28th International Symposium on Industrial Electronics (ISIE2019), 2019, pp. 244-249.
14. M. Ruderman and M. Iwasaki. Observer of nonlinear friction dynamics for motion control. IEEE Transactions on Industrial Electronics, vol. 62, no. 9, 2015, pp. 5941-5949.
15. О.Ю. Сергиенко, С.П. Павлов. Анализ природы атомно-молекулярного взаимодействия поверхностей трения. Вестник национального технического университета “ХПИ”, том 1, no. 6, 2002 г., стр. 39-43 / O.Yu. Sergienko and S.P. Pavlov. Analysis of the nature of the atomic-molecular interaction of the friction surfaces. Vestnik Natsionalnogo tekhnicheskogo universiteta: Kharkovskiy Politechnitscheskiy Institut, vol. 1, no.6, 2002, pp. 39-43 (in Russian)
16. M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant Control. Springer-Verlag, 2006, 672 p.
17. S. Ding. Data-driven design of fault diagnosis and fault-tolerant control systems. Springer-Verlag, 2014, 300 p.
18. I. Samy, I. Postlethwaite, and D. Gu. Survey and application of sensor fault detection and isolation schemes. Control Engineering Practice, vol. 19, 2011, pp. 658–674.
19. V. Utkin. Sliding Modes in Control Optimiztion. Springer, Berlin, 1992, 286 p.
20. K. Chandra, H. Alwi, and C. Edwards. Fault reconstruction for a quadrotor using an lpv sliding mode observer. IFAC-PapersOnLine, vol. 48, issue 21, pp. 374-379, 2015.
21. C. Edwards, S. Spurgeon, and R. Patton. Sliding mode observers for fault detection and isolation. Automatica, vol. 36, 2000, pp. 541–553.
22. C. Tan and C. Edwards. Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. International Journal of Robust Nonlinear Control, vol. 13, 2003, pp. 443–463.
23. C.P. Tan and C. Edwards. Robust fault reconstruction using multiple sliding mode observers in cascade: development and design. In Proc. of the American Control Conference, 2009, pp. 3411–3416.
24. A. Zhirabok, A. Zuev, and A. Shumsky. Fault diagnosis in linear systems via sliding mode observers. International Journal of Control, vol. 94, issue 2, 2021, pp. 327-335.
25. A. Brahim, S. Dhahri, F. Hmida, and A. Sellami. Simultaneous actuator and sensor faults reconstruction based on robust sliding mode observer for a class of nonlinear systems. Asian Journal of Control, vol. 19, issue 1, 2017, pp. 362–371.
26. J. He and C. Zhang. Fault reconstruction based on sliding mode observer for nonlinear systems. Mathematical Problems in Engineering, vol. 2012, 2012, pp. 1–22.
27. X. Yan and C. Edwards. Nonlinear robust fault reconstruction and estimation using a sliding modes observer. Automatica, vol. 43, 2007, pp. 1605–1614.
28. J. Chan, C. Tan, and H. Trinh. Robust fault reconstruction for a class of infinitely unobservable descriptor systems. International Journal of Systems Science, vol. 48, issue 8, 2017, pp. 1646-1655.
29. H. Alwi and C. Edwards. Fault tolerant control using sliding modes with on-line control allocation. Automatica, vol. 44, 2008, pp. 1859–1866.
30. C. Edwards, H. Alwi, H. and C. Tan. Sliding mode methds for fault detection and fault tolerant control with application to aerospace systems. International Journal of Applied Mathematics and Computer Science, vol. 22, 2012, pp. 109–124.
31. V. Filaretov, A. Zuev, A. Zhirabok, and A. Protcenko. Development of fault identification system for electric servo actuators of multilink manipulators using logic-dynamic approach. Journal of Control Science and Engineering, vol. 2017, 2017, pp. 1–8.
32. H. Meziane, C. Labarre, S. Lefteriu, M. Defoort, and M. Djemai. Fault detection and isolation for a multi-cellular converter based on sliding mode observer. IFAC-PapersOnLine, volume 48, issue 21, 2015, pp. 164-170.
33. M. Mohamed, X-G. Yan, S. Spurgeon, and B. Jiang. Robust sliding mode observer design for interconnected systems with application to multimachine power systems. In Proc. of the IEEE Conference on Decision and Control, 2016, pp. 6246–6251.
34. K. Zhang, B. Jiang, X. Yan, and Z. Mao. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device. ISA Transactions, vol. 63, 2016, Pages 49-59.
35. M. Corradini, G. Orlando, and G. Parlangeli. A fault tolerant sliding mode controller for accommodating actuator failures. In Proc. of the 44th IEEE Conference on Decision and Control, 2005, pp. 3091–3096.
36. C. Edwards, H. Alwi, H. and C. Tan. Sliding mode methods for fault detection and fault tolerant control. In Proc. of the Conference on Control and Fault-Tolerant Systems, 2010, pp. 106–117.
37. C. Edwards and C. Tan. A comparison of sliding mode and unknown input observers for fault reconstruction. European Journal of Control, vol. 12, 2006, pp. 245–260.
38. А.Н. Жирабок, А.Е. Шумский, С.В. Павлов. Диагностирование линейных динамических систем непараметрическим методом. Автоматика и телемеханика, no. 7, 2017, стр. 3-21 / A. Zhirabok, A. Shumsky, and S. Pavlov. Diagnosis of linear dynamic systems by the nonparametric method. Automation and Remote Control, vol. 78, 2017, pp. 1173–1188.
39. A. Zhirabok, A. Shumsky, S. Solyanik, and A. Suvorov. Fault detection in nonlinear systems via linear methods. International Journal of Applied Mathematics and Computer Science, vol. 27, no. 2, 2017, pp. 261–272.
Review
For citations:
SERGIYENKO O.Yu., ZHIRABOK A.N. Fault Identification in Mobile Robot groups using Sliding Mode Observers. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2021;33(1):137-150. (In Russ.) https://doi.org/10.15514/ISPRAS-2021-33(1)-10