Erosion Model of Overflow Dam Right Bank on the Pemzenskaya Bayou
https://doi.org/10.15514/ISPRAS-2025-37(6)-46
Abstract
The paper proposes a mathematical model for studying the erosion of the coastal slope of the Pemzenskaya channel (Amur River) in the area of the overflow dam after the formation and expansion of the proran. The proran in the overflow dam was formed due to the erosion of the right bank during the floods of 2019-2022. It is known that the time to establish the hydrodynamic parameters of the flow is much shorter than the time to change its flow rate, therefore, the flow in the dam area is described within the quasi-stationary approximation. The algebraic model of Leo K.Van Rijn is used to model the turbulent viscosity of the flow. Changes in the bottom and shore markings of the riverbed are calculated using an analytical model of sediment movement developed in the works of Petrov and Potapov (2019). In order to prevent siltation of the proran during lateral movement of bottom material from the dry shore, a runoff term is introduced into the equation of bottom deformations. This term regulates the proran depth, which asymptotically tends to its regime depth. An algorithm based on the finite element method has been numerically developed to solve the problem. The results of calculations of coastal deformations were compared with experimental data, which showed their good qualitative and quantitative agreement. The experimental data was obtained from the Amur open source information system.
Keywords
About the Authors
Igor Ivanovich POTAPOVRussian Federation
Dr. Sci. (Phys.-Math.), Professor, Head of the Laboratory of Computational Mechanics of the Computing Center of the Far Eastern Branch of the Russian Academy of Sciences since 2009. Area of scientific interests: numerical methods, channel and hydrodynamic processes in lowland rivers.
Dmitry Igorevich POTAPOV
Russian Federation
Reasearcher of Laboratory of Computational Mechanics of the Computing Center of the Far Eastern Branch of the Russian Academy of Sciences.
References
1. Glover R. E., Florey Q. L. Stable channel profiles // U. S. Bureau of Reclamation, Washington. 1951.
2. Кондратьев Н.Е., Ляпин А.Н., Попов И.В., Пиньковский С.И., Федоров Н.Н. Якунин И.И. Русловой процесс. Л.: Гидрометеоиздат. 1959. 372 с./Kondratiev N.E., Lyapin A.N., Popov I.V., Pinkovsky S.I., Fedorov N.N. Yakunin I.I. Riverbed process. L.: Hydrometeoizdat. 1959. 372 p. (in Russian).
3. Макавеев Н.И. Русло реки и эрозия в ее бассейне. М.: Издательство АН СССР, 1955, 348 p./ [2]. Makaveev N.I. River bed and erosion in its basin. M.: Publishing House of the USSR Academy of Sciences, 1955, 348 p. (in Russian).
4. Ikeda S., Parker G., Saway K. Bend theory of river meanders. Part 1. Linear development // J. Fluid Mech. 1981. no. 112. P. 363–377.
5. Ikeda S. Stable channel cross–sections of straight sand rivers // J. Water Resources Res., 1991. Vol. 27, no. 9. P. 2429–2438.
6. Hirano M. River–bed variation with bank erosion // J. of Hydraulic, Coastal and Environmental Engineering. 1973. no. 210. P. 13–20 (in Japanese).
7. Parker G. Self–formed straight rivers with equilibrium banks and mobile bed. Part 1. The sand–silt river // J. Fluid Mech. 1978. part 1, Vol. 89. P. 109–126.
8. Monteiro-Alves, R.; Moran, R.; Toledo, M.A.; Jimenez-Rodriguez, R.; Picault, C.; Courivaud, J.-R. Overflow-Induced Breaching in Heterogeneous Coarse-Grained Embankment Dams and Levees–A State of the Art Review. Appl. Sci. 2025, 15, 8808. https://doi.org/10.3390/app15168808
9. Visser, K.; Tejral, R.D.; Neilsen, M.L. WinDAM C Earthen Embankment Internal Erosion Analysis Software, n.d. (accessed on 19 June 2025) Available online:
10. https://www.ars.usda.gov/research/publications/publication/?seqNo115=317437.
11. Dazzi, S.; Vacondio, R.; Mignosa, P. Integration of a Levee Breach Erosion Model in a GPU-Accelerated 2D Shallow Water Equations Code. Water Resour. Res. 2019, 55, 682–702.
12. Петров П.Г. Движение сыпучей среды в придонном слое жидкости // ПМТФ, 1991. № 5. С. 72 –– 75. / Petrov P.G. Movement of a granular medium in the bottom layer of liquid // PMTF, 1991. No. 5. P. 72 –– 75. (in Russian).
13. Бондаренко Б.В., Потапов И.И. Моделирование эволюции поперечного сечения песчаного канала // Вычислительные технологии evolution of the cross section of the sand channel. 2009. Т.14, № 5. С. 1–14. / Bondarenko B.V., Potapov I.I. Modeling the evolution of the cross section of the sand channel // Computational technologies evolution of the cross section of the sand channel. 2009. T.14, no. 5. pp. 1–14. (in Russian).
14. Потапов И.И., Бондаренко Б.В. Математическое моделирование эволюции берегового склона в каналах с песчаным руслом // Вычислительные технологии. 2013. Т.18, № 4. С. 25–36./ Potapov I.I., Bondarenko B.V. Mathematical modeling of the evolution of the coastal slope in channels with a sandy bed // Computational technologies. 2013. T.18, no. 4. pp. 25–36 (in Russian).
15. Потапов И.И., Силакова Ю.Г. Процесс разрушения переливной запруды на Пемзенской протоке реки Амур//Гидротехническое строительство. № 2, 2025. / Potapov I.I., Silakova Yu.G. The process of destruction of the overflow dam on the Pemzenskaya channel of the Amur River//Hydraulic engineering construction. No. 2, 2025. (in Russian).
16. Петров А.Г., Потапов И.И. Избранные разделы русловой динамики // М.: Ленанд. 2019. 244 с. / Petrov A.G., Potapov I.I. Selected sections of channel dynamics // M.: Lenand. 2019. 244 p. (in Russian).
17. Van Rijn L. C. Sediment transport, Part II: Suspended load transport // Journal of Hydraulic Engineering. – 1984. – Vol. 110, No. 11. – P. 1613–1641.
18. Шабров Н. Н. Метод конечных элементов в расчетах деталей тепловых двигателей. - Л.: Машиностроение, 1983. - 212 c./ Shabrov N. N. The finite element method in calculations of heat engine parts. Moscow: Mashinostroenie Publ., 1983. 212 p. (in Russian).
19. Potapov I.I. Source code of the Amur information system. https://github.com/PotapovII/Amur.
Review
For citations:
POTAPOV I.I., POTAPOV D.I. Erosion Model of Overflow Dam Right Bank on the Pemzenskaya Bayou. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2025;37(6):203-216. (In Russ.) https://doi.org/10.15514/ISPRAS-2025-37(6)-46






