On the estimations of efficiency and error of fast algorithm in vortex element method
https://doi.org/10.15514/ISPRAS-2016-28(1)-15
Abstract
About the Authors
K. S. KuzminaRussian Federation
I. K. Marchevsky
Russian Federation
References
1. A.J. Chorin, Numerical study of slightly viscous flow, J. Fluid. Mech., 57 (1973), pp. 785-796.
2. P. Degond, and S. Mas-Gallic, The weighted particle method for convection-diffusion equations. Part I: The case of an isotropic viscosity, Math. Comp., 53 (1989), pp. 485-507.
3. Y. Ogami, and T. Akamatsu, Viscous flow simulation using the discrete vortex model - the diffusion velocity method, Computers & Fluids, 19 (1991), pp. 433-441.
4. G. Ya. Dynnikova, Lagrange method for Navier - Stokes equations solving, Doklady Akademii Nauk, 399 (2004), pp. 42-46.
5. S. Guvernyuk, and G. Dynnikova, Modeling the flow past an oscillating airfoil by the method of viscous vortex domains, Fluid Dynamics, 42 (2007), pp. 1-11.
6. I. K. Lifanov, and S. M. Belotserkovskii, Methods of Discrete Vortices. CRC Press, 1993.
7. S. N. Kempka, M. W. Glass, J. S. Peery, and J. H. Strickland, Accuracy Considerations for Implementing Velocity Boundary Conditions in Vorticity Formulations. SANDIA Report SAND96-0583, 1996.
8. K. S. Kuzmina, and I. K. Marchevsky, The Modified Numerical Scheme for 2D Flow-Structure Interaction Simulation Using Meshless Vortex Element Method, in Proc. IV Int. Conference on Particle-based Methods - Fundamentals and Applications (PARTICLES- 2015), Barcelona (2015), pp. 680-691.
9. J. Barnes, and P. Hut, A hierarchical O() force-calculation algorithm, Nature, 324 (1986), pp. 446-449.
10. G. Ya. Dynnikova, Fast technique for solving the -body problem in flow simulation by vortex methods, Computational Mathematics and Mathematical Physics, 49 (2009), pp. 1389-1396.
11. A. I. Gircha, Fast Algorithm for -body Problem Solving with Regard to Numerical Method of Viscous Vortex Domains, Informatial technologies in Simulating and Control, 1 (2008), pp. 47-52.
12. V. S. Moreva, On the Ways of Computations Acceleration when Solving 2D Aerodynamic Problems by Using Vortex Element Method, Heralds of the Bauman Moscow State University. Natural Sciences. Sp. Issue `Applied Mathematics' (2011), pp. 83-95.
13. K. S. Kuzmina, I. K. Marchevsky, Estimation of computational complexity of the fast numerical algorithm for calculating vortex influence in the vortex element method, Science & Education (electronic journal), 10 (2013), pp. 399-414 (URL: http://technomag.bmstu.ru/en/doc/604030.html)
14. A. Grama, V. Sarin, and A. Sameh, Improving Error Bounds for Multipole-Based Treecodes, SIAM J. Sci. Comp., 21 (2000), pp. 1790-1803.
15. J. K. Salmon, and M. S. Warren, Skeletons from the treecode closet, J. Comput. Phys., 111 (1994), pp. 136-155.
Review
For citations:
Kuzmina K.S., Marchevsky I.K. On the estimations of efficiency and error of fast algorithm in vortex element method. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2016;28(1):259-274. (In Russ.) https://doi.org/10.15514/ISPRAS-2016-28(1)-15