Application of statistical and spectral methods to computational modeling of internal wave attractors
https://doi.org/10.15514/ISPRAS-2016-28(1)-16
Abstract
About the Authors
M. ProvidukhinaRussian Federation
I. Sibgatullin
Russian Federation
References
1. L. R. M. Maas and F.-P. A. Lam, “Geometric focusing of internal waves”, Journal of Fluid Mechanics, vol. 300, pp. 1-41, 1995.
2. L. R. M. Maas, D. Benielli, J. Sommeria, and F.-P. A. Lam, “Observation of an internal wave attractor in a confined, stably stratified fluid”, Nature, vol. 388, pp. 557-561, Aug. 1997.
3. H. Scolan, E. Ermanyuk, and T. Dauxois, “Nonlinear Fate of Internal Wave Attractors”, Physical Review Letters, vol. 110, p. 234501, June 2013.
4. N. Grisouard, C. Staquet, and I. Pairaud, “Numerical simulation of a two-dimensional internal wave attractor”, Journal of Fluid Mechanics, vol. 614, p. 1, Oct. 2008.
5. J. Hazewinkel, N.Grisouard, and S. B. Dalziel, “Comparison of laboratory and numerically observed scalar fields of an internal wave attractor”, European Journal of Mechanics B Fluids, vol. 30, pp. 51-56, Jan. 2011.
6. C. Brouzet, S. Joubaud, E. Ermanyuk, I. Sibgatullin, and T. Dauxois, “Energy cascade in internal-wave attractors”, Europhysics Letters, vol. 113, issue 4, pp. 44001, 2016.
7. C. Brouzet, Sibgatullin, E. Ermanyuk, H. Scolan, and T. Dauxois, “Internal wave attractors: experiments and numerical simulations”, Journal of Fluid Mechanics, vol. 793, pp. 109-131, 2016.
8. M. Deville, P. Fischer, E. Mund, and D. Gartling, “High-Order Methods for Incompressible Fluid Flow”, Applied Mechanics Reviews, vol. 56, p. B43, 2003.
Review
For citations:
Providukhina M., Sibgatullin I. Application of statistical and spectral methods to computational modeling of internal wave attractors. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2016;28(1):275-282. (In Russ.) https://doi.org/10.15514/ISPRAS-2016-28(1)-16